/* * Copyright 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #undef LOG_TAG #define LOG_TAG "Scheduler" #define ATRACE_TAG ATRACE_TAG_GRAPHICS #include "Scheduler.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../Layer.h" #include "DispSyncSource.h" #include "EventThread.h" #include "InjectVSyncSource.h" #include "OneShotTimer.h" #include "SchedulerUtils.h" #include "SurfaceFlingerProperties.h" #include "Timer.h" #include "VSyncDispatchTimerQueue.h" #include "VSyncPredictor.h" #include "VSyncReactor.h" #include "VsyncController.h" #define RETURN_IF_INVALID_HANDLE(handle, ...) \ do { \ if (mConnections.count(handle) == 0) { \ ALOGE("Invalid connection handle %" PRIuPTR, handle.id); \ return __VA_ARGS__; \ } \ } while (false) using namespace std::string_literals; namespace android { namespace { std::unique_ptr createVSyncTracker() { // TODO(b/144707443): Tune constants. constexpr int kDefaultRate = 60; constexpr auto initialPeriod = std::chrono::duration>(1); constexpr nsecs_t idealPeriod = std::chrono::duration_cast(initialPeriod).count(); constexpr size_t vsyncTimestampHistorySize = 20; constexpr size_t minimumSamplesForPrediction = 6; constexpr uint32_t discardOutlierPercent = 20; return std::make_unique(idealPeriod, vsyncTimestampHistorySize, minimumSamplesForPrediction, discardOutlierPercent); } std::unique_ptr createVSyncDispatch(scheduler::VSyncTracker& tracker) { // TODO(b/144707443): Tune constants. constexpr std::chrono::nanoseconds vsyncMoveThreshold = 3ms; constexpr std::chrono::nanoseconds timerSlack = 500us; return std::make_unique< scheduler::VSyncDispatchTimerQueue>(std::make_unique(), tracker, timerSlack.count(), vsyncMoveThreshold.count()); } const char* toContentDetectionString(bool useContentDetection) { return useContentDetection ? "on" : "off"; } } // namespace class PredictedVsyncTracer { public: PredictedVsyncTracer(scheduler::VSyncDispatch& dispatch) : mRegistration(dispatch, std::bind(&PredictedVsyncTracer::callback, this), "PredictedVsyncTracer") { scheduleRegistration(); } private: TracedOrdinal mParity = {"VSYNC-predicted", 0}; scheduler::VSyncCallbackRegistration mRegistration; void scheduleRegistration() { mRegistration.schedule({0, 0, 0}); } void callback() { mParity = !mParity; scheduleRegistration(); } }; Scheduler::Scheduler(const scheduler::RefreshRateConfigs& configs, ISchedulerCallback& callback) : Scheduler(configs, callback, {.supportKernelTimer = sysprop::support_kernel_idle_timer(false), .useContentDetection = sysprop::use_content_detection_for_refresh_rate(false)}) { } Scheduler::Scheduler(const scheduler::RefreshRateConfigs& configs, ISchedulerCallback& callback, Options options) : Scheduler(createVsyncSchedule(options.supportKernelTimer), configs, callback, createLayerHistory(configs), options) { using namespace sysprop; const int setIdleTimerMs = base::GetIntProperty("debug.sf.set_idle_timer_ms"s, 0); if (const auto millis = setIdleTimerMs ? setIdleTimerMs : set_idle_timer_ms(0); millis > 0) { const auto callback = mOptions.supportKernelTimer ? &Scheduler::kernelIdleTimerCallback : &Scheduler::idleTimerCallback; mIdleTimer.emplace( "IdleTimer", std::chrono::milliseconds(millis), [this, callback] { std::invoke(callback, this, TimerState::Reset); }, [this, callback] { std::invoke(callback, this, TimerState::Expired); }); mIdleTimer->start(); } if (const int64_t millis = set_touch_timer_ms(0); millis > 0) { // Touch events are coming to SF every 100ms, so the timer needs to be higher than that mTouchTimer.emplace( "TouchTimer", std::chrono::milliseconds(millis), [this] { touchTimerCallback(TimerState::Reset); }, [this] { touchTimerCallback(TimerState::Expired); }); mTouchTimer->start(); } if (const int64_t millis = set_display_power_timer_ms(0); millis > 0) { mDisplayPowerTimer.emplace( "DisplayPowerTimer", std::chrono::milliseconds(millis), [this] { displayPowerTimerCallback(TimerState::Reset); }, [this] { displayPowerTimerCallback(TimerState::Expired); }); mDisplayPowerTimer->start(); } } Scheduler::Scheduler(VsyncSchedule schedule, const scheduler::RefreshRateConfigs& configs, ISchedulerCallback& schedulerCallback, std::unique_ptr layerHistory, Options options) : mOptions(options), mVsyncSchedule(std::move(schedule)), mLayerHistory(std::move(layerHistory)), mSchedulerCallback(schedulerCallback), mRefreshRateConfigs(configs), mPredictedVsyncTracer( base::GetBoolProperty("debug.sf.show_predicted_vsync", false) ? std::make_unique(*mVsyncSchedule.dispatch) : nullptr) { mSchedulerCallback.setVsyncEnabled(false); } Scheduler::~Scheduler() { // Ensure the OneShotTimer threads are joined before we start destroying state. mDisplayPowerTimer.reset(); mTouchTimer.reset(); mIdleTimer.reset(); } Scheduler::VsyncSchedule Scheduler::createVsyncSchedule(bool supportKernelTimer) { auto clock = std::make_unique(); auto tracker = createVSyncTracker(); auto dispatch = createVSyncDispatch(*tracker); // TODO(b/144707443): Tune constants. constexpr size_t pendingFenceLimit = 20; auto controller = std::make_unique(std::move(clock), *tracker, pendingFenceLimit, supportKernelTimer); return {std::move(controller), std::move(tracker), std::move(dispatch)}; } std::unique_ptr Scheduler::createLayerHistory( const scheduler::RefreshRateConfigs& configs) { return std::make_unique(configs); } std::unique_ptr Scheduler::makePrimaryDispSyncSource( const char* name, std::chrono::nanoseconds workDuration, std::chrono::nanoseconds readyDuration, bool traceVsync) { return std::make_unique(*mVsyncSchedule.dispatch, workDuration, readyDuration, traceVsync, name); } std::optional Scheduler::getFrameRateOverride(uid_t uid) const { if (!mRefreshRateConfigs.supportsFrameRateOverride()) { return std::nullopt; } std::lock_guard lock(mFrameRateOverridesMutex); { const auto iter = mFrameRateOverridesFromBackdoor.find(uid); if (iter != mFrameRateOverridesFromBackdoor.end()) { return std::make_optional(iter->second); } } { const auto iter = mFrameRateOverridesByContent.find(uid); if (iter != mFrameRateOverridesByContent.end()) { return std::make_optional(iter->second); } } return std::nullopt; } bool Scheduler::isVsyncValid(nsecs_t expectedVsyncTimestamp, uid_t uid) const { const auto frameRate = getFrameRateOverride(uid); if (!frameRate.has_value()) { return true; } return mVsyncSchedule.tracker->isVSyncInPhase(expectedVsyncTimestamp, *frameRate); } impl::EventThread::ThrottleVsyncCallback Scheduler::makeThrottleVsyncCallback() const { if (!mRefreshRateConfigs.supportsFrameRateOverride()) { return {}; } return [this](nsecs_t expectedVsyncTimestamp, uid_t uid) { return !isVsyncValid(expectedVsyncTimestamp, uid); }; } impl::EventThread::GetVsyncPeriodFunction Scheduler::makeGetVsyncPeriodFunction() const { return [this](uid_t uid) { nsecs_t basePeriod = mRefreshRateConfigs.getCurrentRefreshRate().getVsyncPeriod(); const auto frameRate = getFrameRateOverride(uid); if (!frameRate.has_value()) { return basePeriod; } const auto divider = scheduler::RefreshRateConfigs::getFrameRateDivider( mRefreshRateConfigs.getCurrentRefreshRate().getFps(), *frameRate); if (divider <= 1) { return basePeriod; } return basePeriod * divider; }; } Scheduler::ConnectionHandle Scheduler::createConnection( const char* connectionName, frametimeline::TokenManager* tokenManager, std::chrono::nanoseconds workDuration, std::chrono::nanoseconds readyDuration, impl::EventThread::InterceptVSyncsCallback interceptCallback) { auto vsyncSource = makePrimaryDispSyncSource(connectionName, workDuration, readyDuration); auto throttleVsync = makeThrottleVsyncCallback(); auto getVsyncPeriod = makeGetVsyncPeriodFunction(); auto eventThread = std::make_unique(std::move(vsyncSource), tokenManager, std::move(interceptCallback), std::move(throttleVsync), std::move(getVsyncPeriod)); return createConnection(std::move(eventThread)); } Scheduler::ConnectionHandle Scheduler::createConnection(std::unique_ptr eventThread) { const ConnectionHandle handle = ConnectionHandle{mNextConnectionHandleId++}; ALOGV("Creating a connection handle with ID %" PRIuPTR, handle.id); auto connection = createConnectionInternal(eventThread.get()); std::lock_guard lock(mConnectionsLock); mConnections.emplace(handle, Connection{connection, std::move(eventThread)}); return handle; } sp Scheduler::createConnectionInternal( EventThread* eventThread, ISurfaceComposer::EventRegistrationFlags eventRegistration) { return eventThread->createEventConnection([&] { resync(); }, eventRegistration); } sp Scheduler::createDisplayEventConnection( ConnectionHandle handle, ISurfaceComposer::EventRegistrationFlags eventRegistration) { std::lock_guard lock(mConnectionsLock); RETURN_IF_INVALID_HANDLE(handle, nullptr); return createConnectionInternal(mConnections[handle].thread.get(), eventRegistration); } sp Scheduler::getEventConnection(ConnectionHandle handle) { std::lock_guard lock(mConnectionsLock); RETURN_IF_INVALID_HANDLE(handle, nullptr); return mConnections[handle].connection; } void Scheduler::onHotplugReceived(ConnectionHandle handle, PhysicalDisplayId displayId, bool connected) { android::EventThread* thread; { std::lock_guard lock(mConnectionsLock); RETURN_IF_INVALID_HANDLE(handle); thread = mConnections[handle].thread.get(); } thread->onHotplugReceived(displayId, connected); } void Scheduler::onScreenAcquired(ConnectionHandle handle) { android::EventThread* thread; { std::lock_guard lock(mConnectionsLock); RETURN_IF_INVALID_HANDLE(handle); thread = mConnections[handle].thread.get(); } thread->onScreenAcquired(); } void Scheduler::onScreenReleased(ConnectionHandle handle) { android::EventThread* thread; { std::lock_guard lock(mConnectionsLock); RETURN_IF_INVALID_HANDLE(handle); thread = mConnections[handle].thread.get(); } thread->onScreenReleased(); } void Scheduler::onFrameRateOverridesChanged(ConnectionHandle handle, PhysicalDisplayId displayId) { std::vector overrides; { std::lock_guard lock(mFrameRateOverridesMutex); for (const auto& [uid, frameRate] : mFrameRateOverridesFromBackdoor) { overrides.emplace_back(FrameRateOverride{uid, frameRate.getValue()}); } for (const auto& [uid, frameRate] : mFrameRateOverridesByContent) { if (mFrameRateOverridesFromBackdoor.count(uid) == 0) { overrides.emplace_back(FrameRateOverride{uid, frameRate.getValue()}); } } } android::EventThread* thread; { std::lock_guard lock(mConnectionsLock); RETURN_IF_INVALID_HANDLE(handle); thread = mConnections[handle].thread.get(); } thread->onFrameRateOverridesChanged(displayId, std::move(overrides)); } void Scheduler::onPrimaryDisplayModeChanged(ConnectionHandle handle, PhysicalDisplayId displayId, DisplayModeId modeId, nsecs_t vsyncPeriod) { { std::lock_guard lock(mFeatureStateLock); // Cache the last reported modes for primary display. mFeatures.cachedModeChangedParams = {handle, displayId, modeId, vsyncPeriod}; // Invalidate content based refresh rate selection so it could be calculated // again for the new refresh rate. mFeatures.contentRequirements.clear(); } onNonPrimaryDisplayModeChanged(handle, displayId, modeId, vsyncPeriod); } void Scheduler::dispatchCachedReportedMode() { // Check optional fields first. if (!mFeatures.modeId.has_value()) { ALOGW("No mode ID found, not dispatching cached mode."); return; } if (!mFeatures.cachedModeChangedParams.has_value()) { ALOGW("No mode changed params found, not dispatching cached mode."); return; } const auto modeId = *mFeatures.modeId; const auto vsyncPeriod = mRefreshRateConfigs.getRefreshRateFromModeId(modeId).getVsyncPeriod(); // If there is no change from cached mode, there is no need to dispatch an event if (modeId == mFeatures.cachedModeChangedParams->modeId && vsyncPeriod == mFeatures.cachedModeChangedParams->vsyncPeriod) { return; } mFeatures.cachedModeChangedParams->modeId = modeId; mFeatures.cachedModeChangedParams->vsyncPeriod = vsyncPeriod; onNonPrimaryDisplayModeChanged(mFeatures.cachedModeChangedParams->handle, mFeatures.cachedModeChangedParams->displayId, mFeatures.cachedModeChangedParams->modeId, mFeatures.cachedModeChangedParams->vsyncPeriod); } void Scheduler::onNonPrimaryDisplayModeChanged(ConnectionHandle handle, PhysicalDisplayId displayId, DisplayModeId modeId, nsecs_t vsyncPeriod) { android::EventThread* thread; { std::lock_guard lock(mConnectionsLock); RETURN_IF_INVALID_HANDLE(handle); thread = mConnections[handle].thread.get(); } thread->onModeChanged(displayId, modeId, vsyncPeriod); } size_t Scheduler::getEventThreadConnectionCount(ConnectionHandle handle) { std::lock_guard lock(mConnectionsLock); RETURN_IF_INVALID_HANDLE(handle, 0); return mConnections[handle].thread->getEventThreadConnectionCount(); } void Scheduler::dump(ConnectionHandle handle, std::string& result) const { android::EventThread* thread; { std::lock_guard lock(mConnectionsLock); RETURN_IF_INVALID_HANDLE(handle); thread = mConnections.at(handle).thread.get(); } thread->dump(result); } void Scheduler::setDuration(ConnectionHandle handle, std::chrono::nanoseconds workDuration, std::chrono::nanoseconds readyDuration) { android::EventThread* thread; { std::lock_guard lock(mConnectionsLock); RETURN_IF_INVALID_HANDLE(handle); thread = mConnections[handle].thread.get(); } thread->setDuration(workDuration, readyDuration); } DisplayStatInfo Scheduler::getDisplayStatInfo(nsecs_t now) { const auto vsyncTime = mVsyncSchedule.tracker->nextAnticipatedVSyncTimeFrom(now); const auto vsyncPeriod = mVsyncSchedule.tracker->currentPeriod(); return DisplayStatInfo{.vsyncTime = vsyncTime, .vsyncPeriod = vsyncPeriod}; } Scheduler::ConnectionHandle Scheduler::enableVSyncInjection(bool enable) { if (mInjectVSyncs == enable) { return {}; } ALOGV("%s VSYNC injection", enable ? "Enabling" : "Disabling"); if (!mInjectorConnectionHandle) { auto vsyncSource = std::make_unique(); mVSyncInjector = vsyncSource.get(); auto eventThread = std::make_unique(std::move(vsyncSource), /*tokenManager=*/nullptr, impl::EventThread::InterceptVSyncsCallback(), impl::EventThread::ThrottleVsyncCallback(), impl::EventThread::GetVsyncPeriodFunction()); // EventThread does not dispatch VSYNC unless the display is connected and powered on. eventThread->onHotplugReceived(PhysicalDisplayId::fromPort(0), true); eventThread->onScreenAcquired(); mInjectorConnectionHandle = createConnection(std::move(eventThread)); } mInjectVSyncs = enable; return mInjectorConnectionHandle; } bool Scheduler::injectVSync(nsecs_t when, nsecs_t expectedVSyncTime, nsecs_t deadlineTimestamp) { if (!mInjectVSyncs || !mVSyncInjector) { return false; } mVSyncInjector->onInjectSyncEvent(when, expectedVSyncTime, deadlineTimestamp); return true; } void Scheduler::enableHardwareVsync() { std::lock_guard lock(mHWVsyncLock); if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) { mVsyncSchedule.tracker->resetModel(); mSchedulerCallback.setVsyncEnabled(true); mPrimaryHWVsyncEnabled = true; } } void Scheduler::disableHardwareVsync(bool makeUnavailable) { std::lock_guard lock(mHWVsyncLock); if (mPrimaryHWVsyncEnabled) { mSchedulerCallback.setVsyncEnabled(false); mPrimaryHWVsyncEnabled = false; } if (makeUnavailable) { mHWVsyncAvailable = false; } } void Scheduler::resyncToHardwareVsync(bool makeAvailable, nsecs_t period) { { std::lock_guard lock(mHWVsyncLock); if (makeAvailable) { mHWVsyncAvailable = makeAvailable; } else if (!mHWVsyncAvailable) { // Hardware vsync is not currently available, so abort the resync // attempt for now return; } } if (period <= 0) { return; } setVsyncPeriod(period); } void Scheduler::resync() { static constexpr nsecs_t kIgnoreDelay = ms2ns(750); const nsecs_t now = systemTime(); const nsecs_t last = mLastResyncTime.exchange(now); if (now - last > kIgnoreDelay) { resyncToHardwareVsync(false, mRefreshRateConfigs.getCurrentRefreshRate().getVsyncPeriod()); } } void Scheduler::setVsyncPeriod(nsecs_t period) { std::lock_guard lock(mHWVsyncLock); mVsyncSchedule.controller->startPeriodTransition(period); if (!mPrimaryHWVsyncEnabled) { mVsyncSchedule.tracker->resetModel(); mSchedulerCallback.setVsyncEnabled(true); mPrimaryHWVsyncEnabled = true; } } void Scheduler::addResyncSample(nsecs_t timestamp, std::optional hwcVsyncPeriod, bool* periodFlushed) { bool needsHwVsync = false; *periodFlushed = false; { // Scope for the lock std::lock_guard lock(mHWVsyncLock); if (mPrimaryHWVsyncEnabled) { needsHwVsync = mVsyncSchedule.controller->addHwVsyncTimestamp(timestamp, hwcVsyncPeriod, periodFlushed); } } if (needsHwVsync) { enableHardwareVsync(); } else { disableHardwareVsync(false); } } void Scheduler::addPresentFence(const std::shared_ptr& fenceTime) { if (mVsyncSchedule.controller->addPresentFence(fenceTime)) { enableHardwareVsync(); } else { disableHardwareVsync(false); } } void Scheduler::setIgnorePresentFences(bool ignore) { mVsyncSchedule.controller->setIgnorePresentFences(ignore); } void Scheduler::registerLayer(Layer* layer) { scheduler::LayerHistory::LayerVoteType voteType; if (!mOptions.useContentDetection || layer->getWindowType() == InputWindowInfo::Type::STATUS_BAR) { voteType = scheduler::LayerHistory::LayerVoteType::NoVote; } else if (layer->getWindowType() == InputWindowInfo::Type::WALLPAPER) { // Running Wallpaper at Min is considered as part of content detection. voteType = scheduler::LayerHistory::LayerVoteType::Min; } else { voteType = scheduler::LayerHistory::LayerVoteType::Heuristic; } // If the content detection feature is off, we still keep the layer history, // since we use it for other features (like Frame Rate API), so layers // still need to be registered. mLayerHistory->registerLayer(layer, voteType); } void Scheduler::deregisterLayer(Layer* layer) { mLayerHistory->deregisterLayer(layer); } void Scheduler::recordLayerHistory(Layer* layer, nsecs_t presentTime, LayerHistory::LayerUpdateType updateType) { if (mRefreshRateConfigs.canSwitch()) { mLayerHistory->record(layer, presentTime, systemTime(), updateType); } } void Scheduler::setModeChangePending(bool pending) { mLayerHistory->setModeChangePending(pending); } void Scheduler::chooseRefreshRateForContent() { if (!mRefreshRateConfigs.canSwitch()) return; ATRACE_CALL(); scheduler::LayerHistory::Summary summary = mLayerHistory->summarize(systemTime()); scheduler::RefreshRateConfigs::GlobalSignals consideredSignals; DisplayModeId newModeId; bool frameRateChanged; bool frameRateOverridesChanged; { std::lock_guard lock(mFeatureStateLock); mFeatures.contentRequirements = summary; newModeId = calculateRefreshRateModeId(&consideredSignals); auto newRefreshRate = mRefreshRateConfigs.getRefreshRateFromModeId(newModeId); frameRateOverridesChanged = updateFrameRateOverrides(consideredSignals, newRefreshRate.getFps()); if (mFeatures.modeId == newModeId) { // We don't need to change the display mode, but we might need to send an event // about a mode change, since it was suppressed due to a previous idleConsidered if (!consideredSignals.idle) { dispatchCachedReportedMode(); } frameRateChanged = false; } else { mFeatures.modeId = newModeId; frameRateChanged = true; } } if (frameRateChanged) { auto newRefreshRate = mRefreshRateConfigs.getRefreshRateFromModeId(newModeId); mSchedulerCallback.changeRefreshRate(newRefreshRate, consideredSignals.idle ? ModeEvent::None : ModeEvent::Changed); } if (frameRateOverridesChanged) { mSchedulerCallback.triggerOnFrameRateOverridesChanged(); } } void Scheduler::resetIdleTimer() { if (mIdleTimer) { mIdleTimer->reset(); } } void Scheduler::notifyTouchEvent() { if (mTouchTimer) { mTouchTimer->reset(); if (mOptions.supportKernelTimer && mIdleTimer) { mIdleTimer->reset(); } } } void Scheduler::setDisplayPowerState(bool normal) { { std::lock_guard lock(mFeatureStateLock); mFeatures.isDisplayPowerStateNormal = normal; } if (mDisplayPowerTimer) { mDisplayPowerTimer->reset(); } // Display Power event will boost the refresh rate to performance. // Clear Layer History to get fresh FPS detection mLayerHistory->clear(); } void Scheduler::kernelIdleTimerCallback(TimerState state) { ATRACE_INT("ExpiredKernelIdleTimer", static_cast(state)); // TODO(145561154): cleanup the kernel idle timer implementation and the refresh rate // magic number const auto& refreshRate = mRefreshRateConfigs.getCurrentRefreshRate(); constexpr Fps FPS_THRESHOLD_FOR_KERNEL_TIMER{65.0f}; if (state == TimerState::Reset && refreshRate.getFps().greaterThanWithMargin(FPS_THRESHOLD_FOR_KERNEL_TIMER)) { // If we're not in performance mode then the kernel timer shouldn't do // anything, as the refresh rate during DPU power collapse will be the // same. resyncToHardwareVsync(true /* makeAvailable */, refreshRate.getVsyncPeriod()); } else if (state == TimerState::Expired && refreshRate.getFps().lessThanOrEqualWithMargin(FPS_THRESHOLD_FOR_KERNEL_TIMER)) { // Disable HW VSYNC if the timer expired, as we don't need it enabled if // we're not pushing frames, and if we're in PERFORMANCE mode then we'll // need to update the VsyncController model anyway. disableHardwareVsync(false /* makeUnavailable */); } mSchedulerCallback.kernelTimerChanged(state == TimerState::Expired); } void Scheduler::idleTimerCallback(TimerState state) { handleTimerStateChanged(&mFeatures.idleTimer, state); ATRACE_INT("ExpiredIdleTimer", static_cast(state)); } void Scheduler::touchTimerCallback(TimerState state) { const TouchState touch = state == TimerState::Reset ? TouchState::Active : TouchState::Inactive; // Touch event will boost the refresh rate to performance. // Clear layer history to get fresh FPS detection. // NOTE: Instead of checking all the layers, we should be checking the layer // that is currently on top. b/142507166 will give us this capability. if (handleTimerStateChanged(&mFeatures.touch, touch)) { mLayerHistory->clear(); } ATRACE_INT("TouchState", static_cast(touch)); } void Scheduler::displayPowerTimerCallback(TimerState state) { handleTimerStateChanged(&mFeatures.displayPowerTimer, state); ATRACE_INT("ExpiredDisplayPowerTimer", static_cast(state)); } void Scheduler::dump(std::string& result) const { using base::StringAppendF; StringAppendF(&result, "+ Idle timer: %s\n", mIdleTimer ? mIdleTimer->dump().c_str() : "off"); StringAppendF(&result, "+ Touch timer: %s\n", mTouchTimer ? mTouchTimer->dump().c_str() : "off"); StringAppendF(&result, "+ Content detection: %s %s\n\n", toContentDetectionString(mOptions.useContentDetection), mLayerHistory ? mLayerHistory->dump().c_str() : "(no layer history)"); { std::lock_guard lock(mFrameRateOverridesMutex); StringAppendF(&result, "Frame Rate Overrides (backdoor): {"); for (const auto& [uid, frameRate] : mFrameRateOverridesFromBackdoor) { StringAppendF(&result, "[uid: %d frameRate: %s], ", uid, to_string(frameRate).c_str()); } StringAppendF(&result, "}\n"); StringAppendF(&result, "Frame Rate Overrides (setFrameRate): {"); for (const auto& [uid, frameRate] : mFrameRateOverridesByContent) { StringAppendF(&result, "[uid: %d frameRate: %s], ", uid, to_string(frameRate).c_str()); } StringAppendF(&result, "}\n"); } } void Scheduler::dumpVsync(std::string& s) const { using base::StringAppendF; StringAppendF(&s, "VSyncReactor:\n"); mVsyncSchedule.controller->dump(s); StringAppendF(&s, "VSyncDispatch:\n"); mVsyncSchedule.dispatch->dump(s); } bool Scheduler::updateFrameRateOverrides( scheduler::RefreshRateConfigs::GlobalSignals consideredSignals, Fps displayRefreshRate) { if (!mRefreshRateConfigs.supportsFrameRateOverride()) { return false; } if (!consideredSignals.idle) { const auto frameRateOverrides = mRefreshRateConfigs.getFrameRateOverrides(mFeatures.contentRequirements, displayRefreshRate, consideredSignals.touch); std::lock_guard lock(mFrameRateOverridesMutex); if (!std::equal(mFrameRateOverridesByContent.begin(), mFrameRateOverridesByContent.end(), frameRateOverrides.begin(), frameRateOverrides.end(), [](const std::pair& a, const std::pair& b) { return a.first == b.first && a.second.equalsWithMargin(b.second); })) { mFrameRateOverridesByContent = frameRateOverrides; return true; } } return false; } template bool Scheduler::handleTimerStateChanged(T* currentState, T newState) { DisplayModeId newModeId; bool refreshRateChanged = false; bool frameRateOverridesChanged; scheduler::RefreshRateConfigs::GlobalSignals consideredSignals; { std::lock_guard lock(mFeatureStateLock); if (*currentState == newState) { return false; } *currentState = newState; newModeId = calculateRefreshRateModeId(&consideredSignals); const RefreshRate& newRefreshRate = mRefreshRateConfigs.getRefreshRateFromModeId(newModeId); frameRateOverridesChanged = updateFrameRateOverrides(consideredSignals, newRefreshRate.getFps()); if (mFeatures.modeId == newModeId) { // We don't need to change the display mode, but we might need to send an event // about a mode change, since it was suppressed due to a previous idleConsidered if (!consideredSignals.idle) { dispatchCachedReportedMode(); } } else { mFeatures.modeId = newModeId; refreshRateChanged = true; } } if (refreshRateChanged) { const RefreshRate& newRefreshRate = mRefreshRateConfigs.getRefreshRateFromModeId(newModeId); mSchedulerCallback.changeRefreshRate(newRefreshRate, consideredSignals.idle ? ModeEvent::None : ModeEvent::Changed); } if (frameRateOverridesChanged) { mSchedulerCallback.triggerOnFrameRateOverridesChanged(); } return consideredSignals.touch; } DisplayModeId Scheduler::calculateRefreshRateModeId( scheduler::RefreshRateConfigs::GlobalSignals* consideredSignals) { ATRACE_CALL(); if (consideredSignals) *consideredSignals = {}; // If Display Power is not in normal operation we want to be in performance mode. When coming // back to normal mode, a grace period is given with DisplayPowerTimer. if (mDisplayPowerTimer && (!mFeatures.isDisplayPowerStateNormal || mFeatures.displayPowerTimer == TimerState::Reset)) { return mRefreshRateConfigs.getMaxRefreshRateByPolicy().getModeId(); } const bool touchActive = mTouchTimer && mFeatures.touch == TouchState::Active; const bool idle = mIdleTimer && mFeatures.idleTimer == TimerState::Expired; return mRefreshRateConfigs .getBestRefreshRate(mFeatures.contentRequirements, {.touch = touchActive, .idle = idle}, consideredSignals) .getModeId(); } std::optional Scheduler::getPreferredModeId() { std::lock_guard lock(mFeatureStateLock); // Make sure that the default mode ID is first updated, before returned. if (mFeatures.modeId.has_value()) { mFeatures.modeId = calculateRefreshRateModeId(); } return mFeatures.modeId; } void Scheduler::onNewVsyncPeriodChangeTimeline(const hal::VsyncPeriodChangeTimeline& timeline) { if (timeline.refreshRequired) { mSchedulerCallback.repaintEverythingForHWC(); } std::lock_guard lock(mVsyncTimelineLock); mLastVsyncPeriodChangeTimeline = std::make_optional(timeline); const auto maxAppliedTime = systemTime() + MAX_VSYNC_APPLIED_TIME.count(); if (timeline.newVsyncAppliedTimeNanos > maxAppliedTime) { mLastVsyncPeriodChangeTimeline->newVsyncAppliedTimeNanos = maxAppliedTime; } } void Scheduler::onDisplayRefreshed(nsecs_t timestamp) { bool callRepaint = false; { std::lock_guard lock(mVsyncTimelineLock); if (mLastVsyncPeriodChangeTimeline && mLastVsyncPeriodChangeTimeline->refreshRequired) { if (mLastVsyncPeriodChangeTimeline->refreshTimeNanos < timestamp) { mLastVsyncPeriodChangeTimeline->refreshRequired = false; } else { // We need to send another refresh as refreshTimeNanos is still in the future callRepaint = true; } } } if (callRepaint) { mSchedulerCallback.repaintEverythingForHWC(); } } void Scheduler::onPrimaryDisplayAreaChanged(uint32_t displayArea) { mLayerHistory->setDisplayArea(displayArea); } void Scheduler::setPreferredRefreshRateForUid(FrameRateOverride frameRateOverride) { if (frameRateOverride.frameRateHz > 0.f && frameRateOverride.frameRateHz < 1.f) { return; } std::lock_guard lock(mFrameRateOverridesMutex); if (frameRateOverride.frameRateHz != 0.f) { mFrameRateOverridesFromBackdoor[frameRateOverride.uid] = Fps(frameRateOverride.frameRateHz); } else { mFrameRateOverridesFromBackdoor.erase(frameRateOverride.uid); } } std::chrono::steady_clock::time_point Scheduler::getPreviousVsyncFrom( nsecs_t expectedPresentTime) const { const auto presentTime = std::chrono::nanoseconds(expectedPresentTime); const auto vsyncPeriod = std::chrono::nanoseconds(mVsyncSchedule.tracker->currentPeriod()); return std::chrono::steady_clock::time_point(presentTime - vsyncPeriod); } } // namespace android