/* * Copyright 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "renderengine/ExternalTexture.h" // TODO(b/129481165): remove the #pragma below and fix conversion issues #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wconversion" #include #include // TODO(b/129481165): remove the #pragma below and fix conversion issues #pragma clang diagnostic pop // ignored "-Wconversion" #include #include #include #include #include "TracedOrdinal.h" namespace android::compositionengine { Output::~Output() = default; namespace impl { namespace { template class Reversed { public: explicit Reversed(const T& container) : mContainer(container) {} auto begin() { return mContainer.rbegin(); } auto end() { return mContainer.rend(); } private: const T& mContainer; }; // Helper for enumerating over a container in reverse order template Reversed reversed(const T& c) { return Reversed(c); } struct ScaleVector { float x; float y; }; // Returns a ScaleVector (x, y) such that from.scale(x, y) = to', // where to' will have the same size as "to". In the case where "from" and "to" // start at the origin to'=to. ScaleVector getScale(const Rect& from, const Rect& to) { return {.x = static_cast(to.width()) / from.width(), .y = static_cast(to.height()) / from.height()}; } } // namespace std::shared_ptr createOutput( const compositionengine::CompositionEngine& compositionEngine) { return createOutputTemplated(compositionEngine); } Output::~Output() = default; bool Output::isValid() const { return mDisplayColorProfile && mDisplayColorProfile->isValid() && mRenderSurface && mRenderSurface->isValid(); } std::optional Output::getDisplayId() const { return {}; } const std::string& Output::getName() const { return mName; } void Output::setName(const std::string& name) { mName = name; } void Output::setCompositionEnabled(bool enabled) { auto& outputState = editState(); if (outputState.isEnabled == enabled) { return; } outputState.isEnabled = enabled; dirtyEntireOutput(); } void Output::setLayerCachingEnabled(bool enabled) { if (enabled == (mPlanner != nullptr)) { return; } if (enabled) { mPlanner = std::make_unique(getCompositionEngine().getRenderEngine()); if (mRenderSurface) { mPlanner->setDisplaySize(mRenderSurface->getSize()); } } else { mPlanner.reset(); } for (auto* outputLayer : getOutputLayersOrderedByZ()) { if (!outputLayer) { continue; } outputLayer->editState().overrideInfo = {}; } } void Output::setProjection(ui::Rotation orientation, const Rect& layerStackSpaceRect, const Rect& orientedDisplaySpaceRect) { auto& outputState = editState(); outputState.displaySpace.orientation = orientation; LOG_FATAL_IF(outputState.displaySpace.bounds == Rect::INVALID_RECT, "The display bounds are unknown."); // Compute orientedDisplaySpace ui::Size orientedSize = outputState.displaySpace.bounds.getSize(); if (orientation == ui::ROTATION_90 || orientation == ui::ROTATION_270) { std::swap(orientedSize.width, orientedSize.height); } outputState.orientedDisplaySpace.bounds = Rect(orientedSize); outputState.orientedDisplaySpace.content = orientedDisplaySpaceRect; // Compute displaySpace.content const uint32_t transformOrientationFlags = ui::Transform::toRotationFlags(orientation); ui::Transform rotation; if (transformOrientationFlags != ui::Transform::ROT_INVALID) { const auto displaySize = outputState.displaySpace.bounds; rotation.set(transformOrientationFlags, displaySize.width(), displaySize.height()); } outputState.displaySpace.content = rotation.transform(orientedDisplaySpaceRect); // Compute framebufferSpace outputState.framebufferSpace.orientation = orientation; LOG_FATAL_IF(outputState.framebufferSpace.bounds == Rect::INVALID_RECT, "The framebuffer bounds are unknown."); const auto scale = getScale(outputState.displaySpace.bounds, outputState.framebufferSpace.bounds); outputState.framebufferSpace.content = outputState.displaySpace.content.scale(scale.x, scale.y); // Compute layerStackSpace outputState.layerStackSpace.content = layerStackSpaceRect; outputState.layerStackSpace.bounds = layerStackSpaceRect; outputState.transform = outputState.layerStackSpace.getTransform(outputState.displaySpace); outputState.needsFiltering = outputState.transform.needsBilinearFiltering(); dirtyEntireOutput(); } void Output::setDisplaySize(const ui::Size& size) { mRenderSurface->setDisplaySize(size); auto& state = editState(); // Update framebuffer space const Rect newBounds(size); state.framebufferSpace.bounds = newBounds; // Update display space state.displaySpace.bounds = newBounds; state.transform = state.layerStackSpace.getTransform(state.displaySpace); // Update oriented display space const auto orientation = state.displaySpace.orientation; ui::Size orientedSize = size; if (orientation == ui::ROTATION_90 || orientation == ui::ROTATION_270) { std::swap(orientedSize.width, orientedSize.height); } const Rect newOrientedBounds(orientedSize); state.orientedDisplaySpace.bounds = newOrientedBounds; if (mPlanner) { mPlanner->setDisplaySize(size); } dirtyEntireOutput(); } ui::Transform::RotationFlags Output::getTransformHint() const { return static_cast(getState().transform.getOrientation()); } void Output::setLayerStackFilter(uint32_t layerStackId, bool isInternal) { auto& outputState = editState(); outputState.layerStackId = layerStackId; outputState.layerStackInternal = isInternal; dirtyEntireOutput(); } void Output::setColorTransform(const compositionengine::CompositionRefreshArgs& args) { auto& colorTransformMatrix = editState().colorTransformMatrix; if (!args.colorTransformMatrix || colorTransformMatrix == args.colorTransformMatrix) { return; } colorTransformMatrix = *args.colorTransformMatrix; dirtyEntireOutput(); } void Output::setColorProfile(const ColorProfile& colorProfile) { ui::Dataspace targetDataspace = getDisplayColorProfile()->getTargetDataspace(colorProfile.mode, colorProfile.dataspace, colorProfile.colorSpaceAgnosticDataspace); auto& outputState = editState(); if (outputState.colorMode == colorProfile.mode && outputState.dataspace == colorProfile.dataspace && outputState.renderIntent == colorProfile.renderIntent && outputState.targetDataspace == targetDataspace) { return; } outputState.colorMode = colorProfile.mode; outputState.dataspace = colorProfile.dataspace; outputState.renderIntent = colorProfile.renderIntent; outputState.targetDataspace = targetDataspace; mRenderSurface->setBufferDataspace(colorProfile.dataspace); ALOGV("Set active color mode: %s (%d), active render intent: %s (%d)", decodeColorMode(colorProfile.mode).c_str(), colorProfile.mode, decodeRenderIntent(colorProfile.renderIntent).c_str(), colorProfile.renderIntent); dirtyEntireOutput(); } void Output::setDisplayBrightness(float sdrWhitePointNits, float displayBrightnessNits) { auto& outputState = editState(); if (outputState.sdrWhitePointNits == sdrWhitePointNits && outputState.displayBrightnessNits == displayBrightnessNits) { // Nothing changed return; } outputState.sdrWhitePointNits = sdrWhitePointNits; outputState.displayBrightnessNits = displayBrightnessNits; dirtyEntireOutput(); } void Output::dump(std::string& out) const { using android::base::StringAppendF; StringAppendF(&out, " Composition Output State: [\"%s\"]", mName.c_str()); out.append("\n "); dumpBase(out); } void Output::dumpBase(std::string& out) const { dumpState(out); if (mDisplayColorProfile) { mDisplayColorProfile->dump(out); } else { out.append(" No display color profile!\n"); } if (mRenderSurface) { mRenderSurface->dump(out); } else { out.append(" No render surface!\n"); } android::base::StringAppendF(&out, "\n %zu Layers\n", getOutputLayerCount()); for (const auto* outputLayer : getOutputLayersOrderedByZ()) { if (!outputLayer) { continue; } outputLayer->dump(out); } } void Output::dumpPlannerInfo(const Vector& args, std::string& out) const { if (!mPlanner) { base::StringAppendF(&out, "Planner is disabled\n"); return; } base::StringAppendF(&out, "Planner info for display [%s]\n", mName.c_str()); mPlanner->dump(args, out); } compositionengine::DisplayColorProfile* Output::getDisplayColorProfile() const { return mDisplayColorProfile.get(); } void Output::setDisplayColorProfile(std::unique_ptr mode) { mDisplayColorProfile = std::move(mode); } const Output::ReleasedLayers& Output::getReleasedLayersForTest() const { return mReleasedLayers; } void Output::setDisplayColorProfileForTest( std::unique_ptr mode) { mDisplayColorProfile = std::move(mode); } compositionengine::RenderSurface* Output::getRenderSurface() const { return mRenderSurface.get(); } void Output::setRenderSurface(std::unique_ptr surface) { mRenderSurface = std::move(surface); const auto size = mRenderSurface->getSize(); editState().framebufferSpace.bounds = Rect(size); if (mPlanner) { mPlanner->setDisplaySize(size); } dirtyEntireOutput(); } void Output::cacheClientCompositionRequests(uint32_t cacheSize) { if (cacheSize == 0) { mClientCompositionRequestCache.reset(); } else { mClientCompositionRequestCache = std::make_unique(cacheSize); } }; void Output::setRenderSurfaceForTest(std::unique_ptr surface) { mRenderSurface = std::move(surface); } Region Output::getDirtyRegion(bool repaintEverything) const { const auto& outputState = getState(); Region dirty(outputState.layerStackSpace.content); if (!repaintEverything) { dirty.andSelf(outputState.dirtyRegion); } return dirty; } bool Output::belongsInOutput(std::optional layerStackId, bool internalOnly) const { // The layerStackId's must match, and also the layer must not be internal // only when not on an internal output. const auto& outputState = getState(); return layerStackId && (*layerStackId == outputState.layerStackId) && (!internalOnly || outputState.layerStackInternal); } bool Output::belongsInOutput(const sp& layerFE) const { const auto* layerFEState = layerFE->getCompositionState(); return layerFEState && belongsInOutput(layerFEState->layerStackId, layerFEState->internalOnly); } std::unique_ptr Output::createOutputLayer( const sp& layerFE) const { return impl::createOutputLayer(*this, layerFE); } compositionengine::OutputLayer* Output::getOutputLayerForLayer(const sp& layerFE) const { auto index = findCurrentOutputLayerForLayer(layerFE); return index ? getOutputLayerOrderedByZByIndex(*index) : nullptr; } std::optional Output::findCurrentOutputLayerForLayer( const sp& layer) const { for (size_t i = 0; i < getOutputLayerCount(); i++) { auto outputLayer = getOutputLayerOrderedByZByIndex(i); if (outputLayer && &outputLayer->getLayerFE() == layer.get()) { return i; } } return std::nullopt; } void Output::setReleasedLayers(Output::ReleasedLayers&& layers) { mReleasedLayers = std::move(layers); } void Output::prepare(const compositionengine::CompositionRefreshArgs& refreshArgs, LayerFESet& geomSnapshots) { ATRACE_CALL(); ALOGV(__FUNCTION__); rebuildLayerStacks(refreshArgs, geomSnapshots); } void Output::present(const compositionengine::CompositionRefreshArgs& refreshArgs) { ATRACE_CALL(); ALOGV(__FUNCTION__); updateColorProfile(refreshArgs); updateCompositionState(refreshArgs); planComposition(); writeCompositionState(refreshArgs); setColorTransform(refreshArgs); beginFrame(); prepareFrame(); devOptRepaintFlash(refreshArgs); finishFrame(refreshArgs); postFramebuffer(); renderCachedSets(refreshArgs); } void Output::rebuildLayerStacks(const compositionengine::CompositionRefreshArgs& refreshArgs, LayerFESet& layerFESet) { ATRACE_CALL(); ALOGV(__FUNCTION__); auto& outputState = editState(); // Do nothing if this output is not enabled or there is no need to perform this update if (!outputState.isEnabled || CC_LIKELY(!refreshArgs.updatingOutputGeometryThisFrame)) { return; } // Process the layers to determine visibility and coverage compositionengine::Output::CoverageState coverage{layerFESet}; collectVisibleLayers(refreshArgs, coverage); // Compute the resulting coverage for this output, and store it for later const ui::Transform& tr = outputState.transform; Region undefinedRegion{outputState.displaySpace.bounds}; undefinedRegion.subtractSelf(tr.transform(coverage.aboveOpaqueLayers)); outputState.undefinedRegion = undefinedRegion; outputState.dirtyRegion.orSelf(coverage.dirtyRegion); } void Output::collectVisibleLayers(const compositionengine::CompositionRefreshArgs& refreshArgs, compositionengine::Output::CoverageState& coverage) { // Evaluate the layers from front to back to determine what is visible. This // also incrementally calculates the coverage information for each layer as // well as the entire output. for (auto layer : reversed(refreshArgs.layers)) { // Incrementally process the coverage for each layer ensureOutputLayerIfVisible(layer, coverage); // TODO(b/121291683): Stop early if the output is completely covered and // no more layers could even be visible underneath the ones on top. } setReleasedLayers(refreshArgs); finalizePendingOutputLayers(); } void Output::ensureOutputLayerIfVisible(sp& layerFE, compositionengine::Output::CoverageState& coverage) { // Ensure we have a snapshot of the basic geometry layer state. Limit the // snapshots to once per frame for each candidate layer, as layers may // appear on multiple outputs. if (!coverage.latchedLayers.count(layerFE)) { coverage.latchedLayers.insert(layerFE); layerFE->prepareCompositionState(compositionengine::LayerFE::StateSubset::BasicGeometry); } // Only consider the layers on the given layer stack if (!belongsInOutput(layerFE)) { return; } // Obtain a read-only pointer to the front-end layer state const auto* layerFEState = layerFE->getCompositionState(); if (CC_UNLIKELY(!layerFEState)) { return; } // handle hidden surfaces by setting the visible region to empty if (CC_UNLIKELY(!layerFEState->isVisible)) { return; } /* * opaqueRegion: area of a surface that is fully opaque. */ Region opaqueRegion; /* * visibleRegion: area of a surface that is visible on screen and not fully * transparent. This is essentially the layer's footprint minus the opaque * regions above it. Areas covered by a translucent surface are considered * visible. */ Region visibleRegion; /* * coveredRegion: area of a surface that is covered by all visible regions * above it (which includes the translucent areas). */ Region coveredRegion; /* * transparentRegion: area of a surface that is hinted to be completely * transparent. This is only used to tell when the layer has no visible non- * transparent regions and can be removed from the layer list. It does not * affect the visibleRegion of this layer or any layers beneath it. The hint * may not be correct if apps don't respect the SurfaceView restrictions * (which, sadly, some don't). */ Region transparentRegion; /* * shadowRegion: Region cast by the layer's shadow. */ Region shadowRegion; const ui::Transform& tr = layerFEState->geomLayerTransform; // Get the visible region // TODO(b/121291683): Is it worth creating helper methods on LayerFEState // for computations like this? const Rect visibleRect(tr.transform(layerFEState->geomLayerBounds)); visibleRegion.set(visibleRect); if (layerFEState->shadowRadius > 0.0f) { // if the layer casts a shadow, offset the layers visible region and // calculate the shadow region. const auto inset = static_cast(ceilf(layerFEState->shadowRadius) * -1.0f); Rect visibleRectWithShadows(visibleRect); visibleRectWithShadows.inset(inset, inset, inset, inset); visibleRegion.set(visibleRectWithShadows); shadowRegion = visibleRegion.subtract(visibleRect); } if (visibleRegion.isEmpty()) { return; } // Remove the transparent area from the visible region if (!layerFEState->isOpaque) { if (tr.preserveRects()) { // transform the transparent region transparentRegion = tr.transform(layerFEState->transparentRegionHint); } else { // transformation too complex, can't do the // transparent region optimization. transparentRegion.clear(); } } // compute the opaque region const auto layerOrientation = tr.getOrientation(); if (layerFEState->isOpaque && ((layerOrientation & ui::Transform::ROT_INVALID) == 0)) { // If we one of the simple category of transforms (0/90/180/270 rotation // + any flip), then the opaque region is the layer's footprint. // Otherwise we don't try and compute the opaque region since there may // be errors at the edges, and we treat the entire layer as // translucent. opaqueRegion.set(visibleRect); } // Clip the covered region to the visible region coveredRegion = coverage.aboveCoveredLayers.intersect(visibleRegion); // Update accumAboveCoveredLayers for next (lower) layer coverage.aboveCoveredLayers.orSelf(visibleRegion); // subtract the opaque region covered by the layers above us visibleRegion.subtractSelf(coverage.aboveOpaqueLayers); if (visibleRegion.isEmpty()) { return; } // Get coverage information for the layer as previously displayed, // also taking over ownership from mOutputLayersorderedByZ. auto prevOutputLayerIndex = findCurrentOutputLayerForLayer(layerFE); auto prevOutputLayer = prevOutputLayerIndex ? getOutputLayerOrderedByZByIndex(*prevOutputLayerIndex) : nullptr; // Get coverage information for the layer as previously displayed // TODO(b/121291683): Define kEmptyRegion as a constant in Region.h const Region kEmptyRegion; const Region& oldVisibleRegion = prevOutputLayer ? prevOutputLayer->getState().visibleRegion : kEmptyRegion; const Region& oldCoveredRegion = prevOutputLayer ? prevOutputLayer->getState().coveredRegion : kEmptyRegion; // compute this layer's dirty region Region dirty; if (layerFEState->contentDirty) { // we need to invalidate the whole region dirty = visibleRegion; // as well, as the old visible region dirty.orSelf(oldVisibleRegion); } else { /* compute the exposed region: * the exposed region consists of two components: * 1) what's VISIBLE now and was COVERED before * 2) what's EXPOSED now less what was EXPOSED before * * note that (1) is conservative, we start with the whole visible region * but only keep what used to be covered by something -- which mean it * may have been exposed. * * (2) handles areas that were not covered by anything but got exposed * because of a resize. * */ const Region newExposed = visibleRegion - coveredRegion; const Region oldExposed = oldVisibleRegion - oldCoveredRegion; dirty = (visibleRegion & oldCoveredRegion) | (newExposed - oldExposed); } dirty.subtractSelf(coverage.aboveOpaqueLayers); // accumulate to the screen dirty region coverage.dirtyRegion.orSelf(dirty); // Update accumAboveOpaqueLayers for next (lower) layer coverage.aboveOpaqueLayers.orSelf(opaqueRegion); // Compute the visible non-transparent region Region visibleNonTransparentRegion = visibleRegion.subtract(transparentRegion); // Perform the final check to see if this layer is visible on this output // TODO(b/121291683): Why does this not use visibleRegion? (see outputSpaceVisibleRegion below) const auto& outputState = getState(); Region drawRegion(outputState.transform.transform(visibleNonTransparentRegion)); drawRegion.andSelf(outputState.displaySpace.bounds); if (drawRegion.isEmpty()) { return; } Region visibleNonShadowRegion = visibleRegion.subtract(shadowRegion); // The layer is visible. Either reuse the existing outputLayer if we have // one, or create a new one if we do not. auto result = ensureOutputLayer(prevOutputLayerIndex, layerFE); // Store the layer coverage information into the layer state as some of it // is useful later. auto& outputLayerState = result->editState(); outputLayerState.visibleRegion = visibleRegion; outputLayerState.visibleNonTransparentRegion = visibleNonTransparentRegion; outputLayerState.coveredRegion = coveredRegion; outputLayerState.outputSpaceVisibleRegion = outputState.transform.transform( visibleNonShadowRegion.intersect(outputState.layerStackSpace.content)); outputLayerState.shadowRegion = shadowRegion; } void Output::setReleasedLayers(const compositionengine::CompositionRefreshArgs&) { // The base class does nothing with this call. } void Output::updateLayerStateFromFE(const CompositionRefreshArgs& args) const { for (auto* layer : getOutputLayersOrderedByZ()) { layer->getLayerFE().prepareCompositionState( args.updatingGeometryThisFrame ? LayerFE::StateSubset::GeometryAndContent : LayerFE::StateSubset::Content); } } void Output::updateCompositionState(const compositionengine::CompositionRefreshArgs& refreshArgs) { ATRACE_CALL(); ALOGV(__FUNCTION__); if (!getState().isEnabled) { return; } mLayerRequestingBackgroundBlur = findLayerRequestingBackgroundComposition(); bool forceClientComposition = mLayerRequestingBackgroundBlur != nullptr; for (auto* layer : getOutputLayersOrderedByZ()) { layer->updateCompositionState(refreshArgs.updatingGeometryThisFrame, refreshArgs.devOptForceClientComposition || forceClientComposition, refreshArgs.internalDisplayRotationFlags); if (mLayerRequestingBackgroundBlur == layer) { forceClientComposition = false; } } } void Output::planComposition() { if (!mPlanner || !getState().isEnabled) { return; } ATRACE_CALL(); ALOGV(__FUNCTION__); mPlanner->plan(getOutputLayersOrderedByZ()); } void Output::writeCompositionState(const compositionengine::CompositionRefreshArgs& refreshArgs) { ATRACE_CALL(); ALOGV(__FUNCTION__); if (!getState().isEnabled) { return; } editState().earliestPresentTime = refreshArgs.earliestPresentTime; editState().previousPresentFence = refreshArgs.previousPresentFence; compositionengine::OutputLayer* peekThroughLayer = nullptr; sp previousOverride = nullptr; bool includeGeometry = refreshArgs.updatingGeometryThisFrame; uint32_t z = 0; bool overrideZ = false; for (auto* layer : getOutputLayersOrderedByZ()) { if (layer == peekThroughLayer) { // No longer needed, although it should not show up again, so // resetting it is not truly needed either. peekThroughLayer = nullptr; // peekThroughLayer was already drawn ahead of its z order. continue; } bool skipLayer = false; const auto& overrideInfo = layer->getState().overrideInfo; if (overrideInfo.buffer != nullptr) { if (previousOverride && overrideInfo.buffer->getBuffer() == previousOverride) { ALOGV("Skipping redundant buffer"); skipLayer = true; } else { // First layer with the override buffer. if (overrideInfo.peekThroughLayer) { peekThroughLayer = overrideInfo.peekThroughLayer; // Draw peekThroughLayer first. overrideZ = true; includeGeometry = true; constexpr bool isPeekingThrough = true; peekThroughLayer->writeStateToHWC(includeGeometry, false, z++, overrideZ, isPeekingThrough); } previousOverride = overrideInfo.buffer->getBuffer(); } } constexpr bool isPeekingThrough = false; layer->writeStateToHWC(includeGeometry, skipLayer, z++, overrideZ, isPeekingThrough); } } compositionengine::OutputLayer* Output::findLayerRequestingBackgroundComposition() const { compositionengine::OutputLayer* layerRequestingBgComposition = nullptr; for (auto* layer : getOutputLayersOrderedByZ()) { auto* compState = layer->getLayerFE().getCompositionState(); // If any layer has a sideband stream, we will disable blurs. In that case, we don't // want to force client composition because of the blur. if (compState->sidebandStream != nullptr) { return nullptr; } if (compState->backgroundBlurRadius > 0 || compState->blurRegions.size() > 0) { layerRequestingBgComposition = layer; } } return layerRequestingBgComposition; } void Output::updateColorProfile(const compositionengine::CompositionRefreshArgs& refreshArgs) { setColorProfile(pickColorProfile(refreshArgs)); } // Returns a data space that fits all visible layers. The returned data space // can only be one of // - Dataspace::SRGB (use legacy dataspace and let HWC saturate when colors are enhanced) // - Dataspace::DISPLAY_P3 // - Dataspace::DISPLAY_BT2020 // The returned HDR data space is one of // - Dataspace::UNKNOWN // - Dataspace::BT2020_HLG // - Dataspace::BT2020_PQ ui::Dataspace Output::getBestDataspace(ui::Dataspace* outHdrDataSpace, bool* outIsHdrClientComposition) const { ui::Dataspace bestDataSpace = ui::Dataspace::V0_SRGB; *outHdrDataSpace = ui::Dataspace::UNKNOWN; for (const auto* layer : getOutputLayersOrderedByZ()) { switch (layer->getLayerFE().getCompositionState()->dataspace) { case ui::Dataspace::V0_SCRGB: case ui::Dataspace::V0_SCRGB_LINEAR: case ui::Dataspace::BT2020: case ui::Dataspace::BT2020_ITU: case ui::Dataspace::BT2020_LINEAR: case ui::Dataspace::DISPLAY_BT2020: bestDataSpace = ui::Dataspace::DISPLAY_BT2020; break; case ui::Dataspace::DISPLAY_P3: bestDataSpace = ui::Dataspace::DISPLAY_P3; break; case ui::Dataspace::BT2020_PQ: case ui::Dataspace::BT2020_ITU_PQ: bestDataSpace = ui::Dataspace::DISPLAY_P3; *outHdrDataSpace = ui::Dataspace::BT2020_PQ; *outIsHdrClientComposition = layer->getLayerFE().getCompositionState()->forceClientComposition; break; case ui::Dataspace::BT2020_HLG: case ui::Dataspace::BT2020_ITU_HLG: bestDataSpace = ui::Dataspace::DISPLAY_P3; // When there's mixed PQ content and HLG content, we set the HDR // data space to be BT2020_PQ and convert HLG to PQ. if (*outHdrDataSpace == ui::Dataspace::UNKNOWN) { *outHdrDataSpace = ui::Dataspace::BT2020_HLG; } break; default: break; } } return bestDataSpace; } compositionengine::Output::ColorProfile Output::pickColorProfile( const compositionengine::CompositionRefreshArgs& refreshArgs) const { if (refreshArgs.outputColorSetting == OutputColorSetting::kUnmanaged) { return ColorProfile{ui::ColorMode::NATIVE, ui::Dataspace::UNKNOWN, ui::RenderIntent::COLORIMETRIC, refreshArgs.colorSpaceAgnosticDataspace}; } ui::Dataspace hdrDataSpace; bool isHdrClientComposition = false; ui::Dataspace bestDataSpace = getBestDataspace(&hdrDataSpace, &isHdrClientComposition); switch (refreshArgs.forceOutputColorMode) { case ui::ColorMode::SRGB: bestDataSpace = ui::Dataspace::V0_SRGB; break; case ui::ColorMode::DISPLAY_P3: bestDataSpace = ui::Dataspace::DISPLAY_P3; break; default: break; } // respect hdrDataSpace only when there is no legacy HDR support const bool isHdr = hdrDataSpace != ui::Dataspace::UNKNOWN && !mDisplayColorProfile->hasLegacyHdrSupport(hdrDataSpace) && !isHdrClientComposition; if (isHdr) { bestDataSpace = hdrDataSpace; } ui::RenderIntent intent; switch (refreshArgs.outputColorSetting) { case OutputColorSetting::kManaged: case OutputColorSetting::kUnmanaged: intent = isHdr ? ui::RenderIntent::TONE_MAP_COLORIMETRIC : ui::RenderIntent::COLORIMETRIC; break; case OutputColorSetting::kEnhanced: intent = isHdr ? ui::RenderIntent::TONE_MAP_ENHANCE : ui::RenderIntent::ENHANCE; break; default: // vendor display color setting intent = static_cast(refreshArgs.outputColorSetting); break; } ui::ColorMode outMode; ui::Dataspace outDataSpace; ui::RenderIntent outRenderIntent; mDisplayColorProfile->getBestColorMode(bestDataSpace, intent, &outDataSpace, &outMode, &outRenderIntent); return ColorProfile{outMode, outDataSpace, outRenderIntent, refreshArgs.colorSpaceAgnosticDataspace}; } void Output::beginFrame() { auto& outputState = editState(); const bool dirty = !getDirtyRegion(false).isEmpty(); const bool empty = getOutputLayerCount() == 0; const bool wasEmpty = !outputState.lastCompositionHadVisibleLayers; // If nothing has changed (!dirty), don't recompose. // If something changed, but we don't currently have any visible layers, // and didn't when we last did a composition, then skip it this time. // The second rule does two things: // - When all layers are removed from a display, we'll emit one black // frame, then nothing more until we get new layers. // - When a display is created with a private layer stack, we won't // emit any black frames until a layer is added to the layer stack. const bool mustRecompose = dirty && !(empty && wasEmpty); const char flagPrefix[] = {'-', '+'}; static_cast(flagPrefix); ALOGV_IF("%s: %s composition for %s (%cdirty %cempty %cwasEmpty)", __FUNCTION__, mustRecompose ? "doing" : "skipping", getName().c_str(), flagPrefix[dirty], flagPrefix[empty], flagPrefix[wasEmpty]); mRenderSurface->beginFrame(mustRecompose); if (mustRecompose) { outputState.lastCompositionHadVisibleLayers = !empty; } } void Output::prepareFrame() { ATRACE_CALL(); ALOGV(__FUNCTION__); const auto& outputState = getState(); if (!outputState.isEnabled) { return; } chooseCompositionStrategy(); if (mPlanner) { mPlanner->reportFinalPlan(getOutputLayersOrderedByZ()); } mRenderSurface->prepareFrame(outputState.usesClientComposition, outputState.usesDeviceComposition); } void Output::devOptRepaintFlash(const compositionengine::CompositionRefreshArgs& refreshArgs) { if (CC_LIKELY(!refreshArgs.devOptFlashDirtyRegionsDelay)) { return; } if (getState().isEnabled) { // transform the dirty region into this screen's coordinate space const Region dirtyRegion = getDirtyRegion(refreshArgs.repaintEverything); if (!dirtyRegion.isEmpty()) { base::unique_fd readyFence; // redraw the whole screen static_cast(composeSurfaces(dirtyRegion, refreshArgs)); mRenderSurface->queueBuffer(std::move(readyFence)); } } postFramebuffer(); std::this_thread::sleep_for(*refreshArgs.devOptFlashDirtyRegionsDelay); prepareFrame(); } void Output::finishFrame(const compositionengine::CompositionRefreshArgs& refreshArgs) { ATRACE_CALL(); ALOGV(__FUNCTION__); if (!getState().isEnabled) { return; } // Repaint the framebuffer (if needed), getting the optional fence for when // the composition completes. auto optReadyFence = composeSurfaces(Region::INVALID_REGION, refreshArgs); if (!optReadyFence) { return; } // swap buffers (presentation) mRenderSurface->queueBuffer(std::move(*optReadyFence)); } std::optional Output::composeSurfaces( const Region& debugRegion, const compositionengine::CompositionRefreshArgs& refreshArgs) { ATRACE_CALL(); ALOGV(__FUNCTION__); const auto& outputState = getState(); OutputCompositionState& outputCompositionState = editState(); const TracedOrdinal hasClientComposition = {"hasClientComposition", outputState.usesClientComposition}; auto& renderEngine = getCompositionEngine().getRenderEngine(); const bool supportsProtectedContent = renderEngine.supportsProtectedContent(); // If we the display is secure, protected content support is enabled, and at // least one layer has protected content, we need to use a secure back // buffer. if (outputState.isSecure && supportsProtectedContent) { auto layers = getOutputLayersOrderedByZ(); bool needsProtected = std::any_of(layers.begin(), layers.end(), [](auto* layer) { return layer->getLayerFE().getCompositionState()->hasProtectedContent; }); if (needsProtected != renderEngine.isProtected()) { renderEngine.useProtectedContext(needsProtected); } if (needsProtected != mRenderSurface->isProtected() && needsProtected == renderEngine.isProtected()) { mRenderSurface->setProtected(needsProtected); } } else if (!outputState.isSecure && renderEngine.isProtected()) { renderEngine.useProtectedContext(false); } base::unique_fd fd; std::shared_ptr tex; // If we aren't doing client composition on this output, but do have a // flipClientTarget request for this frame on this output, we still need to // dequeue a buffer. if (hasClientComposition || outputState.flipClientTarget) { tex = mRenderSurface->dequeueBuffer(&fd); if (tex == nullptr) { ALOGW("Dequeuing buffer for display [%s] failed, bailing out of " "client composition for this frame", mName.c_str()); return {}; } } base::unique_fd readyFence; if (!hasClientComposition) { setExpensiveRenderingExpected(false); return readyFence; } ALOGV("hasClientComposition"); renderengine::DisplaySettings clientCompositionDisplay; clientCompositionDisplay.physicalDisplay = outputState.framebufferSpace.content; clientCompositionDisplay.clip = outputState.layerStackSpace.content; clientCompositionDisplay.orientation = ui::Transform::toRotationFlags(outputState.displaySpace.orientation); clientCompositionDisplay.outputDataspace = mDisplayColorProfile->hasWideColorGamut() ? outputState.dataspace : ui::Dataspace::UNKNOWN; // If we have a valid current display brightness use that, otherwise fall back to the // display's max desired clientCompositionDisplay.maxLuminance = outputState.displayBrightnessNits > 0.f ? outputState.displayBrightnessNits : mDisplayColorProfile->getHdrCapabilities().getDesiredMaxLuminance(); clientCompositionDisplay.sdrWhitePointNits = outputState.sdrWhitePointNits; // Compute the global color transform matrix. if (!outputState.usesDeviceComposition && !getSkipColorTransform()) { clientCompositionDisplay.colorTransform = outputState.colorTransformMatrix; } // Note: Updated by generateClientCompositionRequests clientCompositionDisplay.clearRegion = Region::INVALID_REGION; // Generate the client composition requests for the layers on this output. std::vector clientCompositionLayers = generateClientCompositionRequests(supportsProtectedContent, clientCompositionDisplay.clearRegion, clientCompositionDisplay.outputDataspace); appendRegionFlashRequests(debugRegion, clientCompositionLayers); // Check if the client composition requests were rendered into the provided graphic buffer. If // so, we can reuse the buffer and avoid client composition. if (mClientCompositionRequestCache) { if (mClientCompositionRequestCache->exists(tex->getBuffer()->getId(), clientCompositionDisplay, clientCompositionLayers)) { outputCompositionState.reusedClientComposition = true; setExpensiveRenderingExpected(false); return readyFence; } mClientCompositionRequestCache->add(tex->getBuffer()->getId(), clientCompositionDisplay, clientCompositionLayers); } // We boost GPU frequency here because there will be color spaces conversion // or complex GPU shaders and it's expensive. We boost the GPU frequency so that // GPU composition can finish in time. We must reset GPU frequency afterwards, // because high frequency consumes extra battery. const bool expensiveBlurs = refreshArgs.blursAreExpensive && mLayerRequestingBackgroundBlur != nullptr; const bool expensiveRenderingExpected = clientCompositionDisplay.outputDataspace == ui::Dataspace::DISPLAY_P3 || expensiveBlurs; if (expensiveRenderingExpected) { setExpensiveRenderingExpected(true); } std::vector clientCompositionLayerPointers; clientCompositionLayerPointers.reserve(clientCompositionLayers.size()); std::transform(clientCompositionLayers.begin(), clientCompositionLayers.end(), std::back_inserter(clientCompositionLayerPointers), [](LayerFE::LayerSettings& settings) -> renderengine::LayerSettings* { return &settings; }); const nsecs_t renderEngineStart = systemTime(); // Only use the framebuffer cache when rendering to an internal display // TODO(b/173560331): This is only to help mitigate memory leaks from virtual displays because // right now we don't have a concrete eviction policy for output buffers: GLESRenderEngine // bounds its framebuffer cache but Skia RenderEngine has no current policy. The best fix is // probably to encapsulate the output buffer into a structure that dispatches resource cleanup // over to RenderEngine, in which case this flag can be removed from the drawLayers interface. const bool useFramebufferCache = outputState.layerStackInternal; status_t status = renderEngine.drawLayers(clientCompositionDisplay, clientCompositionLayerPointers, tex, useFramebufferCache, std::move(fd), &readyFence); if (status != NO_ERROR && mClientCompositionRequestCache) { // If rendering was not successful, remove the request from the cache. mClientCompositionRequestCache->remove(tex->getBuffer()->getId()); } auto& timeStats = getCompositionEngine().getTimeStats(); if (readyFence.get() < 0) { timeStats.recordRenderEngineDuration(renderEngineStart, systemTime()); } else { timeStats.recordRenderEngineDuration(renderEngineStart, std::make_shared( new Fence(dup(readyFence.get())))); } return readyFence; } std::vector Output::generateClientCompositionRequests( bool supportsProtectedContent, Region& clearRegion, ui::Dataspace outputDataspace) { std::vector clientCompositionLayers; ALOGV("Rendering client layers"); const auto& outputState = getState(); const Region viewportRegion(outputState.layerStackSpace.content); bool firstLayer = true; // Used when a layer clears part of the buffer. Region stubRegion; bool disableBlurs = false; sp previousOverrideBuffer = nullptr; for (auto* layer : getOutputLayersOrderedByZ()) { const auto& layerState = layer->getState(); const auto* layerFEState = layer->getLayerFE().getCompositionState(); auto& layerFE = layer->getLayerFE(); const Region clip(viewportRegion.intersect(layerState.visibleRegion)); ALOGV("Layer: %s", layerFE.getDebugName()); if (clip.isEmpty()) { ALOGV(" Skipping for empty clip"); firstLayer = false; continue; } disableBlurs |= layerFEState->sidebandStream != nullptr; const bool clientComposition = layer->requiresClientComposition(); // We clear the client target for non-client composed layers if // requested by the HWC. We skip this if the layer is not an opaque // rectangle, as by definition the layer must blend with whatever is // underneath. We also skip the first layer as the buffer target is // guaranteed to start out cleared. const bool clearClientComposition = layerState.clearClientTarget && layerFEState->isOpaque && !firstLayer; ALOGV(" Composition type: client %d clear %d", clientComposition, clearClientComposition); // If the layer casts a shadow but the content casting the shadow is occluded, skip // composing the non-shadow content and only draw the shadows. const bool realContentIsVisible = clientComposition && !layerState.visibleRegion.subtract(layerState.shadowRegion).isEmpty(); if (clientComposition || clearClientComposition) { std::vector results; if (layer->getState().overrideInfo.buffer != nullptr) { if (layer->getState().overrideInfo.buffer->getBuffer() != previousOverrideBuffer) { results = layer->getOverrideCompositionList(); previousOverrideBuffer = layer->getState().overrideInfo.buffer->getBuffer(); ALOGV("Replacing [%s] with override in RE", layer->getLayerFE().getDebugName()); } else { ALOGV("Skipping redundant override buffer for [%s] in RE", layer->getLayerFE().getDebugName()); } } else { LayerFE::ClientCompositionTargetSettings::BlurSetting blurSetting = disableBlurs ? LayerFE::ClientCompositionTargetSettings::BlurSetting::Disabled : (layer->getState().overrideInfo.disableBackgroundBlur ? LayerFE::ClientCompositionTargetSettings::BlurSetting:: BlurRegionsOnly : LayerFE::ClientCompositionTargetSettings::BlurSetting:: Enabled); compositionengine::LayerFE::ClientCompositionTargetSettings targetSettings{.clip = clip, .needsFiltering = layer->needsFiltering() || outputState.needsFiltering, .isSecure = outputState.isSecure, .supportsProtectedContent = supportsProtectedContent, .clearRegion = clientComposition ? clearRegion : stubRegion, .viewport = outputState.layerStackSpace.content, .dataspace = outputDataspace, .realContentIsVisible = realContentIsVisible, .clearContent = !clientComposition, .blurSetting = blurSetting}; results = layerFE.prepareClientCompositionList(targetSettings); if (realContentIsVisible && !results.empty()) { layer->editState().clientCompositionTimestamp = systemTime(); } } clientCompositionLayers.insert(clientCompositionLayers.end(), std::make_move_iterator(results.begin()), std::make_move_iterator(results.end())); results.clear(); } firstLayer = false; } return clientCompositionLayers; } void Output::appendRegionFlashRequests( const Region& flashRegion, std::vector& clientCompositionLayers) { if (flashRegion.isEmpty()) { return; } LayerFE::LayerSettings layerSettings; layerSettings.source.buffer.buffer = nullptr; layerSettings.source.solidColor = half3(1.0, 0.0, 1.0); layerSettings.alpha = half(1.0); for (const auto& rect : flashRegion) { layerSettings.geometry.boundaries = rect.toFloatRect(); clientCompositionLayers.push_back(layerSettings); } } void Output::setExpensiveRenderingExpected(bool) { // The base class does nothing with this call. } void Output::postFramebuffer() { ATRACE_CALL(); ALOGV(__FUNCTION__); if (!getState().isEnabled) { return; } auto& outputState = editState(); outputState.dirtyRegion.clear(); mRenderSurface->flip(); auto frame = presentAndGetFrameFences(); mRenderSurface->onPresentDisplayCompleted(); for (auto* layer : getOutputLayersOrderedByZ()) { // The layer buffer from the previous frame (if any) is released // by HWC only when the release fence from this frame (if any) is // signaled. Always get the release fence from HWC first. sp releaseFence = Fence::NO_FENCE; if (auto hwcLayer = layer->getHwcLayer()) { if (auto f = frame.layerFences.find(hwcLayer); f != frame.layerFences.end()) { releaseFence = f->second; } } // If the layer was client composited in the previous frame, we // need to merge with the previous client target acquire fence. // Since we do not track that, always merge with the current // client target acquire fence when it is available, even though // this is suboptimal. // TODO(b/121291683): Track previous frame client target acquire fence. if (outputState.usesClientComposition) { releaseFence = Fence::merge("LayerRelease", releaseFence, frame.clientTargetAcquireFence); } layer->getLayerFE().onLayerDisplayed(releaseFence); } // We've got a list of layers needing fences, that are disjoint with // OutputLayersOrderedByZ. The best we can do is to // supply them with the present fence. for (auto& weakLayer : mReleasedLayers) { if (auto layer = weakLayer.promote(); layer != nullptr) { layer->onLayerDisplayed(frame.presentFence); } } // Clear out the released layers now that we're done with them. mReleasedLayers.clear(); } void Output::renderCachedSets(const CompositionRefreshArgs& refreshArgs) { if (mPlanner) { mPlanner->renderCachedSets(getState(), refreshArgs.nextInvalidateTime); } } void Output::dirtyEntireOutput() { auto& outputState = editState(); outputState.dirtyRegion.set(outputState.displaySpace.bounds); } void Output::chooseCompositionStrategy() { // The base output implementation can only do client composition auto& outputState = editState(); outputState.usesClientComposition = true; outputState.usesDeviceComposition = false; outputState.reusedClientComposition = false; } bool Output::getSkipColorTransform() const { return true; } compositionengine::Output::FrameFences Output::presentAndGetFrameFences() { compositionengine::Output::FrameFences result; if (getState().usesClientComposition) { result.clientTargetAcquireFence = mRenderSurface->getClientTargetAcquireFence(); } return result; } } // namespace impl } // namespace android::compositionengine