/* * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ /* * decode_plc.c * * Packet Loss Concealment. * */ #include #include "modules/audio_coding/codecs/isac/fix/source/settings.h" #include "modules/audio_coding/codecs/isac/fix/source/entropy_coding.h" #include "modules/audio_coding/codecs/isac/fix/source/pitch_estimator.h" #include "modules/audio_coding/codecs/isac/fix/source/bandwidth_estimator.h" #include "modules/audio_coding/codecs/isac/fix/source/structs.h" #include "modules/audio_coding/codecs/isac/fix/source/codec.h" #define NO_OF_PRIMES 8 #define NOISE_FILTER_LEN 30 /* * function to decode the bitstream * returns the total number of bytes in the stream */ static int16_t plc_filterma_Fast( int16_t *In, /* (i) Vector to be filtered. InOut[-orderCoef+1] to InOut[-1] contains state */ int16_t *Out, /* (o) Filtered vector */ int16_t *B, /* (i) The filter coefficients (in Q0) */ int16_t Blen, /* (i) Number of B coefficients */ int16_t len, /* (i) Number of samples to be filtered */ int16_t reduceDecay, int16_t decay, int16_t rshift ) { int i, j; int32_t o; int32_t lim = (1 << (15 + rshift)) - 1; for (i = 0; i < len; i++) { const int16_t *b_ptr = &B[0]; const int16_t *x_ptr = &In[i]; o = (int32_t)0; for (j = 0;j < Blen; j++) { o = WebRtcSpl_AddSatW32(o, *b_ptr * *x_ptr); b_ptr++; x_ptr--; } /* to round off correctly */ o = WebRtcSpl_AddSatW32(o, 1 << (rshift - 1)); /* saturate according to the domain of the filter coefficients */ o = WEBRTC_SPL_SAT((int32_t)lim, o, (int32_t)-lim); /* o should be in the range of int16_t */ o >>= rshift; /* decay the output signal; this is specific to plc */ *Out++ = (int16_t)((int16_t)o * decay >> 15); /* change the decay */ decay -= reduceDecay; if( decay < 0 ) decay = 0; } return( decay ); } static __inline int32_t log2_Q8_T( uint32_t x ) { int32_t zeros; int16_t frac; zeros=WebRtcSpl_NormU32(x); frac = (int16_t)(((x << zeros) & 0x7FFFFFFF) >> 23); /* log2(magn(i)) */ return ((31 - zeros) << 8) + frac; } static __inline int16_t exp2_Q10_T(int16_t x) { // Both in and out in Q10 int16_t tmp16_1, tmp16_2; tmp16_2=(int16_t)(0x0400|(x&0x03FF)); tmp16_1 = -(x >> 10); if(tmp16_1>0) return tmp16_2 >> tmp16_1; else return tmp16_2 << -tmp16_1; } /* This is a fixed-point version of the above code with limLow = 700 and limHigh = 5000, hard-coded. The values 700 and 5000 were experimentally obtained. The function implements membership values for two sets. The mebership functions are of second orders corresponding to half-bell-shapped pulses. */ static void MemshipValQ15( int16_t in, int16_t *A, int16_t *B ) { int16_t x; in -= 700; /* translate the lowLim to 0, limHigh = 5000 - 700, M = 2150 */ if( in <= 2150 ) { if( in > 0 ) { /* b = in^2 / (2 * M^2), a = 1 - b in Q0. We have to compute in Q15 */ /* x = in / 2150 {in Q15} = x * 15.2409 {in Q15} = x*15 + (x*983)/(2^12); note that 983/2^12 = 0.23999 */ /* we are sure that x is in the range of int16_t */ x = (int16_t)(in * 15 + (in * 983 >> 12)); /* b = x^2 / 2 {in Q15} so a shift of 16 is required to be in correct domain and one more for the division by 2 */ *B = (int16_t)((x * x + 0x00010000) >> 17); *A = WEBRTC_SPL_WORD16_MAX - *B; } else { *B = 0; *A = WEBRTC_SPL_WORD16_MAX; } } else { if( in < 4300 ) { /* This is a mirror case of the above */ in = 4300 - in; x = (int16_t)(in * 15 + (in * 983 >> 12)); /* b = x^2 / 2 {in Q15} so a shift of 16 is required to be in correct domain and one more for the division by 2 */ *A = (int16_t)((x * x + 0x00010000) >> 17); *B = WEBRTC_SPL_WORD16_MAX - *A; } else { *A = 0; *B = WEBRTC_SPL_WORD16_MAX; } } } static void LinearResampler(int16_t* in, int16_t* out, size_t lenIn, size_t lenOut) { size_t n = (lenIn - 1) * RESAMP_RES; int16_t resOut, relativePos, diff; /* */ size_t i, j; uint16_t udiff; if( lenIn == lenOut ) { WEBRTC_SPL_MEMCPY_W16( out, in, lenIn ); return; } resOut = WebRtcSpl_DivW32W16ResW16( (int32_t)n, (int16_t)(lenOut-1) ); out[0] = in[0]; for( i = 1, j = 0, relativePos = 0; i < lenOut; i++ ) { relativePos += resOut; while( relativePos > RESAMP_RES ) { j++; relativePos -= RESAMP_RES; } /* an overflow may happen and the differce in sample values may * require more than 16 bits. We like to avoid 32 bit arithmatic * as much as possible */ if( (in[ j ] > 0) && (in[j + 1] < 0) ) { udiff = (uint16_t)(in[ j ] - in[j + 1]); out[ i ] = in[ j ] - (uint16_t)( ((int32_t)( udiff * relativePos )) >> RESAMP_RES_BIT); } else { if( (in[j] < 0) && (in[j+1] > 0) ) { udiff = (uint16_t)( in[j + 1] - in[ j ] ); out[ i ] = in[ j ] + (uint16_t)( ((int32_t)( udiff * relativePos )) >> RESAMP_RES_BIT); } else { diff = in[ j + 1 ] - in[ j ]; out[i] = in[j] + (int16_t)(diff * relativePos >> RESAMP_RES_BIT); } } } } void WebRtcIsacfix_DecodePlcImpl(int16_t *signal_out16, IsacFixDecoderInstance *ISACdec_obj, size_t *current_framesamples ) { int subframecnt; int16_t* Vector_Word16_1; int16_t Vector_Word16_Extended_1[FRAMESAMPLES_HALF + NOISE_FILTER_LEN]; int16_t* Vector_Word16_2; int16_t Vector_Word16_Extended_2[FRAMESAMPLES_HALF + NOISE_FILTER_LEN]; int32_t Vector_Word32_1[FRAMESAMPLES_HALF]; int32_t Vector_Word32_2[FRAMESAMPLES_HALF]; int16_t lofilt_coefQ15[ORDERLO*SUBFRAMES]; //refl. coeffs int16_t hifilt_coefQ15[ORDERHI*SUBFRAMES]; //refl. coeffs int16_t pitchLags_Q7[PITCH_SUBFRAMES]; int16_t pitchGains_Q12[PITCH_SUBFRAMES]; int16_t tmp_1, tmp_2; int32_t tmp32a, tmp32b; int16_t gainQ13; int16_t myDecayRate; /* ---------- PLC variables ------------ */ size_t lag0, i, k; int16_t noiseIndex; int16_t stretchPitchLP[PITCH_MAX_LAG + 10], stretchPitchLP1[PITCH_MAX_LAG + 10]; int32_t gain_lo_hiQ17[2*SUBFRAMES]; int16_t nLP, pLP, wNoisyLP, wPriodicLP, tmp16; size_t minIdx; int32_t nHP, pHP, wNoisyHP, wPriodicHP, corr, minCorr, maxCoeff; int16_t noise1, rshift; int16_t ltpGain, pitchGain, myVoiceIndicator, myAbs, maxAbs; int32_t varIn, varOut, logVarIn, logVarOut, Q, logMaxAbs; int rightShiftIn, rightShiftOut; /* ------------------------------------- */ myDecayRate = (DECAY_RATE); Vector_Word16_1 = &Vector_Word16_Extended_1[NOISE_FILTER_LEN]; Vector_Word16_2 = &Vector_Word16_Extended_2[NOISE_FILTER_LEN]; /* ----- Simply Copy Previous LPC parameters ------ */ for( subframecnt = 0; subframecnt < SUBFRAMES; subframecnt++ ) { /* lower Band */ WEBRTC_SPL_MEMCPY_W16(&lofilt_coefQ15[ subframecnt * ORDERLO ], (ISACdec_obj->plcstr_obj).lofilt_coefQ15, ORDERLO); gain_lo_hiQ17[2*subframecnt] = (ISACdec_obj->plcstr_obj).gain_lo_hiQ17[0]; /* Upper Band */ WEBRTC_SPL_MEMCPY_W16(&hifilt_coefQ15[ subframecnt * ORDERHI ], (ISACdec_obj->plcstr_obj).hifilt_coefQ15, ORDERHI); gain_lo_hiQ17[2*subframecnt + 1] = (ISACdec_obj->plcstr_obj).gain_lo_hiQ17[1]; } lag0 = (size_t)(((ISACdec_obj->plcstr_obj.lastPitchLag_Q7 + 64) >> 7) + 1); if( (ISACdec_obj->plcstr_obj).used != PLC_WAS_USED ) { (ISACdec_obj->plcstr_obj).pitchCycles = 0; (ISACdec_obj->plcstr_obj).lastPitchLP = &((ISACdec_obj->plcstr_obj).prevPitchInvIn[FRAMESAMPLES_HALF - lag0]); minCorr = WEBRTC_SPL_WORD32_MAX; if ((FRAMESAMPLES_HALF - 10) > 2 * lag0) { minIdx = 11; for( i = 0; i < 21; i++ ) { corr = 0; for( k = 0; k < lag0; k++ ) { corr = WebRtcSpl_AddSatW32(corr, WEBRTC_SPL_ABS_W32( WebRtcSpl_SubSatW16( (ISACdec_obj->plcstr_obj).lastPitchLP[k], (ISACdec_obj->plcstr_obj).prevPitchInvIn[ FRAMESAMPLES_HALF - 2*lag0 - 10 + i + k ] ) ) ); } if( corr < minCorr ) { minCorr = corr; minIdx = i; } } (ISACdec_obj->plcstr_obj).prevPitchLP = &( (ISACdec_obj->plcstr_obj).prevPitchInvIn[ FRAMESAMPLES_HALF - lag0*2 - 10 + minIdx] ); } else { (ISACdec_obj->plcstr_obj).prevPitchLP = (ISACdec_obj->plcstr_obj).lastPitchLP; } pitchGain = (ISACdec_obj->plcstr_obj).lastPitchGain_Q12; WebRtcSpl_AutoCorrelation( &(ISACdec_obj->plcstr_obj).prevPitchInvIn[FRAMESAMPLES_HALF - lag0], lag0, 0, &varIn, &rightShiftIn); WebRtcSpl_AutoCorrelation( &(ISACdec_obj->plcstr_obj).prevPitchInvOut[PITCH_MAX_LAG + 10 - lag0], lag0, 0, &varOut, &rightShiftOut); maxAbs = 0; for( i = 0; i< lag0; i++) { myAbs = WEBRTC_SPL_ABS_W16( (ISACdec_obj->plcstr_obj).prevPitchInvOut[ PITCH_MAX_LAG + 10 - lag0 + i] ); maxAbs = (myAbs > maxAbs)? myAbs:maxAbs; } logVarIn = log2_Q8_T( (uint32_t)( varIn ) ) + (int32_t)(rightShiftIn << 8); logVarOut = log2_Q8_T( (uint32_t)( varOut ) ) + (int32_t)(rightShiftOut << 8); logMaxAbs = log2_Q8_T( (uint32_t)( maxAbs ) ); ltpGain = (int16_t)(logVarOut - logVarIn); Q = 2 * logMaxAbs - ( logVarOut - 1512 ); /* * --- * We are computing sqrt( (VarIn/lag0) / var( noise ) ) * var( noise ) is almost 256. we have already computed log2( VarIn ) in Q8 * so we actually compute 2^( 0.5*(log2( VarIn ) - log2( lag0 ) - log2( var(noise ) ) ). * Note that put log function is in Q8 but the exponential function is in Q10. * -- */ logVarIn -= log2_Q8_T( (uint32_t)( lag0 ) ); tmp16 = (int16_t)((logVarIn<<1) - (4<<10) ); rightShiftIn = 0; if( tmp16 > 4096 ) { tmp16 -= 4096; tmp16 = exp2_Q10_T( tmp16 ); tmp16 >>= 6; } else tmp16 = exp2_Q10_T( tmp16 )>>10; (ISACdec_obj->plcstr_obj).std = tmp16 - 4; if( (ltpGain < 110) || (ltpGain > 230) ) { if( ltpGain < 100 && (pitchGain < 1800) ) { (ISACdec_obj->plcstr_obj).A = WEBRTC_SPL_WORD16_MAX; } else { (ISACdec_obj->plcstr_obj).A = ((ltpGain < 110) && (Q < 800) )? WEBRTC_SPL_WORD16_MAX:0; } (ISACdec_obj->plcstr_obj).B = WEBRTC_SPL_WORD16_MAX - (ISACdec_obj->plcstr_obj).A; } else { if( (pitchGain < 450) || (pitchGain > 1600) ) { (ISACdec_obj->plcstr_obj).A = ((pitchGain < 450) )? WEBRTC_SPL_WORD16_MAX:0; (ISACdec_obj->plcstr_obj).B = WEBRTC_SPL_WORD16_MAX - (ISACdec_obj->plcstr_obj).A; } else { myVoiceIndicator = ltpGain * 2 + pitchGain; MemshipValQ15( myVoiceIndicator, &(ISACdec_obj->plcstr_obj).A, &(ISACdec_obj->plcstr_obj).B ); } } myVoiceIndicator = ltpGain * 16 + pitchGain * 2 + (pitchGain >> 8); MemshipValQ15( myVoiceIndicator, &(ISACdec_obj->plcstr_obj).A, &(ISACdec_obj->plcstr_obj).B ); (ISACdec_obj->plcstr_obj).stretchLag = lag0; (ISACdec_obj->plcstr_obj).pitchIndex = 0; } else { myDecayRate = (DECAY_RATE<<2); } if( (ISACdec_obj->plcstr_obj).B < 1000 ) { myDecayRate += (DECAY_RATE<<3); } /* ------------ reconstructing the residual signal ------------------ */ LinearResampler( (ISACdec_obj->plcstr_obj).lastPitchLP, stretchPitchLP, lag0, (ISACdec_obj->plcstr_obj).stretchLag ); /* inverse pitch filter */ pitchLags_Q7[0] = pitchLags_Q7[1] = pitchLags_Q7[2] = pitchLags_Q7[3] = (int16_t)((ISACdec_obj->plcstr_obj).stretchLag<<7); pitchGains_Q12[3] = ( (ISACdec_obj->plcstr_obj).lastPitchGain_Q12); pitchGains_Q12[2] = (int16_t)(pitchGains_Q12[3] * 1010 >> 10); pitchGains_Q12[1] = (int16_t)(pitchGains_Q12[2] * 1010 >> 10); pitchGains_Q12[0] = (int16_t)(pitchGains_Q12[1] * 1010 >> 10); /* most of the time either B or A are zero so seperating */ if( (ISACdec_obj->plcstr_obj).B == 0 ) { for( i = 0; i < FRAMESAMPLES_HALF; i++ ) { /* --- Low Pass */ (ISACdec_obj->plcstr_obj).seed = WEBRTC_SPL_RAND( (ISACdec_obj->plcstr_obj).seed ); Vector_Word16_1[i] = (ISACdec_obj->plcstr_obj.seed >> 10) - 16; /* --- Highpass */ (ISACdec_obj->plcstr_obj).seed = WEBRTC_SPL_RAND( (ISACdec_obj->plcstr_obj).seed ); Vector_Word16_2[i] = (ISACdec_obj->plcstr_obj.seed >> 10) - 16; } for( i = 1; i < NOISE_FILTER_LEN; i++ ) { (ISACdec_obj->plcstr_obj).seed = WEBRTC_SPL_RAND( (ISACdec_obj->plcstr_obj).seed ); Vector_Word16_Extended_1[i] = (ISACdec_obj->plcstr_obj.seed >> 10) - 16; (ISACdec_obj->plcstr_obj).seed = WEBRTC_SPL_RAND( (ISACdec_obj->plcstr_obj).seed ); Vector_Word16_Extended_2[i] = (ISACdec_obj->plcstr_obj.seed >> 10) - 16; } plc_filterma_Fast(Vector_Word16_1, Vector_Word16_Extended_1, &(ISACdec_obj->plcstr_obj).prevPitchInvIn[FRAMESAMPLES_HALF - NOISE_FILTER_LEN], (int16_t) NOISE_FILTER_LEN, (int16_t) FRAMESAMPLES_HALF, (int16_t)(5), (ISACdec_obj->plcstr_obj).decayCoeffNoise, (int16_t)(6)); maxCoeff = WebRtcSpl_MaxAbsValueW32( &(ISACdec_obj->plcstr_obj).prevHP[ PITCH_MAX_LAG + 10 - NOISE_FILTER_LEN], NOISE_FILTER_LEN ); rshift = 0; while( maxCoeff > WEBRTC_SPL_WORD16_MAX ) { maxCoeff >>= 1; rshift++; } for( i = 0; i < NOISE_FILTER_LEN; i++ ) { Vector_Word16_1[FRAMESAMPLES_HALF - NOISE_FILTER_LEN + i] =(int16_t)( ISACdec_obj->plcstr_obj.prevHP[PITCH_MAX_LAG + 10 - NOISE_FILTER_LEN + i] >> rshift); } (ISACdec_obj->plcstr_obj).decayCoeffNoise = plc_filterma_Fast( Vector_Word16_2, Vector_Word16_Extended_2, &Vector_Word16_1[FRAMESAMPLES_HALF - NOISE_FILTER_LEN], (int16_t) NOISE_FILTER_LEN, (int16_t) FRAMESAMPLES_HALF, (int16_t) (5), (ISACdec_obj->plcstr_obj).decayCoeffNoise, (int16_t) (7) ); for( i = 0; i < FRAMESAMPLES_HALF; i++ ) Vector_Word32_2[i] = Vector_Word16_Extended_2[i] << rshift; Vector_Word16_1 = Vector_Word16_Extended_1; } else { if( (ISACdec_obj->plcstr_obj).A == 0 ) { /* ------ Periodic Vector --- */ for( i = 0, noiseIndex = 0; i < FRAMESAMPLES_HALF; i++, noiseIndex++ ) { /* --- Lowpass */ pLP = (int16_t)(stretchPitchLP[ISACdec_obj->plcstr_obj.pitchIndex] * ISACdec_obj->plcstr_obj.decayCoeffPriodic >> 15); /* --- Highpass */ pHP = (int32_t)WEBRTC_SPL_MUL_16_32_RSFT15( (ISACdec_obj->plcstr_obj).decayCoeffPriodic, (ISACdec_obj->plcstr_obj).prevHP[PITCH_MAX_LAG + 10 - (ISACdec_obj->plcstr_obj).stretchLag + (ISACdec_obj->plcstr_obj).pitchIndex] ); /* --- lower the muliplier (more decay at next sample) --- */ (ISACdec_obj->plcstr_obj).decayCoeffPriodic -= (myDecayRate); if( (ISACdec_obj->plcstr_obj).decayCoeffPriodic < 0 ) (ISACdec_obj->plcstr_obj).decayCoeffPriodic = 0; (ISACdec_obj->plcstr_obj).pitchIndex++; if( (ISACdec_obj->plcstr_obj).pitchIndex == (ISACdec_obj->plcstr_obj).stretchLag ) { (ISACdec_obj->plcstr_obj).pitchIndex = 0; (ISACdec_obj->plcstr_obj).pitchCycles++; if( (ISACdec_obj->plcstr_obj).stretchLag != (lag0 + 1) ) { (ISACdec_obj->plcstr_obj).stretchLag = lag0 + 1; } else { (ISACdec_obj->plcstr_obj).stretchLag = lag0; } (ISACdec_obj->plcstr_obj).stretchLag = ( (ISACdec_obj->plcstr_obj).stretchLag > PITCH_MAX_LAG )? (PITCH_MAX_LAG):(ISACdec_obj->plcstr_obj).stretchLag; LinearResampler( (ISACdec_obj->plcstr_obj).lastPitchLP, stretchPitchLP, lag0, (ISACdec_obj->plcstr_obj).stretchLag ); LinearResampler( (ISACdec_obj->plcstr_obj).prevPitchLP, stretchPitchLP1, lag0, (ISACdec_obj->plcstr_obj).stretchLag ); switch( (ISACdec_obj->plcstr_obj).pitchCycles ) { case 1: { for( k=0; k<(ISACdec_obj->plcstr_obj).stretchLag; k++ ) { stretchPitchLP[k] = (int16_t)(( (int32_t)stretchPitchLP[k]* 3 + (int32_t)stretchPitchLP1[k])>>2); } break; } case 2: { for( k=0; k<(ISACdec_obj->plcstr_obj).stretchLag; k++ ) { stretchPitchLP[k] = (int16_t)(( (int32_t)stretchPitchLP[k] + (int32_t)stretchPitchLP1[k] )>>1); } break; } case 3: { for( k=0; k<(ISACdec_obj->plcstr_obj).stretchLag; k++ ) { stretchPitchLP[k] = (int16_t)((stretchPitchLP[k] + (int32_t)stretchPitchLP1[k]*3 )>>2); } break; } } if( (ISACdec_obj->plcstr_obj).pitchCycles == 3 ) { myDecayRate += 35; //(myDecayRate>>1); (ISACdec_obj->plcstr_obj).pitchCycles = 0; } } /* ------ Sum the noisy and periodic signals ------ */ Vector_Word16_1[i] = pLP; Vector_Word32_2[i] = pHP; } } else { for( i = 0, noiseIndex = 0; i < FRAMESAMPLES_HALF; i++, noiseIndex++ ) { (ISACdec_obj->plcstr_obj).seed = WEBRTC_SPL_RAND( (ISACdec_obj->plcstr_obj).seed ); noise1 = (ISACdec_obj->plcstr_obj.seed >> 10) - 16; nLP = (int16_t)((int16_t)(noise1 * ISACdec_obj->plcstr_obj.std) * ISACdec_obj->plcstr_obj.decayCoeffNoise >> 15); /* --- Highpass */ (ISACdec_obj->plcstr_obj).seed = WEBRTC_SPL_RAND( (ISACdec_obj->plcstr_obj).seed ); noise1 = (ISACdec_obj->plcstr_obj.seed >> 11) - 8; nHP = (int32_t)WEBRTC_SPL_MUL_16_32_RSFT15( (ISACdec_obj->plcstr_obj).decayCoeffNoise, (int32_t)(noise1*(ISACdec_obj->plcstr_obj).std) ); /* --- lower the muliplier (more decay at next sample) --- */ (ISACdec_obj->plcstr_obj).decayCoeffNoise -= (myDecayRate); if( (ISACdec_obj->plcstr_obj).decayCoeffNoise < 0 ) (ISACdec_obj->plcstr_obj).decayCoeffNoise = 0; /* ------ Periodic Vector --- */ /* --- Lowpass */ pLP = (int16_t)(stretchPitchLP[ISACdec_obj->plcstr_obj.pitchIndex] * ISACdec_obj->plcstr_obj.decayCoeffPriodic >> 15); /* --- Highpass */ pHP = (int32_t)WEBRTC_SPL_MUL_16_32_RSFT15( (ISACdec_obj->plcstr_obj).decayCoeffPriodic, (ISACdec_obj->plcstr_obj).prevHP[PITCH_MAX_LAG + 10 - (ISACdec_obj->plcstr_obj).stretchLag + (ISACdec_obj->plcstr_obj).pitchIndex] ); /* --- lower the muliplier (more decay at next sample) --- */ (ISACdec_obj->plcstr_obj).decayCoeffPriodic -= (myDecayRate); if( (ISACdec_obj->plcstr_obj).decayCoeffPriodic < 0 ) { (ISACdec_obj->plcstr_obj).decayCoeffPriodic = 0; } /* ------ Weighting the noisy and periodic vectors ------- */ wNoisyLP = (int16_t)(ISACdec_obj->plcstr_obj.A * nLP >> 15); wNoisyHP = (int32_t)(WEBRTC_SPL_MUL_16_32_RSFT15( (ISACdec_obj->plcstr_obj).A, (nHP) ) ); wPriodicLP = (int16_t)(ISACdec_obj->plcstr_obj.B * pLP >> 15); wPriodicHP = (int32_t)(WEBRTC_SPL_MUL_16_32_RSFT15( (ISACdec_obj->plcstr_obj).B, pHP)); (ISACdec_obj->plcstr_obj).pitchIndex++; if((ISACdec_obj->plcstr_obj).pitchIndex == (ISACdec_obj->plcstr_obj).stretchLag) { (ISACdec_obj->plcstr_obj).pitchIndex = 0; (ISACdec_obj->plcstr_obj).pitchCycles++; if( (ISACdec_obj->plcstr_obj).stretchLag != (lag0 + 1) ) (ISACdec_obj->plcstr_obj).stretchLag = lag0 + 1; else (ISACdec_obj->plcstr_obj).stretchLag = lag0; (ISACdec_obj->plcstr_obj).stretchLag = ( (ISACdec_obj->plcstr_obj).stretchLag > PITCH_MAX_LAG )? (PITCH_MAX_LAG):(ISACdec_obj->plcstr_obj).stretchLag; LinearResampler( (ISACdec_obj->plcstr_obj).lastPitchLP, stretchPitchLP, lag0, (ISACdec_obj->plcstr_obj).stretchLag ); LinearResampler((ISACdec_obj->plcstr_obj).prevPitchLP, stretchPitchLP1, lag0, (ISACdec_obj->plcstr_obj).stretchLag ); switch((ISACdec_obj->plcstr_obj).pitchCycles) { case 1: { for( k=0; k<(ISACdec_obj->plcstr_obj).stretchLag; k++ ) { stretchPitchLP[k] = (int16_t)(( (int32_t)stretchPitchLP[k]* 3 + (int32_t)stretchPitchLP1[k] )>>2); } break; } case 2: { for( k=0; k<(ISACdec_obj->plcstr_obj).stretchLag; k++ ) { stretchPitchLP[k] = (int16_t)(( (int32_t)stretchPitchLP[k] + (int32_t)stretchPitchLP1[k])>>1); } break; } case 3: { for( k=0; k<(ISACdec_obj->plcstr_obj).stretchLag; k++ ) { stretchPitchLP[k] = (int16_t)( (stretchPitchLP[k] + (int32_t)stretchPitchLP1[k]*3 )>>2); } break; } } if( (ISACdec_obj->plcstr_obj).pitchCycles == 3 ) { myDecayRate += 55; //(myDecayRate>>1); (ISACdec_obj->plcstr_obj).pitchCycles = 0; } } /* ------ Sum the noisy and periodic signals ------ */ Vector_Word16_1[i] = WebRtcSpl_AddSatW16(wNoisyLP, wPriodicLP); Vector_Word32_2[i] = WebRtcSpl_AddSatW32(wNoisyHP, wPriodicHP); } } } /* ----------------- residual signal is reconstructed ------------------ */ k = (ISACdec_obj->plcstr_obj).pitchIndex; /* --- Write one pitch cycle for recovery block --- */ for( i = 0; i < RECOVERY_OVERLAP; i++ ) { ISACdec_obj->plcstr_obj.overlapLP[i] = (int16_t)( stretchPitchLP[k] * ISACdec_obj->plcstr_obj.decayCoeffPriodic >> 15); k = ( k < ((ISACdec_obj->plcstr_obj).stretchLag - 1) )? (k+1):0; } (ISACdec_obj->plcstr_obj).lastPitchLag_Q7 = (int16_t)((ISACdec_obj->plcstr_obj).stretchLag << 7); /* --- Inverse Pitch Filter --- */ WebRtcIsacfix_PitchFilter(Vector_Word16_1, Vector_Word16_2, &ISACdec_obj->pitchfiltstr_obj, pitchLags_Q7, pitchGains_Q12, 4); /* reduce gain to compensate for pitch enhancer */ /* gain = 1.0f - 0.45f * AvgPitchGain; */ tmp32a = ISACdec_obj->plcstr_obj.AvgPitchGain_Q12 * 29; // Q18 tmp32b = 262144 - tmp32a; // Q18 gainQ13 = (int16_t) (tmp32b >> 5); // Q13 /* perceptual post-filtering (using normalized lattice filter) */ for (k = 0; k < FRAMESAMPLES_HALF; k++) Vector_Word32_1[k] = (Vector_Word16_2[k] * gainQ13) << 3; // Q25 WebRtcIsacfix_NormLatticeFilterAr(ORDERLO, (ISACdec_obj->maskfiltstr_obj).PostStateLoGQ0, Vector_Word32_1, lofilt_coefQ15, gain_lo_hiQ17, 0, Vector_Word16_1); WebRtcIsacfix_NormLatticeFilterAr(ORDERHI, (ISACdec_obj->maskfiltstr_obj).PostStateHiGQ0, Vector_Word32_2, hifilt_coefQ15, gain_lo_hiQ17, 1, Vector_Word16_2); /* recombine the 2 bands */ /* Form the polyphase signals, and compensate for DC offset */ for (k=0;kpostfiltbankstr_obj); (ISACdec_obj->plcstr_obj).used = PLC_WAS_USED; *current_framesamples = 480; }