/* * Copyright (C) 2020 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "RpcState" #include "RpcState.h" #include #include #include "Debug.h" #include "RpcWireFormat.h" #include namespace android { RpcState::RpcState() {} RpcState::~RpcState() {} status_t RpcState::onBinderLeaving(const sp& session, const sp& binder, RpcAddress* outAddress) { bool isRemote = binder->remoteBinder(); bool isRpc = isRemote && binder->remoteBinder()->isRpcBinder(); if (isRpc && binder->remoteBinder()->getPrivateAccessorForId().rpcSession() != session) { // We need to be able to send instructions over the socket for how to // connect to a different server, and we also need to let the host // process know that this is happening. ALOGE("Cannot send binder from unrelated binder RPC session."); return INVALID_OPERATION; } if (isRemote && !isRpc) { // Without additional work, this would have the effect of using this // process to proxy calls from the socket over to the other process, and // it would make those calls look like they come from us (not over the // sockets). In order to make this work transparently like binder, we // would instead need to send instructions over the socket for how to // connect to the host process, and we also need to let the host process // know this was happening. ALOGE("Cannot send binder proxy %p over sockets", binder.get()); return INVALID_OPERATION; } std::lock_guard _l(mNodeMutex); // TODO(b/182939933): maybe move address out of BpBinder, and keep binder->address map // in RpcState for (auto& [addr, node] : mNodeForAddress) { if (binder == node.binder) { if (isRpc) { const RpcAddress& actualAddr = binder->remoteBinder()->getPrivateAccessorForId().rpcAddress(); // TODO(b/182939933): this is only checking integrity of data structure // a different data structure doesn't need this LOG_ALWAYS_FATAL_IF(addr < actualAddr, "Address mismatch"); LOG_ALWAYS_FATAL_IF(actualAddr < addr, "Address mismatch"); } node.timesSent++; node.sentRef = binder; // might already be set *outAddress = addr; return OK; } } LOG_ALWAYS_FATAL_IF(isRpc, "RPC binder must have known address at this point"); auto&& [it, inserted] = mNodeForAddress.insert({RpcAddress::unique(), BinderNode{ .binder = binder, .timesSent = 1, .sentRef = binder, }}); // TODO(b/182939933): better organization could avoid needing this log LOG_ALWAYS_FATAL_IF(!inserted); *outAddress = it->first; return OK; } sp RpcState::onBinderEntering(const sp& session, const RpcAddress& address) { std::unique_lock _l(mNodeMutex); if (auto it = mNodeForAddress.find(address); it != mNodeForAddress.end()) { sp binder = it->second.binder.promote(); // implicitly have strong RPC refcount, since we received this binder it->second.timesRecd++; _l.unlock(); // We have timesRecd RPC refcounts, but we only need to hold on to one // when we keep the object. All additional dec strongs are sent // immediately, we wait to send the last one in BpBinder::onLastDecStrong. (void)session->sendDecStrong(address); return binder; } auto&& [it, inserted] = mNodeForAddress.insert({address, BinderNode{}}); LOG_ALWAYS_FATAL_IF(!inserted, "Failed to insert binder when creating proxy"); // Currently, all binders are assumed to be part of the same session (no // device global binders in the RPC world). sp binder = BpBinder::create(session, it->first); it->second.binder = binder; it->second.timesRecd = 1; return binder; } size_t RpcState::countBinders() { std::lock_guard _l(mNodeMutex); return mNodeForAddress.size(); } void RpcState::dump() { std::lock_guard _l(mNodeMutex); ALOGE("DUMP OF RpcState %p", this); ALOGE("DUMP OF RpcState (%zu nodes)", mNodeForAddress.size()); for (const auto& [address, node] : mNodeForAddress) { sp binder = node.binder.promote(); const char* desc; if (binder) { if (binder->remoteBinder()) { if (binder->remoteBinder()->isRpcBinder()) { desc = "(rpc binder proxy)"; } else { desc = "(binder proxy)"; } } else { desc = "(local binder)"; } } else { desc = "(null)"; } ALOGE("- BINDER NODE: %p times sent:%zu times recd: %zu a:%s type:%s", node.binder.unsafe_get(), node.timesSent, node.timesRecd, address.toString().c_str(), desc); } ALOGE("END DUMP OF RpcState"); } void RpcState::terminate() { if (SHOULD_LOG_RPC_DETAIL) { ALOGE("RpcState::terminate()"); dump(); } // if the destructor of a binder object makes another RPC call, then calling // decStrong could deadlock. So, we must hold onto these binders until // mNodeMutex is no longer taken. std::vector> tempHoldBinder; { std::lock_guard _l(mNodeMutex); mTerminated = true; for (auto& [address, node] : mNodeForAddress) { sp binder = node.binder.promote(); LOG_ALWAYS_FATAL_IF(binder == nullptr, "Binder %p expected to be owned.", binder.get()); if (node.sentRef != nullptr) { tempHoldBinder.push_back(node.sentRef); } } mNodeForAddress.clear(); } } RpcState::CommandData::CommandData(size_t size) : mSize(size) { // The maximum size for regular binder is 1MB for all concurrent // transactions. A very small proportion of transactions are even // larger than a page, but we need to avoid allocating too much // data on behalf of an arbitrary client, or we could risk being in // a position where a single additional allocation could run out of // memory. // // Note, this limit may not reflect the total amount of data allocated for a // transaction (in some cases, additional fixed size amounts are added), // though for rough consistency, we should avoid cases where this data type // is used for multiple dynamic allocations for a single transaction. constexpr size_t kMaxTransactionAllocation = 100 * 1000; if (size == 0) return; if (size > kMaxTransactionAllocation) { ALOGW("Transaction requested too much data allocation %zu", size); return; } mData.reset(new (std::nothrow) uint8_t[size]); } bool RpcState::rpcSend(const base::unique_fd& fd, const char* what, const void* data, size_t size) { LOG_RPC_DETAIL("Sending %s on fd %d: %s", what, fd.get(), hexString(data, size).c_str()); if (size > std::numeric_limits::max()) { ALOGE("Cannot send %s at size %zu (too big)", what, size); terminate(); return false; } ssize_t sent = TEMP_FAILURE_RETRY(send(fd.get(), data, size, MSG_NOSIGNAL)); if (sent < 0 || sent != static_cast(size)) { ALOGE("Failed to send %s (sent %zd of %zu bytes) on fd %d, error: %s", what, sent, size, fd.get(), strerror(errno)); terminate(); return false; } return true; } bool RpcState::rpcRec(const base::unique_fd& fd, const char* what, void* data, size_t size) { if (size > std::numeric_limits::max()) { ALOGE("Cannot rec %s at size %zu (too big)", what, size); terminate(); return false; } ssize_t recd = TEMP_FAILURE_RETRY(recv(fd.get(), data, size, MSG_WAITALL | MSG_NOSIGNAL)); if (recd < 0 || recd != static_cast(size)) { terminate(); if (recd == 0 && errno == 0) { LOG_RPC_DETAIL("No more data when trying to read %s on fd %d", what, fd.get()); return false; } ALOGE("Failed to read %s (received %zd of %zu bytes) on fd %d, error: %s", what, recd, size, fd.get(), strerror(errno)); return false; } else { LOG_RPC_DETAIL("Received %s on fd %d: %s", what, fd.get(), hexString(data, size).c_str()); } return true; } sp RpcState::getRootObject(const base::unique_fd& fd, const sp& session) { Parcel data; data.markForRpc(session); Parcel reply; status_t status = transact(fd, RpcAddress::zero(), RPC_SPECIAL_TRANSACT_GET_ROOT, data, session, &reply, 0); if (status != OK) { ALOGE("Error getting root object: %s", statusToString(status).c_str()); return nullptr; } return reply.readStrongBinder(); } status_t RpcState::getMaxThreads(const base::unique_fd& fd, const sp& session, size_t* maxThreadsOut) { Parcel data; data.markForRpc(session); Parcel reply; status_t status = transact(fd, RpcAddress::zero(), RPC_SPECIAL_TRANSACT_GET_MAX_THREADS, data, session, &reply, 0); if (status != OK) { ALOGE("Error getting max threads: %s", statusToString(status).c_str()); return status; } int32_t maxThreads; status = reply.readInt32(&maxThreads); if (status != OK) return status; if (maxThreads <= 0) { ALOGE("Error invalid max maxThreads: %d", maxThreads); return BAD_VALUE; } *maxThreadsOut = maxThreads; return OK; } status_t RpcState::getSessionId(const base::unique_fd& fd, const sp& session, int32_t* sessionIdOut) { Parcel data; data.markForRpc(session); Parcel reply; status_t status = transact(fd, RpcAddress::zero(), RPC_SPECIAL_TRANSACT_GET_SESSION_ID, data, session, &reply, 0); if (status != OK) { ALOGE("Error getting session ID: %s", statusToString(status).c_str()); return status; } int32_t sessionId; status = reply.readInt32(&sessionId); if (status != OK) return status; *sessionIdOut = sessionId; return OK; } status_t RpcState::transact(const base::unique_fd& fd, const RpcAddress& address, uint32_t code, const Parcel& data, const sp& session, Parcel* reply, uint32_t flags) { uint64_t asyncNumber = 0; if (!address.isZero()) { std::lock_guard _l(mNodeMutex); if (mTerminated) return DEAD_OBJECT; // avoid fatal only, otherwise races auto it = mNodeForAddress.find(address); LOG_ALWAYS_FATAL_IF(it == mNodeForAddress.end(), "Sending transact on unknown address %s", address.toString().c_str()); if (flags & IBinder::FLAG_ONEWAY) { asyncNumber = it->second.asyncNumber++; } } if (!data.isForRpc()) { ALOGE("Refusing to send RPC with parcel not crafted for RPC"); return BAD_TYPE; } if (data.objectsCount() != 0) { ALOGE("Parcel at %p has attached objects but is being used in an RPC call", &data); return BAD_TYPE; } RpcWireTransaction transaction{ .address = address.viewRawEmbedded(), .code = code, .flags = flags, .asyncNumber = asyncNumber, }; CommandData transactionData(sizeof(RpcWireTransaction) + data.dataSize()); if (!transactionData.valid()) { return NO_MEMORY; } memcpy(transactionData.data() + 0, &transaction, sizeof(RpcWireTransaction)); memcpy(transactionData.data() + sizeof(RpcWireTransaction), data.data(), data.dataSize()); if (transactionData.size() > std::numeric_limits::max()) { ALOGE("Transaction size too big %zu", transactionData.size()); return BAD_VALUE; } RpcWireHeader command{ .command = RPC_COMMAND_TRANSACT, .bodySize = static_cast(transactionData.size()), }; if (!rpcSend(fd, "transact header", &command, sizeof(command))) { return DEAD_OBJECT; } if (!rpcSend(fd, "command body", transactionData.data(), transactionData.size())) { return DEAD_OBJECT; } if (flags & IBinder::FLAG_ONEWAY) { return OK; // do not wait for result } LOG_ALWAYS_FATAL_IF(reply == nullptr, "Reply parcel must be used for synchronous transaction."); return waitForReply(fd, session, reply); } static void cleanup_reply_data(Parcel* p, const uint8_t* data, size_t dataSize, const binder_size_t* objects, size_t objectsCount) { (void)p; delete[] const_cast(data - offsetof(RpcWireReply, data)); (void)dataSize; LOG_ALWAYS_FATAL_IF(objects != nullptr); LOG_ALWAYS_FATAL_IF(objectsCount, 0); } status_t RpcState::waitForReply(const base::unique_fd& fd, const sp& session, Parcel* reply) { RpcWireHeader command; while (true) { if (!rpcRec(fd, "command header", &command, sizeof(command))) { return DEAD_OBJECT; } if (command.command == RPC_COMMAND_REPLY) break; status_t status = processServerCommand(fd, session, command); if (status != OK) return status; } CommandData data(command.bodySize); if (!data.valid()) { return NO_MEMORY; } if (!rpcRec(fd, "reply body", data.data(), command.bodySize)) { return DEAD_OBJECT; } if (command.bodySize < sizeof(RpcWireReply)) { ALOGE("Expecting %zu but got %" PRId32 " bytes for RpcWireReply. Terminating!", sizeof(RpcWireReply), command.bodySize); terminate(); return BAD_VALUE; } RpcWireReply* rpcReply = reinterpret_cast(data.data()); if (rpcReply->status != OK) return rpcReply->status; data.release(); reply->ipcSetDataReference(rpcReply->data, command.bodySize - offsetof(RpcWireReply, data), nullptr, 0, cleanup_reply_data); reply->markForRpc(session); return OK; } status_t RpcState::sendDecStrong(const base::unique_fd& fd, const RpcAddress& addr) { { std::lock_guard _l(mNodeMutex); if (mTerminated) return DEAD_OBJECT; // avoid fatal only, otherwise races auto it = mNodeForAddress.find(addr); LOG_ALWAYS_FATAL_IF(it == mNodeForAddress.end(), "Sending dec strong on unknown address %s", addr.toString().c_str()); LOG_ALWAYS_FATAL_IF(it->second.timesRecd <= 0, "Bad dec strong %s", addr.toString().c_str()); it->second.timesRecd--; if (it->second.timesRecd == 0 && it->second.timesSent == 0) { mNodeForAddress.erase(it); } } RpcWireHeader cmd = { .command = RPC_COMMAND_DEC_STRONG, .bodySize = sizeof(RpcWireAddress), }; if (!rpcSend(fd, "dec ref header", &cmd, sizeof(cmd))) return DEAD_OBJECT; if (!rpcSend(fd, "dec ref body", &addr.viewRawEmbedded(), sizeof(RpcWireAddress))) return DEAD_OBJECT; return OK; } status_t RpcState::getAndExecuteCommand(const base::unique_fd& fd, const sp& session) { LOG_RPC_DETAIL("getAndExecuteCommand on fd %d", fd.get()); RpcWireHeader command; if (!rpcRec(fd, "command header", &command, sizeof(command))) { return DEAD_OBJECT; } return processServerCommand(fd, session, command); } status_t RpcState::processServerCommand(const base::unique_fd& fd, const sp& session, const RpcWireHeader& command) { switch (command.command) { case RPC_COMMAND_TRANSACT: return processTransact(fd, session, command); case RPC_COMMAND_DEC_STRONG: return processDecStrong(fd, command); } // We should always know the version of the opposing side, and since the // RPC-binder-level wire protocol is not self synchronizing, we have no way // to understand where the current command ends and the next one begins. We // also can't consider it a fatal error because this would allow any client // to kill us, so ending the session for misbehaving client. ALOGE("Unknown RPC command %d - terminating session", command.command); terminate(); return DEAD_OBJECT; } status_t RpcState::processTransact(const base::unique_fd& fd, const sp& session, const RpcWireHeader& command) { LOG_ALWAYS_FATAL_IF(command.command != RPC_COMMAND_TRANSACT, "command: %d", command.command); CommandData transactionData(command.bodySize); if (!transactionData.valid()) { return NO_MEMORY; } if (!rpcRec(fd, "transaction body", transactionData.data(), transactionData.size())) { return DEAD_OBJECT; } return processTransactInternal(fd, session, std::move(transactionData)); } static void do_nothing_to_transact_data(Parcel* p, const uint8_t* data, size_t dataSize, const binder_size_t* objects, size_t objectsCount) { (void)p; (void)data; (void)dataSize; (void)objects; (void)objectsCount; } status_t RpcState::processTransactInternal(const base::unique_fd& fd, const sp& session, CommandData transactionData) { if (transactionData.size() < sizeof(RpcWireTransaction)) { ALOGE("Expecting %zu but got %zu bytes for RpcWireTransaction. Terminating!", sizeof(RpcWireTransaction), transactionData.size()); terminate(); return BAD_VALUE; } RpcWireTransaction* transaction = reinterpret_cast(transactionData.data()); // TODO(b/182939933): heap allocation just for lookup in mNodeForAddress, // maybe add an RpcAddress 'view' if the type remains 'heavy' auto addr = RpcAddress::fromRawEmbedded(&transaction->address); status_t replyStatus = OK; sp target; if (!addr.isZero()) { std::lock_guard _l(mNodeMutex); auto it = mNodeForAddress.find(addr); if (it == mNodeForAddress.end()) { ALOGE("Unknown binder address %s.", addr.toString().c_str()); replyStatus = BAD_VALUE; } else { target = it->second.binder.promote(); if (target == nullptr) { // This can happen if the binder is remote in this process, and // another thread has called the last decStrong on this binder. // However, for local binders, it indicates a misbehaving client // (any binder which is being transacted on should be holding a // strong ref count), so in either case, terminating the // session. ALOGE("While transacting, binder has been deleted at address %s. Terminating!", addr.toString().c_str()); terminate(); replyStatus = BAD_VALUE; } else if (target->localBinder() == nullptr) { ALOGE("Transactions can only go to local binders, not address %s. Terminating!", addr.toString().c_str()); terminate(); replyStatus = BAD_VALUE; } else if (transaction->flags & IBinder::FLAG_ONEWAY) { if (transaction->asyncNumber != it->second.asyncNumber) { // we need to process some other asynchronous transaction // first // TODO(b/183140903): limit enqueues/detect overfill for bad client // TODO(b/183140903): detect when an object is deleted when it still has // pending async transactions it->second.asyncTodo.push(BinderNode::AsyncTodo{ .data = std::move(transactionData), .asyncNumber = transaction->asyncNumber, }); LOG_RPC_DETAIL("Enqueuing %" PRId64 " on %s", transaction->asyncNumber, addr.toString().c_str()); return OK; } } } } Parcel reply; reply.markForRpc(session); if (replyStatus == OK) { Parcel data; // transaction->data is owned by this function. Parcel borrows this data and // only holds onto it for the duration of this function call. Parcel will be // deleted before the 'transactionData' object. data.ipcSetDataReference(transaction->data, transactionData.size() - offsetof(RpcWireTransaction, data), nullptr /*object*/, 0 /*objectCount*/, do_nothing_to_transact_data); data.markForRpc(session); if (target) { replyStatus = target->transact(transaction->code, data, &reply, transaction->flags); } else { LOG_RPC_DETAIL("Got special transaction %u", transaction->code); sp server = session->server().promote(); if (server) { // special case for 'zero' address (special server commands) switch (transaction->code) { case RPC_SPECIAL_TRANSACT_GET_ROOT: { replyStatus = reply.writeStrongBinder(server->getRootObject()); break; } case RPC_SPECIAL_TRANSACT_GET_MAX_THREADS: { replyStatus = reply.writeInt32(server->getMaxThreads()); break; } case RPC_SPECIAL_TRANSACT_GET_SESSION_ID: { // only sessions w/ services can be the source of a // session ID (so still guarded by non-null server) // // sessions associated with servers must have an ID // (hence abort) int32_t id = session->getPrivateAccessorForId().get().value(); replyStatus = reply.writeInt32(id); break; } default: { replyStatus = UNKNOWN_TRANSACTION; } } } else { ALOGE("Special command sent, but no server object attached."); } } } if (transaction->flags & IBinder::FLAG_ONEWAY) { if (replyStatus != OK) { ALOGW("Oneway call failed with error: %d", replyStatus); } LOG_RPC_DETAIL("Processed async transaction %" PRId64 " on %s", transaction->asyncNumber, addr.toString().c_str()); // Check to see if there is another asynchronous transaction to process. // This behavior differs from binder behavior, since in the binder // driver, asynchronous transactions will be processed after existing // pending binder transactions on the queue. The downside of this is // that asynchronous transactions can be drowned out by synchronous // transactions. However, we have no easy way to queue these // transactions after the synchronous transactions we may want to read // from the wire. So, in socket binder here, we have the opposite // downside: asynchronous transactions may drown out synchronous // transactions. { std::unique_lock _l(mNodeMutex); auto it = mNodeForAddress.find(addr); // last refcount dropped after this transaction happened if (it == mNodeForAddress.end()) return OK; // note - only updated now, instead of later, so that other threads // will queue any later transactions // TODO(b/183140903): support > 2**64 async transactions // (we can do this by allowing asyncNumber to wrap, since we // don't expect more than 2**64 simultaneous transactions) it->second.asyncNumber++; if (it->second.asyncTodo.size() == 0) return OK; if (it->second.asyncTodo.top().asyncNumber == it->second.asyncNumber) { LOG_RPC_DETAIL("Found next async transaction %" PRId64 " on %s", it->second.asyncNumber, addr.toString().c_str()); // justification for const_cast (consider avoiding priority_queue): // - AsyncTodo operator< doesn't depend on 'data' object // - gotta go fast CommandData data = std::move( const_cast(it->second.asyncTodo.top()).data); it->second.asyncTodo.pop(); _l.unlock(); return processTransactInternal(fd, session, std::move(data)); } } return OK; } RpcWireReply rpcReply{ .status = replyStatus, }; CommandData replyData(sizeof(RpcWireReply) + reply.dataSize()); if (!replyData.valid()) { return NO_MEMORY; } memcpy(replyData.data() + 0, &rpcReply, sizeof(RpcWireReply)); memcpy(replyData.data() + sizeof(RpcWireReply), reply.data(), reply.dataSize()); if (replyData.size() > std::numeric_limits::max()) { ALOGE("Reply size too big %zu", transactionData.size()); terminate(); return BAD_VALUE; } RpcWireHeader cmdReply{ .command = RPC_COMMAND_REPLY, .bodySize = static_cast(replyData.size()), }; if (!rpcSend(fd, "reply header", &cmdReply, sizeof(RpcWireHeader))) { return DEAD_OBJECT; } if (!rpcSend(fd, "reply body", replyData.data(), replyData.size())) { return DEAD_OBJECT; } return OK; } status_t RpcState::processDecStrong(const base::unique_fd& fd, const RpcWireHeader& command) { LOG_ALWAYS_FATAL_IF(command.command != RPC_COMMAND_DEC_STRONG, "command: %d", command.command); CommandData commandData(command.bodySize); if (!commandData.valid()) { return NO_MEMORY; } if (!rpcRec(fd, "dec ref body", commandData.data(), commandData.size())) { return DEAD_OBJECT; } if (command.bodySize < sizeof(RpcWireAddress)) { ALOGE("Expecting %zu but got %" PRId32 " bytes for RpcWireAddress. Terminating!", sizeof(RpcWireAddress), command.bodySize); terminate(); return BAD_VALUE; } RpcWireAddress* address = reinterpret_cast(commandData.data()); // TODO(b/182939933): heap allocation just for lookup auto addr = RpcAddress::fromRawEmbedded(address); std::unique_lock _l(mNodeMutex); auto it = mNodeForAddress.find(addr); if (it == mNodeForAddress.end()) { ALOGE("Unknown binder address %s for dec strong.", addr.toString().c_str()); return OK; } sp target = it->second.binder.promote(); if (target == nullptr) { ALOGE("While requesting dec strong, binder has been deleted at address %s. Terminating!", addr.toString().c_str()); terminate(); return BAD_VALUE; } if (it->second.timesSent == 0) { ALOGE("No record of sending binder, but requested decStrong: %s", addr.toString().c_str()); return OK; } LOG_ALWAYS_FATAL_IF(it->second.sentRef == nullptr, "Inconsistent state, lost ref for %s", addr.toString().c_str()); sp tempHold; it->second.timesSent--; if (it->second.timesSent == 0) { tempHold = it->second.sentRef; it->second.sentRef = nullptr; if (it->second.timesRecd == 0) { mNodeForAddress.erase(it); } } _l.unlock(); tempHold = nullptr; // destructor may make binder calls on this session return OK; } } // namespace android