/* * Copyright 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define ATRACE_TAG ATRACE_TAG_GRAPHICS #include #include #include #include #include #include #include #include #include #include #include #include #include #include "driver.h" using android::hardware::graphics::common::V1_0::BufferUsage; namespace vulkan { namespace driver { namespace { const VkSurfaceTransformFlagsKHR kSupportedTransforms = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR | VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR | VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR | VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR | VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR | VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR | VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR | VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR | VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR; VkSurfaceTransformFlagBitsKHR TranslateNativeToVulkanTransform(int native) { // Native and Vulkan transforms are isomorphic, but are represented // differently. Vulkan transforms are built up of an optional horizontal // mirror, followed by a clockwise 0/90/180/270-degree rotation. Native // transforms are built up from a horizontal flip, vertical flip, and // 90-degree rotation, all optional but always in that order. switch (native) { case 0: return VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR; case NATIVE_WINDOW_TRANSFORM_FLIP_H: return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR; case NATIVE_WINDOW_TRANSFORM_FLIP_V: return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR; case NATIVE_WINDOW_TRANSFORM_ROT_180: return VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR; case NATIVE_WINDOW_TRANSFORM_ROT_90: return VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR; case NATIVE_WINDOW_TRANSFORM_FLIP_H | NATIVE_WINDOW_TRANSFORM_ROT_90: return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR; case NATIVE_WINDOW_TRANSFORM_FLIP_V | NATIVE_WINDOW_TRANSFORM_ROT_90: return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR; case NATIVE_WINDOW_TRANSFORM_ROT_270: return VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR; case NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY: default: return VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR; } } int TranslateVulkanToNativeTransform(VkSurfaceTransformFlagBitsKHR transform) { switch (transform) { case VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR: return NATIVE_WINDOW_TRANSFORM_ROT_90; case VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR: return NATIVE_WINDOW_TRANSFORM_ROT_180; case VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR: return NATIVE_WINDOW_TRANSFORM_ROT_270; case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR: return NATIVE_WINDOW_TRANSFORM_FLIP_H; case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR: return NATIVE_WINDOW_TRANSFORM_FLIP_H | NATIVE_WINDOW_TRANSFORM_ROT_90; case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR: return NATIVE_WINDOW_TRANSFORM_FLIP_V; case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR: return NATIVE_WINDOW_TRANSFORM_FLIP_V | NATIVE_WINDOW_TRANSFORM_ROT_90; case VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR: case VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR: default: return 0; } } int InvertTransformToNative(VkSurfaceTransformFlagBitsKHR transform) { switch (transform) { case VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR: return NATIVE_WINDOW_TRANSFORM_ROT_270; case VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR: return NATIVE_WINDOW_TRANSFORM_ROT_180; case VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR: return NATIVE_WINDOW_TRANSFORM_ROT_90; case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR: return NATIVE_WINDOW_TRANSFORM_FLIP_H; case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR: return NATIVE_WINDOW_TRANSFORM_FLIP_H | NATIVE_WINDOW_TRANSFORM_ROT_90; case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR: return NATIVE_WINDOW_TRANSFORM_FLIP_V; case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR: return NATIVE_WINDOW_TRANSFORM_FLIP_V | NATIVE_WINDOW_TRANSFORM_ROT_90; case VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR: case VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR: default: return 0; } } class TimingInfo { public: TimingInfo(const VkPresentTimeGOOGLE* qp, uint64_t nativeFrameId) : vals_{qp->presentID, qp->desiredPresentTime, 0, 0, 0}, native_frame_id_(nativeFrameId) {} bool ready() const { return (timestamp_desired_present_time_ != NATIVE_WINDOW_TIMESTAMP_PENDING && timestamp_actual_present_time_ != NATIVE_WINDOW_TIMESTAMP_PENDING && timestamp_render_complete_time_ != NATIVE_WINDOW_TIMESTAMP_PENDING && timestamp_composition_latch_time_ != NATIVE_WINDOW_TIMESTAMP_PENDING); } void calculate(int64_t rdur) { bool anyTimestampInvalid = (timestamp_actual_present_time_ == NATIVE_WINDOW_TIMESTAMP_INVALID) || (timestamp_render_complete_time_ == NATIVE_WINDOW_TIMESTAMP_INVALID) || (timestamp_composition_latch_time_ == NATIVE_WINDOW_TIMESTAMP_INVALID); if (anyTimestampInvalid) { ALOGE("Unexpectedly received invalid timestamp."); vals_.actualPresentTime = 0; vals_.earliestPresentTime = 0; vals_.presentMargin = 0; return; } vals_.actualPresentTime = static_cast(timestamp_actual_present_time_); int64_t margin = (timestamp_composition_latch_time_ - timestamp_render_complete_time_); // Calculate vals_.earliestPresentTime, and potentially adjust // vals_.presentMargin. The initial value of vals_.earliestPresentTime // is vals_.actualPresentTime. If we can subtract rdur (the duration // of a refresh cycle) from vals_.earliestPresentTime (and also from // vals_.presentMargin) and still leave a positive margin, then we can // report to the application that it could have presented earlier than // it did (per the extension specification). If for some reason, we // can do this subtraction repeatedly, we do, since // vals_.earliestPresentTime really is supposed to be the "earliest". int64_t early_time = timestamp_actual_present_time_; while ((margin > rdur) && ((early_time - rdur) > timestamp_composition_latch_time_)) { early_time -= rdur; margin -= rdur; } vals_.earliestPresentTime = static_cast(early_time); vals_.presentMargin = static_cast(margin); } void get_values(VkPastPresentationTimingGOOGLE* values) const { *values = vals_; } public: VkPastPresentationTimingGOOGLE vals_ { 0, 0, 0, 0, 0 }; uint64_t native_frame_id_ { 0 }; int64_t timestamp_desired_present_time_{ NATIVE_WINDOW_TIMESTAMP_PENDING }; int64_t timestamp_actual_present_time_ { NATIVE_WINDOW_TIMESTAMP_PENDING }; int64_t timestamp_render_complete_time_ { NATIVE_WINDOW_TIMESTAMP_PENDING }; int64_t timestamp_composition_latch_time_ { NATIVE_WINDOW_TIMESTAMP_PENDING }; }; struct Surface { android::sp window; VkSwapchainKHR swapchain_handle; uint64_t consumer_usage; }; VkSurfaceKHR HandleFromSurface(Surface* surface) { return VkSurfaceKHR(reinterpret_cast(surface)); } Surface* SurfaceFromHandle(VkSurfaceKHR handle) { return reinterpret_cast(handle); } // Maximum number of TimingInfo structs to keep per swapchain: enum { MAX_TIMING_INFOS = 10 }; // Minimum number of frames to look for in the past (so we don't cause // syncronous requests to Surface Flinger): enum { MIN_NUM_FRAMES_AGO = 5 }; struct Swapchain { Swapchain(Surface& surface_, uint32_t num_images_, VkPresentModeKHR present_mode, int pre_transform_) : surface(surface_), num_images(num_images_), mailbox_mode(present_mode == VK_PRESENT_MODE_MAILBOX_KHR), pre_transform(pre_transform_), frame_timestamps_enabled(false), acquire_next_image_timeout(-1), shared(present_mode == VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR || present_mode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR) { ANativeWindow* window = surface.window.get(); native_window_get_refresh_cycle_duration( window, &refresh_duration); } uint64_t get_refresh_duration() { ANativeWindow* window = surface.window.get(); native_window_get_refresh_cycle_duration( window, &refresh_duration); return static_cast(refresh_duration); } Surface& surface; uint32_t num_images; bool mailbox_mode; int pre_transform; bool frame_timestamps_enabled; int64_t refresh_duration; nsecs_t acquire_next_image_timeout; bool shared; struct Image { Image() : image(VK_NULL_HANDLE), dequeue_fence(-1), release_fence(-1), dequeued(false) {} VkImage image; android::sp buffer; // The fence is only valid when the buffer is dequeued, and should be // -1 any other time. When valid, we own the fd, and must ensure it is // closed: either by closing it explicitly when queueing the buffer, // or by passing ownership e.g. to ANativeWindow::cancelBuffer(). int dequeue_fence; // This fence is a dup of the sync fd returned from the driver via // vkQueueSignalReleaseImageANDROID upon vkQueuePresentKHR. We must // ensure it is closed upon re-presenting or releasing the image. int release_fence; bool dequeued; } images[android::BufferQueueDefs::NUM_BUFFER_SLOTS]; std::vector timing; }; VkSwapchainKHR HandleFromSwapchain(Swapchain* swapchain) { return VkSwapchainKHR(reinterpret_cast(swapchain)); } Swapchain* SwapchainFromHandle(VkSwapchainKHR handle) { return reinterpret_cast(handle); } static bool IsFencePending(int fd) { if (fd < 0) return false; errno = 0; return sync_wait(fd, 0 /* timeout */) == -1 && errno == ETIME; } void ReleaseSwapchainImage(VkDevice device, ANativeWindow* window, int release_fence, Swapchain::Image& image, bool defer_if_pending) { ATRACE_CALL(); ALOG_ASSERT(release_fence == -1 || image.dequeued, "ReleaseSwapchainImage: can't provide a release fence for " "non-dequeued images"); if (image.dequeued) { if (release_fence >= 0) { // We get here from vkQueuePresentKHR. The application is // responsible for creating an execution dependency chain from // vkAcquireNextImage (dequeue_fence) to vkQueuePresentKHR // (release_fence), so we can drop the dequeue_fence here. if (image.dequeue_fence >= 0) close(image.dequeue_fence); } else { // We get here during swapchain destruction, or various serious // error cases e.g. when we can't create the release_fence during // vkQueuePresentKHR. In non-error cases, the dequeue_fence should // have already signalled, since the swapchain images are supposed // to be idle before the swapchain is destroyed. In error cases, // there may be rendering in flight to the image, but since we // weren't able to create a release_fence, waiting for the // dequeue_fence is about the best we can do. release_fence = image.dequeue_fence; } image.dequeue_fence = -1; if (window) { window->cancelBuffer(window, image.buffer.get(), release_fence); } else { if (release_fence >= 0) { sync_wait(release_fence, -1 /* forever */); close(release_fence); } } release_fence = -1; image.dequeued = false; } if (defer_if_pending && IsFencePending(image.release_fence)) return; if (image.release_fence >= 0) { close(image.release_fence); image.release_fence = -1; } if (image.image) { ATRACE_BEGIN("DestroyImage"); GetData(device).driver.DestroyImage(device, image.image, nullptr); ATRACE_END(); image.image = VK_NULL_HANDLE; } image.buffer.clear(); } void OrphanSwapchain(VkDevice device, Swapchain* swapchain) { if (swapchain->surface.swapchain_handle != HandleFromSwapchain(swapchain)) return; for (uint32_t i = 0; i < swapchain->num_images; i++) { if (!swapchain->images[i].dequeued) ReleaseSwapchainImage(device, nullptr, -1, swapchain->images[i], true); } swapchain->surface.swapchain_handle = VK_NULL_HANDLE; swapchain->timing.clear(); } uint32_t get_num_ready_timings(Swapchain& swapchain) { if (swapchain.timing.size() < MIN_NUM_FRAMES_AGO) { return 0; } uint32_t num_ready = 0; const size_t num_timings = swapchain.timing.size() - MIN_NUM_FRAMES_AGO + 1; for (uint32_t i = 0; i < num_timings; i++) { TimingInfo& ti = swapchain.timing[i]; if (ti.ready()) { // This TimingInfo is ready to be reported to the user. Add it // to the num_ready. num_ready++; continue; } // This TimingInfo is not yet ready to be reported to the user, // and so we should look for any available timestamps that // might make it ready. int64_t desired_present_time = 0; int64_t render_complete_time = 0; int64_t composition_latch_time = 0; int64_t actual_present_time = 0; // Obtain timestamps: int err = native_window_get_frame_timestamps( swapchain.surface.window.get(), ti.native_frame_id_, &desired_present_time, &render_complete_time, &composition_latch_time, nullptr, //&first_composition_start_time, nullptr, //&last_composition_start_time, nullptr, //&composition_finish_time, &actual_present_time, nullptr, //&dequeue_ready_time, nullptr /*&reads_done_time*/); if (err != android::OK) { continue; } // Record the timestamp(s) we received, and then see if this TimingInfo // is ready to be reported to the user: ti.timestamp_desired_present_time_ = desired_present_time; ti.timestamp_actual_present_time_ = actual_present_time; ti.timestamp_render_complete_time_ = render_complete_time; ti.timestamp_composition_latch_time_ = composition_latch_time; if (ti.ready()) { // The TimingInfo has received enough timestamps, and should now // use those timestamps to calculate the info that should be // reported to the user: ti.calculate(swapchain.refresh_duration); num_ready++; } } return num_ready; } void copy_ready_timings(Swapchain& swapchain, uint32_t* count, VkPastPresentationTimingGOOGLE* timings) { if (swapchain.timing.empty()) { *count = 0; return; } size_t last_ready = swapchain.timing.size() - 1; while (!swapchain.timing[last_ready].ready()) { if (last_ready == 0) { *count = 0; return; } last_ready--; } uint32_t num_copied = 0; int32_t num_to_remove = 0; for (uint32_t i = 0; i <= last_ready && num_copied < *count; i++) { const TimingInfo& ti = swapchain.timing[i]; if (ti.ready()) { ti.get_values(&timings[num_copied]); num_copied++; } num_to_remove++; } // Discard old frames that aren't ready if newer frames are ready. // We don't expect to get the timing info for those old frames. swapchain.timing.erase(swapchain.timing.begin(), swapchain.timing.begin() + num_to_remove); *count = num_copied; } android_pixel_format GetNativePixelFormat(VkFormat format) { android_pixel_format native_format = HAL_PIXEL_FORMAT_RGBA_8888; switch (format) { case VK_FORMAT_R8G8B8A8_UNORM: case VK_FORMAT_R8G8B8A8_SRGB: native_format = HAL_PIXEL_FORMAT_RGBA_8888; break; case VK_FORMAT_R5G6B5_UNORM_PACK16: native_format = HAL_PIXEL_FORMAT_RGB_565; break; case VK_FORMAT_R16G16B16A16_SFLOAT: native_format = HAL_PIXEL_FORMAT_RGBA_FP16; break; case VK_FORMAT_A2B10G10R10_UNORM_PACK32: native_format = HAL_PIXEL_FORMAT_RGBA_1010102; break; default: ALOGV("unsupported swapchain format %d", format); break; } return native_format; } android_dataspace GetNativeDataspace(VkColorSpaceKHR colorspace) { switch (colorspace) { case VK_COLOR_SPACE_SRGB_NONLINEAR_KHR: return HAL_DATASPACE_V0_SRGB; case VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT: return HAL_DATASPACE_DISPLAY_P3; case VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT: return HAL_DATASPACE_V0_SCRGB_LINEAR; case VK_COLOR_SPACE_EXTENDED_SRGB_NONLINEAR_EXT: return HAL_DATASPACE_V0_SCRGB; case VK_COLOR_SPACE_DCI_P3_LINEAR_EXT: return HAL_DATASPACE_DCI_P3_LINEAR; case VK_COLOR_SPACE_DCI_P3_NONLINEAR_EXT: return HAL_DATASPACE_DCI_P3; case VK_COLOR_SPACE_BT709_LINEAR_EXT: return HAL_DATASPACE_V0_SRGB_LINEAR; case VK_COLOR_SPACE_BT709_NONLINEAR_EXT: return HAL_DATASPACE_V0_SRGB; case VK_COLOR_SPACE_BT2020_LINEAR_EXT: return HAL_DATASPACE_BT2020_LINEAR; case VK_COLOR_SPACE_HDR10_ST2084_EXT: return static_cast( HAL_DATASPACE_STANDARD_BT2020 | HAL_DATASPACE_TRANSFER_ST2084 | HAL_DATASPACE_RANGE_FULL); case VK_COLOR_SPACE_DOLBYVISION_EXT: return static_cast( HAL_DATASPACE_STANDARD_BT2020 | HAL_DATASPACE_TRANSFER_ST2084 | HAL_DATASPACE_RANGE_FULL); case VK_COLOR_SPACE_HDR10_HLG_EXT: return static_cast( HAL_DATASPACE_STANDARD_BT2020 | HAL_DATASPACE_TRANSFER_HLG | HAL_DATASPACE_RANGE_FULL); case VK_COLOR_SPACE_ADOBERGB_LINEAR_EXT: return static_cast( HAL_DATASPACE_STANDARD_ADOBE_RGB | HAL_DATASPACE_TRANSFER_LINEAR | HAL_DATASPACE_RANGE_FULL); case VK_COLOR_SPACE_ADOBERGB_NONLINEAR_EXT: return HAL_DATASPACE_ADOBE_RGB; // Pass through is intended to allow app to provide data that is passed // to the display system without modification. case VK_COLOR_SPACE_PASS_THROUGH_EXT: return HAL_DATASPACE_ARBITRARY; default: // This indicates that we don't know about the // dataspace specified and we should indicate that // it's unsupported return HAL_DATASPACE_UNKNOWN; } } int get_min_buffer_count(ANativeWindow* window, uint32_t* out_min_buffer_count) { constexpr int kExtraBuffers = 2; int err; int min_undequeued_buffers; err = window->query(window, NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS, &min_undequeued_buffers); if (err != android::OK || min_undequeued_buffers < 0) { ALOGE( "NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS query failed: %s (%d) " "value=%d", strerror(-err), err, min_undequeued_buffers); if (err == android::OK) { err = android::UNKNOWN_ERROR; } return err; } *out_min_buffer_count = static_cast(min_undequeued_buffers + kExtraBuffers); return android::OK; } } // anonymous namespace VKAPI_ATTR VkResult CreateAndroidSurfaceKHR( VkInstance instance, const VkAndroidSurfaceCreateInfoKHR* pCreateInfo, const VkAllocationCallbacks* allocator, VkSurfaceKHR* out_surface) { ATRACE_CALL(); if (!allocator) allocator = &GetData(instance).allocator; void* mem = allocator->pfnAllocation(allocator->pUserData, sizeof(Surface), alignof(Surface), VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!mem) return VK_ERROR_OUT_OF_HOST_MEMORY; Surface* surface = new (mem) Surface; surface->window = pCreateInfo->window; surface->swapchain_handle = VK_NULL_HANDLE; int err = native_window_get_consumer_usage(surface->window.get(), &surface->consumer_usage); if (err != android::OK) { ALOGE("native_window_get_consumer_usage() failed: %s (%d)", strerror(-err), err); surface->~Surface(); allocator->pfnFree(allocator->pUserData, surface); return VK_ERROR_SURFACE_LOST_KHR; } err = native_window_api_connect(surface->window.get(), NATIVE_WINDOW_API_EGL); if (err != android::OK) { ALOGE("native_window_api_connect() failed: %s (%d)", strerror(-err), err); surface->~Surface(); allocator->pfnFree(allocator->pUserData, surface); return VK_ERROR_NATIVE_WINDOW_IN_USE_KHR; } *out_surface = HandleFromSurface(surface); return VK_SUCCESS; } VKAPI_ATTR void DestroySurfaceKHR(VkInstance instance, VkSurfaceKHR surface_handle, const VkAllocationCallbacks* allocator) { ATRACE_CALL(); Surface* surface = SurfaceFromHandle(surface_handle); if (!surface) return; native_window_api_disconnect(surface->window.get(), NATIVE_WINDOW_API_EGL); ALOGV_IF(surface->swapchain_handle != VK_NULL_HANDLE, "destroyed VkSurfaceKHR 0x%" PRIx64 " has active VkSwapchainKHR 0x%" PRIx64, reinterpret_cast(surface_handle), reinterpret_cast(surface->swapchain_handle)); surface->~Surface(); if (!allocator) allocator = &GetData(instance).allocator; allocator->pfnFree(allocator->pUserData, surface); } VKAPI_ATTR VkResult GetPhysicalDeviceSurfaceSupportKHR(VkPhysicalDevice /*pdev*/, uint32_t /*queue_family*/, VkSurfaceKHR /*surface_handle*/, VkBool32* supported) { *supported = VK_TRUE; return VK_SUCCESS; } VKAPI_ATTR VkResult GetPhysicalDeviceSurfaceCapabilitiesKHR( VkPhysicalDevice /*pdev*/, VkSurfaceKHR surface, VkSurfaceCapabilitiesKHR* capabilities) { ATRACE_CALL(); int err; ANativeWindow* window = SurfaceFromHandle(surface)->window.get(); int width, height; err = window->query(window, NATIVE_WINDOW_DEFAULT_WIDTH, &width); if (err != android::OK) { ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)", strerror(-err), err); return VK_ERROR_SURFACE_LOST_KHR; } err = window->query(window, NATIVE_WINDOW_DEFAULT_HEIGHT, &height); if (err != android::OK) { ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)", strerror(-err), err); return VK_ERROR_SURFACE_LOST_KHR; } int transform_hint; err = window->query(window, NATIVE_WINDOW_TRANSFORM_HINT, &transform_hint); if (err != android::OK) { ALOGE("NATIVE_WINDOW_TRANSFORM_HINT query failed: %s (%d)", strerror(-err), err); return VK_ERROR_SURFACE_LOST_KHR; } int max_buffer_count; err = window->query(window, NATIVE_WINDOW_MAX_BUFFER_COUNT, &max_buffer_count); if (err != android::OK) { ALOGE("NATIVE_WINDOW_MAX_BUFFER_COUNT query failed: %s (%d)", strerror(-err), err); return VK_ERROR_SURFACE_LOST_KHR; } capabilities->minImageCount = max_buffer_count == 1 ? 1 : 2; capabilities->maxImageCount = static_cast(max_buffer_count); capabilities->currentExtent = VkExtent2D{static_cast(width), static_cast(height)}; // TODO(http://b/134182502): Figure out what the max extent should be. capabilities->minImageExtent = VkExtent2D{1, 1}; capabilities->maxImageExtent = VkExtent2D{4096, 4096}; capabilities->maxImageArrayLayers = 1; capabilities->supportedTransforms = kSupportedTransforms; capabilities->currentTransform = TranslateNativeToVulkanTransform(transform_hint); // On Android, window composition is a WindowManager property, not something // associated with the bufferqueue. It can't be changed from here. capabilities->supportedCompositeAlpha = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR; capabilities->supportedUsageFlags = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT; return VK_SUCCESS; } VKAPI_ATTR VkResult GetPhysicalDeviceSurfaceFormatsKHR(VkPhysicalDevice pdev, VkSurfaceKHR surface_handle, uint32_t* count, VkSurfaceFormatKHR* formats) { ATRACE_CALL(); const InstanceData& instance_data = GetData(pdev); bool wide_color_support = false; Surface& surface = *SurfaceFromHandle(surface_handle); int err = native_window_get_wide_color_support(surface.window.get(), &wide_color_support); if (err) { return VK_ERROR_SURFACE_LOST_KHR; } ALOGV("wide_color_support is: %d", wide_color_support); wide_color_support = wide_color_support && instance_data.hook_extensions.test(ProcHook::EXT_swapchain_colorspace); AHardwareBuffer_Desc desc = {}; desc.width = 1; desc.height = 1; desc.layers = 1; desc.usage = surface.consumer_usage | AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE | AHARDWAREBUFFER_USAGE_GPU_FRAMEBUFFER; // We must support R8G8B8A8 std::vector all_formats = { {VK_FORMAT_R8G8B8A8_UNORM, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR}, {VK_FORMAT_R8G8B8A8_SRGB, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR}}; if (wide_color_support) { all_formats.emplace_back(VkSurfaceFormatKHR{ VK_FORMAT_R8G8B8A8_UNORM, VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT}); all_formats.emplace_back(VkSurfaceFormatKHR{ VK_FORMAT_R8G8B8A8_SRGB, VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT}); } desc.format = AHARDWAREBUFFER_FORMAT_R5G6B5_UNORM; if (AHardwareBuffer_isSupported(&desc)) { all_formats.emplace_back(VkSurfaceFormatKHR{ VK_FORMAT_R5G6B5_UNORM_PACK16, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR}); } desc.format = AHARDWAREBUFFER_FORMAT_R16G16B16A16_FLOAT; if (AHardwareBuffer_isSupported(&desc)) { all_formats.emplace_back(VkSurfaceFormatKHR{ VK_FORMAT_R16G16B16A16_SFLOAT, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR}); if (wide_color_support) { all_formats.emplace_back( VkSurfaceFormatKHR{VK_FORMAT_R16G16B16A16_SFLOAT, VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT}); all_formats.emplace_back( VkSurfaceFormatKHR{VK_FORMAT_R16G16B16A16_SFLOAT, VK_COLOR_SPACE_EXTENDED_SRGB_NONLINEAR_EXT}); } } desc.format = AHARDWAREBUFFER_FORMAT_R10G10B10A2_UNORM; if (AHardwareBuffer_isSupported(&desc)) { all_formats.emplace_back( VkSurfaceFormatKHR{VK_FORMAT_A2B10G10R10_UNORM_PACK32, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR}); if (wide_color_support) { all_formats.emplace_back( VkSurfaceFormatKHR{VK_FORMAT_A2B10G10R10_UNORM_PACK32, VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT}); } } VkResult result = VK_SUCCESS; if (formats) { uint32_t transfer_count = all_formats.size(); if (transfer_count > *count) { transfer_count = *count; result = VK_INCOMPLETE; } std::copy(all_formats.begin(), all_formats.begin() + transfer_count, formats); *count = transfer_count; } else { *count = all_formats.size(); } return result; } VKAPI_ATTR VkResult GetPhysicalDeviceSurfaceCapabilities2KHR( VkPhysicalDevice physicalDevice, const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo, VkSurfaceCapabilities2KHR* pSurfaceCapabilities) { ATRACE_CALL(); VkResult result = GetPhysicalDeviceSurfaceCapabilitiesKHR( physicalDevice, pSurfaceInfo->surface, &pSurfaceCapabilities->surfaceCapabilities); VkSurfaceCapabilities2KHR* caps = pSurfaceCapabilities; while (caps->pNext) { caps = reinterpret_cast(caps->pNext); switch (caps->sType) { case VK_STRUCTURE_TYPE_SHARED_PRESENT_SURFACE_CAPABILITIES_KHR: { VkSharedPresentSurfaceCapabilitiesKHR* shared_caps = reinterpret_cast( caps); // Claim same set of usage flags are supported for // shared present modes as for other modes. shared_caps->sharedPresentSupportedUsageFlags = pSurfaceCapabilities->surfaceCapabilities .supportedUsageFlags; } break; default: // Ignore all other extension structs break; } } return result; } VKAPI_ATTR VkResult GetPhysicalDeviceSurfaceFormats2KHR( VkPhysicalDevice physicalDevice, const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo, uint32_t* pSurfaceFormatCount, VkSurfaceFormat2KHR* pSurfaceFormats) { ATRACE_CALL(); if (!pSurfaceFormats) { return GetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, pSurfaceInfo->surface, pSurfaceFormatCount, nullptr); } else { // temp vector for forwarding; we'll marshal it into the pSurfaceFormats // after the call. std::vector surface_formats(*pSurfaceFormatCount); VkResult result = GetPhysicalDeviceSurfaceFormatsKHR( physicalDevice, pSurfaceInfo->surface, pSurfaceFormatCount, surface_formats.data()); if (result == VK_SUCCESS || result == VK_INCOMPLETE) { // marshal results individually due to stride difference. // completely ignore any chained extension structs. uint32_t formats_to_marshal = *pSurfaceFormatCount; for (uint32_t i = 0u; i < formats_to_marshal; i++) { pSurfaceFormats[i].surfaceFormat = surface_formats[i]; } } return result; } } VKAPI_ATTR VkResult GetPhysicalDeviceSurfacePresentModesKHR(VkPhysicalDevice pdev, VkSurfaceKHR surface, uint32_t* count, VkPresentModeKHR* modes) { ATRACE_CALL(); int err; int query_value; uint32_t min_buffer_count; ANativeWindow* window = SurfaceFromHandle(surface)->window.get(); err = get_min_buffer_count(window, &min_buffer_count); if (err != android::OK) { return VK_ERROR_SURFACE_LOST_KHR; } err = window->query(window, NATIVE_WINDOW_MAX_BUFFER_COUNT, &query_value); if (err != android::OK || query_value < 0) { ALOGE("NATIVE_WINDOW_MAX_BUFFER_COUNT query failed: %s (%d) value=%d", strerror(-err), err, query_value); return VK_ERROR_SURFACE_LOST_KHR; } uint32_t max_buffer_count = static_cast(query_value); std::vector present_modes; if (min_buffer_count < max_buffer_count) present_modes.push_back(VK_PRESENT_MODE_MAILBOX_KHR); present_modes.push_back(VK_PRESENT_MODE_FIFO_KHR); VkPhysicalDevicePresentationPropertiesANDROID present_properties; QueryPresentationProperties(pdev, &present_properties); if (present_properties.sharedImage) { present_modes.push_back(VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR); present_modes.push_back(VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR); } uint32_t num_modes = uint32_t(present_modes.size()); VkResult result = VK_SUCCESS; if (modes) { if (*count < num_modes) result = VK_INCOMPLETE; *count = std::min(*count, num_modes); std::copy_n(present_modes.data(), *count, modes); } else { *count = num_modes; } return result; } VKAPI_ATTR VkResult GetDeviceGroupPresentCapabilitiesKHR( VkDevice, VkDeviceGroupPresentCapabilitiesKHR* pDeviceGroupPresentCapabilities) { ATRACE_CALL(); ALOGV_IF(pDeviceGroupPresentCapabilities->sType != VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_CAPABILITIES_KHR, "vkGetDeviceGroupPresentCapabilitiesKHR: invalid " "VkDeviceGroupPresentCapabilitiesKHR structure type %d", pDeviceGroupPresentCapabilities->sType); memset(pDeviceGroupPresentCapabilities->presentMask, 0, sizeof(pDeviceGroupPresentCapabilities->presentMask)); // assume device group of size 1 pDeviceGroupPresentCapabilities->presentMask[0] = 1 << 0; pDeviceGroupPresentCapabilities->modes = VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR; return VK_SUCCESS; } VKAPI_ATTR VkResult GetDeviceGroupSurfacePresentModesKHR( VkDevice, VkSurfaceKHR, VkDeviceGroupPresentModeFlagsKHR* pModes) { ATRACE_CALL(); *pModes = VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR; return VK_SUCCESS; } VKAPI_ATTR VkResult GetPhysicalDevicePresentRectanglesKHR(VkPhysicalDevice, VkSurfaceKHR surface, uint32_t* pRectCount, VkRect2D* pRects) { ATRACE_CALL(); if (!pRects) { *pRectCount = 1; } else { uint32_t count = std::min(*pRectCount, 1u); bool incomplete = *pRectCount < 1; *pRectCount = count; if (incomplete) { return VK_INCOMPLETE; } int err; ANativeWindow* window = SurfaceFromHandle(surface)->window.get(); int width = 0, height = 0; err = window->query(window, NATIVE_WINDOW_DEFAULT_WIDTH, &width); if (err != android::OK) { ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)", strerror(-err), err); } err = window->query(window, NATIVE_WINDOW_DEFAULT_HEIGHT, &height); if (err != android::OK) { ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)", strerror(-err), err); } pRects[0].offset.x = 0; pRects[0].offset.y = 0; pRects[0].extent = VkExtent2D{static_cast(width), static_cast(height)}; } return VK_SUCCESS; } static void DestroySwapchainInternal(VkDevice device, VkSwapchainKHR swapchain_handle, const VkAllocationCallbacks* allocator) { ATRACE_CALL(); const auto& dispatch = GetData(device).driver; Swapchain* swapchain = SwapchainFromHandle(swapchain_handle); if (!swapchain) { return; } bool active = swapchain->surface.swapchain_handle == swapchain_handle; ANativeWindow* window = active ? swapchain->surface.window.get() : nullptr; if (window && swapchain->frame_timestamps_enabled) { native_window_enable_frame_timestamps(window, false); } for (uint32_t i = 0; i < swapchain->num_images; i++) { ReleaseSwapchainImage(device, window, -1, swapchain->images[i], false); } if (active) { swapchain->surface.swapchain_handle = VK_NULL_HANDLE; } if (!allocator) { allocator = &GetData(device).allocator; } swapchain->~Swapchain(); allocator->pfnFree(allocator->pUserData, swapchain); } VKAPI_ATTR VkResult CreateSwapchainKHR(VkDevice device, const VkSwapchainCreateInfoKHR* create_info, const VkAllocationCallbacks* allocator, VkSwapchainKHR* swapchain_handle) { ATRACE_CALL(); int err; VkResult result = VK_SUCCESS; ALOGV("vkCreateSwapchainKHR: surface=0x%" PRIx64 " minImageCount=%u imageFormat=%u imageColorSpace=%u" " imageExtent=%ux%u imageUsage=%#x preTransform=%u presentMode=%u" " oldSwapchain=0x%" PRIx64, reinterpret_cast(create_info->surface), create_info->minImageCount, create_info->imageFormat, create_info->imageColorSpace, create_info->imageExtent.width, create_info->imageExtent.height, create_info->imageUsage, create_info->preTransform, create_info->presentMode, reinterpret_cast(create_info->oldSwapchain)); if (!allocator) allocator = &GetData(device).allocator; android_pixel_format native_pixel_format = GetNativePixelFormat(create_info->imageFormat); android_dataspace native_dataspace = GetNativeDataspace(create_info->imageColorSpace); if (native_dataspace == HAL_DATASPACE_UNKNOWN) { ALOGE( "CreateSwapchainKHR(VkSwapchainCreateInfoKHR.imageColorSpace = %d) " "failed: Unsupported color space", create_info->imageColorSpace); return VK_ERROR_INITIALIZATION_FAILED; } ALOGV_IF(create_info->imageArrayLayers != 1, "swapchain imageArrayLayers=%u not supported", create_info->imageArrayLayers); ALOGV_IF((create_info->preTransform & ~kSupportedTransforms) != 0, "swapchain preTransform=%#x not supported", create_info->preTransform); ALOGV_IF(!(create_info->presentMode == VK_PRESENT_MODE_FIFO_KHR || create_info->presentMode == VK_PRESENT_MODE_MAILBOX_KHR || create_info->presentMode == VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR || create_info->presentMode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR), "swapchain presentMode=%u not supported", create_info->presentMode); Surface& surface = *SurfaceFromHandle(create_info->surface); if (surface.swapchain_handle != create_info->oldSwapchain) { ALOGV("Can't create a swapchain for VkSurfaceKHR 0x%" PRIx64 " because it already has active swapchain 0x%" PRIx64 " but VkSwapchainCreateInfo::oldSwapchain=0x%" PRIx64, reinterpret_cast(create_info->surface), reinterpret_cast(surface.swapchain_handle), reinterpret_cast(create_info->oldSwapchain)); return VK_ERROR_NATIVE_WINDOW_IN_USE_KHR; } if (create_info->oldSwapchain != VK_NULL_HANDLE) OrphanSwapchain(device, SwapchainFromHandle(create_info->oldSwapchain)); // -- Reset the native window -- // The native window might have been used previously, and had its properties // changed from defaults. That will affect the answer we get for queries // like MIN_UNDEQUED_BUFFERS. Reset to a known/default state before we // attempt such queries. // The native window only allows dequeueing all buffers before any have // been queued, since after that point at least one is assumed to be in // non-FREE state at any given time. Disconnecting and re-connecting // orphans the previous buffers, getting us back to the state where we can // dequeue all buffers. // // TODO(http://b/134186185) recycle swapchain images more efficiently ANativeWindow* window = surface.window.get(); err = native_window_api_disconnect(window, NATIVE_WINDOW_API_EGL); ALOGW_IF(err != android::OK, "native_window_api_disconnect failed: %s (%d)", strerror(-err), err); err = native_window_api_connect(window, NATIVE_WINDOW_API_EGL); ALOGW_IF(err != android::OK, "native_window_api_connect failed: %s (%d)", strerror(-err), err); err = window->perform(window, NATIVE_WINDOW_SET_DEQUEUE_TIMEOUT, nsecs_t{-1}); if (err != android::OK) { ALOGE("window->perform(SET_DEQUEUE_TIMEOUT) failed: %s (%d)", strerror(-err), err); return VK_ERROR_SURFACE_LOST_KHR; } int swap_interval = create_info->presentMode == VK_PRESENT_MODE_MAILBOX_KHR ? 0 : 1; err = window->setSwapInterval(window, swap_interval); if (err != android::OK) { ALOGE("native_window->setSwapInterval(1) failed: %s (%d)", strerror(-err), err); return VK_ERROR_SURFACE_LOST_KHR; } err = native_window_set_shared_buffer_mode(window, false); if (err != android::OK) { ALOGE("native_window_set_shared_buffer_mode(false) failed: %s (%d)", strerror(-err), err); return VK_ERROR_SURFACE_LOST_KHR; } err = native_window_set_auto_refresh(window, false); if (err != android::OK) { ALOGE("native_window_set_auto_refresh(false) failed: %s (%d)", strerror(-err), err); return VK_ERROR_SURFACE_LOST_KHR; } // -- Configure the native window -- const auto& dispatch = GetData(device).driver; err = native_window_set_buffers_format(window, native_pixel_format); if (err != android::OK) { ALOGE("native_window_set_buffers_format(%d) failed: %s (%d)", native_pixel_format, strerror(-err), err); return VK_ERROR_SURFACE_LOST_KHR; } err = native_window_set_buffers_data_space(window, native_dataspace); if (err != android::OK) { ALOGE("native_window_set_buffers_data_space(%d) failed: %s (%d)", native_dataspace, strerror(-err), err); return VK_ERROR_SURFACE_LOST_KHR; } err = native_window_set_buffers_dimensions( window, static_cast(create_info->imageExtent.width), static_cast(create_info->imageExtent.height)); if (err != android::OK) { ALOGE("native_window_set_buffers_dimensions(%d,%d) failed: %s (%d)", create_info->imageExtent.width, create_info->imageExtent.height, strerror(-err), err); return VK_ERROR_SURFACE_LOST_KHR; } // VkSwapchainCreateInfo::preTransform indicates the transformation the app // applied during rendering. native_window_set_transform() expects the // inverse: the transform the app is requesting that the compositor perform // during composition. With native windows, pre-transform works by rendering // with the same transform the compositor is applying (as in Vulkan), but // then requesting the inverse transform, so that when the compositor does // it's job the two transforms cancel each other out and the compositor ends // up applying an identity transform to the app's buffer. err = native_window_set_buffers_transform( window, InvertTransformToNative(create_info->preTransform)); if (err != android::OK) { ALOGE("native_window_set_buffers_transform(%d) failed: %s (%d)", InvertTransformToNative(create_info->preTransform), strerror(-err), err); return VK_ERROR_SURFACE_LOST_KHR; } err = native_window_set_scaling_mode( window, NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW); if (err != android::OK) { ALOGE("native_window_set_scaling_mode(SCALE_TO_WINDOW) failed: %s (%d)", strerror(-err), err); return VK_ERROR_SURFACE_LOST_KHR; } VkSwapchainImageUsageFlagsANDROID swapchain_image_usage = 0; if (create_info->presentMode == VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR || create_info->presentMode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR) { swapchain_image_usage |= VK_SWAPCHAIN_IMAGE_USAGE_SHARED_BIT_ANDROID; err = native_window_set_shared_buffer_mode(window, true); if (err != android::OK) { ALOGE("native_window_set_shared_buffer_mode failed: %s (%d)", strerror(-err), err); return VK_ERROR_SURFACE_LOST_KHR; } } if (create_info->presentMode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR) { err = native_window_set_auto_refresh(window, true); if (err != android::OK) { ALOGE("native_window_set_auto_refresh failed: %s (%d)", strerror(-err), err); return VK_ERROR_SURFACE_LOST_KHR; } } uint32_t min_buffer_count; err = get_min_buffer_count(window, &min_buffer_count); if (err != android::OK) { return VK_ERROR_SURFACE_LOST_KHR; } uint32_t num_images = std::max(min_buffer_count, create_info->minImageCount); // Lower layer insists that we have at least two buffers. This is wasteful // and we'd like to relax it in the shared case, but not all the pieces are // in place for that to work yet. Note we only lie to the lower layer-- we // don't want to give the app back a swapchain with extra images (which they // can't actually use!). err = native_window_set_buffer_count(window, std::max(2u, num_images)); if (err != android::OK) { ALOGE("native_window_set_buffer_count(%d) failed: %s (%d)", num_images, strerror(-err), err); return VK_ERROR_SURFACE_LOST_KHR; } int32_t legacy_usage = 0; if (dispatch.GetSwapchainGrallocUsage2ANDROID) { uint64_t consumer_usage, producer_usage; ATRACE_BEGIN("GetSwapchainGrallocUsage2ANDROID"); result = dispatch.GetSwapchainGrallocUsage2ANDROID( device, create_info->imageFormat, create_info->imageUsage, swapchain_image_usage, &consumer_usage, &producer_usage); ATRACE_END(); if (result != VK_SUCCESS) { ALOGE("vkGetSwapchainGrallocUsage2ANDROID failed: %d", result); return VK_ERROR_SURFACE_LOST_KHR; } legacy_usage = android_convertGralloc1To0Usage(producer_usage, consumer_usage); } else if (dispatch.GetSwapchainGrallocUsageANDROID) { ATRACE_BEGIN("GetSwapchainGrallocUsageANDROID"); result = dispatch.GetSwapchainGrallocUsageANDROID( device, create_info->imageFormat, create_info->imageUsage, &legacy_usage); ATRACE_END(); if (result != VK_SUCCESS) { ALOGE("vkGetSwapchainGrallocUsageANDROID failed: %d", result); return VK_ERROR_SURFACE_LOST_KHR; } } uint64_t native_usage = static_cast(legacy_usage); bool createProtectedSwapchain = false; if (create_info->flags & VK_SWAPCHAIN_CREATE_PROTECTED_BIT_KHR) { createProtectedSwapchain = true; native_usage |= BufferUsage::PROTECTED; } err = native_window_set_usage(window, native_usage); if (err != android::OK) { ALOGE("native_window_set_usage failed: %s (%d)", strerror(-err), err); return VK_ERROR_SURFACE_LOST_KHR; } int transform_hint; err = window->query(window, NATIVE_WINDOW_TRANSFORM_HINT, &transform_hint); if (err != android::OK) { ALOGE("NATIVE_WINDOW_TRANSFORM_HINT query failed: %s (%d)", strerror(-err), err); return VK_ERROR_SURFACE_LOST_KHR; } // -- Allocate our Swapchain object -- // After this point, we must deallocate the swapchain on error. void* mem = allocator->pfnAllocation(allocator->pUserData, sizeof(Swapchain), alignof(Swapchain), VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!mem) return VK_ERROR_OUT_OF_HOST_MEMORY; Swapchain* swapchain = new (mem) Swapchain(surface, num_images, create_info->presentMode, TranslateVulkanToNativeTransform(create_info->preTransform)); // -- Dequeue all buffers and create a VkImage for each -- // Any failures during or after this must cancel the dequeued buffers. VkSwapchainImageCreateInfoANDROID swapchain_image_create = { #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wold-style-cast" .sType = VK_STRUCTURE_TYPE_SWAPCHAIN_IMAGE_CREATE_INFO_ANDROID, #pragma clang diagnostic pop .pNext = nullptr, .usage = swapchain_image_usage, }; VkNativeBufferANDROID image_native_buffer = { #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wold-style-cast" .sType = VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID, #pragma clang diagnostic pop .pNext = &swapchain_image_create, }; VkImageCreateInfo image_create = { .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, .pNext = &image_native_buffer, .flags = createProtectedSwapchain ? VK_IMAGE_CREATE_PROTECTED_BIT : 0u, .imageType = VK_IMAGE_TYPE_2D, .format = create_info->imageFormat, .extent = {0, 0, 1}, .mipLevels = 1, .arrayLayers = 1, .samples = VK_SAMPLE_COUNT_1_BIT, .tiling = VK_IMAGE_TILING_OPTIMAL, .usage = create_info->imageUsage, .sharingMode = create_info->imageSharingMode, .queueFamilyIndexCount = create_info->queueFamilyIndexCount, .pQueueFamilyIndices = create_info->pQueueFamilyIndices, }; for (uint32_t i = 0; i < num_images; i++) { Swapchain::Image& img = swapchain->images[i]; ANativeWindowBuffer* buffer; err = window->dequeueBuffer(window, &buffer, &img.dequeue_fence); if (err != android::OK) { ALOGE("dequeueBuffer[%u] failed: %s (%d)", i, strerror(-err), err); switch (-err) { case ENOMEM: result = VK_ERROR_OUT_OF_DEVICE_MEMORY; break; default: result = VK_ERROR_SURFACE_LOST_KHR; break; } break; } img.buffer = buffer; img.dequeued = true; image_create.extent = VkExtent3D{static_cast(img.buffer->width), static_cast(img.buffer->height), 1}; image_native_buffer.handle = img.buffer->handle; image_native_buffer.stride = img.buffer->stride; image_native_buffer.format = img.buffer->format; image_native_buffer.usage = int(img.buffer->usage); android_convertGralloc0To1Usage(int(img.buffer->usage), &image_native_buffer.usage2.producer, &image_native_buffer.usage2.consumer); ATRACE_BEGIN("CreateImage"); result = dispatch.CreateImage(device, &image_create, nullptr, &img.image); ATRACE_END(); if (result != VK_SUCCESS) { ALOGD("vkCreateImage w/ native buffer failed: %u", result); break; } } // -- Cancel all buffers, returning them to the queue -- // If an error occurred before, also destroy the VkImage and release the // buffer reference. Otherwise, we retain a strong reference to the buffer. for (uint32_t i = 0; i < num_images; i++) { Swapchain::Image& img = swapchain->images[i]; if (img.dequeued) { if (!swapchain->shared) { window->cancelBuffer(window, img.buffer.get(), img.dequeue_fence); img.dequeue_fence = -1; img.dequeued = false; } } } if (result != VK_SUCCESS) { DestroySwapchainInternal(device, HandleFromSwapchain(swapchain), allocator); return result; } if (transform_hint != swapchain->pre_transform) { // Log that the app is not doing pre-rotation. android::GraphicsEnv::getInstance().setTargetStats( android::GpuStatsInfo::Stats::FALSE_PREROTATION); } surface.swapchain_handle = HandleFromSwapchain(swapchain); *swapchain_handle = surface.swapchain_handle; return VK_SUCCESS; } VKAPI_ATTR void DestroySwapchainKHR(VkDevice device, VkSwapchainKHR swapchain_handle, const VkAllocationCallbacks* allocator) { ATRACE_CALL(); DestroySwapchainInternal(device, swapchain_handle, allocator); } VKAPI_ATTR VkResult GetSwapchainImagesKHR(VkDevice, VkSwapchainKHR swapchain_handle, uint32_t* count, VkImage* images) { ATRACE_CALL(); Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle); ALOGW_IF(swapchain.surface.swapchain_handle != swapchain_handle, "getting images for non-active swapchain 0x%" PRIx64 "; only dequeued image handles are valid", reinterpret_cast(swapchain_handle)); VkResult result = VK_SUCCESS; if (images) { uint32_t n = swapchain.num_images; if (*count < swapchain.num_images) { n = *count; result = VK_INCOMPLETE; } for (uint32_t i = 0; i < n; i++) images[i] = swapchain.images[i].image; *count = n; } else { *count = swapchain.num_images; } return result; } VKAPI_ATTR VkResult AcquireNextImageKHR(VkDevice device, VkSwapchainKHR swapchain_handle, uint64_t timeout, VkSemaphore semaphore, VkFence vk_fence, uint32_t* image_index) { ATRACE_CALL(); Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle); ANativeWindow* window = swapchain.surface.window.get(); VkResult result; int err; if (swapchain.surface.swapchain_handle != swapchain_handle) return VK_ERROR_OUT_OF_DATE_KHR; if (swapchain.shared) { // In shared mode, we keep the buffer dequeued all the time, so we don't // want to dequeue a buffer here. Instead, just ask the driver to ensure // the semaphore and fence passed to us will be signalled. *image_index = 0; result = GetData(device).driver.AcquireImageANDROID( device, swapchain.images[*image_index].image, -1, semaphore, vk_fence); return result; } const nsecs_t acquire_next_image_timeout = timeout > (uint64_t)std::numeric_limits::max() ? -1 : timeout; if (acquire_next_image_timeout != swapchain.acquire_next_image_timeout) { // Cache the timeout to avoid the duplicate binder cost. err = window->perform(window, NATIVE_WINDOW_SET_DEQUEUE_TIMEOUT, acquire_next_image_timeout); if (err != android::OK) { ALOGE("window->perform(SET_DEQUEUE_TIMEOUT) failed: %s (%d)", strerror(-err), err); return VK_ERROR_SURFACE_LOST_KHR; } swapchain.acquire_next_image_timeout = acquire_next_image_timeout; } ANativeWindowBuffer* buffer; int fence_fd; err = window->dequeueBuffer(window, &buffer, &fence_fd); if (err == android::TIMED_OUT || err == android::INVALID_OPERATION) { ALOGW("dequeueBuffer timed out: %s (%d)", strerror(-err), err); return timeout ? VK_TIMEOUT : VK_NOT_READY; } else if (err != android::OK) { ALOGE("dequeueBuffer failed: %s (%d)", strerror(-err), err); return VK_ERROR_SURFACE_LOST_KHR; } uint32_t idx; for (idx = 0; idx < swapchain.num_images; idx++) { if (swapchain.images[idx].buffer.get() == buffer) { swapchain.images[idx].dequeued = true; swapchain.images[idx].dequeue_fence = fence_fd; break; } } if (idx == swapchain.num_images) { ALOGE("dequeueBuffer returned unrecognized buffer"); window->cancelBuffer(window, buffer, fence_fd); return VK_ERROR_OUT_OF_DATE_KHR; } int fence_clone = -1; if (fence_fd != -1) { fence_clone = dup(fence_fd); if (fence_clone == -1) { ALOGE("dup(fence) failed, stalling until signalled: %s (%d)", strerror(errno), errno); sync_wait(fence_fd, -1 /* forever */); } } result = GetData(device).driver.AcquireImageANDROID( device, swapchain.images[idx].image, fence_clone, semaphore, vk_fence); if (result != VK_SUCCESS) { // NOTE: we're relying on AcquireImageANDROID to close fence_clone, // even if the call fails. We could close it ourselves on failure, but // that would create a race condition if the driver closes it on a // failure path: some other thread might create an fd with the same // number between the time the driver closes it and the time we close // it. We must assume one of: the driver *always* closes it even on // failure, or *never* closes it on failure. window->cancelBuffer(window, buffer, fence_fd); swapchain.images[idx].dequeued = false; swapchain.images[idx].dequeue_fence = -1; return result; } *image_index = idx; return VK_SUCCESS; } VKAPI_ATTR VkResult AcquireNextImage2KHR(VkDevice device, const VkAcquireNextImageInfoKHR* pAcquireInfo, uint32_t* pImageIndex) { ATRACE_CALL(); return AcquireNextImageKHR(device, pAcquireInfo->swapchain, pAcquireInfo->timeout, pAcquireInfo->semaphore, pAcquireInfo->fence, pImageIndex); } static VkResult WorstPresentResult(VkResult a, VkResult b) { // See the error ranking for vkQueuePresentKHR at the end of section 29.6 // (in spec version 1.0.14). static const VkResult kWorstToBest[] = { VK_ERROR_DEVICE_LOST, VK_ERROR_SURFACE_LOST_KHR, VK_ERROR_OUT_OF_DATE_KHR, VK_ERROR_OUT_OF_DEVICE_MEMORY, VK_ERROR_OUT_OF_HOST_MEMORY, VK_SUBOPTIMAL_KHR, }; for (auto result : kWorstToBest) { if (a == result || b == result) return result; } ALOG_ASSERT(a == VK_SUCCESS, "invalid vkQueuePresentKHR result %d", a); ALOG_ASSERT(b == VK_SUCCESS, "invalid vkQueuePresentKHR result %d", b); return a != VK_SUCCESS ? a : b; } VKAPI_ATTR VkResult QueuePresentKHR(VkQueue queue, const VkPresentInfoKHR* present_info) { ATRACE_CALL(); ALOGV_IF(present_info->sType != VK_STRUCTURE_TYPE_PRESENT_INFO_KHR, "vkQueuePresentKHR: invalid VkPresentInfoKHR structure type %d", present_info->sType); VkDevice device = GetData(queue).driver_device; const auto& dispatch = GetData(queue).driver; VkResult final_result = VK_SUCCESS; // Look at the pNext chain for supported extension structs: const VkPresentRegionsKHR* present_regions = nullptr; const VkPresentTimesInfoGOOGLE* present_times = nullptr; const VkPresentRegionsKHR* next = reinterpret_cast(present_info->pNext); while (next) { switch (next->sType) { case VK_STRUCTURE_TYPE_PRESENT_REGIONS_KHR: present_regions = next; break; case VK_STRUCTURE_TYPE_PRESENT_TIMES_INFO_GOOGLE: present_times = reinterpret_cast(next); break; default: ALOGV("QueuePresentKHR ignoring unrecognized pNext->sType = %x", next->sType); break; } next = reinterpret_cast(next->pNext); } ALOGV_IF( present_regions && present_regions->swapchainCount != present_info->swapchainCount, "VkPresentRegions::swapchainCount != VkPresentInfo::swapchainCount"); ALOGV_IF(present_times && present_times->swapchainCount != present_info->swapchainCount, "VkPresentTimesInfoGOOGLE::swapchainCount != " "VkPresentInfo::swapchainCount"); const VkPresentRegionKHR* regions = (present_regions) ? present_regions->pRegions : nullptr; const VkPresentTimeGOOGLE* times = (present_times) ? present_times->pTimes : nullptr; const VkAllocationCallbacks* allocator = &GetData(device).allocator; android_native_rect_t* rects = nullptr; uint32_t nrects = 0; for (uint32_t sc = 0; sc < present_info->swapchainCount; sc++) { Swapchain& swapchain = *SwapchainFromHandle(present_info->pSwapchains[sc]); uint32_t image_idx = present_info->pImageIndices[sc]; Swapchain::Image& img = swapchain.images[image_idx]; const VkPresentRegionKHR* region = (regions && !swapchain.mailbox_mode) ? ®ions[sc] : nullptr; const VkPresentTimeGOOGLE* time = (times) ? ×[sc] : nullptr; VkResult swapchain_result = VK_SUCCESS; VkResult result; int err; int fence = -1; result = dispatch.QueueSignalReleaseImageANDROID( queue, present_info->waitSemaphoreCount, present_info->pWaitSemaphores, img.image, &fence); if (result != VK_SUCCESS) { ALOGE("QueueSignalReleaseImageANDROID failed: %d", result); swapchain_result = result; } if (img.release_fence >= 0) close(img.release_fence); img.release_fence = fence < 0 ? -1 : dup(fence); if (swapchain.surface.swapchain_handle == present_info->pSwapchains[sc]) { ANativeWindow* window = swapchain.surface.window.get(); if (swapchain_result == VK_SUCCESS) { if (region) { // Process the incremental-present hint for this swapchain: uint32_t rcount = region->rectangleCount; if (rcount > nrects) { android_native_rect_t* new_rects = static_cast( allocator->pfnReallocation( allocator->pUserData, rects, sizeof(android_native_rect_t) * rcount, alignof(android_native_rect_t), VK_SYSTEM_ALLOCATION_SCOPE_COMMAND)); if (new_rects) { rects = new_rects; nrects = rcount; } else { rcount = 0; // Ignore the hint for this swapchain } } for (uint32_t r = 0; r < rcount; ++r) { if (region->pRectangles[r].layer > 0) { ALOGV( "vkQueuePresentKHR ignoring invalid layer " "(%u); using layer 0 instead", region->pRectangles[r].layer); } int x = region->pRectangles[r].offset.x; int y = region->pRectangles[r].offset.y; int width = static_cast( region->pRectangles[r].extent.width); int height = static_cast( region->pRectangles[r].extent.height); android_native_rect_t* cur_rect = &rects[r]; cur_rect->left = x; cur_rect->top = y + height; cur_rect->right = x + width; cur_rect->bottom = y; } native_window_set_surface_damage(window, rects, rcount); } if (time) { if (!swapchain.frame_timestamps_enabled) { ALOGV( "Calling " "native_window_enable_frame_timestamps(true)"); native_window_enable_frame_timestamps(window, true); swapchain.frame_timestamps_enabled = true; } // Record the nativeFrameId so it can be later correlated to // this present. uint64_t nativeFrameId = 0; err = native_window_get_next_frame_id( window, &nativeFrameId); if (err != android::OK) { ALOGE("Failed to get next native frame ID."); } // Add a new timing record with the user's presentID and // the nativeFrameId. swapchain.timing.emplace_back(time, nativeFrameId); while (swapchain.timing.size() > MAX_TIMING_INFOS) { swapchain.timing.erase(swapchain.timing.begin()); } if (time->desiredPresentTime) { // Set the desiredPresentTime: ALOGV( "Calling " "native_window_set_buffers_timestamp(%" PRId64 ")", time->desiredPresentTime); native_window_set_buffers_timestamp( window, static_cast(time->desiredPresentTime)); } } err = window->queueBuffer(window, img.buffer.get(), fence); // queueBuffer always closes fence, even on error if (err != android::OK) { ALOGE("queueBuffer failed: %s (%d)", strerror(-err), err); swapchain_result = WorstPresentResult( swapchain_result, VK_ERROR_SURFACE_LOST_KHR); } else { if (img.dequeue_fence >= 0) { close(img.dequeue_fence); img.dequeue_fence = -1; } img.dequeued = false; } // If the swapchain is in shared mode, immediately dequeue the // buffer so it can be presented again without an intervening // call to AcquireNextImageKHR. We expect to get the same buffer // back from every call to dequeueBuffer in this mode. if (swapchain.shared && swapchain_result == VK_SUCCESS) { ANativeWindowBuffer* buffer; int fence_fd; err = window->dequeueBuffer(window, &buffer, &fence_fd); if (err != android::OK) { ALOGE("dequeueBuffer failed: %s (%d)", strerror(-err), err); swapchain_result = WorstPresentResult(swapchain_result, VK_ERROR_SURFACE_LOST_KHR); } else if (img.buffer != buffer) { ALOGE("got wrong image back for shared swapchain"); swapchain_result = WorstPresentResult(swapchain_result, VK_ERROR_SURFACE_LOST_KHR); } else { img.dequeue_fence = fence_fd; img.dequeued = true; } } } if (swapchain_result != VK_SUCCESS) { OrphanSwapchain(device, &swapchain); } int window_transform_hint; err = window->query(window, NATIVE_WINDOW_TRANSFORM_HINT, &window_transform_hint); if (err != android::OK) { ALOGE("NATIVE_WINDOW_TRANSFORM_HINT query failed: %s (%d)", strerror(-err), err); swapchain_result = WorstPresentResult( swapchain_result, VK_ERROR_SURFACE_LOST_KHR); } if (swapchain.pre_transform != window_transform_hint) { swapchain_result = WorstPresentResult(swapchain_result, VK_SUBOPTIMAL_KHR); } } else { ReleaseSwapchainImage(device, nullptr, fence, img, true); swapchain_result = VK_ERROR_OUT_OF_DATE_KHR; } if (present_info->pResults) present_info->pResults[sc] = swapchain_result; if (swapchain_result != final_result) final_result = WorstPresentResult(final_result, swapchain_result); } if (rects) { allocator->pfnFree(allocator->pUserData, rects); } return final_result; } VKAPI_ATTR VkResult GetRefreshCycleDurationGOOGLE( VkDevice, VkSwapchainKHR swapchain_handle, VkRefreshCycleDurationGOOGLE* pDisplayTimingProperties) { ATRACE_CALL(); Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle); VkResult result = VK_SUCCESS; pDisplayTimingProperties->refreshDuration = swapchain.get_refresh_duration(); return result; } VKAPI_ATTR VkResult GetPastPresentationTimingGOOGLE( VkDevice, VkSwapchainKHR swapchain_handle, uint32_t* count, VkPastPresentationTimingGOOGLE* timings) { ATRACE_CALL(); Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle); if (swapchain.surface.swapchain_handle != swapchain_handle) { return VK_ERROR_OUT_OF_DATE_KHR; } ANativeWindow* window = swapchain.surface.window.get(); VkResult result = VK_SUCCESS; if (!swapchain.frame_timestamps_enabled) { ALOGV("Calling native_window_enable_frame_timestamps(true)"); native_window_enable_frame_timestamps(window, true); swapchain.frame_timestamps_enabled = true; } if (timings) { // Get the latest ready timing count before copying, since the copied // timing info will be erased in copy_ready_timings function. uint32_t n = get_num_ready_timings(swapchain); copy_ready_timings(swapchain, count, timings); // Check the *count here against the recorded ready timing count, since // *count can be overwritten per spec describes. if (*count < n) { result = VK_INCOMPLETE; } } else { *count = get_num_ready_timings(swapchain); } return result; } VKAPI_ATTR VkResult GetSwapchainStatusKHR( VkDevice, VkSwapchainKHR swapchain_handle) { ATRACE_CALL(); Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle); VkResult result = VK_SUCCESS; if (swapchain.surface.swapchain_handle != swapchain_handle) { return VK_ERROR_OUT_OF_DATE_KHR; } // TODO(b/143296009): Implement this function properly return result; } VKAPI_ATTR void SetHdrMetadataEXT( VkDevice, uint32_t swapchainCount, const VkSwapchainKHR* pSwapchains, const VkHdrMetadataEXT* pHdrMetadataEXTs) { ATRACE_CALL(); for (uint32_t idx = 0; idx < swapchainCount; idx++) { Swapchain* swapchain = SwapchainFromHandle(pSwapchains[idx]); if (!swapchain) continue; if (swapchain->surface.swapchain_handle != pSwapchains[idx]) continue; ANativeWindow* window = swapchain->surface.window.get(); VkHdrMetadataEXT vulkanMetadata = pHdrMetadataEXTs[idx]; const android_smpte2086_metadata smpteMetdata = { {vulkanMetadata.displayPrimaryRed.x, vulkanMetadata.displayPrimaryRed.y}, {vulkanMetadata.displayPrimaryGreen.x, vulkanMetadata.displayPrimaryGreen.y}, {vulkanMetadata.displayPrimaryBlue.x, vulkanMetadata.displayPrimaryBlue.y}, {vulkanMetadata.whitePoint.x, vulkanMetadata.whitePoint.y}, vulkanMetadata.maxLuminance, vulkanMetadata.minLuminance}; native_window_set_buffers_smpte2086_metadata(window, &smpteMetdata); const android_cta861_3_metadata cta8613Metadata = { vulkanMetadata.maxContentLightLevel, vulkanMetadata.maxFrameAverageLightLevel}; native_window_set_buffers_cta861_3_metadata(window, &cta8613Metadata); } return; } static void InterceptBindImageMemory2( uint32_t bind_info_count, const VkBindImageMemoryInfo* bind_infos, std::vector* out_native_buffers, std::vector* out_bind_infos) { out_native_buffers->clear(); out_bind_infos->clear(); if (!bind_info_count) return; std::unordered_set intercepted_indexes; for (uint32_t idx = 0; idx < bind_info_count; idx++) { auto info = reinterpret_cast( bind_infos[idx].pNext); while (info && info->sType != VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR) { info = reinterpret_cast( info->pNext); } if (!info) continue; ALOG_ASSERT(info->swapchain != VK_NULL_HANDLE, "swapchain handle must not be NULL"); const Swapchain* swapchain = SwapchainFromHandle(info->swapchain); ALOG_ASSERT( info->imageIndex < swapchain->num_images, "imageIndex must be less than the number of images in swapchain"); ANativeWindowBuffer* buffer = swapchain->images[info->imageIndex].buffer.get(); VkNativeBufferANDROID native_buffer = { #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wold-style-cast" .sType = VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID, #pragma clang diagnostic pop .pNext = bind_infos[idx].pNext, .handle = buffer->handle, .stride = buffer->stride, .format = buffer->format, .usage = int(buffer->usage), }; // Reserve enough space to avoid letting re-allocation invalidate the // addresses of the elements inside. out_native_buffers->reserve(bind_info_count); out_native_buffers->emplace_back(native_buffer); // Reserve the space now since we know how much is needed now. out_bind_infos->reserve(bind_info_count); out_bind_infos->emplace_back(bind_infos[idx]); out_bind_infos->back().pNext = &out_native_buffers->back(); intercepted_indexes.insert(idx); } if (intercepted_indexes.empty()) return; for (uint32_t idx = 0; idx < bind_info_count; idx++) { if (intercepted_indexes.count(idx)) continue; out_bind_infos->emplace_back(bind_infos[idx]); } } VKAPI_ATTR VkResult BindImageMemory2(VkDevice device, uint32_t bindInfoCount, const VkBindImageMemoryInfo* pBindInfos) { ATRACE_CALL(); // out_native_buffers is for maintaining the lifecycle of the constructed // VkNativeBufferANDROID objects inside InterceptBindImageMemory2. std::vector out_native_buffers; std::vector out_bind_infos; InterceptBindImageMemory2(bindInfoCount, pBindInfos, &out_native_buffers, &out_bind_infos); return GetData(device).driver.BindImageMemory2( device, bindInfoCount, out_bind_infos.empty() ? pBindInfos : out_bind_infos.data()); } VKAPI_ATTR VkResult BindImageMemory2KHR(VkDevice device, uint32_t bindInfoCount, const VkBindImageMemoryInfo* pBindInfos) { ATRACE_CALL(); std::vector out_native_buffers; std::vector out_bind_infos; InterceptBindImageMemory2(bindInfoCount, pBindInfos, &out_native_buffers, &out_bind_infos); return GetData(device).driver.BindImageMemory2KHR( device, bindInfoCount, out_bind_infos.empty() ? pBindInfos : out_bind_infos.data()); } } // namespace driver } // namespace vulkan