/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "Png.h" #include #include #include #include #include #include #include "androidfw/ResourceTypes.h" #include "Source.h" #include "trace/TraceBuffer.h" #include "util/BigBuffer.h" #include "util/Util.h" namespace aapt { constexpr bool kDebug = false; struct PngInfo { ~PngInfo() { for (png_bytep row : rows) { if (row != nullptr) { delete[] row; } } delete[] xDivs; delete[] yDivs; } void* serialize9Patch() { void* serialized = android::Res_png_9patch::serialize(info9Patch, xDivs, yDivs, colors.data()); reinterpret_cast(serialized)->deviceToFile(); return serialized; } uint32_t width = 0; uint32_t height = 0; std::vector rows; bool is9Patch = false; android::Res_png_9patch info9Patch; int32_t* xDivs = nullptr; int32_t* yDivs = nullptr; std::vector colors; // Layout padding. bool haveLayoutBounds = false; int32_t layoutBoundsLeft; int32_t layoutBoundsTop; int32_t layoutBoundsRight; int32_t layoutBoundsBottom; // Round rect outline description. int32_t outlineInsetsLeft; int32_t outlineInsetsTop; int32_t outlineInsetsRight; int32_t outlineInsetsBottom; float outlineRadius; uint8_t outlineAlpha; }; static void readDataFromStream(png_structp readPtr, png_bytep data, png_size_t length) { std::istream* input = reinterpret_cast(png_get_io_ptr(readPtr)); if (!input->read(reinterpret_cast(data), length)) { png_error(readPtr, strerror(errno)); } } static void writeDataToStream(png_structp writePtr, png_bytep data, png_size_t length) { BigBuffer* outBuffer = reinterpret_cast(png_get_io_ptr(writePtr)); png_bytep buf = outBuffer->NextBlock(length); memcpy(buf, data, length); } static void flushDataToStream(png_structp /*writePtr*/) {} static void logWarning(png_structp readPtr, png_const_charp warningMessage) { IDiagnostics* diag = reinterpret_cast(png_get_error_ptr(readPtr)); diag->Warn(DiagMessage() << warningMessage); } static bool readPng(IDiagnostics* diag, png_structp readPtr, png_infop infoPtr, PngInfo* outInfo) { if (setjmp(png_jmpbuf(readPtr))) { diag->Error(DiagMessage() << "failed reading png"); return false; } png_set_sig_bytes(readPtr, kPngSignatureSize); png_read_info(readPtr, infoPtr); int colorType, bitDepth, interlaceType, compressionType; png_get_IHDR(readPtr, infoPtr, &outInfo->width, &outInfo->height, &bitDepth, &colorType, &interlaceType, &compressionType, nullptr); if (colorType == PNG_COLOR_TYPE_PALETTE) { png_set_palette_to_rgb(readPtr); } if (colorType == PNG_COLOR_TYPE_GRAY && bitDepth < 8) { png_set_expand_gray_1_2_4_to_8(readPtr); } if (png_get_valid(readPtr, infoPtr, PNG_INFO_tRNS)) { png_set_tRNS_to_alpha(readPtr); } if (bitDepth == 16) { png_set_strip_16(readPtr); } if (!(colorType & PNG_COLOR_MASK_ALPHA)) { png_set_add_alpha(readPtr, 0xFF, PNG_FILLER_AFTER); } if (colorType == PNG_COLOR_TYPE_GRAY || colorType == PNG_COLOR_TYPE_GRAY_ALPHA) { png_set_gray_to_rgb(readPtr); } png_set_interlace_handling(readPtr); png_read_update_info(readPtr, infoPtr); const uint32_t rowBytes = png_get_rowbytes(readPtr, infoPtr); outInfo->rows.resize(outInfo->height); for (size_t i = 0; i < outInfo->height; i++) { outInfo->rows[i] = new png_byte[rowBytes]; } png_read_image(readPtr, outInfo->rows.data()); png_read_end(readPtr, infoPtr); return true; } static void checkNinePatchSerialization(android::Res_png_9patch* inPatch, void* data) { size_t patchSize = inPatch->serializedSize(); void* newData = malloc(patchSize); memcpy(newData, data, patchSize); android::Res_png_9patch* outPatch = inPatch->deserialize(newData); outPatch->fileToDevice(); // deserialization is done in place, so outPatch == newData assert(outPatch == newData); assert(outPatch->numXDivs == inPatch->numXDivs); assert(outPatch->numYDivs == inPatch->numYDivs); assert(outPatch->paddingLeft == inPatch->paddingLeft); assert(outPatch->paddingRight == inPatch->paddingRight); assert(outPatch->paddingTop == inPatch->paddingTop); assert(outPatch->paddingBottom == inPatch->paddingBottom); /* for (int i = 0; i < outPatch->numXDivs; i++) { assert(outPatch->getXDivs()[i] == inPatch->getXDivs()[i]); } for (int i = 0; i < outPatch->numYDivs; i++) { assert(outPatch->getYDivs()[i] == inPatch->getYDivs()[i]); } for (int i = 0; i < outPatch->numColors; i++) { assert(outPatch->getColors()[i] == inPatch->getColors()[i]); }*/ free(newData); } /*static void dump_image(int w, int h, const png_byte* const* rows, int color_type) { int i, j, rr, gg, bb, aa; int bpp; if (color_type == PNG_COLOR_TYPE_PALETTE || color_type == PNG_COLOR_TYPE_GRAY) { bpp = 1; } else if (color_type == PNG_COLOR_TYPE_GRAY_ALPHA) { bpp = 2; } else if (color_type == PNG_COLOR_TYPE_RGB || color_type == PNG_COLOR_TYPE_RGB_ALPHA) { // We use a padding byte even when there is no alpha bpp = 4; } else { printf("Unknown color type %d.\n", color_type); } for (j = 0; j < h; j++) { const png_byte* row = rows[j]; for (i = 0; i < w; i++) { rr = row[0]; gg = row[1]; bb = row[2]; aa = row[3]; row += bpp; if (i == 0) { printf("Row %d:", j); } switch (bpp) { case 1: printf(" (%d)", rr); break; case 2: printf(" (%d %d", rr, gg); break; case 3: printf(" (%d %d %d)", rr, gg, bb); break; case 4: printf(" (%d %d %d %d)", rr, gg, bb, aa); break; } if (i == (w - 1)) { printf("\n"); } } } }*/ #ifdef MAX #undef MAX #endif #ifdef ABS #undef ABS #endif #define MAX(a, b) ((a) > (b) ? (a) : (b)) #define ABS(a) ((a) < 0 ? -(a) : (a)) static void analyze_image(IDiagnostics* diag, const PngInfo& imageInfo, int grayscaleTolerance, png_colorp rgbPalette, png_bytep alphaPalette, int* paletteEntries, bool* hasTransparency, int* colorType, png_bytepp outRows) { int w = imageInfo.width; int h = imageInfo.height; int i, j, rr, gg, bb, aa, idx; uint32_t colors[256], col; int num_colors = 0; int maxGrayDeviation = 0; bool isOpaque = true; bool isPalette = true; bool isGrayscale = true; // Scan the entire image and determine if: // 1. Every pixel has R == G == B (grayscale) // 2. Every pixel has A == 255 (opaque) // 3. There are no more than 256 distinct RGBA colors if (kDebug) { printf("Initial image data:\n"); // dump_image(w, h, imageInfo.rows.data(), PNG_COLOR_TYPE_RGB_ALPHA); } for (j = 0; j < h; j++) { const png_byte* row = imageInfo.rows[j]; png_bytep out = outRows[j]; for (i = 0; i < w; i++) { rr = *row++; gg = *row++; bb = *row++; aa = *row++; int odev = maxGrayDeviation; maxGrayDeviation = MAX(ABS(rr - gg), maxGrayDeviation); maxGrayDeviation = MAX(ABS(gg - bb), maxGrayDeviation); maxGrayDeviation = MAX(ABS(bb - rr), maxGrayDeviation); if (maxGrayDeviation > odev) { if (kDebug) { printf("New max dev. = %d at pixel (%d, %d) = (%d %d %d %d)\n", maxGrayDeviation, i, j, rr, gg, bb, aa); } } // Check if image is really grayscale if (isGrayscale) { if (rr != gg || rr != bb) { if (kDebug) { printf("Found a non-gray pixel at %d, %d = (%d %d %d %d)\n", i, j, rr, gg, bb, aa); } isGrayscale = false; } } // Check if image is really opaque if (isOpaque) { if (aa != 0xff) { if (kDebug) { printf("Found a non-opaque pixel at %d, %d = (%d %d %d %d)\n", i, j, rr, gg, bb, aa); } isOpaque = false; } } // Check if image is really <= 256 colors if (isPalette) { col = (uint32_t)((rr << 24) | (gg << 16) | (bb << 8) | aa); bool match = false; for (idx = 0; idx < num_colors; idx++) { if (colors[idx] == col) { match = true; break; } } // Write the palette index for the pixel to outRows optimistically // We might overwrite it later if we decide to encode as gray or // gray + alpha *out++ = idx; if (!match) { if (num_colors == 256) { if (kDebug) { printf("Found 257th color at %d, %d\n", i, j); } isPalette = false; } else { colors[num_colors++] = col; } } } } } *paletteEntries = 0; *hasTransparency = !isOpaque; int bpp = isOpaque ? 3 : 4; int paletteSize = w * h + bpp * num_colors; if (kDebug) { printf("isGrayscale = %s\n", isGrayscale ? "true" : "false"); printf("isOpaque = %s\n", isOpaque ? "true" : "false"); printf("isPalette = %s\n", isPalette ? "true" : "false"); printf("Size w/ palette = %d, gray+alpha = %d, rgb(a) = %d\n", paletteSize, 2 * w * h, bpp * w * h); printf("Max gray deviation = %d, tolerance = %d\n", maxGrayDeviation, grayscaleTolerance); } // Choose the best color type for the image. // 1. Opaque gray - use COLOR_TYPE_GRAY at 1 byte/pixel // 2. Gray + alpha - use COLOR_TYPE_PALETTE if the number of distinct // combinations // is sufficiently small, otherwise use COLOR_TYPE_GRAY_ALPHA // 3. RGB(A) - use COLOR_TYPE_PALETTE if the number of distinct colors is // sufficiently // small, otherwise use COLOR_TYPE_RGB{_ALPHA} if (isGrayscale) { if (isOpaque) { *colorType = PNG_COLOR_TYPE_GRAY; // 1 byte/pixel } else { // Use a simple heuristic to determine whether using a palette will // save space versus using gray + alpha for each pixel. // This doesn't take into account chunk overhead, filtering, LZ // compression, etc. if (isPalette && (paletteSize < 2 * w * h)) { *colorType = PNG_COLOR_TYPE_PALETTE; // 1 byte/pixel + 4 bytes/color } else { *colorType = PNG_COLOR_TYPE_GRAY_ALPHA; // 2 bytes per pixel } } } else if (isPalette && (paletteSize < bpp * w * h)) { *colorType = PNG_COLOR_TYPE_PALETTE; } else { if (maxGrayDeviation <= grayscaleTolerance) { diag->Note(DiagMessage() << "forcing image to gray (max deviation = " << maxGrayDeviation << ")"); *colorType = isOpaque ? PNG_COLOR_TYPE_GRAY : PNG_COLOR_TYPE_GRAY_ALPHA; } else { *colorType = isOpaque ? PNG_COLOR_TYPE_RGB : PNG_COLOR_TYPE_RGB_ALPHA; } } // Perform postprocessing of the image or palette data based on the final // color type chosen if (*colorType == PNG_COLOR_TYPE_PALETTE) { // Create separate RGB and Alpha palettes and set the number of colors *paletteEntries = num_colors; // Create the RGB and alpha palettes for (int idx = 0; idx < num_colors; idx++) { col = colors[idx]; rgbPalette[idx].red = (png_byte)((col >> 24) & 0xff); rgbPalette[idx].green = (png_byte)((col >> 16) & 0xff); rgbPalette[idx].blue = (png_byte)((col >> 8) & 0xff); alphaPalette[idx] = (png_byte)(col & 0xff); } } else if (*colorType == PNG_COLOR_TYPE_GRAY || *colorType == PNG_COLOR_TYPE_GRAY_ALPHA) { // If the image is gray or gray + alpha, compact the pixels into outRows for (j = 0; j < h; j++) { const png_byte* row = imageInfo.rows[j]; png_bytep out = outRows[j]; for (i = 0; i < w; i++) { rr = *row++; gg = *row++; bb = *row++; aa = *row++; if (isGrayscale) { *out++ = rr; } else { *out++ = (png_byte)(rr * 0.2126f + gg * 0.7152f + bb * 0.0722f); } if (!isOpaque) { *out++ = aa; } } } } } static bool writePng(IDiagnostics* diag, png_structp writePtr, png_infop infoPtr, PngInfo* info, int grayScaleTolerance) { if (setjmp(png_jmpbuf(writePtr))) { diag->Error(DiagMessage() << "failed to write png"); return false; } uint32_t width, height; int colorType, bitDepth, interlaceType, compressionType; png_unknown_chunk unknowns[3]; unknowns[0].data = nullptr; unknowns[1].data = nullptr; unknowns[2].data = nullptr; png_bytepp outRows = (png_bytepp)malloc((int)info->height * sizeof(png_bytep)); if (outRows == (png_bytepp)0) { printf("Can't allocate output buffer!\n"); exit(1); } for (uint32_t i = 0; i < info->height; i++) { outRows[i] = (png_bytep)malloc(2 * (int)info->width); if (outRows[i] == (png_bytep)0) { printf("Can't allocate output buffer!\n"); exit(1); } } png_set_compression_level(writePtr, Z_BEST_COMPRESSION); if (kDebug) { diag->Note(DiagMessage() << "writing image: w = " << info->width << ", h = " << info->height); } png_color rgbPalette[256]; png_byte alphaPalette[256]; bool hasTransparency; int paletteEntries; analyze_image(diag, *info, grayScaleTolerance, rgbPalette, alphaPalette, &paletteEntries, &hasTransparency, &colorType, outRows); // If the image is a 9-patch, we need to preserve it as a ARGB file to make // sure the pixels will not be pre-dithered/clamped until we decide they are if (info->is9Patch && (colorType == PNG_COLOR_TYPE_RGB || colorType == PNG_COLOR_TYPE_GRAY || colorType == PNG_COLOR_TYPE_PALETTE)) { colorType = PNG_COLOR_TYPE_RGB_ALPHA; } if (kDebug) { switch (colorType) { case PNG_COLOR_TYPE_PALETTE: diag->Note(DiagMessage() << "has " << paletteEntries << " colors" << (hasTransparency ? " (with alpha)" : "") << ", using PNG_COLOR_TYPE_PALLETTE"); break; case PNG_COLOR_TYPE_GRAY: diag->Note(DiagMessage() << "is opaque gray, using PNG_COLOR_TYPE_GRAY"); break; case PNG_COLOR_TYPE_GRAY_ALPHA: diag->Note(DiagMessage() << "is gray + alpha, using PNG_COLOR_TYPE_GRAY_ALPHA"); break; case PNG_COLOR_TYPE_RGB: diag->Note(DiagMessage() << "is opaque RGB, using PNG_COLOR_TYPE_RGB"); break; case PNG_COLOR_TYPE_RGB_ALPHA: diag->Note(DiagMessage() << "is RGB + alpha, using PNG_COLOR_TYPE_RGB_ALPHA"); break; } } png_set_IHDR(writePtr, infoPtr, info->width, info->height, 8, colorType, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT); if (colorType == PNG_COLOR_TYPE_PALETTE) { png_set_PLTE(writePtr, infoPtr, rgbPalette, paletteEntries); if (hasTransparency) { png_set_tRNS(writePtr, infoPtr, alphaPalette, paletteEntries, (png_color_16p)0); } png_set_filter(writePtr, 0, PNG_NO_FILTERS); } else { png_set_filter(writePtr, 0, PNG_ALL_FILTERS); } if (info->is9Patch) { int chunkCount = 2 + (info->haveLayoutBounds ? 1 : 0); int pIndex = info->haveLayoutBounds ? 2 : 1; int bIndex = 1; int oIndex = 0; // Chunks ordered thusly because older platforms depend on the base 9 patch // data being last png_bytep chunkNames = info->haveLayoutBounds ? (png_bytep) "npOl\0npLb\0npTc\0" : (png_bytep) "npOl\0npTc"; // base 9 patch data if (kDebug) { diag->Note(DiagMessage() << "adding 9-patch info.."); } memcpy((char*)unknowns[pIndex].name, "npTc", 5); unknowns[pIndex].data = (png_byte*)info->serialize9Patch(); unknowns[pIndex].size = info->info9Patch.serializedSize(); // TODO: remove the check below when everything works checkNinePatchSerialization(&info->info9Patch, unknowns[pIndex].data); // automatically generated 9 patch outline data int chunkSize = sizeof(png_uint_32) * 6; memcpy((char*)unknowns[oIndex].name, "npOl", 5); unknowns[oIndex].data = (png_byte*)calloc(chunkSize, 1); png_byte outputData[chunkSize]; memcpy(&outputData, &info->outlineInsetsLeft, 4 * sizeof(png_uint_32)); ((float*)outputData)[4] = info->outlineRadius; ((png_uint_32*)outputData)[5] = info->outlineAlpha; memcpy(unknowns[oIndex].data, &outputData, chunkSize); unknowns[oIndex].size = chunkSize; // optional optical inset / layout bounds data if (info->haveLayoutBounds) { int chunkSize = sizeof(png_uint_32) * 4; memcpy((char*)unknowns[bIndex].name, "npLb", 5); unknowns[bIndex].data = (png_byte*)calloc(chunkSize, 1); memcpy(unknowns[bIndex].data, &info->layoutBoundsLeft, chunkSize); unknowns[bIndex].size = chunkSize; } for (int i = 0; i < chunkCount; i++) { unknowns[i].location = PNG_HAVE_PLTE; } png_set_keep_unknown_chunks(writePtr, PNG_HANDLE_CHUNK_ALWAYS, chunkNames, chunkCount); png_set_unknown_chunks(writePtr, infoPtr, unknowns, chunkCount); #if PNG_LIBPNG_VER < 10600 // Deal with unknown chunk location bug in 1.5.x and earlier. png_set_unknown_chunk_location(writePtr, infoPtr, 0, PNG_HAVE_PLTE); if (info->haveLayoutBounds) { png_set_unknown_chunk_location(writePtr, infoPtr, 1, PNG_HAVE_PLTE); } #endif } png_write_info(writePtr, infoPtr); png_bytepp rows; if (colorType == PNG_COLOR_TYPE_RGB || colorType == PNG_COLOR_TYPE_RGB_ALPHA) { if (colorType == PNG_COLOR_TYPE_RGB) { png_set_filler(writePtr, 0, PNG_FILLER_AFTER); } rows = info->rows.data(); } else { rows = outRows; } png_write_image(writePtr, rows); if (kDebug) { printf("Final image data:\n"); // dump_image(info->width, info->height, rows, colorType); } png_write_end(writePtr, infoPtr); for (uint32_t i = 0; i < info->height; i++) { free(outRows[i]); } free(outRows); free(unknowns[0].data); free(unknowns[1].data); free(unknowns[2].data); png_get_IHDR(writePtr, infoPtr, &width, &height, &bitDepth, &colorType, &interlaceType, &compressionType, nullptr); if (kDebug) { diag->Note(DiagMessage() << "image written: w = " << width << ", h = " << height << ", d = " << bitDepth << ", colors = " << colorType << ", inter = " << interlaceType << ", comp = " << compressionType); } return true; } constexpr uint32_t kColorWhite = 0xffffffffu; constexpr uint32_t kColorTick = 0xff000000u; constexpr uint32_t kColorLayoutBoundsTick = 0xff0000ffu; enum class TickType { kNone, kTick, kLayoutBounds, kBoth }; static TickType tickType(png_bytep p, bool transparent, const char** outError) { png_uint_32 color = p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24); if (transparent) { if (p[3] == 0) { return TickType::kNone; } if (color == kColorLayoutBoundsTick) { return TickType::kLayoutBounds; } if (color == kColorTick) { return TickType::kTick; } // Error cases if (p[3] != 0xff) { *outError = "Frame pixels must be either solid or transparent " "(not intermediate alphas)"; return TickType::kNone; } if (p[0] != 0 || p[1] != 0 || p[2] != 0) { *outError = "Ticks in transparent frame must be black or red"; } return TickType::kTick; } if (p[3] != 0xFF) { *outError = "White frame must be a solid color (no alpha)"; } if (color == kColorWhite) { return TickType::kNone; } if (color == kColorTick) { return TickType::kTick; } if (color == kColorLayoutBoundsTick) { return TickType::kLayoutBounds; } if (p[0] != 0 || p[1] != 0 || p[2] != 0) { *outError = "Ticks in white frame must be black or red"; return TickType::kNone; } return TickType::kTick; } enum class TickState { kStart, kInside1, kOutside1 }; static bool getHorizontalTicks(png_bytep row, int width, bool transparent, bool required, int32_t* outLeft, int32_t* outRight, const char** outError, uint8_t* outDivs, bool multipleAllowed) { *outLeft = *outRight = -1; TickState state = TickState::kStart; bool found = false; for (int i = 1; i < width - 1; i++) { if (tickType(row + i * 4, transparent, outError) == TickType::kTick) { if (state == TickState::kStart || (state == TickState::kOutside1 && multipleAllowed)) { *outLeft = i - 1; *outRight = width - 2; found = true; if (outDivs != NULL) { *outDivs += 2; } state = TickState::kInside1; } else if (state == TickState::kOutside1) { *outError = "Can't have more than one marked region along edge"; *outLeft = i; return false; } } else if (!*outError) { if (state == TickState::kInside1) { // We're done with this div. Move on to the next. *outRight = i - 1; outRight += 2; outLeft += 2; state = TickState::kOutside1; } } else { *outLeft = i; return false; } } if (required && !found) { *outError = "No marked region found along edge"; *outLeft = -1; return false; } return true; } static bool getVerticalTicks(png_bytepp rows, int offset, int height, bool transparent, bool required, int32_t* outTop, int32_t* outBottom, const char** outError, uint8_t* outDivs, bool multipleAllowed) { *outTop = *outBottom = -1; TickState state = TickState::kStart; bool found = false; for (int i = 1; i < height - 1; i++) { if (tickType(rows[i] + offset, transparent, outError) == TickType::kTick) { if (state == TickState::kStart || (state == TickState::kOutside1 && multipleAllowed)) { *outTop = i - 1; *outBottom = height - 2; found = true; if (outDivs != NULL) { *outDivs += 2; } state = TickState::kInside1; } else if (state == TickState::kOutside1) { *outError = "Can't have more than one marked region along edge"; *outTop = i; return false; } } else if (!*outError) { if (state == TickState::kInside1) { // We're done with this div. Move on to the next. *outBottom = i - 1; outTop += 2; outBottom += 2; state = TickState::kOutside1; } } else { *outTop = i; return false; } } if (required && !found) { *outError = "No marked region found along edge"; *outTop = -1; return false; } return true; } static bool getHorizontalLayoutBoundsTicks(png_bytep row, int width, bool transparent, bool /* required */, int32_t* outLeft, int32_t* outRight, const char** outError) { *outLeft = *outRight = 0; // Look for left tick if (tickType(row + 4, transparent, outError) == TickType::kLayoutBounds) { // Starting with a layout padding tick int i = 1; while (i < width - 1) { (*outLeft)++; i++; if (tickType(row + i * 4, transparent, outError) != TickType::kLayoutBounds) { break; } } } // Look for right tick if (tickType(row + (width - 2) * 4, transparent, outError) == TickType::kLayoutBounds) { // Ending with a layout padding tick int i = width - 2; while (i > 1) { (*outRight)++; i--; if (tickType(row + i * 4, transparent, outError) != TickType::kLayoutBounds) { break; } } } return true; } static bool getVerticalLayoutBoundsTicks(png_bytepp rows, int offset, int height, bool transparent, bool /* required */, int32_t* outTop, int32_t* outBottom, const char** outError) { *outTop = *outBottom = 0; // Look for top tick if (tickType(rows[1] + offset, transparent, outError) == TickType::kLayoutBounds) { // Starting with a layout padding tick int i = 1; while (i < height - 1) { (*outTop)++; i++; if (tickType(rows[i] + offset, transparent, outError) != TickType::kLayoutBounds) { break; } } } // Look for bottom tick if (tickType(rows[height - 2] + offset, transparent, outError) == TickType::kLayoutBounds) { // Ending with a layout padding tick int i = height - 2; while (i > 1) { (*outBottom)++; i--; if (tickType(rows[i] + offset, transparent, outError) != TickType::kLayoutBounds) { break; } } } return true; } static void findMaxOpacity(png_bytepp rows, int startX, int startY, int endX, int endY, int dX, int dY, int* outInset) { uint8_t maxOpacity = 0; int inset = 0; *outInset = 0; for (int x = startX, y = startY; x != endX && y != endY; x += dX, y += dY, inset++) { png_byte* color = rows[y] + x * 4; uint8_t opacity = color[3]; if (opacity > maxOpacity) { maxOpacity = opacity; *outInset = inset; } if (opacity == 0xff) return; } } static uint8_t maxAlphaOverRow(png_bytep row, int startX, int endX) { uint8_t maxAlpha = 0; for (int x = startX; x < endX; x++) { uint8_t alpha = (row + x * 4)[3]; if (alpha > maxAlpha) maxAlpha = alpha; } return maxAlpha; } static uint8_t maxAlphaOverCol(png_bytepp rows, int offsetX, int startY, int endY) { uint8_t maxAlpha = 0; for (int y = startY; y < endY; y++) { uint8_t alpha = (rows[y] + offsetX * 4)[3]; if (alpha > maxAlpha) maxAlpha = alpha; } return maxAlpha; } static void getOutline(PngInfo* image) { int midX = image->width / 2; int midY = image->height / 2; int endX = image->width - 2; int endY = image->height - 2; // find left and right extent of nine patch content on center row if (image->width > 4) { findMaxOpacity(image->rows.data(), 1, midY, midX, -1, 1, 0, &image->outlineInsetsLeft); findMaxOpacity(image->rows.data(), endX, midY, midX, -1, -1, 0, &image->outlineInsetsRight); } else { image->outlineInsetsLeft = 0; image->outlineInsetsRight = 0; } // find top and bottom extent of nine patch content on center column if (image->height > 4) { findMaxOpacity(image->rows.data(), midX, 1, -1, midY, 0, 1, &image->outlineInsetsTop); findMaxOpacity(image->rows.data(), midX, endY, -1, midY, 0, -1, &image->outlineInsetsBottom); } else { image->outlineInsetsTop = 0; image->outlineInsetsBottom = 0; } int innerStartX = 1 + image->outlineInsetsLeft; int innerStartY = 1 + image->outlineInsetsTop; int innerEndX = endX - image->outlineInsetsRight; int innerEndY = endY - image->outlineInsetsBottom; int innerMidX = (innerEndX + innerStartX) / 2; int innerMidY = (innerEndY + innerStartY) / 2; // assuming the image is a round rect, compute the radius by marching // diagonally from the top left corner towards the center image->outlineAlpha = std::max( maxAlphaOverRow(image->rows[innerMidY], innerStartX, innerEndX), maxAlphaOverCol(image->rows.data(), innerMidX, innerStartY, innerStartY)); int diagonalInset = 0; findMaxOpacity(image->rows.data(), innerStartX, innerStartY, innerMidX, innerMidY, 1, 1, &diagonalInset); /* Determine source radius based upon inset: * sqrt(r^2 + r^2) = sqrt(i^2 + i^2) + r * sqrt(2) * r = sqrt(2) * i + r * (sqrt(2) - 1) * r = sqrt(2) * i * r = sqrt(2) / (sqrt(2) - 1) * i */ image->outlineRadius = 3.4142f * diagonalInset; if (kDebug) { printf("outline insets %d %d %d %d, rad %f, alpha %x\n", image->outlineInsetsLeft, image->outlineInsetsTop, image->outlineInsetsRight, image->outlineInsetsBottom, image->outlineRadius, image->outlineAlpha); } } static uint32_t getColor(png_bytepp rows, int left, int top, int right, int bottom) { png_bytep color = rows[top] + left * 4; if (left > right || top > bottom) { return android::Res_png_9patch::TRANSPARENT_COLOR; } while (top <= bottom) { for (int i = left; i <= right; i++) { png_bytep p = rows[top] + i * 4; if (color[3] == 0) { if (p[3] != 0) { return android::Res_png_9patch::NO_COLOR; } } else if (p[0] != color[0] || p[1] != color[1] || p[2] != color[2] || p[3] != color[3]) { return android::Res_png_9patch::NO_COLOR; } } top++; } if (color[3] == 0) { return android::Res_png_9patch::TRANSPARENT_COLOR; } return (color[3] << 24) | (color[0] << 16) | (color[1] << 8) | color[2]; } static bool do9Patch(PngInfo* image, std::string* outError) { image->is9Patch = true; int W = image->width; int H = image->height; int i, j; const int maxSizeXDivs = W * sizeof(int32_t); const int maxSizeYDivs = H * sizeof(int32_t); int32_t* xDivs = image->xDivs = new int32_t[W]; int32_t* yDivs = image->yDivs = new int32_t[H]; uint8_t numXDivs = 0; uint8_t numYDivs = 0; int8_t numColors; int numRows; int numCols; int top; int left; int right; int bottom; memset(xDivs, -1, maxSizeXDivs); memset(yDivs, -1, maxSizeYDivs); image->info9Patch.paddingLeft = image->info9Patch.paddingRight = -1; image->info9Patch.paddingTop = image->info9Patch.paddingBottom = -1; image->layoutBoundsLeft = image->layoutBoundsRight = 0; image->layoutBoundsTop = image->layoutBoundsBottom = 0; png_bytep p = image->rows[0]; bool transparent = p[3] == 0; bool hasColor = false; const char* errorMsg = nullptr; int errorPixel = -1; const char* errorEdge = nullptr; int colorIndex = 0; std::vector newRows; // Validate size... if (W < 3 || H < 3) { errorMsg = "Image must be at least 3x3 (1x1 without frame) pixels"; goto getout; } // Validate frame... if (!transparent && (p[0] != 0xFF || p[1] != 0xFF || p[2] != 0xFF || p[3] != 0xFF)) { errorMsg = "Must have one-pixel frame that is either transparent or white"; goto getout; } // Find left and right of sizing areas... if (!getHorizontalTicks(p, W, transparent, true, &xDivs[0], &xDivs[1], &errorMsg, &numXDivs, true)) { errorPixel = xDivs[0]; errorEdge = "top"; goto getout; } // Find top and bottom of sizing areas... if (!getVerticalTicks(image->rows.data(), 0, H, transparent, true, &yDivs[0], &yDivs[1], &errorMsg, &numYDivs, true)) { errorPixel = yDivs[0]; errorEdge = "left"; goto getout; } // Copy patch size data into image... image->info9Patch.numXDivs = numXDivs; image->info9Patch.numYDivs = numYDivs; // Find left and right of padding area... if (!getHorizontalTicks(image->rows[H - 1], W, transparent, false, &image->info9Patch.paddingLeft, &image->info9Patch.paddingRight, &errorMsg, nullptr, false)) { errorPixel = image->info9Patch.paddingLeft; errorEdge = "bottom"; goto getout; } // Find top and bottom of padding area... if (!getVerticalTicks(image->rows.data(), (W - 1) * 4, H, transparent, false, &image->info9Patch.paddingTop, &image->info9Patch.paddingBottom, &errorMsg, nullptr, false)) { errorPixel = image->info9Patch.paddingTop; errorEdge = "right"; goto getout; } // Find left and right of layout padding... getHorizontalLayoutBoundsTicks(image->rows[H - 1], W, transparent, false, &image->layoutBoundsLeft, &image->layoutBoundsRight, &errorMsg); getVerticalLayoutBoundsTicks(image->rows.data(), (W - 1) * 4, H, transparent, false, &image->layoutBoundsTop, &image->layoutBoundsBottom, &errorMsg); image->haveLayoutBounds = image->layoutBoundsLeft != 0 || image->layoutBoundsRight != 0 || image->layoutBoundsTop != 0 || image->layoutBoundsBottom != 0; if (image->haveLayoutBounds) { if (kDebug) { printf("layoutBounds=%d %d %d %d\n", image->layoutBoundsLeft, image->layoutBoundsTop, image->layoutBoundsRight, image->layoutBoundsBottom); } } // use opacity of pixels to estimate the round rect outline getOutline(image); // If padding is not yet specified, take values from size. if (image->info9Patch.paddingLeft < 0) { image->info9Patch.paddingLeft = xDivs[0]; image->info9Patch.paddingRight = W - 2 - xDivs[1]; } else { // Adjust value to be correct! image->info9Patch.paddingRight = W - 2 - image->info9Patch.paddingRight; } if (image->info9Patch.paddingTop < 0) { image->info9Patch.paddingTop = yDivs[0]; image->info9Patch.paddingBottom = H - 2 - yDivs[1]; } else { // Adjust value to be correct! image->info9Patch.paddingBottom = H - 2 - image->info9Patch.paddingBottom; } /* if (kDebug) { printf("Size ticks for %s: x0=%d, x1=%d, y0=%d, y1=%d\n", imageName, xDivs[0], xDivs[1], yDivs[0], yDivs[1]); printf("padding ticks for %s: l=%d, r=%d, t=%d, b=%d\n", imageName, image->info9Patch.paddingLeft, image->info9Patch.paddingRight, image->info9Patch.paddingTop, image->info9Patch.paddingBottom); }*/ // Remove frame from image. newRows.resize(H - 2); for (i = 0; i < H - 2; i++) { newRows[i] = image->rows[i + 1]; memmove(newRows[i], newRows[i] + 4, (W - 2) * 4); } image->rows.swap(newRows); image->width -= 2; W = image->width; image->height -= 2; H = image->height; // Figure out the number of rows and columns in the N-patch numCols = numXDivs + 1; if (xDivs[0] == 0) { // Column 1 is strechable numCols--; } if (xDivs[numXDivs - 1] == W) { numCols--; } numRows = numYDivs + 1; if (yDivs[0] == 0) { // Row 1 is strechable numRows--; } if (yDivs[numYDivs - 1] == H) { numRows--; } // Make sure the amount of rows and columns will fit in the number of // colors we can use in the 9-patch format. if (numRows * numCols > 0x7F) { errorMsg = "Too many rows and columns in 9-patch perimeter"; goto getout; } numColors = numRows * numCols; image->info9Patch.numColors = numColors; image->colors.resize(numColors); // Fill in color information for each patch. uint32_t c; top = 0; // The first row always starts with the top being at y=0 and the bottom // being either yDivs[1] (if yDivs[0]=0) of yDivs[0]. In the former case // the first row is stretchable along the Y axis, otherwise it is fixed. // The last row always ends with the bottom being bitmap.height and the top // being either yDivs[numYDivs-2] (if yDivs[numYDivs-1]=bitmap.height) or // yDivs[numYDivs-1]. In the former case the last row is stretchable along // the Y axis, otherwise it is fixed. // // The first and last columns are similarly treated with respect to the X // axis. // // The above is to help explain some of the special casing that goes on the // code below. // The initial yDiv and whether the first row is considered stretchable or // not depends on whether yDiv[0] was zero or not. for (j = (yDivs[0] == 0 ? 1 : 0); j <= numYDivs && top < H; j++) { if (j == numYDivs) { bottom = H; } else { bottom = yDivs[j]; } left = 0; // The initial xDiv and whether the first column is considered // stretchable or not depends on whether xDiv[0] was zero or not. for (i = xDivs[0] == 0 ? 1 : 0; i <= numXDivs && left < W; i++) { if (i == numXDivs) { right = W; } else { right = xDivs[i]; } c = getColor(image->rows.data(), left, top, right - 1, bottom - 1); image->colors[colorIndex++] = c; if (kDebug) { if (c != android::Res_png_9patch::NO_COLOR) { hasColor = true; } } left = right; } top = bottom; } assert(colorIndex == numColors); if (kDebug && hasColor) { for (i = 0; i < numColors; i++) { if (i == 0) printf("Colors:\n"); printf(" #%08x", image->colors[i]); if (i == numColors - 1) printf("\n"); } } getout: if (errorMsg) { std::stringstream err; err << "9-patch malformed: " << errorMsg; if (errorEdge) { err << "." << std::endl; if (errorPixel >= 0) { err << "Found at pixel #" << errorPixel << " along " << errorEdge << " edge"; } else { err << "Found along " << errorEdge << " edge"; } } *outError = err.str(); return false; } return true; } bool Png::process(const Source& source, std::istream* input, BigBuffer* outBuffer, const PngOptions& options) { TRACE_CALL(); png_byte signature[kPngSignatureSize]; // Read the PNG signature first. if (!input->read(reinterpret_cast(signature), kPngSignatureSize)) { mDiag->Error(DiagMessage() << strerror(errno)); return false; } // If the PNG signature doesn't match, bail early. if (png_sig_cmp(signature, 0, kPngSignatureSize) != 0) { mDiag->Error(DiagMessage() << "not a valid png file"); return false; } bool result = false; png_structp readPtr = nullptr; png_infop infoPtr = nullptr; png_structp writePtr = nullptr; png_infop writeInfoPtr = nullptr; PngInfo pngInfo = {}; readPtr = png_create_read_struct(PNG_LIBPNG_VER_STRING, 0, nullptr, nullptr); if (!readPtr) { mDiag->Error(DiagMessage() << "failed to allocate read ptr"); goto bail; } infoPtr = png_create_info_struct(readPtr); if (!infoPtr) { mDiag->Error(DiagMessage() << "failed to allocate info ptr"); goto bail; } png_set_error_fn(readPtr, reinterpret_cast(mDiag), nullptr, logWarning); // Set the read function to read from std::istream. png_set_read_fn(readPtr, (png_voidp)input, readDataFromStream); if (!readPng(mDiag, readPtr, infoPtr, &pngInfo)) { goto bail; } if (util::EndsWith(source.path, ".9.png")) { std::string errorMsg; if (!do9Patch(&pngInfo, &errorMsg)) { mDiag->Error(DiagMessage() << errorMsg); goto bail; } } writePtr = png_create_write_struct(PNG_LIBPNG_VER_STRING, 0, nullptr, nullptr); if (!writePtr) { mDiag->Error(DiagMessage() << "failed to allocate write ptr"); goto bail; } writeInfoPtr = png_create_info_struct(writePtr); if (!writeInfoPtr) { mDiag->Error(DiagMessage() << "failed to allocate write info ptr"); goto bail; } png_set_error_fn(writePtr, nullptr, nullptr, logWarning); // Set the write function to write to std::ostream. png_set_write_fn(writePtr, (png_voidp)outBuffer, writeDataToStream, flushDataToStream); if (!writePng(mDiag, writePtr, writeInfoPtr, &pngInfo, options.grayscale_tolerance)) { goto bail; } result = true; bail: if (readPtr) { png_destroy_read_struct(&readPtr, &infoPtr, nullptr); } if (writePtr) { png_destroy_write_struct(&writePtr, &writeInfoPtr); } return result; } } // namespace aapt