# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test configs for shape.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow.compat.v1 as tf from tensorflow.lite.testing.zip_test_utils import create_tensor_data from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests from tensorflow.lite.testing.zip_test_utils import register_make_test_function @register_make_test_function() def make_shape_tests(options): """Make a set of tests to do shape.""" test_parameters = [{ "input_dtype": [tf.float32, tf.int32], "input_shape": [[1, 4]], "new_shape": [[1, 4], [4, 1], [2, 2]], "out_type": [tf.int32, tf.int64], }] def build_graph(parameters): """Build the shape op testing graph.""" # Note that we intentionally leave out the shape from the input placeholder # to prevent the Shape operation from being optimized out during conversion. # TODO(haoliang): Test shape op directly after we have better support for # dynamic input. Currently we need to introduce a Reshape op to prevent # shape being constant-folded. input_value = tf.compat.v1.placeholder( dtype=parameters["input_dtype"], shape=parameters["input_shape"], name="input") shape_of_new_shape = [len(parameters["new_shape"])] new_shape = tf.compat.v1.placeholder( dtype=tf.int32, shape=shape_of_new_shape, name="new_shape") reshaped = tf.reshape(input_value, shape=new_shape) out = tf.shape(reshaped, out_type=parameters["out_type"]) return [input_value, new_shape], [out] def build_inputs(parameters, sess, inputs, outputs): input_value = create_tensor_data(parameters["input_dtype"], parameters["input_shape"]) new_shape = np.array(parameters["new_shape"]) return [input_value, new_shape], sess.run( outputs, feed_dict=dict(zip(inputs, [input_value, new_shape]))) make_zip_of_tests(options, test_parameters, build_graph, build_inputs)