/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "video/video_stream_encoder.h" #include #include #include #include #include "absl/memory/memory.h" #include "api/task_queue/default_task_queue_factory.h" #include "api/test/mock_fec_controller_override.h" #include "api/test/mock_video_encoder.h" #include "api/video/builtin_video_bitrate_allocator_factory.h" #include "api/video/i420_buffer.h" #include "api/video/video_adaptation_reason.h" #include "api/video/video_bitrate_allocation.h" #include "api/video_codecs/video_encoder.h" #include "api/video_codecs/vp8_temporal_layers.h" #include "api/video_codecs/vp8_temporal_layers_factory.h" #include "call/adaptation/test/fake_adaptation_constraint.h" #include "call/adaptation/test/fake_adaptation_listener.h" #include "call/adaptation/test/fake_resource.h" #include "common_video/h264/h264_common.h" #include "common_video/include/video_frame_buffer.h" #include "media/base/video_adapter.h" #include "modules/video_coding/codecs/vp9/include/vp9_globals.h" #include "modules/video_coding/utility/quality_scaler.h" #include "modules/video_coding/utility/simulcast_rate_allocator.h" #include "rtc_base/fake_clock.h" #include "rtc_base/gunit.h" #include "rtc_base/logging.h" #include "rtc_base/ref_counted_object.h" #include "rtc_base/synchronization/mutex.h" #include "system_wrappers/include/field_trial.h" #include "system_wrappers/include/metrics.h" #include "system_wrappers/include/sleep.h" #include "test/encoder_settings.h" #include "test/fake_encoder.h" #include "test/field_trial.h" #include "test/frame_forwarder.h" #include "test/gmock.h" #include "test/gtest.h" #include "test/video_encoder_proxy_factory.h" #include "video/send_statistics_proxy.h" namespace webrtc { using ::testing::_; using ::testing::AllOf; using ::testing::Eq; using ::testing::Field; using ::testing::Ge; using ::testing::Gt; using ::testing::Le; using ::testing::Lt; using ::testing::Matcher; using ::testing::NiceMock; using ::testing::Return; using ::testing::StrictMock; namespace { const int kMinPixelsPerFrame = 320 * 180; const int kQpLow = 1; const int kQpHigh = 2; const int kMinFramerateFps = 2; const int kMinBalancedFramerateFps = 7; const int64_t kFrameTimeoutMs = 100; const size_t kMaxPayloadLength = 1440; const uint32_t kTargetBitrateBps = 1000000; const uint32_t kStartBitrateBps = 600000; const uint32_t kSimulcastTargetBitrateBps = 3150000; const uint32_t kLowTargetBitrateBps = kTargetBitrateBps / 10; const int kMaxInitialFramedrop = 4; const int kDefaultFramerate = 30; const int64_t kFrameIntervalMs = rtc::kNumMillisecsPerSec / kDefaultFramerate; const int64_t kProcessIntervalMs = 1000; const VideoEncoder::ResolutionBitrateLimits kEncoderBitrateLimits540p(960 * 540, 100 * 1000, 100 * 1000, 2000 * 1000); const VideoEncoder::ResolutionBitrateLimits kEncoderBitrateLimits720p(1280 * 720, 200 * 1000, 200 * 1000, 4000 * 1000); uint8_t optimal_sps[] = {0, 0, 0, 1, H264::NaluType::kSps, 0x00, 0x00, 0x03, 0x03, 0xF4, 0x05, 0x03, 0xC7, 0xE0, 0x1B, 0x41, 0x10, 0x8D, 0x00}; class TestBuffer : public webrtc::I420Buffer { public: TestBuffer(rtc::Event* event, int width, int height) : I420Buffer(width, height), event_(event) {} private: friend class rtc::RefCountedObject; ~TestBuffer() override { if (event_) event_->Set(); } rtc::Event* const event_; }; // A fake native buffer that can't be converted to I420. class FakeNativeBuffer : public webrtc::VideoFrameBuffer { public: FakeNativeBuffer(rtc::Event* event, int width, int height) : event_(event), width_(width), height_(height) {} webrtc::VideoFrameBuffer::Type type() const override { return Type::kNative; } int width() const override { return width_; } int height() const override { return height_; } rtc::scoped_refptr ToI420() override { return nullptr; } private: friend class rtc::RefCountedObject; ~FakeNativeBuffer() override { if (event_) event_->Set(); } rtc::Event* const event_; const int width_; const int height_; }; class CpuOveruseDetectorProxy : public OveruseFrameDetector { public: explicit CpuOveruseDetectorProxy(CpuOveruseMetricsObserver* metrics_observer) : OveruseFrameDetector(metrics_observer), last_target_framerate_fps_(-1), framerate_updated_event_(true /* manual_reset */, false /* initially_signaled */) {} virtual ~CpuOveruseDetectorProxy() {} void OnTargetFramerateUpdated(int framerate_fps) override { MutexLock lock(&lock_); last_target_framerate_fps_ = framerate_fps; OveruseFrameDetector::OnTargetFramerateUpdated(framerate_fps); framerate_updated_event_.Set(); } int GetLastTargetFramerate() { MutexLock lock(&lock_); return last_target_framerate_fps_; } CpuOveruseOptions GetOptions() { return options_; } rtc::Event* framerate_updated_event() { return &framerate_updated_event_; } private: Mutex lock_; int last_target_framerate_fps_ RTC_GUARDED_BY(lock_); rtc::Event framerate_updated_event_; }; class FakeQualityScalerQpUsageHandlerCallback : public QualityScalerQpUsageHandlerCallbackInterface { public: FakeQualityScalerQpUsageHandlerCallback() : QualityScalerQpUsageHandlerCallbackInterface(), qp_usage_handled_event_(/*manual_reset=*/true, /*initially_signaled=*/false), clear_qp_samples_result_(absl::nullopt) {} ~FakeQualityScalerQpUsageHandlerCallback() override { RTC_DCHECK(clear_qp_samples_result_.has_value()); } void OnQpUsageHandled(bool clear_qp_samples) override { clear_qp_samples_result_ = clear_qp_samples; qp_usage_handled_event_.Set(); } bool WaitForQpUsageHandled() { return qp_usage_handled_event_.Wait(5000); } absl::optional clear_qp_samples_result() const { return clear_qp_samples_result_; } private: rtc::Event qp_usage_handled_event_; absl::optional clear_qp_samples_result_; }; class FakeVideoSourceRestrictionsListener : public VideoSourceRestrictionsListener { public: FakeVideoSourceRestrictionsListener() : was_restrictions_updated_(false), restrictions_updated_event_() {} ~FakeVideoSourceRestrictionsListener() override { RTC_DCHECK(was_restrictions_updated_); } rtc::Event* restrictions_updated_event() { return &restrictions_updated_event_; } // VideoSourceRestrictionsListener implementation. void OnVideoSourceRestrictionsUpdated( VideoSourceRestrictions restrictions, const VideoAdaptationCounters& adaptation_counters, rtc::scoped_refptr reason, const VideoSourceRestrictions& unfiltered_restrictions) override { was_restrictions_updated_ = true; restrictions_updated_event_.Set(); } private: bool was_restrictions_updated_; rtc::Event restrictions_updated_event_; }; auto WantsFps(Matcher fps_matcher) { return Field("max_framerate_fps", &rtc::VideoSinkWants::max_framerate_fps, fps_matcher); } auto WantsMaxPixels(Matcher max_pixel_matcher) { return Field("max_pixel_count", &rtc::VideoSinkWants::max_pixel_count, AllOf(max_pixel_matcher, Gt(0))); } auto ResolutionMax() { return AllOf( WantsMaxPixels(Eq(std::numeric_limits::max())), Field("target_pixel_count", &rtc::VideoSinkWants::target_pixel_count, Eq(absl::nullopt))); } auto FpsMax() { return WantsFps(Eq(kDefaultFramerate)); } auto FpsUnlimited() { return WantsFps(Eq(std::numeric_limits::max())); } auto FpsMatchesResolutionMax(Matcher fps_matcher) { return AllOf(WantsFps(fps_matcher), ResolutionMax()); } auto FpsMaxResolutionMatches(Matcher pixel_matcher) { return AllOf(FpsMax(), WantsMaxPixels(pixel_matcher)); } auto FpsMaxResolutionMax() { return AllOf(FpsMax(), ResolutionMax()); } auto UnlimitedSinkWants() { return AllOf(FpsUnlimited(), ResolutionMax()); } auto FpsInRangeForPixelsInBalanced(int last_frame_pixels) { Matcher fps_range_matcher; if (last_frame_pixels <= 320 * 240) { fps_range_matcher = AllOf(Ge(7), Le(10)); } else if (last_frame_pixels <= 480 * 270) { fps_range_matcher = AllOf(Ge(10), Le(15)); } else if (last_frame_pixels <= 640 * 480) { fps_range_matcher = Ge(15); } else { fps_range_matcher = Eq(kDefaultFramerate); } return Field("max_framerate_fps", &rtc::VideoSinkWants::max_framerate_fps, fps_range_matcher); } auto FpsEqResolutionEqTo(const rtc::VideoSinkWants& other_wants) { return AllOf(WantsFps(Eq(other_wants.max_framerate_fps)), WantsMaxPixels(Eq(other_wants.max_pixel_count))); } auto FpsMaxResolutionLt(const rtc::VideoSinkWants& other_wants) { return AllOf(FpsMax(), WantsMaxPixels(Lt(other_wants.max_pixel_count))); } auto FpsMaxResolutionGt(const rtc::VideoSinkWants& other_wants) { return AllOf(FpsMax(), WantsMaxPixels(Gt(other_wants.max_pixel_count))); } auto FpsLtResolutionEq(const rtc::VideoSinkWants& other_wants) { return AllOf(WantsFps(Lt(other_wants.max_framerate_fps)), WantsMaxPixels(Eq(other_wants.max_pixel_count))); } auto FpsGtResolutionEq(const rtc::VideoSinkWants& other_wants) { return AllOf(WantsFps(Gt(other_wants.max_framerate_fps)), WantsMaxPixels(Eq(other_wants.max_pixel_count))); } auto FpsEqResolutionLt(const rtc::VideoSinkWants& other_wants) { return AllOf(WantsFps(Eq(other_wants.max_framerate_fps)), WantsMaxPixels(Lt(other_wants.max_pixel_count))); } auto FpsEqResolutionGt(const rtc::VideoSinkWants& other_wants) { return AllOf(WantsFps(Eq(other_wants.max_framerate_fps)), WantsMaxPixels(Gt(other_wants.max_pixel_count))); } class VideoStreamEncoderUnderTest : public VideoStreamEncoder { public: VideoStreamEncoderUnderTest(SendStatisticsProxy* stats_proxy, const VideoStreamEncoderSettings& settings, TaskQueueFactory* task_queue_factory) : VideoStreamEncoder(Clock::GetRealTimeClock(), 1 /* number_of_cores */, stats_proxy, settings, std::unique_ptr( overuse_detector_proxy_ = new CpuOveruseDetectorProxy(stats_proxy)), task_queue_factory), fake_cpu_resource_(FakeResource::Create("FakeResource[CPU]")), fake_quality_resource_(FakeResource::Create("FakeResource[QP]")), fake_adaptation_constraint_("FakeAdaptationConstraint") { InjectAdaptationResource(fake_quality_resource_, VideoAdaptationReason::kQuality); InjectAdaptationResource(fake_cpu_resource_, VideoAdaptationReason::kCpu); InjectAdaptationConstraint(&fake_adaptation_constraint_); } void SetSourceAndWaitForRestrictionsUpdated( rtc::VideoSourceInterface* source, const DegradationPreference& degradation_preference) { FakeVideoSourceRestrictionsListener listener; AddRestrictionsListenerForTesting(&listener); SetSource(source, degradation_preference); listener.restrictions_updated_event()->Wait(5000); RemoveRestrictionsListenerForTesting(&listener); } void SetSourceAndWaitForFramerateUpdated( rtc::VideoSourceInterface* source, const DegradationPreference& degradation_preference) { overuse_detector_proxy_->framerate_updated_event()->Reset(); SetSource(source, degradation_preference); overuse_detector_proxy_->framerate_updated_event()->Wait(5000); } void OnBitrateUpdatedAndWaitForManagedResources( DataRate target_bitrate, DataRate stable_target_bitrate, DataRate link_allocation, uint8_t fraction_lost, int64_t round_trip_time_ms, double cwnd_reduce_ratio) { OnBitrateUpdated(target_bitrate, stable_target_bitrate, link_allocation, fraction_lost, round_trip_time_ms, cwnd_reduce_ratio); // Bitrate is updated on the encoder queue. WaitUntilTaskQueueIsIdle(); // Give the managed resources time to react to the new bitrate. // TODO(hbos): Can we await an appropriate event instead? WaitUntilAdaptationTaskQueueIsIdle(); } void WaitUntilAdaptationTaskQueueIsIdle() { rtc::Event event; resource_adaptation_queue()->PostTask([&event] { event.Set(); }); ASSERT_TRUE(event.Wait(5000)); } // This is used as a synchronisation mechanism, to make sure that the // encoder queue is not blocked before we start sending it frames. void WaitUntilTaskQueueIsIdle() { rtc::Event event; encoder_queue()->PostTask([&event] { event.Set(); }); ASSERT_TRUE(event.Wait(5000)); } // Triggers resource usage measurements on the fake CPU resource. void TriggerCpuOveruse() { rtc::Event event; resource_adaptation_queue()->PostTask([this, &event] { fake_cpu_resource_->SetUsageState(ResourceUsageState::kOveruse); event.Set(); }); ASSERT_TRUE(event.Wait(5000)); } void TriggerCpuUnderuse() { rtc::Event event; resource_adaptation_queue()->PostTask([this, &event] { fake_cpu_resource_->SetUsageState(ResourceUsageState::kUnderuse); event.Set(); }); ASSERT_TRUE(event.Wait(5000)); } // Triggers resource usage measurements on the fake quality resource. void TriggerQualityLow() { rtc::Event event; resource_adaptation_queue()->PostTask([this, &event] { fake_quality_resource_->SetUsageState(ResourceUsageState::kOveruse); event.Set(); }); ASSERT_TRUE(event.Wait(5000)); } void TriggerQualityHigh() { rtc::Event event; resource_adaptation_queue()->PostTask([this, &event] { fake_quality_resource_->SetUsageState(ResourceUsageState::kUnderuse); event.Set(); }); ASSERT_TRUE(event.Wait(5000)); } // Fakes high QP resource usage measurements on the real // QualityScalerResource. Returns whether or not QP samples would have been // cleared if this had been a real signal from the QualityScaler. bool TriggerQualityScalerHighQpAndReturnIfQpSamplesShouldBeCleared() { rtc::scoped_refptr callback = new FakeQualityScalerQpUsageHandlerCallback(); encoder_queue()->PostTask([this, callback] { // This will cause a "ping" between adaptation task queue and encoder // queue. When we have the result, the |callback| will be notified. quality_scaler_resource_for_testing()->OnReportQpUsageHigh(callback); }); EXPECT_TRUE(callback->WaitForQpUsageHandled()); EXPECT_TRUE(callback->clear_qp_samples_result().has_value()); return callback->clear_qp_samples_result().value(); } CpuOveruseDetectorProxy* overuse_detector_proxy_; rtc::scoped_refptr fake_cpu_resource_; rtc::scoped_refptr fake_quality_resource_; FakeAdaptationConstraint fake_adaptation_constraint_; }; class VideoStreamFactory : public VideoEncoderConfig::VideoStreamFactoryInterface { public: explicit VideoStreamFactory(size_t num_temporal_layers, int framerate) : num_temporal_layers_(num_temporal_layers), framerate_(framerate) { EXPECT_GT(num_temporal_layers, 0u); EXPECT_GT(framerate, 0); } private: std::vector CreateEncoderStreams( int width, int height, const VideoEncoderConfig& encoder_config) override { std::vector streams = test::CreateVideoStreams(width, height, encoder_config); for (VideoStream& stream : streams) { stream.num_temporal_layers = num_temporal_layers_; stream.max_framerate = framerate_; } return streams; } const size_t num_temporal_layers_; const int framerate_; }; // Simulates simulcast behavior and makes highest stream resolutions divisible // by 4. class CroppingVideoStreamFactory : public VideoEncoderConfig::VideoStreamFactoryInterface { public: explicit CroppingVideoStreamFactory(size_t num_temporal_layers, int framerate) : num_temporal_layers_(num_temporal_layers), framerate_(framerate) { EXPECT_GT(num_temporal_layers, 0u); EXPECT_GT(framerate, 0); } private: std::vector CreateEncoderStreams( int width, int height, const VideoEncoderConfig& encoder_config) override { std::vector streams = test::CreateVideoStreams( width - width % 4, height - height % 4, encoder_config); for (VideoStream& stream : streams) { stream.num_temporal_layers = num_temporal_layers_; stream.max_framerate = framerate_; } return streams; } const size_t num_temporal_layers_; const int framerate_; }; class AdaptingFrameForwarder : public test::FrameForwarder { public: AdaptingFrameForwarder() : adaptation_enabled_(false) {} ~AdaptingFrameForwarder() override {} void set_adaptation_enabled(bool enabled) { MutexLock lock(&mutex_); adaptation_enabled_ = enabled; } bool adaption_enabled() const { MutexLock lock(&mutex_); return adaptation_enabled_; } rtc::VideoSinkWants last_wants() const { MutexLock lock(&mutex_); return last_wants_; } absl::optional last_sent_width() const { return last_width_; } absl::optional last_sent_height() const { return last_height_; } void IncomingCapturedFrame(const VideoFrame& video_frame) override { int cropped_width = 0; int cropped_height = 0; int out_width = 0; int out_height = 0; if (adaption_enabled()) { if (adapter_.AdaptFrameResolution( video_frame.width(), video_frame.height(), video_frame.timestamp_us() * 1000, &cropped_width, &cropped_height, &out_width, &out_height)) { VideoFrame adapted_frame = VideoFrame::Builder() .set_video_frame_buffer(new rtc::RefCountedObject( nullptr, out_width, out_height)) .set_timestamp_rtp(99) .set_timestamp_ms(99) .set_rotation(kVideoRotation_0) .build(); adapted_frame.set_ntp_time_ms(video_frame.ntp_time_ms()); if (video_frame.has_update_rect()) { adapted_frame.set_update_rect( video_frame.update_rect().ScaleWithFrame( video_frame.width(), video_frame.height(), 0, 0, video_frame.width(), video_frame.height(), out_width, out_height)); } test::FrameForwarder::IncomingCapturedFrame(adapted_frame); last_width_.emplace(adapted_frame.width()); last_height_.emplace(adapted_frame.height()); } else { last_width_ = absl::nullopt; last_height_ = absl::nullopt; } } else { test::FrameForwarder::IncomingCapturedFrame(video_frame); last_width_.emplace(video_frame.width()); last_height_.emplace(video_frame.height()); } } void AddOrUpdateSink(rtc::VideoSinkInterface* sink, const rtc::VideoSinkWants& wants) override { MutexLock lock(&mutex_); last_wants_ = sink_wants_locked(); adapter_.OnSinkWants(wants); test::FrameForwarder::AddOrUpdateSinkLocked(sink, wants); } cricket::VideoAdapter adapter_; bool adaptation_enabled_ RTC_GUARDED_BY(mutex_); rtc::VideoSinkWants last_wants_ RTC_GUARDED_BY(mutex_); absl::optional last_width_; absl::optional last_height_; }; // TODO(nisse): Mock only VideoStreamEncoderObserver. class MockableSendStatisticsProxy : public SendStatisticsProxy { public: MockableSendStatisticsProxy(Clock* clock, const VideoSendStream::Config& config, VideoEncoderConfig::ContentType content_type) : SendStatisticsProxy(clock, config, content_type) {} VideoSendStream::Stats GetStats() override { MutexLock lock(&lock_); if (mock_stats_) return *mock_stats_; return SendStatisticsProxy::GetStats(); } int GetInputFrameRate() const override { MutexLock lock(&lock_); if (mock_stats_) return mock_stats_->input_frame_rate; return SendStatisticsProxy::GetInputFrameRate(); } void SetMockStats(const VideoSendStream::Stats& stats) { MutexLock lock(&lock_); mock_stats_.emplace(stats); } void ResetMockStats() { MutexLock lock(&lock_); mock_stats_.reset(); } private: mutable Mutex lock_; absl::optional mock_stats_ RTC_GUARDED_BY(lock_); }; class MockBitrateObserver : public VideoBitrateAllocationObserver { public: MOCK_METHOD(void, OnBitrateAllocationUpdated, (const VideoBitrateAllocation&), (override)); }; class MockEncoderSelector : public VideoEncoderFactory::EncoderSelectorInterface { public: MOCK_METHOD(void, OnCurrentEncoder, (const SdpVideoFormat& format), (override)); MOCK_METHOD(absl::optional, OnAvailableBitrate, (const DataRate& rate), (override)); MOCK_METHOD(absl::optional, OnEncoderBroken, (), (override)); }; } // namespace class VideoStreamEncoderTest : public ::testing::Test { public: static const int kDefaultTimeoutMs = 30 * 1000; VideoStreamEncoderTest() : video_send_config_(VideoSendStream::Config(nullptr)), codec_width_(320), codec_height_(240), max_framerate_(kDefaultFramerate), task_queue_factory_(CreateDefaultTaskQueueFactory()), fake_encoder_(), encoder_factory_(&fake_encoder_), stats_proxy_(new MockableSendStatisticsProxy( Clock::GetRealTimeClock(), video_send_config_, webrtc::VideoEncoderConfig::ContentType::kRealtimeVideo)), sink_(&fake_encoder_) {} void SetUp() override { metrics::Reset(); video_send_config_ = VideoSendStream::Config(nullptr); video_send_config_.encoder_settings.encoder_factory = &encoder_factory_; video_send_config_.encoder_settings.bitrate_allocator_factory = &bitrate_allocator_factory_; video_send_config_.rtp.payload_name = "FAKE"; video_send_config_.rtp.payload_type = 125; VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config); video_encoder_config.video_stream_factory = new rtc::RefCountedObject(1, max_framerate_); video_encoder_config_ = video_encoder_config.Copy(); // Framerate limit is specified by the VideoStreamFactory. std::vector streams = video_encoder_config.video_stream_factory->CreateEncoderStreams( codec_width_, codec_height_, video_encoder_config); max_framerate_ = streams[0].max_framerate; fake_clock_.SetTime(Timestamp::Micros(1234)); ConfigureEncoder(std::move(video_encoder_config)); } void ConfigureEncoder(VideoEncoderConfig video_encoder_config) { if (video_stream_encoder_) video_stream_encoder_->Stop(); video_stream_encoder_.reset(new VideoStreamEncoderUnderTest( stats_proxy_.get(), video_send_config_.encoder_settings, task_queue_factory_.get())); video_stream_encoder_->SetSink(&sink_, false /* rotation_applied */); video_stream_encoder_->SetSource( &video_source_, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); video_stream_encoder_->SetStartBitrate(kTargetBitrateBps); video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); } void ResetEncoder(const std::string& payload_name, size_t num_streams, size_t num_temporal_layers, unsigned char num_spatial_layers, bool screenshare) { video_send_config_.rtp.payload_name = payload_name; VideoEncoderConfig video_encoder_config; video_encoder_config.codec_type = PayloadStringToCodecType(payload_name); video_encoder_config.number_of_streams = num_streams; video_encoder_config.max_bitrate_bps = num_streams == 1 ? kTargetBitrateBps : kSimulcastTargetBitrateBps; video_encoder_config.video_stream_factory = new rtc::RefCountedObject(num_temporal_layers, kDefaultFramerate); video_encoder_config.content_type = screenshare ? VideoEncoderConfig::ContentType::kScreen : VideoEncoderConfig::ContentType::kRealtimeVideo; if (payload_name == "VP9") { VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings(); vp9_settings.numberOfSpatialLayers = num_spatial_layers; vp9_settings.automaticResizeOn = num_spatial_layers <= 1; video_encoder_config.encoder_specific_settings = new rtc::RefCountedObject< VideoEncoderConfig::Vp9EncoderSpecificSettings>(vp9_settings); } ConfigureEncoder(std::move(video_encoder_config)); } VideoFrame CreateFrame(int64_t ntp_time_ms, rtc::Event* destruction_event) const { VideoFrame frame = VideoFrame::Builder() .set_video_frame_buffer(new rtc::RefCountedObject( destruction_event, codec_width_, codec_height_)) .set_timestamp_rtp(99) .set_timestamp_ms(99) .set_rotation(kVideoRotation_0) .build(); frame.set_ntp_time_ms(ntp_time_ms); return frame; } VideoFrame CreateFrameWithUpdatedPixel(int64_t ntp_time_ms, rtc::Event* destruction_event, int offset_x) const { VideoFrame frame = VideoFrame::Builder() .set_video_frame_buffer(new rtc::RefCountedObject( destruction_event, codec_width_, codec_height_)) .set_timestamp_rtp(99) .set_timestamp_ms(99) .set_rotation(kVideoRotation_0) .set_update_rect(VideoFrame::UpdateRect{offset_x, 0, 1, 1}) .build(); frame.set_ntp_time_ms(ntp_time_ms); return frame; } VideoFrame CreateFrame(int64_t ntp_time_ms, int width, int height) const { VideoFrame frame = VideoFrame::Builder() .set_video_frame_buffer( new rtc::RefCountedObject(nullptr, width, height)) .set_timestamp_rtp(99) .set_timestamp_ms(99) .set_rotation(kVideoRotation_0) .build(); frame.set_ntp_time_ms(ntp_time_ms); frame.set_timestamp_us(ntp_time_ms * 1000); return frame; } VideoFrame CreateFakeNativeFrame(int64_t ntp_time_ms, rtc::Event* destruction_event, int width, int height) const { VideoFrame frame = VideoFrame::Builder() .set_video_frame_buffer(new rtc::RefCountedObject( destruction_event, width, height)) .set_timestamp_rtp(99) .set_timestamp_ms(99) .set_rotation(kVideoRotation_0) .build(); frame.set_ntp_time_ms(ntp_time_ms); return frame; } VideoFrame CreateFakeNativeFrame(int64_t ntp_time_ms, rtc::Event* destruction_event) const { return CreateFakeNativeFrame(ntp_time_ms, destruction_event, codec_width_, codec_height_); } void VerifyAllocatedBitrate(const VideoBitrateAllocation& expected_bitrate) { MockBitrateObserver bitrate_observer; video_stream_encoder_->SetBitrateAllocationObserver(&bitrate_observer); EXPECT_CALL(bitrate_observer, OnBitrateAllocationUpdated(expected_bitrate)) .Times(1); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); video_source_.IncomingCapturedFrame( CreateFrame(1, codec_width_, codec_height_)); WaitForEncodedFrame(1); } void WaitForEncodedFrame(int64_t expected_ntp_time) { sink_.WaitForEncodedFrame(expected_ntp_time); fake_clock_.AdvanceTime(TimeDelta::Seconds(1) / max_framerate_); } bool TimedWaitForEncodedFrame(int64_t expected_ntp_time, int64_t timeout_ms) { bool ok = sink_.TimedWaitForEncodedFrame(expected_ntp_time, timeout_ms); fake_clock_.AdvanceTime(TimeDelta::Seconds(1) / max_framerate_); return ok; } void WaitForEncodedFrame(uint32_t expected_width, uint32_t expected_height) { sink_.WaitForEncodedFrame(expected_width, expected_height); fake_clock_.AdvanceTime(TimeDelta::Seconds(1) / max_framerate_); } void ExpectDroppedFrame() { sink_.ExpectDroppedFrame(); fake_clock_.AdvanceTime(TimeDelta::Seconds(1) / max_framerate_); } bool WaitForFrame(int64_t timeout_ms) { bool ok = sink_.WaitForFrame(timeout_ms); fake_clock_.AdvanceTime(TimeDelta::Seconds(1) / max_framerate_); return ok; } class TestEncoder : public test::FakeEncoder { public: TestEncoder() : FakeEncoder(Clock::GetRealTimeClock()) {} VideoCodec codec_config() const { MutexLock lock(&mutex_); return config_; } void BlockNextEncode() { MutexLock lock(&local_mutex_); block_next_encode_ = true; } VideoEncoder::EncoderInfo GetEncoderInfo() const override { MutexLock lock(&local_mutex_); EncoderInfo info; if (initialized_ == EncoderState::kInitialized) { if (quality_scaling_) { info.scaling_settings = VideoEncoder::ScalingSettings( kQpLow, kQpHigh, kMinPixelsPerFrame); } info.is_hardware_accelerated = is_hardware_accelerated_; for (int i = 0; i < kMaxSpatialLayers; ++i) { if (temporal_layers_supported_[i]) { int num_layers = temporal_layers_supported_[i].value() ? 2 : 1; info.fps_allocation[i].resize(num_layers); } } } info.resolution_bitrate_limits = resolution_bitrate_limits_; info.requested_resolution_alignment = requested_resolution_alignment_; return info; } int32_t RegisterEncodeCompleteCallback( EncodedImageCallback* callback) override { MutexLock lock(&local_mutex_); encoded_image_callback_ = callback; return FakeEncoder::RegisterEncodeCompleteCallback(callback); } void ContinueEncode() { continue_encode_event_.Set(); } void CheckLastTimeStampsMatch(int64_t ntp_time_ms, uint32_t timestamp) const { MutexLock lock(&local_mutex_); EXPECT_EQ(timestamp_, timestamp); EXPECT_EQ(ntp_time_ms_, ntp_time_ms); } void SetQualityScaling(bool b) { MutexLock lock(&local_mutex_); quality_scaling_ = b; } void SetRequestedResolutionAlignment(int requested_resolution_alignment) { MutexLock lock(&local_mutex_); requested_resolution_alignment_ = requested_resolution_alignment; } void SetIsHardwareAccelerated(bool is_hardware_accelerated) { MutexLock lock(&local_mutex_); is_hardware_accelerated_ = is_hardware_accelerated; } void SetTemporalLayersSupported(size_t spatial_idx, bool supported) { RTC_DCHECK_LT(spatial_idx, kMaxSpatialLayers); MutexLock lock(&local_mutex_); temporal_layers_supported_[spatial_idx] = supported; } void SetResolutionBitrateLimits( std::vector thresholds) { MutexLock lock(&local_mutex_); resolution_bitrate_limits_ = thresholds; } void ForceInitEncodeFailure(bool force_failure) { MutexLock lock(&local_mutex_); force_init_encode_failed_ = force_failure; } void SimulateOvershoot(double rate_factor) { MutexLock lock(&local_mutex_); rate_factor_ = rate_factor; } uint32_t GetLastFramerate() const { MutexLock lock(&local_mutex_); return last_framerate_; } VideoFrame::UpdateRect GetLastUpdateRect() const { MutexLock lock(&local_mutex_); return last_update_rect_; } const std::vector& LastFrameTypes() const { MutexLock lock(&local_mutex_); return last_frame_types_; } void InjectFrame(const VideoFrame& input_image, bool keyframe) { const std::vector frame_type = { keyframe ? VideoFrameType::kVideoFrameKey : VideoFrameType::kVideoFrameDelta}; { MutexLock lock(&local_mutex_); last_frame_types_ = frame_type; } FakeEncoder::Encode(input_image, &frame_type); } void InjectEncodedImage(const EncodedImage& image) { MutexLock lock(&local_mutex_); encoded_image_callback_->OnEncodedImage(image, nullptr, nullptr); } void SetEncodedImageData( rtc::scoped_refptr encoded_image_data) { MutexLock lock(&local_mutex_); encoded_image_data_ = encoded_image_data; } void ExpectNullFrame() { MutexLock lock(&local_mutex_); expect_null_frame_ = true; } absl::optional GetAndResetLastRateControlSettings() { auto settings = last_rate_control_settings_; last_rate_control_settings_.reset(); return settings; } int GetNumEncoderInitializations() const { MutexLock lock(&local_mutex_); return num_encoder_initializations_; } int GetNumSetRates() const { MutexLock lock(&local_mutex_); return num_set_rates_; } private: int32_t Encode(const VideoFrame& input_image, const std::vector* frame_types) override { bool block_encode; { MutexLock lock(&local_mutex_); if (expect_null_frame_) { EXPECT_EQ(input_image.timestamp(), 0u); EXPECT_EQ(input_image.width(), 1); last_frame_types_ = *frame_types; expect_null_frame_ = false; } else { EXPECT_GT(input_image.timestamp(), timestamp_); EXPECT_GT(input_image.ntp_time_ms(), ntp_time_ms_); EXPECT_EQ(input_image.timestamp(), input_image.ntp_time_ms() * 90); } timestamp_ = input_image.timestamp(); ntp_time_ms_ = input_image.ntp_time_ms(); last_input_width_ = input_image.width(); last_input_height_ = input_image.height(); block_encode = block_next_encode_; block_next_encode_ = false; last_update_rect_ = input_image.update_rect(); last_frame_types_ = *frame_types; } int32_t result = FakeEncoder::Encode(input_image, frame_types); if (block_encode) EXPECT_TRUE(continue_encode_event_.Wait(kDefaultTimeoutMs)); return result; } std::unique_ptr EncodeHook( EncodedImage* encoded_image, CodecSpecificInfo* codec_specific) override { { MutexLock lock(&mutex_); codec_specific->codecType = config_.codecType; } MutexLock lock(&local_mutex_); if (encoded_image_data_) { encoded_image->SetEncodedData(encoded_image_data_); if (codec_specific->codecType == kVideoCodecH264) { auto fragmentation = std::make_unique(); fragmentation->VerifyAndAllocateFragmentationHeader(1); fragmentation->fragmentationOffset[0] = 4; fragmentation->fragmentationLength[0] = encoded_image->size() - 4; return fragmentation; } } return nullptr; } int32_t InitEncode(const VideoCodec* config, const Settings& settings) override { int res = FakeEncoder::InitEncode(config, settings); MutexLock lock(&local_mutex_); EXPECT_EQ(initialized_, EncoderState::kUninitialized); ++num_encoder_initializations_; if (config->codecType == kVideoCodecVP8) { // Simulate setting up temporal layers, in order to validate the life // cycle of these objects. Vp8TemporalLayersFactory factory; frame_buffer_controller_ = factory.Create(*config, settings, &fec_controller_override_); } if (force_init_encode_failed_) { initialized_ = EncoderState::kInitializationFailed; return -1; } initialized_ = EncoderState::kInitialized; return res; } int32_t Release() override { MutexLock lock(&local_mutex_); EXPECT_NE(initialized_, EncoderState::kUninitialized); initialized_ = EncoderState::kUninitialized; return FakeEncoder::Release(); } void SetRates(const RateControlParameters& parameters) { MutexLock lock(&local_mutex_); num_set_rates_++; VideoBitrateAllocation adjusted_rate_allocation; for (size_t si = 0; si < kMaxSpatialLayers; ++si) { for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) { if (parameters.bitrate.HasBitrate(si, ti)) { adjusted_rate_allocation.SetBitrate( si, ti, static_cast(parameters.bitrate.GetBitrate(si, ti) * rate_factor_)); } } } last_framerate_ = static_cast(parameters.framerate_fps + 0.5); last_rate_control_settings_ = parameters; RateControlParameters adjusted_paramters = parameters; adjusted_paramters.bitrate = adjusted_rate_allocation; FakeEncoder::SetRates(adjusted_paramters); } mutable Mutex local_mutex_; enum class EncoderState { kUninitialized, kInitializationFailed, kInitialized } initialized_ RTC_GUARDED_BY(local_mutex_) = EncoderState::kUninitialized; bool block_next_encode_ RTC_GUARDED_BY(local_mutex_) = false; rtc::Event continue_encode_event_; uint32_t timestamp_ RTC_GUARDED_BY(local_mutex_) = 0; int64_t ntp_time_ms_ RTC_GUARDED_BY(local_mutex_) = 0; int last_input_width_ RTC_GUARDED_BY(local_mutex_) = 0; int last_input_height_ RTC_GUARDED_BY(local_mutex_) = 0; bool quality_scaling_ RTC_GUARDED_BY(local_mutex_) = true; int requested_resolution_alignment_ RTC_GUARDED_BY(local_mutex_) = 1; bool is_hardware_accelerated_ RTC_GUARDED_BY(local_mutex_) = false; rtc::scoped_refptr encoded_image_data_ RTC_GUARDED_BY(local_mutex_); std::unique_ptr frame_buffer_controller_ RTC_GUARDED_BY(local_mutex_); absl::optional temporal_layers_supported_[kMaxSpatialLayers] RTC_GUARDED_BY( local_mutex_); bool force_init_encode_failed_ RTC_GUARDED_BY(local_mutex_) = false; double rate_factor_ RTC_GUARDED_BY(local_mutex_) = 1.0; uint32_t last_framerate_ RTC_GUARDED_BY(local_mutex_) = 0; absl::optional last_rate_control_settings_; VideoFrame::UpdateRect last_update_rect_ RTC_GUARDED_BY(local_mutex_) = { 0, 0, 0, 0}; std::vector last_frame_types_; bool expect_null_frame_ = false; EncodedImageCallback* encoded_image_callback_ RTC_GUARDED_BY(local_mutex_) = nullptr; NiceMock fec_controller_override_; int num_encoder_initializations_ RTC_GUARDED_BY(local_mutex_) = 0; std::vector resolution_bitrate_limits_ RTC_GUARDED_BY(local_mutex_); int num_set_rates_ RTC_GUARDED_BY(local_mutex_) = 0; }; class TestSink : public VideoStreamEncoder::EncoderSink { public: explicit TestSink(TestEncoder* test_encoder) : test_encoder_(test_encoder) {} void WaitForEncodedFrame(int64_t expected_ntp_time) { EXPECT_TRUE( TimedWaitForEncodedFrame(expected_ntp_time, kDefaultTimeoutMs)); } bool TimedWaitForEncodedFrame(int64_t expected_ntp_time, int64_t timeout_ms) { uint32_t timestamp = 0; if (!encoded_frame_event_.Wait(timeout_ms)) return false; { MutexLock lock(&mutex_); timestamp = last_timestamp_; } test_encoder_->CheckLastTimeStampsMatch(expected_ntp_time, timestamp); return true; } void WaitForEncodedFrame(uint32_t expected_width, uint32_t expected_height) { EXPECT_TRUE(encoded_frame_event_.Wait(kDefaultTimeoutMs)); CheckLastFrameSizeMatches(expected_width, expected_height); } void CheckLastFrameSizeMatches(uint32_t expected_width, uint32_t expected_height) { uint32_t width = 0; uint32_t height = 0; { MutexLock lock(&mutex_); width = last_width_; height = last_height_; } EXPECT_EQ(expected_height, height); EXPECT_EQ(expected_width, width); } void CheckLastFrameSizeIsMultipleOf(int resolution_alignment) { int width = 0; int height = 0; { MutexLock lock(&mutex_); width = last_width_; height = last_height_; } EXPECT_EQ(width % resolution_alignment, 0); EXPECT_EQ(height % resolution_alignment, 0); } void CheckLastFrameRotationMatches(VideoRotation expected_rotation) { VideoRotation rotation; { MutexLock lock(&mutex_); rotation = last_rotation_; } EXPECT_EQ(expected_rotation, rotation); } void ExpectDroppedFrame() { EXPECT_FALSE(encoded_frame_event_.Wait(100)); } bool WaitForFrame(int64_t timeout_ms) { return encoded_frame_event_.Wait(timeout_ms); } void SetExpectNoFrames() { MutexLock lock(&mutex_); expect_frames_ = false; } int number_of_reconfigurations() const { MutexLock lock(&mutex_); return number_of_reconfigurations_; } int last_min_transmit_bitrate() const { MutexLock lock(&mutex_); return min_transmit_bitrate_bps_; } void SetNumExpectedLayers(size_t num_layers) { MutexLock lock(&mutex_); num_expected_layers_ = num_layers; } int64_t GetLastCaptureTimeMs() const { MutexLock lock(&mutex_); return last_capture_time_ms_; } std::vector GetLastEncodedImageData() { MutexLock lock(&mutex_); return std::move(last_encoded_image_data_); } RTPFragmentationHeader GetLastFragmentation() { MutexLock lock(&mutex_); return std::move(last_fragmentation_); } private: Result OnEncodedImage( const EncodedImage& encoded_image, const CodecSpecificInfo* codec_specific_info, const RTPFragmentationHeader* fragmentation) override { MutexLock lock(&mutex_); EXPECT_TRUE(expect_frames_); last_encoded_image_data_ = std::vector( encoded_image.data(), encoded_image.data() + encoded_image.size()); if (fragmentation) { last_fragmentation_.CopyFrom(*fragmentation); } uint32_t timestamp = encoded_image.Timestamp(); if (last_timestamp_ != timestamp) { num_received_layers_ = 1; } else { ++num_received_layers_; } last_timestamp_ = timestamp; last_capture_time_ms_ = encoded_image.capture_time_ms_; last_width_ = encoded_image._encodedWidth; last_height_ = encoded_image._encodedHeight; last_rotation_ = encoded_image.rotation_; if (num_received_layers_ == num_expected_layers_) { encoded_frame_event_.Set(); } return Result(Result::OK, last_timestamp_); } void OnEncoderConfigurationChanged( std::vector streams, bool is_svc, VideoEncoderConfig::ContentType content_type, int min_transmit_bitrate_bps) override { MutexLock lock(&mutex_); ++number_of_reconfigurations_; min_transmit_bitrate_bps_ = min_transmit_bitrate_bps; } mutable Mutex mutex_; TestEncoder* test_encoder_; rtc::Event encoded_frame_event_; std::vector last_encoded_image_data_; RTPFragmentationHeader last_fragmentation_; uint32_t last_timestamp_ = 0; int64_t last_capture_time_ms_ = 0; uint32_t last_height_ = 0; uint32_t last_width_ = 0; VideoRotation last_rotation_ = kVideoRotation_0; size_t num_expected_layers_ = 1; size_t num_received_layers_ = 0; bool expect_frames_ = true; int number_of_reconfigurations_ = 0; int min_transmit_bitrate_bps_ = 0; }; class VideoBitrateAllocatorProxyFactory : public VideoBitrateAllocatorFactory { public: VideoBitrateAllocatorProxyFactory() : bitrate_allocator_factory_( CreateBuiltinVideoBitrateAllocatorFactory()) {} std::unique_ptr CreateVideoBitrateAllocator( const VideoCodec& codec) override { MutexLock lock(&mutex_); codec_config_ = codec; return bitrate_allocator_factory_->CreateVideoBitrateAllocator(codec); } VideoCodec codec_config() const { MutexLock lock(&mutex_); return codec_config_; } private: std::unique_ptr bitrate_allocator_factory_; mutable Mutex mutex_; VideoCodec codec_config_ RTC_GUARDED_BY(mutex_); }; VideoSendStream::Config video_send_config_; VideoEncoderConfig video_encoder_config_; int codec_width_; int codec_height_; int max_framerate_; rtc::ScopedFakeClock fake_clock_; const std::unique_ptr task_queue_factory_; TestEncoder fake_encoder_; test::VideoEncoderProxyFactory encoder_factory_; VideoBitrateAllocatorProxyFactory bitrate_allocator_factory_; std::unique_ptr stats_proxy_; TestSink sink_; AdaptingFrameForwarder video_source_; std::unique_ptr video_stream_encoder_; }; TEST_F(VideoStreamEncoderTest, EncodeOneFrame) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); rtc::Event frame_destroyed_event; video_source_.IncomingCapturedFrame(CreateFrame(1, &frame_destroyed_event)); WaitForEncodedFrame(1); EXPECT_TRUE(frame_destroyed_event.Wait(kDefaultTimeoutMs)); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DropsFramesBeforeFirstOnBitrateUpdated) { // Dropped since no target bitrate has been set. rtc::Event frame_destroyed_event; // The encoder will cache up to one frame for a short duration. Adding two // frames means that the first frame will be dropped and the second frame will // be sent when the encoder is enabled. video_source_.IncomingCapturedFrame(CreateFrame(1, &frame_destroyed_event)); video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); EXPECT_TRUE(frame_destroyed_event.Wait(kDefaultTimeoutMs)); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); // The pending frame should be received. WaitForEncodedFrame(2); video_source_.IncomingCapturedFrame(CreateFrame(3, nullptr)); WaitForEncodedFrame(3); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DropsFramesWhenRateSetToZero) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(0), DataRate::BitsPerSec(0), DataRate::BitsPerSec(0), 0, 0, 0); // The encoder will cache up to one frame for a short duration. Adding two // frames means that the first frame will be dropped and the second frame will // be sent when the encoder is resumed. video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); video_source_.IncomingCapturedFrame(CreateFrame(3, nullptr)); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); WaitForEncodedFrame(3); video_source_.IncomingCapturedFrame(CreateFrame(4, nullptr)); WaitForEncodedFrame(4); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DropsFramesWithSameOrOldNtpTimestamp) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); // This frame will be dropped since it has the same ntp timestamp. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); WaitForEncodedFrame(2); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DropsFrameAfterStop) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); video_stream_encoder_->Stop(); sink_.SetExpectNoFrames(); rtc::Event frame_destroyed_event; video_source_.IncomingCapturedFrame(CreateFrame(2, &frame_destroyed_event)); EXPECT_TRUE(frame_destroyed_event.Wait(kDefaultTimeoutMs)); } TEST_F(VideoStreamEncoderTest, DropsPendingFramesOnSlowEncode) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); fake_encoder_.BlockNextEncode(); video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); // Here, the encoder thread will be blocked in the TestEncoder waiting for a // call to ContinueEncode. video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); video_source_.IncomingCapturedFrame(CreateFrame(3, nullptr)); fake_encoder_.ContinueEncode(); WaitForEncodedFrame(3); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DropFrameWithFailedI420Conversion) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); rtc::Event frame_destroyed_event; video_source_.IncomingCapturedFrame( CreateFakeNativeFrame(1, &frame_destroyed_event)); ExpectDroppedFrame(); EXPECT_TRUE(frame_destroyed_event.Wait(kDefaultTimeoutMs)); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DropFrameWithFailedI420ConversionWithCrop) { // Use the cropping factory. video_encoder_config_.video_stream_factory = new rtc::RefCountedObject(1, 30); video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config_), kMaxPayloadLength); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); // Capture a frame at codec_width_/codec_height_. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); // The encoder will have been configured once. EXPECT_EQ(1, sink_.number_of_reconfigurations()); EXPECT_EQ(codec_width_, fake_encoder_.codec_config().width); EXPECT_EQ(codec_height_, fake_encoder_.codec_config().height); // Now send in a fake frame that needs to be cropped as the width/height // aren't divisible by 4 (see CreateEncoderStreams above). rtc::Event frame_destroyed_event; video_source_.IncomingCapturedFrame(CreateFakeNativeFrame( 2, &frame_destroyed_event, codec_width_ + 1, codec_height_ + 1)); ExpectDroppedFrame(); EXPECT_TRUE(frame_destroyed_event.Wait(kDefaultTimeoutMs)); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DropsFramesWhenCongestionWindowPushbackSet) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0.5); // The congestion window pushback is set to 0.5, which will drop 1/2 of // frames. Adding two frames means that the first frame will be dropped and // the second frame will be sent to the encoder. video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); video_source_.IncomingCapturedFrame(CreateFrame(3, nullptr)); WaitForEncodedFrame(3); video_source_.IncomingCapturedFrame(CreateFrame(4, nullptr)); video_source_.IncomingCapturedFrame(CreateFrame(5, nullptr)); WaitForEncodedFrame(5); EXPECT_EQ(2u, stats_proxy_->GetStats().frames_dropped_by_congestion_window); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, ConfigureEncoderTriggersOnEncoderConfigurationChanged) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); EXPECT_EQ(0, sink_.number_of_reconfigurations()); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); // The encoder will have been configured once when the first frame is // received. EXPECT_EQ(1, sink_.number_of_reconfigurations()); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config); video_encoder_config.min_transmit_bitrate_bps = 9999; video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); WaitForEncodedFrame(2); EXPECT_EQ(2, sink_.number_of_reconfigurations()); EXPECT_EQ(9999, sink_.last_min_transmit_bitrate()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, FrameResolutionChangeReconfigureEncoder) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); // The encoder will have been configured once. EXPECT_EQ(1, sink_.number_of_reconfigurations()); EXPECT_EQ(codec_width_, fake_encoder_.codec_config().width); EXPECT_EQ(codec_height_, fake_encoder_.codec_config().height); codec_width_ *= 2; codec_height_ *= 2; // Capture a frame with a higher resolution and wait for it to synchronize // with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); WaitForEncodedFrame(2); EXPECT_EQ(codec_width_, fake_encoder_.codec_config().width); EXPECT_EQ(codec_height_, fake_encoder_.codec_config().height); EXPECT_EQ(2, sink_.number_of_reconfigurations()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, EncoderInstanceDestroyedBeforeAnotherInstanceCreated) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config); // Changing the max payload data length recreates encoder. video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength / 2); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); WaitForEncodedFrame(2); EXPECT_EQ(1, encoder_factory_.GetMaxNumberOfSimultaneousEncoderInstances()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, BitrateLimitsChangeReconfigureRateAllocator) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config); video_encoder_config.max_bitrate_bps = kTargetBitrateBps; video_stream_encoder_->SetStartBitrate(kStartBitrateBps); video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(), kMaxPayloadLength); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); // The encoder will have been configured once when the first frame is // received. EXPECT_EQ(1, sink_.number_of_reconfigurations()); EXPECT_EQ(kTargetBitrateBps, bitrate_allocator_factory_.codec_config().maxBitrate * 1000); EXPECT_EQ(kStartBitrateBps, bitrate_allocator_factory_.codec_config().startBitrate * 1000); test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config); //??? video_encoder_config.max_bitrate_bps = kTargetBitrateBps * 2; video_stream_encoder_->SetStartBitrate(kStartBitrateBps * 2); video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); WaitForEncodedFrame(2); EXPECT_EQ(2, sink_.number_of_reconfigurations()); // Bitrate limits have changed - rate allocator should be reconfigured, // encoder should not be reconfigured. EXPECT_EQ(kTargetBitrateBps * 2, bitrate_allocator_factory_.codec_config().maxBitrate * 1000); EXPECT_EQ(kStartBitrateBps * 2, bitrate_allocator_factory_.codec_config().startBitrate * 1000); EXPECT_EQ(1, fake_encoder_.GetNumEncoderInitializations()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, IntersectionOfEncoderAndAppBitrateLimitsUsedWhenBothProvided) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); const uint32_t kMinEncBitrateKbps = 100; const uint32_t kMaxEncBitrateKbps = 1000; const VideoEncoder::ResolutionBitrateLimits encoder_bitrate_limits( /*frame_size_pixels=*/codec_width_ * codec_height_, /*min_start_bitrate_bps=*/0, /*min_bitrate_bps=*/kMinEncBitrateKbps * 1000, /*max_bitrate_bps=*/kMaxEncBitrateKbps * 1000); fake_encoder_.SetResolutionBitrateLimits({encoder_bitrate_limits}); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config); video_encoder_config.max_bitrate_bps = (kMaxEncBitrateKbps + 1) * 1000; video_encoder_config.simulcast_layers[0].min_bitrate_bps = (kMinEncBitrateKbps + 1) * 1000; video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(), kMaxPayloadLength); // When both encoder and app provide bitrate limits, the intersection of // provided sets should be used. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); EXPECT_EQ(kMaxEncBitrateKbps, bitrate_allocator_factory_.codec_config().maxBitrate); EXPECT_EQ(kMinEncBitrateKbps + 1, bitrate_allocator_factory_.codec_config().minBitrate); video_encoder_config.max_bitrate_bps = (kMaxEncBitrateKbps - 1) * 1000; video_encoder_config.simulcast_layers[0].min_bitrate_bps = (kMinEncBitrateKbps - 1) * 1000; video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(), kMaxPayloadLength); video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); WaitForEncodedFrame(2); EXPECT_EQ(kMaxEncBitrateKbps - 1, bitrate_allocator_factory_.codec_config().maxBitrate); EXPECT_EQ(kMinEncBitrateKbps, bitrate_allocator_factory_.codec_config().minBitrate); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, EncoderAndAppLimitsDontIntersectEncoderLimitsIgnored) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); const uint32_t kMinAppBitrateKbps = 100; const uint32_t kMaxAppBitrateKbps = 200; const uint32_t kMinEncBitrateKbps = kMaxAppBitrateKbps + 1; const uint32_t kMaxEncBitrateKbps = kMaxAppBitrateKbps * 2; const VideoEncoder::ResolutionBitrateLimits encoder_bitrate_limits( /*frame_size_pixels=*/codec_width_ * codec_height_, /*min_start_bitrate_bps=*/0, /*min_bitrate_bps=*/kMinEncBitrateKbps * 1000, /*max_bitrate_bps=*/kMaxEncBitrateKbps * 1000); fake_encoder_.SetResolutionBitrateLimits({encoder_bitrate_limits}); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config); video_encoder_config.max_bitrate_bps = kMaxAppBitrateKbps * 1000; video_encoder_config.simulcast_layers[0].min_bitrate_bps = kMinAppBitrateKbps * 1000; video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(), kMaxPayloadLength); video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); EXPECT_EQ(kMaxAppBitrateKbps, bitrate_allocator_factory_.codec_config().maxBitrate); EXPECT_EQ(kMinAppBitrateKbps, bitrate_allocator_factory_.codec_config().minBitrate); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, EncoderRecommendedMaxAndMinBitratesUsedForGivenResolution) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); const VideoEncoder::ResolutionBitrateLimits encoder_bitrate_limits_270p( 480 * 270, 34 * 1000, 12 * 1000, 1234 * 1000); const VideoEncoder::ResolutionBitrateLimits encoder_bitrate_limits_360p( 640 * 360, 43 * 1000, 21 * 1000, 2345 * 1000); fake_encoder_.SetResolutionBitrateLimits( {encoder_bitrate_limits_270p, encoder_bitrate_limits_360p}); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config); video_encoder_config.max_bitrate_bps = 0; video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(), kMaxPayloadLength); // 270p. The bitrate limits recommended by encoder for 270p should be used. video_source_.IncomingCapturedFrame(CreateFrame(1, 480, 270)); WaitForEncodedFrame(1); EXPECT_EQ(static_cast(encoder_bitrate_limits_270p.min_bitrate_bps), bitrate_allocator_factory_.codec_config().minBitrate * 1000); EXPECT_EQ(static_cast(encoder_bitrate_limits_270p.max_bitrate_bps), bitrate_allocator_factory_.codec_config().maxBitrate * 1000); // 360p. The bitrate limits recommended by encoder for 360p should be used. video_source_.IncomingCapturedFrame(CreateFrame(2, 640, 360)); WaitForEncodedFrame(2); EXPECT_EQ(static_cast(encoder_bitrate_limits_360p.min_bitrate_bps), bitrate_allocator_factory_.codec_config().minBitrate * 1000); EXPECT_EQ(static_cast(encoder_bitrate_limits_360p.max_bitrate_bps), bitrate_allocator_factory_.codec_config().maxBitrate * 1000); // Resolution between 270p and 360p. The bitrate limits recommended by // encoder for 360p should be used. video_source_.IncomingCapturedFrame( CreateFrame(3, (640 + 480) / 2, (360 + 270) / 2)); WaitForEncodedFrame(3); EXPECT_EQ(static_cast(encoder_bitrate_limits_360p.min_bitrate_bps), bitrate_allocator_factory_.codec_config().minBitrate * 1000); EXPECT_EQ(static_cast(encoder_bitrate_limits_360p.max_bitrate_bps), bitrate_allocator_factory_.codec_config().maxBitrate * 1000); // Resolution higher than 360p. The caps recommended by encoder should be // ignored. video_source_.IncomingCapturedFrame(CreateFrame(4, 960, 540)); WaitForEncodedFrame(4); EXPECT_NE(static_cast(encoder_bitrate_limits_270p.min_bitrate_bps), bitrate_allocator_factory_.codec_config().minBitrate * 1000); EXPECT_NE(static_cast(encoder_bitrate_limits_270p.max_bitrate_bps), bitrate_allocator_factory_.codec_config().maxBitrate * 1000); EXPECT_NE(static_cast(encoder_bitrate_limits_360p.min_bitrate_bps), bitrate_allocator_factory_.codec_config().minBitrate * 1000); EXPECT_NE(static_cast(encoder_bitrate_limits_360p.max_bitrate_bps), bitrate_allocator_factory_.codec_config().maxBitrate * 1000); // Resolution lower than 270p. The max bitrate limit recommended by encoder // for 270p should be used. video_source_.IncomingCapturedFrame(CreateFrame(5, 320, 180)); WaitForEncodedFrame(5); EXPECT_EQ(static_cast(encoder_bitrate_limits_270p.min_bitrate_bps), bitrate_allocator_factory_.codec_config().minBitrate * 1000); EXPECT_EQ(static_cast(encoder_bitrate_limits_270p.max_bitrate_bps), bitrate_allocator_factory_.codec_config().maxBitrate * 1000); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, EncoderRecommendedMaxBitrateCapsTargetBitrate) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config); video_encoder_config.max_bitrate_bps = 0; video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(), kMaxPayloadLength); // Encode 720p frame to get the default encoder target bitrate. video_source_.IncomingCapturedFrame(CreateFrame(1, 1280, 720)); WaitForEncodedFrame(1); const uint32_t kDefaultTargetBitrateFor720pKbps = bitrate_allocator_factory_.codec_config() .simulcastStream[0] .targetBitrate; // Set the max recommended encoder bitrate to something lower than the default // target bitrate. const VideoEncoder::ResolutionBitrateLimits encoder_bitrate_limits( 1280 * 720, 10 * 1000, 10 * 1000, kDefaultTargetBitrateFor720pKbps / 2 * 1000); fake_encoder_.SetResolutionBitrateLimits({encoder_bitrate_limits}); // Change resolution to trigger encoder reinitialization. video_source_.IncomingCapturedFrame(CreateFrame(2, 640, 360)); WaitForEncodedFrame(2); video_source_.IncomingCapturedFrame(CreateFrame(3, 1280, 720)); WaitForEncodedFrame(3); // Ensure the target bitrate is capped by the max bitrate. EXPECT_EQ(bitrate_allocator_factory_.codec_config().maxBitrate * 1000, static_cast(encoder_bitrate_limits.max_bitrate_bps)); EXPECT_EQ(bitrate_allocator_factory_.codec_config() .simulcastStream[0] .targetBitrate * 1000, static_cast(encoder_bitrate_limits.max_bitrate_bps)); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SwitchSourceDeregisterEncoderAsSink) { EXPECT_TRUE(video_source_.has_sinks()); test::FrameForwarder new_video_source; video_stream_encoder_->SetSource( &new_video_source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); EXPECT_FALSE(video_source_.has_sinks()); EXPECT_TRUE(new_video_source.has_sinks()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SinkWantsRotationApplied) { EXPECT_FALSE(video_source_.sink_wants().rotation_applied); video_stream_encoder_->SetSink(&sink_, true /*rotation_applied*/); EXPECT_TRUE(video_source_.sink_wants().rotation_applied); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SinkWantsResolutionAlignment) { constexpr int kRequestedResolutionAlignment = 7; video_source_.set_adaptation_enabled(true); fake_encoder_.SetRequestedResolutionAlignment(kRequestedResolutionAlignment); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); // On the 1st frame, we should have initialized the encoder and // asked for its resolution requirements. video_source_.IncomingCapturedFrame( CreateFrame(1, codec_width_, codec_height_)); WaitForEncodedFrame(1); EXPECT_EQ(video_source_.sink_wants().resolution_alignment, kRequestedResolutionAlignment); // On the 2nd frame, we should be receiving a correctly aligned resolution. // (It's up the to the encoder to potentially drop the previous frame, // to avoid coding back-to-back keyframes.) video_source_.IncomingCapturedFrame( CreateFrame(2, codec_width_, codec_height_)); WaitForEncodedFrame(2); sink_.CheckLastFrameSizeIsMultipleOf(kRequestedResolutionAlignment); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, TestCpuDowngrades_BalancedMode) { const int kFramerateFps = 30; const int kWidth = 1280; const int kHeight = 720; // We rely on the automatic resolution adaptation, but we handle framerate // adaptation manually by mocking the stats proxy. video_source_.set_adaptation_enabled(true); // Enable BALANCED preference, no initial limitation. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); video_stream_encoder_->SetSource(&video_source_, webrtc::DegradationPreference::BALANCED); EXPECT_THAT(video_source_.sink_wants(), UnlimitedSinkWants()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Adapt down as far as possible. rtc::VideoSinkWants last_wants; int64_t t = 1; int loop_count = 0; do { ++loop_count; last_wants = video_source_.sink_wants(); // Simulate the framerate we've been asked to adapt to. const int fps = std::min(kFramerateFps, last_wants.max_framerate_fps); const int frame_interval_ms = rtc::kNumMillisecsPerSec / fps; VideoSendStream::Stats mock_stats = stats_proxy_->GetStats(); mock_stats.input_frame_rate = fps; stats_proxy_->SetMockStats(mock_stats); video_source_.IncomingCapturedFrame(CreateFrame(t, kWidth, kHeight)); sink_.WaitForEncodedFrame(t); t += frame_interval_ms; video_stream_encoder_->TriggerCpuOveruse(); EXPECT_THAT( video_source_.sink_wants(), FpsInRangeForPixelsInBalanced(*video_source_.last_sent_width() * *video_source_.last_sent_height())); } while (video_source_.sink_wants().max_pixel_count < last_wants.max_pixel_count || video_source_.sink_wants().max_framerate_fps < last_wants.max_framerate_fps); // Verify that we've adapted all the way down. stats_proxy_->ResetMockStats(); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(loop_count - 1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(kMinPixelsPerFrame, *video_source_.last_sent_width() * *video_source_.last_sent_height()); EXPECT_EQ(kMinBalancedFramerateFps, video_source_.sink_wants().max_framerate_fps); // Adapt back up the same number of times we adapted down. for (int i = 0; i < loop_count - 1; ++i) { last_wants = video_source_.sink_wants(); // Simulate the framerate we've been asked to adapt to. const int fps = std::min(kFramerateFps, last_wants.max_framerate_fps); const int frame_interval_ms = rtc::kNumMillisecsPerSec / fps; VideoSendStream::Stats mock_stats = stats_proxy_->GetStats(); mock_stats.input_frame_rate = fps; stats_proxy_->SetMockStats(mock_stats); video_source_.IncomingCapturedFrame(CreateFrame(t, kWidth, kHeight)); sink_.WaitForEncodedFrame(t); t += frame_interval_ms; video_stream_encoder_->TriggerCpuUnderuse(); EXPECT_THAT( video_source_.sink_wants(), FpsInRangeForPixelsInBalanced(*video_source_.last_sent_width() * *video_source_.last_sent_height())); EXPECT_TRUE(video_source_.sink_wants().max_pixel_count > last_wants.max_pixel_count || video_source_.sink_wants().max_framerate_fps > last_wants.max_framerate_fps); } EXPECT_THAT(video_source_.sink_wants(), FpsMaxResolutionMax()); stats_proxy_->ResetMockStats(); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ((loop_count - 1) * 2, stats_proxy_->GetStats().number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SinkWantsNotChangedByResourceLimitedBeforeDegradationPreferenceChange) { video_stream_encoder_->OnBitrateUpdated( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); EXPECT_THAT(video_source_.sink_wants(), UnlimitedSinkWants()); const int kFrameWidth = 1280; const int kFrameHeight = 720; int64_t ntp_time = kFrameIntervalMs; // Force an input frame rate to be available, or the adaptation call won't // know what framerate to adapt form. const int kInputFps = 30; VideoSendStream::Stats stats = stats_proxy_->GetStats(); stats.input_frame_rate = kInputFps; stats_proxy_->SetMockStats(stats); video_source_.set_adaptation_enabled(true); video_stream_encoder_->SetSource( &video_source_, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); EXPECT_THAT(video_source_.sink_wants(), UnlimitedSinkWants()); video_source_.IncomingCapturedFrame( CreateFrame(ntp_time, kFrameWidth, kFrameHeight)); sink_.WaitForEncodedFrame(ntp_time); ntp_time += kFrameIntervalMs; // Trigger CPU overuse. video_stream_encoder_->TriggerCpuOveruse(); video_source_.IncomingCapturedFrame( CreateFrame(ntp_time, kFrameWidth, kFrameHeight)); sink_.WaitForEncodedFrame(ntp_time); ntp_time += kFrameIntervalMs; EXPECT_FALSE(video_source_.sink_wants().target_pixel_count); EXPECT_EQ(std::numeric_limits::max(), video_source_.sink_wants().max_pixel_count); // Some framerate constraint should be set. int restricted_fps = video_source_.sink_wants().max_framerate_fps; EXPECT_LT(restricted_fps, kInputFps); video_source_.IncomingCapturedFrame( CreateFrame(ntp_time, kFrameWidth, kFrameHeight)); sink_.WaitForEncodedFrame(ntp_time); ntp_time += 100; video_stream_encoder_->SetSourceAndWaitForRestrictionsUpdated( &video_source_, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); // Give the encoder queue time to process the change in degradation preference // by waiting for an encoded frame. video_source_.IncomingCapturedFrame( CreateFrame(ntp_time, kFrameWidth, kFrameHeight)); sink_.WaitForEncodedFrame(ntp_time); ntp_time += kFrameIntervalMs; video_stream_encoder_->TriggerQualityLow(); video_source_.IncomingCapturedFrame( CreateFrame(ntp_time, kFrameWidth, kFrameHeight)); sink_.WaitForEncodedFrame(ntp_time); ntp_time += kFrameIntervalMs; // Some resolution constraint should be set. EXPECT_FALSE(video_source_.sink_wants().target_pixel_count); EXPECT_LT(video_source_.sink_wants().max_pixel_count, kFrameWidth * kFrameHeight); EXPECT_EQ(video_source_.sink_wants().max_framerate_fps, kInputFps); int pixel_count = video_source_.sink_wants().max_pixel_count; // Triggering a CPU underuse should not change the sink wants since it has // not been overused for resolution since we changed degradation preference. video_stream_encoder_->TriggerCpuUnderuse(); video_source_.IncomingCapturedFrame( CreateFrame(ntp_time, kFrameWidth, kFrameHeight)); sink_.WaitForEncodedFrame(ntp_time); ntp_time += kFrameIntervalMs; EXPECT_EQ(video_source_.sink_wants().max_pixel_count, pixel_count); EXPECT_EQ(video_source_.sink_wants().max_framerate_fps, kInputFps); // Change the degradation preference back. CPU underuse should not adapt since // QP is most limited. video_stream_encoder_->SetSourceAndWaitForRestrictionsUpdated( &video_source_, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); video_source_.IncomingCapturedFrame( CreateFrame(ntp_time, kFrameWidth, kFrameHeight)); sink_.WaitForEncodedFrame(ntp_time); ntp_time += 100; // Resolution adaptations is gone after changing degradation preference. EXPECT_FALSE(video_source_.sink_wants().target_pixel_count); EXPECT_EQ(std::numeric_limits::max(), video_source_.sink_wants().max_pixel_count); // The fps adaptation from above is now back. EXPECT_EQ(video_source_.sink_wants().max_framerate_fps, restricted_fps); // Trigger CPU underuse. video_stream_encoder_->TriggerCpuUnderuse(); video_source_.IncomingCapturedFrame( CreateFrame(ntp_time, kFrameWidth, kFrameHeight)); sink_.WaitForEncodedFrame(ntp_time); ntp_time += kFrameIntervalMs; EXPECT_EQ(video_source_.sink_wants().max_framerate_fps, restricted_fps); // Trigger QP underuse, fps should return to normal. video_stream_encoder_->TriggerQualityHigh(); video_source_.IncomingCapturedFrame( CreateFrame(ntp_time, kFrameWidth, kFrameHeight)); sink_.WaitForEncodedFrame(ntp_time); ntp_time += kFrameIntervalMs; EXPECT_THAT(video_source_.sink_wants(), FpsMax()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SinkWantsStoredByDegradationPreference) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); EXPECT_THAT(video_source_.sink_wants(), UnlimitedSinkWants()); const int kFrameWidth = 1280; const int kFrameHeight = 720; int64_t frame_timestamp = 1; video_source_.IncomingCapturedFrame( CreateFrame(frame_timestamp, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(frame_timestamp); frame_timestamp += kFrameIntervalMs; // Trigger CPU overuse. video_stream_encoder_->TriggerCpuOveruse(); video_source_.IncomingCapturedFrame( CreateFrame(frame_timestamp, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(frame_timestamp); frame_timestamp += kFrameIntervalMs; // Default degradation preference is maintain-framerate, so will lower max // wanted resolution. EXPECT_FALSE(video_source_.sink_wants().target_pixel_count); EXPECT_LT(video_source_.sink_wants().max_pixel_count, kFrameWidth * kFrameHeight); EXPECT_EQ(kDefaultFramerate, video_source_.sink_wants().max_framerate_fps); // Set new source, switch to maintain-resolution. test::FrameForwarder new_video_source; video_stream_encoder_->SetSourceAndWaitForRestrictionsUpdated( &new_video_source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); // Give the encoder queue time to process the change in degradation preference // by waiting for an encoded frame. new_video_source.IncomingCapturedFrame( CreateFrame(frame_timestamp, kFrameWidth, kFrameWidth)); sink_.WaitForEncodedFrame(frame_timestamp); frame_timestamp += kFrameIntervalMs; // Initially no degradation registered. EXPECT_THAT(new_video_source.sink_wants(), FpsMaxResolutionMax()); // Force an input frame rate to be available, or the adaptation call won't // know what framerate to adapt form. const int kInputFps = 30; VideoSendStream::Stats stats = stats_proxy_->GetStats(); stats.input_frame_rate = kInputFps; stats_proxy_->SetMockStats(stats); video_stream_encoder_->TriggerCpuOveruse(); new_video_source.IncomingCapturedFrame( CreateFrame(frame_timestamp, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(frame_timestamp); frame_timestamp += kFrameIntervalMs; // Some framerate constraint should be set. EXPECT_FALSE(new_video_source.sink_wants().target_pixel_count); EXPECT_EQ(std::numeric_limits::max(), new_video_source.sink_wants().max_pixel_count); EXPECT_LT(new_video_source.sink_wants().max_framerate_fps, kInputFps); // Turn off degradation completely. video_stream_encoder_->SetSourceAndWaitForRestrictionsUpdated( &new_video_source, webrtc::DegradationPreference::DISABLED); // Give the encoder queue time to process the change in degradation preference // by waiting for an encoded frame. new_video_source.IncomingCapturedFrame( CreateFrame(frame_timestamp, kFrameWidth, kFrameWidth)); sink_.WaitForEncodedFrame(frame_timestamp); frame_timestamp += kFrameIntervalMs; EXPECT_THAT(new_video_source.sink_wants(), FpsMaxResolutionMax()); video_stream_encoder_->TriggerCpuOveruse(); new_video_source.IncomingCapturedFrame( CreateFrame(frame_timestamp, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(frame_timestamp); frame_timestamp += kFrameIntervalMs; // Still no degradation. EXPECT_THAT(new_video_source.sink_wants(), FpsMaxResolutionMax()); // Calling SetSource with resolution scaling enabled apply the old SinkWants. video_stream_encoder_->SetSourceAndWaitForRestrictionsUpdated( &new_video_source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); // Give the encoder queue time to process the change in degradation preference // by waiting for an encoded frame. new_video_source.IncomingCapturedFrame( CreateFrame(frame_timestamp, kFrameWidth, kFrameWidth)); sink_.WaitForEncodedFrame(frame_timestamp); frame_timestamp += kFrameIntervalMs; EXPECT_LT(new_video_source.sink_wants().max_pixel_count, kFrameWidth * kFrameHeight); EXPECT_FALSE(new_video_source.sink_wants().target_pixel_count); EXPECT_EQ(kDefaultFramerate, new_video_source.sink_wants().max_framerate_fps); // Calling SetSource with framerate scaling enabled apply the old SinkWants. video_stream_encoder_->SetSourceAndWaitForRestrictionsUpdated( &new_video_source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); // Give the encoder queue time to process the change in degradation preference // by waiting for an encoded frame. new_video_source.IncomingCapturedFrame( CreateFrame(frame_timestamp, kFrameWidth, kFrameWidth)); sink_.WaitForEncodedFrame(frame_timestamp); frame_timestamp += kFrameIntervalMs; EXPECT_FALSE(new_video_source.sink_wants().target_pixel_count); EXPECT_EQ(std::numeric_limits::max(), new_video_source.sink_wants().max_pixel_count); EXPECT_LT(new_video_source.sink_wants().max_framerate_fps, kInputFps); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, StatsTracksQualityAdaptationStats) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); const int kWidth = 1280; const int kHeight = 720; video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(1); VideoSendStream::Stats stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_EQ(0, stats.number_of_quality_adapt_changes); // Trigger adapt down. video_stream_encoder_->TriggerQualityLow(); video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); WaitForEncodedFrame(2); stats = stats_proxy_->GetStats(); EXPECT_TRUE(stats.bw_limited_resolution); EXPECT_EQ(1, stats.number_of_quality_adapt_changes); // Trigger adapt up. video_stream_encoder_->TriggerQualityHigh(); video_source_.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight)); WaitForEncodedFrame(3); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_EQ(2, stats.number_of_quality_adapt_changes); EXPECT_EQ(0, stats.number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, StatsTracksCpuAdaptationStats) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); const int kWidth = 1280; const int kHeight = 720; video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(1); VideoSendStream::Stats stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_EQ(0, stats.number_of_cpu_adapt_changes); // Trigger CPU overuse. video_stream_encoder_->TriggerCpuOveruse(); video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); WaitForEncodedFrame(2); stats = stats_proxy_->GetStats(); EXPECT_TRUE(stats.cpu_limited_resolution); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Trigger CPU normal use. video_stream_encoder_->TriggerCpuUnderuse(); video_source_.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight)); WaitForEncodedFrame(3); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_EQ(2, stats.number_of_cpu_adapt_changes); EXPECT_EQ(0, stats.number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SwitchingSourceKeepsCpuAdaptation) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); const int kWidth = 1280; const int kHeight = 720; video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(1); VideoSendStream::Stats stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_EQ(0, stats.number_of_cpu_adapt_changes); // Trigger CPU overuse. video_stream_encoder_->TriggerCpuOveruse(); video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); WaitForEncodedFrame(2); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_TRUE(stats.cpu_limited_resolution); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Set new source with adaptation still enabled. test::FrameForwarder new_video_source; video_stream_encoder_->SetSource( &new_video_source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); new_video_source.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight)); WaitForEncodedFrame(3); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_TRUE(stats.cpu_limited_resolution); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Set adaptation disabled. video_stream_encoder_->SetSource(&new_video_source, webrtc::DegradationPreference::DISABLED); new_video_source.IncomingCapturedFrame(CreateFrame(4, kWidth, kHeight)); WaitForEncodedFrame(4); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Set adaptation back to enabled. video_stream_encoder_->SetSource( &new_video_source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); new_video_source.IncomingCapturedFrame(CreateFrame(5, kWidth, kHeight)); WaitForEncodedFrame(5); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_TRUE(stats.cpu_limited_resolution); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Trigger CPU normal use. video_stream_encoder_->TriggerCpuUnderuse(); new_video_source.IncomingCapturedFrame(CreateFrame(6, kWidth, kHeight)); WaitForEncodedFrame(6); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_EQ(2, stats.number_of_cpu_adapt_changes); EXPECT_EQ(0, stats.number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SwitchingSourceKeepsQualityAdaptation) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); const int kWidth = 1280; const int kHeight = 720; video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(1); VideoSendStream::Stats stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_FALSE(stats.bw_limited_framerate); EXPECT_EQ(0, stats.number_of_quality_adapt_changes); // Set new source with adaptation still enabled. test::FrameForwarder new_video_source; video_stream_encoder_->SetSource(&new_video_source, webrtc::DegradationPreference::BALANCED); new_video_source.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); WaitForEncodedFrame(2); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_FALSE(stats.bw_limited_framerate); EXPECT_EQ(0, stats.number_of_quality_adapt_changes); // Trigger adapt down. video_stream_encoder_->TriggerQualityLow(); new_video_source.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight)); WaitForEncodedFrame(3); stats = stats_proxy_->GetStats(); EXPECT_TRUE(stats.bw_limited_resolution); EXPECT_FALSE(stats.bw_limited_framerate); EXPECT_EQ(1, stats.number_of_quality_adapt_changes); // Set new source with adaptation still enabled. video_stream_encoder_->SetSource(&new_video_source, webrtc::DegradationPreference::BALANCED); new_video_source.IncomingCapturedFrame(CreateFrame(4, kWidth, kHeight)); WaitForEncodedFrame(4); stats = stats_proxy_->GetStats(); EXPECT_TRUE(stats.bw_limited_resolution); EXPECT_FALSE(stats.bw_limited_framerate); EXPECT_EQ(1, stats.number_of_quality_adapt_changes); // Disable resolution scaling. video_stream_encoder_->SetSource( &new_video_source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); new_video_source.IncomingCapturedFrame(CreateFrame(5, kWidth, kHeight)); WaitForEncodedFrame(5); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_FALSE(stats.bw_limited_framerate); EXPECT_EQ(1, stats.number_of_quality_adapt_changes); EXPECT_EQ(0, stats.number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, QualityAdaptationStatsAreResetWhenScalerIsDisabled) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); const int kWidth = 1280; const int kHeight = 720; int64_t timestamp_ms = kFrameIntervalMs; video_source_.set_adaptation_enabled(true); video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt down. video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger overuse. video_stream_encoder_->TriggerCpuOveruse(); timestamp_ms += kFrameIntervalMs; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Leave source unchanged, but disable quality scaler. fake_encoder_.SetQualityScaling(false); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config); // Make format different, to force recreation of encoder. video_encoder_config.video_format.parameters["foo"] = "foo"; video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength); timestamp_ms += kFrameIntervalMs; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, StatsTracksCpuAdaptationStatsWhenSwitchingSource_Balanced) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); const int kWidth = 1280; const int kHeight = 720; int sequence = 1; // Enable BALANCED preference, no initial limitation. test::FrameForwarder source; video_stream_encoder_->SetSource(&source, webrtc::DegradationPreference::BALANCED); source.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); VideoSendStream::Stats stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(0, stats.number_of_cpu_adapt_changes); // Trigger CPU overuse, should now adapt down. video_stream_encoder_->TriggerCpuOveruse(); source.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Set new degradation preference should clear restrictions since we changed // from BALANCED. video_stream_encoder_->SetSourceAndWaitForRestrictionsUpdated( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); source.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Force an input frame rate to be available, or the adaptation call won't // know what framerate to adapt from. VideoSendStream::Stats mock_stats = stats_proxy_->GetStats(); mock_stats.input_frame_rate = 30; stats_proxy_->SetMockStats(mock_stats); video_stream_encoder_->TriggerCpuOveruse(); stats_proxy_->ResetMockStats(); source.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); // We have now adapted once. stats = stats_proxy_->GetStats(); EXPECT_EQ(2, stats.number_of_cpu_adapt_changes); // Back to BALANCED, should clear the restrictions again. video_stream_encoder_->SetSourceAndWaitForRestrictionsUpdated( &source, webrtc::DegradationPreference::BALANCED); source.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(2, stats.number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, StatsTracksCpuAdaptationStatsWhenSwitchingSource) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); const int kWidth = 1280; const int kHeight = 720; int sequence = 1; video_source_.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); VideoSendStream::Stats stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(0, stats.number_of_cpu_adapt_changes); // Trigger CPU overuse, should now adapt down. video_stream_encoder_->TriggerCpuOveruse(); video_source_.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_TRUE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Set new source with adaptation still enabled. test::FrameForwarder new_video_source; video_stream_encoder_->SetSource( &new_video_source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); new_video_source.IncomingCapturedFrame( CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_TRUE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Set cpu adaptation by frame dropping. video_stream_encoder_->SetSource( &new_video_source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); new_video_source.IncomingCapturedFrame( CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); // Not adapted at first. EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Force an input frame rate to be available, or the adaptation call won't // know what framerate to adapt from. VideoSendStream::Stats mock_stats = stats_proxy_->GetStats(); mock_stats.input_frame_rate = 30; stats_proxy_->SetMockStats(mock_stats); video_stream_encoder_->TriggerCpuOveruse(); stats_proxy_->ResetMockStats(); new_video_source.IncomingCapturedFrame( CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); // Framerate now adapted. stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_TRUE(stats.cpu_limited_framerate); EXPECT_EQ(2, stats.number_of_cpu_adapt_changes); // Disable CPU adaptation. video_stream_encoder_->SetSource(&new_video_source, webrtc::DegradationPreference::DISABLED); new_video_source.IncomingCapturedFrame( CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(2, stats.number_of_cpu_adapt_changes); // Try to trigger overuse. Should not succeed. stats_proxy_->SetMockStats(mock_stats); video_stream_encoder_->TriggerCpuOveruse(); stats_proxy_->ResetMockStats(); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(2, stats.number_of_cpu_adapt_changes); // Switch back the source with resolution adaptation enabled. video_stream_encoder_->SetSource( &video_source_, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); video_source_.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_TRUE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(2, stats.number_of_cpu_adapt_changes); // Trigger CPU normal usage. video_stream_encoder_->TriggerCpuUnderuse(); video_source_.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(3, stats.number_of_cpu_adapt_changes); // Back to the source with adaptation off, set it back to maintain-resolution. video_stream_encoder_->SetSource( &new_video_source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); new_video_source.IncomingCapturedFrame( CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); // Disabled, since we previously switched the source to disabled. EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_TRUE(stats.cpu_limited_framerate); EXPECT_EQ(3, stats.number_of_cpu_adapt_changes); // Trigger CPU normal usage. video_stream_encoder_->TriggerCpuUnderuse(); new_video_source.IncomingCapturedFrame( CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(4, stats.number_of_cpu_adapt_changes); EXPECT_EQ(0, stats.number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, ScalingUpAndDownDoesNothingWithMaintainResolution) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); // Expect no scaling to begin with. EXPECT_THAT(video_source_.sink_wants(), UnlimitedSinkWants()); video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(1); // Trigger scale down. video_stream_encoder_->TriggerQualityLow(); video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); WaitForEncodedFrame(2); // Expect a scale down. EXPECT_TRUE(video_source_.sink_wants().max_pixel_count); EXPECT_LT(video_source_.sink_wants().max_pixel_count, kWidth * kHeight); // Set resolution scaling disabled. test::FrameForwarder new_video_source; video_stream_encoder_->SetSource( &new_video_source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); // Trigger scale down. video_stream_encoder_->TriggerQualityLow(); new_video_source.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight)); WaitForEncodedFrame(3); // Expect no scaling. EXPECT_EQ(std::numeric_limits::max(), new_video_source.sink_wants().max_pixel_count); // Trigger scale up. video_stream_encoder_->TriggerQualityHigh(); new_video_source.IncomingCapturedFrame(CreateFrame(4, kWidth, kHeight)); WaitForEncodedFrame(4); // Expect nothing to change, still no scaling. EXPECT_EQ(std::numeric_limits::max(), new_video_source.sink_wants().max_pixel_count); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SkipsSameAdaptDownRequest_MaintainFramerateMode) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); // Enable MAINTAIN_FRAMERATE preference, no initial limitation. test::FrameForwarder source; video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(1); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt down, expect scaled down resolution. video_stream_encoder_->TriggerCpuOveruse(); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMatches(Lt(kWidth * kHeight))); const int kLastMaxPixelCount = source.sink_wants().max_pixel_count; EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt down for same input resolution, expect no change. video_stream_encoder_->TriggerCpuOveruse(); EXPECT_EQ(kLastMaxPixelCount, source.sink_wants().max_pixel_count); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SkipsSameOrLargerAdaptDownRequest_BalancedMode) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); // Enable BALANCED preference, no initial limitation. test::FrameForwarder source; video_stream_encoder_->SetSource(&source, webrtc::DegradationPreference::BALANCED); source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); sink_.WaitForEncodedFrame(1); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); // Trigger adapt down, expect scaled down resolution. video_stream_encoder_->TriggerQualityLow(); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMatches(Lt(kWidth * kHeight))); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); const int kLastMaxPixelCount = source.sink_wants().max_pixel_count; // Trigger adapt down for same input resolution, expect no change. source.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); sink_.WaitForEncodedFrame(2); video_stream_encoder_->TriggerQualityLow(); EXPECT_EQ(kLastMaxPixelCount, source.sink_wants().max_pixel_count); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down for larger input resolution, expect no change. source.IncomingCapturedFrame(CreateFrame(3, kWidth + 1, kHeight + 1)); sink_.WaitForEncodedFrame(3); video_stream_encoder_->TriggerQualityLow(); EXPECT_EQ(kLastMaxPixelCount, source.sink_wants().max_pixel_count); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, NoChangeForInitialNormalUsage_MaintainFramerateMode) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); // Enable MAINTAIN_FRAMERATE preference, no initial limitation. test::FrameForwarder source; video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt up, expect no change. video_stream_encoder_->TriggerCpuUnderuse(); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, NoChangeForInitialNormalUsage_MaintainResolutionMode) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); // Enable MAINTAIN_RESOLUTION preference, no initial limitation. test::FrameForwarder source; video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt up, expect no change. video_stream_encoder_->TriggerCpuUnderuse(); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, NoChangeForInitialNormalUsage_BalancedMode) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); // Enable BALANCED preference, no initial limitation. test::FrameForwarder source; video_stream_encoder_->SetSource(&source, webrtc::DegradationPreference::BALANCED); source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); sink_.WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no change. video_stream_encoder_->TriggerQualityHigh(); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, NoChangeForInitialNormalUsage_DisabledMode) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); // Enable DISABLED preference, no initial limitation. test::FrameForwarder source; video_stream_encoder_->SetSource(&source, webrtc::DegradationPreference::DISABLED); source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); sink_.WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no change. video_stream_encoder_->TriggerQualityHigh(); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdaptsResolutionForLowQuality_MaintainFramerateMode) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); // Enable MAINTAIN_FRAMERATE preference, no initial limitation. AdaptingFrameForwarder source; source.set_adaptation_enabled(true); video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(1); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down resolution. video_stream_encoder_->TriggerQualityLow(); source.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); WaitForEncodedFrame(2); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMatches(Lt(kWidth * kHeight))); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no restriction. video_stream_encoder_->TriggerQualityHigh(); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdaptsFramerateForLowQuality_MaintainResolutionMode) { const int kWidth = 1280; const int kHeight = 720; const int kInputFps = 30; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); VideoSendStream::Stats stats = stats_proxy_->GetStats(); stats.input_frame_rate = kInputFps; stats_proxy_->SetMockStats(stats); // Expect no scaling to begin with (preference: MAINTAIN_FRAMERATE). video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); sink_.WaitForEncodedFrame(1); EXPECT_THAT(video_source_.sink_wants(), FpsMaxResolutionMax()); // Trigger adapt down, expect scaled down resolution. video_stream_encoder_->TriggerQualityLow(); video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); sink_.WaitForEncodedFrame(2); EXPECT_THAT(video_source_.sink_wants(), FpsMaxResolutionMatches(Lt(kWidth * kHeight))); // Enable MAINTAIN_RESOLUTION preference. test::FrameForwarder new_video_source; video_stream_encoder_->SetSourceAndWaitForRestrictionsUpdated( &new_video_source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); // Give the encoder queue time to process the change in degradation preference // by waiting for an encoded frame. new_video_source.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight)); sink_.WaitForEncodedFrame(3); EXPECT_THAT(new_video_source.sink_wants(), FpsMaxResolutionMax()); // Trigger adapt down, expect reduced framerate. video_stream_encoder_->TriggerQualityLow(); new_video_source.IncomingCapturedFrame(CreateFrame(4, kWidth, kHeight)); sink_.WaitForEncodedFrame(4); EXPECT_THAT(new_video_source.sink_wants(), FpsMatchesResolutionMax(Lt(kInputFps))); // Trigger adapt up, expect no restriction. video_stream_encoder_->TriggerQualityHigh(); EXPECT_THAT(new_video_source.sink_wants(), FpsMaxResolutionMax()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DoesNotScaleBelowSetResolutionLimit) { const int kWidth = 1280; const int kHeight = 720; const size_t kNumFrames = 10; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); // Enable adapter, expected input resolutions when downscaling: // 1280x720 -> 960x540 -> 640x360 -> 480x270 -> 320x180 (kMinPixelsPerFrame) video_source_.set_adaptation_enabled(true); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); int downscales = 0; for (size_t i = 1; i <= kNumFrames; i++) { video_source_.IncomingCapturedFrame( CreateFrame(i * kFrameIntervalMs, kWidth, kHeight)); WaitForEncodedFrame(i * kFrameIntervalMs); // Trigger scale down. rtc::VideoSinkWants last_wants = video_source_.sink_wants(); video_stream_encoder_->TriggerQualityLow(); EXPECT_GE(video_source_.sink_wants().max_pixel_count, kMinPixelsPerFrame); if (video_source_.sink_wants().max_pixel_count < last_wants.max_pixel_count) ++downscales; EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(downscales, stats_proxy_->GetStats().number_of_quality_adapt_changes); EXPECT_GT(downscales, 0); } video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdaptsResolutionUpAndDownTwiceOnOveruse_MaintainFramerateMode) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); // Enable MAINTAIN_FRAMERATE preference, no initial limitation. AdaptingFrameForwarder source; source.set_adaptation_enabled(true); video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); int64_t timestamp_ms = kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt down, expect scaled down resolution. video_stream_encoder_->TriggerCpuOveruse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMatches(Lt(kWidth * kHeight))); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt up, expect no restriction. video_stream_encoder_->TriggerCpuUnderuse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt down, expect scaled down resolution. video_stream_encoder_->TriggerCpuOveruse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMatches(Lt(kWidth * kHeight))); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt up, expect no restriction. video_stream_encoder_->TriggerCpuUnderuse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); sink_.WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdaptsResolutionUpAndDownTwiceForLowQuality_BalancedMode_NoFpsLimit) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); // Enable BALANCED preference, no initial limitation. AdaptingFrameForwarder source; source.set_adaptation_enabled(true); video_stream_encoder_->SetSource(&source, webrtc::DegradationPreference::BALANCED); int64_t timestamp_ms = kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); sink_.WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down resolution. video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); sink_.WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMatches(Lt(kWidth * kHeight))); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no restriction. video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); sink_.WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down resolution. video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); sink_.WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMatches(Lt(kWidth * kHeight))); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no restriction. video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); sink_.WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdaptUpIfBwEstimateIsHigherThanMinBitrate) { fake_encoder_.SetResolutionBitrateLimits( {kEncoderBitrateLimits540p, kEncoderBitrateLimits720p}); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kEncoderBitrateLimits720p.min_start_bitrate_bps), DataRate::BitsPerSec(kEncoderBitrateLimits720p.min_start_bitrate_bps), DataRate::BitsPerSec(kEncoderBitrateLimits720p.min_start_bitrate_bps), 0, 0, 0); // Enable MAINTAIN_FRAMERATE preference, no initial limitation. AdaptingFrameForwarder source; source.set_adaptation_enabled(true); video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); // Insert 720p frame. int64_t timestamp_ms = kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, 1280, 720)); WaitForEncodedFrame(1280, 720); // Reduce bitrate and trigger adapt down. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kEncoderBitrateLimits540p.min_start_bitrate_bps), DataRate::BitsPerSec(kEncoderBitrateLimits540p.min_start_bitrate_bps), DataRate::BitsPerSec(kEncoderBitrateLimits540p.min_start_bitrate_bps), 0, 0, 0); video_stream_encoder_->TriggerQualityLow(); // Insert 720p frame. It should be downscaled and encoded. timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, 1280, 720)); WaitForEncodedFrame(960, 540); // Trigger adapt up. Higher resolution should not be requested duo to lack // of bitrate. video_stream_encoder_->TriggerQualityHigh(); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMatches(Lt(1280 * 720))); // Increase bitrate. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kEncoderBitrateLimits720p.min_start_bitrate_bps), DataRate::BitsPerSec(kEncoderBitrateLimits720p.min_start_bitrate_bps), DataRate::BitsPerSec(kEncoderBitrateLimits720p.min_start_bitrate_bps), 0, 0, 0); // Trigger adapt up. Higher resolution should be requested. video_stream_encoder_->TriggerQualityHigh(); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DropFirstFramesIfBwEstimateIsTooLow) { fake_encoder_.SetResolutionBitrateLimits( {kEncoderBitrateLimits540p, kEncoderBitrateLimits720p}); // Set bitrate equal to min bitrate of 540p. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kEncoderBitrateLimits540p.min_start_bitrate_bps), DataRate::BitsPerSec(kEncoderBitrateLimits540p.min_start_bitrate_bps), DataRate::BitsPerSec(kEncoderBitrateLimits540p.min_start_bitrate_bps), 0, 0, 0); // Enable MAINTAIN_FRAMERATE preference, no initial limitation. AdaptingFrameForwarder source; source.set_adaptation_enabled(true); video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); // Insert 720p frame. It should be dropped and lower resolution should be // requested. int64_t timestamp_ms = kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, 1280, 720)); ExpectDroppedFrame(); EXPECT_TRUE_WAIT(source.sink_wants().max_pixel_count < 1280 * 720, 5000); // Insert 720p frame. It should be downscaled and encoded. timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, 1280, 720)); WaitForEncodedFrame(960, 540); video_stream_encoder_->Stop(); } class BalancedDegradationTest : public VideoStreamEncoderTest { protected: void SetupTest() { // Reset encoder for field trials to take effect. ConfigureEncoder(video_encoder_config_.Copy()); OnBitrateUpdated(kTargetBitrateBps); // Enable BALANCED preference. source_.set_adaptation_enabled(true); video_stream_encoder_->SetSource(&source_, DegradationPreference::BALANCED); } void OnBitrateUpdated(int bitrate_bps) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(bitrate_bps), DataRate::BitsPerSec(bitrate_bps), DataRate::BitsPerSec(bitrate_bps), 0, 0, 0); } void InsertFrame() { timestamp_ms_ += kFrameIntervalMs; source_.IncomingCapturedFrame(CreateFrame(timestamp_ms_, kWidth, kHeight)); } void InsertFrameAndWaitForEncoded() { InsertFrame(); sink_.WaitForEncodedFrame(timestamp_ms_); } const int kWidth = 640; // pixels:640x360=230400 const int kHeight = 360; const int64_t kFrameIntervalMs = 150; // Use low fps to not drop any frame. int64_t timestamp_ms_ = 0; AdaptingFrameForwarder source_; }; TEST_F(BalancedDegradationTest, AdaptDownReturnsFalseIfFpsDiffLtThreshold) { test::ScopedFieldTrials field_trials( "WebRTC-Video-BalancedDegradationSettings/" "pixels:57600|129600|230400,fps:7|10|24,fps_diff:1|1|1/"); SetupTest(); // Force input frame rate. const int kInputFps = 24; VideoSendStream::Stats stats = stats_proxy_->GetStats(); stats.input_frame_rate = kInputFps; stats_proxy_->SetMockStats(stats); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsMaxResolutionMax()); // Trigger adapt down, expect scaled down framerate (640x360@24fps). // Fps diff (input-requested:0) < threshold, expect adapting down not to clear // QP samples. EXPECT_FALSE( video_stream_encoder_ ->TriggerQualityScalerHighQpAndReturnIfQpSamplesShouldBeCleared()); EXPECT_THAT(source_.sink_wants(), FpsMatchesResolutionMax(Eq(24))); video_stream_encoder_->Stop(); } TEST_F(BalancedDegradationTest, AdaptDownReturnsTrueIfFpsDiffGeThreshold) { test::ScopedFieldTrials field_trials( "WebRTC-Video-BalancedDegradationSettings/" "pixels:57600|129600|230400,fps:7|10|24,fps_diff:1|1|1/"); SetupTest(); // Force input frame rate. const int kInputFps = 25; VideoSendStream::Stats stats = stats_proxy_->GetStats(); stats.input_frame_rate = kInputFps; stats_proxy_->SetMockStats(stats); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsMaxResolutionMax()); // Trigger adapt down, expect scaled down framerate (640x360@24fps). // Fps diff (input-requested:1) == threshold, expect adapting down to clear QP // samples. EXPECT_TRUE( video_stream_encoder_ ->TriggerQualityScalerHighQpAndReturnIfQpSamplesShouldBeCleared()); EXPECT_THAT(source_.sink_wants(), FpsMatchesResolutionMax(Eq(24))); video_stream_encoder_->Stop(); } TEST_F(BalancedDegradationTest, AdaptDownUsesCodecSpecificFps) { test::ScopedFieldTrials field_trials( "WebRTC-Video-BalancedDegradationSettings/" "pixels:57600|129600|230400,fps:7|10|24,vp8_fps:8|11|22/"); SetupTest(); EXPECT_EQ(kVideoCodecVP8, video_encoder_config_.codec_type); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsMaxResolutionMax()); // Trigger adapt down, expect scaled down framerate (640x360@22fps). video_stream_encoder_->TriggerQualityLow(); EXPECT_THAT(source_.sink_wants(), FpsMatchesResolutionMax(Eq(22))); video_stream_encoder_->Stop(); } TEST_F(BalancedDegradationTest, NoAdaptUpIfBwEstimateIsLessThanMinBitrate) { test::ScopedFieldTrials field_trials( "WebRTC-Video-BalancedDegradationSettings/" "pixels:57600|129600|230400,fps:7|10|14,kbps:0|0|425/"); SetupTest(); const int kMinBitrateBps = 425000; const int kTooLowMinBitrateBps = 424000; OnBitrateUpdated(kTooLowMinBitrateBps); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsMaxResolutionMax()); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down framerate (640x360@14fps). video_stream_encoder_->TriggerQualityLow(); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsMatchesResolutionMax(Eq(14))); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down resolution (480x270@14fps). video_stream_encoder_->TriggerQualityLow(); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsEqResolutionLt(source_.last_wants())); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down framerate (480x270@10fps). video_stream_encoder_->TriggerQualityLow(); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsLtResolutionEq(source_.last_wants())); EXPECT_EQ(source_.sink_wants().max_framerate_fps, 10); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no upscale in fps (target bitrate < min bitrate). video_stream_encoder_->TriggerQualityHigh(); InsertFrameAndWaitForEncoded(); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect upscaled fps (target bitrate == min bitrate). OnBitrateUpdated(kMinBitrateBps); video_stream_encoder_->TriggerQualityHigh(); InsertFrameAndWaitForEncoded(); EXPECT_EQ(source_.sink_wants().max_framerate_fps, 14); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(BalancedDegradationTest, InitialFrameDropAdaptsFpsAndResolutionInOneStep) { test::ScopedFieldTrials field_trials( "WebRTC-Video-BalancedDegradationSettings/" "pixels:57600|129600|230400,fps:7|24|24/"); SetupTest(); OnBitrateUpdated(kLowTargetBitrateBps); EXPECT_THAT(source_.sink_wants(), UnlimitedSinkWants()); // Insert frame, expect scaled down: // framerate (640x360@24fps) -> resolution (480x270@24fps). InsertFrame(); EXPECT_FALSE(WaitForFrame(1000)); EXPECT_LT(source_.sink_wants().max_pixel_count, kWidth * kHeight); EXPECT_EQ(source_.sink_wants().max_framerate_fps, 24); // Insert frame, expect scaled down: // resolution (320x180@24fps). InsertFrame(); EXPECT_FALSE(WaitForFrame(1000)); EXPECT_LT(source_.sink_wants().max_pixel_count, source_.last_wants().max_pixel_count); EXPECT_EQ(source_.sink_wants().max_framerate_fps, 24); // Frame should not be dropped (min pixels per frame reached). InsertFrameAndWaitForEncoded(); video_stream_encoder_->Stop(); } TEST_F(BalancedDegradationTest, NoAdaptUpInResolutionIfBwEstimateIsLessThanMinBitrate) { test::ScopedFieldTrials field_trials( "WebRTC-Video-BalancedDegradationSettings/" "pixels:57600|129600|230400,fps:7|10|14,kbps_res:0|0|435/"); SetupTest(); const int kResolutionMinBitrateBps = 435000; const int kTooLowMinResolutionBitrateBps = 434000; OnBitrateUpdated(kTooLowMinResolutionBitrateBps); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsMaxResolutionMax()); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down framerate (640x360@14fps). video_stream_encoder_->TriggerQualityLow(); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsMatchesResolutionMax(Eq(14))); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down resolution (480x270@14fps). video_stream_encoder_->TriggerQualityLow(); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsEqResolutionLt(source_.last_wants())); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down framerate (480x270@10fps). video_stream_encoder_->TriggerQualityLow(); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsLtResolutionEq(source_.last_wants())); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect upscaled fps (no bitrate limit) (480x270@14fps). video_stream_encoder_->TriggerQualityHigh(); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsGtResolutionEq(source_.last_wants())); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no upscale in res (target bitrate < min bitrate). video_stream_encoder_->TriggerQualityHigh(); InsertFrameAndWaitForEncoded(); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect upscaled res (target bitrate == min bitrate). OnBitrateUpdated(kResolutionMinBitrateBps); video_stream_encoder_->TriggerQualityHigh(); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsEqResolutionGt(source_.last_wants())); EXPECT_EQ(5, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(BalancedDegradationTest, NoAdaptUpInFpsAndResolutionIfBwEstimateIsLessThanMinBitrate) { test::ScopedFieldTrials field_trials( "WebRTC-Video-BalancedDegradationSettings/" "pixels:57600|129600|230400,fps:7|10|14,kbps:0|0|425,kbps_res:0|0|435/"); SetupTest(); const int kMinBitrateBps = 425000; const int kTooLowMinBitrateBps = 424000; const int kResolutionMinBitrateBps = 435000; const int kTooLowMinResolutionBitrateBps = 434000; OnBitrateUpdated(kTooLowMinBitrateBps); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsMaxResolutionMax()); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down framerate (640x360@14fps). video_stream_encoder_->TriggerQualityLow(); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsMatchesResolutionMax(Eq(14))); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down resolution (480x270@14fps). video_stream_encoder_->TriggerQualityLow(); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsEqResolutionLt(source_.last_wants())); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down framerate (480x270@10fps). video_stream_encoder_->TriggerQualityLow(); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsLtResolutionEq(source_.last_wants())); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no upscale (target bitrate < min bitrate). video_stream_encoder_->TriggerQualityHigh(); InsertFrameAndWaitForEncoded(); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect upscaled fps (target bitrate == min bitrate). OnBitrateUpdated(kMinBitrateBps); video_stream_encoder_->TriggerQualityHigh(); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsGtResolutionEq(source_.last_wants())); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no upscale in res (target bitrate < min bitrate). OnBitrateUpdated(kTooLowMinResolutionBitrateBps); video_stream_encoder_->TriggerQualityHigh(); InsertFrameAndWaitForEncoded(); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect upscaled res (target bitrate == min bitrate). OnBitrateUpdated(kResolutionMinBitrateBps); video_stream_encoder_->TriggerQualityHigh(); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsEqResolutionGt(source_.last_wants())); EXPECT_EQ(5, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdaptsResolutionOnOveruseAndLowQuality_MaintainFramerateMode) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); // Enable MAINTAIN_FRAMERATE preference, no initial limitation. AdaptingFrameForwarder source; source.set_adaptation_enabled(true); video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); int64_t timestamp_ms = kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt down, expect scaled down resolution (960x540). video_stream_encoder_->TriggerCpuOveruse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMatches(Lt(kWidth * kHeight))); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt down, expect scaled down resolution (640x360). video_stream_encoder_->TriggerCpuOveruse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionLt(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt down, expect scaled down resolution (480x270). video_stream_encoder_->TriggerCpuOveruse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionLt(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger quality adapt down, expect scaled down resolution (320x180). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionLt(source.last_wants())); rtc::VideoSinkWants last_wants = source.sink_wants(); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger quality adapt down, expect no change (min resolution reached). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMax()); EXPECT_EQ(source.sink_wants().max_pixel_count, last_wants.max_pixel_count); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger quality adapt up, expect upscaled resolution (480x270). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionGt(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger quality and cpu adapt up since both are most limited, expect // upscaled resolution (640x360). video_stream_encoder_->TriggerCpuUnderuse(); video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionGt(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger quality and cpu adapt up since both are most limited, expect // upscaled resolution (960x540). video_stream_encoder_->TriggerCpuUnderuse(); video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionGt(source.last_wants())); last_wants = source.sink_wants(); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(5, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt up, expect no change since not most limited (960x540). // However the stats will change since the CPU resource is no longer limited. video_stream_encoder_->TriggerCpuUnderuse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsEqResolutionEqTo(last_wants)); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(6, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger quality adapt up, expect no restriction (1280x720). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionGt(source.last_wants())); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(6, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(5, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, CpuLimitedHistogramIsReported) { const int kWidth = 640; const int kHeight = 360; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); for (int i = 1; i <= SendStatisticsProxy::kMinRequiredMetricsSamples; ++i) { video_source_.IncomingCapturedFrame(CreateFrame(i, kWidth, kHeight)); WaitForEncodedFrame(i); } video_stream_encoder_->TriggerCpuOveruse(); for (int i = 1; i <= SendStatisticsProxy::kMinRequiredMetricsSamples; ++i) { video_source_.IncomingCapturedFrame(CreateFrame( SendStatisticsProxy::kMinRequiredMetricsSamples + i, kWidth, kHeight)); WaitForEncodedFrame(SendStatisticsProxy::kMinRequiredMetricsSamples + i); } video_stream_encoder_->Stop(); video_stream_encoder_.reset(); stats_proxy_.reset(); EXPECT_METRIC_EQ( 1, metrics::NumSamples("WebRTC.Video.CpuLimitedResolutionInPercent")); EXPECT_METRIC_EQ( 1, metrics::NumEvents("WebRTC.Video.CpuLimitedResolutionInPercent", 50)); } TEST_F(VideoStreamEncoderTest, CpuLimitedHistogramIsNotReportedForDisabledDegradation) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); const int kWidth = 640; const int kHeight = 360; video_stream_encoder_->SetSource(&video_source_, webrtc::DegradationPreference::DISABLED); for (int i = 1; i <= SendStatisticsProxy::kMinRequiredMetricsSamples; ++i) { video_source_.IncomingCapturedFrame(CreateFrame(i, kWidth, kHeight)); WaitForEncodedFrame(i); } video_stream_encoder_->Stop(); video_stream_encoder_.reset(); stats_proxy_.reset(); EXPECT_EQ(0, metrics::NumSamples("WebRTC.Video.CpuLimitedResolutionInPercent")); } TEST_F(VideoStreamEncoderTest, CallsBitrateObserver) { MockBitrateObserver bitrate_observer; video_stream_encoder_->SetBitrateAllocationObserver(&bitrate_observer); const int kDefaultFps = 30; const VideoBitrateAllocation expected_bitrate = SimulcastRateAllocator(fake_encoder_.codec_config()) .Allocate(VideoBitrateAllocationParameters(kLowTargetBitrateBps, kDefaultFps)); EXPECT_CALL(bitrate_observer, OnBitrateAllocationUpdated(expected_bitrate)) .Times(1); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kLowTargetBitrateBps), DataRate::BitsPerSec(kLowTargetBitrateBps), DataRate::BitsPerSec(kLowTargetBitrateBps), 0, 0, 0); video_source_.IncomingCapturedFrame( CreateFrame(rtc::TimeMillis(), codec_width_, codec_height_)); WaitForEncodedFrame(rtc::TimeMillis()); VideoBitrateAllocation bitrate_allocation = fake_encoder_.GetAndResetLastRateControlSettings()->bitrate; // Check that encoder has been updated too, not just allocation observer. EXPECT_EQ(bitrate_allocation.get_sum_bps(), kLowTargetBitrateBps); // TODO(srte): The use of millisecs here looks like an error, but the tests // fails using seconds, this should be investigated. fake_clock_.AdvanceTime(TimeDelta::Millis(1) / kDefaultFps); // Not called on second frame. EXPECT_CALL(bitrate_observer, OnBitrateAllocationUpdated(expected_bitrate)) .Times(0); video_source_.IncomingCapturedFrame( CreateFrame(rtc::TimeMillis(), codec_width_, codec_height_)); WaitForEncodedFrame(rtc::TimeMillis()); fake_clock_.AdvanceTime(TimeDelta::Millis(1) / kDefaultFps); // Called after a process interval. EXPECT_CALL(bitrate_observer, OnBitrateAllocationUpdated(expected_bitrate)) .Times(1); const int64_t start_time_ms = rtc::TimeMillis(); while (rtc::TimeMillis() - start_time_ms < kProcessIntervalMs) { video_source_.IncomingCapturedFrame( CreateFrame(rtc::TimeMillis(), codec_width_, codec_height_)); WaitForEncodedFrame(rtc::TimeMillis()); fake_clock_.AdvanceTime(TimeDelta::Millis(1) / kDefaultFps); } // Since rates are unchanged, encoder should not be reconfigured. EXPECT_FALSE(fake_encoder_.GetAndResetLastRateControlSettings().has_value()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, TemporalLayersNotDisabledIfSupported) { // 2 TLs configured, temporal layers supported by encoder. const int kNumTemporalLayers = 2; ResetEncoder("VP8", 1, kNumTemporalLayers, 1, /*screenshare*/ false); fake_encoder_.SetTemporalLayersSupported(0, true); // Bitrate allocated across temporal layers. const int kTl0Bps = kTargetBitrateBps * webrtc::SimulcastRateAllocator::GetTemporalRateAllocation( kNumTemporalLayers, /*temporal_id*/ 0, /*base_heavy_tl3_alloc*/ false); const int kTl1Bps = kTargetBitrateBps * webrtc::SimulcastRateAllocator::GetTemporalRateAllocation( kNumTemporalLayers, /*temporal_id*/ 1, /*base_heavy_tl3_alloc*/ false); VideoBitrateAllocation expected_bitrate; expected_bitrate.SetBitrate(/*si*/ 0, /*ti*/ 0, kTl0Bps); expected_bitrate.SetBitrate(/*si*/ 0, /*ti*/ 1, kTl1Bps - kTl0Bps); VerifyAllocatedBitrate(expected_bitrate); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, TemporalLayersDisabledIfNotSupported) { // 2 TLs configured, temporal layers not supported by encoder. ResetEncoder("VP8", 1, /*num_temporal_layers*/ 2, 1, /*screenshare*/ false); fake_encoder_.SetTemporalLayersSupported(0, false); // Temporal layers not supported by the encoder. // Total bitrate should be at ti:0. VideoBitrateAllocation expected_bitrate; expected_bitrate.SetBitrate(/*si*/ 0, /*ti*/ 0, kTargetBitrateBps); VerifyAllocatedBitrate(expected_bitrate); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, VerifyBitrateAllocationForTwoStreams) { // 2 TLs configured, temporal layers only supported for first stream. ResetEncoder("VP8", 2, /*num_temporal_layers*/ 2, 1, /*screenshare*/ false); fake_encoder_.SetTemporalLayersSupported(0, true); fake_encoder_.SetTemporalLayersSupported(1, false); const int kS0Bps = 150000; const int kS0Tl0Bps = kS0Bps * webrtc::SimulcastRateAllocator::GetTemporalRateAllocation( /*num_layers*/ 2, /*temporal_id*/ 0, /*base_heavy_tl3_alloc*/ false); const int kS0Tl1Bps = kS0Bps * webrtc::SimulcastRateAllocator::GetTemporalRateAllocation( /*num_layers*/ 2, /*temporal_id*/ 1, /*base_heavy_tl3_alloc*/ false); const int kS1Bps = kTargetBitrateBps - kS0Tl1Bps; // Temporal layers not supported by si:1. VideoBitrateAllocation expected_bitrate; expected_bitrate.SetBitrate(/*si*/ 0, /*ti*/ 0, kS0Tl0Bps); expected_bitrate.SetBitrate(/*si*/ 0, /*ti*/ 1, kS0Tl1Bps - kS0Tl0Bps); expected_bitrate.SetBitrate(/*si*/ 1, /*ti*/ 0, kS1Bps); VerifyAllocatedBitrate(expected_bitrate); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, OveruseDetectorUpdatedOnReconfigureAndAdaption) { const int kFrameWidth = 1280; const int kFrameHeight = 720; const int kFramerate = 24; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); test::FrameForwarder source; video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); // Insert a single frame, triggering initial configuration. source.IncomingCapturedFrame(CreateFrame(1, kFrameWidth, kFrameHeight)); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ( video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(), kDefaultFramerate); // Trigger reconfigure encoder (without resetting the entire instance). VideoEncoderConfig video_encoder_config; video_encoder_config.codec_type = kVideoCodecVP8; video_encoder_config.max_bitrate_bps = kTargetBitrateBps; video_encoder_config.number_of_streams = 1; video_encoder_config.video_stream_factory = new rtc::RefCountedObject(1, kFramerate); video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); // Detector should be updated with fps limit from codec config. EXPECT_EQ( video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(), kFramerate); // Trigger overuse, max framerate should be reduced. VideoSendStream::Stats stats = stats_proxy_->GetStats(); stats.input_frame_rate = kFramerate; stats_proxy_->SetMockStats(stats); video_stream_encoder_->TriggerCpuOveruse(); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); int adapted_framerate = video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(); EXPECT_LT(adapted_framerate, kFramerate); // Trigger underuse, max framerate should go back to codec configured fps. // Set extra low fps, to make sure it's actually reset, not just incremented. stats = stats_proxy_->GetStats(); stats.input_frame_rate = adapted_framerate / 2; stats_proxy_->SetMockStats(stats); video_stream_encoder_->TriggerCpuUnderuse(); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ( video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(), kFramerate); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, OveruseDetectorUpdatedRespectsFramerateAfterUnderuse) { const int kFrameWidth = 1280; const int kFrameHeight = 720; const int kLowFramerate = 15; const int kHighFramerate = 25; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); test::FrameForwarder source; video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); // Trigger initial configuration. VideoEncoderConfig video_encoder_config; video_encoder_config.codec_type = kVideoCodecVP8; video_encoder_config.max_bitrate_bps = kTargetBitrateBps; video_encoder_config.number_of_streams = 1; video_encoder_config.video_stream_factory = new rtc::RefCountedObject(1, kLowFramerate); source.IncomingCapturedFrame(CreateFrame(1, kFrameWidth, kFrameHeight)); video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ( video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(), kLowFramerate); // Trigger overuse, max framerate should be reduced. VideoSendStream::Stats stats = stats_proxy_->GetStats(); stats.input_frame_rate = kLowFramerate; stats_proxy_->SetMockStats(stats); video_stream_encoder_->TriggerCpuOveruse(); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); int adapted_framerate = video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(); EXPECT_LT(adapted_framerate, kLowFramerate); // Reconfigure the encoder with a new (higher max framerate), max fps should // still respect the adaptation. video_encoder_config.video_stream_factory = new rtc::RefCountedObject(1, kHighFramerate); source.IncomingCapturedFrame(CreateFrame(1, kFrameWidth, kFrameHeight)); video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ( video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(), adapted_framerate); // Trigger underuse, max framerate should go back to codec configured fps. stats = stats_proxy_->GetStats(); stats.input_frame_rate = adapted_framerate; stats_proxy_->SetMockStats(stats); video_stream_encoder_->TriggerCpuUnderuse(); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ( video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(), kHighFramerate); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, OveruseDetectorUpdatedOnDegradationPreferenceChange) { const int kFrameWidth = 1280; const int kFrameHeight = 720; const int kFramerate = 24; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); test::FrameForwarder source; video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); // Trigger initial configuration. VideoEncoderConfig video_encoder_config; video_encoder_config.codec_type = kVideoCodecVP8; video_encoder_config.max_bitrate_bps = kTargetBitrateBps; video_encoder_config.number_of_streams = 1; video_encoder_config.video_stream_factory = new rtc::RefCountedObject(1, kFramerate); source.IncomingCapturedFrame(CreateFrame(1, kFrameWidth, kFrameHeight)); video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ( video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(), kFramerate); // Trigger overuse, max framerate should be reduced. VideoSendStream::Stats stats = stats_proxy_->GetStats(); stats.input_frame_rate = kFramerate; stats_proxy_->SetMockStats(stats); video_stream_encoder_->TriggerCpuOveruse(); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); int adapted_framerate = video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(); EXPECT_LT(adapted_framerate, kFramerate); // Change degradation preference to not enable framerate scaling. Target // framerate should be changed to codec defined limit. video_stream_encoder_->SetSourceAndWaitForFramerateUpdated( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); EXPECT_EQ( video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(), kFramerate); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DropsFramesAndScalesWhenBitrateIsTooLow) { const int kTooLowBitrateForFrameSizeBps = 10000; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps), DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps), DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps), 0, 0, 0); const int kWidth = 640; const int kHeight = 360; video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); // Expect to drop this frame, the wait should time out. ExpectDroppedFrame(); // Expect the sink_wants to specify a scaled frame. EXPECT_TRUE_WAIT( video_source_.sink_wants().max_pixel_count < kWidth * kHeight, 5000); int last_pixel_count = video_source_.sink_wants().max_pixel_count; // Next frame is scaled. video_source_.IncomingCapturedFrame( CreateFrame(2, kWidth * 3 / 4, kHeight * 3 / 4)); // Expect to drop this frame, the wait should time out. ExpectDroppedFrame(); EXPECT_TRUE_WAIT( video_source_.sink_wants().max_pixel_count < last_pixel_count, 5000); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, NumberOfDroppedFramesLimitedWhenBitrateIsTooLow) { const int kTooLowBitrateForFrameSizeBps = 10000; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps), DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps), DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps), 0, 0, 0); const int kWidth = 640; const int kHeight = 360; // We expect the n initial frames to get dropped. int i; for (i = 1; i <= kMaxInitialFramedrop; ++i) { video_source_.IncomingCapturedFrame(CreateFrame(i, kWidth, kHeight)); ExpectDroppedFrame(); } // The n+1th frame should not be dropped, even though it's size is too large. video_source_.IncomingCapturedFrame(CreateFrame(i, kWidth, kHeight)); WaitForEncodedFrame(i); // Expect the sink_wants to specify a scaled frame. EXPECT_LT(video_source_.sink_wants().max_pixel_count, kWidth * kHeight); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, InitialFrameDropOffWithMaintainResolutionPreference) { const int kWidth = 640; const int kHeight = 360; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kLowTargetBitrateBps), DataRate::BitsPerSec(kLowTargetBitrateBps), DataRate::BitsPerSec(kLowTargetBitrateBps), 0, 0, 0); // Set degradation preference. video_stream_encoder_->SetSource( &video_source_, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); // Frame should not be dropped, even if it's too large. WaitForEncodedFrame(1); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, InitialFrameDropOffWhenEncoderDisabledScaling) { const int kWidth = 640; const int kHeight = 360; fake_encoder_.SetQualityScaling(false); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config); // Make format different, to force recreation of encoder. video_encoder_config.video_format.parameters["foo"] = "foo"; video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kLowTargetBitrateBps), DataRate::BitsPerSec(kLowTargetBitrateBps), DataRate::BitsPerSec(kLowTargetBitrateBps), 0, 0, 0); // Force quality scaler reconfiguration by resetting the source. video_stream_encoder_->SetSource(&video_source_, webrtc::DegradationPreference::BALANCED); video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); // Frame should not be dropped, even if it's too large. WaitForEncodedFrame(1); video_stream_encoder_->Stop(); fake_encoder_.SetQualityScaling(true); } TEST_F(VideoStreamEncoderTest, InitialFrameDropActivatesWhenBweDrops) { webrtc::test::ScopedFieldTrials field_trials( "WebRTC-Video-QualityScalerSettings/" "initial_bitrate_interval_ms:1000,initial_bitrate_factor:0.2/"); // Reset encoder for field trials to take effect. ConfigureEncoder(video_encoder_config_.Copy()); const int kNotTooLowBitrateForFrameSizeBps = kTargetBitrateBps * 0.2; const int kTooLowBitrateForFrameSizeBps = kTargetBitrateBps * 0.19; const int kWidth = 640; const int kHeight = 360; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); // Frame should not be dropped. WaitForEncodedFrame(1); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kNotTooLowBitrateForFrameSizeBps), DataRate::BitsPerSec(kNotTooLowBitrateForFrameSizeBps), DataRate::BitsPerSec(kNotTooLowBitrateForFrameSizeBps), 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); // Frame should not be dropped. WaitForEncodedFrame(2); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps), DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps), DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps), 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight)); // Expect to drop this frame, the wait should time out. ExpectDroppedFrame(); // Expect the sink_wants to specify a scaled frame. EXPECT_TRUE_WAIT( video_source_.sink_wants().max_pixel_count < kWidth * kHeight, 5000); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, RampsUpInQualityWhenBwIsHigh) { webrtc::test::ScopedFieldTrials field_trials( "WebRTC-Video-QualityRampupSettings/min_pixels:1,min_duration_ms:2000/"); // Reset encoder for field trials to take effect. VideoEncoderConfig config = video_encoder_config_.Copy(); config.max_bitrate_bps = kTargetBitrateBps; DataRate max_bitrate = DataRate::BitsPerSec(config.max_bitrate_bps); ConfigureEncoder(std::move(config)); fake_encoder_.SetQp(kQpLow); // Enable MAINTAIN_FRAMERATE preference. AdaptingFrameForwarder source; source.set_adaptation_enabled(true); video_stream_encoder_->SetSource(&source, DegradationPreference::MAINTAIN_FRAMERATE); // Start at low bitrate. const int kLowBitrateBps = 200000; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kLowBitrateBps), DataRate::BitsPerSec(kLowBitrateBps), DataRate::BitsPerSec(kLowBitrateBps), 0, 0, 0); // Expect first frame to be dropped and resolution to be limited. const int kWidth = 1280; const int kHeight = 720; const int64_t kFrameIntervalMs = 100; int64_t timestamp_ms = kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); ExpectDroppedFrame(); EXPECT_TRUE_WAIT(source.sink_wants().max_pixel_count < kWidth * kHeight, 5000); // Increase bitrate to encoder max. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( max_bitrate, max_bitrate, max_bitrate, 0, 0, 0); // Insert frames and advance |min_duration_ms|. for (size_t i = 1; i <= 10; i++) { timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); } EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_LT(source.sink_wants().max_pixel_count, kWidth * kHeight); fake_clock_.AdvanceTime(TimeDelta::Millis(2000)); // Insert frame should trigger high BW and release quality limitation. timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); // The ramp-up code involves the adaptation queue, give it time to execute. // TODO(hbos): Can we await an appropriate event instead? video_stream_encoder_->WaitUntilAdaptationTaskQueueIsIdle(); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); // Frame should not be adapted. timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, ResolutionNotAdaptedForTooSmallFrame_MaintainFramerateMode) { const int kTooSmallWidth = 10; const int kTooSmallHeight = 10; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); // Enable MAINTAIN_FRAMERATE preference, no initial limitation. test::FrameForwarder source; video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); EXPECT_THAT(source.sink_wants(), UnlimitedSinkWants()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); // Trigger adapt down, too small frame, expect no change. source.IncomingCapturedFrame(CreateFrame(1, kTooSmallWidth, kTooSmallHeight)); WaitForEncodedFrame(1); video_stream_encoder_->TriggerCpuOveruse(); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, ResolutionNotAdaptedForTooSmallFrame_BalancedMode) { const int kTooSmallWidth = 10; const int kTooSmallHeight = 10; const int kFpsLimit = 7; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); // Enable BALANCED preference, no initial limitation. test::FrameForwarder source; video_stream_encoder_->SetSource(&source, webrtc::DegradationPreference::BALANCED); EXPECT_THAT(source.sink_wants(), UnlimitedSinkWants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); // Trigger adapt down, expect limited framerate. source.IncomingCapturedFrame(CreateFrame(1, kTooSmallWidth, kTooSmallHeight)); WaitForEncodedFrame(1); video_stream_encoder_->TriggerQualityLow(); EXPECT_THAT(source.sink_wants(), FpsMatchesResolutionMax(Eq(kFpsLimit))); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, too small frame, expect no change. source.IncomingCapturedFrame(CreateFrame(2, kTooSmallWidth, kTooSmallHeight)); WaitForEncodedFrame(2); video_stream_encoder_->TriggerQualityLow(); EXPECT_THAT(source.sink_wants(), FpsMatchesResolutionMax(Eq(kFpsLimit))); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, FailingInitEncodeDoesntCauseCrash) { fake_encoder_.ForceInitEncodeFailure(true); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); ResetEncoder("VP8", 2, 1, 1, false); const int kFrameWidth = 1280; const int kFrameHeight = 720; video_source_.IncomingCapturedFrame( CreateFrame(1, kFrameWidth, kFrameHeight)); ExpectDroppedFrame(); video_stream_encoder_->Stop(); } // TODO(sprang): Extend this with fps throttling and any "balanced" extensions. TEST_F(VideoStreamEncoderTest, AdaptsResolutionOnOveruse_MaintainFramerateMode) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); const int kFrameWidth = 1280; const int kFrameHeight = 720; // Enabled default VideoAdapter downscaling. First step is 3/4, not 3/5 as // requested by // VideoStreamEncoder::VideoSourceProxy::RequestResolutionLowerThan(). video_source_.set_adaptation_enabled(true); video_source_.IncomingCapturedFrame( CreateFrame(1 * kFrameIntervalMs, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(kFrameWidth, kFrameHeight); // Trigger CPU overuse, downscale by 3/4. video_stream_encoder_->TriggerCpuOveruse(); video_source_.IncomingCapturedFrame( CreateFrame(2 * kFrameIntervalMs, kFrameWidth, kFrameHeight)); WaitForEncodedFrame((kFrameWidth * 3) / 4, (kFrameHeight * 3) / 4); // Trigger CPU normal use, return to original resolution. video_stream_encoder_->TriggerCpuUnderuse(); video_source_.IncomingCapturedFrame( CreateFrame(3 * kFrameIntervalMs, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(kFrameWidth, kFrameHeight); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdaptsFramerateOnOveruse_MaintainResolutionMode) { const int kFrameWidth = 1280; const int kFrameHeight = 720; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); video_stream_encoder_->SetSource( &video_source_, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); video_source_.set_adaptation_enabled(true); int64_t timestamp_ms = fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(timestamp_ms); // Try to trigger overuse. No fps estimate available => no effect. video_stream_encoder_->TriggerCpuOveruse(); // Insert frames for one second to get a stable estimate. for (int i = 0; i < max_framerate_; ++i) { timestamp_ms += kFrameIntervalMs; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(timestamp_ms); } // Trigger CPU overuse, reduce framerate by 2/3. video_stream_encoder_->TriggerCpuOveruse(); int num_frames_dropped = 0; for (int i = 0; i < max_framerate_; ++i) { timestamp_ms += kFrameIntervalMs; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); if (!WaitForFrame(kFrameTimeoutMs)) { ++num_frames_dropped; } else { sink_.CheckLastFrameSizeMatches(kFrameWidth, kFrameHeight); } } // Add some slack to account for frames dropped by the frame dropper. const int kErrorMargin = 1; EXPECT_NEAR(num_frames_dropped, max_framerate_ - (max_framerate_ * 2 / 3), kErrorMargin); // Trigger CPU overuse, reduce framerate by 2/3 again. video_stream_encoder_->TriggerCpuOveruse(); num_frames_dropped = 0; for (int i = 0; i <= max_framerate_; ++i) { timestamp_ms += kFrameIntervalMs; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); if (!WaitForFrame(kFrameTimeoutMs)) { ++num_frames_dropped; } else { sink_.CheckLastFrameSizeMatches(kFrameWidth, kFrameHeight); } } EXPECT_NEAR(num_frames_dropped, max_framerate_ - (max_framerate_ * 4 / 9), kErrorMargin); // Go back up one step. video_stream_encoder_->TriggerCpuUnderuse(); num_frames_dropped = 0; for (int i = 0; i < max_framerate_; ++i) { timestamp_ms += kFrameIntervalMs; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); if (!WaitForFrame(kFrameTimeoutMs)) { ++num_frames_dropped; } else { sink_.CheckLastFrameSizeMatches(kFrameWidth, kFrameHeight); } } EXPECT_NEAR(num_frames_dropped, max_framerate_ - (max_framerate_ * 2 / 3), kErrorMargin); // Go back up to original mode. video_stream_encoder_->TriggerCpuUnderuse(); num_frames_dropped = 0; for (int i = 0; i < max_framerate_; ++i) { timestamp_ms += kFrameIntervalMs; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); if (!WaitForFrame(kFrameTimeoutMs)) { ++num_frames_dropped; } else { sink_.CheckLastFrameSizeMatches(kFrameWidth, kFrameHeight); } } EXPECT_NEAR(num_frames_dropped, 0, kErrorMargin); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DoesntAdaptDownPastMinFramerate) { const int kFramerateFps = 5; const int kFrameIntervalMs = rtc::kNumMillisecsPerSec / kFramerateFps; const int kFrameWidth = 1280; const int kFrameHeight = 720; // Reconfigure encoder with two temporal layers and screensharing, which will // disable frame dropping and make testing easier. ResetEncoder("VP8", 1, 2, 1, true); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); video_stream_encoder_->SetSource( &video_source_, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); video_source_.set_adaptation_enabled(true); int64_t timestamp_ms = fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec; // Trigger overuse as much as we can. rtc::VideoSinkWants last_wants; do { last_wants = video_source_.sink_wants(); // Insert frames to get a new fps estimate... for (int j = 0; j < kFramerateFps; ++j) { video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); if (video_source_.last_sent_width()) { sink_.WaitForEncodedFrame(timestamp_ms); } timestamp_ms += kFrameIntervalMs; fake_clock_.AdvanceTime(TimeDelta::Millis(kFrameIntervalMs)); } // ...and then try to adapt again. video_stream_encoder_->TriggerCpuOveruse(); } while (video_source_.sink_wants().max_framerate_fps < last_wants.max_framerate_fps); EXPECT_THAT(video_source_.sink_wants(), FpsMatchesResolutionMax(Eq(kMinFramerateFps))); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdaptsResolutionAndFramerateForLowQuality_BalancedMode) { const int kWidth = 1280; const int kHeight = 720; const int64_t kFrameIntervalMs = 150; int64_t timestamp_ms = kFrameIntervalMs; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); // Enable BALANCED preference, no initial limitation. AdaptingFrameForwarder source; source.set_adaptation_enabled(true); video_stream_encoder_->SetSource(&source, webrtc::DegradationPreference::BALANCED); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down resolution (960x540@30fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMatches(Lt(kWidth * kHeight))); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down resolution (640x360@30fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionLt(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect reduced fps (640x360@15fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsLtResolutionEq(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down resolution (480x270@15fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsEqResolutionLt(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Restrict bitrate, trigger adapt down, expect reduced fps (480x270@10fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsLtResolutionEq(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(5, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down resolution (320x180@10fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsEqResolutionLt(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(6, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect reduced fps (320x180@7fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsLtResolutionEq(source.last_wants())); rtc::VideoSinkWants last_wants = source.sink_wants(); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(7, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, min resolution reached, expect no change. video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsEqResolutionEqTo(last_wants)); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(7, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect expect increased fps (320x180@10fps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsGtResolutionEq(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(8, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect upscaled resolution (480x270@10fps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsEqResolutionGt(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(9, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Increase bitrate, trigger adapt up, expect increased fps (480x270@15fps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsGtResolutionEq(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(10, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect upscaled resolution (640x360@15fps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsEqResolutionGt(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(11, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect increased fps (640x360@30fps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMax()); EXPECT_EQ(source.sink_wants().max_pixel_count, source.last_wants().max_pixel_count); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(12, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect upscaled resolution (960x540@30fps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionGt(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(13, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no restriction (1280x720fps@30fps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionGt(source.last_wants())); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(14, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no change. video_stream_encoder_->TriggerQualityHigh(); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_EQ(14, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdaptWithTwoReasonsAndDifferentOrder_Framerate) { const int kWidth = 1280; const int kHeight = 720; const int64_t kFrameIntervalMs = 150; int64_t timestamp_ms = kFrameIntervalMs; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); // Enable BALANCED preference, no initial limitation. AdaptingFrameForwarder source; source.set_adaptation_enabled(true); video_stream_encoder_->SetSource(&source, webrtc::DegradationPreference::BALANCED); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt down, expect scaled down resolution (960x540@30fps). video_stream_encoder_->TriggerCpuOveruse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMatches(Lt(kWidth * kHeight))); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt down, expect scaled down resolution (640x360@30fps). video_stream_encoder_->TriggerCpuOveruse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionLt(source.last_wants())); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger quality adapt down, expect reduced fps (640x360@15fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsLtResolutionEq(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt up, expect no change since QP is most limited. { // Store current sink wants since we expect no change and if there is no // change then last_wants() is not updated. auto previous_sink_wants = source.sink_wants(); video_stream_encoder_->TriggerCpuUnderuse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsEqResolutionEqTo(previous_sink_wants)); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); } // Trigger quality adapt up, expect increased fps (640x360@30fps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsGtResolutionEq(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger quality adapt up and Cpu adapt up since both are most limited, // expect increased resolution (960x540@30fps). video_stream_encoder_->TriggerQualityHigh(); video_stream_encoder_->TriggerCpuUnderuse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionGt(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger quality adapt up and Cpu adapt up since both are most limited, // expect no restriction (1280x720fps@30fps). video_stream_encoder_->TriggerQualityHigh(); video_stream_encoder_->TriggerCpuUnderuse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionGt(source.last_wants())); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no change. video_stream_encoder_->TriggerQualityHigh(); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdaptWithTwoReasonsAndDifferentOrder_Resolution) { const int kWidth = 640; const int kHeight = 360; const int kFpsLimit = 15; const int64_t kFrameIntervalMs = 150; int64_t timestamp_ms = kFrameIntervalMs; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); // Enable BALANCED preference, no initial limitation. AdaptingFrameForwarder source; source.set_adaptation_enabled(true); video_stream_encoder_->SetSource(&source, webrtc::DegradationPreference::BALANCED); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt down, expect scaled down framerate (640x360@15fps). video_stream_encoder_->TriggerCpuOveruse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMatchesResolutionMax(Eq(kFpsLimit))); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger quality adapt down, expect scaled down resolution (480x270@15fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsEqResolutionLt(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt up, expect no change because quality is most limited. { auto previous_sink_wants = source.sink_wants(); // Store current sink wants since we expect no change ind if there is no // change then last__wants() is not updated. video_stream_encoder_->TriggerCpuUnderuse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsEqResolutionEqTo(previous_sink_wants)); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); } // Trigger quality adapt up, expect upscaled resolution (640x360@15fps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsEqResolutionGt(source.last_wants())); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger quality and cpu adapt up, expect increased fps (640x360@30fps). video_stream_encoder_->TriggerQualityHigh(); video_stream_encoder_->TriggerCpuUnderuse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no change. video_stream_encoder_->TriggerQualityHigh(); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AcceptsFullHdAdaptedDownSimulcastFrames) { const int kFrameWidth = 1920; const int kFrameHeight = 1080; // 3/4 of 1920. const int kAdaptedFrameWidth = 1440; // 3/4 of 1080 rounded down to multiple of 4. const int kAdaptedFrameHeight = 808; const int kFramerate = 24; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); // Trigger reconfigure encoder (without resetting the entire instance). VideoEncoderConfig video_encoder_config; video_encoder_config.codec_type = kVideoCodecVP8; video_encoder_config.max_bitrate_bps = kTargetBitrateBps; video_encoder_config.number_of_streams = 1; video_encoder_config.video_stream_factory = new rtc::RefCountedObject(1, kFramerate); video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); video_source_.set_adaptation_enabled(true); video_source_.IncomingCapturedFrame( CreateFrame(1, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(kFrameWidth, kFrameHeight); // Trigger CPU overuse, downscale by 3/4. video_stream_encoder_->TriggerCpuOveruse(); video_source_.IncomingCapturedFrame( CreateFrame(2, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(kAdaptedFrameWidth, kAdaptedFrameHeight); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, PeriodicallyUpdatesChannelParameters) { const int kFrameWidth = 1280; const int kFrameHeight = 720; const int kLowFps = 2; const int kHighFps = 30; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); int64_t timestamp_ms = fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec; max_framerate_ = kLowFps; // Insert 2 seconds of 2fps video. for (int i = 0; i < kLowFps * 2; ++i) { video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(timestamp_ms); timestamp_ms += 1000 / kLowFps; } // Make sure encoder is updated with new target. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(timestamp_ms); timestamp_ms += 1000 / kLowFps; EXPECT_EQ(kLowFps, fake_encoder_.GetConfiguredInputFramerate()); // Insert 30fps frames for just a little more than the forced update period. const int kVcmTimerIntervalFrames = (kProcessIntervalMs * kHighFps) / 1000; const int kFrameIntervalMs = 1000 / kHighFps; max_framerate_ = kHighFps; for (int i = 0; i < kVcmTimerIntervalFrames + 2; ++i) { video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); // Wait for encoded frame, but skip ahead if it doesn't arrive as it might // be dropped if the encoder hans't been updated with the new higher target // framerate yet, causing it to overshoot the target bitrate and then // suffering the wrath of the media optimizer. TimedWaitForEncodedFrame(timestamp_ms, 2 * kFrameIntervalMs); timestamp_ms += kFrameIntervalMs; } // Don expect correct measurement just yet, but it should be higher than // before. EXPECT_GT(fake_encoder_.GetConfiguredInputFramerate(), kLowFps); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DoesNotUpdateBitrateAllocationWhenSuspended) { const int kFrameWidth = 1280; const int kFrameHeight = 720; const int kTargetBitrateBps = 1000000; MockBitrateObserver bitrate_observer; video_stream_encoder_->SetBitrateAllocationObserver(&bitrate_observer); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); // Insert a first video frame, causes another bitrate update. int64_t timestamp_ms = fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec; EXPECT_CALL(bitrate_observer, OnBitrateAllocationUpdated(_)).Times(1); video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(timestamp_ms); // Next, simulate video suspension due to pacer queue overrun. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(0), DataRate::BitsPerSec(0), DataRate::BitsPerSec(0), 0, 1, 0); // Skip ahead until a new periodic parameter update should have occured. timestamp_ms += kProcessIntervalMs; fake_clock_.AdvanceTime(TimeDelta::Millis(kProcessIntervalMs)); // Bitrate observer should not be called. EXPECT_CALL(bitrate_observer, OnBitrateAllocationUpdated(_)).Times(0); video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); ExpectDroppedFrame(); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DefaultCpuAdaptationThresholdsForSoftwareEncoder) { const int kFrameWidth = 1280; const int kFrameHeight = 720; const CpuOveruseOptions default_options; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); video_source_.IncomingCapturedFrame( CreateFrame(1, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(1); EXPECT_EQ(video_stream_encoder_->overuse_detector_proxy_->GetOptions() .low_encode_usage_threshold_percent, default_options.low_encode_usage_threshold_percent); EXPECT_EQ(video_stream_encoder_->overuse_detector_proxy_->GetOptions() .high_encode_usage_threshold_percent, default_options.high_encode_usage_threshold_percent); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, HigherCpuAdaptationThresholdsForHardwareEncoder) { const int kFrameWidth = 1280; const int kFrameHeight = 720; CpuOveruseOptions hardware_options; hardware_options.low_encode_usage_threshold_percent = 150; hardware_options.high_encode_usage_threshold_percent = 200; fake_encoder_.SetIsHardwareAccelerated(true); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); video_source_.IncomingCapturedFrame( CreateFrame(1, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(1); EXPECT_EQ(video_stream_encoder_->overuse_detector_proxy_->GetOptions() .low_encode_usage_threshold_percent, hardware_options.low_encode_usage_threshold_percent); EXPECT_EQ(video_stream_encoder_->overuse_detector_proxy_->GetOptions() .high_encode_usage_threshold_percent, hardware_options.high_encode_usage_threshold_percent); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DropsFramesWhenEncoderOvershoots) { const int kFrameWidth = 320; const int kFrameHeight = 240; const int kFps = 30; const int kTargetBitrateBps = 120000; const int kNumFramesInRun = kFps * 5; // Runs of five seconds. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); int64_t timestamp_ms = fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec; max_framerate_ = kFps; // Insert 3 seconds of video, verify number of drops with normal bitrate. fake_encoder_.SimulateOvershoot(1.0); int num_dropped = 0; for (int i = 0; i < kNumFramesInRun; ++i) { video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); // Wait up to two frame durations for a frame to arrive. if (!TimedWaitForEncodedFrame(timestamp_ms, 2 * 1000 / kFps)) { ++num_dropped; } timestamp_ms += 1000 / kFps; } // Framerate should be measured to be near the expected target rate. EXPECT_NEAR(fake_encoder_.GetLastFramerate(), kFps, 1); // Frame drops should be within 5% of expected 0%. EXPECT_NEAR(num_dropped, 0, 5 * kNumFramesInRun / 100); // Make encoder produce frames at double the expected bitrate during 3 seconds // of video, verify number of drops. Rate needs to be slightly changed in // order to force the rate to be reconfigured. double overshoot_factor = 2.0; if (RateControlSettings::ParseFromFieldTrials().UseEncoderBitrateAdjuster()) { // With bitrate adjuster, when need to overshoot even more to trigger // frame dropping. overshoot_factor *= 2; } fake_encoder_.SimulateOvershoot(overshoot_factor); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps + 1000), DataRate::BitsPerSec(kTargetBitrateBps + 1000), DataRate::BitsPerSec(kTargetBitrateBps + 1000), 0, 0, 0); num_dropped = 0; for (int i = 0; i < kNumFramesInRun; ++i) { video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); // Wait up to two frame durations for a frame to arrive. if (!TimedWaitForEncodedFrame(timestamp_ms, 2 * 1000 / kFps)) { ++num_dropped; } timestamp_ms += 1000 / kFps; } video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); // Target framerate should be still be near the expected target, despite // the frame drops. EXPECT_NEAR(fake_encoder_.GetLastFramerate(), kFps, 1); // Frame drops should be within 5% of expected 50%. EXPECT_NEAR(num_dropped, kNumFramesInRun / 2, 5 * kNumFramesInRun / 100); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, ConfiguresCorrectFrameRate) { const int kFrameWidth = 320; const int kFrameHeight = 240; const int kActualInputFps = 24; const int kTargetBitrateBps = 120000; ASSERT_GT(max_framerate_, kActualInputFps); int64_t timestamp_ms = fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec; max_framerate_ = kActualInputFps; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); // Insert 3 seconds of video, with an input fps lower than configured max. for (int i = 0; i < kActualInputFps * 3; ++i) { video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); // Wait up to two frame durations for a frame to arrive. WaitForEncodedFrame(timestamp_ms); timestamp_ms += 1000 / kActualInputFps; } EXPECT_NEAR(kActualInputFps, fake_encoder_.GetLastFramerate(), 1); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AccumulatesUpdateRectOnDroppedFrames) { VideoFrame::UpdateRect rect; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); fake_encoder_.BlockNextEncode(); video_source_.IncomingCapturedFrame( CreateFrameWithUpdatedPixel(1, nullptr, 0)); WaitForEncodedFrame(1); // On the very first frame full update should be forced. rect = fake_encoder_.GetLastUpdateRect(); EXPECT_EQ(rect.offset_x, 0); EXPECT_EQ(rect.offset_y, 0); EXPECT_EQ(rect.height, codec_height_); EXPECT_EQ(rect.width, codec_width_); // Here, the encoder thread will be blocked in the TestEncoder waiting for a // call to ContinueEncode. video_source_.IncomingCapturedFrame( CreateFrameWithUpdatedPixel(2, nullptr, 1)); ExpectDroppedFrame(); video_source_.IncomingCapturedFrame( CreateFrameWithUpdatedPixel(3, nullptr, 10)); ExpectDroppedFrame(); fake_encoder_.ContinueEncode(); WaitForEncodedFrame(3); // Updates to pixels 1 and 10 should be accumulated to one 10x1 rect. rect = fake_encoder_.GetLastUpdateRect(); EXPECT_EQ(rect.offset_x, 1); EXPECT_EQ(rect.offset_y, 0); EXPECT_EQ(rect.width, 10); EXPECT_EQ(rect.height, 1); video_source_.IncomingCapturedFrame( CreateFrameWithUpdatedPixel(4, nullptr, 0)); WaitForEncodedFrame(4); // Previous frame was encoded, so no accumulation should happen. rect = fake_encoder_.GetLastUpdateRect(); EXPECT_EQ(rect.offset_x, 0); EXPECT_EQ(rect.offset_y, 0); EXPECT_EQ(rect.width, 1); EXPECT_EQ(rect.height, 1); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SetsFrameTypes) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); // First frame is always keyframe. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); EXPECT_THAT( fake_encoder_.LastFrameTypes(), ::testing::ElementsAre(VideoFrameType{VideoFrameType::kVideoFrameKey})); // Insert delta frame. video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); WaitForEncodedFrame(2); EXPECT_THAT( fake_encoder_.LastFrameTypes(), ::testing::ElementsAre(VideoFrameType{VideoFrameType::kVideoFrameDelta})); // Request next frame be a key-frame. video_stream_encoder_->SendKeyFrame(); video_source_.IncomingCapturedFrame(CreateFrame(3, nullptr)); WaitForEncodedFrame(3); EXPECT_THAT( fake_encoder_.LastFrameTypes(), ::testing::ElementsAre(VideoFrameType{VideoFrameType::kVideoFrameKey})); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SetsFrameTypesSimulcast) { // Setup simulcast with three streams. ResetEncoder("VP8", 3, 1, 1, false); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kSimulcastTargetBitrateBps), DataRate::BitsPerSec(kSimulcastTargetBitrateBps), DataRate::BitsPerSec(kSimulcastTargetBitrateBps), 0, 0, 0); // Wait for all three layers before triggering event. sink_.SetNumExpectedLayers(3); // First frame is always keyframe. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); EXPECT_THAT(fake_encoder_.LastFrameTypes(), ::testing::ElementsAreArray({VideoFrameType::kVideoFrameKey, VideoFrameType::kVideoFrameKey, VideoFrameType::kVideoFrameKey})); // Insert delta frame. video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); WaitForEncodedFrame(2); EXPECT_THAT(fake_encoder_.LastFrameTypes(), ::testing::ElementsAreArray({VideoFrameType::kVideoFrameDelta, VideoFrameType::kVideoFrameDelta, VideoFrameType::kVideoFrameDelta})); // Request next frame be a key-frame. // Only first stream is configured to produce key-frame. video_stream_encoder_->SendKeyFrame(); video_source_.IncomingCapturedFrame(CreateFrame(3, nullptr)); WaitForEncodedFrame(3); // TODO(webrtc:10615): Map keyframe request to spatial layer. Currently // keyframe request on any layer triggers keyframe on all layers. EXPECT_THAT(fake_encoder_.LastFrameTypes(), ::testing::ElementsAreArray({VideoFrameType::kVideoFrameKey, VideoFrameType::kVideoFrameKey, VideoFrameType::kVideoFrameKey})); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, RequestKeyframeInternalSource) { // Configure internal source factory and setup test again. encoder_factory_.SetHasInternalSource(true); ResetEncoder("VP8", 1, 1, 1, false); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); // Call encoder directly, simulating internal source where encoded frame // callback in VideoStreamEncoder is called despite no OnFrame(). fake_encoder_.InjectFrame(CreateFrame(1, nullptr), true); EXPECT_TRUE(WaitForFrame(kDefaultTimeoutMs)); EXPECT_THAT( fake_encoder_.LastFrameTypes(), ::testing::ElementsAre(VideoFrameType{VideoFrameType::kVideoFrameKey})); const std::vector kDeltaFrame = { VideoFrameType::kVideoFrameDelta}; // Need to set timestamp manually since manually for injected frame. VideoFrame frame = CreateFrame(101, nullptr); frame.set_timestamp(101); fake_encoder_.InjectFrame(frame, false); EXPECT_TRUE(WaitForFrame(kDefaultTimeoutMs)); EXPECT_THAT( fake_encoder_.LastFrameTypes(), ::testing::ElementsAre(VideoFrameType{VideoFrameType::kVideoFrameDelta})); // Request key-frame. The forces a dummy frame down into the encoder. fake_encoder_.ExpectNullFrame(); video_stream_encoder_->SendKeyFrame(); EXPECT_TRUE(WaitForFrame(kDefaultTimeoutMs)); EXPECT_THAT( fake_encoder_.LastFrameTypes(), ::testing::ElementsAre(VideoFrameType{VideoFrameType::kVideoFrameKey})); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdjustsTimestampInternalSource) { // Configure internal source factory and setup test again. encoder_factory_.SetHasInternalSource(true); ResetEncoder("VP8", 1, 1, 1, false); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); int64_t timestamp = 1; EncodedImage image; image.SetEncodedData( EncodedImageBuffer::Create(kTargetBitrateBps / kDefaultFramerate / 8)); image.capture_time_ms_ = ++timestamp; image.SetTimestamp(static_cast(timestamp * 90)); const int64_t kEncodeFinishDelayMs = 10; image.timing_.encode_start_ms = timestamp; image.timing_.encode_finish_ms = timestamp + kEncodeFinishDelayMs; fake_encoder_.InjectEncodedImage(image); // Wait for frame without incrementing clock. EXPECT_TRUE(sink_.WaitForFrame(kDefaultTimeoutMs)); // Frame is captured kEncodeFinishDelayMs before it's encoded, so restored // capture timestamp should be kEncodeFinishDelayMs in the past. EXPECT_EQ(sink_.GetLastCaptureTimeMs(), fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec - kEncodeFinishDelayMs); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DoesNotRewriteH264BitstreamWithOptimalSps) { // SPS contains VUI with restrictions on the maximum number of reordered // pictures, there is no need to rewrite the bitstream to enable faster // decoding. ResetEncoder("H264", 1, 1, 1, false); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); fake_encoder_.SetEncodedImageData( EncodedImageBuffer::Create(optimal_sps, sizeof(optimal_sps))); video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); EXPECT_THAT(sink_.GetLastEncodedImageData(), testing::ElementsAreArray(optimal_sps)); RTPFragmentationHeader last_fragmentation = sink_.GetLastFragmentation(); ASSERT_THAT(last_fragmentation.fragmentationVectorSize, 1U); EXPECT_EQ(last_fragmentation.fragmentationOffset[0], 4U); EXPECT_EQ(last_fragmentation.fragmentationLength[0], sizeof(optimal_sps) - 4); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, RewritesH264BitstreamWithNonOptimalSps) { // SPS does not contain VUI, the bitstream is will be rewritten with added // VUI with restrictions on the maximum number of reordered pictures to // enable faster decoding. uint8_t original_sps[] = {0, 0, 0, 1, H264::NaluType::kSps, 0x00, 0x00, 0x03, 0x03, 0xF4, 0x05, 0x03, 0xC7, 0xC0}; ResetEncoder("H264", 1, 1, 1, false); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); fake_encoder_.SetEncodedImageData( EncodedImageBuffer::Create(original_sps, sizeof(original_sps))); video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); EXPECT_THAT(sink_.GetLastEncodedImageData(), testing::ElementsAreArray(optimal_sps)); RTPFragmentationHeader last_fragmentation = sink_.GetLastFragmentation(); ASSERT_THAT(last_fragmentation.fragmentationVectorSize, 1U); EXPECT_EQ(last_fragmentation.fragmentationOffset[0], 4U); EXPECT_EQ(last_fragmentation.fragmentationLength[0], sizeof(optimal_sps) - 4); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, CopiesVideoFrameMetadataAfterDownscale) { const int kFrameWidth = 1280; const int kFrameHeight = 720; const int kTargetBitrateBps = 300000; // To low for HD resolution. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); // Insert a first video frame. It should be dropped because of downscale in // resolution. int64_t timestamp_ms = fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec; VideoFrame frame = CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight); frame.set_rotation(kVideoRotation_270); video_source_.IncomingCapturedFrame(frame); ExpectDroppedFrame(); // Second frame is downscaled. timestamp_ms = fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec; frame = CreateFrame(timestamp_ms, kFrameWidth / 2, kFrameHeight / 2); frame.set_rotation(kVideoRotation_90); video_source_.IncomingCapturedFrame(frame); WaitForEncodedFrame(timestamp_ms); sink_.CheckLastFrameRotationMatches(kVideoRotation_90); // Insert another frame, also downscaled. timestamp_ms = fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec; frame = CreateFrame(timestamp_ms, kFrameWidth / 2, kFrameHeight / 2); frame.set_rotation(kVideoRotation_180); video_source_.IncomingCapturedFrame(frame); WaitForEncodedFrame(timestamp_ms); sink_.CheckLastFrameRotationMatches(kVideoRotation_180); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, BandwidthAllocationLowerBound) { const int kFrameWidth = 320; const int kFrameHeight = 180; // Initial rate. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( /*target_bitrate=*/DataRate::KilobitsPerSec(300), /*stable_target_bitrate=*/DataRate::KilobitsPerSec(300), /*link_allocation=*/DataRate::KilobitsPerSec(300), /*fraction_lost=*/0, /*rtt_ms=*/0, /*cwnd_reduce_ratio=*/0); // Insert a first video frame so that encoder gets configured. int64_t timestamp_ms = fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec; VideoFrame frame = CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight); frame.set_rotation(kVideoRotation_270); video_source_.IncomingCapturedFrame(frame); WaitForEncodedFrame(timestamp_ms); // Set a target rate below the minimum allowed by the codec settings. VideoCodec codec_config = fake_encoder_.codec_config(); DataRate min_rate = DataRate::KilobitsPerSec(codec_config.minBitrate); DataRate target_rate = min_rate - DataRate::KilobitsPerSec(1); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( /*target_bitrate=*/target_rate, /*stable_target_bitrate=*/target_rate, /*link_allocation=*/target_rate, /*fraction_lost=*/0, /*rtt_ms=*/0, /*cwnd_reduce_ratio=*/0); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); // Target bitrate and bandwidth allocation should both be capped at min_rate. auto rate_settings = fake_encoder_.GetAndResetLastRateControlSettings(); ASSERT_TRUE(rate_settings.has_value()); DataRate allocation_sum = DataRate::BitsPerSec(rate_settings->bitrate.get_sum_bps()); EXPECT_EQ(min_rate, allocation_sum); EXPECT_EQ(rate_settings->bandwidth_allocation, min_rate); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, EncoderRatesPropagatedOnReconfigure) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); // Capture a frame and wait for it to synchronize with the encoder thread. int64_t timestamp_ms = fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec; video_source_.IncomingCapturedFrame(CreateFrame(timestamp_ms, nullptr)); WaitForEncodedFrame(1); auto prev_rate_settings = fake_encoder_.GetAndResetLastRateControlSettings(); ASSERT_TRUE(prev_rate_settings.has_value()); EXPECT_EQ(static_cast(prev_rate_settings->framerate_fps), kDefaultFramerate); // Send 1s of video to ensure the framerate is stable at kDefaultFramerate. for (int i = 0; i < 2 * kDefaultFramerate; i++) { timestamp_ms += 1000 / kDefaultFramerate; video_source_.IncomingCapturedFrame(CreateFrame(timestamp_ms, nullptr)); WaitForEncodedFrame(timestamp_ms); } EXPECT_EQ(static_cast(fake_encoder_.GetLastFramerate()), kDefaultFramerate); // Capture larger frame to trigger a reconfigure. codec_height_ *= 2; codec_width_ *= 2; timestamp_ms += 1000 / kDefaultFramerate; video_source_.IncomingCapturedFrame(CreateFrame(timestamp_ms, nullptr)); WaitForEncodedFrame(timestamp_ms); EXPECT_EQ(2, sink_.number_of_reconfigurations()); auto current_rate_settings = fake_encoder_.GetAndResetLastRateControlSettings(); // Ensure we have actually reconfigured twice // The rate settings should have been set again even though // they haven't changed. ASSERT_TRUE(current_rate_settings.has_value()); EXPECT_EQ(prev_rate_settings, current_rate_settings); video_stream_encoder_->Stop(); } struct MockEncoderSwitchRequestCallback : public EncoderSwitchRequestCallback { MOCK_METHOD(void, RequestEncoderFallback, (), (override)); MOCK_METHOD(void, RequestEncoderSwitch, (const Config& conf), (override)); MOCK_METHOD(void, RequestEncoderSwitch, (const webrtc::SdpVideoFormat& format), (override)); }; TEST_F(VideoStreamEncoderTest, BitrateEncoderSwitch) { constexpr int kDontCare = 100; StrictMock switch_callback; video_send_config_.encoder_settings.encoder_switch_request_callback = &switch_callback; VideoEncoderConfig encoder_config = video_encoder_config_.Copy(); encoder_config.codec_type = kVideoCodecVP8; webrtc::test::ScopedFieldTrials field_trial( "WebRTC-NetworkCondition-EncoderSwitch/" "codec_thresholds:VP8;100;-1|H264;-1;30000," "to_codec:AV1,to_param:ping,to_value:pong,window:2.0/"); // Reset encoder for new configuration to take effect. ConfigureEncoder(std::move(encoder_config)); // Send one frame to trigger ReconfigureEncoder. video_source_.IncomingCapturedFrame( CreateFrame(kDontCare, kDontCare, kDontCare)); using Config = EncoderSwitchRequestCallback::Config; EXPECT_CALL(switch_callback, RequestEncoderSwitch(Matcher( AllOf(Field(&Config::codec_name, "AV1"), Field(&Config::param, "ping"), Field(&Config::value, "pong"))))); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( /*target_bitrate=*/DataRate::KilobitsPerSec(50), /*stable_target_bitrate=*/DataRate::KilobitsPerSec(kDontCare), /*link_allocation=*/DataRate::KilobitsPerSec(kDontCare), /*fraction_lost=*/0, /*rtt_ms=*/0, /*cwnd_reduce_ratio=*/0); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, VideoSuspendedNoEncoderSwitch) { constexpr int kDontCare = 100; StrictMock switch_callback; video_send_config_.encoder_settings.encoder_switch_request_callback = &switch_callback; VideoEncoderConfig encoder_config = video_encoder_config_.Copy(); encoder_config.codec_type = kVideoCodecVP8; webrtc::test::ScopedFieldTrials field_trial( "WebRTC-NetworkCondition-EncoderSwitch/" "codec_thresholds:VP8;100;-1|H264;-1;30000," "to_codec:AV1,to_param:ping,to_value:pong,window:2.0/"); // Reset encoder for new configuration to take effect. ConfigureEncoder(std::move(encoder_config)); // Send one frame to trigger ReconfigureEncoder. video_source_.IncomingCapturedFrame( CreateFrame(kDontCare, kDontCare, kDontCare)); using Config = EncoderSwitchRequestCallback::Config; EXPECT_CALL(switch_callback, RequestEncoderSwitch(Matcher(_))) .Times(0); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( /*target_bitrate=*/DataRate::KilobitsPerSec(0), /*stable_target_bitrate=*/DataRate::KilobitsPerSec(0), /*link_allocation=*/DataRate::KilobitsPerSec(kDontCare), /*fraction_lost=*/0, /*rtt_ms=*/0, /*cwnd_reduce_ratio=*/0); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, ResolutionEncoderSwitch) { constexpr int kSufficientBitrateToNotDrop = 1000; constexpr int kHighRes = 500; constexpr int kLowRes = 100; StrictMock switch_callback; video_send_config_.encoder_settings.encoder_switch_request_callback = &switch_callback; webrtc::test::ScopedFieldTrials field_trial( "WebRTC-NetworkCondition-EncoderSwitch/" "codec_thresholds:VP8;120;-1|H264;-1;30000," "to_codec:AV1,to_param:ping,to_value:pong,window:2.0/"); VideoEncoderConfig encoder_config = video_encoder_config_.Copy(); encoder_config.codec_type = kVideoCodecH264; // Reset encoder for new configuration to take effect. ConfigureEncoder(std::move(encoder_config)); // The VideoStreamEncoder needs some bitrate before it can start encoding, // setting some bitrate so that subsequent calls to WaitForEncodedFrame does // not fail. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( /*target_bitrate=*/DataRate::KilobitsPerSec(kSufficientBitrateToNotDrop), /*stable_target_bitrate=*/ DataRate::KilobitsPerSec(kSufficientBitrateToNotDrop), /*link_allocation=*/DataRate::KilobitsPerSec(kSufficientBitrateToNotDrop), /*fraction_lost=*/0, /*rtt_ms=*/0, /*cwnd_reduce_ratio=*/0); // Send one frame to trigger ReconfigureEncoder. video_source_.IncomingCapturedFrame(CreateFrame(1, kHighRes, kHighRes)); WaitForEncodedFrame(1); using Config = EncoderSwitchRequestCallback::Config; EXPECT_CALL(switch_callback, RequestEncoderSwitch(Matcher( AllOf(Field(&Config::codec_name, "AV1"), Field(&Config::param, "ping"), Field(&Config::value, "pong"))))); video_source_.IncomingCapturedFrame(CreateFrame(2, kLowRes, kLowRes)); WaitForEncodedFrame(2); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, EncoderSelectorCurrentEncoderIsSignaled) { constexpr int kDontCare = 100; StrictMock encoder_selector; auto encoder_factory = std::make_unique( &fake_encoder_, &encoder_selector); video_send_config_.encoder_settings.encoder_factory = encoder_factory.get(); // Reset encoder for new configuration to take effect. ConfigureEncoder(video_encoder_config_.Copy()); EXPECT_CALL(encoder_selector, OnCurrentEncoder(_)); video_source_.IncomingCapturedFrame( CreateFrame(kDontCare, kDontCare, kDontCare)); video_stream_encoder_->Stop(); // The encoders produces by the VideoEncoderProxyFactory have a pointer back // to it's factory, so in order for the encoder instance in the // |video_stream_encoder_| to be destroyed before the |encoder_factory| we // reset the |video_stream_encoder_| here. video_stream_encoder_.reset(); } TEST_F(VideoStreamEncoderTest, EncoderSelectorBitrateSwitch) { constexpr int kDontCare = 100; NiceMock encoder_selector; StrictMock switch_callback; video_send_config_.encoder_settings.encoder_switch_request_callback = &switch_callback; auto encoder_factory = std::make_unique( &fake_encoder_, &encoder_selector); video_send_config_.encoder_settings.encoder_factory = encoder_factory.get(); // Reset encoder for new configuration to take effect. ConfigureEncoder(video_encoder_config_.Copy()); ON_CALL(encoder_selector, OnAvailableBitrate(_)) .WillByDefault(Return(SdpVideoFormat("AV1"))); EXPECT_CALL(switch_callback, RequestEncoderSwitch(Matcher( Field(&SdpVideoFormat::name, "AV1")))); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( /*target_bitrate=*/DataRate::KilobitsPerSec(50), /*stable_target_bitrate=*/DataRate::KilobitsPerSec(kDontCare), /*link_allocation=*/DataRate::KilobitsPerSec(kDontCare), /*fraction_lost=*/0, /*rtt_ms=*/0, /*cwnd_reduce_ratio=*/0); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, EncoderSelectorBrokenEncoderSwitch) { constexpr int kSufficientBitrateToNotDrop = 1000; constexpr int kDontCare = 100; NiceMock video_encoder; NiceMock encoder_selector; StrictMock switch_callback; video_send_config_.encoder_settings.encoder_switch_request_callback = &switch_callback; auto encoder_factory = std::make_unique( &video_encoder, &encoder_selector); video_send_config_.encoder_settings.encoder_factory = encoder_factory.get(); // Reset encoder for new configuration to take effect. ConfigureEncoder(video_encoder_config_.Copy()); // The VideoStreamEncoder needs some bitrate before it can start encoding, // setting some bitrate so that subsequent calls to WaitForEncodedFrame does // not fail. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( /*target_bitrate=*/DataRate::KilobitsPerSec(kSufficientBitrateToNotDrop), /*stable_target_bitrate=*/ DataRate::KilobitsPerSec(kSufficientBitrateToNotDrop), /*link_allocation=*/DataRate::KilobitsPerSec(kSufficientBitrateToNotDrop), /*fraction_lost=*/0, /*rtt_ms=*/0, /*cwnd_reduce_ratio=*/0); ON_CALL(video_encoder, Encode(_, _)) .WillByDefault(Return(WEBRTC_VIDEO_CODEC_ENCODER_FAILURE)); ON_CALL(encoder_selector, OnEncoderBroken()) .WillByDefault(Return(SdpVideoFormat("AV2"))); rtc::Event encode_attempted; EXPECT_CALL(switch_callback, RequestEncoderSwitch(Matcher(_))) .WillOnce([&encode_attempted](const SdpVideoFormat& format) { EXPECT_EQ(format.name, "AV2"); encode_attempted.Set(); }); video_source_.IncomingCapturedFrame(CreateFrame(1, kDontCare, kDontCare)); encode_attempted.Wait(3000); video_stream_encoder_->Stop(); // The encoders produces by the VideoEncoderProxyFactory have a pointer back // to it's factory, so in order for the encoder instance in the // |video_stream_encoder_| to be destroyed before the |encoder_factory| we // reset the |video_stream_encoder_| here. video_stream_encoder_.reset(); } TEST_F(VideoStreamEncoderTest, AllocationPropagatedToEncoderWhenTargetRateChanged) { const int kFrameWidth = 320; const int kFrameHeight = 180; // Set initial rate. auto rate = DataRate::KilobitsPerSec(100); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( /*target_bitrate=*/rate, /*stable_target_bitrate=*/rate, /*link_allocation=*/rate, /*fraction_lost=*/0, /*rtt_ms=*/0, /*cwnd_reduce_ratio=*/0); // Insert a first video frame so that encoder gets configured. int64_t timestamp_ms = fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec; VideoFrame frame = CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight); frame.set_rotation(kVideoRotation_270); video_source_.IncomingCapturedFrame(frame); WaitForEncodedFrame(timestamp_ms); EXPECT_EQ(1, fake_encoder_.GetNumSetRates()); // Change of target bitrate propagates to the encoder. auto new_stable_rate = rate - DataRate::KilobitsPerSec(5); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( /*target_bitrate=*/new_stable_rate, /*stable_target_bitrate=*/new_stable_rate, /*link_allocation=*/rate, /*fraction_lost=*/0, /*rtt_ms=*/0, /*cwnd_reduce_ratio=*/0); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ(2, fake_encoder_.GetNumSetRates()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AllocationNotPropagatedToEncoderWhenTargetRateUnchanged) { const int kFrameWidth = 320; const int kFrameHeight = 180; // Set initial rate. auto rate = DataRate::KilobitsPerSec(100); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( /*target_bitrate=*/rate, /*stable_target_bitrate=*/rate, /*link_allocation=*/rate, /*fraction_lost=*/0, /*rtt_ms=*/0, /*cwnd_reduce_ratio=*/0); // Insert a first video frame so that encoder gets configured. int64_t timestamp_ms = fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec; VideoFrame frame = CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight); frame.set_rotation(kVideoRotation_270); video_source_.IncomingCapturedFrame(frame); WaitForEncodedFrame(timestamp_ms); EXPECT_EQ(1, fake_encoder_.GetNumSetRates()); // Set a higher target rate without changing the link_allocation. Should not // reset encoder's rate. auto new_stable_rate = rate - DataRate::KilobitsPerSec(5); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( /*target_bitrate=*/rate, /*stable_target_bitrate=*/new_stable_rate, /*link_allocation=*/rate, /*fraction_lost=*/0, /*rtt_ms=*/0, /*cwnd_reduce_ratio=*/0); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ(1, fake_encoder_.GetNumSetRates()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AutomaticAnimationDetection) { test::ScopedFieldTrials field_trials( "WebRTC-AutomaticAnimationDetectionScreenshare/" "enabled:true,min_fps:20,min_duration_ms:1000,min_area_ratio:0.8/"); const int kFramerateFps = 30; const int kWidth = 1920; const int kHeight = 1080; const int kNumFrames = 2 * kFramerateFps; // >1 seconds of frames. // Works on screenshare mode. ResetEncoder("VP8", 1, 1, 1, /*screenshare*/ true); // We rely on the automatic resolution adaptation, but we handle framerate // adaptation manually by mocking the stats proxy. video_source_.set_adaptation_enabled(true); // BALANCED degradation preference is required for this feature. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); video_stream_encoder_->SetSource(&video_source_, webrtc::DegradationPreference::BALANCED); EXPECT_THAT(video_source_.sink_wants(), UnlimitedSinkWants()); VideoFrame frame = CreateFrame(1, kWidth, kHeight); frame.set_update_rect(VideoFrame::UpdateRect{0, 0, kWidth, kHeight}); // Pass enough frames with the full update to trigger animation detection. for (int i = 0; i < kNumFrames; ++i) { int64_t timestamp_ms = fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec; frame.set_ntp_time_ms(timestamp_ms); frame.set_timestamp_us(timestamp_ms * 1000); video_source_.IncomingCapturedFrame(frame); WaitForEncodedFrame(timestamp_ms); } // Resolution should be limited. rtc::VideoSinkWants expected; expected.max_framerate_fps = kFramerateFps; expected.max_pixel_count = 1280 * 720 + 1; EXPECT_THAT(video_source_.sink_wants(), FpsEqResolutionLt(expected)); // Pass one frame with no known update. // Resolution cap should be removed immediately. int64_t timestamp_ms = fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec; frame.set_ntp_time_ms(timestamp_ms); frame.set_timestamp_us(timestamp_ms * 1000); frame.clear_update_rect(); video_source_.IncomingCapturedFrame(frame); WaitForEncodedFrame(timestamp_ms); // Resolution should be unlimited now. EXPECT_THAT(video_source_.sink_wants(), FpsMatchesResolutionMax(Eq(kFramerateFps))); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, ConfiguresVp9SvcAtOddResolutions) { const int kWidth = 720; // 540p adapted down. const int kHeight = 405; const int kNumFrames = 3; // Works on screenshare mode. ResetEncoder("VP9", /*num_streams=*/1, /*num_temporal_layers=*/1, /*num_spatial_layers=*/2, /*screenshare=*/true); video_source_.set_adaptation_enabled(true); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), DataRate::BitsPerSec(kTargetBitrateBps), 0, 0, 0); VideoFrame frame = CreateFrame(1, kWidth, kHeight); // Pass enough frames with the full update to trigger animation detection. for (int i = 0; i < kNumFrames; ++i) { int64_t timestamp_ms = fake_clock_.TimeNanos() / rtc::kNumNanosecsPerMillisec; frame.set_ntp_time_ms(timestamp_ms); frame.set_timestamp_us(timestamp_ms * 1000); video_source_.IncomingCapturedFrame(frame); WaitForEncodedFrame(timestamp_ms); } video_stream_encoder_->Stop(); } } // namespace webrtc