/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/congestion_controller/goog_cc/probe_controller.h" #include #include #include #include #include "absl/strings/match.h" #include "api/units/data_rate.h" #include "api/units/time_delta.h" #include "api/units/timestamp.h" #include "logging/rtc_event_log/events/rtc_event_probe_cluster_created.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/numerics/safe_conversions.h" #include "system_wrappers/include/metrics.h" namespace webrtc { namespace { // The minimum number probing packets used. constexpr int kMinProbePacketsSent = 5; // The minimum probing duration in ms. constexpr int kMinProbeDurationMs = 15; // Maximum waiting time from the time of initiating probing to getting // the measured results back. constexpr int64_t kMaxWaitingTimeForProbingResultMs = 1000; // Value of |min_bitrate_to_probe_further_bps_| that indicates // further probing is disabled. constexpr int kExponentialProbingDisabled = 0; // Default probing bitrate limit. Applied only when the application didn't // specify max bitrate. constexpr int64_t kDefaultMaxProbingBitrateBps = 5000000; // If the bitrate drops to a factor |kBitrateDropThreshold| or lower // and we recover within |kBitrateDropTimeoutMs|, then we'll send // a probe at a fraction |kProbeFractionAfterDrop| of the original bitrate. constexpr double kBitrateDropThreshold = 0.66; constexpr int kBitrateDropTimeoutMs = 5000; constexpr double kProbeFractionAfterDrop = 0.85; // Timeout for probing after leaving ALR. If the bitrate drops significantly, // (as determined by the delay based estimator) and we leave ALR, then we will // send a probe if we recover within |kLeftAlrTimeoutMs| ms. constexpr int kAlrEndedTimeoutMs = 3000; // The expected uncertainty of probe result (as a fraction of the target probe // This is a limit on how often probing can be done when there is a BW // drop detected in ALR. constexpr int64_t kMinTimeBetweenAlrProbesMs = 5000; // bitrate). Used to avoid probing if the probe bitrate is close to our current // estimate. constexpr double kProbeUncertainty = 0.05; // Use probing to recover faster after large bitrate estimate drops. constexpr char kBweRapidRecoveryExperiment[] = "WebRTC-BweRapidRecoveryExperiment"; // Never probe higher than configured by OnMaxTotalAllocatedBitrate(). constexpr char kCappedProbingFieldTrialName[] = "WebRTC-BweCappedProbing"; void MaybeLogProbeClusterCreated(RtcEventLog* event_log, const ProbeClusterConfig& probe) { RTC_DCHECK(event_log); if (!event_log) { return; } size_t min_bytes = static_cast(probe.target_data_rate.bps() * probe.target_duration.ms() / 8000); event_log->Log(std::make_unique( probe.id, probe.target_data_rate.bps(), probe.target_probe_count, min_bytes)); } } // namespace ProbeControllerConfig::ProbeControllerConfig( const WebRtcKeyValueConfig* key_value_config) : first_exponential_probe_scale("p1", 3.0), second_exponential_probe_scale("p2", 6.0), further_exponential_probe_scale("step_size", 2), further_probe_threshold("further_probe_threshold", 0.7), alr_probing_interval("alr_interval", TimeDelta::Seconds(5)), alr_probe_scale("alr_scale", 2), first_allocation_probe_scale("alloc_p1", 1), second_allocation_probe_scale("alloc_p2", 2), allocation_allow_further_probing("alloc_probe_further", false), allocation_probe_max("alloc_probe_max", DataRate::PlusInfinity()) { ParseFieldTrial( {&first_exponential_probe_scale, &second_exponential_probe_scale, &further_exponential_probe_scale, &further_probe_threshold, &alr_probing_interval, &alr_probe_scale, &first_allocation_probe_scale, &second_allocation_probe_scale, &allocation_allow_further_probing}, key_value_config->Lookup("WebRTC-Bwe-ProbingConfiguration")); // Specialized keys overriding subsets of WebRTC-Bwe-ProbingConfiguration ParseFieldTrial( {&first_exponential_probe_scale, &second_exponential_probe_scale}, key_value_config->Lookup("WebRTC-Bwe-InitialProbing")); ParseFieldTrial({&further_exponential_probe_scale, &further_probe_threshold}, key_value_config->Lookup("WebRTC-Bwe-ExponentialProbing")); ParseFieldTrial({&alr_probing_interval, &alr_probe_scale}, key_value_config->Lookup("WebRTC-Bwe-AlrProbing")); ParseFieldTrial( {&first_allocation_probe_scale, &second_allocation_probe_scale, &allocation_allow_further_probing, &allocation_probe_max}, key_value_config->Lookup("WebRTC-Bwe-AllocationProbing")); } ProbeControllerConfig::ProbeControllerConfig(const ProbeControllerConfig&) = default; ProbeControllerConfig::~ProbeControllerConfig() = default; ProbeController::ProbeController(const WebRtcKeyValueConfig* key_value_config, RtcEventLog* event_log) : enable_periodic_alr_probing_(false), in_rapid_recovery_experiment_(absl::StartsWith( key_value_config->Lookup(kBweRapidRecoveryExperiment), "Enabled")), limit_probes_with_allocateable_rate_(!absl::StartsWith( key_value_config->Lookup(kCappedProbingFieldTrialName), "Disabled")), event_log_(event_log), config_(ProbeControllerConfig(key_value_config)) { Reset(0); } ProbeController::~ProbeController() {} std::vector ProbeController::SetBitrates( int64_t min_bitrate_bps, int64_t start_bitrate_bps, int64_t max_bitrate_bps, int64_t at_time_ms) { if (start_bitrate_bps > 0) { start_bitrate_bps_ = start_bitrate_bps; estimated_bitrate_bps_ = start_bitrate_bps; } else if (start_bitrate_bps_ == 0) { start_bitrate_bps_ = min_bitrate_bps; } // The reason we use the variable |old_max_bitrate_pbs| is because we // need to set |max_bitrate_bps_| before we call InitiateProbing. int64_t old_max_bitrate_bps = max_bitrate_bps_; max_bitrate_bps_ = max_bitrate_bps; switch (state_) { case State::kInit: if (network_available_) return InitiateExponentialProbing(at_time_ms); break; case State::kWaitingForProbingResult: break; case State::kProbingComplete: // If the new max bitrate is higher than both the old max bitrate and the // estimate then initiate probing. if (estimated_bitrate_bps_ != 0 && old_max_bitrate_bps < max_bitrate_bps_ && estimated_bitrate_bps_ < max_bitrate_bps_) { // The assumption is that if we jump more than 20% in the bandwidth // estimate or if the bandwidth estimate is within 90% of the new // max bitrate then the probing attempt was successful. mid_call_probing_succcess_threshold_ = std::min(estimated_bitrate_bps_ * 1.2, max_bitrate_bps_ * 0.9); mid_call_probing_waiting_for_result_ = true; mid_call_probing_bitrate_bps_ = max_bitrate_bps_; RTC_HISTOGRAM_COUNTS_10000("WebRTC.BWE.MidCallProbing.Initiated", max_bitrate_bps_ / 1000); return InitiateProbing(at_time_ms, {max_bitrate_bps_}, false); } break; } return std::vector(); } std::vector ProbeController::OnMaxTotalAllocatedBitrate( int64_t max_total_allocated_bitrate, int64_t at_time_ms) { const bool in_alr = alr_start_time_ms_.has_value(); const bool allow_allocation_probe = in_alr; if (state_ == State::kProbingComplete && max_total_allocated_bitrate != max_total_allocated_bitrate_ && estimated_bitrate_bps_ != 0 && (max_bitrate_bps_ <= 0 || estimated_bitrate_bps_ < max_bitrate_bps_) && estimated_bitrate_bps_ < max_total_allocated_bitrate && allow_allocation_probe) { max_total_allocated_bitrate_ = max_total_allocated_bitrate; if (!config_.first_allocation_probe_scale) return std::vector(); DataRate first_probe_rate = DataRate::BitsPerSec(max_total_allocated_bitrate) * config_.first_allocation_probe_scale.Value(); DataRate probe_cap = config_.allocation_probe_max.Get(); first_probe_rate = std::min(first_probe_rate, probe_cap); std::vector probes = {first_probe_rate.bps()}; if (config_.second_allocation_probe_scale) { DataRate second_probe_rate = DataRate::BitsPerSec(max_total_allocated_bitrate) * config_.second_allocation_probe_scale.Value(); second_probe_rate = std::min(second_probe_rate, probe_cap); if (second_probe_rate > first_probe_rate) probes.push_back(second_probe_rate.bps()); } return InitiateProbing(at_time_ms, probes, config_.allocation_allow_further_probing); } max_total_allocated_bitrate_ = max_total_allocated_bitrate; return std::vector(); } std::vector ProbeController::OnNetworkAvailability( NetworkAvailability msg) { network_available_ = msg.network_available; if (!network_available_ && state_ == State::kWaitingForProbingResult) { state_ = State::kProbingComplete; min_bitrate_to_probe_further_bps_ = kExponentialProbingDisabled; } if (network_available_ && state_ == State::kInit && start_bitrate_bps_ > 0) return InitiateExponentialProbing(msg.at_time.ms()); return std::vector(); } std::vector ProbeController::InitiateExponentialProbing( int64_t at_time_ms) { RTC_DCHECK(network_available_); RTC_DCHECK(state_ == State::kInit); RTC_DCHECK_GT(start_bitrate_bps_, 0); // When probing at 1.8 Mbps ( 6x 300), this represents a threshold of // 1.2 Mbps to continue probing. std::vector probes = {static_cast( config_.first_exponential_probe_scale * start_bitrate_bps_)}; if (config_.second_exponential_probe_scale) { probes.push_back(config_.second_exponential_probe_scale.Value() * start_bitrate_bps_); } return InitiateProbing(at_time_ms, probes, true); } std::vector ProbeController::SetEstimatedBitrate( int64_t bitrate_bps, int64_t at_time_ms) { if (mid_call_probing_waiting_for_result_ && bitrate_bps >= mid_call_probing_succcess_threshold_) { RTC_HISTOGRAM_COUNTS_10000("WebRTC.BWE.MidCallProbing.Success", mid_call_probing_bitrate_bps_ / 1000); RTC_HISTOGRAM_COUNTS_10000("WebRTC.BWE.MidCallProbing.ProbedKbps", bitrate_bps / 1000); mid_call_probing_waiting_for_result_ = false; } std::vector pending_probes; if (state_ == State::kWaitingForProbingResult) { // Continue probing if probing results indicate channel has greater // capacity. RTC_LOG(LS_INFO) << "Measured bitrate: " << bitrate_bps << " Minimum to probe further: " << min_bitrate_to_probe_further_bps_; if (min_bitrate_to_probe_further_bps_ != kExponentialProbingDisabled && bitrate_bps > min_bitrate_to_probe_further_bps_) { pending_probes = InitiateProbing( at_time_ms, {static_cast(config_.further_exponential_probe_scale * bitrate_bps)}, true); } } if (bitrate_bps < kBitrateDropThreshold * estimated_bitrate_bps_) { time_of_last_large_drop_ms_ = at_time_ms; bitrate_before_last_large_drop_bps_ = estimated_bitrate_bps_; } estimated_bitrate_bps_ = bitrate_bps; return pending_probes; } void ProbeController::EnablePeriodicAlrProbing(bool enable) { enable_periodic_alr_probing_ = enable; } void ProbeController::SetAlrStartTimeMs( absl::optional alr_start_time_ms) { alr_start_time_ms_ = alr_start_time_ms; } void ProbeController::SetAlrEndedTimeMs(int64_t alr_end_time_ms) { alr_end_time_ms_.emplace(alr_end_time_ms); } std::vector ProbeController::RequestProbe( int64_t at_time_ms) { // Called once we have returned to normal state after a large drop in // estimated bandwidth. The current response is to initiate a single probe // session (if not already probing) at the previous bitrate. // // If the probe session fails, the assumption is that this drop was a // real one from a competing flow or a network change. bool in_alr = alr_start_time_ms_.has_value(); bool alr_ended_recently = (alr_end_time_ms_.has_value() && at_time_ms - alr_end_time_ms_.value() < kAlrEndedTimeoutMs); if (in_alr || alr_ended_recently || in_rapid_recovery_experiment_) { if (state_ == State::kProbingComplete) { uint32_t suggested_probe_bps = kProbeFractionAfterDrop * bitrate_before_last_large_drop_bps_; uint32_t min_expected_probe_result_bps = (1 - kProbeUncertainty) * suggested_probe_bps; int64_t time_since_drop_ms = at_time_ms - time_of_last_large_drop_ms_; int64_t time_since_probe_ms = at_time_ms - last_bwe_drop_probing_time_ms_; if (min_expected_probe_result_bps > estimated_bitrate_bps_ && time_since_drop_ms < kBitrateDropTimeoutMs && time_since_probe_ms > kMinTimeBetweenAlrProbesMs) { RTC_LOG(LS_INFO) << "Detected big bandwidth drop, start probing."; // Track how often we probe in response to bandwidth drop in ALR. RTC_HISTOGRAM_COUNTS_10000( "WebRTC.BWE.BweDropProbingIntervalInS", (at_time_ms - last_bwe_drop_probing_time_ms_) / 1000); last_bwe_drop_probing_time_ms_ = at_time_ms; return InitiateProbing(at_time_ms, {suggested_probe_bps}, false); } } } return std::vector(); } void ProbeController::SetMaxBitrate(int64_t max_bitrate_bps) { max_bitrate_bps_ = max_bitrate_bps; } void ProbeController::Reset(int64_t at_time_ms) { network_available_ = true; state_ = State::kInit; min_bitrate_to_probe_further_bps_ = kExponentialProbingDisabled; time_last_probing_initiated_ms_ = 0; estimated_bitrate_bps_ = 0; start_bitrate_bps_ = 0; max_bitrate_bps_ = 0; int64_t now_ms = at_time_ms; last_bwe_drop_probing_time_ms_ = now_ms; alr_end_time_ms_.reset(); mid_call_probing_waiting_for_result_ = false; time_of_last_large_drop_ms_ = now_ms; bitrate_before_last_large_drop_bps_ = 0; max_total_allocated_bitrate_ = 0; } std::vector ProbeController::Process(int64_t at_time_ms) { if (at_time_ms - time_last_probing_initiated_ms_ > kMaxWaitingTimeForProbingResultMs) { mid_call_probing_waiting_for_result_ = false; if (state_ == State::kWaitingForProbingResult) { RTC_LOG(LS_INFO) << "kWaitingForProbingResult: timeout"; state_ = State::kProbingComplete; min_bitrate_to_probe_further_bps_ = kExponentialProbingDisabled; } } if (enable_periodic_alr_probing_ && state_ == State::kProbingComplete) { // Probe bandwidth periodically when in ALR state. if (alr_start_time_ms_ && estimated_bitrate_bps_ > 0) { int64_t next_probe_time_ms = std::max(*alr_start_time_ms_, time_last_probing_initiated_ms_) + config_.alr_probing_interval->ms(); if (at_time_ms >= next_probe_time_ms) { return InitiateProbing(at_time_ms, {static_cast(estimated_bitrate_bps_ * config_.alr_probe_scale)}, true); } } } return std::vector(); } std::vector ProbeController::InitiateProbing( int64_t now_ms, std::vector bitrates_to_probe, bool probe_further) { int64_t max_probe_bitrate_bps = max_bitrate_bps_ > 0 ? max_bitrate_bps_ : kDefaultMaxProbingBitrateBps; if (limit_probes_with_allocateable_rate_ && max_total_allocated_bitrate_ > 0) { // If a max allocated bitrate has been configured, allow probing up to 2x // that rate. This allows some overhead to account for bursty streams, // which otherwise would have to ramp up when the overshoot is already in // progress. // It also avoids minor quality reduction caused by probes often being // received at slightly less than the target probe bitrate. max_probe_bitrate_bps = std::min(max_probe_bitrate_bps, max_total_allocated_bitrate_ * 2); } std::vector pending_probes; for (int64_t bitrate : bitrates_to_probe) { RTC_DCHECK_GT(bitrate, 0); if (bitrate > max_probe_bitrate_bps) { bitrate = max_probe_bitrate_bps; probe_further = false; } ProbeClusterConfig config; config.at_time = Timestamp::Millis(now_ms); config.target_data_rate = DataRate::BitsPerSec(rtc::dchecked_cast(bitrate)); config.target_duration = TimeDelta::Millis(kMinProbeDurationMs); config.target_probe_count = kMinProbePacketsSent; config.id = next_probe_cluster_id_; next_probe_cluster_id_++; MaybeLogProbeClusterCreated(event_log_, config); pending_probes.push_back(config); } time_last_probing_initiated_ms_ = now_ms; if (probe_further) { state_ = State::kWaitingForProbingResult; min_bitrate_to_probe_further_bps_ = (*(bitrates_to_probe.end() - 1)) * config_.further_probe_threshold; } else { state_ = State::kProbingComplete; min_bitrate_to_probe_further_bps_ = kExponentialProbingDisabled; } return pending_probes; } } // namespace webrtc