/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "AudioResamplerDyn" //#define LOG_NDEBUG 0 #include #include #include #include #include #include #include #include #include #include "AudioResamplerFirOps.h" // USE_NEON, USE_SSE and USE_INLINE_ASSEMBLY defined here #include "AudioResamplerFirProcess.h" #include "AudioResamplerFirProcessNeon.h" #include "AudioResamplerFirProcessSSE.h" #include "AudioResamplerFirGen.h" // requires math.h #include "AudioResamplerDyn.h" //#define DEBUG_RESAMPLER // use this for our buffer alignment. Should be at least 32 bytes. constexpr size_t CACHE_LINE_SIZE = 64; namespace android { /* * InBuffer is a type agnostic input buffer. * * Layout of the state buffer for halfNumCoefs=8. * * [rrrrrrppppppppnnnnnnnnrrrrrrrrrrrrrrrrrrr.... rrrrrrr] * S I R * * S = mState * I = mImpulse * R = mRingFull * p = past samples, convoluted with the (p)ositive side of sinc() * n = future samples, convoluted with the (n)egative side of sinc() * r = extra space for implementing the ring buffer */ template AudioResamplerDyn::InBuffer::InBuffer() : mState(NULL), mImpulse(NULL), mRingFull(NULL), mStateCount(0) { } template AudioResamplerDyn::InBuffer::~InBuffer() { init(); } template void AudioResamplerDyn::InBuffer::init() { free(mState); mState = NULL; mImpulse = NULL; mRingFull = NULL; mStateCount = 0; } // resizes the state buffer to accommodate the appropriate filter length template void AudioResamplerDyn::InBuffer::resize(int CHANNELS, int halfNumCoefs) { // calculate desired state size size_t stateCount = halfNumCoefs * CHANNELS * 2 * kStateSizeMultipleOfFilterLength; // check if buffer needs resizing if (mState && stateCount == mStateCount && mRingFull-mState == (ssize_t) (mStateCount-halfNumCoefs*CHANNELS)) { return; } // create new buffer TI* state = NULL; (void)posix_memalign( reinterpret_cast(&state), CACHE_LINE_SIZE /* alignment */, stateCount * sizeof(*state)); memset(state, 0, stateCount*sizeof(*state)); // attempt to preserve state if (mState) { TI* srcLo = mImpulse - halfNumCoefs*CHANNELS; TI* srcHi = mImpulse + halfNumCoefs*CHANNELS; TI* dst = state; if (srcLo < mState) { dst += mState-srcLo; srcLo = mState; } if (srcHi > mState + mStateCount) { srcHi = mState + mStateCount; } memcpy(dst, srcLo, (srcHi - srcLo) * sizeof(*srcLo)); free(mState); } // set class member vars mState = state; mStateCount = stateCount; mImpulse = state + halfNumCoefs*CHANNELS; // actually one sample greater than needed mRingFull = state + mStateCount - halfNumCoefs*CHANNELS; } // copy in the input data into the head (impulse+halfNumCoefs) of the buffer. template template void AudioResamplerDyn::InBuffer::readAgain(TI*& impulse, const int halfNumCoefs, const TI* const in, const size_t inputIndex) { TI* head = impulse + halfNumCoefs*CHANNELS; for (size_t i=0 ; i template void AudioResamplerDyn::InBuffer::readAdvance(TI*& impulse, const int halfNumCoefs, const TI* const in, const size_t inputIndex) { impulse += CHANNELS; if (CC_UNLIKELY(impulse >= mRingFull)) { const size_t shiftDown = mRingFull - mState - halfNumCoefs*CHANNELS; memcpy(mState, mState+shiftDown, halfNumCoefs*CHANNELS*2*sizeof(TI)); impulse -= shiftDown; } readAgain(impulse, halfNumCoefs, in, inputIndex); } template void AudioResamplerDyn::InBuffer::reset() { // clear resampler state if (mState != nullptr) { memset(mState, 0, mStateCount * sizeof(TI)); } } template void AudioResamplerDyn::Constants::set( int L, int halfNumCoefs, int inSampleRate, int outSampleRate) { int bits = 0; int lscale = inSampleRate/outSampleRate < 2 ? L - 1 : static_cast(static_cast(L)*inSampleRate/outSampleRate); for (int i=lscale; i; ++bits, i>>=1) ; mL = L; mShift = kNumPhaseBits - bits; mHalfNumCoefs = halfNumCoefs; } template AudioResamplerDyn::AudioResamplerDyn( int inChannelCount, int32_t sampleRate, src_quality quality) : AudioResampler(inChannelCount, sampleRate, quality), mResampleFunc(0), mFilterSampleRate(0), mFilterQuality(DEFAULT_QUALITY), mCoefBuffer(NULL) { mVolumeSimd[0] = mVolumeSimd[1] = 0; // The AudioResampler base class assumes we are always ready for 1:1 resampling. // We reset mInSampleRate to 0, so setSampleRate() will calculate filters for // setSampleRate() for 1:1. (May be removed if precalculated filters are used.) mInSampleRate = 0; mConstants.set(128, 8, mSampleRate, mSampleRate); // TODO: set better // fetch property based resampling parameters mPropertyEnableAtSampleRate = property_get_int32( "ro.audio.resampler.psd.enable_at_samplerate", mPropertyEnableAtSampleRate); mPropertyHalfFilterLength = property_get_int32( "ro.audio.resampler.psd.halflength", mPropertyHalfFilterLength); mPropertyStopbandAttenuation = property_get_int32( "ro.audio.resampler.psd.stopband", mPropertyStopbandAttenuation); mPropertyCutoffPercent = property_get_int32( "ro.audio.resampler.psd.cutoff_percent", mPropertyCutoffPercent); mPropertyTransitionBandwidthCheat = property_get_int32( "ro.audio.resampler.psd.tbwcheat", mPropertyTransitionBandwidthCheat); } template AudioResamplerDyn::~AudioResamplerDyn() { free(mCoefBuffer); } template void AudioResamplerDyn::init() { mFilterSampleRate = 0; // always trigger new filter generation mInBuffer.init(); } template void AudioResamplerDyn::setVolume(float left, float right) { AudioResampler::setVolume(left, right); if (is_same::value || is_same::value) { mVolumeSimd[0] = static_cast(left); mVolumeSimd[1] = static_cast(right); } else { // integer requires scaling to U4_28 (rounding down) // integer volumes are clamped to 0 to UNITY_GAIN so there // are no issues with signed overflow. mVolumeSimd[0] = u4_28_from_float(clampFloatVol(left)); mVolumeSimd[1] = u4_28_from_float(clampFloatVol(right)); } } // TODO: update to C++11 template T max(T a, T b) {return a > b ? a : b;} template T absdiff(T a, T b) {return a > b ? a - b : b - a;} template void AudioResamplerDyn::createKaiserFir(Constants &c, double stopBandAtten, int inSampleRate, int outSampleRate, double tbwCheat) { // compute the normalized transition bandwidth const double tbw = firKaiserTbw(c.mHalfNumCoefs, stopBandAtten); const double halfbw = tbw * 0.5; double fcr; // compute fcr, the 3 dB amplitude cut-off. if (inSampleRate < outSampleRate) { // upsample fcr = max(0.5 * tbwCheat - halfbw, halfbw); } else { // downsample fcr = max(0.5 * tbwCheat * outSampleRate / inSampleRate - halfbw, halfbw); } createKaiserFir(c, stopBandAtten, fcr); } template void AudioResamplerDyn::createKaiserFir(Constants &c, double stopBandAtten, double fcr) { // compute the normalized transition bandwidth const double tbw = firKaiserTbw(c.mHalfNumCoefs, stopBandAtten); const int phases = c.mL; const int halfLength = c.mHalfNumCoefs; // create buffer TC *coefs = nullptr; int ret = posix_memalign( reinterpret_cast(&coefs), CACHE_LINE_SIZE /* alignment */, (phases + 1) * halfLength * sizeof(TC)); LOG_ALWAYS_FATAL_IF(ret != 0, "Cannot allocate buffer memory, ret %d", ret); c.mFirCoefs = coefs; free(mCoefBuffer); mCoefBuffer = coefs; // square the computed minimum passband value (extra safety). double attenuation = computeWindowedSincMinimumPassbandValue(stopBandAtten); attenuation *= attenuation; // design filter firKaiserGen(coefs, phases, halfLength, stopBandAtten, fcr, attenuation); // update the design criteria mNormalizedCutoffFrequency = fcr; mNormalizedTransitionBandwidth = tbw; mFilterAttenuation = attenuation; mStopbandAttenuationDb = stopBandAtten; mPassbandRippleDb = computeWindowedSincPassbandRippleDb(stopBandAtten); #if 0 // Keep this debug code in case an app causes resampler design issues. const double halfbw = tbw * 0.5; // print basic filter stats ALOGD("L:%d hnc:%d stopBandAtten:%lf fcr:%lf atten:%lf tbw:%lf\n", c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, attenuation, tbw); // test the filter and report results. // Since this is a polyphase filter, normalized fp and fs must be scaled. const double fp = (fcr - halfbw) / phases; const double fs = (fcr + halfbw) / phases; double passMin, passMax, passRipple; double stopMax, stopRipple; const int32_t passSteps = 1000; testFir(coefs, c.mL, c.mHalfNumCoefs, fp, fs, passSteps, passSteps * c.mL /*stopSteps*/, passMin, passMax, passRipple, stopMax, stopRipple); ALOGD("passband(%lf, %lf): %.8lf %.8lf %.8lf\n", 0., fp, passMin, passMax, passRipple); ALOGD("stopband(%lf, %lf): %.8lf %.3lf\n", fs, 0.5, stopMax, stopRipple); #endif } // recursive gcd. Using objdump, it appears the tail recursion is converted to a while loop. static int gcd(int n, int m) { if (m == 0) { return n; } return gcd(m, n % m); } static bool isClose(int32_t newSampleRate, int32_t prevSampleRate, int32_t filterSampleRate, int32_t outSampleRate) { // different upsampling ratios do not need a filter change. if (filterSampleRate != 0 && filterSampleRate < outSampleRate && newSampleRate < outSampleRate) return true; // check design criteria again if downsampling is detected. int pdiff = absdiff(newSampleRate, prevSampleRate); int adiff = absdiff(newSampleRate, filterSampleRate); // allow up to 6% relative change increments. // allow up to 12% absolute change increments (from filter design) return pdiff < prevSampleRate>>4 && adiff < filterSampleRate>>3; } template void AudioResamplerDyn::setSampleRate(int32_t inSampleRate) { if (mInSampleRate == inSampleRate) { return; } int32_t oldSampleRate = mInSampleRate; uint32_t oldPhaseWrapLimit = mConstants.mL << mConstants.mShift; bool useS32 = false; mInSampleRate = inSampleRate; // TODO: Add precalculated Equiripple filters if (mFilterQuality != getQuality() || !isClose(inSampleRate, oldSampleRate, mFilterSampleRate, mSampleRate)) { mFilterSampleRate = inSampleRate; mFilterQuality = getQuality(); double stopBandAtten; double tbwCheat = 1.; // how much we "cheat" into aliasing int halfLength; double fcr = 0.; // Begin Kaiser Filter computation // // The quantization floor for S16 is about 96db - 10*log_10(#length) + 3dB. // Keep the stop band attenuation no greater than 84-85dB for 32 length S16 filters // // For s32 we keep the stop band attenuation at the same as 16b resolution, about // 96-98dB // if (mPropertyEnableAtSampleRate >= 0 && mSampleRate >= mPropertyEnableAtSampleRate) { // An alternative method which allows allows a greater fcr // at the expense of potential aliasing. halfLength = mPropertyHalfFilterLength; stopBandAtten = mPropertyStopbandAttenuation; useS32 = true; // Use either the stopband location for design (tbwCheat) // or use the 3dB cutoff location for design (fcr). // This choice is exclusive and based on whether fcr > 0. if (mPropertyTransitionBandwidthCheat != 0) { tbwCheat = mPropertyTransitionBandwidthCheat / 100.; } else { fcr = mInSampleRate <= mSampleRate ? 0.5 : 0.5 * mSampleRate / mInSampleRate; fcr *= mPropertyCutoffPercent / 100.; } } else { // Voice quality devices have lower sampling rates // (and may be a consequence of downstream AMR-WB / G.722 codecs). // For these devices, we ensure a wider resampler passband // at the expense of aliasing noise (stopband attenuation // and stopband frequency). // constexpr uint32_t kVoiceDeviceSampleRate = 16000; if (mFilterQuality == DYN_HIGH_QUALITY) { // float or 32b coefficients useS32 = true; stopBandAtten = 98.; if (inSampleRate >= mSampleRate * 4) { halfLength = 48; } else if (inSampleRate >= mSampleRate * 2) { halfLength = 40; } else { halfLength = 32; } if (mSampleRate <= kVoiceDeviceSampleRate) { if (inSampleRate >= mSampleRate * 2) { halfLength += 16; } else { halfLength += 8; } stopBandAtten = 84.; tbwCheat = 1.05; } } else if (mFilterQuality == DYN_LOW_QUALITY) { // float or 16b coefficients useS32 = false; stopBandAtten = 80.; if (inSampleRate >= mSampleRate * 4) { halfLength = 24; } else if (inSampleRate >= mSampleRate * 2) { halfLength = 16; } else { halfLength = 8; } if (mSampleRate <= kVoiceDeviceSampleRate) { if (inSampleRate >= mSampleRate * 2) { halfLength += 8; } tbwCheat = 1.05; } else if (inSampleRate <= mSampleRate) { tbwCheat = 1.05; } else { tbwCheat = 1.03; } } else { // DYN_MED_QUALITY // float or 16b coefficients // note: > 64 length filters with 16b coefs can have quantization noise problems useS32 = false; stopBandAtten = 84.; if (inSampleRate >= mSampleRate * 4) { halfLength = 32; } else if (inSampleRate >= mSampleRate * 2) { halfLength = 24; } else { halfLength = 16; } if (mSampleRate <= kVoiceDeviceSampleRate) { if (inSampleRate >= mSampleRate * 2) { halfLength += 16; } else { halfLength += 8; } tbwCheat = 1.05; } else if (inSampleRate <= mSampleRate) { tbwCheat = 1.03; } else { tbwCheat = 1.01; } } } if (fcr > 0.) { ALOGV("%s: mFilterQuality:%d inSampleRate:%d mSampleRate:%d halfLength:%d " "stopBandAtten:%lf fcr:%lf", __func__, mFilterQuality, inSampleRate, mSampleRate, halfLength, stopBandAtten, fcr); } else { ALOGV("%s: mFilterQuality:%d inSampleRate:%d mSampleRate:%d halfLength:%d " "stopBandAtten:%lf tbwCheat:%lf", __func__, mFilterQuality, inSampleRate, mSampleRate, halfLength, stopBandAtten, tbwCheat); } // determine the number of polyphases in the filterbank. // for 16b, it is desirable to have 2^(16/2) = 256 phases. // https://ccrma.stanford.edu/~jos/resample/Relation_Interpolation_Error_Quantization.html // // We are a bit more lax on this. int phases = mSampleRate / gcd(mSampleRate, inSampleRate); // TODO: Once dynamic sample rate change is an option, the code below // should be modified to execute only when dynamic sample rate change is enabled. // // as above, #phases less than 63 is too few phases for accurate linear interpolation. // we increase the phases to compensate, but more phases means more memory per // filter and more time to compute the filter. // // if we know that the filter will be used for dynamic sample rate changes, // that would allow us skip this part for fixed sample rate resamplers. // while (phases<63) { phases *= 2; // this code only needed to support dynamic rate changes } if (phases>=256) { // too many phases, always interpolate phases = 127; } // create the filter mConstants.set(phases, halfLength, inSampleRate, mSampleRate); if (fcr > 0.) { createKaiserFir(mConstants, stopBandAtten, fcr); } else { createKaiserFir(mConstants, stopBandAtten, inSampleRate, mSampleRate, tbwCheat); } } // End Kaiser filter // update phase and state based on the new filter. const Constants& c(mConstants); mInBuffer.resize(mChannelCount, c.mHalfNumCoefs); const uint32_t phaseWrapLimit = c.mL << c.mShift; // try to preserve as much of the phase fraction as possible for on-the-fly changes mPhaseFraction = static_cast(mPhaseFraction) * phaseWrapLimit / oldPhaseWrapLimit; mPhaseFraction %= phaseWrapLimit; // should not do anything, but just in case. mPhaseIncrement = static_cast(static_cast(phaseWrapLimit) * inSampleRate / mSampleRate); // determine which resampler to use // check if locked phase (works only if mPhaseIncrement has no "fractional phase bits") int locked = (mPhaseIncrement << (sizeof(mPhaseIncrement)*8 - c.mShift)) == 0; if (locked) { mPhaseFraction = mPhaseFraction >> c.mShift << c.mShift; // remove fractional phase } // stride is the minimum number of filter coefficients processed per loop iteration. // We currently only allow a stride of 16 to match with SIMD processing. // This means that the filter length must be a multiple of 16, // or half the filter length (mHalfNumCoefs) must be a multiple of 8. // // Note: A stride of 2 is achieved with non-SIMD processing. int stride = ((c.mHalfNumCoefs & 7) == 0) ? 16 : 2; LOG_ALWAYS_FATAL_IF(stride < 16, "Resampler stride must be 16 or more"); LOG_ALWAYS_FATAL_IF(mChannelCount < 1 || mChannelCount > FCC_LIMIT, "Resampler channels(%d) must be between 1 to %d", mChannelCount, FCC_LIMIT); // stride 16 (falls back to stride 2 for machines that do not support NEON) // For now use a #define as a compiler generated function table requires renaming. #pragma push_macro("AUDIORESAMPLERDYN_CASE") #undef AUDIORESAMPLERDYN_CASE #define AUDIORESAMPLERDYN_CASE(CHANNEL, LOCKED) \ case CHANNEL: if constexpr (CHANNEL <= FCC_LIMIT) {\ mResampleFunc = &AudioResamplerDyn::resample; \ } break if (locked) { switch (mChannelCount) { AUDIORESAMPLERDYN_CASE(1, true); AUDIORESAMPLERDYN_CASE(2, true); AUDIORESAMPLERDYN_CASE(3, true); AUDIORESAMPLERDYN_CASE(4, true); AUDIORESAMPLERDYN_CASE(5, true); AUDIORESAMPLERDYN_CASE(6, true); AUDIORESAMPLERDYN_CASE(7, true); AUDIORESAMPLERDYN_CASE(8, true); AUDIORESAMPLERDYN_CASE(9, true); AUDIORESAMPLERDYN_CASE(10, true); AUDIORESAMPLERDYN_CASE(11, true); AUDIORESAMPLERDYN_CASE(12, true); AUDIORESAMPLERDYN_CASE(13, true); AUDIORESAMPLERDYN_CASE(14, true); AUDIORESAMPLERDYN_CASE(15, true); AUDIORESAMPLERDYN_CASE(16, true); AUDIORESAMPLERDYN_CASE(17, true); AUDIORESAMPLERDYN_CASE(18, true); AUDIORESAMPLERDYN_CASE(19, true); AUDIORESAMPLERDYN_CASE(20, true); AUDIORESAMPLERDYN_CASE(21, true); AUDIORESAMPLERDYN_CASE(22, true); AUDIORESAMPLERDYN_CASE(23, true); AUDIORESAMPLERDYN_CASE(24, true); } } else { switch (mChannelCount) { AUDIORESAMPLERDYN_CASE(1, false); AUDIORESAMPLERDYN_CASE(2, false); AUDIORESAMPLERDYN_CASE(3, false); AUDIORESAMPLERDYN_CASE(4, false); AUDIORESAMPLERDYN_CASE(5, false); AUDIORESAMPLERDYN_CASE(6, false); AUDIORESAMPLERDYN_CASE(7, false); AUDIORESAMPLERDYN_CASE(8, false); AUDIORESAMPLERDYN_CASE(9, false); AUDIORESAMPLERDYN_CASE(10, false); AUDIORESAMPLERDYN_CASE(11, false); AUDIORESAMPLERDYN_CASE(12, false); AUDIORESAMPLERDYN_CASE(13, false); AUDIORESAMPLERDYN_CASE(14, false); AUDIORESAMPLERDYN_CASE(15, false); AUDIORESAMPLERDYN_CASE(16, false); AUDIORESAMPLERDYN_CASE(17, false); AUDIORESAMPLERDYN_CASE(18, false); AUDIORESAMPLERDYN_CASE(19, false); AUDIORESAMPLERDYN_CASE(20, false); AUDIORESAMPLERDYN_CASE(21, false); AUDIORESAMPLERDYN_CASE(22, false); AUDIORESAMPLERDYN_CASE(23, false); AUDIORESAMPLERDYN_CASE(24, false); } } #pragma pop_macro("AUDIORESAMPLERDYN_CASE") #ifdef DEBUG_RESAMPLER printf("channels:%d %s stride:%d %s coef:%d shift:%d\n", mChannelCount, locked ? "locked" : "interpolated", stride, useS32 ? "S32" : "S16", 2*c.mHalfNumCoefs, c.mShift); #endif } template size_t AudioResamplerDyn::resample(int32_t* out, size_t outFrameCount, AudioBufferProvider* provider) { return (this->*mResampleFunc)(reinterpret_cast(out), outFrameCount, provider); } template template size_t AudioResamplerDyn::resample(TO* out, size_t outFrameCount, AudioBufferProvider* provider) { // TODO Mono -> Mono is not supported. OUTPUT_CHANNELS reflects minimum of stereo out. const int OUTPUT_CHANNELS = (CHANNELS < 2) ? 2 : CHANNELS; const Constants& c(mConstants); const TC* const coefs = mConstants.mFirCoefs; TI* impulse = mInBuffer.getImpulse(); size_t inputIndex = 0; uint32_t phaseFraction = mPhaseFraction; const uint32_t phaseIncrement = mPhaseIncrement; size_t outputIndex = 0; size_t outputSampleCount = outFrameCount * OUTPUT_CHANNELS; const uint32_t phaseWrapLimit = c.mL << c.mShift; size_t inFrameCount = (phaseIncrement * (uint64_t)outFrameCount + phaseFraction) / phaseWrapLimit; // validate that inFrameCount is in signed 32 bit integer range. ALOG_ASSERT(0 <= inFrameCount && inFrameCount < (1U << 31)); //ALOGV("inFrameCount:%d outFrameCount:%d" // " phaseIncrement:%u phaseFraction:%u phaseWrapLimit:%u", // inFrameCount, outFrameCount, phaseIncrement, phaseFraction, phaseWrapLimit); // NOTE: be very careful when modifying the code here. register // pressure is very high and a small change might cause the compiler // to generate far less efficient code. // Always validate the result with objdump or test-resample. // the following logic is a bit convoluted to keep the main processing loop // as tight as possible with register allocation. while (outputIndex < outputSampleCount) { //ALOGV("LOOP: inFrameCount:%d outputIndex:%d outFrameCount:%d" // " phaseFraction:%u phaseWrapLimit:%u", // inFrameCount, outputIndex, outFrameCount, phaseFraction, phaseWrapLimit); // check inputIndex overflow ALOG_ASSERT(inputIndex <= mBuffer.frameCount, "inputIndex%zu > frameCount%zu", inputIndex, mBuffer.frameCount); // Buffer is empty, fetch a new one if necessary (inFrameCount > 0). // We may not fetch a new buffer if the existing data is sufficient. while (mBuffer.frameCount == 0 && inFrameCount > 0) { mBuffer.frameCount = inFrameCount; provider->getNextBuffer(&mBuffer); if (mBuffer.raw == NULL) { // We are either at the end of playback or in an underrun situation. // Reset buffer to prevent pop noise at the next buffer. mInBuffer.reset(); goto resample_exit; } inFrameCount -= mBuffer.frameCount; if (phaseFraction >= phaseWrapLimit) { // read in data mInBuffer.template readAdvance( impulse, c.mHalfNumCoefs, reinterpret_cast(mBuffer.raw), inputIndex); inputIndex++; phaseFraction -= phaseWrapLimit; while (phaseFraction >= phaseWrapLimit) { if (inputIndex >= mBuffer.frameCount) { inputIndex = 0; provider->releaseBuffer(&mBuffer); break; } mInBuffer.template readAdvance( impulse, c.mHalfNumCoefs, reinterpret_cast(mBuffer.raw), inputIndex); inputIndex++; phaseFraction -= phaseWrapLimit; } } } const TI* const in = reinterpret_cast(mBuffer.raw); const size_t frameCount = mBuffer.frameCount; const int coefShift = c.mShift; const int halfNumCoefs = c.mHalfNumCoefs; const TO* const volumeSimd = mVolumeSimd; // main processing loop while (CC_LIKELY(outputIndex < outputSampleCount)) { // caution: fir() is inlined and may be large. // output will be loaded with the appropriate values // // from the input samples in impulse[-halfNumCoefs+1]... impulse[halfNumCoefs] // from the polyphase filter of (phaseFraction / phaseWrapLimit) in coefs. // //ALOGV("LOOP2: inFrameCount:%d outputIndex:%d outFrameCount:%d" // " phaseFraction:%u phaseWrapLimit:%u", // inFrameCount, outputIndex, outFrameCount, phaseFraction, phaseWrapLimit); ALOG_ASSERT(phaseFraction < phaseWrapLimit); fir( &out[outputIndex], phaseFraction, phaseWrapLimit, coefShift, halfNumCoefs, coefs, impulse, volumeSimd); outputIndex += OUTPUT_CHANNELS; phaseFraction += phaseIncrement; while (phaseFraction >= phaseWrapLimit) { if (inputIndex >= frameCount) { goto done; // need a new buffer } mInBuffer.template readAdvance(impulse, halfNumCoefs, in, inputIndex); inputIndex++; phaseFraction -= phaseWrapLimit; } } done: // We arrive here when we're finished or when the input buffer runs out. // Regardless we need to release the input buffer if we've acquired it. if (inputIndex > 0) { // we've acquired a buffer (alternatively could check frameCount) ALOG_ASSERT(inputIndex == frameCount, "inputIndex(%zu) != frameCount(%zu)", inputIndex, frameCount); // must have been fully read. inputIndex = 0; provider->releaseBuffer(&mBuffer); ALOG_ASSERT(mBuffer.frameCount == 0); } } resample_exit: // inputIndex must be zero in all three cases: // (1) the buffer never was been acquired; (2) the buffer was // released at "done:"; or (3) getNextBuffer() failed. ALOG_ASSERT(inputIndex == 0, "Releasing: inputindex:%zu frameCount:%zu phaseFraction:%u", inputIndex, mBuffer.frameCount, phaseFraction); ALOG_ASSERT(mBuffer.frameCount == 0); // there must be no frames in the buffer mInBuffer.setImpulse(impulse); mPhaseFraction = phaseFraction; return outputIndex / OUTPUT_CHANNELS; } /* instantiate templates used by AudioResampler::create */ template class AudioResamplerDyn; template class AudioResamplerDyn; template class AudioResamplerDyn; // ---------------------------------------------------------------------------- } // namespace android