/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "Camera3-HeicCompositeStream" #define ATRACE_TAG ATRACE_TAG_CAMERA #define ALIGN(x, mask) ( ((x) + (mask) - 1) & ~((mask) - 1) ) //#define LOG_NDEBUG 0 #include #include #include #include #include #include #include #include #include #include #include #include #include #include "common/CameraDeviceBase.h" #include "utils/ExifUtils.h" #include "utils/SessionConfigurationUtils.h" #include "HeicEncoderInfoManager.h" #include "HeicCompositeStream.h" using android::hardware::camera::device::V3_5::CameraBlob; using android::hardware::camera::device::V3_5::CameraBlobId; namespace android { namespace camera3 { HeicCompositeStream::HeicCompositeStream(sp device, wp cb) : CompositeStream(device, cb), mUseHeic(false), mNumOutputTiles(1), mOutputWidth(0), mOutputHeight(0), mMaxHeicBufferSize(0), mGridWidth(HeicEncoderInfoManager::kGridWidth), mGridHeight(HeicEncoderInfoManager::kGridHeight), mGridRows(1), mGridCols(1), mUseGrid(false), mAppSegmentStreamId(-1), mAppSegmentSurfaceId(-1), mMainImageStreamId(-1), mMainImageSurfaceId(-1), mYuvBufferAcquired(false), mProducerListener(new ProducerListener()), mDequeuedOutputBufferCnt(0), mCodecOutputCounter(0), mQuality(-1), mGridTimestampUs(0), mStatusId(StatusTracker::NO_STATUS_ID) { } HeicCompositeStream::~HeicCompositeStream() { // Call deinitCodec in case stream hasn't been deleted yet to avoid any // memory/resource leak. deinitCodec(); mInputAppSegmentBuffers.clear(); mCodecOutputBuffers.clear(); mAppSegmentStreamId = -1; mAppSegmentSurfaceId = -1; mAppSegmentConsumer.clear(); mAppSegmentSurface.clear(); mMainImageStreamId = -1; mMainImageSurfaceId = -1; mMainImageConsumer.clear(); mMainImageSurface.clear(); } bool HeicCompositeStream::isHeicCompositeStream(const sp &surface) { ANativeWindow *anw = surface.get(); status_t err; int format; if ((err = anw->query(anw, NATIVE_WINDOW_FORMAT, &format)) != OK) { String8 msg = String8::format("Failed to query Surface format: %s (%d)", strerror(-err), err); ALOGE("%s: %s", __FUNCTION__, msg.string()); return false; } int dataspace; if ((err = anw->query(anw, NATIVE_WINDOW_DEFAULT_DATASPACE, &dataspace)) != OK) { String8 msg = String8::format("Failed to query Surface dataspace: %s (%d)", strerror(-err), err); ALOGE("%s: %s", __FUNCTION__, msg.string()); return false; } return ((format == HAL_PIXEL_FORMAT_BLOB) && (dataspace == HAL_DATASPACE_HEIF)); } status_t HeicCompositeStream::createInternalStreams(const std::vector>& consumers, bool /*hasDeferredConsumer*/, uint32_t width, uint32_t height, int format, camera_stream_rotation_t rotation, int *id, const String8& physicalCameraId, const std::unordered_set &sensorPixelModesUsed, std::vector *surfaceIds, int /*streamSetId*/, bool /*isShared*/) { sp device = mDevice.promote(); if (!device.get()) { ALOGE("%s: Invalid camera device!", __FUNCTION__); return NO_INIT; } status_t res = initializeCodec(width, height, device); if (res != OK) { ALOGE("%s: Failed to initialize HEIC/HEVC codec: %s (%d)", __FUNCTION__, strerror(-res), res); return NO_INIT; } sp producer; sp consumer; BufferQueue::createBufferQueue(&producer, &consumer); mAppSegmentConsumer = new CpuConsumer(consumer, kMaxAcquiredAppSegment); mAppSegmentConsumer->setFrameAvailableListener(this); mAppSegmentConsumer->setName(String8("Camera3-HeicComposite-AppSegmentStream")); mAppSegmentSurface = new Surface(producer); mStaticInfo = device->info(); res = device->createStream(mAppSegmentSurface, mAppSegmentMaxSize, 1, format, kAppSegmentDataSpace, rotation, &mAppSegmentStreamId, physicalCameraId, sensorPixelModesUsed,surfaceIds); if (res == OK) { mAppSegmentSurfaceId = (*surfaceIds)[0]; } else { ALOGE("%s: Failed to create JPEG App segment stream: %s (%d)", __FUNCTION__, strerror(-res), res); return res; } if (!mUseGrid) { res = mCodec->createInputSurface(&producer); if (res != OK) { ALOGE("%s: Failed to create input surface for Heic codec: %s (%d)", __FUNCTION__, strerror(-res), res); return res; } } else { BufferQueue::createBufferQueue(&producer, &consumer); mMainImageConsumer = new CpuConsumer(consumer, 1); mMainImageConsumer->setFrameAvailableListener(this); mMainImageConsumer->setName(String8("Camera3-HeicComposite-HevcInputYUVStream")); } mMainImageSurface = new Surface(producer); res = mCodec->start(); if (res != OK) { ALOGE("%s: Failed to start codec: %s (%d)", __FUNCTION__, strerror(-res), res); return res; } std::vector sourceSurfaceId; //Use YUV_888 format if framework tiling is needed. int srcStreamFmt = mUseGrid ? HAL_PIXEL_FORMAT_YCbCr_420_888 : HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED; res = device->createStream(mMainImageSurface, width, height, srcStreamFmt, kHeifDataSpace, rotation, id, physicalCameraId, sensorPixelModesUsed, &sourceSurfaceId); if (res == OK) { mMainImageSurfaceId = sourceSurfaceId[0]; mMainImageStreamId = *id; } else { ALOGE("%s: Failed to create main image stream: %s (%d)", __FUNCTION__, strerror(-res), res); return res; } mOutputSurface = consumers[0]; res = registerCompositeStreamListener(mMainImageStreamId); if (res != OK) { ALOGE("%s: Failed to register HAL main image stream: %s (%d)", __FUNCTION__, strerror(-res), res); return res; } res = registerCompositeStreamListener(mAppSegmentStreamId); if (res != OK) { ALOGE("%s: Failed to register HAL app segment stream: %s (%d)", __FUNCTION__, strerror(-res), res); return res; } initCopyRowFunction(width); return res; } status_t HeicCompositeStream::deleteInternalStreams() { requestExit(); auto res = join(); if (res != OK) { ALOGE("%s: Failed to join with the main processing thread: %s (%d)", __FUNCTION__, strerror(-res), res); } deinitCodec(); if (mAppSegmentStreamId >= 0) { // Camera devices may not be valid after switching to offline mode. // In this case, all offline streams including internal composite streams // are managed and released by the offline session. sp device = mDevice.promote(); if (device.get() != nullptr) { res = device->deleteStream(mAppSegmentStreamId); } mAppSegmentStreamId = -1; } if (mOutputSurface != nullptr) { mOutputSurface->disconnect(NATIVE_WINDOW_API_CAMERA); mOutputSurface.clear(); } sp statusTracker = mStatusTracker.promote(); if (statusTracker != nullptr && mStatusId != StatusTracker::NO_STATUS_ID) { statusTracker->removeComponent(mStatusId); mStatusId = StatusTracker::NO_STATUS_ID; } if (mPendingInputFrames.size() > 0) { ALOGW("%s: mPendingInputFrames has %zu stale entries", __FUNCTION__, mPendingInputFrames.size()); mPendingInputFrames.clear(); } return res; } void HeicCompositeStream::onBufferReleased(const BufferInfo& bufferInfo) { Mutex::Autolock l(mMutex); if (bufferInfo.mError) return; if (bufferInfo.mStreamId == mMainImageStreamId) { mMainImageFrameNumbers.push(bufferInfo.mFrameNumber); mCodecOutputBufferFrameNumbers.push(bufferInfo.mFrameNumber); ALOGV("%s: [%" PRId64 "]: Adding main image frame number (%zu frame numbers in total)", __FUNCTION__, bufferInfo.mFrameNumber, mMainImageFrameNumbers.size()); } else if (bufferInfo.mStreamId == mAppSegmentStreamId) { mAppSegmentFrameNumbers.push(bufferInfo.mFrameNumber); ALOGV("%s: [%" PRId64 "]: Adding app segment frame number (%zu frame numbers in total)", __FUNCTION__, bufferInfo.mFrameNumber, mAppSegmentFrameNumbers.size()); } } // We need to get the settings early to handle the case where the codec output // arrives earlier than result metadata. void HeicCompositeStream::onBufferRequestForFrameNumber(uint64_t frameNumber, int streamId, const CameraMetadata& settings) { ATRACE_ASYNC_BEGIN("HEIC capture", frameNumber); Mutex::Autolock l(mMutex); if (mErrorState || (streamId != getStreamId())) { return; } mPendingCaptureResults.emplace(frameNumber, CameraMetadata()); camera_metadata_ro_entry entry; int32_t orientation = 0; entry = settings.find(ANDROID_JPEG_ORIENTATION); if (entry.count == 1) { orientation = entry.data.i32[0]; } int32_t quality = kDefaultJpegQuality; entry = settings.find(ANDROID_JPEG_QUALITY); if (entry.count == 1) { quality = entry.data.i32[0]; } mSettingsByFrameNumber[frameNumber] = {orientation, quality}; } void HeicCompositeStream::onFrameAvailable(const BufferItem& item) { if (item.mDataSpace == static_cast(kAppSegmentDataSpace)) { ALOGV("%s: JPEG APP segments buffer with ts: %" PRIu64 " ms. arrived!", __func__, ns2ms(item.mTimestamp)); Mutex::Autolock l(mMutex); if (!mErrorState) { mInputAppSegmentBuffers.push_back(item.mTimestamp); mInputReadyCondition.signal(); } } else if (item.mDataSpace == kHeifDataSpace) { ALOGV("%s: YUV_888 buffer with ts: %" PRIu64 " ms. arrived!", __func__, ns2ms(item.mTimestamp)); Mutex::Autolock l(mMutex); if (!mUseGrid) { ALOGE("%s: YUV_888 internal stream is only supported for HEVC tiling", __FUNCTION__); return; } if (!mErrorState) { mInputYuvBuffers.push_back(item.mTimestamp); mInputReadyCondition.signal(); } } else { ALOGE("%s: Unexpected data space: 0x%x", __FUNCTION__, item.mDataSpace); } } status_t HeicCompositeStream::getCompositeStreamInfo(const OutputStreamInfo &streamInfo, const CameraMetadata& ch, std::vector* compositeOutput /*out*/) { if (compositeOutput == nullptr) { return BAD_VALUE; } compositeOutput->clear(); bool useGrid, useHeic; bool isSizeSupported = isSizeSupportedByHeifEncoder( streamInfo.width, streamInfo.height, &useHeic, &useGrid, nullptr); if (!isSizeSupported) { // Size is not supported by either encoder. return OK; } compositeOutput->insert(compositeOutput->end(), 2, streamInfo); // JPEG APPS segments Blob stream info (*compositeOutput)[0].width = calcAppSegmentMaxSize(ch); (*compositeOutput)[0].height = 1; (*compositeOutput)[0].format = HAL_PIXEL_FORMAT_BLOB; (*compositeOutput)[0].dataSpace = kAppSegmentDataSpace; (*compositeOutput)[0].consumerUsage = GRALLOC_USAGE_SW_READ_OFTEN; // YUV/IMPLEMENTATION_DEFINED stream info (*compositeOutput)[1].width = streamInfo.width; (*compositeOutput)[1].height = streamInfo.height; (*compositeOutput)[1].format = useGrid ? HAL_PIXEL_FORMAT_YCbCr_420_888 : HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED; (*compositeOutput)[1].dataSpace = kHeifDataSpace; (*compositeOutput)[1].consumerUsage = useHeic ? GRALLOC_USAGE_HW_IMAGE_ENCODER : useGrid ? GRALLOC_USAGE_SW_READ_OFTEN : GRALLOC_USAGE_HW_VIDEO_ENCODER; return NO_ERROR; } bool HeicCompositeStream::isSizeSupportedByHeifEncoder(int32_t width, int32_t height, bool* useHeic, bool* useGrid, int64_t* stall, AString* hevcName) { static HeicEncoderInfoManager& heicManager = HeicEncoderInfoManager::getInstance(); return heicManager.isSizeSupported(width, height, useHeic, useGrid, stall, hevcName); } bool HeicCompositeStream::isInMemoryTempFileSupported() { int memfd = syscall(__NR_memfd_create, "HEIF-try-memfd", MFD_CLOEXEC); if (memfd == -1) { if (errno != ENOSYS) { ALOGE("%s: Failed to create tmpfs file. errno %d", __FUNCTION__, errno); } return false; } close(memfd); return true; } void HeicCompositeStream::onHeicOutputFrameAvailable( const CodecOutputBufferInfo& outputBufferInfo) { Mutex::Autolock l(mMutex); ALOGV("%s: index %d, offset %d, size %d, time %" PRId64 ", flags 0x%x", __FUNCTION__, outputBufferInfo.index, outputBufferInfo.offset, outputBufferInfo.size, outputBufferInfo.timeUs, outputBufferInfo.flags); if (!mErrorState) { if ((outputBufferInfo.size > 0) && ((outputBufferInfo.flags & MediaCodec::BUFFER_FLAG_CODECCONFIG) == 0)) { mCodecOutputBuffers.push_back(outputBufferInfo); mInputReadyCondition.signal(); } else { ALOGV("%s: Releasing output buffer: size %d flags: 0x%x ", __FUNCTION__, outputBufferInfo.size, outputBufferInfo.flags); mCodec->releaseOutputBuffer(outputBufferInfo.index); } } else { mCodec->releaseOutputBuffer(outputBufferInfo.index); } } void HeicCompositeStream::onHeicInputFrameAvailable(int32_t index) { Mutex::Autolock l(mMutex); if (!mUseGrid) { ALOGE("%s: Codec YUV input mode must only be used for Hevc tiling mode", __FUNCTION__); return; } mCodecInputBuffers.push_back(index); mInputReadyCondition.signal(); } void HeicCompositeStream::onHeicFormatChanged(sp& newFormat) { if (newFormat == nullptr) { ALOGE("%s: newFormat must not be null!", __FUNCTION__); return; } Mutex::Autolock l(mMutex); AString mime; AString mimeHeic(MIMETYPE_IMAGE_ANDROID_HEIC); newFormat->findString(KEY_MIME, &mime); if (mime != mimeHeic) { // For HEVC codec, below keys need to be filled out or overwritten so that the // muxer can handle them as HEIC output image. newFormat->setString(KEY_MIME, mimeHeic); newFormat->setInt32(KEY_WIDTH, mOutputWidth); newFormat->setInt32(KEY_HEIGHT, mOutputHeight); if (mUseGrid) { newFormat->setInt32(KEY_TILE_WIDTH, mGridWidth); newFormat->setInt32(KEY_TILE_HEIGHT, mGridHeight); newFormat->setInt32(KEY_GRID_ROWS, mGridRows); newFormat->setInt32(KEY_GRID_COLUMNS, mGridCols); } } newFormat->setInt32(KEY_IS_DEFAULT, 1 /*isPrimary*/); int32_t gridRows, gridCols; if (newFormat->findInt32(KEY_GRID_ROWS, &gridRows) && newFormat->findInt32(KEY_GRID_COLUMNS, &gridCols)) { mNumOutputTiles = gridRows * gridCols; } else { mNumOutputTiles = 1; } mFormat = newFormat; ALOGV("%s: mNumOutputTiles is %zu", __FUNCTION__, mNumOutputTiles); mInputReadyCondition.signal(); } void HeicCompositeStream::onHeicCodecError() { Mutex::Autolock l(mMutex); mErrorState = true; } status_t HeicCompositeStream::configureStream() { if (isRunning()) { // Processing thread is already running, nothing more to do. return NO_ERROR; } if (mOutputSurface.get() == nullptr) { ALOGE("%s: No valid output surface set!", __FUNCTION__); return NO_INIT; } auto res = mOutputSurface->connect(NATIVE_WINDOW_API_CAMERA, mProducerListener); if (res != OK) { ALOGE("%s: Unable to connect to native window for stream %d", __FUNCTION__, mMainImageStreamId); return res; } if ((res = native_window_set_buffers_format(mOutputSurface.get(), HAL_PIXEL_FORMAT_BLOB)) != OK) { ALOGE("%s: Unable to configure stream buffer format for stream %d", __FUNCTION__, mMainImageStreamId); return res; } ANativeWindow *anwConsumer = mOutputSurface.get(); int maxConsumerBuffers; if ((res = anwConsumer->query(anwConsumer, NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS, &maxConsumerBuffers)) != OK) { ALOGE("%s: Unable to query consumer undequeued" " buffer count for stream %d", __FUNCTION__, mMainImageStreamId); return res; } // Cannot use SourceSurface buffer count since it could be codec's 512*512 tile // buffer count. if ((res = native_window_set_buffer_count( anwConsumer, kMaxOutputSurfaceProducerCount + maxConsumerBuffers)) != OK) { ALOGE("%s: Unable to set buffer count for stream %d", __FUNCTION__, mMainImageStreamId); return res; } if ((res = native_window_set_buffers_dimensions(anwConsumer, mMaxHeicBufferSize, 1)) != OK) { ALOGE("%s: Unable to set buffer dimension %zu x 1 for stream %d: %s (%d)", __FUNCTION__, mMaxHeicBufferSize, mMainImageStreamId, strerror(-res), res); return res; } sp statusTracker = mStatusTracker.promote(); if (statusTracker != nullptr) { std::string name = std::string("HeicStream ") + std::to_string(getStreamId()); mStatusId = statusTracker->addComponent(name); } run("HeicCompositeStreamProc"); return NO_ERROR; } status_t HeicCompositeStream::insertGbp(SurfaceMap* /*out*/outSurfaceMap, Vector* /*out*/outputStreamIds, int32_t* /*out*/currentStreamId) { if (outSurfaceMap->find(mAppSegmentStreamId) == outSurfaceMap->end()) { outputStreamIds->push_back(mAppSegmentStreamId); } (*outSurfaceMap)[mAppSegmentStreamId].push_back(mAppSegmentSurfaceId); if (outSurfaceMap->find(mMainImageStreamId) == outSurfaceMap->end()) { outputStreamIds->push_back(mMainImageStreamId); } (*outSurfaceMap)[mMainImageStreamId].push_back(mMainImageSurfaceId); if (currentStreamId != nullptr) { *currentStreamId = mMainImageStreamId; } return NO_ERROR; } status_t HeicCompositeStream::insertCompositeStreamIds( std::vector* compositeStreamIds /*out*/) { if (compositeStreamIds == nullptr) { return BAD_VALUE; } compositeStreamIds->push_back(mAppSegmentStreamId); compositeStreamIds->push_back(mMainImageStreamId); return OK; } void HeicCompositeStream::onShutter(const CaptureResultExtras& resultExtras, nsecs_t timestamp) { Mutex::Autolock l(mMutex); if (mErrorState) { return; } if (mSettingsByFrameNumber.find(resultExtras.frameNumber) != mSettingsByFrameNumber.end()) { ALOGV("%s: [%" PRId64 "]: timestamp %" PRId64 ", requestId %d", __FUNCTION__, resultExtras.frameNumber, timestamp, resultExtras.requestId); mSettingsByFrameNumber[resultExtras.frameNumber].shutterNotified = true; mSettingsByFrameNumber[resultExtras.frameNumber].timestamp = timestamp; mSettingsByFrameNumber[resultExtras.frameNumber].requestId = resultExtras.requestId; mInputReadyCondition.signal(); } } void HeicCompositeStream::compilePendingInputLocked() { auto i = mSettingsByFrameNumber.begin(); while (i != mSettingsByFrameNumber.end()) { if (i->second.shutterNotified) { mPendingInputFrames[i->first].orientation = i->second.orientation; mPendingInputFrames[i->first].quality = i->second.quality; mPendingInputFrames[i->first].timestamp = i->second.timestamp; mPendingInputFrames[i->first].requestId = i->second.requestId; ALOGV("%s: [%" PRId64 "]: timestamp is %" PRId64, __FUNCTION__, i->first, i->second.timestamp); i = mSettingsByFrameNumber.erase(i); // Set encoder quality if no inflight encoding if (mPendingInputFrames.size() == 1) { sp statusTracker = mStatusTracker.promote(); if (statusTracker != nullptr) { statusTracker->markComponentActive(mStatusId); ALOGV("%s: Mark component as active", __FUNCTION__); } int32_t newQuality = mPendingInputFrames.begin()->second.quality; updateCodecQualityLocked(newQuality); } } else { i++; } } while (!mInputAppSegmentBuffers.empty() && mAppSegmentFrameNumbers.size() > 0) { CpuConsumer::LockedBuffer imgBuffer; auto it = mInputAppSegmentBuffers.begin(); auto res = mAppSegmentConsumer->lockNextBuffer(&imgBuffer); if (res == NOT_ENOUGH_DATA) { // Can not lock any more buffers. break; } else if ((res != OK) || (*it != imgBuffer.timestamp)) { if (res != OK) { ALOGE("%s: Error locking JPEG_APP_SEGMENTS image buffer: %s (%d)", __FUNCTION__, strerror(-res), res); } else { ALOGE("%s: Expecting JPEG_APP_SEGMENTS buffer with time stamp: %" PRId64 " received buffer with time stamp: %" PRId64, __FUNCTION__, *it, imgBuffer.timestamp); mAppSegmentConsumer->unlockBuffer(imgBuffer); } mPendingInputFrames[*it].error = true; mInputAppSegmentBuffers.erase(it); continue; } if (mPendingInputFrames.find(mAppSegmentFrameNumbers.front()) == mPendingInputFrames.end()) { ALOGE("%s: mPendingInputFrames doesn't contain frameNumber %" PRId64, __FUNCTION__, mAppSegmentFrameNumbers.front()); mInputAppSegmentBuffers.erase(it); mAppSegmentFrameNumbers.pop(); continue; } int64_t frameNumber = mAppSegmentFrameNumbers.front(); // If mPendingInputFrames doesn't contain the expected frame number, the captured // input app segment frame must have been dropped via a buffer error. Simply // return the buffer to the buffer queue. if ((mPendingInputFrames.find(frameNumber) == mPendingInputFrames.end()) || (mPendingInputFrames[frameNumber].error)) { mAppSegmentConsumer->unlockBuffer(imgBuffer); } else { mPendingInputFrames[frameNumber].appSegmentBuffer = imgBuffer; } mInputAppSegmentBuffers.erase(it); mAppSegmentFrameNumbers.pop(); } while (!mInputYuvBuffers.empty() && !mYuvBufferAcquired && mMainImageFrameNumbers.size() > 0) { CpuConsumer::LockedBuffer imgBuffer; auto it = mInputYuvBuffers.begin(); auto res = mMainImageConsumer->lockNextBuffer(&imgBuffer); if (res == NOT_ENOUGH_DATA) { // Can not lock any more buffers. break; } else if (res != OK) { ALOGE("%s: Error locking YUV_888 image buffer: %s (%d)", __FUNCTION__, strerror(-res), res); mPendingInputFrames[*it].error = true; mInputYuvBuffers.erase(it); continue; } else if (*it != imgBuffer.timestamp) { ALOGW("%s: Expecting YUV_888 buffer with time stamp: %" PRId64 " received buffer with " "time stamp: %" PRId64, __FUNCTION__, *it, imgBuffer.timestamp); mPendingInputFrames[*it].error = true; mInputYuvBuffers.erase(it); continue; } if (mPendingInputFrames.find(mMainImageFrameNumbers.front()) == mPendingInputFrames.end()) { ALOGE("%s: mPendingInputFrames doesn't contain frameNumber %" PRId64, __FUNCTION__, mMainImageFrameNumbers.front()); mInputYuvBuffers.erase(it); mMainImageFrameNumbers.pop(); continue; } int64_t frameNumber = mMainImageFrameNumbers.front(); // If mPendingInputFrames doesn't contain the expected frame number, the captured // input main image must have been dropped via a buffer error. Simply // return the buffer to the buffer queue. if ((mPendingInputFrames.find(frameNumber) == mPendingInputFrames.end()) || (mPendingInputFrames[frameNumber].error)) { mMainImageConsumer->unlockBuffer(imgBuffer); } else { mPendingInputFrames[frameNumber].yuvBuffer = imgBuffer; mYuvBufferAcquired = true; } mInputYuvBuffers.erase(it); mMainImageFrameNumbers.pop(); } while (!mCodecOutputBuffers.empty()) { auto it = mCodecOutputBuffers.begin(); // Assume encoder input to output is FIFO, use a queue to look up // frameNumber when handling codec outputs. int64_t bufferFrameNumber = -1; if (mCodecOutputBufferFrameNumbers.empty()) { ALOGV("%s: Failed to find buffer frameNumber for codec output buffer!", __FUNCTION__); break; } else { // Direct mapping between camera frame number and codec timestamp (in us). bufferFrameNumber = mCodecOutputBufferFrameNumbers.front(); mCodecOutputCounter++; if (mCodecOutputCounter == mNumOutputTiles) { mCodecOutputBufferFrameNumbers.pop(); mCodecOutputCounter = 0; } mPendingInputFrames[bufferFrameNumber].codecOutputBuffers.push_back(*it); ALOGV("%s: [%" PRId64 "]: Pushing codecOutputBuffers (frameNumber %" PRId64 ")", __FUNCTION__, bufferFrameNumber, it->timeUs); } mCodecOutputBuffers.erase(it); } while (!mCaptureResults.empty()) { auto it = mCaptureResults.begin(); // Negative frame number indicates that something went wrong during the capture result // collection process. int64_t frameNumber = std::get<0>(it->second); if (it->first >= 0 && mPendingInputFrames.find(frameNumber) != mPendingInputFrames.end()) { if (mPendingInputFrames[frameNumber].timestamp == it->first) { mPendingInputFrames[frameNumber].result = std::make_unique(std::get<1>(it->second)); } else { ALOGE("%s: Capture result frameNumber/timestamp mapping changed between " "shutter and capture result! before: %" PRId64 ", after: %" PRId64, __FUNCTION__, mPendingInputFrames[frameNumber].timestamp, it->first); } } mCaptureResults.erase(it); } // mErrorFrameNumbers stores frame number of dropped buffers. auto it = mErrorFrameNumbers.begin(); while (it != mErrorFrameNumbers.end()) { if (mPendingInputFrames.find(*it) != mPendingInputFrames.end()) { mPendingInputFrames[*it].error = true; } else { //Error callback is guaranteed to arrive after shutter notify, which //results in mPendingInputFrames being populated. ALOGW("%s: Not able to find failing input with frame number: %" PRId64, __FUNCTION__, *it); } it = mErrorFrameNumbers.erase(it); } // mExifErrorFrameNumbers stores the frame number of dropped APP_SEGMENT buffers it = mExifErrorFrameNumbers.begin(); while (it != mExifErrorFrameNumbers.end()) { if (mPendingInputFrames.find(*it) != mPendingInputFrames.end()) { mPendingInputFrames[*it].exifError = true; } it = mExifErrorFrameNumbers.erase(it); } // Distribute codec input buffers to be filled out from YUV output for (auto it = mPendingInputFrames.begin(); it != mPendingInputFrames.end() && mCodecInputBuffers.size() > 0; it++) { InputFrame& inputFrame(it->second); if (inputFrame.codecInputCounter < mGridRows * mGridCols) { // Available input tiles that are required for the current input // image. size_t newInputTiles = std::min(mCodecInputBuffers.size(), mGridRows * mGridCols - inputFrame.codecInputCounter); for (size_t i = 0; i < newInputTiles; i++) { CodecInputBufferInfo inputInfo = { mCodecInputBuffers[0], mGridTimestampUs++, inputFrame.codecInputCounter }; inputFrame.codecInputBuffers.push_back(inputInfo); mCodecInputBuffers.erase(mCodecInputBuffers.begin()); inputFrame.codecInputCounter++; } break; } } } bool HeicCompositeStream::getNextReadyInputLocked(int64_t *frameNumber /*out*/) { if (frameNumber == nullptr) { return false; } bool newInputAvailable = false; for (auto& it : mPendingInputFrames) { // New input is considered to be available only if: // 1. input buffers are ready, or // 2. App segment and muxer is created, or // 3. A codec output tile is ready, and an output buffer is available. // This makes sure that muxer gets created only when an output tile is // generated, because right now we only handle 1 HEIC output buffer at a // time (max dequeued buffer count is 1). bool appSegmentReady = (it.second.appSegmentBuffer.data != nullptr || it.second.exifError) && !it.second.appSegmentWritten && it.second.result != nullptr && it.second.muxer != nullptr; bool codecOutputReady = !it.second.codecOutputBuffers.empty(); bool codecInputReady = (it.second.yuvBuffer.data != nullptr) && (!it.second.codecInputBuffers.empty()); bool hasOutputBuffer = it.second.muxer != nullptr || (mDequeuedOutputBufferCnt < kMaxOutputSurfaceProducerCount); if ((!it.second.error) && (appSegmentReady || (codecOutputReady && hasOutputBuffer) || codecInputReady)) { *frameNumber = it.first; if (it.second.format == nullptr && mFormat != nullptr) { it.second.format = mFormat->dup(); } newInputAvailable = true; break; } } return newInputAvailable; } int64_t HeicCompositeStream::getNextFailingInputLocked() { int64_t res = -1; for (const auto& it : mPendingInputFrames) { if (it.second.error) { res = it.first; break; } } return res; } status_t HeicCompositeStream::processInputFrame(int64_t frameNumber, InputFrame &inputFrame) { ATRACE_CALL(); status_t res = OK; bool appSegmentReady = (inputFrame.appSegmentBuffer.data != nullptr || inputFrame.exifError) && !inputFrame.appSegmentWritten && inputFrame.result != nullptr && inputFrame.muxer != nullptr; bool codecOutputReady = inputFrame.codecOutputBuffers.size() > 0; bool codecInputReady = inputFrame.yuvBuffer.data != nullptr && !inputFrame.codecInputBuffers.empty(); bool hasOutputBuffer = inputFrame.muxer != nullptr || (mDequeuedOutputBufferCnt < kMaxOutputSurfaceProducerCount); ALOGV("%s: [%" PRId64 "]: appSegmentReady %d, codecOutputReady %d, codecInputReady %d," " dequeuedOutputBuffer %d, timestamp %" PRId64, __FUNCTION__, frameNumber, appSegmentReady, codecOutputReady, codecInputReady, mDequeuedOutputBufferCnt, inputFrame.timestamp); // Handle inputs for Hevc tiling if (codecInputReady) { res = processCodecInputFrame(inputFrame); if (res != OK) { ALOGE("%s: Failed to process codec input frame: %s (%d)", __FUNCTION__, strerror(-res), res); return res; } } if (!(codecOutputReady && hasOutputBuffer) && !appSegmentReady) { return OK; } // Initialize and start muxer if not yet done so. In this case, // codecOutputReady must be true. Otherwise, appSegmentReady is guaranteed // to be false, and the function must have returned early. if (inputFrame.muxer == nullptr) { res = startMuxerForInputFrame(frameNumber, inputFrame); if (res != OK) { ALOGE("%s: Failed to create and start muxer: %s (%d)", __FUNCTION__, strerror(-res), res); return res; } } // Write JPEG APP segments data to the muxer. if (appSegmentReady) { res = processAppSegment(frameNumber, inputFrame); if (res != OK) { ALOGE("%s: Failed to process JPEG APP segments: %s (%d)", __FUNCTION__, strerror(-res), res); return res; } } // Write media codec bitstream buffers to muxer. while (!inputFrame.codecOutputBuffers.empty()) { res = processOneCodecOutputFrame(frameNumber, inputFrame); if (res != OK) { ALOGE("%s: Failed to process codec output frame: %s (%d)", __FUNCTION__, strerror(-res), res); return res; } } if (inputFrame.pendingOutputTiles == 0) { if (inputFrame.appSegmentWritten) { res = processCompletedInputFrame(frameNumber, inputFrame); if (res != OK) { ALOGE("%s: Failed to process completed input frame: %s (%d)", __FUNCTION__, strerror(-res), res); return res; } } } return res; } status_t HeicCompositeStream::startMuxerForInputFrame(int64_t frameNumber, InputFrame &inputFrame) { sp outputANW = mOutputSurface; auto res = outputANW->dequeueBuffer(mOutputSurface.get(), &inputFrame.anb, &inputFrame.fenceFd); if (res != OK) { ALOGE("%s: Error retrieving output buffer: %s (%d)", __FUNCTION__, strerror(-res), res); return res; } mDequeuedOutputBufferCnt++; // Combine current thread id, stream id and timestamp to uniquely identify image. std::ostringstream tempOutputFile; tempOutputFile << "HEIF-" << pthread_self() << "-" << getStreamId() << "-" << frameNumber; inputFrame.fileFd = syscall(__NR_memfd_create, tempOutputFile.str().c_str(), MFD_CLOEXEC); if (inputFrame.fileFd < 0) { ALOGE("%s: Failed to create file %s. Error no is %d", __FUNCTION__, tempOutputFile.str().c_str(), errno); return NO_INIT; } inputFrame.muxer = new MediaMuxer(inputFrame.fileFd, MediaMuxer::OUTPUT_FORMAT_HEIF); if (inputFrame.muxer == nullptr) { ALOGE("%s: Failed to create MediaMuxer for file fd %d", __FUNCTION__, inputFrame.fileFd); return NO_INIT; } res = inputFrame.muxer->setOrientationHint(inputFrame.orientation); if (res != OK) { ALOGE("%s: Failed to setOrientationHint: %s (%d)", __FUNCTION__, strerror(-res), res); return res; } ssize_t trackId = inputFrame.muxer->addTrack(inputFrame.format); if (trackId < 0) { ALOGE("%s: Failed to addTrack to the muxer: %zd", __FUNCTION__, trackId); return NO_INIT; } inputFrame.trackIndex = trackId; inputFrame.pendingOutputTiles = mNumOutputTiles; res = inputFrame.muxer->start(); if (res != OK) { ALOGE("%s: Failed to start MediaMuxer: %s (%d)", __FUNCTION__, strerror(-res), res); return res; } ALOGV("%s: [%" PRId64 "]: Muxer started for inputFrame", __FUNCTION__, frameNumber); return OK; } status_t HeicCompositeStream::processAppSegment(int64_t frameNumber, InputFrame &inputFrame) { size_t app1Size = 0; size_t appSegmentSize = 0; if (!inputFrame.exifError) { appSegmentSize = findAppSegmentsSize(inputFrame.appSegmentBuffer.data, inputFrame.appSegmentBuffer.width * inputFrame.appSegmentBuffer.height, &app1Size); if (appSegmentSize == 0) { ALOGE("%s: Failed to find JPEG APP segment size", __FUNCTION__); return NO_INIT; } } std::unique_ptr exifUtils(ExifUtils::create()); auto exifRes = inputFrame.exifError ? exifUtils->initializeEmpty() : exifUtils->initialize(inputFrame.appSegmentBuffer.data, app1Size); if (!exifRes) { ALOGE("%s: Failed to initialize ExifUtils object!", __FUNCTION__); return BAD_VALUE; } exifRes = exifUtils->setFromMetadata(*inputFrame.result, mStaticInfo, mOutputWidth, mOutputHeight); if (!exifRes) { ALOGE("%s: Failed to set Exif tags using metadata and main image sizes", __FUNCTION__); return BAD_VALUE; } exifRes = exifUtils->setOrientation(inputFrame.orientation); if (!exifRes) { ALOGE("%s: ExifUtils failed to set orientation", __FUNCTION__); return BAD_VALUE; } exifRes = exifUtils->generateApp1(); if (!exifRes) { ALOGE("%s: ExifUtils failed to generate APP1 segment", __FUNCTION__); return BAD_VALUE; } unsigned int newApp1Length = exifUtils->getApp1Length(); const uint8_t *newApp1Segment = exifUtils->getApp1Buffer(); //Assemble the APP1 marker buffer required by MediaCodec uint8_t kExifApp1Marker[] = {'E', 'x', 'i', 'f', 0xFF, 0xE1, 0x00, 0x00}; kExifApp1Marker[6] = static_cast(newApp1Length >> 8); kExifApp1Marker[7] = static_cast(newApp1Length & 0xFF); size_t appSegmentBufferSize = sizeof(kExifApp1Marker) + appSegmentSize - app1Size + newApp1Length; uint8_t* appSegmentBuffer = new uint8_t[appSegmentBufferSize]; memcpy(appSegmentBuffer, kExifApp1Marker, sizeof(kExifApp1Marker)); memcpy(appSegmentBuffer + sizeof(kExifApp1Marker), newApp1Segment, newApp1Length); if (appSegmentSize - app1Size > 0) { memcpy(appSegmentBuffer + sizeof(kExifApp1Marker) + newApp1Length, inputFrame.appSegmentBuffer.data + app1Size, appSegmentSize - app1Size); } sp aBuffer = new ABuffer(appSegmentBuffer, appSegmentBufferSize); auto res = inputFrame.muxer->writeSampleData(aBuffer, inputFrame.trackIndex, inputFrame.timestamp, MediaCodec::BUFFER_FLAG_MUXER_DATA); delete[] appSegmentBuffer; if (res != OK) { ALOGE("%s: Failed to write JPEG APP segments to muxer: %s (%d)", __FUNCTION__, strerror(-res), res); return res; } ALOGV("%s: [%" PRId64 "]: appSegmentSize is %zu, width %d, height %d, app1Size %zu", __FUNCTION__, frameNumber, appSegmentSize, inputFrame.appSegmentBuffer.width, inputFrame.appSegmentBuffer.height, app1Size); inputFrame.appSegmentWritten = true; // Release the buffer now so any pending input app segments can be processed mAppSegmentConsumer->unlockBuffer(inputFrame.appSegmentBuffer); inputFrame.appSegmentBuffer.data = nullptr; inputFrame.exifError = false; return OK; } status_t HeicCompositeStream::processCodecInputFrame(InputFrame &inputFrame) { for (auto& inputBuffer : inputFrame.codecInputBuffers) { sp buffer; auto res = mCodec->getInputBuffer(inputBuffer.index, &buffer); if (res != OK) { ALOGE("%s: Error getting codec input buffer: %s (%d)", __FUNCTION__, strerror(-res), res); return res; } // Copy one tile from source to destination. size_t tileX = inputBuffer.tileIndex % mGridCols; size_t tileY = inputBuffer.tileIndex / mGridCols; size_t top = mGridHeight * tileY; size_t left = mGridWidth * tileX; size_t width = (tileX == static_cast(mGridCols) - 1) ? mOutputWidth - tileX * mGridWidth : mGridWidth; size_t height = (tileY == static_cast(mGridRows) - 1) ? mOutputHeight - tileY * mGridHeight : mGridHeight; ALOGV("%s: inputBuffer tileIndex [%zu, %zu], top %zu, left %zu, width %zu, height %zu," " timeUs %" PRId64, __FUNCTION__, tileX, tileY, top, left, width, height, inputBuffer.timeUs); res = copyOneYuvTile(buffer, inputFrame.yuvBuffer, top, left, width, height); if (res != OK) { ALOGE("%s: Failed to copy YUV tile %s (%d)", __FUNCTION__, strerror(-res), res); return res; } res = mCodec->queueInputBuffer(inputBuffer.index, 0, buffer->capacity(), inputBuffer.timeUs, 0, nullptr /*errorDetailMsg*/); if (res != OK) { ALOGE("%s: Failed to queueInputBuffer to Codec: %s (%d)", __FUNCTION__, strerror(-res), res); return res; } } inputFrame.codecInputBuffers.clear(); return OK; } status_t HeicCompositeStream::processOneCodecOutputFrame(int64_t frameNumber, InputFrame &inputFrame) { auto it = inputFrame.codecOutputBuffers.begin(); sp buffer; status_t res = mCodec->getOutputBuffer(it->index, &buffer); if (res != OK) { ALOGE("%s: Error getting Heic codec output buffer at index %d: %s (%d)", __FUNCTION__, it->index, strerror(-res), res); return res; } if (buffer == nullptr) { ALOGE("%s: Invalid Heic codec output buffer at index %d", __FUNCTION__, it->index); return BAD_VALUE; } sp aBuffer = new ABuffer(buffer->data(), buffer->size()); res = inputFrame.muxer->writeSampleData( aBuffer, inputFrame.trackIndex, inputFrame.timestamp, 0 /*flags*/); if (res != OK) { ALOGE("%s: Failed to write buffer index %d to muxer: %s (%d)", __FUNCTION__, it->index, strerror(-res), res); return res; } mCodec->releaseOutputBuffer(it->index); if (inputFrame.pendingOutputTiles == 0) { ALOGW("%s: Codec generated more tiles than expected!", __FUNCTION__); } else { inputFrame.pendingOutputTiles--; } inputFrame.codecOutputBuffers.erase(inputFrame.codecOutputBuffers.begin()); ALOGV("%s: [%" PRId64 "]: Output buffer index %d", __FUNCTION__, frameNumber, it->index); return OK; } status_t HeicCompositeStream::processCompletedInputFrame(int64_t frameNumber, InputFrame &inputFrame) { sp outputANW = mOutputSurface; inputFrame.muxer->stop(); // Copy the content of the file to memory. sp gb = GraphicBuffer::from(inputFrame.anb); void* dstBuffer; auto res = gb->lockAsync(GRALLOC_USAGE_SW_WRITE_OFTEN, &dstBuffer, inputFrame.fenceFd); if (res != OK) { ALOGE("%s: Error trying to lock output buffer fence: %s (%d)", __FUNCTION__, strerror(-res), res); return res; } off_t fSize = lseek(inputFrame.fileFd, 0, SEEK_END); if (static_cast(fSize) > mMaxHeicBufferSize - sizeof(CameraBlob)) { ALOGE("%s: Error: MediaMuxer output size %ld is larger than buffer sizer %zu", __FUNCTION__, fSize, mMaxHeicBufferSize - sizeof(CameraBlob)); return BAD_VALUE; } lseek(inputFrame.fileFd, 0, SEEK_SET); ssize_t bytesRead = read(inputFrame.fileFd, dstBuffer, fSize); if (bytesRead < fSize) { ALOGE("%s: Only %zd of %ld bytes read", __FUNCTION__, bytesRead, fSize); return BAD_VALUE; } close(inputFrame.fileFd); inputFrame.fileFd = -1; // Fill in HEIC header uint8_t *header = static_cast(dstBuffer) + mMaxHeicBufferSize - sizeof(CameraBlob); struct CameraBlob *blobHeader = (struct CameraBlob *)header; // Must be in sync with CAMERA3_HEIC_BLOB_ID in android_media_Utils.cpp blobHeader->blobId = static_cast(0x00FE); blobHeader->blobSize = fSize; res = native_window_set_buffers_timestamp(mOutputSurface.get(), inputFrame.timestamp); if (res != OK) { ALOGE("%s: Stream %d: Error setting timestamp: %s (%d)", __FUNCTION__, getStreamId(), strerror(-res), res); return res; } res = outputANW->queueBuffer(mOutputSurface.get(), inputFrame.anb, /*fence*/ -1); if (res != OK) { ALOGE("%s: Failed to queueBuffer to Heic stream: %s (%d)", __FUNCTION__, strerror(-res), res); return res; } inputFrame.anb = nullptr; mDequeuedOutputBufferCnt--; ALOGV("%s: [%" PRId64 "]", __FUNCTION__, frameNumber); ATRACE_ASYNC_END("HEIC capture", frameNumber); return OK; } void HeicCompositeStream::releaseInputFrameLocked(int64_t frameNumber, InputFrame *inputFrame /*out*/) { if (inputFrame == nullptr) { return; } if (inputFrame->appSegmentBuffer.data != nullptr) { mAppSegmentConsumer->unlockBuffer(inputFrame->appSegmentBuffer); inputFrame->appSegmentBuffer.data = nullptr; } while (!inputFrame->codecOutputBuffers.empty()) { auto it = inputFrame->codecOutputBuffers.begin(); ALOGV("%s: releaseOutputBuffer index %d", __FUNCTION__, it->index); mCodec->releaseOutputBuffer(it->index); inputFrame->codecOutputBuffers.erase(it); } if (inputFrame->yuvBuffer.data != nullptr) { mMainImageConsumer->unlockBuffer(inputFrame->yuvBuffer); inputFrame->yuvBuffer.data = nullptr; mYuvBufferAcquired = false; } while (!inputFrame->codecInputBuffers.empty()) { auto it = inputFrame->codecInputBuffers.begin(); inputFrame->codecInputBuffers.erase(it); } if (inputFrame->error || mErrorState) { ALOGV("%s: notifyError called for frameNumber %" PRId64, __FUNCTION__, frameNumber); notifyError(frameNumber, inputFrame->requestId); } if (inputFrame->fileFd >= 0) { close(inputFrame->fileFd); inputFrame->fileFd = -1; } if (inputFrame->anb != nullptr) { sp outputANW = mOutputSurface; outputANW->cancelBuffer(mOutputSurface.get(), inputFrame->anb, /*fence*/ -1); inputFrame->anb = nullptr; mDequeuedOutputBufferCnt--; } } void HeicCompositeStream::releaseInputFramesLocked() { auto it = mPendingInputFrames.begin(); bool inputFrameDone = false; while (it != mPendingInputFrames.end()) { auto& inputFrame = it->second; if (inputFrame.error || (inputFrame.appSegmentWritten && inputFrame.pendingOutputTiles == 0)) { releaseInputFrameLocked(it->first, &inputFrame); it = mPendingInputFrames.erase(it); inputFrameDone = true; } else { it++; } } // Update codec quality based on first upcoming input frame. // Note that when encoding is in surface mode, currently there is no // way for camera service to synchronize quality setting on a per-frame // basis: we don't get notification when codec is ready to consume a new // input frame. So we update codec quality on a best-effort basis. if (inputFrameDone) { auto firstPendingFrame = mPendingInputFrames.begin(); if (firstPendingFrame != mPendingInputFrames.end()) { updateCodecQualityLocked(firstPendingFrame->second.quality); } else { markTrackerIdle(); } } } status_t HeicCompositeStream::initializeCodec(uint32_t width, uint32_t height, const sp& cameraDevice) { ALOGV("%s", __FUNCTION__); bool useGrid = false; AString hevcName; bool isSizeSupported = isSizeSupportedByHeifEncoder(width, height, &mUseHeic, &useGrid, nullptr, &hevcName); if (!isSizeSupported) { ALOGE("%s: Encoder doesnt' support size %u x %u!", __FUNCTION__, width, height); return BAD_VALUE; } // Create Looper for MediaCodec. auto desiredMime = mUseHeic ? MIMETYPE_IMAGE_ANDROID_HEIC : MIMETYPE_VIDEO_HEVC; mCodecLooper = new ALooper; mCodecLooper->setName("Camera3-HeicComposite-MediaCodecLooper"); status_t res = mCodecLooper->start( false, // runOnCallingThread false, // canCallJava PRIORITY_AUDIO); if (res != OK) { ALOGE("%s: Failed to start codec looper: %s (%d)", __FUNCTION__, strerror(-res), res); return NO_INIT; } // Create HEIC/HEVC codec. if (mUseHeic) { mCodec = MediaCodec::CreateByType(mCodecLooper, desiredMime, true /*encoder*/); } else { mCodec = MediaCodec::CreateByComponentName(mCodecLooper, hevcName); } if (mCodec == nullptr) { ALOGE("%s: Failed to create codec for %s", __FUNCTION__, desiredMime); return NO_INIT; } // Create Looper and handler for Codec callback. mCodecCallbackHandler = new CodecCallbackHandler(this); if (mCodecCallbackHandler == nullptr) { ALOGE("%s: Failed to create codec callback handler", __FUNCTION__); return NO_MEMORY; } mCallbackLooper = new ALooper; mCallbackLooper->setName("Camera3-HeicComposite-MediaCodecCallbackLooper"); res = mCallbackLooper->start( false, // runOnCallingThread false, // canCallJava PRIORITY_AUDIO); if (res != OK) { ALOGE("%s: Failed to start media callback looper: %s (%d)", __FUNCTION__, strerror(-res), res); return NO_INIT; } mCallbackLooper->registerHandler(mCodecCallbackHandler); mAsyncNotify = new AMessage(kWhatCallbackNotify, mCodecCallbackHandler); res = mCodec->setCallback(mAsyncNotify); if (res != OK) { ALOGE("%s: Failed to set MediaCodec callback: %s (%d)", __FUNCTION__, strerror(-res), res); return res; } // Create output format and configure the Codec. sp outputFormat = new AMessage(); outputFormat->setString(KEY_MIME, desiredMime); outputFormat->setInt32(KEY_BITRATE_MODE, BITRATE_MODE_CQ); outputFormat->setInt32(KEY_QUALITY, kDefaultJpegQuality); // Ask codec to skip timestamp check and encode all frames. outputFormat->setInt64(KEY_MAX_PTS_GAP_TO_ENCODER, kNoFrameDropMaxPtsGap); int32_t gridWidth, gridHeight, gridRows, gridCols; if (useGrid || mUseHeic) { gridWidth = HeicEncoderInfoManager::kGridWidth; gridHeight = HeicEncoderInfoManager::kGridHeight; gridRows = (height + gridHeight - 1)/gridHeight; gridCols = (width + gridWidth - 1)/gridWidth; if (mUseHeic) { outputFormat->setInt32(KEY_TILE_WIDTH, gridWidth); outputFormat->setInt32(KEY_TILE_HEIGHT, gridHeight); outputFormat->setInt32(KEY_GRID_COLUMNS, gridCols); outputFormat->setInt32(KEY_GRID_ROWS, gridRows); } } else { gridWidth = width; gridHeight = height; gridRows = 1; gridCols = 1; } outputFormat->setInt32(KEY_WIDTH, !useGrid ? width : gridWidth); outputFormat->setInt32(KEY_HEIGHT, !useGrid ? height : gridHeight); outputFormat->setInt32(KEY_I_FRAME_INTERVAL, 0); outputFormat->setInt32(KEY_COLOR_FORMAT, useGrid ? COLOR_FormatYUV420Flexible : COLOR_FormatSurface); outputFormat->setInt32(KEY_FRAME_RATE, useGrid ? gridRows * gridCols : kNoGridOpRate); // This only serves as a hint to encoder when encoding is not real-time. outputFormat->setInt32(KEY_OPERATING_RATE, useGrid ? kGridOpRate : kNoGridOpRate); res = mCodec->configure(outputFormat, nullptr /*nativeWindow*/, nullptr /*crypto*/, CONFIGURE_FLAG_ENCODE); if (res != OK) { ALOGE("%s: Failed to configure codec: %s (%d)", __FUNCTION__, strerror(-res), res); return res; } mGridWidth = gridWidth; mGridHeight = gridHeight; mGridRows = gridRows; mGridCols = gridCols; mUseGrid = useGrid; mOutputWidth = width; mOutputHeight = height; mAppSegmentMaxSize = calcAppSegmentMaxSize(cameraDevice->info()); mMaxHeicBufferSize = ALIGN(mOutputWidth, HeicEncoderInfoManager::kGridWidth) * ALIGN(mOutputHeight, HeicEncoderInfoManager::kGridHeight) * 3 / 2 + mAppSegmentMaxSize; return OK; } void HeicCompositeStream::deinitCodec() { ALOGV("%s", __FUNCTION__); if (mCodec != nullptr) { mCodec->stop(); mCodec->release(); mCodec.clear(); } if (mCodecLooper != nullptr) { mCodecLooper->stop(); mCodecLooper.clear(); } if (mCallbackLooper != nullptr) { mCallbackLooper->stop(); mCallbackLooper.clear(); } mAsyncNotify.clear(); mFormat.clear(); } // Return the size of the complete list of app segment, 0 indicates failure size_t HeicCompositeStream::findAppSegmentsSize(const uint8_t* appSegmentBuffer, size_t maxSize, size_t *app1SegmentSize) { if (appSegmentBuffer == nullptr || app1SegmentSize == nullptr) { ALOGE("%s: Invalid input appSegmentBuffer %p, app1SegmentSize %p", __FUNCTION__, appSegmentBuffer, app1SegmentSize); return 0; } size_t expectedSize = 0; // First check for EXIF transport header at the end of the buffer const uint8_t *header = appSegmentBuffer + (maxSize - sizeof(struct CameraBlob)); const struct CameraBlob *blob = (const struct CameraBlob*)(header); if (blob->blobId != CameraBlobId::JPEG_APP_SEGMENTS) { ALOGE("%s: Invalid EXIF blobId %hu", __FUNCTION__, blob->blobId); return 0; } expectedSize = blob->blobSize; if (expectedSize == 0 || expectedSize > maxSize - sizeof(struct CameraBlob)) { ALOGE("%s: Invalid blobSize %zu.", __FUNCTION__, expectedSize); return 0; } uint32_t totalSize = 0; // Verify APP1 marker (mandatory) uint8_t app1Marker[] = {0xFF, 0xE1}; if (memcmp(appSegmentBuffer, app1Marker, sizeof(app1Marker))) { ALOGE("%s: Invalid APP1 marker: %x, %x", __FUNCTION__, appSegmentBuffer[0], appSegmentBuffer[1]); return 0; } totalSize += sizeof(app1Marker); uint16_t app1Size = (static_cast(appSegmentBuffer[totalSize]) << 8) + appSegmentBuffer[totalSize+1]; totalSize += app1Size; ALOGV("%s: Expected APP segments size %zu, APP1 segment size %u", __FUNCTION__, expectedSize, app1Size); while (totalSize < expectedSize) { if (appSegmentBuffer[totalSize] != 0xFF || appSegmentBuffer[totalSize+1] <= 0xE1 || appSegmentBuffer[totalSize+1] > 0xEF) { // Invalid APPn marker ALOGE("%s: Invalid APPn marker: %x, %x", __FUNCTION__, appSegmentBuffer[totalSize], appSegmentBuffer[totalSize+1]); return 0; } totalSize += 2; uint16_t appnSize = (static_cast(appSegmentBuffer[totalSize]) << 8) + appSegmentBuffer[totalSize+1]; totalSize += appnSize; } if (totalSize != expectedSize) { ALOGE("%s: Invalid JPEG APP segments: totalSize %u vs expected size %zu", __FUNCTION__, totalSize, expectedSize); return 0; } *app1SegmentSize = app1Size + sizeof(app1Marker); return expectedSize; } status_t HeicCompositeStream::copyOneYuvTile(sp& codecBuffer, const CpuConsumer::LockedBuffer& yuvBuffer, size_t top, size_t left, size_t width, size_t height) { ATRACE_CALL(); // Get stride information for codecBuffer sp imageData; if (!codecBuffer->meta()->findBuffer("image-data", &imageData)) { ALOGE("%s: Codec input buffer is not for image data!", __FUNCTION__); return BAD_VALUE; } if (imageData->size() != sizeof(MediaImage2)) { ALOGE("%s: Invalid codec input image size %zu, expected %zu", __FUNCTION__, imageData->size(), sizeof(MediaImage2)); return BAD_VALUE; } MediaImage2* imageInfo = reinterpret_cast(imageData->data()); if (imageInfo->mType != MediaImage2::MEDIA_IMAGE_TYPE_YUV || imageInfo->mBitDepth != 8 || imageInfo->mBitDepthAllocated != 8 || imageInfo->mNumPlanes != 3) { ALOGE("%s: Invalid codec input image info: mType %d, mBitDepth %d, " "mBitDepthAllocated %d, mNumPlanes %d!", __FUNCTION__, imageInfo->mType, imageInfo->mBitDepth, imageInfo->mBitDepthAllocated, imageInfo->mNumPlanes); return BAD_VALUE; } ALOGV("%s: yuvBuffer chromaStep %d, chromaStride %d", __FUNCTION__, yuvBuffer.chromaStep, yuvBuffer.chromaStride); ALOGV("%s: U offset %u, V offset %u, U rowInc %d, V rowInc %d, U colInc %d, V colInc %d", __FUNCTION__, imageInfo->mPlane[MediaImage2::U].mOffset, imageInfo->mPlane[MediaImage2::V].mOffset, imageInfo->mPlane[MediaImage2::U].mRowInc, imageInfo->mPlane[MediaImage2::V].mRowInc, imageInfo->mPlane[MediaImage2::U].mColInc, imageInfo->mPlane[MediaImage2::V].mColInc); // Y for (auto row = top; row < top+height; row++) { uint8_t *dst = codecBuffer->data() + imageInfo->mPlane[MediaImage2::Y].mOffset + imageInfo->mPlane[MediaImage2::Y].mRowInc * (row - top); mFnCopyRow(yuvBuffer.data+row*yuvBuffer.stride+left, dst, width); } // U is Cb, V is Cr bool codecUPlaneFirst = imageInfo->mPlane[MediaImage2::V].mOffset > imageInfo->mPlane[MediaImage2::U].mOffset; uint32_t codecUvOffsetDiff = codecUPlaneFirst ? imageInfo->mPlane[MediaImage2::V].mOffset - imageInfo->mPlane[MediaImage2::U].mOffset : imageInfo->mPlane[MediaImage2::U].mOffset - imageInfo->mPlane[MediaImage2::V].mOffset; bool isCodecUvSemiplannar = (codecUvOffsetDiff == 1) && (imageInfo->mPlane[MediaImage2::U].mRowInc == imageInfo->mPlane[MediaImage2::V].mRowInc) && (imageInfo->mPlane[MediaImage2::U].mColInc == 2) && (imageInfo->mPlane[MediaImage2::V].mColInc == 2); bool isCodecUvPlannar = ((codecUPlaneFirst && codecUvOffsetDiff >= imageInfo->mPlane[MediaImage2::U].mRowInc * imageInfo->mHeight/2) || ((!codecUPlaneFirst && codecUvOffsetDiff >= imageInfo->mPlane[MediaImage2::V].mRowInc * imageInfo->mHeight/2))) && imageInfo->mPlane[MediaImage2::U].mColInc == 1 && imageInfo->mPlane[MediaImage2::V].mColInc == 1; bool cameraUPlaneFirst = yuvBuffer.dataCr > yuvBuffer.dataCb; if (isCodecUvSemiplannar && yuvBuffer.chromaStep == 2 && (codecUPlaneFirst == cameraUPlaneFirst)) { // UV semiplannar // The chrome plane could be either Cb first, or Cr first. Take the // smaller address. uint8_t *src = std::min(yuvBuffer.dataCb, yuvBuffer.dataCr); MediaImage2::PlaneIndex dstPlane = codecUvOffsetDiff > 0 ? MediaImage2::U : MediaImage2::V; for (auto row = top/2; row < (top+height)/2; row++) { uint8_t *dst = codecBuffer->data() + imageInfo->mPlane[dstPlane].mOffset + imageInfo->mPlane[dstPlane].mRowInc * (row - top/2); mFnCopyRow(src+row*yuvBuffer.chromaStride+left, dst, width); } } else if (isCodecUvPlannar && yuvBuffer.chromaStep == 1) { // U plane for (auto row = top/2; row < (top+height)/2; row++) { uint8_t *dst = codecBuffer->data() + imageInfo->mPlane[MediaImage2::U].mOffset + imageInfo->mPlane[MediaImage2::U].mRowInc * (row - top/2); mFnCopyRow(yuvBuffer.dataCb+row*yuvBuffer.chromaStride+left/2, dst, width/2); } // V plane for (auto row = top/2; row < (top+height)/2; row++) { uint8_t *dst = codecBuffer->data() + imageInfo->mPlane[MediaImage2::V].mOffset + imageInfo->mPlane[MediaImage2::V].mRowInc * (row - top/2); mFnCopyRow(yuvBuffer.dataCr+row*yuvBuffer.chromaStride+left/2, dst, width/2); } } else { // Convert between semiplannar and plannar, or when UV orders are // different. uint8_t *dst = codecBuffer->data(); for (auto row = top/2; row < (top+height)/2; row++) { for (auto col = left/2; col < (left+width)/2; col++) { // U/Cb int32_t dstIndex = imageInfo->mPlane[MediaImage2::U].mOffset + imageInfo->mPlane[MediaImage2::U].mRowInc * (row - top/2) + imageInfo->mPlane[MediaImage2::U].mColInc * (col - left/2); int32_t srcIndex = row * yuvBuffer.chromaStride + yuvBuffer.chromaStep * col; dst[dstIndex] = yuvBuffer.dataCb[srcIndex]; // V/Cr dstIndex = imageInfo->mPlane[MediaImage2::V].mOffset + imageInfo->mPlane[MediaImage2::V].mRowInc * (row - top/2) + imageInfo->mPlane[MediaImage2::V].mColInc * (col - left/2); srcIndex = row * yuvBuffer.chromaStride + yuvBuffer.chromaStep * col; dst[dstIndex] = yuvBuffer.dataCr[srcIndex]; } } } return OK; } void HeicCompositeStream::initCopyRowFunction(int32_t width) { using namespace libyuv; mFnCopyRow = CopyRow_C; #if defined(HAS_COPYROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { mFnCopyRow = IS_ALIGNED(width, 32) ? CopyRow_SSE2 : CopyRow_Any_SSE2; } #endif #if defined(HAS_COPYROW_AVX) if (TestCpuFlag(kCpuHasAVX)) { mFnCopyRow = IS_ALIGNED(width, 64) ? CopyRow_AVX : CopyRow_Any_AVX; } #endif #if defined(HAS_COPYROW_ERMS) if (TestCpuFlag(kCpuHasERMS)) { mFnCopyRow = CopyRow_ERMS; } #endif #if defined(HAS_COPYROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { mFnCopyRow = IS_ALIGNED(width, 32) ? CopyRow_NEON : CopyRow_Any_NEON; } #endif #if defined(HAS_COPYROW_MIPS) if (TestCpuFlag(kCpuHasMIPS)) { mFnCopyRow = CopyRow_MIPS; } #endif } size_t HeicCompositeStream::calcAppSegmentMaxSize(const CameraMetadata& info) { camera_metadata_ro_entry_t entry = info.find(ANDROID_HEIC_INFO_MAX_JPEG_APP_SEGMENTS_COUNT); size_t maxAppsSegment = 1; if (entry.count > 0) { maxAppsSegment = entry.data.u8[0] < 1 ? 1 : entry.data.u8[0] > 16 ? 16 : entry.data.u8[0]; } return maxAppsSegment * (2 + 0xFFFF) + sizeof(struct CameraBlob); } void HeicCompositeStream::updateCodecQualityLocked(int32_t quality) { if (quality != mQuality) { sp qualityParams = new AMessage; qualityParams->setInt32(PARAMETER_KEY_VIDEO_BITRATE, quality); status_t res = mCodec->setParameters(qualityParams); if (res != OK) { ALOGE("%s: Failed to set codec quality: %s (%d)", __FUNCTION__, strerror(-res), res); } else { mQuality = quality; } } } bool HeicCompositeStream::threadLoop() { int64_t frameNumber = -1; bool newInputAvailable = false; { Mutex::Autolock l(mMutex); if (mErrorState) { // In case we landed in error state, return any pending buffers and // halt all further processing. compilePendingInputLocked(); releaseInputFramesLocked(); return false; } while (!newInputAvailable) { compilePendingInputLocked(); newInputAvailable = getNextReadyInputLocked(&frameNumber); if (!newInputAvailable) { auto failingFrameNumber = getNextFailingInputLocked(); if (failingFrameNumber >= 0) { releaseInputFrameLocked(failingFrameNumber, &mPendingInputFrames[failingFrameNumber]); // It's okay to remove the entry from mPendingInputFrames // because: // 1. Only one internal stream (main input) is critical in // backing the output stream. // 2. If captureResult/appSegment arrives after the entry is // removed, they are simply skipped. mPendingInputFrames.erase(failingFrameNumber); if (mPendingInputFrames.size() == 0) { markTrackerIdle(); } return true; } auto ret = mInputReadyCondition.waitRelative(mMutex, kWaitDuration); if (ret == TIMED_OUT) { return true; } else if (ret != OK) { ALOGE("%s: Timed wait on condition failed: %s (%d)", __FUNCTION__, strerror(-ret), ret); return false; } } } } auto res = processInputFrame(frameNumber, mPendingInputFrames[frameNumber]); Mutex::Autolock l(mMutex); if (res != OK) { ALOGE("%s: Failed processing frame with timestamp: %" PRIu64 ", frameNumber: %" PRId64 ": %s (%d)", __FUNCTION__, mPendingInputFrames[frameNumber].timestamp, frameNumber, strerror(-res), res); mPendingInputFrames[frameNumber].error = true; } releaseInputFramesLocked(); return true; } void HeicCompositeStream::flagAnExifErrorFrameNumber(int64_t frameNumber) { Mutex::Autolock l(mMutex); mExifErrorFrameNumbers.emplace(frameNumber); mInputReadyCondition.signal(); } bool HeicCompositeStream::onStreamBufferError(const CaptureResultExtras& resultExtras) { bool res = false; int64_t frameNumber = resultExtras.frameNumber; // Buffer errors concerning internal composite streams should not be directly visible to // camera clients. They must only receive a single buffer error with the public composite // stream id. if (resultExtras.errorStreamId == mAppSegmentStreamId) { ALOGV("%s: APP_SEGMENT frameNumber: %" PRId64, __FUNCTION__, frameNumber); flagAnExifErrorFrameNumber(frameNumber); res = true; } else if (resultExtras.errorStreamId == mMainImageStreamId) { ALOGV("%s: YUV frameNumber: %" PRId64, __FUNCTION__, frameNumber); flagAnErrorFrameNumber(frameNumber); res = true; } return res; } void HeicCompositeStream::onResultError(const CaptureResultExtras& resultExtras) { // For result error, since the APPS_SEGMENT buffer already contains EXIF, // simply skip using the capture result metadata to override EXIF. Mutex::Autolock l(mMutex); int64_t timestamp = -1; for (const auto& fn : mSettingsByFrameNumber) { if (fn.first == resultExtras.frameNumber) { timestamp = fn.second.timestamp; break; } } if (timestamp == -1) { for (const auto& inputFrame : mPendingInputFrames) { if (inputFrame.first == resultExtras.frameNumber) { timestamp = inputFrame.second.timestamp; break; } } } if (timestamp == -1) { ALOGE("%s: Failed to find shutter timestamp for result error!", __FUNCTION__); return; } mCaptureResults.emplace(timestamp, std::make_tuple(resultExtras.frameNumber, CameraMetadata())); ALOGV("%s: timestamp %" PRId64 ", frameNumber %" PRId64, __FUNCTION__, timestamp, resultExtras.frameNumber); mInputReadyCondition.signal(); } void HeicCompositeStream::onRequestError(const CaptureResultExtras& resultExtras) { auto frameNumber = resultExtras.frameNumber; ALOGV("%s: frameNumber: %" PRId64, __FUNCTION__, frameNumber); Mutex::Autolock l(mMutex); auto numRequests = mSettingsByFrameNumber.erase(frameNumber); if (numRequests == 0) { // Pending request has been populated into mPendingInputFrames mErrorFrameNumbers.emplace(frameNumber); mInputReadyCondition.signal(); } else { // REQUEST_ERROR was received without onShutter. } } void HeicCompositeStream::markTrackerIdle() { sp statusTracker = mStatusTracker.promote(); if (statusTracker != nullptr) { statusTracker->markComponentIdle(mStatusId, Fence::NO_FENCE); ALOGV("%s: Mark component as idle", __FUNCTION__); } } void HeicCompositeStream::CodecCallbackHandler::onMessageReceived(const sp &msg) { sp parent = mParent.promote(); if (parent == nullptr) return; switch (msg->what()) { case kWhatCallbackNotify: { int32_t cbID; if (!msg->findInt32("callbackID", &cbID)) { ALOGE("kWhatCallbackNotify: callbackID is expected."); break; } ALOGV("kWhatCallbackNotify: cbID = %d", cbID); switch (cbID) { case MediaCodec::CB_INPUT_AVAILABLE: { int32_t index; if (!msg->findInt32("index", &index)) { ALOGE("CB_INPUT_AVAILABLE: index is expected."); break; } parent->onHeicInputFrameAvailable(index); break; } case MediaCodec::CB_OUTPUT_AVAILABLE: { int32_t index; size_t offset; size_t size; int64_t timeUs; int32_t flags; if (!msg->findInt32("index", &index)) { ALOGE("CB_OUTPUT_AVAILABLE: index is expected."); break; } if (!msg->findSize("offset", &offset)) { ALOGE("CB_OUTPUT_AVAILABLE: offset is expected."); break; } if (!msg->findSize("size", &size)) { ALOGE("CB_OUTPUT_AVAILABLE: size is expected."); break; } if (!msg->findInt64("timeUs", &timeUs)) { ALOGE("CB_OUTPUT_AVAILABLE: timeUs is expected."); break; } if (!msg->findInt32("flags", &flags)) { ALOGE("CB_OUTPUT_AVAILABLE: flags is expected."); break; } CodecOutputBufferInfo bufferInfo = { index, (int32_t)offset, (int32_t)size, timeUs, (uint32_t)flags}; parent->onHeicOutputFrameAvailable(bufferInfo); break; } case MediaCodec::CB_OUTPUT_FORMAT_CHANGED: { sp format; if (!msg->findMessage("format", &format)) { ALOGE("CB_OUTPUT_FORMAT_CHANGED: format is expected."); break; } // Here format is MediaCodec's internal copy of output format. // Make a copy since onHeicFormatChanged() might modify it. sp formatCopy; if (format != nullptr) { formatCopy = format->dup(); } parent->onHeicFormatChanged(formatCopy); break; } case MediaCodec::CB_ERROR: { status_t err; int32_t actionCode; AString detail; if (!msg->findInt32("err", &err)) { ALOGE("CB_ERROR: err is expected."); break; } if (!msg->findInt32("action", &actionCode)) { ALOGE("CB_ERROR: action is expected."); break; } msg->findString("detail", &detail); ALOGE("Codec reported error(0x%x), actionCode(%d), detail(%s)", err, actionCode, detail.c_str()); parent->onHeicCodecError(); break; } default: { ALOGE("kWhatCallbackNotify: callbackID(%d) is unexpected.", cbID); break; } } break; } default: ALOGE("shouldn't be here"); break; } } }; // namespace camera3 }; // namespace android