/* * Copyright (c) 2019 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/rtp_rtcp/source/rtp_packetizer_av1.h" #include #include #include #include "api/array_view.h" #include "api/video/video_frame_type.h" #include "modules/rtp_rtcp/source/rtp_packet_to_send.h" #include "rtc_base/byte_buffer.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" namespace webrtc { namespace { // TODO(danilchap): Some of the helpers/constants are same as in // rtp_depacketizer_av1. Move them to common av1 file. constexpr int kAggregationHeaderSize = 1; // when there are 3 or less OBU (fragments) in a packet, size of the last one // can be omited. constexpr int kMaxNumObusToOmitSize = 3; constexpr uint8_t kObuSizePresentBit = 0b0'0000'010; constexpr int kObuTypeSequenceHeader = 1; constexpr int kObuTypeTemporalDelimiter = 2; constexpr int kObuTypeTileList = 8; constexpr int kObuTypePadding = 15; bool ObuHasExtension(uint8_t obu_header) { return obu_header & 0b0'0000'100; } bool ObuHasSize(uint8_t obu_header) { return obu_header & kObuSizePresentBit; } int ObuType(uint8_t obu_header) { return (obu_header & 0b0'1111'000) >> 3; } int Leb128Size(int value) { RTC_DCHECK_GE(value, 0); int size = 0; while (value >= 0x80) { ++size; value >>= 7; } return size + 1; } // Returns number of bytes consumed. int WriteLeb128(uint32_t value, uint8_t* buffer) { int size = 0; while (value >= 0x80) { buffer[size] = 0x80 | (value & 0x7F); ++size; value >>= 7; } buffer[size] = value; ++size; return size; } // Given |remaining_bytes| free bytes left in a packet, returns max size of an // OBU fragment that can fit into the packet. // i.e. MaxFragmentSize + Leb128Size(MaxFragmentSize) <= remaining_bytes. int MaxFragmentSize(int remaining_bytes) { if (remaining_bytes <= 1) { return 0; } for (int i = 1;; ++i) { if (remaining_bytes < (1 << 7 * i) + i) { return remaining_bytes - i; } } } } // namespace RtpPacketizerAv1::RtpPacketizerAv1(rtc::ArrayView payload, RtpPacketizer::PayloadSizeLimits limits, VideoFrameType frame_type) : frame_type_(frame_type), obus_(ParseObus(payload)), packets_(Packetize(obus_, limits)) {} std::vector RtpPacketizerAv1::ParseObus( rtc::ArrayView payload) { std::vector result; rtc::ByteBufferReader payload_reader( reinterpret_cast(payload.data()), payload.size()); while (payload_reader.Length() > 0) { Obu obu; payload_reader.ReadUInt8(&obu.header); obu.size = 1; if (ObuHasExtension(obu.header)) { if (payload_reader.Length() == 0) { RTC_DLOG(LS_ERROR) << "Malformed AV1 input: expected extension_header, " "no more bytes in the buffer. Offset: " << (payload.size() - payload_reader.Length()); return {}; } payload_reader.ReadUInt8(&obu.extension_header); ++obu.size; } if (!ObuHasSize(obu.header)) { obu.payload = rtc::MakeArrayView( reinterpret_cast(payload_reader.Data()), payload_reader.Length()); payload_reader.Consume(payload_reader.Length()); } else { uint64_t size = 0; if (!payload_reader.ReadUVarint(&size) || size > payload_reader.Length()) { RTC_DLOG(LS_ERROR) << "Malformed AV1 input: declared size " << size << " is larger than remaining buffer size " << payload_reader.Length(); return {}; } obu.payload = rtc::MakeArrayView( reinterpret_cast(payload_reader.Data()), size); payload_reader.Consume(size); } obu.size += obu.payload.size(); // Skip obus that shouldn't be transfered over rtp. int obu_type = ObuType(obu.header); if (obu_type != kObuTypeTemporalDelimiter && // obu_type != kObuTypeTileList && // obu_type != kObuTypePadding) { result.push_back(obu); } } return result; } int RtpPacketizerAv1::AdditionalBytesForPreviousObuElement( const Packet& packet) { if (packet.packet_size == 0) { // Packet is still empty => no last OBU element, no need to reserve space // for it. return 0; } if (packet.num_obu_elements > kMaxNumObusToOmitSize) { // There is so many obu elements in the packet, all of them must be // prepended with the length field. That imply space for the length of the // last obu element is already reserved. return 0; } // No space was reserved for length field of the last OBU element, but that // element becoming non-last, so it now requires explicit length field. // Calculate how many bytes are needed to store the length in leb128 format. return Leb128Size(packet.last_obu_size); } std::vector RtpPacketizerAv1::Packetize( rtc::ArrayView obus, PayloadSizeLimits limits) { std::vector packets; if (obus.empty()) { return packets; } // Ignore certian edge cases where packets should be very small. They are // inpractical but adds complexity to handle. if (limits.max_payload_len - limits.last_packet_reduction_len < 3 || limits.max_payload_len - limits.first_packet_reduction_len < 3) { RTC_DLOG(LS_ERROR) << "Failed to packetize AV1 frame: requested packet " "size is unreasonable small."; return packets; } // Aggregation header is present in all packets. limits.max_payload_len -= kAggregationHeaderSize; // Assemble packets. Push to current packet as much as it can hold before // considering next one. That would normally cause uneven distribution across // packets, specifically last one would be generally smaller. packets.emplace_back(/*first_obu_index=*/0); int packet_remaining_bytes = limits.max_payload_len - limits.first_packet_reduction_len; for (size_t obu_index = 0; obu_index < obus.size(); ++obu_index) { const bool is_last_obu = obu_index == obus.size() - 1; const Obu& obu = obus[obu_index]; // Putting |obu| into the last packet would make last obu element stored in // that packet not last. All not last OBU elements must be prepend with the // element length. AdditionalBytesForPreviousObuElement calculates how many // bytes are needed to store that length. int previous_obu_extra_size = AdditionalBytesForPreviousObuElement(packets.back()); int min_required_size = packets.back().num_obu_elements >= kMaxNumObusToOmitSize ? 2 : 1; if (packet_remaining_bytes < previous_obu_extra_size + min_required_size) { // Start a new packet. packets.emplace_back(/*first_obu_index=*/obu_index); packet_remaining_bytes = limits.max_payload_len; previous_obu_extra_size = 0; } Packet& packet = packets.back(); // Start inserting current obu into the packet. packet.packet_size += previous_obu_extra_size; packet_remaining_bytes -= previous_obu_extra_size; packet.num_obu_elements++; bool must_write_obu_element_size = packet.num_obu_elements > kMaxNumObusToOmitSize; // Can fit all of the obu into the packet? int required_bytes = obu.size; if (must_write_obu_element_size) { required_bytes += Leb128Size(obu.size); } int available_bytes = packet_remaining_bytes; if (is_last_obu) { // If this packet would be the last packet, available size is smaller. if (packets.size() == 1) { available_bytes += limits.first_packet_reduction_len; available_bytes -= limits.single_packet_reduction_len; } else { available_bytes -= limits.last_packet_reduction_len; } } if (required_bytes <= available_bytes) { // Insert the obu into the packet unfragmented. packet.last_obu_size = obu.size; packet.packet_size += required_bytes; packet_remaining_bytes -= required_bytes; continue; } // Fragment the obu. int max_first_fragment_size = must_write_obu_element_size ? MaxFragmentSize(packet_remaining_bytes) : packet_remaining_bytes; // Because available_bytes might be different than // packet_remaining_bytes it might happen that max_first_fragment_size >= // obu.size. Also, since checks above verified |obu| should not be put // completely into the |packet|, leave at least 1 byte for later packet. int first_fragment_size = std::min(obu.size - 1, max_first_fragment_size); if (first_fragment_size == 0) { // Rather than writing 0-size element at the tail of the packet, // 'uninsert' the |obu| from the |packet|. packet.num_obu_elements--; packet.packet_size -= previous_obu_extra_size; } else { packet.packet_size += first_fragment_size; if (must_write_obu_element_size) { packet.packet_size += Leb128Size(first_fragment_size); } packet.last_obu_size = first_fragment_size; } // Add middle fragments that occupy all of the packet. // These are easy because // - one obu per packet imply no need to store the size of the obu. // - this packets are nor the first nor the last packets of the frame, so // packet capacity is always limits.max_payload_len. int obu_offset; for (obu_offset = first_fragment_size; obu_offset + limits.max_payload_len < obu.size; obu_offset += limits.max_payload_len) { packets.emplace_back(/*first_obu_index=*/obu_index); Packet& packet = packets.back(); packet.num_obu_elements = 1; packet.first_obu_offset = obu_offset; int middle_fragment_size = limits.max_payload_len; packet.last_obu_size = middle_fragment_size; packet.packet_size = middle_fragment_size; } // Add the last fragment of the obu. int last_fragment_size = obu.size - obu_offset; // Check for corner case where last fragment of the last obu is too large // to fit into last packet, but may fully fit into semi-last packet. if (is_last_obu && last_fragment_size > limits.max_payload_len - limits.last_packet_reduction_len) { // Split last fragments into two. RTC_DCHECK_GE(last_fragment_size, 2); // Try to even packet sizes rather than payload sizes across the last // two packets. int semi_last_fragment_size = (last_fragment_size + limits.last_packet_reduction_len) / 2; // But leave at least one payload byte for the last packet to avoid // weird scenarios where size of the fragment is zero and rtp payload has // nothing except for an aggregation header. if (semi_last_fragment_size >= last_fragment_size) { semi_last_fragment_size = last_fragment_size - 1; } last_fragment_size -= semi_last_fragment_size; packets.emplace_back(/*first_obu_index=*/obu_index); Packet& packet = packets.back(); packet.num_obu_elements = 1; packet.first_obu_offset = obu_offset; packet.last_obu_size = semi_last_fragment_size; packet.packet_size = semi_last_fragment_size; obu_offset += semi_last_fragment_size; } packets.emplace_back(/*first_obu_index=*/obu_index); Packet& last_packet = packets.back(); last_packet.num_obu_elements = 1; last_packet.first_obu_offset = obu_offset; last_packet.last_obu_size = last_fragment_size; last_packet.packet_size = last_fragment_size; packet_remaining_bytes = limits.max_payload_len - last_fragment_size; } return packets; } uint8_t RtpPacketizerAv1::AggregationHeader() const { const Packet& packet = packets_[packet_index_]; uint8_t aggregation_header = 0; // Set Z flag: first obu element is continuation of the previous OBU. bool first_obu_element_is_fragment = packet.first_obu_offset > 0; if (first_obu_element_is_fragment) aggregation_header |= (1 << 7); // Set Y flag: last obu element will be continuated in the next packet. int last_obu_offset = packet.num_obu_elements == 1 ? packet.first_obu_offset : 0; bool last_obu_is_fragment = last_obu_offset + packet.last_obu_size < obus_[packet.first_obu + packet.num_obu_elements - 1].size; if (last_obu_is_fragment) aggregation_header |= (1 << 6); // Set W field: number of obu elements in the packet (when not too large). if (packet.num_obu_elements <= kMaxNumObusToOmitSize) aggregation_header |= packet.num_obu_elements << 4; // Set N flag: beginning of a new coded video sequence. // Encoder may produce key frame without a sequence header, thus double check // incoming frame includes the sequence header. Since Temporal delimiter is // already filtered out, sequence header should be the first obu when present. if (frame_type_ == VideoFrameType::kVideoFrameKey && packet_index_ == 0 && ObuType(obus_.front().header) == kObuTypeSequenceHeader) { aggregation_header |= (1 << 3); } return aggregation_header; } bool RtpPacketizerAv1::NextPacket(RtpPacketToSend* packet) { if (packet_index_ >= packets_.size()) { return false; } const Packet& next_packet = packets_[packet_index_]; RTC_DCHECK_GT(next_packet.num_obu_elements, 0); RTC_DCHECK_LT(next_packet.first_obu_offset, obus_[next_packet.first_obu].size); RTC_DCHECK_LE( next_packet.last_obu_size, obus_[next_packet.first_obu + next_packet.num_obu_elements - 1].size); uint8_t* const rtp_payload = packet->AllocatePayload(kAggregationHeaderSize + next_packet.packet_size); uint8_t* write_at = rtp_payload; *write_at++ = AggregationHeader(); int obu_offset = next_packet.first_obu_offset; // Store all OBU elements except the last one. for (int i = 0; i < next_packet.num_obu_elements - 1; ++i) { const Obu& obu = obus_[next_packet.first_obu + i]; size_t fragment_size = obu.size - obu_offset; write_at += WriteLeb128(fragment_size, write_at); if (obu_offset == 0) { *write_at++ = obu.header & ~kObuSizePresentBit; } if (obu_offset <= 1 && ObuHasExtension(obu.header)) { *write_at++ = obu.extension_header; } int payload_offset = std::max(0, obu_offset - (ObuHasExtension(obu.header) ? 2 : 1)); size_t payload_size = obu.payload.size() - payload_offset; memcpy(write_at, obu.payload.data() + payload_offset, payload_size); write_at += payload_size; // All obus are stored from the beginning, except, may be, the first one. obu_offset = 0; } // Store the last OBU element. const Obu& last_obu = obus_[next_packet.first_obu + next_packet.num_obu_elements - 1]; int fragment_size = next_packet.last_obu_size; RTC_DCHECK_GT(fragment_size, 0); if (next_packet.num_obu_elements > kMaxNumObusToOmitSize) { write_at += WriteLeb128(fragment_size, write_at); } if (obu_offset == 0 && fragment_size > 0) { *write_at++ = last_obu.header & ~kObuSizePresentBit; --fragment_size; } if (obu_offset <= 1 && ObuHasExtension(last_obu.header) && fragment_size > 0) { *write_at++ = last_obu.extension_header; --fragment_size; } RTC_DCHECK_EQ(write_at - rtp_payload + fragment_size, kAggregationHeaderSize + next_packet.packet_size); int payload_offset = std::max(0, obu_offset - (ObuHasExtension(last_obu.header) ? 2 : 1)); memcpy(write_at, last_obu.payload.data() + payload_offset, fragment_size); write_at += fragment_size; RTC_DCHECK_EQ(write_at - rtp_payload, kAggregationHeaderSize + next_packet.packet_size); ++packet_index_; if (packet_index_ == packets_.size()) { // TODO(danilchap): To support spatial scalability pass and use information // if this frame is the last in the temporal unit. packet->SetMarker(true); } return true; } } // namespace webrtc