/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.android.camera.util; import android.app.Activity; import android.app.AlertDialog; import android.app.admin.DevicePolicyManager; import android.content.ActivityNotFoundException; import android.content.ComponentName; import android.content.ContentResolver; import android.content.Context; import android.content.DialogInterface; import android.content.Intent; import android.content.res.TypedArray; import android.graphics.Bitmap; import android.graphics.BitmapFactory; import android.graphics.Matrix; import android.graphics.Point; import android.graphics.PointF; import android.graphics.Rect; import android.graphics.RectF; import android.hardware.camera2.CameraCharacteristics; import android.hardware.camera2.CameraMetadata; import android.location.Location; import android.net.Uri; import android.os.ParcelFileDescriptor; import android.util.TypedValue; import android.view.OrientationEventListener; import android.view.Surface; import android.view.View; import android.view.WindowManager; import android.view.animation.AlphaAnimation; import android.view.animation.Animation; import android.widget.Toast; import com.android.camera.CameraActivity; import com.android.camera.CameraDisabledException; import com.android.camera.FatalErrorHandler; import com.android.camera.debug.Log; import com.android.camera2.R; import com.android.ex.camera2.portability.CameraCapabilities; import com.android.ex.camera2.portability.CameraSettings; import java.io.Closeable; import java.io.IOException; import java.text.SimpleDateFormat; import java.util.Date; import java.util.List; import java.util.Locale; /** * Collection of utility functions used in this package. */ @Deprecated public class CameraUtil { private static final Log.Tag TAG = new Log.Tag("CameraUtil"); private static class Singleton { private static final CameraUtil INSTANCE = new CameraUtil( AndroidContext.instance().get()); } /** * Thread safe CameraUtil instance. */ public static CameraUtil instance() { return Singleton.INSTANCE; } // For calculate the best fps range for still image capture. private final static int MAX_PREVIEW_FPS_TIMES_1000 = 400000; private final static int PREFERRED_PREVIEW_FPS_TIMES_1000 = 30000; // For creating crop intents. public static final String KEY_RETURN_DATA = "return-data"; public static final String KEY_SHOW_WHEN_LOCKED = "showWhenLocked"; /** Orientation hysteresis amount used in rounding, in degrees. */ public static final int ORIENTATION_HYSTERESIS = 5; public static final String REVIEW_ACTION = "com.android.camera.action.REVIEW"; /** See android.hardware.Camera.ACTION_NEW_PICTURE. */ public static final String ACTION_NEW_PICTURE = "android.hardware.action.NEW_PICTURE"; /** See android.hardware.Camera.ACTION_NEW_VIDEO. */ public static final String ACTION_NEW_VIDEO = "android.hardware.action.NEW_VIDEO"; /** * Broadcast Action: The camera application has become active in * picture-taking mode. */ public static final String ACTION_CAMERA_STARTED = "com.android.camera.action.CAMERA_STARTED"; /** * Broadcast Action: The camera application is no longer in active * picture-taking mode. */ public static final String ACTION_CAMERA_STOPPED = "com.android.camera.action.CAMERA_STOPPED"; /** * When the camera application is active in picture-taking mode, it listens * for this intent, which upon receipt will trigger the shutter to capture a * new picture, as if the user had pressed the shutter button. */ public static final String ACTION_CAMERA_SHUTTER_CLICK = "com.android.camera.action.SHUTTER_CLICK"; // Fields for the show-on-maps-functionality private static final String MAPS_PACKAGE_NAME = "com.google.android.apps.maps"; private static final String MAPS_CLASS_NAME = "com.google.android.maps.MapsActivity"; /** Has to be in sync with the receiving MovieActivity. */ public static final String KEY_TREAT_UP_AS_BACK = "treat-up-as-back"; /** Private intent extras. Test only. */ private static final String EXTRAS_CAMERA_FACING = "android.intent.extras.CAMERA_FACING"; private final ImageFileNamer mImageFileNamer; private CameraUtil(Context context) { mImageFileNamer = new ImageFileNamer( context.getString(R.string.image_file_name_format)); } /** * Rotates the bitmap by the specified degree. If a new bitmap is created, * the original bitmap is recycled. */ public static Bitmap rotate(Bitmap b, int degrees) { return rotateAndMirror(b, degrees, false); } /** * Rotates and/or mirrors the bitmap. If a new bitmap is created, the * original bitmap is recycled. */ public static Bitmap rotateAndMirror(Bitmap b, int degrees, boolean mirror) { if ((degrees != 0 || mirror) && b != null) { Matrix m = new Matrix(); // Mirror first. // horizontal flip + rotation = -rotation + horizontal flip if (mirror) { m.postScale(-1, 1); degrees = (degrees + 360) % 360; if (degrees == 0 || degrees == 180) { m.postTranslate(b.getWidth(), 0); } else if (degrees == 90 || degrees == 270) { m.postTranslate(b.getHeight(), 0); } else { throw new IllegalArgumentException("Invalid degrees=" + degrees); } } if (degrees != 0) { // clockwise m.postRotate(degrees, (float) b.getWidth() / 2, (float) b.getHeight() / 2); } try { Bitmap b2 = Bitmap.createBitmap( b, 0, 0, b.getWidth(), b.getHeight(), m, true); if (b != b2) { b.recycle(); b = b2; } } catch (OutOfMemoryError ex) { // We have no memory to rotate. Return the original bitmap. } } return b; } /** * Compute the sample size as a function of minSideLength and * maxNumOfPixels. minSideLength is used to specify that minimal width or * height of a bitmap. maxNumOfPixels is used to specify the maximal size in * pixels that is tolerable in terms of memory usage. The function returns a * sample size based on the constraints. *

* Both size and minSideLength can be passed in as -1 which indicates no * care of the corresponding constraint. The functions prefers returning a * sample size that generates a smaller bitmap, unless minSideLength = -1. *

* Also, the function rounds up the sample size to a power of 2 or multiple * of 8 because BitmapFactory only honors sample size this way. For example, * BitmapFactory downsamples an image by 2 even though the request is 3. So * we round up the sample size to avoid OOM. */ public static int computeSampleSize(BitmapFactory.Options options, int minSideLength, int maxNumOfPixels) { int initialSize = computeInitialSampleSize(options, minSideLength, maxNumOfPixels); int roundedSize; if (initialSize <= 8) { roundedSize = 1; while (roundedSize < initialSize) { roundedSize <<= 1; } } else { roundedSize = (initialSize + 7) / 8 * 8; } return roundedSize; } private static int computeInitialSampleSize(BitmapFactory.Options options, int minSideLength, int maxNumOfPixels) { double w = options.outWidth; double h = options.outHeight; int lowerBound = (maxNumOfPixels < 0) ? 1 : (int) Math.ceil(Math.sqrt(w * h / maxNumOfPixels)); int upperBound = (minSideLength < 0) ? 128 : (int) Math.min(Math.floor(w / minSideLength), Math.floor(h / minSideLength)); if (upperBound < lowerBound) { // return the larger one when there is no overlapping zone. return lowerBound; } if (maxNumOfPixels < 0 && minSideLength < 0) { return 1; } else if (minSideLength < 0) { return lowerBound; } else { return upperBound; } } public static Bitmap makeBitmap(byte[] jpegData, int maxNumOfPixels) { try { BitmapFactory.Options options = new BitmapFactory.Options(); options.inJustDecodeBounds = true; BitmapFactory.decodeByteArray(jpegData, 0, jpegData.length, options); if (options.mCancel || options.outWidth == -1 || options.outHeight == -1) { return null; } options.inSampleSize = computeSampleSize( options, -1, maxNumOfPixels); options.inJustDecodeBounds = false; options.inDither = false; options.inPreferredConfig = Bitmap.Config.ARGB_8888; return BitmapFactory.decodeByteArray(jpegData, 0, jpegData.length, options); } catch (OutOfMemoryError ex) { Log.e(TAG, "Got oom exception ", ex); return null; } } public static void closeSilently(Closeable c) { if (c == null) { return; } try { c.close(); } catch (Throwable t) { // do nothing } } public static void Assert(boolean cond) { if (!cond) { throw new AssertionError(); } } /** * Shows custom error dialog. Designed specifically * for the scenario where the camera cannot be attached. * @deprecated Use {@link FatalErrorHandler} instead. */ @Deprecated public static void showError(final Activity activity, final int dialogMsgId, final int feedbackMsgId, final boolean finishActivity, final Exception ex) { final DialogInterface.OnClickListener buttonListener = new DialogInterface.OnClickListener() { @Override public void onClick(DialogInterface dialog, int which) { if (finishActivity) { activity.finish(); } } }; DialogInterface.OnClickListener reportButtonListener = new DialogInterface.OnClickListener() { @Override public void onClick(DialogInterface dialog, int which) { new GoogleHelpHelper(activity).sendGoogleFeedback(feedbackMsgId, ex); if (finishActivity) { activity.finish(); } } }; TypedValue out = new TypedValue(); activity.getTheme().resolveAttribute(android.R.attr.alertDialogIcon, out, true); // Some crash reports indicate users leave app prior to this dialog // appearing, so check to ensure that the activity is not shutting down // before attempting to attach a dialog to the window manager. if (!activity.isFinishing()) { Log.e(TAG, "Show fatal error dialog"); new AlertDialog.Builder(activity) .setCancelable(false) .setTitle(R.string.camera_error_title) .setMessage(dialogMsgId) .setNegativeButton(R.string.dialog_report, reportButtonListener) .setPositiveButton(R.string.dialog_dismiss, buttonListener) .setIcon(out.resourceId) .show(); } } public static T checkNotNull(T object) { if (object == null) { throw new NullPointerException(); } return object; } public static boolean equals(Object a, Object b) { return (a == b) || (a == null ? false : a.equals(b)); } public static int nextPowerOf2(int n) { // TODO: what happens if n is negative or already a power of 2? n -= 1; n |= n >>> 16; n |= n >>> 8; n |= n >>> 4; n |= n >>> 2; n |= n >>> 1; return n + 1; } public static float distance(float x, float y, float sx, float sy) { float dx = x - sx; float dy = y - sy; return (float) Math.sqrt(dx * dx + dy * dy); } /** * Clamps x to between min and max (inclusive on both ends, x = min --> min, * x = max --> max). */ public static int clamp(int x, int min, int max) { if (x > max) { return max; } if (x < min) { return min; } return x; } /** * Clamps x to between min and max (inclusive on both ends, x = min --> min, * x = max --> max). */ public static float clamp(float x, float min, float max) { if (x > max) { return max; } if (x < min) { return min; } return x; } /** * Linear interpolation between a and b by the fraction t. t = 0 --> a, t = * 1 --> b. */ public static float lerp(float a, float b, float t) { return a + t * (b - a); } /** * Given (nx, ny) \in [0, 1]^2, in the display's portrait coordinate system, * returns normalized sensor coordinates \in [0, 1]^2 depending on how the * sensor's orientation \in {0, 90, 180, 270}. *

* Returns null if sensorOrientation is not one of the above. *

*/ public static PointF normalizedSensorCoordsForNormalizedDisplayCoords( float nx, float ny, int sensorOrientation) { switch (sensorOrientation) { case 0: return new PointF(nx, ny); case 90: return new PointF(ny, 1.0f - nx); case 180: return new PointF(1.0f - nx, 1.0f - ny); case 270: return new PointF(1.0f - ny, nx); default: return null; } } /** * Given a size, return the largest size with the given aspectRatio that * maximally fits into the bounding rectangle of the original Size. * * @param size the original Size to crop * @param aspectRatio the target aspect ratio * @return the largest Size with the given aspect ratio that is smaller than * or equal to the original Size. */ public static Size constrainToAspectRatio(Size size, float aspectRatio) { float width = size.getWidth(); float height = size.getHeight(); float currentAspectRatio = width * 1.0f / height; if (currentAspectRatio > aspectRatio) { // chop longer side if (width > height) { width = height * aspectRatio; } else { height = width / aspectRatio; } } else if (currentAspectRatio < aspectRatio) { // chop shorter side if (width < height) { width = height * aspectRatio; } else { height = width / aspectRatio; } } return new Size((int) width, (int) height); } public static int getDisplayRotation(Activity context) { WindowManager windowManager = AndroidServices.instance().provideWindowManager(context); int rotation = windowManager.getDefaultDisplay() .getRotation(); switch (rotation) { case Surface.ROTATION_0: return 0; case Surface.ROTATION_90: return 90; case Surface.ROTATION_180: return 180; case Surface.ROTATION_270: return 270; } return 0; } private static Size getDefaultDisplaySize(Activity context) { WindowManager windowManager = AndroidServices.instance().provideWindowManager(context); Point res = new Point(); windowManager.getDefaultDisplay().getSize(res); return new Size(res); } public static Size getOptimalPreviewSize(List sizes, double targetRatio, Activity context) { int optimalPickIndex = getOptimalPreviewSizeIndex(sizes, targetRatio, context); if (optimalPickIndex == -1) { return null; } else { return sizes.get(optimalPickIndex); } } /** * Returns the index into 'sizes' that is most optimal given the current * screen and target aspect ratio.. *

* This is using a default aspect ratio tolerance. If the tolerance is to be * given you should call * {@link #getOptimalPreviewSizeIndex(List, double, Double)} * * @param sizes the available preview sizes * @param targetRatio the target aspect ratio, typically the aspect ratio of * the picture size * @param context the Activity to use for determining display information * @return The index into 'previewSizes' for the optimal size, or -1, if no * matching size was found. */ public static int getOptimalPreviewSizeIndex(List sizes, double targetRatio, Activity context) { // Use a very small tolerance because we want an exact match. HTC 4:3 // ratios is over .01 from true 4:3, so this value must be above .01, // see b/18241645. final double aspectRatioTolerance = 0.02; return getOptimalPreviewSizeIndex(sizes, targetRatio, aspectRatioTolerance, context); } /** * Returns the index into 'sizes' that is most optimal given the current * screen, target aspect ratio and tolerance. * * @param previewSizes the available preview sizes * @param targetRatio the target aspect ratio, typically the aspect ratio of * the picture size * @param aspectRatioTolerance the tolerance we allow between the selected * preview size's aspect ratio and the target ratio. If this is * set to 'null', the default value is used. * @param context the Activity to use for determining display information * @return The index into 'previewSizes' for the optimal size, or -1, if no * matching size was found. */ public static int getOptimalPreviewSizeIndex( List previewSizes, double targetRatio, Double aspectRatioTolerance, Activity context) { if (previewSizes == null) { return -1; } // If no particular aspect ratio tolerance is set, use the default // value. if (aspectRatioTolerance == null) { return getOptimalPreviewSizeIndex(previewSizes, targetRatio, context); } int optimalSizeIndex = -1; double minDiff = Double.MAX_VALUE; // Because of bugs of overlay and layout, we sometimes will try to // layout the viewfinder in the portrait orientation and thus get the // wrong size of preview surface. When we change the preview size, the // new overlay will be created before the old one closed, which causes // an exception. For now, just get the screen size. Size defaultDisplaySize = getDefaultDisplaySize(context); int targetHeight = Math.min(defaultDisplaySize.getWidth(), defaultDisplaySize.getHeight()); // Try to find an size match aspect ratio and size for (int i = 0; i < previewSizes.size(); i++) { Size size = previewSizes.get(i); double ratio = (double) size.getWidth() / size.getHeight(); if (Math.abs(ratio - targetRatio) > aspectRatioTolerance) { continue; } double heightDiff = Math.abs(size.getHeight() - targetHeight); if (heightDiff < minDiff) { optimalSizeIndex = i; minDiff = heightDiff; } else if (heightDiff == minDiff) { // Prefer resolutions smaller-than-display when an equally close // larger-than-display resolution is available if (size.getHeight() < targetHeight) { optimalSizeIndex = i; minDiff = heightDiff; } } } // Cannot find the one match the aspect ratio. This should not happen. // Ignore the requirement. if (optimalSizeIndex == -1) { Log.w(TAG, "No preview size match the aspect ratio. available sizes: " + previewSizes); minDiff = Double.MAX_VALUE; for (int i = 0; i < previewSizes.size(); i++) { Size size = previewSizes.get(i); if (Math.abs(size.getHeight() - targetHeight) < minDiff) { optimalSizeIndex = i; minDiff = Math.abs(size.getHeight() - targetHeight); } } } return optimalSizeIndex; } /** * Returns the largest picture size which matches the given aspect ratio, * except for the special WYSIWYG case where the picture size exactly * matches the target size. * * @param sizes a list of candidate sizes, available for use * @param targetWidth the ideal width of the video snapshot * @param targetHeight the ideal height of the video snapshot * @return the Optimal Video Snapshot Picture Size */ public static Size getOptimalVideoSnapshotPictureSize( List sizes, int targetWidth, int targetHeight) { // Use a very small tolerance because we want an exact match. final double ASPECT_TOLERANCE = 0.001; if (sizes == null) { return null; } Size optimalSize = null; // WYSIWYG Override // We assume that physical display constraints have already been // imposed on the variables sizes for (Size size : sizes) { if (size.height() == targetHeight && size.width() == targetWidth) { return size; } } // Try to find a size matches aspect ratio and has the largest width final double targetRatio = (double) targetWidth / targetHeight; for (Size size : sizes) { double ratio = (double) size.width() / size.height(); if (Math.abs(ratio - targetRatio) > ASPECT_TOLERANCE) { continue; } if (optimalSize == null || size.width() > optimalSize.width()) { optimalSize = size; } } // Cannot find one that matches the aspect ratio. This should not // happen. Ignore the requirement. if (optimalSize == null) { Log.w(TAG, "No picture size match the aspect ratio"); for (Size size : sizes) { if (optimalSize == null || size.width() > optimalSize.width()) { optimalSize = size; } } } return optimalSize; } // This is for test only. Allow the camera to launch the specific camera. public static int getCameraFacingIntentExtras(Activity currentActivity) { int cameraId = -1; int intentCameraId = currentActivity.getIntent().getIntExtra(CameraUtil.EXTRAS_CAMERA_FACING, -1); if (isFrontCameraIntent(intentCameraId)) { // Check if the front camera exist int frontCameraId = ((CameraActivity) currentActivity).getCameraProvider() .getFirstFrontCameraId(); if (frontCameraId != -1) { cameraId = frontCameraId; } } else if (isBackCameraIntent(intentCameraId)) { // Check if the back camera exist int backCameraId = ((CameraActivity) currentActivity).getCameraProvider() .getFirstBackCameraId(); if (backCameraId != -1) { cameraId = backCameraId; } } return cameraId; } private static boolean isFrontCameraIntent(int intentCameraId) { return (intentCameraId == android.hardware.Camera.CameraInfo.CAMERA_FACING_FRONT); } private static boolean isBackCameraIntent(int intentCameraId) { return (intentCameraId == android.hardware.Camera.CameraInfo.CAMERA_FACING_BACK); } private static int sLocation[] = new int[2]; // This method is not thread-safe. public static boolean pointInView(float x, float y, View v) { v.getLocationInWindow(sLocation); return x >= sLocation[0] && x < (sLocation[0] + v.getWidth()) && y >= sLocation[1] && y < (sLocation[1] + v.getHeight()); } public static int[] getRelativeLocation(View reference, View view) { reference.getLocationInWindow(sLocation); int referenceX = sLocation[0]; int referenceY = sLocation[1]; view.getLocationInWindow(sLocation); sLocation[0] -= referenceX; sLocation[1] -= referenceY; return sLocation; } public static boolean isUriValid(Uri uri, ContentResolver resolver) { if (uri == null) { return false; } try { ParcelFileDescriptor pfd = resolver.openFileDescriptor(uri, "r"); if (pfd == null) { Log.e(TAG, "Fail to open URI. URI=" + uri); return false; } pfd.close(); } catch (IOException ex) { return false; } return true; } public static void dumpRect(RectF rect, String msg) { Log.v(TAG, msg + "=(" + rect.left + "," + rect.top + "," + rect.right + "," + rect.bottom + ")"); } public static void inlineRectToRectF(RectF rectF, Rect rect) { rect.left = Math.round(rectF.left); rect.top = Math.round(rectF.top); rect.right = Math.round(rectF.right); rect.bottom = Math.round(rectF.bottom); } public static Rect rectFToRect(RectF rectF) { Rect rect = new Rect(); inlineRectToRectF(rectF, rect); return rect; } public static RectF rectToRectF(Rect r) { return new RectF(r.left, r.top, r.right, r.bottom); } public static void prepareMatrix(Matrix matrix, boolean mirror, int displayOrientation, int viewWidth, int viewHeight) { // Need mirror for front camera. matrix.setScale(mirror ? -1 : 1, 1); // This is the value for android.hardware.Camera.setDisplayOrientation. matrix.postRotate(displayOrientation); // Camera driver coordinates range from (-1000, -1000) to (1000, 1000). // UI coordinates range from (0, 0) to (width, height). matrix.postScale(viewWidth / 2000f, viewHeight / 2000f); matrix.postTranslate(viewWidth / 2f, viewHeight / 2f); } public String createJpegName(long dateTaken) { synchronized (mImageFileNamer) { return mImageFileNamer.generateName(dateTaken); } } public static void broadcastNewPicture(Context context, Uri uri) { context.sendBroadcast(new Intent(ACTION_NEW_PICTURE, uri)); // Keep compatibility context.sendBroadcast(new Intent("com.android.camera.NEW_PICTURE", uri)); } public static void fadeIn(View view, float startAlpha, float endAlpha, long duration) { if (view.getVisibility() == View.VISIBLE) { return; } view.setVisibility(View.VISIBLE); Animation animation = new AlphaAnimation(startAlpha, endAlpha); animation.setDuration(duration); view.startAnimation(animation); } public static void setGpsParameters(CameraSettings settings, Location loc) { // Clear previous GPS location from the parameters. settings.clearGpsData(); boolean hasLatLon = false; double lat; double lon; // Set GPS location. if (loc != null) { lat = loc.getLatitude(); lon = loc.getLongitude(); hasLatLon = (lat != 0.0d) || (lon != 0.0d); } if (!hasLatLon) { // We always encode GpsTimeStamp even if the GPS location is not // available. settings.setGpsData( new CameraSettings.GpsData(0f, 0f, 0f, System.currentTimeMillis() / 1000, null) ); } else { Log.d(TAG, "Set gps location"); // for NETWORK_PROVIDER location provider, we may have // no altitude information, but the driver needs it, so // we fake one. // Location.getTime() is UTC in milliseconds. // gps-timestamp is UTC in seconds. long utcTimeSeconds = loc.getTime() / 1000; settings.setGpsData(new CameraSettings.GpsData(loc.getLatitude(), loc.getLongitude(), (loc.hasAltitude() ? loc.getAltitude() : 0), (utcTimeSeconds != 0 ? utcTimeSeconds : System.currentTimeMillis()), loc.getProvider().toUpperCase())); } } /** * For still image capture, we need to get the right fps range such that the * camera can slow down the framerate to allow for less-noisy/dark * viewfinder output in dark conditions. * * @param capabilities Camera's capabilities. * @return null if no appropiate fps range can't be found. Otherwise, return * the right range. */ public static int[] getPhotoPreviewFpsRange(CameraCapabilities capabilities) { return getPhotoPreviewFpsRange(capabilities.getSupportedPreviewFpsRange()); } public static int[] getPhotoPreviewFpsRange(List frameRates) { if (frameRates.size() == 0) { Log.e(TAG, "No suppoted frame rates returned!"); return null; } // Find the lowest min rate in supported ranges who can cover 30fps. int lowestMinRate = MAX_PREVIEW_FPS_TIMES_1000; for (int[] rate : frameRates) { int minFps = rate[0]; int maxFps = rate[1]; if (maxFps >= PREFERRED_PREVIEW_FPS_TIMES_1000 && minFps <= PREFERRED_PREVIEW_FPS_TIMES_1000 && minFps < lowestMinRate) { lowestMinRate = minFps; } } // Find all the modes with the lowest min rate found above, the pick the // one with highest max rate. int resultIndex = -1; int highestMaxRate = 0; for (int i = 0; i < frameRates.size(); i++) { int[] rate = frameRates.get(i); int minFps = rate[0]; int maxFps = rate[1]; if (minFps == lowestMinRate && highestMaxRate < maxFps) { highestMaxRate = maxFps; resultIndex = i; } } if (resultIndex >= 0) { return frameRates.get(resultIndex); } Log.e(TAG, "Can't find an appropiate frame rate range!"); return null; } public static int[] getMaxPreviewFpsRange(List frameRates) { if (frameRates != null && frameRates.size() > 0) { // The list is sorted. Return the last element. return frameRates.get(frameRates.size() - 1); } return new int[0]; } public static void throwIfCameraDisabled() throws CameraDisabledException { // Check if device policy has disabled the camera. DevicePolicyManager dpm = AndroidServices.instance().provideDevicePolicyManager(); if (dpm.getCameraDisabled(null)) { throw new CameraDisabledException(); } } /** * Generates a 1d Gaussian mask of the input array size, and store the mask * in the input array. * * @param mask empty array of size n, where n will be used as the size of * the Gaussian mask, and the array will be populated with the * values of the mask. */ private static void getGaussianMask(float[] mask) { int len = mask.length; int mid = len / 2; float sigma = len; float sum = 0; for (int i = 0; i <= mid; i++) { float ex = (float) Math.exp(-(i - mid) * (i - mid) / (mid * mid)) / (2 * sigma * sigma); int symmetricIndex = len - 1 - i; mask[i] = ex; mask[symmetricIndex] = ex; sum += mask[i]; if (i != symmetricIndex) { sum += mask[symmetricIndex]; } } for (int i = 0; i < mask.length; i++) { mask[i] /= sum; } } /** * Add two pixels together where the second pixel will be applied with a * weight. * * @param pixel pixel color value of weight 1 * @param newPixel second pixel color value where the weight will be applied * @param weight a float weight that will be applied to the second pixel * color * @return the weighted addition of the two pixels */ public static int addPixel(int pixel, int newPixel, float weight) { // TODO: scale weight to [0, 1024] to avoid casting to float and back to // int. int r = ((pixel & 0x00ff0000) + (int) ((newPixel & 0x00ff0000) * weight)) & 0x00ff0000; int g = ((pixel & 0x0000ff00) + (int) ((newPixel & 0x0000ff00) * weight)) & 0x0000ff00; int b = ((pixel & 0x000000ff) + (int) ((newPixel & 0x000000ff) * weight)) & 0x000000ff; return 0xff000000 | r | g | b; } /** * Apply blur to the input image represented in an array of colors and put * the output image, in the form of an array of colors, into the output * array. * * @param src source array of colors * @param out output array of colors after the blur * @param w width of the image * @param h height of the image * @param size size of the Gaussian blur mask */ public static void blur(int[] src, int[] out, int w, int h, int size) { float[] k = new float[size]; int off = size / 2; getGaussianMask(k); int[] tmp = new int[src.length]; // Apply the 1d Gaussian mask horizontally to the image and put the // intermediat results in a temporary array. int rowPointer = 0; for (int y = 0; y < h; y++) { for (int x = 0; x < w; x++) { int sum = 0; for (int i = 0; i < k.length; i++) { int dx = x + i - off; dx = clamp(dx, 0, w - 1); sum = addPixel(sum, src[rowPointer + dx], k[i]); } tmp[x + rowPointer] = sum; } rowPointer += w; } // Apply the 1d Gaussian mask vertically to the intermediate array, and // the final results will be stored in the output array. for (int x = 0; x < w; x++) { rowPointer = 0; for (int y = 0; y < h; y++) { int sum = 0; for (int i = 0; i < k.length; i++) { int dy = y + i - off; dy = clamp(dy, 0, h - 1); sum = addPixel(sum, tmp[dy * w + x], k[i]); } out[x + rowPointer] = sum; rowPointer += w; } } } /** * Calculates a new dimension to fill the bound with the original aspect * ratio preserved. * * @param imageWidth The original width. * @param imageHeight The original height. * @param imageRotation The clockwise rotation in degrees of the image which * the original dimension comes from. * @param boundWidth The width of the bound. * @param boundHeight The height of the bound. * @returns The final width/height stored in Point.x/Point.y to fill the * bounds and preserve image aspect ratio. */ public static Point resizeToFill(int imageWidth, int imageHeight, int imageRotation, int boundWidth, int boundHeight) { if (imageRotation % 180 != 0) { // Swap width and height. int savedWidth = imageWidth; imageWidth = imageHeight; imageHeight = savedWidth; } Point p = new Point(); p.x = boundWidth; p.y = boundHeight; // In some cases like automated testing, image height/width may not be // loaded, to avoid divide by zero fall back to provided bounds. if (imageWidth != 0 && imageHeight != 0) { if (imageWidth * boundHeight > boundWidth * imageHeight) { p.y = imageHeight * p.x / imageWidth; } else { p.x = imageWidth * p.y / imageHeight; } } else { Log.w(TAG, "zero width/height, falling back to bounds (w|h|bw|bh):" + imageWidth + "|" + imageHeight + "|" + boundWidth + "|" + boundHeight); } return p; } private static class ImageFileNamer { private final SimpleDateFormat mFormat; // The date (in milliseconds) used to generate the last name. private long mLastDate; // Number of names generated for the same second. private int mSameSecondCount; public ImageFileNamer(String format) { mFormat = new SimpleDateFormat(format); } public String generateName(long dateTaken) { Date date = new Date(dateTaken); String result = mFormat.format(date); // If the last name was generated for the same second, // we append _1, _2, etc to the name. if (dateTaken / 1000 == mLastDate / 1000) { mSameSecondCount++; result += "_" + mSameSecondCount; } else { mLastDate = dateTaken; mSameSecondCount = 0; } return result; } } public static void playVideo(CameraActivity activity, Uri uri, String title) { try { boolean isSecureCamera = activity.isSecureCamera(); if (!isSecureCamera) { Intent intent = IntentHelper.getVideoPlayerIntent(uri) .putExtra(Intent.EXTRA_TITLE, title) .putExtra(KEY_TREAT_UP_AS_BACK, true); activity.launchActivityByIntent(intent); } else { // In order not to send out any intent to be intercepted and // show the lock screen immediately, we just let the secure // camera activity finish. activity.finish(); } } catch (ActivityNotFoundException e) { Toast.makeText(activity, activity.getString(R.string.video_err), Toast.LENGTH_SHORT).show(); } } /** * Starts GMM with the given location shown. If this fails, and GMM could * not be found, we use a geo intent as a fallback. * * @param activity the activity to use for launching the Maps intent. * @param latLong a 2-element array containing {latitude/longitude}. */ public static void showOnMap(Activity activity, double[] latLong) { try { // We don't use "geo:latitude,longitude" because it only centers // the MapView to the specified location, but we need a marker // for further operations (routing to/from). // The q=(lat, lng) syntax is suggested by geo-team. String uri = String.format(Locale.ENGLISH, "http://maps.google.com/maps?f=q&q=(%f,%f)", latLong[0], latLong[1]); ComponentName compName = new ComponentName(MAPS_PACKAGE_NAME, MAPS_CLASS_NAME); Intent mapsIntent = new Intent(Intent.ACTION_VIEW, Uri.parse(uri)).setComponent(compName); mapsIntent.addFlags(Intent.FLAG_ACTIVITY_NEW_DOCUMENT); activity.startActivity(mapsIntent); } catch (ActivityNotFoundException e) { // Use the "geo intent" if no GMM is installed Log.e(TAG, "GMM activity not found!", e); String url = String.format(Locale.ENGLISH, "geo:%f,%f", latLong[0], latLong[1]); Intent mapsIntent = new Intent(Intent.ACTION_VIEW, Uri.parse(url)); activity.startActivity(mapsIntent); } } /** * Dumps the stack trace. * * @param level How many levels of the stack are dumped. 0 means all. * @return A {@link java.lang.String} of all the output with newline between * each. */ public static String dumpStackTrace(int level) { StackTraceElement[] elems = Thread.currentThread().getStackTrace(); // Ignore the first 3 elements. level = (level == 0 ? elems.length : Math.min(level + 3, elems.length)); String ret = new String(); for (int i = 3; i < level; i++) { ret = ret + "\t" + elems[i].toString() + '\n'; } return ret; } /** * Gets the theme color of a specific mode. * * @param modeIndex index of the mode * @param context current context * @return theme color of the mode if input index is valid, otherwise 0 */ public static int getCameraThemeColorId(int modeIndex, Context context) { // Find the theme color using id from the color array TypedArray colorRes = context.getResources() .obtainTypedArray(R.array.camera_mode_theme_color); if (modeIndex >= colorRes.length() || modeIndex < 0) { // Mode index not found Log.e(TAG, "Invalid mode index: " + modeIndex); return 0; } return colorRes.getResourceId(modeIndex, 0); } /** * Gets the mode icon resource id of a specific mode. * * @param modeIndex index of the mode * @param context current context * @return icon resource id if the index is valid, otherwise 0 */ public static int getCameraModeIconResId(int modeIndex, Context context) { // Find the camera mode icon using id TypedArray cameraModesIcons = context.getResources() .obtainTypedArray(R.array.camera_mode_icon); if (modeIndex >= cameraModesIcons.length() || modeIndex < 0) { // Mode index not found Log.e(TAG, "Invalid mode index: " + modeIndex); return 0; } return cameraModesIcons.getResourceId(modeIndex, 0); } /** * Gets the mode text of a specific mode. * * @param modeIndex index of the mode * @param context current context * @return mode text if the index is valid, otherwise a new empty string */ public static String getCameraModeText(int modeIndex, Context context) { // Find the camera mode icon using id String[] cameraModesText = context.getResources() .getStringArray(R.array.camera_mode_text); if (modeIndex < 0 || modeIndex >= cameraModesText.length) { Log.e(TAG, "Invalid mode index: " + modeIndex); return new String(); } return cameraModesText[modeIndex]; } /** * Gets the mode content description of a specific mode. * * @param modeIndex index of the mode * @param context current context * @return mode content description if the index is valid, otherwise a new * empty string */ public static String getCameraModeContentDescription(int modeIndex, Context context) { String[] cameraModesDesc = context.getResources() .getStringArray(R.array.camera_mode_content_description); if (modeIndex < 0 || modeIndex >= cameraModesDesc.length) { Log.e(TAG, "Invalid mode index: " + modeIndex); return new String(); } return cameraModesDesc[modeIndex]; } /** * Gets the shutter icon res id for a specific mode. * * @param modeIndex index of the mode * @param context current context * @return mode shutter icon id if the index is valid, otherwise 0. */ public static int getCameraShutterIconId(int modeIndex, Context context) { // Find the camera mode icon using id TypedArray shutterIcons = context.getResources() .obtainTypedArray(R.array.camera_mode_shutter_icon); if (modeIndex < 0 || modeIndex >= shutterIcons.length()) { Log.e(TAG, "Invalid mode index: " + modeIndex); throw new IllegalStateException("Invalid mode index: " + modeIndex); } return shutterIcons.getResourceId(modeIndex, 0); } /** * Gets the parent mode that hosts a specific mode in nav drawer. * * @param modeIndex index of the mode * @param context current context * @return mode id if the index is valid, otherwise 0 */ public static int getCameraModeParentModeId(int modeIndex, Context context) { // Find the camera mode icon using id int[] cameraModeParent = context.getResources() .getIntArray(R.array.camera_mode_nested_in_nav_drawer); if (modeIndex < 0 || modeIndex >= cameraModeParent.length) { Log.e(TAG, "Invalid mode index: " + modeIndex); return 0; } return cameraModeParent[modeIndex]; } /** * Gets the mode cover icon resource id of a specific mode. * * @param modeIndex index of the mode * @param context current context * @return icon resource id if the index is valid, otherwise 0 */ public static int getCameraModeCoverIconResId(int modeIndex, Context context) { // Find the camera mode icon using id TypedArray cameraModesIcons = context.getResources() .obtainTypedArray(R.array.camera_mode_cover_icon); if (modeIndex >= cameraModesIcons.length() || modeIndex < 0) { // Mode index not found Log.e(TAG, "Invalid mode index: " + modeIndex); return 0; } return cameraModesIcons.getResourceId(modeIndex, 0); } /** * Gets the number of cores available in this device, across all processors. * Requires: Ability to peruse the filesystem at "/sys/devices/system/cpu" *

* Source: http://stackoverflow.com/questions/7962155/ * * @return The number of cores, or 1 if failed to get result */ public static int getNumCpuCores() { // Private Class to display only CPU devices in the directory listing class CpuFilter implements java.io.FileFilter { @Override public boolean accept(java.io.File pathname) { // Check if filename is "cpu", followed by a single digit number if (java.util.regex.Pattern.matches("cpu[0-9]+", pathname.getName())) { return true; } return false; } } try { // Get directory containing CPU info java.io.File dir = new java.io.File("/sys/devices/system/cpu/"); // Filter to only list the devices we care about java.io.File[] files = dir.listFiles(new CpuFilter()); // Return the number of cores (virtual CPU devices) return files.length; } catch (Exception e) { // Default to return 1 core Log.e(TAG, "Failed to count number of cores, defaulting to 1", e); return 1; } } /** * Given the device orientation and Camera2 characteristics, this returns * the required JPEG rotation for this camera. * * @param deviceOrientationDegrees the clockwise angle of the device orientation from its * natural orientation in degrees. * @return The angle to rotate image clockwise in degrees. It should be 0, 90, 180, or 270. */ public static int getJpegRotation(int deviceOrientationDegrees, CameraCharacteristics characteristics) { if (deviceOrientationDegrees == OrientationEventListener.ORIENTATION_UNKNOWN) { return 0; } boolean isFrontCamera = characteristics.get(CameraCharacteristics.LENS_FACING) == CameraMetadata.LENS_FACING_FRONT; int sensorOrientation = characteristics.get(CameraCharacteristics.SENSOR_ORIENTATION); return getImageRotation(sensorOrientation, deviceOrientationDegrees, isFrontCamera); } /** * Given the camera sensor orientation and device orientation, this returns a clockwise angle * which the final image needs to be rotated to be upright on the device screen. * * @param sensorOrientation Clockwise angle through which the output image needs to be rotated * to be upright on the device screen in its native orientation. * @param deviceOrientation Clockwise angle of the device orientation from its * native orientation when front camera faces user. * @param isFrontCamera True if the camera is front-facing. * @return The angle to rotate image clockwise in degrees. It should be 0, 90, 180, or 270. */ public static int getImageRotation(int sensorOrientation, int deviceOrientation, boolean isFrontCamera) { // The sensor of front camera faces in the opposite direction from back camera. if (isFrontCamera) { deviceOrientation = (360 - deviceOrientation) % 360; } return (sensorOrientation + deviceOrientation) % 360; } }