/* * Copyright (c) 2019 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "audio/utility/channel_mixing_matrix.h" #include #include #include "audio/utility/channel_mixer.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "system_wrappers/include/field_trial.h" namespace webrtc { namespace { // Selects the default usage of VoIP channel mapping adjustments. bool UseChannelMappingAdjustmentsByDefault() { return !field_trial::IsEnabled( "WebRTC-VoIPChannelRemixingAdjustmentKillSwitch"); } } // namespace static void ValidateLayout(ChannelLayout layout) { RTC_CHECK_NE(layout, CHANNEL_LAYOUT_NONE); RTC_CHECK_LE(layout, CHANNEL_LAYOUT_MAX); RTC_CHECK_NE(layout, CHANNEL_LAYOUT_UNSUPPORTED); RTC_CHECK_NE(layout, CHANNEL_LAYOUT_DISCRETE); RTC_CHECK_NE(layout, CHANNEL_LAYOUT_STEREO_AND_KEYBOARD_MIC); // Verify there's at least one channel. Should always be true here by virtue // of not being one of the invalid layouts, but lets double check to be sure. int channel_count = ChannelLayoutToChannelCount(layout); RTC_DCHECK_GT(channel_count, 0); // If we have more than one channel, verify a symmetric layout for sanity. // The unit test will verify all possible layouts, so this can be a DCHECK. // Symmetry allows simplifying the matrix building code by allowing us to // assume that if one channel of a pair exists, the other will too. if (channel_count > 1) { // Assert that LEFT exists if and only if RIGHT exists, and so on. RTC_DCHECK_EQ(ChannelOrder(layout, LEFT) >= 0, ChannelOrder(layout, RIGHT) >= 0); RTC_DCHECK_EQ(ChannelOrder(layout, SIDE_LEFT) >= 0, ChannelOrder(layout, SIDE_RIGHT) >= 0); RTC_DCHECK_EQ(ChannelOrder(layout, BACK_LEFT) >= 0, ChannelOrder(layout, BACK_RIGHT) >= 0); RTC_DCHECK_EQ(ChannelOrder(layout, LEFT_OF_CENTER) >= 0, ChannelOrder(layout, RIGHT_OF_CENTER) >= 0); } else { RTC_DCHECK_EQ(layout, CHANNEL_LAYOUT_MONO); } } ChannelMixingMatrix::ChannelMixingMatrix(ChannelLayout input_layout, int input_channels, ChannelLayout output_layout, int output_channels) : use_voip_channel_mapping_adjustments_( UseChannelMappingAdjustmentsByDefault()), input_layout_(input_layout), input_channels_(input_channels), output_layout_(output_layout), output_channels_(output_channels) { // Stereo down mix should never be the output layout. RTC_CHECK_NE(output_layout, CHANNEL_LAYOUT_STEREO_DOWNMIX); // Verify that the layouts are supported if (input_layout != CHANNEL_LAYOUT_DISCRETE) ValidateLayout(input_layout); if (output_layout != CHANNEL_LAYOUT_DISCRETE) ValidateLayout(output_layout); // Special case for 5.0, 5.1 with back channels when upmixed to 7.0, 7.1, // which should map the back LR to side LR. if (input_layout_ == CHANNEL_LAYOUT_5_0_BACK && output_layout_ == CHANNEL_LAYOUT_7_0) { input_layout_ = CHANNEL_LAYOUT_5_0; } else if (input_layout_ == CHANNEL_LAYOUT_5_1_BACK && output_layout_ == CHANNEL_LAYOUT_7_1) { input_layout_ = CHANNEL_LAYOUT_5_1; } } ChannelMixingMatrix::~ChannelMixingMatrix() = default; bool ChannelMixingMatrix::CreateTransformationMatrix( std::vector>* matrix) { matrix_ = matrix; // Size out the initial matrix. matrix_->reserve(output_channels_); for (int output_ch = 0; output_ch < output_channels_; ++output_ch) matrix_->push_back(std::vector(input_channels_, 0)); // First check for discrete case. if (input_layout_ == CHANNEL_LAYOUT_DISCRETE || output_layout_ == CHANNEL_LAYOUT_DISCRETE) { // If the number of input channels is more than output channels, then // copy as many as we can then drop the remaining input channels. // If the number of input channels is less than output channels, then // copy them all, then zero out the remaining output channels. int passthrough_channels = std::min(input_channels_, output_channels_); for (int i = 0; i < passthrough_channels; ++i) (*matrix_)[i][i] = 1; return true; } // If specified, use adjusted channel mapping for the VoIP scenario. if (use_voip_channel_mapping_adjustments_ && input_layout_ == CHANNEL_LAYOUT_MONO && ChannelLayoutToChannelCount(output_layout_) >= 2) { // Only place the mono input in the front left and right channels. (*matrix_)[0][0] = 1.f; (*matrix_)[1][0] = 1.f; for (size_t output_ch = 2; output_ch < matrix_->size(); ++output_ch) { (*matrix_)[output_ch][0] = 0.f; } return true; } // Route matching channels and figure out which ones aren't accounted for. for (Channels ch = LEFT; ch < CHANNELS_MAX + 1; ch = static_cast(ch + 1)) { int input_ch_index = ChannelOrder(input_layout_, ch); if (input_ch_index < 0) continue; int output_ch_index = ChannelOrder(output_layout_, ch); if (output_ch_index < 0) { unaccounted_inputs_.push_back(ch); continue; } RTC_DCHECK_LT(static_cast(output_ch_index), matrix_->size()); RTC_DCHECK_LT(static_cast(input_ch_index), (*matrix_)[output_ch_index].size()); (*matrix_)[output_ch_index][input_ch_index] = 1; } // If all input channels are accounted for, there's nothing left to do. if (unaccounted_inputs_.empty()) { // Since all output channels map directly to inputs we can optimize. return true; } // Mix front LR into center. if (IsUnaccounted(LEFT)) { // When down mixing to mono from stereo, we need to be careful of full scale // stereo mixes. Scaling by 1 / sqrt(2) here will likely lead to clipping // so we use 1 / 2 instead. float scale = (output_layout_ == CHANNEL_LAYOUT_MONO && input_channels_ == 2) ? 0.5 : ChannelMixer::kHalfPower; Mix(LEFT, CENTER, scale); Mix(RIGHT, CENTER, scale); } // Mix center into front LR. if (IsUnaccounted(CENTER)) { // When up mixing from mono, just do a copy to front LR. float scale = (input_layout_ == CHANNEL_LAYOUT_MONO) ? 1 : ChannelMixer::kHalfPower; MixWithoutAccounting(CENTER, LEFT, scale); Mix(CENTER, RIGHT, scale); } // Mix back LR into: side LR || back center || front LR || front center. if (IsUnaccounted(BACK_LEFT)) { if (HasOutputChannel(SIDE_LEFT)) { // If the input has side LR, mix back LR into side LR, but instead if the // input doesn't have side LR (but output does) copy back LR to side LR. float scale = HasInputChannel(SIDE_LEFT) ? ChannelMixer::kHalfPower : 1; Mix(BACK_LEFT, SIDE_LEFT, scale); Mix(BACK_RIGHT, SIDE_RIGHT, scale); } else if (HasOutputChannel(BACK_CENTER)) { // Mix back LR into back center. Mix(BACK_LEFT, BACK_CENTER, ChannelMixer::kHalfPower); Mix(BACK_RIGHT, BACK_CENTER, ChannelMixer::kHalfPower); } else if (output_layout_ > CHANNEL_LAYOUT_MONO) { // Mix back LR into front LR. Mix(BACK_LEFT, LEFT, ChannelMixer::kHalfPower); Mix(BACK_RIGHT, RIGHT, ChannelMixer::kHalfPower); } else { // Mix back LR into front center. Mix(BACK_LEFT, CENTER, ChannelMixer::kHalfPower); Mix(BACK_RIGHT, CENTER, ChannelMixer::kHalfPower); } } // Mix side LR into: back LR || back center || front LR || front center. if (IsUnaccounted(SIDE_LEFT)) { if (HasOutputChannel(BACK_LEFT)) { // If the input has back LR, mix side LR into back LR, but instead if the // input doesn't have back LR (but output does) copy side LR to back LR. float scale = HasInputChannel(BACK_LEFT) ? ChannelMixer::kHalfPower : 1; Mix(SIDE_LEFT, BACK_LEFT, scale); Mix(SIDE_RIGHT, BACK_RIGHT, scale); } else if (HasOutputChannel(BACK_CENTER)) { // Mix side LR into back center. Mix(SIDE_LEFT, BACK_CENTER, ChannelMixer::kHalfPower); Mix(SIDE_RIGHT, BACK_CENTER, ChannelMixer::kHalfPower); } else if (output_layout_ > CHANNEL_LAYOUT_MONO) { // Mix side LR into front LR. Mix(SIDE_LEFT, LEFT, ChannelMixer::kHalfPower); Mix(SIDE_RIGHT, RIGHT, ChannelMixer::kHalfPower); } else { // Mix side LR into front center. Mix(SIDE_LEFT, CENTER, ChannelMixer::kHalfPower); Mix(SIDE_RIGHT, CENTER, ChannelMixer::kHalfPower); } } // Mix back center into: back LR || side LR || front LR || front center. if (IsUnaccounted(BACK_CENTER)) { if (HasOutputChannel(BACK_LEFT)) { // Mix back center into back LR. MixWithoutAccounting(BACK_CENTER, BACK_LEFT, ChannelMixer::kHalfPower); Mix(BACK_CENTER, BACK_RIGHT, ChannelMixer::kHalfPower); } else if (HasOutputChannel(SIDE_LEFT)) { // Mix back center into side LR. MixWithoutAccounting(BACK_CENTER, SIDE_LEFT, ChannelMixer::kHalfPower); Mix(BACK_CENTER, SIDE_RIGHT, ChannelMixer::kHalfPower); } else if (output_layout_ > CHANNEL_LAYOUT_MONO) { // Mix back center into front LR. // TODO(dalecurtis): Not sure about these values? MixWithoutAccounting(BACK_CENTER, LEFT, ChannelMixer::kHalfPower); Mix(BACK_CENTER, RIGHT, ChannelMixer::kHalfPower); } else { // Mix back center into front center. // TODO(dalecurtis): Not sure about these values? Mix(BACK_CENTER, CENTER, ChannelMixer::kHalfPower); } } // Mix LR of center into: front LR || front center. if (IsUnaccounted(LEFT_OF_CENTER)) { if (HasOutputChannel(LEFT)) { // Mix LR of center into front LR. Mix(LEFT_OF_CENTER, LEFT, ChannelMixer::kHalfPower); Mix(RIGHT_OF_CENTER, RIGHT, ChannelMixer::kHalfPower); } else { // Mix LR of center into front center. Mix(LEFT_OF_CENTER, CENTER, ChannelMixer::kHalfPower); Mix(RIGHT_OF_CENTER, CENTER, ChannelMixer::kHalfPower); } } // Mix LFE into: front center || front LR. if (IsUnaccounted(LFE)) { if (!HasOutputChannel(CENTER)) { // Mix LFE into front LR. MixWithoutAccounting(LFE, LEFT, ChannelMixer::kHalfPower); Mix(LFE, RIGHT, ChannelMixer::kHalfPower); } else { // Mix LFE into front center. Mix(LFE, CENTER, ChannelMixer::kHalfPower); } } // All channels should now be accounted for. RTC_DCHECK(unaccounted_inputs_.empty()); // See if the output |matrix_| is simply a remapping matrix. If each input // channel maps to a single output channel we can simply remap. Doing this // programmatically is less fragile than logic checks on channel mappings. for (int output_ch = 0; output_ch < output_channels_; ++output_ch) { int input_mappings = 0; for (int input_ch = 0; input_ch < input_channels_; ++input_ch) { // We can only remap if each row contains a single scale of 1. I.e., each // output channel is mapped from a single unscaled input channel. if ((*matrix_)[output_ch][input_ch] != 1 || ++input_mappings > 1) return false; } } // If we've gotten here, |matrix_| is simply a remapping. return true; } void ChannelMixingMatrix::AccountFor(Channels ch) { unaccounted_inputs_.erase( std::find(unaccounted_inputs_.begin(), unaccounted_inputs_.end(), ch)); } bool ChannelMixingMatrix::IsUnaccounted(Channels ch) const { return std::find(unaccounted_inputs_.begin(), unaccounted_inputs_.end(), ch) != unaccounted_inputs_.end(); } bool ChannelMixingMatrix::HasInputChannel(Channels ch) const { return ChannelOrder(input_layout_, ch) >= 0; } bool ChannelMixingMatrix::HasOutputChannel(Channels ch) const { return ChannelOrder(output_layout_, ch) >= 0; } void ChannelMixingMatrix::Mix(Channels input_ch, Channels output_ch, float scale) { MixWithoutAccounting(input_ch, output_ch, scale); AccountFor(input_ch); } void ChannelMixingMatrix::MixWithoutAccounting(Channels input_ch, Channels output_ch, float scale) { int input_ch_index = ChannelOrder(input_layout_, input_ch); int output_ch_index = ChannelOrder(output_layout_, output_ch); RTC_DCHECK(IsUnaccounted(input_ch)); RTC_DCHECK_GE(input_ch_index, 0); RTC_DCHECK_GE(output_ch_index, 0); RTC_DCHECK_EQ((*matrix_)[output_ch_index][input_ch_index], 0); (*matrix_)[output_ch_index][input_ch_index] = scale; } } // namespace webrtc