// Copyright 2015, VIXL authors // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of ARM Limited nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "custom-disassembler.h" #include "examples.h" #include "non-const-visitor.h" #include "test-runner.h" #include "test-utils.h" #include "../test-utils-aarch64.h" #include "aarch64/macro-assembler-aarch64.h" #include "aarch64/simulator-aarch64.h" #define TEST(name) TEST_(EXAMPLE_##name) using namespace vixl; using namespace vixl::aarch64; TEST(custom_disassembler) { TestCustomDisassembler(); } // The tests below only work with the simulator. #ifdef VIXL_INCLUDE_SIMULATOR_AARCH64 uint64_t FactorialC(uint64_t n) { uint64_t result = 1; while (n != 0) { result *= n; n--; } return result; } // Multiply two column-major 4x4 matrices of 32 bit floating point values. // Return a column-major 4x4 matrix of 32 bit floating point values in 'C'. void MatrixMultiplyC(float C[16], float A[16], float B[16]) { C[0] = A[0] * B[0] + A[4] * B[1] + A[8] * B[2] + A[12] * B[3]; C[1] = A[1] * B[0] + A[5] * B[1] + A[9] * B[2] + A[13] * B[3]; C[2] = A[2] * B[0] + A[6] * B[1] + A[10] * B[2] + A[14] * B[3]; C[3] = A[3] * B[0] + A[7] * B[1] + A[11] * B[2] + A[15] * B[3]; C[4] = A[0] * B[4] + A[4] * B[5] + A[8] * B[6] + A[12] * B[7]; C[5] = A[1] * B[4] + A[5] * B[5] + A[9] * B[6] + A[13] * B[7]; C[6] = A[2] * B[4] + A[6] * B[5] + A[10] * B[6] + A[14] * B[7]; C[7] = A[3] * B[4] + A[7] * B[5] + A[11] * B[6] + A[15] * B[7]; C[8] = A[0] * B[8] + A[4] * B[9] + A[8] * B[10] + A[12] * B[11]; C[9] = A[1] * B[8] + A[5] * B[9] + A[9] * B[10] + A[13] * B[11]; C[10] = A[2] * B[8] + A[6] * B[9] + A[10] * B[10] + A[14] * B[11]; C[11] = A[3] * B[8] + A[7] * B[9] + A[11] * B[10] + A[15] * B[11]; C[12] = A[0] * B[12] + A[4] * B[13] + A[8] * B[14] + A[12] * B[15]; C[13] = A[1] * B[12] + A[5] * B[13] + A[9] * B[14] + A[13] * B[15]; C[14] = A[2] * B[12] + A[6] * B[13] + A[10] * B[14] + A[14] * B[15]; C[15] = A[3] * B[12] + A[7] * B[13] + A[11] * B[14] + A[15] * B[15]; } double Add3DoubleC(double x, double y, double z) { return x + y + z; } double Add4DoubleC(uint64_t a, double b, uint64_t c, double d) { return static_cast(a) + b + static_cast(c) + d; } uint32_t SumArrayC(uint8_t* array, uint32_t size) { uint32_t result = 0; for (uint32_t i = 0; i < size; ++i) { result += array[i]; } return result; } #define TEST_FUNCTION(Func) \ do { \ /* Record callee-saved registers, so we can check them after the test. */ \ int64_t saved_xregs[13]; \ saved_xregs[0] = simulator.ReadXRegister(19); \ saved_xregs[1] = simulator.ReadXRegister(20); \ saved_xregs[2] = simulator.ReadXRegister(21); \ saved_xregs[3] = simulator.ReadXRegister(22); \ saved_xregs[4] = simulator.ReadXRegister(23); \ saved_xregs[5] = simulator.ReadXRegister(24); \ saved_xregs[6] = simulator.ReadXRegister(25); \ saved_xregs[7] = simulator.ReadXRegister(26); \ saved_xregs[8] = simulator.ReadXRegister(27); \ saved_xregs[9] = simulator.ReadXRegister(28); \ saved_xregs[10] = simulator.ReadXRegister(29); \ saved_xregs[11] = simulator.ReadXRegister(30); \ saved_xregs[12] = simulator.ReadXRegister(31); \ \ uint64_t saved_dregs[8]; \ saved_dregs[0] = simulator.ReadDRegisterBits(8); \ saved_dregs[1] = simulator.ReadDRegisterBits(9); \ saved_dregs[2] = simulator.ReadDRegisterBits(10); \ saved_dregs[3] = simulator.ReadDRegisterBits(11); \ saved_dregs[4] = simulator.ReadDRegisterBits(12); \ saved_dregs[5] = simulator.ReadDRegisterBits(13); \ saved_dregs[6] = simulator.ReadDRegisterBits(14); \ saved_dregs[7] = simulator.ReadDRegisterBits(15); \ \ simulator.WriteXRegister(test_function_reg.GetCode(), \ masm.GetLabelAddress(&Func)); \ simulator.RunFrom(masm.GetLabelAddress(&test)); \ \ /* Check that callee-saved regsiters are preserved. */ \ VIXL_CHECK(saved_xregs[0] == simulator.ReadXRegister(19)); \ VIXL_CHECK(saved_xregs[1] == simulator.ReadXRegister(20)); \ VIXL_CHECK(saved_xregs[2] == simulator.ReadXRegister(21)); \ VIXL_CHECK(saved_xregs[3] == simulator.ReadXRegister(22)); \ VIXL_CHECK(saved_xregs[4] == simulator.ReadXRegister(23)); \ VIXL_CHECK(saved_xregs[5] == simulator.ReadXRegister(24)); \ VIXL_CHECK(saved_xregs[6] == simulator.ReadXRegister(25)); \ VIXL_CHECK(saved_xregs[7] == simulator.ReadXRegister(26)); \ VIXL_CHECK(saved_xregs[8] == simulator.ReadXRegister(27)); \ VIXL_CHECK(saved_xregs[9] == simulator.ReadXRegister(28)); \ VIXL_CHECK(saved_xregs[10] == simulator.ReadXRegister(29)); \ VIXL_CHECK(saved_xregs[11] == simulator.ReadXRegister(30)); \ VIXL_CHECK(saved_xregs[12] == simulator.ReadXRegister(31)); \ \ VIXL_CHECK(saved_dregs[0] == simulator.ReadDRegisterBits(8)); \ VIXL_CHECK(saved_dregs[1] == simulator.ReadDRegisterBits(9)); \ VIXL_CHECK(saved_dregs[2] == simulator.ReadDRegisterBits(10)); \ VIXL_CHECK(saved_dregs[3] == simulator.ReadDRegisterBits(11)); \ VIXL_CHECK(saved_dregs[4] == simulator.ReadDRegisterBits(12)); \ VIXL_CHECK(saved_dregs[5] == simulator.ReadDRegisterBits(13)); \ VIXL_CHECK(saved_dregs[6] == simulator.ReadDRegisterBits(14)); \ VIXL_CHECK(saved_dregs[7] == simulator.ReadDRegisterBits(15)); \ \ } while (0) #define START() \ MacroAssembler masm; \ Decoder decoder; \ Simulator simulator(&decoder); \ simulator.SetColouredTrace(Test::coloured_trace()); \ RegisterDump regs; \ \ Register test_function_reg = x15; \ \ Label test; \ masm.Bind(&test); \ { \ int trace_parameters = 0; \ if (Test::trace_reg()) trace_parameters |= LOG_STATE; \ if (Test::trace_write()) trace_parameters |= LOG_WRITE; \ if (Test::trace_sim()) trace_parameters |= LOG_DISASM; \ if (Test::trace_branch()) trace_parameters |= LOG_BRANCH; \ if (trace_parameters != 0) { \ masm.Trace(static_cast(trace_parameters), \ TRACE_ENABLE); \ } \ } \ masm.Blr(test_function_reg); \ masm.Trace(LOG_ALL, TRACE_DISABLE); \ regs.Dump(&masm); \ masm.Mov(lr, reinterpret_cast(Simulator::kEndOfSimAddress)); \ masm.Ret(); \ masm.FinalizeCode() #define FACTORIAL_DOTEST(N) \ do { \ simulator.ResetState(); \ simulator.WriteXRegister(0, N); \ TEST_FUNCTION(factorial); \ VIXL_CHECK(static_cast(regs.xreg(0)) == FactorialC(N)); \ } while (0) TEST(factorial) { START(); Label factorial; masm.Bind(&factorial); GenerateFactorial(&masm); masm.FinalizeCode(); FACTORIAL_DOTEST(0); FACTORIAL_DOTEST(1); FACTORIAL_DOTEST(5); FACTORIAL_DOTEST(10); FACTORIAL_DOTEST(20); FACTORIAL_DOTEST(25); } #define FACTORIAL_REC_DOTEST(N) \ do { \ simulator.ResetState(); \ simulator.WriteXRegister(0, N); \ TEST_FUNCTION(factorial_rec); \ VIXL_CHECK(static_cast(regs.xreg(0)) == FactorialC(N)); \ } while (0) TEST(factorial_rec) { START(); Label factorial_rec; masm.Bind(&factorial_rec); GenerateFactorialRec(&masm); masm.FinalizeCode(); FACTORIAL_REC_DOTEST(0); FACTORIAL_REC_DOTEST(1); FACTORIAL_REC_DOTEST(5); FACTORIAL_REC_DOTEST(10); FACTORIAL_REC_DOTEST(20); FACTORIAL_REC_DOTEST(25); } TEST(neon_matrix_multiply) { START(); Label neon_matrix_multiply; masm.Bind(&neon_matrix_multiply); GenerateNEONMatrixMultiply(&masm); masm.FinalizeCode(); { const int kRowSize = 4; const int kColSize = 4; const int kLength = kRowSize * kColSize; float mat1[kLength], mat2[kLength], expected[kLength], output[kLength]; // Fill the two input matrices with some 32 bit floating point values. mat1[0] = 1.0f; mat1[4] = 2.0f; mat1[8] = 3.0f; mat1[12] = 4.0f; mat1[1] = 52.03f; mat1[5] = 12.24f; mat1[9] = 53.56f; mat1[13] = 22.22f; mat1[2] = 4.43f; mat1[6] = 5.00f; mat1[10] = 7.00f; mat1[14] = 3.11f; mat1[3] = 43.47f; mat1[7] = 10.97f; mat1[11] = 37.78f; mat1[15] = 90.91f; mat2[0] = 1.0f; mat2[4] = 11.24f; mat2[8] = 21.00f; mat2[12] = 21.31f; mat2[1] = 2.0f; mat2[5] = 2.24f; mat2[9] = 8.56f; mat2[13] = 52.03f; mat2[2] = 3.0f; mat2[6] = 51.00f; mat2[10] = 21.00f; mat2[14] = 33.11f; mat2[3] = 4.0f; mat2[7] = 0.00f; mat2[11] = 84.00f; mat2[15] = 1.97f; MatrixMultiplyC(expected, mat1, mat2); simulator.ResetState(); simulator.WriteXRegister(0, reinterpret_cast(output)); simulator.WriteXRegister(1, reinterpret_cast(mat1)); simulator.WriteXRegister(2, reinterpret_cast(mat2)); TEST_FUNCTION(neon_matrix_multiply); // Check that the results match what is expected. for (int i = 0; i < kLength; i++) { VIXL_CHECK(output[i] == expected[i]); } } } TEST(add2_vectors) { START(); // Create and initialize the assembler and the simulator. Label add2_vectors; masm.Bind(&add2_vectors); GenerateAdd2Vectors(&masm); masm.FinalizeCode(); // Initialize input data for the example function. uint8_t A[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 200}; uint8_t B[] = {16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 50}; uint8_t D[ARRAY_SIZE(A)]; uintptr_t A_addr = reinterpret_cast(A); uintptr_t B_addr = reinterpret_cast(B); // Check whether number of elements in vectors match. VIXL_STATIC_ASSERT(ARRAY_SIZE(A) == ARRAY_SIZE(B)); VIXL_STATIC_ASSERT(ARRAY_SIZE(A) == ARRAY_SIZE(D)); // Compute vector sum for comparison later. for (unsigned i = 0; i < ARRAY_SIZE(A); i++) { D[i] = A[i] + B[i]; } // Set up simulator and run example function. simulator.ResetState(); simulator.WriteXRegister(0, A_addr); simulator.WriteXRegister(1, B_addr); simulator.WriteXRegister(2, ARRAY_SIZE(A)); TEST_FUNCTION(add2_vectors); // Compare vectors to ensure sums are equal. for (unsigned i = 0; i < ARRAY_SIZE(A); i++) { VIXL_CHECK(A[i] == D[i]); } } #define ADD3_DOUBLE_DOTEST(A, B, C) \ do { \ simulator.ResetState(); \ simulator.WriteDRegister(0, A); \ simulator.WriteDRegister(1, B); \ simulator.WriteDRegister(2, C); \ TEST_FUNCTION(add3_double); \ VIXL_CHECK(regs.dreg(0) == Add3DoubleC(A, B, C)); \ } while (0) TEST(add3_double) { START(); Label add3_double; masm.Bind(&add3_double); GenerateAdd3Double(&masm); masm.FinalizeCode(); ADD3_DOUBLE_DOTEST(0.0, 0.0, 0.0); ADD3_DOUBLE_DOTEST(457.698, 14.36, 2.00025); ADD3_DOUBLE_DOTEST(-45.55, -98.9, -0.354); ADD3_DOUBLE_DOTEST(.55, .9, .12); } #define ADD4_DOUBLE_DOTEST(A, B, C, D) \ do { \ simulator.ResetState(); \ simulator.WriteXRegister(0, A); \ simulator.WriteDRegister(0, B); \ simulator.WriteXRegister(1, C); \ simulator.WriteDRegister(1, D); \ TEST_FUNCTION(add4_double); \ VIXL_CHECK(regs.dreg(0) == Add4DoubleC(A, B, C, D)); \ } while (0) TEST(add4_double) { START(); Label add4_double; masm.Bind(&add4_double); GenerateAdd4Double(&masm); masm.FinalizeCode(); ADD4_DOUBLE_DOTEST(0, 0, 0, 0); ADD4_DOUBLE_DOTEST(4, 3.287, 6, 13.48); ADD4_DOUBLE_DOTEST(56, 665.368, 0, -4932.4697); ADD4_DOUBLE_DOTEST(56, 0, 546, 0); ADD4_DOUBLE_DOTEST(0, 0.658, 0, 0.00000011540026); } #define SUM_ARRAY_DOTEST(Array) \ do { \ simulator.ResetState(); \ uintptr_t addr = reinterpret_cast(Array); \ simulator.WriteXRegister(0, addr); \ simulator.WriteXRegister(1, ARRAY_SIZE(Array)); \ TEST_FUNCTION(sum_array); \ VIXL_CHECK(regs.xreg(0) == SumArrayC(Array, ARRAY_SIZE(Array))); \ } while (0) TEST(sum_array) { START(); Label sum_array; masm.Bind(&sum_array); GenerateSumArray(&masm); masm.FinalizeCode(); uint8_t data1[] = {4, 9, 13, 3, 2, 6, 5}; SUM_ARRAY_DOTEST(data1); uint8_t data2[] = {42}; SUM_ARRAY_DOTEST(data2); uint8_t data3[1000]; for (unsigned int i = 0; i < ARRAY_SIZE(data3); ++i) data3[i] = 255; SUM_ARRAY_DOTEST(data3); } #define ABS_DOTEST(X) \ do { \ simulator.ResetState(); \ simulator.WriteXRegister(0, X); \ TEST_FUNCTION(func_abs); \ VIXL_CHECK(regs.xreg(0) == abs(X)); \ } while (0) TEST(abs) { START(); Label func_abs; masm.Bind(&func_abs); GenerateAbs(&masm); masm.FinalizeCode(); ABS_DOTEST(-42); ABS_DOTEST(0); ABS_DOTEST(545); ABS_DOTEST(-428751489); } TEST(crc32) { START(); Label crc32; masm.Bind(&crc32); GenerateCrc32(&masm); masm.FinalizeCode(); const char* msg = "Hello World!"; uintptr_t msg_addr = reinterpret_cast(msg); size_t msg_size = strlen(msg); int64_t chksum = INT64_C(0xe3d6e35c); simulator.WriteXRegister(0, msg_addr); simulator.WriteXRegister(1, msg_size); TEST_FUNCTION(crc32); VIXL_CHECK(regs.xreg(0) == chksum); } TEST(swap4) { START(); Label swap4; masm.Bind(&swap4); GenerateSwap4(&masm); masm.FinalizeCode(); int64_t a = 15; int64_t b = 26; int64_t c = 46; int64_t d = 79; simulator.WriteXRegister(0, a); simulator.WriteXRegister(1, b); simulator.WriteXRegister(2, c); simulator.WriteXRegister(3, d); TEST_FUNCTION(swap4); VIXL_CHECK(regs.xreg(0) == d); VIXL_CHECK(regs.xreg(1) == c); VIXL_CHECK(regs.xreg(2) == b); VIXL_CHECK(regs.xreg(3) == a); } TEST(swap_int32) { START(); Label swap_int32; masm.Bind(&swap_int32); GenerateSwapInt32(&masm); masm.FinalizeCode(); int32_t x = 168; int32_t y = 246; simulator.WriteWRegister(0, x); simulator.WriteWRegister(1, y); TEST_FUNCTION(swap_int32); VIXL_CHECK(regs.wreg(0) == y); VIXL_CHECK(regs.wreg(1) == x); } #define CHECKBOUNDS_DOTEST(Value, Low, High) \ do { \ simulator.ResetState(); \ simulator.WriteXRegister(0, Value); \ simulator.WriteXRegister(1, Low); \ simulator.WriteXRegister(2, High); \ TEST_FUNCTION(check_bounds); \ VIXL_CHECK(regs.xreg(0) == ((Low <= Value) && (Value <= High))); \ } while (0) TEST(check_bounds) { START(); Label check_bounds; masm.Bind(&check_bounds); GenerateCheckBounds(&masm); masm.FinalizeCode(); CHECKBOUNDS_DOTEST(0, 100, 200); CHECKBOUNDS_DOTEST(58, 100, 200); CHECKBOUNDS_DOTEST(99, 100, 200); CHECKBOUNDS_DOTEST(100, 100, 200); CHECKBOUNDS_DOTEST(101, 100, 200); CHECKBOUNDS_DOTEST(150, 100, 200); CHECKBOUNDS_DOTEST(199, 100, 200); CHECKBOUNDS_DOTEST(200, 100, 200); CHECKBOUNDS_DOTEST(201, 100, 200); } #define GETTING_STARTED_DOTEST(Value) \ do { \ simulator.ResetState(); \ simulator.WriteXRegister(0, Value); \ TEST_FUNCTION(demo_function); \ VIXL_CHECK(regs.xreg(0) == (Value & 0x1122334455667788)); \ } while (0) TEST(getting_started) { START(); Label demo_function; masm.Bind(&demo_function); GenerateDemoFunction(&masm); masm.FinalizeCode(); GETTING_STARTED_DOTEST(0x8899aabbccddeeff); GETTING_STARTED_DOTEST(0x1122334455667788); GETTING_STARTED_DOTEST(0x0000000000000000); GETTING_STARTED_DOTEST(0xffffffffffffffff); GETTING_STARTED_DOTEST(0x5a5a5a5a5a5a5a5a); } TEST(non_const_visitor) { MacroAssembler masm; Label code_start, code_end; masm.Bind(&code_start); GenerateNonConstVisitorTestCode(&masm); masm.Bind(&code_end); masm.FinalizeCode(); Instruction* instr_start = masm.GetLabelAddress(&code_start); Instruction* instr_end = masm.GetLabelAddress(&code_end); int64_t res_orig = RunNonConstVisitorTestGeneratedCode(instr_start); ModifyNonConstVisitorTestGeneratedCode(instr_start, instr_end); int64_t res_mod = RunNonConstVisitorTestGeneratedCode(instr_start); VIXL_CHECK(res_orig == -res_mod); } TEST(literal_example) { VIXL_ASSERT(LiteralExample(1, 2) == 3); VIXL_ASSERT(LiteralExample(INT64_C(0x100000000), 0x1) == INT64_C(0x100000001)); } #ifdef VIXL_HAS_SIMULATED_RUNTIME_CALL_SUPPORT // This is an approximation of the result that works for the ranges tested // below. #define RUNTIME_CALLS_EXPECTED(A, B) ((A + B) * 4) #define RUNTIME_CALLS_DOTEST(A, B) \ do { \ simulator.ResetState(); \ simulator.WriteWRegister(0, A); \ simulator.WriteWRegister(1, B); \ TEST_FUNCTION(start); \ VIXL_CHECK(regs.wreg(0) == RUNTIME_CALLS_EXPECTED(A, B)); \ } while (0) TEST(runtime_calls) { START(); Label start; masm.Bind(&start); GenerateRuntimeCallExamples(&masm); masm.FinalizeCode(); RUNTIME_CALLS_DOTEST(0, 0); RUNTIME_CALLS_DOTEST(1, -2); RUNTIME_CALLS_DOTEST(123, 456); } #endif // VIXL_HAS_SIMULATED_RUNTIME_CALL_SUPPORT TEST(sve_strlen) { START(); CPUFeatures cpu_features(CPUFeatures::kSVE); masm.SetCPUFeatures(cpu_features); Label sve_strlen; masm.Bind(&sve_strlen); GenerateSVEStrlen(&masm); masm.FinalizeCode(); if (CanRun(cpu_features)) { const char* inputs[] = {"Exactly 15 chrs", "Exactly 16 chars", "Exactly 17 chars.", "This string is very long and will require multiple iterations, even " "with the maximum VL (256 bytes). This string is very long and will " "require multiple iterations, even with the maximum VL (256 bytes). " "This string is very long and will require multiple iterations, even " "with the maximum VL (256 bytes)."}; for (size_t i = 0; i < ArrayLength(inputs); i++) { simulator.ResetState(); simulator.WriteXRegister(0, reinterpret_cast(inputs[i])); TEST_FUNCTION(sve_strlen); VIXL_CHECK(static_cast(regs.xreg(0)) == strlen(inputs[i])); } } } #endif // VIXL_INCLUDE_SIMULATOR_AARCH64