/* Copyright (c) 2015-2019 The Khronos Group Inc. * Copyright (c) 2015-2019 Valve Corporation * Copyright (c) 2015-2019 LunarG, Inc. * Copyright (C) 2015-2019 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: Chris Forbes */ #ifndef VULKAN_SHADER_VALIDATION_H #define VULKAN_SHADER_VALIDATION_H #include #include #include #include "spirv-tools/optimizer.hpp" // A forward iterator over spirv instructions. Provides easy access to len, opcode, and content words // without the caller needing to care too much about the physical SPIRV module layout. struct spirv_inst_iter { std::vector::const_iterator zero; std::vector::const_iterator it; uint32_t len() const { auto result = *it >> 16; assert(result > 0); return result; } uint32_t opcode() { return *it & 0x0ffffu; } uint32_t const &word(unsigned n) const { assert(n < len()); return it[n]; } uint32_t offset() { return (uint32_t)(it - zero); } spirv_inst_iter() {} spirv_inst_iter(std::vector::const_iterator zero, std::vector::const_iterator it) : zero(zero), it(it) {} bool operator==(spirv_inst_iter const &other) const { return it == other.it; } bool operator!=(spirv_inst_iter const &other) const { return it != other.it; } spirv_inst_iter operator++(int) { // x++ spirv_inst_iter ii = *this; it += len(); return ii; } spirv_inst_iter operator++() { // ++x; it += len(); return *this; } // The iterator and the value are the same thing. spirv_inst_iter &operator*() { return *this; } spirv_inst_iter const &operator*() const { return *this; } }; struct decoration_set { enum { location_bit = 1 << 0, patch_bit = 1 << 1, relaxed_precision_bit = 1 << 2, block_bit = 1 << 3, buffer_block_bit = 1 << 4, component_bit = 1 << 5, input_attachment_index_bit = 1 << 6, descriptor_set_bit = 1 << 7, binding_bit = 1 << 8, nonwritable_bit = 1 << 9, builtin_bit = 1 << 10, }; uint32_t flags = 0; uint32_t location = static_cast(-1); uint32_t component = 0; uint32_t input_attachment_index = 0; uint32_t descriptor_set = 0; uint32_t binding = 0; uint32_t builtin = static_cast(-1); void merge(decoration_set const &other) { if (other.flags & location_bit) location = other.location; if (other.flags & component_bit) component = other.component; if (other.flags & input_attachment_index_bit) input_attachment_index = other.input_attachment_index; if (other.flags & descriptor_set_bit) descriptor_set = other.descriptor_set; if (other.flags & binding_bit) binding = other.binding; if (other.flags & builtin_bit) builtin = other.builtin; flags |= other.flags; } void add(uint32_t decoration, uint32_t value); }; struct SHADER_MODULE_STATE { // The spirv image itself std::vector words; // A mapping of to the first word of its def. this is useful because walking type // trees, constant expressions, etc requires jumping all over the instruction stream. std::unordered_map def_index; std::unordered_map decorations; struct EntryPoint { uint32_t offset; VkShaderStageFlags stage; }; std::unordered_multimap entry_points; bool has_valid_spirv; VkShaderModule vk_shader_module; uint32_t gpu_validation_shader_id; std::vector PreprocessShaderBinary(uint32_t *src_binary, size_t binary_size, spv_target_env env) { std::vector src(src_binary, src_binary + binary_size / sizeof(uint32_t)); // Check if there are any group decoration instructions, and flatten them if found. bool has_group_decoration = false; bool done = false; // Walk through the first part of the SPIR-V module, looking for group decoration instructions. // Skip the header (5 words). auto itr = spirv_inst_iter(src.begin(), src.begin() + 5); auto itrend = spirv_inst_iter(src.begin(), src.end()); while (itr != itrend && !done) { spv::Op opcode = (spv::Op)itr.opcode(); switch (opcode) { case spv::OpDecorationGroup: case spv::OpGroupDecorate: case spv::OpGroupMemberDecorate: has_group_decoration = true; done = true; break; case spv::OpFunction: // An OpFunction indicates there are no more decorations done = true; break; default: break; } itr++; } if (has_group_decoration) { spvtools::Optimizer optimizer(env); optimizer.RegisterPass(spvtools::CreateFlattenDecorationPass()); std::vector optimized_binary; // Run optimizer to flatten decorations only, set skip_validation so as to not re-run validator auto result = optimizer.Run(src_binary, binary_size / sizeof(uint32_t), &optimized_binary, spvtools::ValidatorOptions(), true); if (result) { return optimized_binary; } } // Return the original module. return src; } SHADER_MODULE_STATE(VkShaderModuleCreateInfo const *pCreateInfo, VkShaderModule shaderModule, spv_target_env env, uint32_t unique_shader_id) : words(PreprocessShaderBinary((uint32_t *)pCreateInfo->pCode, pCreateInfo->codeSize, env)), def_index(), has_valid_spirv(true), vk_shader_module(shaderModule), gpu_validation_shader_id(unique_shader_id) { BuildDefIndex(); } SHADER_MODULE_STATE() : has_valid_spirv(false), vk_shader_module(VK_NULL_HANDLE) {} decoration_set get_decorations(unsigned id) const { // return the actual decorations for this id, or a default set. auto it = decorations.find(id); if (it != decorations.end()) return it->second; return decoration_set(); } // Expose begin() / end() to enable range-based for spirv_inst_iter begin() const { return spirv_inst_iter(words.begin(), words.begin() + 5); } // First insn spirv_inst_iter end() const { return spirv_inst_iter(words.begin(), words.end()); } // Just past last insn // Given an offset into the module, produce an iterator there. spirv_inst_iter at(unsigned offset) const { return spirv_inst_iter(words.begin(), words.begin() + offset); } // Gets an iterator to the definition of an id spirv_inst_iter get_def(unsigned id) const { auto it = def_index.find(id); if (it == def_index.end()) { return end(); } return at(it->second); } void BuildDefIndex(); }; class ValidationCache { // hashes of shaders that have passed validation before, and can be skipped. // we don't store negative results, as we would have to also store what was // wrong with them; also, we expect they will get fixed, so we're less // likely to see them again. std::unordered_set good_shader_hashes; ValidationCache() {} public: static VkValidationCacheEXT Create(VkValidationCacheCreateInfoEXT const *pCreateInfo) { auto cache = new ValidationCache(); cache->Load(pCreateInfo); return VkValidationCacheEXT(cache); } void Load(VkValidationCacheCreateInfoEXT const *pCreateInfo) { const auto headerSize = 2 * sizeof(uint32_t) + VK_UUID_SIZE; auto size = headerSize; if (!pCreateInfo->pInitialData || pCreateInfo->initialDataSize < size) return; uint32_t const *data = (uint32_t const *)pCreateInfo->pInitialData; if (data[0] != size) return; if (data[1] != VK_VALIDATION_CACHE_HEADER_VERSION_ONE_EXT) return; uint8_t expected_uuid[VK_UUID_SIZE]; Sha1ToVkUuid(SPIRV_TOOLS_COMMIT_ID, expected_uuid); if (memcmp(&data[2], expected_uuid, VK_UUID_SIZE) != 0) return; // different version data = (uint32_t const *)(reinterpret_cast(data) + headerSize); for (; size < pCreateInfo->initialDataSize; data++, size += sizeof(uint32_t)) { good_shader_hashes.insert(*data); } } void Write(size_t *pDataSize, void *pData) { const auto headerSize = 2 * sizeof(uint32_t) + VK_UUID_SIZE; // 4 bytes for header size + 4 bytes for version number + UUID if (!pData) { *pDataSize = headerSize + good_shader_hashes.size() * sizeof(uint32_t); return; } if (*pDataSize < headerSize) { *pDataSize = 0; return; // Too small for even the header! } uint32_t *out = (uint32_t *)pData; size_t actualSize = headerSize; // Write the header *out++ = headerSize; *out++ = VK_VALIDATION_CACHE_HEADER_VERSION_ONE_EXT; Sha1ToVkUuid(SPIRV_TOOLS_COMMIT_ID, reinterpret_cast(out)); out = (uint32_t *)(reinterpret_cast(out) + VK_UUID_SIZE); for (auto it = good_shader_hashes.begin(); it != good_shader_hashes.end() && actualSize < *pDataSize; it++, out++, actualSize += sizeof(uint32_t)) { *out = *it; } *pDataSize = actualSize; } void Merge(ValidationCache const *other) { good_shader_hashes.reserve(good_shader_hashes.size() + other->good_shader_hashes.size()); for (auto h : other->good_shader_hashes) good_shader_hashes.insert(h); } static uint32_t MakeShaderHash(VkShaderModuleCreateInfo const *smci); bool Contains(uint32_t hash) { return good_shader_hashes.count(hash) != 0; } void Insert(uint32_t hash) { good_shader_hashes.insert(hash); } private: void Sha1ToVkUuid(const char *sha1_str, uint8_t uuid[VK_UUID_SIZE]) { // Convert sha1_str from a hex string to binary. We only need VK_UUID_BYTES of // output, so pad with zeroes if the input string is shorter than that, and truncate // if it's longer. char padded_sha1_str[2 * VK_UUID_SIZE + 1] = {}; strncpy(padded_sha1_str, sha1_str, 2 * VK_UUID_SIZE + 1); char byte_str[3] = {}; for (uint32_t i = 0; i < VK_UUID_SIZE; ++i) { byte_str[0] = padded_sha1_str[2 * i + 0]; byte_str[1] = padded_sha1_str[2 * i + 1]; uuid[i] = static_cast(strtol(byte_str, NULL, 16)); } } }; #endif // VULKAN_SHADER_VALIDATION_H