/* * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/agc2/interpolated_gain_curve.h" #include #include #include #include "api/array_view.h" #include "common_audio/include/audio_util.h" #include "modules/audio_processing/agc2/agc2_common.h" #include "modules/audio_processing/agc2/compute_interpolated_gain_curve.h" #include "modules/audio_processing/agc2/limiter_db_gain_curve.h" #include "modules/audio_processing/logging/apm_data_dumper.h" #include "rtc_base/checks.h" #include "rtc_base/gunit.h" namespace webrtc { namespace { constexpr double kLevelEpsilon = 1e-2 * kMaxAbsFloatS16Value; constexpr float kInterpolatedGainCurveTolerance = 1.f / 32768.f; ApmDataDumper apm_data_dumper(0); static_assert(std::is_trivially_destructible::value, ""); const LimiterDbGainCurve limiter; } // namespace TEST(AutomaticGainController2InterpolatedGainCurve, CreateUse) { InterpolatedGainCurve igc(&apm_data_dumper, ""); const auto levels = test::LinSpace( kLevelEpsilon, DbfsToFloatS16(limiter.max_input_level_db() + 1), 500); for (const auto level : levels) { EXPECT_GE(igc.LookUpGainToApply(level), 0.0f); } } TEST(AutomaticGainController2InterpolatedGainCurve, CheckValidOutput) { InterpolatedGainCurve igc(&apm_data_dumper, ""); const auto levels = test::LinSpace( kLevelEpsilon, limiter.max_input_level_linear() * 2.0, 500); for (const auto level : levels) { SCOPED_TRACE(std::to_string(level)); const float gain = igc.LookUpGainToApply(level); EXPECT_LE(0.0f, gain); EXPECT_LE(gain, 1.0f); } } TEST(AutomaticGainController2InterpolatedGainCurve, CheckMonotonicity) { InterpolatedGainCurve igc(&apm_data_dumper, ""); const auto levels = test::LinSpace( kLevelEpsilon, limiter.max_input_level_linear() + kLevelEpsilon + 0.5, 500); float prev_gain = igc.LookUpGainToApply(0.0f); for (const auto level : levels) { const float gain = igc.LookUpGainToApply(level); EXPECT_GE(prev_gain, gain); prev_gain = gain; } } TEST(AutomaticGainController2InterpolatedGainCurve, CheckApproximation) { InterpolatedGainCurve igc(&apm_data_dumper, ""); const auto levels = test::LinSpace( kLevelEpsilon, limiter.max_input_level_linear() - kLevelEpsilon, 500); for (const auto level : levels) { SCOPED_TRACE(std::to_string(level)); EXPECT_LT( std::fabs(limiter.GetGainLinear(level) - igc.LookUpGainToApply(level)), kInterpolatedGainCurveTolerance); } } TEST(AutomaticGainController2InterpolatedGainCurve, CheckRegionBoundaries) { InterpolatedGainCurve igc(&apm_data_dumper, ""); const std::vector levels{ {kLevelEpsilon, limiter.knee_start_linear() + kLevelEpsilon, limiter.limiter_start_linear() + kLevelEpsilon, limiter.max_input_level_linear() + kLevelEpsilon}}; for (const auto level : levels) { igc.LookUpGainToApply(level); } const auto stats = igc.get_stats(); EXPECT_EQ(1ul, stats.look_ups_identity_region); EXPECT_EQ(1ul, stats.look_ups_knee_region); EXPECT_EQ(1ul, stats.look_ups_limiter_region); EXPECT_EQ(1ul, stats.look_ups_saturation_region); } TEST(AutomaticGainController2InterpolatedGainCurve, CheckIdentityRegion) { constexpr size_t kNumSteps = 10; InterpolatedGainCurve igc(&apm_data_dumper, ""); const auto levels = test::LinSpace(kLevelEpsilon, limiter.knee_start_linear(), kNumSteps); for (const auto level : levels) { SCOPED_TRACE(std::to_string(level)); EXPECT_EQ(1.0f, igc.LookUpGainToApply(level)); } const auto stats = igc.get_stats(); EXPECT_EQ(kNumSteps - 1, stats.look_ups_identity_region); EXPECT_EQ(1ul, stats.look_ups_knee_region); EXPECT_EQ(0ul, stats.look_ups_limiter_region); EXPECT_EQ(0ul, stats.look_ups_saturation_region); } TEST(AutomaticGainController2InterpolatedGainCurve, CheckNoOverApproximationKnee) { constexpr size_t kNumSteps = 10; InterpolatedGainCurve igc(&apm_data_dumper, ""); const auto levels = test::LinSpace(limiter.knee_start_linear() + kLevelEpsilon, limiter.limiter_start_linear(), kNumSteps); for (const auto level : levels) { SCOPED_TRACE(std::to_string(level)); // Small tolerance added (needed because comparing a float with a double). EXPECT_LE(igc.LookUpGainToApply(level), limiter.GetGainLinear(level) + 1e-7); } const auto stats = igc.get_stats(); EXPECT_EQ(0ul, stats.look_ups_identity_region); EXPECT_EQ(kNumSteps - 1, stats.look_ups_knee_region); EXPECT_EQ(1ul, stats.look_ups_limiter_region); EXPECT_EQ(0ul, stats.look_ups_saturation_region); } TEST(AutomaticGainController2InterpolatedGainCurve, CheckNoOverApproximationBeyondKnee) { constexpr size_t kNumSteps = 10; InterpolatedGainCurve igc(&apm_data_dumper, ""); const auto levels = test::LinSpace( limiter.limiter_start_linear() + kLevelEpsilon, limiter.max_input_level_linear() - kLevelEpsilon, kNumSteps); for (const auto level : levels) { SCOPED_TRACE(std::to_string(level)); // Small tolerance added (needed because comparing a float with a double). EXPECT_LE(igc.LookUpGainToApply(level), limiter.GetGainLinear(level) + 1e-7); } const auto stats = igc.get_stats(); EXPECT_EQ(0ul, stats.look_ups_identity_region); EXPECT_EQ(0ul, stats.look_ups_knee_region); EXPECT_EQ(kNumSteps, stats.look_ups_limiter_region); EXPECT_EQ(0ul, stats.look_ups_saturation_region); } TEST(AutomaticGainController2InterpolatedGainCurve, CheckNoOverApproximationWithSaturation) { constexpr size_t kNumSteps = 3; InterpolatedGainCurve igc(&apm_data_dumper, ""); const auto levels = test::LinSpace( limiter.max_input_level_linear() + kLevelEpsilon, limiter.max_input_level_linear() + kLevelEpsilon + 0.5, kNumSteps); for (const auto level : levels) { SCOPED_TRACE(std::to_string(level)); EXPECT_LE(igc.LookUpGainToApply(level), limiter.GetGainLinear(level)); } const auto stats = igc.get_stats(); EXPECT_EQ(0ul, stats.look_ups_identity_region); EXPECT_EQ(0ul, stats.look_ups_knee_region); EXPECT_EQ(0ul, stats.look_ups_limiter_region); EXPECT_EQ(kNumSteps, stats.look_ups_saturation_region); } TEST(AutomaticGainController2InterpolatedGainCurve, CheckApproximationParams) { test::InterpolatedParameters parameters = test::ComputeInterpolatedGainCurveApproximationParams(); InterpolatedGainCurve igc(&apm_data_dumper, ""); for (size_t i = 0; i < kInterpolatedGainCurveTotalPoints; ++i) { // The tolerance levels are chosen to account for deviations due // to computing with single precision floating point numbers. EXPECT_NEAR(igc.approximation_params_x_[i], parameters.computed_approximation_params_x[i], 0.9f); EXPECT_NEAR(igc.approximation_params_m_[i], parameters.computed_approximation_params_m[i], 0.00001f); EXPECT_NEAR(igc.approximation_params_q_[i], parameters.computed_approximation_params_q[i], 0.001f); } } } // namespace webrtc