/* * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/congestion_controller/goog_cc/bitrate_estimator.h" #include #include #include #include #include "api/units/data_rate.h" #include "modules/remote_bitrate_estimator/test/bwe_test_logging.h" #include "rtc_base/logging.h" namespace webrtc { namespace { constexpr int kInitialRateWindowMs = 500; constexpr int kRateWindowMs = 150; constexpr int kMinRateWindowMs = 150; constexpr int kMaxRateWindowMs = 1000; const char kBweThroughputWindowConfig[] = "WebRTC-BweThroughputWindowConfig"; } // namespace BitrateEstimator::BitrateEstimator(const WebRtcKeyValueConfig* key_value_config) : sum_(0), initial_window_ms_("initial_window_ms", kInitialRateWindowMs, kMinRateWindowMs, kMaxRateWindowMs), noninitial_window_ms_("window_ms", kRateWindowMs, kMinRateWindowMs, kMaxRateWindowMs), uncertainty_scale_("scale", 10.0), uncertainty_scale_in_alr_("scale_alr", uncertainty_scale_), small_sample_uncertainty_scale_("scale_small", uncertainty_scale_), small_sample_threshold_("small_thresh", DataSize::Zero()), uncertainty_symmetry_cap_("symmetry_cap", DataRate::Zero()), estimate_floor_("floor", DataRate::Zero()), current_window_ms_(0), prev_time_ms_(-1), bitrate_estimate_kbps_(-1.0f), bitrate_estimate_var_(50.0f) { // E.g WebRTC-BweThroughputWindowConfig/initial_window_ms:350,window_ms:250/ ParseFieldTrial( {&initial_window_ms_, &noninitial_window_ms_, &uncertainty_scale_, &uncertainty_scale_in_alr_, &small_sample_uncertainty_scale_, &small_sample_threshold_, &uncertainty_symmetry_cap_, &estimate_floor_}, key_value_config->Lookup(kBweThroughputWindowConfig)); } BitrateEstimator::~BitrateEstimator() = default; void BitrateEstimator::Update(Timestamp at_time, DataSize amount, bool in_alr) { int rate_window_ms = noninitial_window_ms_.Get(); // We use a larger window at the beginning to get a more stable sample that // we can use to initialize the estimate. if (bitrate_estimate_kbps_ < 0.f) rate_window_ms = initial_window_ms_.Get(); bool is_small_sample = false; float bitrate_sample_kbps = UpdateWindow(at_time.ms(), amount.bytes(), rate_window_ms, &is_small_sample); if (bitrate_sample_kbps < 0.0f) return; if (bitrate_estimate_kbps_ < 0.0f) { // This is the very first sample we get. Use it to initialize the estimate. bitrate_estimate_kbps_ = bitrate_sample_kbps; return; } // Optionally use higher uncertainty for very small samples to avoid dropping // estimate and for samples obtained in ALR. float scale = uncertainty_scale_; if (is_small_sample && bitrate_sample_kbps < bitrate_estimate_kbps_) { scale = small_sample_uncertainty_scale_; } else if (in_alr && bitrate_sample_kbps < bitrate_estimate_kbps_) { // Optionally use higher uncertainty for samples obtained during ALR. scale = uncertainty_scale_in_alr_; } // Define the sample uncertainty as a function of how far away it is from the // current estimate. With low values of uncertainty_symmetry_cap_ we add more // uncertainty to increases than to decreases. For higher values we approach // symmetry. float sample_uncertainty = scale * std::abs(bitrate_estimate_kbps_ - bitrate_sample_kbps) / (bitrate_estimate_kbps_ + std::min(bitrate_sample_kbps, uncertainty_symmetry_cap_.Get().kbps())); float sample_var = sample_uncertainty * sample_uncertainty; // Update a bayesian estimate of the rate, weighting it lower if the sample // uncertainty is large. // The bitrate estimate uncertainty is increased with each update to model // that the bitrate changes over time. float pred_bitrate_estimate_var = bitrate_estimate_var_ + 5.f; bitrate_estimate_kbps_ = (sample_var * bitrate_estimate_kbps_ + pred_bitrate_estimate_var * bitrate_sample_kbps) / (sample_var + pred_bitrate_estimate_var); bitrate_estimate_kbps_ = std::max(bitrate_estimate_kbps_, estimate_floor_.Get().kbps()); bitrate_estimate_var_ = sample_var * pred_bitrate_estimate_var / (sample_var + pred_bitrate_estimate_var); BWE_TEST_LOGGING_PLOT(1, "acknowledged_bitrate", at_time.ms(), bitrate_estimate_kbps_ * 1000); } float BitrateEstimator::UpdateWindow(int64_t now_ms, int bytes, int rate_window_ms, bool* is_small_sample) { RTC_DCHECK(is_small_sample != nullptr); // Reset if time moves backwards. if (now_ms < prev_time_ms_) { prev_time_ms_ = -1; sum_ = 0; current_window_ms_ = 0; } if (prev_time_ms_ >= 0) { current_window_ms_ += now_ms - prev_time_ms_; // Reset if nothing has been received for more than a full window. if (now_ms - prev_time_ms_ > rate_window_ms) { sum_ = 0; current_window_ms_ %= rate_window_ms; } } prev_time_ms_ = now_ms; float bitrate_sample = -1.0f; if (current_window_ms_ >= rate_window_ms) { *is_small_sample = sum_ < small_sample_threshold_->bytes(); bitrate_sample = 8.0f * sum_ / static_cast(rate_window_ms); current_window_ms_ -= rate_window_ms; sum_ = 0; } sum_ += bytes; return bitrate_sample; } absl::optional BitrateEstimator::bitrate() const { if (bitrate_estimate_kbps_ < 0.f) return absl::nullopt; return DataRate::KilobitsPerSec(bitrate_estimate_kbps_); } absl::optional BitrateEstimator::PeekRate() const { if (current_window_ms_ > 0) return DataSize::Bytes(sum_) / TimeDelta::Millis(current_window_ms_); return absl::nullopt; } void BitrateEstimator::ExpectFastRateChange() { // By setting the bitrate-estimate variance to a higher value we allow the // bitrate to change fast for the next few samples. bitrate_estimate_var_ += 200; } } // namespace webrtc