/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_H #define ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_H namespace android { // depends on AudioResamplerFirOps.h /* variant for input type TI = int16_t input samples */ template static inline void mac(int32_t& l, int32_t& r, TC coef, const int16_t* samples) { uint32_t rl = *reinterpret_cast(samples); l = mulAddRL(1, rl, coef, l); r = mulAddRL(0, rl, coef, r); } template static inline void mac(int32_t& l, TC coef, const int16_t* samples) { l = mulAdd(samples[0], coef, l); } /* variant for input type TI = float input samples */ template static inline void mac(float& l, float& r, TC coef, const float* samples) { l += *samples++ * coef; r += *samples * coef; } template static inline void mac(float& l, TC coef, const float* samples) { l += *samples * coef; } /* variant for output type TO = int32_t output samples */ static inline int32_t volumeAdjust(int32_t value, int32_t volume) { return 2 * mulRL(0, value, volume); // Note: only use top 16b } /* variant for output type TO = float output samples */ static inline float volumeAdjust(float value, float volume) { return value * volume; } /* * Helper template functions for loop unrolling accumulator operations. * * Unrolling the loops achieves about 2x gain. * Using a recursive template rather than an array of TO[] for the accumulator * values is an additional 10-20% gain. */ template class Accumulator : public Accumulator // recursive { public: inline void clear() { value = 0; Accumulator::clear(); } template inline void acc(TC coef, const TI*& data) { mac(value, coef, data++); Accumulator::acc(coef, data); } inline void volume(TO*& out, TO gain) { *out++ += volumeAdjust(value, gain); Accumulator::volume(out, gain); } TO value; // one per recursive inherited base class }; template class Accumulator<0, TO> { public: inline void clear() { } template inline void acc(TC coef __unused, const TI*& data __unused) { } inline void volume(TO*& out __unused, TO gain __unused) { } }; template inline TC interpolate(TC coef_0, TC coef_1, TINTERP lerp) { return lerp * (coef_1 - coef_0) + coef_0; } template<> inline int16_t interpolate(int16_t coef_0, int16_t coef_1, uint32_t lerp) { // in some CPU architectures 16b x 16b multiplies are faster. return (static_cast(lerp) * static_cast(coef_1 - coef_0) >> 15) + coef_0; } template<> inline int32_t interpolate(int32_t coef_0, int32_t coef_1, uint32_t lerp) { return (lerp * static_cast(coef_1 - coef_0) >> 31) + coef_0; } /* class scope for passing in functions into templates */ struct InterpCompute { template static inline TC interpolatep(TC coef_0, TC coef_1, TINTERP lerp) { return interpolate(coef_0, coef_1, lerp); } template static inline TC interpolaten(TC coef_0, TC coef_1, TINTERP lerp) { return interpolate(coef_0, coef_1, lerp); } }; struct InterpNull { template static inline TC interpolatep(TC coef_0, TC coef_1 __unused, TINTERP lerp __unused) { return coef_0; } template static inline TC interpolaten(TC coef_0 __unused, TC coef_1, TINTERP lerp __unused) { return coef_1; } }; /* * Calculates a single output frame (two samples). * * The Process*() functions compute both the positive half FIR dot product and * the negative half FIR dot product, accumulates, and then applies the volume. * * Use fir() to compute the proper coefficient pointers for a polyphase * filter bank. * * ProcessBase() is the fundamental processing template function. * * ProcessL() calls ProcessBase() with TFUNC = InterpNull, for fixed/locked phase. * Process() calls ProcessBase() with TFUNC = InterpCompute, for interpolated phase. */ template static inline void ProcessBase(TO* const out, size_t count, const TC* coefsP, const TC* coefsN, const TI* sP, const TI* sN, TINTERP lerpP, const TO* const volumeLR) { static_assert(CHANNELS > 0, "CHANNELS must be > 0"); if (CHANNELS > 2) { // TO accum[CHANNELS]; Accumulator accum; // for (int j = 0; j < CHANNELS; ++j) accum[j] = 0; accum.clear(); for (size_t i = 0; i < count; ++i) { TC c = TFUNC::interpolatep(coefsP[0], coefsP[count], lerpP); // for (int j = 0; j < CHANNELS; ++j) mac(accum[j], c, sP + j); const TI *tmp_data = sP; // tmp_ptr seems to work better accum.acc(c, tmp_data); coefsP++; sP -= CHANNELS; c = TFUNC::interpolaten(coefsN[count], coefsN[0], lerpP); // for (int j = 0; j < CHANNELS; ++j) mac(accum[j], c, sN + j); tmp_data = sN; // tmp_ptr seems faster than directly using sN accum.acc(c, tmp_data); coefsN++; sN += CHANNELS; } // for (int j = 0; j < CHANNELS; ++j) out[j] += volumeAdjust(accum[j], volumeLR[0]); TO *tmp_out = out; // may remove if const out definition changes. accum.volume(tmp_out, volumeLR[0]); } else if (CHANNELS == 2) { TO l = 0; TO r = 0; for (size_t i = 0; i < count; ++i) { mac(l, r, TFUNC::interpolatep(coefsP[0], coefsP[count], lerpP), sP); coefsP++; sP -= CHANNELS; mac(l, r, TFUNC::interpolaten(coefsN[count], coefsN[0], lerpP), sN); coefsN++; sN += CHANNELS; } out[0] += volumeAdjust(l, volumeLR[0]); out[1] += volumeAdjust(r, volumeLR[1]); } else { /* CHANNELS == 1 */ TO l = 0; for (size_t i = 0; i < count; ++i) { mac(l, TFUNC::interpolatep(coefsP[0], coefsP[count], lerpP), sP); coefsP++; sP -= CHANNELS; mac(l, TFUNC::interpolaten(coefsN[count], coefsN[0], lerpP), sN); coefsN++; sN += CHANNELS; } out[0] += volumeAdjust(l, volumeLR[0]); out[1] += volumeAdjust(l, volumeLR[1]); } } /* Calculates a single output frame from a polyphase resampling filter. * See Process() for parameter details. */ template static inline void ProcessL(TO* const out, int count, const TC* coefsP, const TC* coefsN, const TI* sP, const TI* sN, const TO* const volumeLR) { ProcessBase(out, count, coefsP, coefsN, sP, sN, 0, volumeLR); } /* * Calculates a single output frame from a polyphase resampling filter, * with filter phase interpolation. * * @param out should point to the output buffer with space for at least one output frame. * * @param count should be half the size of the total filter length (halfNumCoefs), as we * use symmetry in filter coefficients to evaluate two dot products. * * @param coefsP is one phase of the polyphase filter bank of size halfNumCoefs, corresponding * to the positive sP. * * @param coefsN is one phase of the polyphase filter bank of size halfNumCoefs, corresponding * to the negative sN. * * @param coefsP1 is the next phase of coefsP (used for interpolation). * * @param coefsN1 is the next phase of coefsN (used for interpolation). * * @param sP is the positive half of the coefficients (as viewed by a convolution), * starting at the original samples pointer and decrementing (by CHANNELS). * * @param sN is the negative half of the samples (as viewed by a convolution), * starting at the original samples pointer + CHANNELS and incrementing (by CHANNELS). * * @param lerpP The fractional siting between the polyphase indices is given by the bits * below coefShift. See fir() for details. * * @param volumeLR is a pointer to an array of two 32 bit volume values, one per stereo channel, * expressed as a S32 integer or float. A negative value inverts the channel 180 degrees. * The pointer volumeLR should be aligned to a minimum of 8 bytes. * A typical value for volume is 0x1000 to align to a unity gain output of 20.12. */ template static inline void Process(TO* const out, int count, const TC* coefsP, const TC* coefsN, const TC* coefsP1 __unused, const TC* coefsN1 __unused, const TI* sP, const TI* sN, TINTERP lerpP, const TO* const volumeLR) { ProcessBase(out, count, coefsP, coefsN, sP, sN, lerpP, volumeLR); } /* * Calculates a single output frame from input sample pointer. * * This sets up the params for the accelerated Process() and ProcessL() * functions to do the appropriate dot products. * * @param out should point to the output buffer with space for at least one output frame. * * @param phase is the fractional distance between input frames for interpolation: * phase >= 0 && phase < phaseWrapLimit. It can be thought of as a rational fraction * of phase/phaseWrapLimit. * * @param phaseWrapLimit is #polyphases<>coefShift). * * @param coefShift gives the bit alignment of the polyphase index in the phase parameter. * * @param halfNumCoefs is the half the number of coefficients per polyphase filter. Since the * overall filterbank is odd-length symmetric, only halfNumCoefs need be stored. * * @param coefs is the polyphase filter bank, starting at from polyphase index 0, and ranging to * and including the #polyphases. Each polyphase of the filter has half-length halfNumCoefs * (due to symmetry). The total size of the filter bank in coefficients is * (#polyphases+1)*halfNumCoefs. * * The filter bank coefs should be aligned to a minimum of 16 bytes (preferrably to cache line). * * The coefs should be attenuated (to compensate for passband ripple) * if storing back into the native format. * * @param samples are unaligned input samples. The position is in the "middle" of the * sample array with respect to the FIR filter: * the negative half of the filter is dot product from samples+1 to samples+halfNumCoefs; * the positive half of the filter is dot product from samples to samples-halfNumCoefs+1. * * @param volumeLR is a pointer to an array of two 32 bit volume values, one per stereo channel, * expressed as a S32 integer or float. A negative value inverts the channel 180 degrees. * The pointer volumeLR should be aligned to a minimum of 8 bytes. * A typical value for volume is 0x1000 to align to a unity gain output of 20.12. * * In between calls to filterCoefficient, the phase is incremented by phaseIncrement, where * phaseIncrement is calculated as inputSampling * phaseWrapLimit / outputSampling. * * The filter polyphase index is given by indexP = phase >> coefShift. Due to * odd length symmetric filter, the polyphase index of the negative half depends on * whether interpolation is used. * * The fractional siting between the polyphase indices is given by the bits below coefShift: * * lerpP = phase << 32 - coefShift >> 1; // for 32 bit unsigned phase multiply * lerpP = phase << 32 - coefShift >> 17; // for 16 bit unsigned phase multiply * * For integer types, this is expressed as: * * lerpP = phase << sizeof(phase)*8 - coefShift * >> (sizeof(phase)-sizeof(*coefs))*8 + 1; * * For floating point, lerpP is the fractional phase scaled to [0.0, 1.0): * * lerpP = (phase << 32 - coefShift) / (1 << 32); // floating point equivalent */ template static inline void fir(TO* const out, const uint32_t phase, const uint32_t phaseWrapLimit, const int coefShift, const int halfNumCoefs, const TC* const coefs, const TI* const samples, const TO* const volumeLR) { // NOTE: be very careful when modifying the code here. register // pressure is very high and a small change might cause the compiler // to generate far less efficient code. // Always validate the result with objdump or test-resample. if (LOCKED) { // locked polyphase (no interpolation) // Compute the polyphase filter index on the positive and negative side. uint32_t indexP = phase >> coefShift; uint32_t indexN = (phaseWrapLimit - phase) >> coefShift; const TC* coefsP = coefs + indexP*halfNumCoefs; const TC* coefsN = coefs + indexN*halfNumCoefs; const TI* sP = samples; const TI* sN = samples + CHANNELS; // dot product filter. ProcessL(out, halfNumCoefs, coefsP, coefsN, sP, sN, volumeLR); } else { // interpolated polyphase // Compute the polyphase filter index on the positive and negative side. uint32_t indexP = phase >> coefShift; uint32_t indexN = (phaseWrapLimit - phase - 1) >> coefShift; // one's complement. const TC* coefsP = coefs + indexP*halfNumCoefs; const TC* coefsN = coefs + indexN*halfNumCoefs; const TC* coefsP1 = coefsP + halfNumCoefs; const TC* coefsN1 = coefsN + halfNumCoefs; const TI* sP = samples; const TI* sN = samples + CHANNELS; // Interpolation fraction lerpP derived by shifting all the way up and down // to clear the appropriate bits and align to the appropriate level // for the integer multiply. The constants should resolve in compile time. // // The interpolated filter coefficient is derived as follows for the pos/neg half: // // interpolated[P] = index[P]*lerpP + index[P+1]*(1-lerpP) // interpolated[N] = index[N+1]*lerpP + index[N]*(1-lerpP) // on-the-fly interpolated dot product filter if (is_same::value || is_same::value) { static const TC scale = 1. / (65536. * 65536.); // scale phase bits to [0.0, 1.0) TC lerpP = TC(phase << (sizeof(phase)*8 - coefShift)) * scale; Process(out, halfNumCoefs, coefsP, coefsN, coefsP1, coefsN1, sP, sN, lerpP, volumeLR); } else { uint32_t lerpP = phase << (sizeof(phase)*8 - coefShift) >> ((sizeof(phase)-sizeof(*coefs))*8 + 1); Process(out, halfNumCoefs, coefsP, coefsN, coefsP1, coefsN1, sP, sN, lerpP, volumeLR); } } } } // namespace android #endif /*ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_H*/