/* $NetBSD: getaddrinfo.c,v 1.82 2006/03/25 12:09:40 rpaulo Exp $ */ /* $KAME: getaddrinfo.c,v 1.29 2000/08/31 17:26:57 itojun Exp $ */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #define LOG_TAG "resolv" #include "getaddrinfo.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "Experiments.h" #include "netd_resolv/resolv.h" #include "res_comp.h" #include "res_debug.h" #include "resolv_cache.h" #include "resolv_private.h" #include "util.h" #define ANY 0 using android::net::NetworkDnsEventReported; const char in_addrany[] = {0, 0, 0, 0}; const char in_loopback[] = {127, 0, 0, 1}; const char in6_addrany[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; const char in6_loopback[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}; const struct afd { int a_af; int a_addrlen; int a_socklen; int a_off; const char* a_addrany; const char* a_loopback; int a_scoped; } afdl[] = { {PF_INET6, sizeof(struct in6_addr), sizeof(struct sockaddr_in6), offsetof(struct sockaddr_in6, sin6_addr), in6_addrany, in6_loopback, 1}, {PF_INET, sizeof(struct in_addr), sizeof(struct sockaddr_in), offsetof(struct sockaddr_in, sin_addr), in_addrany, in_loopback, 0}, {0, 0, 0, 0, NULL, NULL, 0}, }; struct Explore { int e_af; int e_socktype; int e_protocol; int e_wild; #define WILD_AF(ex) ((ex).e_wild & 0x01) #define WILD_SOCKTYPE(ex) ((ex).e_wild & 0x02) #define WILD_PROTOCOL(ex) ((ex).e_wild & 0x04) }; const Explore explore_options[] = { {PF_INET6, SOCK_DGRAM, IPPROTO_UDP, 0x07}, {PF_INET6, SOCK_STREAM, IPPROTO_TCP, 0x07}, {PF_INET6, SOCK_RAW, ANY, 0x05}, {PF_INET, SOCK_DGRAM, IPPROTO_UDP, 0x07}, {PF_INET, SOCK_STREAM, IPPROTO_TCP, 0x07}, {PF_INET, SOCK_RAW, ANY, 0x05}, {PF_UNSPEC, SOCK_DGRAM, IPPROTO_UDP, 0x07}, {PF_UNSPEC, SOCK_STREAM, IPPROTO_TCP, 0x07}, {PF_UNSPEC, SOCK_RAW, ANY, 0x05}, }; #define PTON_MAX 16 struct res_target { struct res_target* next; const char* name; // domain name int qclass, qtype; // class and type of query std::vector answer = std::vector(MAXPACKET, 0); // buffer to put answer int n = 0; // result length }; static int str2number(const char*); static int explore_fqdn(const struct addrinfo*, const char*, const char*, struct addrinfo**, const struct android_net_context*, NetworkDnsEventReported* event); static int explore_null(const struct addrinfo*, const char*, struct addrinfo**); static int explore_numeric(const struct addrinfo*, const char*, const char*, struct addrinfo**, const char*); static int explore_numeric_scope(const struct addrinfo*, const char*, const char*, struct addrinfo**); static int get_canonname(const struct addrinfo*, struct addrinfo*, const char*); static struct addrinfo* get_ai(const struct addrinfo*, const struct afd*, const char*); static int get_portmatch(const struct addrinfo*, const char*); static int get_port(const struct addrinfo*, const char*, int); static const struct afd* find_afd(int); static int ip6_str2scopeid(const char*, struct sockaddr_in6*, uint32_t*); static struct addrinfo* getanswer(const std::vector&, int, const char*, int, const struct addrinfo*, int* herrno); static int dns_getaddrinfo(const char* name, const addrinfo* pai, const android_net_context* netcontext, addrinfo** rv, NetworkDnsEventReported* event); static void _sethtent(FILE**); static void _endhtent(FILE**); static struct addrinfo* _gethtent(FILE**, const char*, const struct addrinfo*); static struct addrinfo* getCustomHosts(const size_t netid, const char*, const struct addrinfo*); static bool files_getaddrinfo(const size_t netid, const char* name, const addrinfo* pai, addrinfo** res); static int _find_src_addr(const struct sockaddr*, struct sockaddr*, unsigned, uid_t); static int res_queryN(const char* name, res_target* target, res_state res, int* herrno); static int res_searchN(const char* name, res_target* target, res_state res, int* herrno); static int res_querydomainN(const char* name, const char* domain, res_target* target, res_state res, int* herrno); const char* const ai_errlist[] = { "Success", "Address family for hostname not supported", /* EAI_ADDRFAMILY */ "Temporary failure in name resolution", /* EAI_AGAIN */ "Invalid value for ai_flags", /* EAI_BADFLAGS */ "Non-recoverable failure in name resolution", /* EAI_FAIL */ "ai_family not supported", /* EAI_FAMILY */ "Memory allocation failure", /* EAI_MEMORY */ "No address associated with hostname", /* EAI_NODATA */ "hostname nor servname provided, or not known", /* EAI_NONAME */ "servname not supported for ai_socktype", /* EAI_SERVICE */ "ai_socktype not supported", /* EAI_SOCKTYPE */ "System error returned in errno", /* EAI_SYSTEM */ "Invalid value for hints", /* EAI_BADHINTS */ "Resolved protocol is unknown", /* EAI_PROTOCOL */ "Argument buffer overflow", /* EAI_OVERFLOW */ "Unknown error", /* EAI_MAX */ }; /* XXX macros that make external reference is BAD. */ #define GET_AI(ai, afd, addr) \ do { \ /* external reference: pai, error, and label free */ \ (ai) = get_ai(pai, (afd), (addr)); \ if ((ai) == NULL) { \ error = EAI_MEMORY; \ goto free; \ } \ } while (0) #define GET_PORT(ai, serv) \ do { \ /* external reference: error and label free */ \ error = get_port((ai), (serv), 0); \ if (error != 0) goto free; \ } while (0) #define MATCH_FAMILY(x, y, w) \ ((x) == (y) || ((w) && ((x) == PF_UNSPEC || (y) == PF_UNSPEC))) #define MATCH(x, y, w) ((x) == (y) || ((w) && ((x) == ANY || (y) == ANY))) const char* gai_strerror(int ecode) { if (ecode < 0 || ecode > EAI_MAX) ecode = EAI_MAX; return ai_errlist[ecode]; } void freeaddrinfo(struct addrinfo* ai) { while (ai) { struct addrinfo* next = ai->ai_next; if (ai->ai_canonname) free(ai->ai_canonname); // Also frees ai->ai_addr which points to extra space beyond addrinfo free(ai); ai = next; } } static int str2number(const char* p) { char* ep; unsigned long v; assert(p != NULL); if (*p == '\0') return -1; ep = NULL; errno = 0; v = strtoul(p, &ep, 10); if (errno == 0 && ep && *ep == '\0' && v <= UINT_MAX) return v; else return -1; } /* * The following functions determine whether IPv4 or IPv6 connectivity is * available in order to implement AI_ADDRCONFIG. * * Strictly speaking, AI_ADDRCONFIG should not look at whether connectivity is * available, but whether addresses of the specified family are "configured * on the local system". However, bionic doesn't currently support getifaddrs, * so checking for connectivity is the next best thing. */ static int have_ipv6(unsigned mark, uid_t uid) { static const struct sockaddr_in6 sin6_test = { .sin6_family = AF_INET6, .sin6_addr.s6_addr = {// 2000:: 0x20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}; sockaddr_union addr = {.sin6 = sin6_test}; return _find_src_addr(&addr.sa, NULL, mark, uid) == 1; } static int have_ipv4(unsigned mark, uid_t uid) { static const struct sockaddr_in sin_test = { .sin_family = AF_INET, .sin_addr.s_addr = __constant_htonl(0x08080808L) // 8.8.8.8 }; sockaddr_union addr = {.sin = sin_test}; return _find_src_addr(&addr.sa, NULL, mark, uid) == 1; } // Internal version of getaddrinfo(), but limited to AI_NUMERICHOST. // NOTE: also called by resolv_set_nameservers(). int getaddrinfo_numeric(const char* hostname, const char* servname, addrinfo hints, addrinfo** result) { hints.ai_flags = AI_NUMERICHOST; const android_net_context netcontext = { .app_netid = NETID_UNSET, .app_mark = MARK_UNSET, .dns_netid = NETID_UNSET, .dns_mark = MARK_UNSET, .uid = NET_CONTEXT_INVALID_UID, .pid = NET_CONTEXT_INVALID_PID, }; NetworkDnsEventReported event; return android_getaddrinfofornetcontext(hostname, servname, &hints, &netcontext, result, &event); } namespace { int validateHints(const addrinfo* _Nonnull hints) { if (!hints) return EAI_BADHINTS; // error check for hints if (hints->ai_addrlen || hints->ai_canonname || hints->ai_addr || hints->ai_next) { return EAI_BADHINTS; } if (hints->ai_flags & ~AI_MASK) { return EAI_BADFLAGS; } if (!(hints->ai_family == PF_UNSPEC || hints->ai_family == PF_INET || hints->ai_family == PF_INET6)) { return EAI_FAMILY; } // Socket types which are not in explore_options. switch (hints->ai_socktype) { case SOCK_RAW: case SOCK_DGRAM: case SOCK_STREAM: case ANY: break; default: return EAI_SOCKTYPE; } if (hints->ai_socktype == ANY || hints->ai_protocol == ANY) return 0; // if both socktype/protocol are specified, check if they are meaningful combination. for (const Explore& ex : explore_options) { if (hints->ai_family != ex.e_af) continue; if (ex.e_socktype == ANY) continue; if (ex.e_protocol == ANY) continue; if (hints->ai_socktype == ex.e_socktype && hints->ai_protocol != ex.e_protocol) { return EAI_BADHINTS; } } return 0; } } // namespace int android_getaddrinfofornetcontext(const char* hostname, const char* servname, const addrinfo* hints, const android_net_context* netcontext, addrinfo** res, NetworkDnsEventReported* event) { // hostname is allowed to be nullptr // servname is allowed to be nullptr // hints is allowed to be nullptr assert(res != nullptr); assert(netcontext != nullptr); assert(event != nullptr); addrinfo sentinel = {}; addrinfo* cur = &sentinel; int error = 0; do { if (hostname == nullptr && servname == nullptr) { error = EAI_NONAME; break; } if (hints && (error = validateHints(hints))) break; addrinfo ai = hints ? *hints : addrinfo{}; // Check for special cases: // (1) numeric servname is disallowed if socktype/protocol are left unspecified. // (2) servname is disallowed for raw and other inet{,6} sockets. if (MATCH_FAMILY(ai.ai_family, PF_INET, 1) || MATCH_FAMILY(ai.ai_family, PF_INET6, 1)) { addrinfo tmp = ai; if (tmp.ai_family == PF_UNSPEC) { tmp.ai_family = PF_INET6; } error = get_portmatch(&tmp, servname); if (error) break; } // NULL hostname, or numeric hostname for (const Explore& ex : explore_options) { /* PF_UNSPEC entries are prepared for DNS queries only */ if (ex.e_af == PF_UNSPEC) continue; if (!MATCH_FAMILY(ai.ai_family, ex.e_af, WILD_AF(ex))) continue; if (!MATCH(ai.ai_socktype, ex.e_socktype, WILD_SOCKTYPE(ex))) continue; if (!MATCH(ai.ai_protocol, ex.e_protocol, WILD_PROTOCOL(ex))) continue; addrinfo tmp = ai; if (tmp.ai_family == PF_UNSPEC) tmp.ai_family = ex.e_af; if (tmp.ai_socktype == ANY && ex.e_socktype != ANY) tmp.ai_socktype = ex.e_socktype; if (tmp.ai_protocol == ANY && ex.e_protocol != ANY) tmp.ai_protocol = ex.e_protocol; LOG(DEBUG) << __func__ << ": explore_numeric: ai_family=" << tmp.ai_family << " ai_socktype=" << tmp.ai_socktype << " ai_protocol=" << tmp.ai_protocol; if (hostname == nullptr) error = explore_null(&tmp, servname, &cur->ai_next); else error = explore_numeric_scope(&tmp, hostname, servname, &cur->ai_next); if (error) break; while (cur->ai_next) cur = cur->ai_next; } if (error) break; // If numeric representation of AF1 can be interpreted as FQDN // representation of AF2, we need to think again about the code below. if (sentinel.ai_next) break; if (hostname == nullptr) { error = EAI_NODATA; break; } if (ai.ai_flags & AI_NUMERICHOST) { error = EAI_NONAME; break; } return resolv_getaddrinfo(hostname, servname, hints, netcontext, res, event); } while (0); if (error) { freeaddrinfo(sentinel.ai_next); *res = nullptr; } else { *res = sentinel.ai_next; } return error; } int resolv_getaddrinfo(const char* _Nonnull hostname, const char* servname, const addrinfo* hints, const android_net_context* _Nonnull netcontext, addrinfo** _Nonnull res, NetworkDnsEventReported* _Nonnull event) { if (hostname == nullptr && servname == nullptr) return EAI_NONAME; if (hostname == nullptr) return EAI_NODATA; // servname is allowed to be nullptr // hints is allowed to be nullptr assert(res != nullptr); assert(netcontext != nullptr); assert(event != nullptr); int error = EAI_FAIL; if (hints && (error = validateHints(hints))) { *res = nullptr; return error; } addrinfo ai = hints ? *hints : addrinfo{}; addrinfo sentinel = {}; addrinfo* cur = &sentinel; // hostname as alphanumeric name. // We would like to prefer AF_INET6 over AF_INET, so we'll make a outer loop by AFs. for (const Explore& ex : explore_options) { // Require exact match for family field if (ai.ai_family != ex.e_af) continue; if (!MATCH(ai.ai_socktype, ex.e_socktype, WILD_SOCKTYPE(ex))) continue; if (!MATCH(ai.ai_protocol, ex.e_protocol, WILD_PROTOCOL(ex))) continue; addrinfo tmp = ai; if (tmp.ai_socktype == ANY && ex.e_socktype != ANY) tmp.ai_socktype = ex.e_socktype; if (tmp.ai_protocol == ANY && ex.e_protocol != ANY) tmp.ai_protocol = ex.e_protocol; LOG(DEBUG) << __func__ << ": explore_fqdn(): ai_family=" << tmp.ai_family << " ai_socktype=" << tmp.ai_socktype << " ai_protocol=" << tmp.ai_protocol; error = explore_fqdn(&tmp, hostname, servname, &cur->ai_next, netcontext, event); while (cur->ai_next) cur = cur->ai_next; } // Propagate the last error from explore_fqdn(), but only when *all* attempts failed. if ((*res = sentinel.ai_next)) return 0; // TODO: consider removing freeaddrinfo. freeaddrinfo(sentinel.ai_next); *res = nullptr; return (error == 0) ? EAI_FAIL : error; } // FQDN hostname, DNS lookup static int explore_fqdn(const addrinfo* pai, const char* hostname, const char* servname, addrinfo** res, const android_net_context* netcontext, NetworkDnsEventReported* event) { assert(pai != nullptr); // hostname may be nullptr // servname may be nullptr assert(res != nullptr); addrinfo* result = nullptr; int error = 0; // If the servname does not match socktype/protocol, return error code. if ((error = get_portmatch(pai, servname))) return error; if (!files_getaddrinfo(netcontext->dns_netid, hostname, pai, &result)) { error = dns_getaddrinfo(hostname, pai, netcontext, &result, event); } if (error) { freeaddrinfo(result); return error; } for (addrinfo* cur = result; cur; cur = cur->ai_next) { // canonname should be filled already if ((error = get_port(cur, servname, 0))) { freeaddrinfo(result); return error; } } *res = result; return 0; } /* * hostname == NULL. * passive socket -> anyaddr (0.0.0.0 or ::) * non-passive socket -> localhost (127.0.0.1 or ::1) */ static int explore_null(const struct addrinfo* pai, const char* servname, struct addrinfo** res) { int s; const struct afd* afd; struct addrinfo* cur; struct addrinfo sentinel; int error; LOG(DEBUG) << __func__; assert(pai != NULL); /* servname may be NULL */ assert(res != NULL); *res = NULL; sentinel.ai_next = NULL; cur = &sentinel; /* * filter out AFs that are not supported by the kernel * XXX errno? */ s = socket(pai->ai_family, SOCK_DGRAM | SOCK_CLOEXEC, 0); if (s < 0) { if (errno != EMFILE) return 0; } else close(s); /* * if the servname does not match socktype/protocol, ignore it. */ if (get_portmatch(pai, servname) != 0) return 0; afd = find_afd(pai->ai_family); if (afd == NULL) return 0; if (pai->ai_flags & AI_PASSIVE) { GET_AI(cur->ai_next, afd, afd->a_addrany); GET_PORT(cur->ai_next, servname); } else { GET_AI(cur->ai_next, afd, afd->a_loopback); GET_PORT(cur->ai_next, servname); } cur = cur->ai_next; *res = sentinel.ai_next; return 0; free: freeaddrinfo(sentinel.ai_next); return error; } /* * numeric hostname */ static int explore_numeric(const struct addrinfo* pai, const char* hostname, const char* servname, struct addrinfo** res, const char* canonname) { const struct afd* afd; struct addrinfo* cur; struct addrinfo sentinel; int error; char pton[PTON_MAX]; assert(pai != NULL); /* hostname may be NULL */ /* servname may be NULL */ assert(res != NULL); *res = NULL; sentinel.ai_next = NULL; cur = &sentinel; /* * if the servname does not match socktype/protocol, ignore it. */ if (get_portmatch(pai, servname) != 0) return 0; afd = find_afd(pai->ai_family); if (afd == NULL) return 0; if (inet_pton(afd->a_af, hostname, pton) == 1) { if (pai->ai_family == afd->a_af || pai->ai_family == PF_UNSPEC /*?*/) { GET_AI(cur->ai_next, afd, pton); GET_PORT(cur->ai_next, servname); if ((pai->ai_flags & AI_CANONNAME)) { /* * Set the numeric address itself as * the canonical name, based on a * clarification in rfc2553bis-03. */ error = get_canonname(pai, cur->ai_next, canonname); if (error != 0) { freeaddrinfo(sentinel.ai_next); return error; } } while (cur->ai_next) cur = cur->ai_next; } else return EAI_FAMILY; } *res = sentinel.ai_next; return 0; free: freeaddrinfo(sentinel.ai_next); return error; } /* * numeric hostname with scope */ static int explore_numeric_scope(const struct addrinfo* pai, const char* hostname, const char* servname, struct addrinfo** res) { const struct afd* afd; struct addrinfo* cur; int error; const char *cp, *scope, *addr; struct sockaddr_in6* sin6; LOG(DEBUG) << __func__; assert(pai != NULL); /* hostname may be NULL */ /* servname may be NULL */ assert(res != NULL); /* * if the servname does not match socktype/protocol, ignore it. */ if (get_portmatch(pai, servname) != 0) return 0; afd = find_afd(pai->ai_family); if (afd == NULL) return 0; if (!afd->a_scoped) return explore_numeric(pai, hostname, servname, res, hostname); cp = strchr(hostname, SCOPE_DELIMITER); if (cp == NULL) return explore_numeric(pai, hostname, servname, res, hostname); /* * Handle special case of */ char* hostname2 = strdup(hostname); if (hostname2 == NULL) return EAI_MEMORY; /* terminate at the delimiter */ hostname2[cp - hostname] = '\0'; addr = hostname2; scope = cp + 1; error = explore_numeric(pai, addr, servname, res, hostname); if (error == 0) { uint32_t scopeid; for (cur = *res; cur; cur = cur->ai_next) { if (cur->ai_family != AF_INET6) continue; sin6 = (struct sockaddr_in6*) (void*) cur->ai_addr; if (ip6_str2scopeid(scope, sin6, &scopeid) == -1) { free(hostname2); return (EAI_NODATA); /* XXX: is return OK? */ } sin6->sin6_scope_id = scopeid; } } free(hostname2); return error; } static int get_canonname(const struct addrinfo* pai, struct addrinfo* ai, const char* str) { assert(pai != NULL); assert(ai != NULL); assert(str != NULL); if ((pai->ai_flags & AI_CANONNAME) != 0) { ai->ai_canonname = strdup(str); if (ai->ai_canonname == NULL) return EAI_MEMORY; } return 0; } static struct addrinfo* get_ai(const struct addrinfo* pai, const struct afd* afd, const char* addr) { char* p; struct addrinfo* ai; assert(pai != NULL); assert(afd != NULL); assert(addr != NULL); ai = (struct addrinfo*) malloc(sizeof(struct addrinfo) + sizeof(sockaddr_union)); if (ai == NULL) return NULL; memcpy(ai, pai, sizeof(struct addrinfo)); ai->ai_addr = (struct sockaddr*) (void*) (ai + 1); memset(ai->ai_addr, 0, sizeof(sockaddr_union)); ai->ai_addrlen = afd->a_socklen; ai->ai_addr->sa_family = ai->ai_family = afd->a_af; p = (char*) (void*) (ai->ai_addr); memcpy(p + afd->a_off, addr, (size_t) afd->a_addrlen); return ai; } static int get_portmatch(const struct addrinfo* ai, const char* servname) { assert(ai != NULL); /* servname may be NULL */ return get_port(ai, servname, 1); } static int get_port(const struct addrinfo* ai, const char* servname, int matchonly) { const char* proto; struct servent* sp; int port; int allownumeric; assert(ai != NULL); /* servname may be NULL */ if (servname == NULL) return 0; switch (ai->ai_family) { case AF_INET: case AF_INET6: break; default: return 0; } switch (ai->ai_socktype) { case SOCK_RAW: return EAI_SERVICE; case SOCK_DGRAM: case SOCK_STREAM: case ANY: allownumeric = 1; break; default: return EAI_SOCKTYPE; } port = str2number(servname); if (port >= 0) { if (!allownumeric) return EAI_SERVICE; if (port < 0 || port > 65535) return EAI_SERVICE; port = htons(port); } else { if (ai->ai_flags & AI_NUMERICSERV) return EAI_NONAME; switch (ai->ai_socktype) { case SOCK_DGRAM: proto = "udp"; break; case SOCK_STREAM: proto = "tcp"; break; default: proto = NULL; break; } if ((sp = getservbyname(servname, proto)) == NULL) return EAI_SERVICE; port = sp->s_port; } if (!matchonly) { switch (ai->ai_family) { case AF_INET: ((struct sockaddr_in*) (void*) ai->ai_addr)->sin_port = port; break; case AF_INET6: ((struct sockaddr_in6*) (void*) ai->ai_addr)->sin6_port = port; break; } } return 0; } static const struct afd* find_afd(int af) { const struct afd* afd; if (af == PF_UNSPEC) return NULL; for (afd = afdl; afd->a_af; afd++) { if (afd->a_af == af) return afd; } return NULL; } // Convert a string to a scope identifier. static int ip6_str2scopeid(const char* scope, struct sockaddr_in6* sin6, uint32_t* scopeid) { uint64_t lscopeid; struct in6_addr* a6; char* ep; assert(scope != NULL); assert(sin6 != NULL); assert(scopeid != NULL); a6 = &sin6->sin6_addr; /* empty scopeid portion is invalid */ if (*scope == '\0') return -1; if (IN6_IS_ADDR_LINKLOCAL(a6) || IN6_IS_ADDR_MC_LINKLOCAL(a6)) { /* * We currently assume a one-to-one mapping between links * and interfaces, so we simply use interface indices for * like-local scopes. */ *scopeid = if_nametoindex(scope); if (*scopeid != 0) return 0; } // try to convert to a numeric id as a last resort errno = 0; lscopeid = strtoul(scope, &ep, 10); *scopeid = (uint32_t)(lscopeid & 0xffffffffUL); if (errno == 0 && ep && *ep == '\0' && *scopeid == lscopeid) return 0; else return -1; } /* code duplicate with gethnamaddr.c */ #define BOUNDED_INCR(x) \ do { \ BOUNDS_CHECK(cp, x); \ cp += (x); \ } while (0) #define BOUNDS_CHECK(ptr, count) \ do { \ if (eom - (ptr) < (count)) { \ *herrno = NO_RECOVERY; \ return NULL; \ } \ } while (0) static struct addrinfo* getanswer(const std::vector& answer, int anslen, const char* qname, int qtype, const struct addrinfo* pai, int* herrno) { struct addrinfo sentinel = {}; struct addrinfo *cur; struct addrinfo ai; const struct afd* afd; char* canonname; const HEADER* hp; const uint8_t* cp; int n; const uint8_t* eom; char *bp, *ep; int type, ancount, qdcount; int haveanswer, had_error; char tbuf[MAXDNAME]; char hostbuf[8 * 1024]; assert(qname != NULL); assert(pai != NULL); cur = &sentinel; canonname = NULL; eom = answer.data() + anslen; bool (*name_ok)(const char* dn); switch (qtype) { case T_A: case T_AAAA: case T_ANY: /*use T_ANY only for T_A/T_AAAA lookup*/ name_ok = res_hnok; break; default: return NULL; /* XXX should be abort(); */ } /* * find first satisfactory answer */ hp = reinterpret_cast(answer.data()); ancount = ntohs(hp->ancount); qdcount = ntohs(hp->qdcount); bp = hostbuf; ep = hostbuf + sizeof hostbuf; cp = answer.data(); BOUNDED_INCR(HFIXEDSZ); if (qdcount != 1) { *herrno = NO_RECOVERY; return (NULL); } n = dn_expand(answer.data(), eom, cp, bp, ep - bp); if ((n < 0) || !(*name_ok)(bp)) { *herrno = NO_RECOVERY; return (NULL); } BOUNDED_INCR(n + QFIXEDSZ); if (qtype == T_A || qtype == T_AAAA || qtype == T_ANY) { /* res_send() has already verified that the query name is the * same as the one we sent; this just gets the expanded name * (i.e., with the succeeding search-domain tacked on). */ n = strlen(bp) + 1; /* for the \0 */ if (n >= MAXHOSTNAMELEN) { *herrno = NO_RECOVERY; return (NULL); } canonname = bp; bp += n; /* The qname can be abbreviated, but h_name is now absolute. */ qname = canonname; } haveanswer = 0; had_error = 0; while (ancount-- > 0 && cp < eom && !had_error) { n = dn_expand(answer.data(), eom, cp, bp, ep - bp); if ((n < 0) || !(*name_ok)(bp)) { had_error++; continue; } cp += n; /* name */ BOUNDS_CHECK(cp, 3 * INT16SZ + INT32SZ); type = ntohs(*reinterpret_cast(cp)); cp += INT16SZ; /* type */ int cl = ntohs(*reinterpret_cast(cp)); cp += INT16SZ + INT32SZ; /* class, TTL */ n = ntohs(*reinterpret_cast(cp)); cp += INT16SZ; /* len */ BOUNDS_CHECK(cp, n); if (cl != C_IN) { /* XXX - debug? syslog? */ cp += n; continue; /* XXX - had_error++ ? */ } if ((qtype == T_A || qtype == T_AAAA || qtype == T_ANY) && type == T_CNAME) { n = dn_expand(answer.data(), eom, cp, tbuf, sizeof tbuf); if ((n < 0) || !(*name_ok)(tbuf)) { had_error++; continue; } cp += n; /* Get canonical name. */ n = strlen(tbuf) + 1; /* for the \0 */ if (n > ep - bp || n >= MAXHOSTNAMELEN) { had_error++; continue; } strlcpy(bp, tbuf, (size_t)(ep - bp)); canonname = bp; bp += n; continue; } if (qtype == T_ANY) { if (!(type == T_A || type == T_AAAA)) { cp += n; continue; } } else if (type != qtype) { if (type != T_KEY && type != T_SIG) LOG(DEBUG) << __func__ << ": asked for \"" << qname << " " << p_class(C_IN) << " " << p_type(qtype) << "\", got type \"" << p_type(type) << "\""; cp += n; continue; /* XXX - had_error++ ? */ } switch (type) { case T_A: case T_AAAA: if (strcasecmp(canonname, bp) != 0) { LOG(DEBUG) << __func__ << ": asked for \"" << canonname << "\", got \"" << bp << "\""; cp += n; continue; /* XXX - had_error++ ? */ } if (type == T_A && n != INADDRSZ) { cp += n; continue; } if (type == T_AAAA && n != IN6ADDRSZ) { cp += n; continue; } if (type == T_AAAA) { struct in6_addr in6; memcpy(&in6, cp, IN6ADDRSZ); if (IN6_IS_ADDR_V4MAPPED(&in6)) { cp += n; continue; } } if (!haveanswer) { int nn; canonname = bp; nn = strlen(bp) + 1; /* for the \0 */ bp += nn; } /* don't overwrite pai */ ai = *pai; ai.ai_family = (type == T_A) ? AF_INET : AF_INET6; afd = find_afd(ai.ai_family); if (afd == NULL) { cp += n; continue; } cur->ai_next = get_ai(&ai, afd, (const char*) cp); if (cur->ai_next == NULL) had_error++; while (cur && cur->ai_next) cur = cur->ai_next; cp += n; break; default: abort(); } if (!had_error) haveanswer++; } if (haveanswer) { if (!canonname) (void) get_canonname(pai, sentinel.ai_next, qname); else (void) get_canonname(pai, sentinel.ai_next, canonname); *herrno = NETDB_SUCCESS; return sentinel.ai_next; } *herrno = NO_RECOVERY; return NULL; } struct addrinfo_sort_elem { struct addrinfo* ai; int has_src_addr; sockaddr_union src_addr; int original_order; }; static int _get_scope(const struct sockaddr* addr) { if (addr->sa_family == AF_INET6) { const struct sockaddr_in6* addr6 = (const struct sockaddr_in6*) addr; if (IN6_IS_ADDR_MULTICAST(&addr6->sin6_addr)) { return IPV6_ADDR_MC_SCOPE(&addr6->sin6_addr); } else if (IN6_IS_ADDR_LOOPBACK(&addr6->sin6_addr) || IN6_IS_ADDR_LINKLOCAL(&addr6->sin6_addr)) { /* * RFC 4291 section 2.5.3 says loopback is to be treated as having * link-local scope. */ return IPV6_ADDR_SCOPE_LINKLOCAL; } else if (IN6_IS_ADDR_SITELOCAL(&addr6->sin6_addr)) { return IPV6_ADDR_SCOPE_SITELOCAL; } else { return IPV6_ADDR_SCOPE_GLOBAL; } } else if (addr->sa_family == AF_INET) { const struct sockaddr_in* addr4 = (const struct sockaddr_in*) addr; unsigned long int na = ntohl(addr4->sin_addr.s_addr); if (IN_LOOPBACK(na) || /* 127.0.0.0/8 */ (na & 0xffff0000) == 0xa9fe0000) { /* 169.254.0.0/16 */ return IPV6_ADDR_SCOPE_LINKLOCAL; } else { /* * RFC 6724 section 3.2. Other IPv4 addresses, including private addresses * and shared addresses (100.64.0.0/10), are assigned global scope. */ return IPV6_ADDR_SCOPE_GLOBAL; } } else { /* * This should never happen. * Return a scope with low priority as a last resort. */ return IPV6_ADDR_SCOPE_NODELOCAL; } } /* These macros are modelled after the ones in . */ /* RFC 4380, section 2.6 */ #define IN6_IS_ADDR_TEREDO(a) \ ((*(const uint32_t*) (const void*) (&(a)->s6_addr[0]) == ntohl(0x20010000))) /* RFC 3056, section 2. */ #define IN6_IS_ADDR_6TO4(a) (((a)->s6_addr[0] == 0x20) && ((a)->s6_addr[1] == 0x02)) /* 6bone testing address area (3ffe::/16), deprecated in RFC 3701. */ #define IN6_IS_ADDR_6BONE(a) (((a)->s6_addr[0] == 0x3f) && ((a)->s6_addr[1] == 0xfe)) /* * Get the label for a given IPv4/IPv6 address. * RFC 6724, section 2.1. */ static int _get_label(const struct sockaddr* addr) { if (addr->sa_family == AF_INET) { return 4; } else if (addr->sa_family == AF_INET6) { const struct sockaddr_in6* addr6 = (const struct sockaddr_in6*) addr; if (IN6_IS_ADDR_LOOPBACK(&addr6->sin6_addr)) { return 0; } else if (IN6_IS_ADDR_V4MAPPED(&addr6->sin6_addr)) { return 4; } else if (IN6_IS_ADDR_6TO4(&addr6->sin6_addr)) { return 2; } else if (IN6_IS_ADDR_TEREDO(&addr6->sin6_addr)) { return 5; } else if (IN6_IS_ADDR_ULA(&addr6->sin6_addr)) { return 13; } else if (IN6_IS_ADDR_V4COMPAT(&addr6->sin6_addr)) { return 3; } else if (IN6_IS_ADDR_SITELOCAL(&addr6->sin6_addr)) { return 11; } else if (IN6_IS_ADDR_6BONE(&addr6->sin6_addr)) { return 12; } else { /* All other IPv6 addresses, including global unicast addresses. */ return 1; } } else { /* * This should never happen. * Return a semi-random label as a last resort. */ return 1; } } /* * Get the precedence for a given IPv4/IPv6 address. * RFC 6724, section 2.1. */ static int _get_precedence(const struct sockaddr* addr) { if (addr->sa_family == AF_INET) { return 35; } else if (addr->sa_family == AF_INET6) { const struct sockaddr_in6* addr6 = (const struct sockaddr_in6*) addr; if (IN6_IS_ADDR_LOOPBACK(&addr6->sin6_addr)) { return 50; } else if (IN6_IS_ADDR_V4MAPPED(&addr6->sin6_addr)) { return 35; } else if (IN6_IS_ADDR_6TO4(&addr6->sin6_addr)) { return 30; } else if (IN6_IS_ADDR_TEREDO(&addr6->sin6_addr)) { return 5; } else if (IN6_IS_ADDR_ULA(&addr6->sin6_addr)) { return 3; } else if (IN6_IS_ADDR_V4COMPAT(&addr6->sin6_addr) || IN6_IS_ADDR_SITELOCAL(&addr6->sin6_addr) || IN6_IS_ADDR_6BONE(&addr6->sin6_addr)) { return 1; } else { /* All other IPv6 addresses, including global unicast addresses. */ return 40; } } else { return 1; } } /* * Find number of matching initial bits between the two addresses a1 and a2. */ static int _common_prefix_len(const struct in6_addr* a1, const struct in6_addr* a2) { const char* p1 = (const char*) a1; const char* p2 = (const char*) a2; unsigned i; for (i = 0; i < sizeof(*a1); ++i) { int x, j; if (p1[i] == p2[i]) { continue; } x = p1[i] ^ p2[i]; for (j = 0; j < CHAR_BIT; ++j) { if (x & (1 << (CHAR_BIT - 1))) { return i * CHAR_BIT + j; } x <<= 1; } } return sizeof(*a1) * CHAR_BIT; } /* * Compare two source/destination address pairs. * RFC 6724, section 6. */ static int _rfc6724_compare(const void* ptr1, const void* ptr2) { const struct addrinfo_sort_elem* a1 = (const struct addrinfo_sort_elem*) ptr1; const struct addrinfo_sort_elem* a2 = (const struct addrinfo_sort_elem*) ptr2; int scope_src1, scope_dst1, scope_match1; int scope_src2, scope_dst2, scope_match2; int label_src1, label_dst1, label_match1; int label_src2, label_dst2, label_match2; int precedence1, precedence2; int prefixlen1, prefixlen2; /* Rule 1: Avoid unusable destinations. */ if (a1->has_src_addr != a2->has_src_addr) { return a2->has_src_addr - a1->has_src_addr; } /* Rule 2: Prefer matching scope. */ scope_src1 = _get_scope(&a1->src_addr.sa); scope_dst1 = _get_scope(a1->ai->ai_addr); scope_match1 = (scope_src1 == scope_dst1); scope_src2 = _get_scope(&a2->src_addr.sa); scope_dst2 = _get_scope(a2->ai->ai_addr); scope_match2 = (scope_src2 == scope_dst2); if (scope_match1 != scope_match2) { return scope_match2 - scope_match1; } /* * Rule 3: Avoid deprecated addresses. * TODO(sesse): We don't currently have a good way of finding this. */ /* * Rule 4: Prefer home addresses. * TODO(sesse): We don't currently have a good way of finding this. */ /* Rule 5: Prefer matching label. */ label_src1 = _get_label(&a1->src_addr.sa); label_dst1 = _get_label(a1->ai->ai_addr); label_match1 = (label_src1 == label_dst1); label_src2 = _get_label(&a2->src_addr.sa); label_dst2 = _get_label(a2->ai->ai_addr); label_match2 = (label_src2 == label_dst2); if (label_match1 != label_match2) { return label_match2 - label_match1; } /* Rule 6: Prefer higher precedence. */ precedence1 = _get_precedence(a1->ai->ai_addr); precedence2 = _get_precedence(a2->ai->ai_addr); if (precedence1 != precedence2) { return precedence2 - precedence1; } /* * Rule 7: Prefer native transport. * TODO(sesse): We don't currently have a good way of finding this. */ /* Rule 8: Prefer smaller scope. */ if (scope_dst1 != scope_dst2) { return scope_dst1 - scope_dst2; } /* * Rule 9: Use longest matching prefix. * We implement this for IPv6 only, as the rules in RFC 6724 don't seem * to work very well directly applied to IPv4. (glibc uses information from * the routing table for a custom IPv4 implementation here.) */ if (a1->has_src_addr && a1->ai->ai_addr->sa_family == AF_INET6 && a2->has_src_addr && a2->ai->ai_addr->sa_family == AF_INET6) { const struct sockaddr_in6* a1_src = &a1->src_addr.sin6; const struct sockaddr_in6* a1_dst = (const struct sockaddr_in6*) a1->ai->ai_addr; const struct sockaddr_in6* a2_src = &a2->src_addr.sin6; const struct sockaddr_in6* a2_dst = (const struct sockaddr_in6*) a2->ai->ai_addr; prefixlen1 = _common_prefix_len(&a1_src->sin6_addr, &a1_dst->sin6_addr); prefixlen2 = _common_prefix_len(&a2_src->sin6_addr, &a2_dst->sin6_addr); if (prefixlen1 != prefixlen2) { return prefixlen2 - prefixlen1; } } /* * Rule 10: Leave the order unchanged. * We need this since qsort() is not necessarily stable. */ return a1->original_order - a2->original_order; } /* * Find the source address that will be used if trying to connect to the given * address. src_addr must be large enough to hold a struct sockaddr_in6. * * Returns 1 if a source address was found, 0 if the address is unreachable, * and -1 if a fatal error occurred. If 0 or -1, the contents of src_addr are * undefined. */ static int _find_src_addr(const struct sockaddr* addr, struct sockaddr* src_addr, unsigned mark, uid_t uid) { int sock; int ret; socklen_t len; switch (addr->sa_family) { case AF_INET: len = sizeof(struct sockaddr_in); break; case AF_INET6: len = sizeof(struct sockaddr_in6); break; default: /* No known usable source address for non-INET families. */ return 0; } sock = socket(addr->sa_family, SOCK_DGRAM | SOCK_CLOEXEC, IPPROTO_UDP); if (sock == -1) { if (errno == EAFNOSUPPORT) { return 0; } else { return -1; } } if (mark != MARK_UNSET && setsockopt(sock, SOL_SOCKET, SO_MARK, &mark, sizeof(mark)) < 0) { close(sock); return 0; } if (uid > 0 && uid != NET_CONTEXT_INVALID_UID && fchown(sock, uid, (gid_t) -1) < 0) { close(sock); return 0; } do { ret = connect(sock, addr, len); } while (ret == -1 && errno == EINTR); if (ret == -1) { close(sock); return 0; } if (src_addr && getsockname(sock, src_addr, &len) == -1) { close(sock); return -1; } close(sock); return 1; } /* * Sort the linked list starting at sentinel->ai_next in RFC6724 order. * Will leave the list unchanged if an error occurs. */ static void _rfc6724_sort(struct addrinfo* list_sentinel, unsigned mark, uid_t uid) { struct addrinfo* cur; int nelem = 0, i; struct addrinfo_sort_elem* elems; cur = list_sentinel->ai_next; while (cur) { ++nelem; cur = cur->ai_next; } elems = (struct addrinfo_sort_elem*) malloc(nelem * sizeof(struct addrinfo_sort_elem)); if (elems == NULL) { goto error; } /* * Convert the linked list to an array that also contains the candidate * source address for each destination address. */ for (i = 0, cur = list_sentinel->ai_next; i < nelem; ++i, cur = cur->ai_next) { int has_src_addr; assert(cur != NULL); elems[i].ai = cur; elems[i].original_order = i; has_src_addr = _find_src_addr(cur->ai_addr, &elems[i].src_addr.sa, mark, uid); if (has_src_addr == -1) { goto error; } elems[i].has_src_addr = has_src_addr; } /* Sort the addresses, and rearrange the linked list so it matches the sorted order. */ qsort((void*) elems, nelem, sizeof(struct addrinfo_sort_elem), _rfc6724_compare); list_sentinel->ai_next = elems[0].ai; for (i = 0; i < nelem - 1; ++i) { elems[i].ai->ai_next = elems[i + 1].ai; } elems[nelem - 1].ai->ai_next = NULL; error: free(elems); } static int dns_getaddrinfo(const char* name, const addrinfo* pai, const android_net_context* netcontext, addrinfo** rv, NetworkDnsEventReported* event) { res_target q = {}; res_target q2 = {}; switch (pai->ai_family) { case AF_UNSPEC: { /* prefer IPv6 */ q.name = name; q.qclass = C_IN; int query_ipv6 = 1, query_ipv4 = 1; if (pai->ai_flags & AI_ADDRCONFIG) { query_ipv6 = have_ipv6(netcontext->app_mark, netcontext->uid); query_ipv4 = have_ipv4(netcontext->app_mark, netcontext->uid); } if (query_ipv6) { q.qtype = T_AAAA; if (query_ipv4) { q.next = &q2; q2.name = name; q2.qclass = C_IN; q2.qtype = T_A; } } else if (query_ipv4) { q.qtype = T_A; } else { return EAI_NODATA; } break; } case AF_INET: q.name = name; q.qclass = C_IN; q.qtype = T_A; break; case AF_INET6: q.name = name; q.qclass = C_IN; q.qtype = T_AAAA; break; default: return EAI_FAMILY; } ResState res(netcontext, event); int he; if (res_searchN(name, &q, &res, &he) < 0) { // Return h_errno (he) to catch more detailed errors rather than EAI_NODATA. // Note that res_searchN() doesn't set the pair NETDB_INTERNAL and errno. // See also herrnoToAiErrno(). return herrnoToAiErrno(he); } addrinfo sentinel = {}; addrinfo* cur = &sentinel; addrinfo* ai = getanswer(q.answer, q.n, q.name, q.qtype, pai, &he); if (ai) { cur->ai_next = ai; while (cur && cur->ai_next) cur = cur->ai_next; } if (q.next) { ai = getanswer(q2.answer, q2.n, q2.name, q2.qtype, pai, &he); if (ai) cur->ai_next = ai; } if (sentinel.ai_next == NULL) { // Note that getanswer() doesn't set the pair NETDB_INTERNAL and errno. // See also herrnoToAiErrno(). return herrnoToAiErrno(he); } _rfc6724_sort(&sentinel, netcontext->app_mark, netcontext->uid); *rv = sentinel.ai_next; return 0; } static void _sethtent(FILE** hostf) { if (!*hostf) *hostf = fopen(_PATH_HOSTS, "re"); else rewind(*hostf); } static void _endhtent(FILE** hostf) { if (*hostf) { (void) fclose(*hostf); *hostf = NULL; } } static struct addrinfo* _gethtent(FILE** hostf, const char* name, const struct addrinfo* pai) { char* p; char *cp, *tname, *cname; struct addrinfo *res0, *res; int error; const char* addr; char hostbuf[8 * 1024]; assert(name != NULL); assert(pai != NULL); if (!*hostf && !(*hostf = fopen(_PATH_HOSTS, "re"))) return (NULL); again: if (!(p = fgets(hostbuf, sizeof hostbuf, *hostf))) return (NULL); if (*p == '#') goto again; if (!(cp = strpbrk(p, "#\n"))) goto again; *cp = '\0'; if (!(cp = strpbrk(p, " \t"))) goto again; *cp++ = '\0'; addr = p; /* if this is not something we're looking for, skip it. */ cname = NULL; while (cp && *cp) { if (*cp == ' ' || *cp == '\t') { cp++; continue; } if (!cname) cname = cp; tname = cp; if ((cp = strpbrk(cp, " \t")) != NULL) *cp++ = '\0'; if (strcasecmp(name, tname) == 0) goto found; } goto again; found: error = getaddrinfo_numeric(addr, nullptr, *pai, &res0); if (error) goto again; for (res = res0; res; res = res->ai_next) { /* cover it up */ res->ai_flags = pai->ai_flags; if (pai->ai_flags & AI_CANONNAME) { if (get_canonname(pai, res, cname) != 0) { freeaddrinfo(res0); goto again; } } } return res0; } static struct addrinfo* getCustomHosts(const size_t netid, const char* _Nonnull name, const struct addrinfo* _Nonnull pai) { struct addrinfo sentinel = {}; struct addrinfo *res0, *res; res = &sentinel; std::vector hosts = getCustomizedTableByName(netid, name); for (const std::string& host : hosts) { int error = getaddrinfo_numeric(host.c_str(), nullptr, *pai, &res0); if (!error && res0 != nullptr) { res->ai_next = res0; res = res0; res0 = nullptr; } } return sentinel.ai_next; } static bool files_getaddrinfo(const size_t netid, const char* name, const addrinfo* pai, addrinfo** res) { struct addrinfo sentinel = {}; struct addrinfo *p, *cur; FILE* hostf = nullptr; cur = &sentinel; _sethtent(&hostf); while ((p = _gethtent(&hostf, name, pai)) != nullptr) { cur->ai_next = p; while (cur && cur->ai_next) cur = cur->ai_next; } _endhtent(&hostf); if ((p = getCustomHosts(netid, name, pai)) != nullptr) { cur->ai_next = p; } *res = sentinel.ai_next; return sentinel.ai_next != nullptr; } /* resolver logic */ namespace { constexpr int SLEEP_TIME_MS = 2; int getHerrnoFromRcode(int rcode) { switch (rcode) { // Not defined in RFC. case RCODE_TIMEOUT: // DNS metrics monitors DNS query timeout. return NETD_RESOLV_H_ERRNO_EXT_TIMEOUT; // extended h_errno. // Defined in RFC 1035 section 4.1.1. case NXDOMAIN: return HOST_NOT_FOUND; case SERVFAIL: return TRY_AGAIN; case NOERROR: return NO_DATA; case FORMERR: case NOTIMP: case REFUSED: default: return NO_RECOVERY; } } struct QueryResult { int ancount; int rcode; int herrno; int qerrno; NetworkDnsEventReported event; }; QueryResult doQuery(const char* name, res_target* t, res_state res, std::chrono::milliseconds sleepTimeMs) { HEADER* hp = (HEADER*)(void*)t->answer.data(); hp->rcode = NOERROR; // default const int cl = t->qclass; const int type = t->qtype; const int anslen = t->answer.size(); LOG(DEBUG) << __func__ << ": (" << cl << ", " << type << ")"; uint8_t buf[MAXPACKET]; int n = res_nmkquery(QUERY, name, cl, type, /*data=*/nullptr, /*datalen=*/0, buf, sizeof(buf), res->netcontext_flags); if (n > 0 && (res->netcontext_flags & (NET_CONTEXT_FLAG_USE_DNS_OVER_TLS | NET_CONTEXT_FLAG_USE_EDNS))) { n = res_nopt(res, n, buf, sizeof(buf), anslen); } NetworkDnsEventReported event; if (n <= 0) { LOG(ERROR) << __func__ << ": res_nmkquery failed"; return { .ancount = 0, .rcode = -1, .herrno = NO_RECOVERY, .qerrno = errno, .event = event, }; } ResState res_temp = res->clone(&event); int rcode = NOERROR; n = res_nsend(&res_temp, buf, n, t->answer.data(), anslen, &rcode, 0, sleepTimeMs); if (n < 0 || hp->rcode != NOERROR || ntohs(hp->ancount) == 0) { // To ensure that the rcode handling is identical to res_queryN(). if (rcode != RCODE_TIMEOUT) rcode = hp->rcode; // if the query choked with EDNS0, retry without EDNS0 if ((res_temp.netcontext_flags & (NET_CONTEXT_FLAG_USE_DNS_OVER_TLS | NET_CONTEXT_FLAG_USE_EDNS)) && (res_temp._flags & RES_F_EDNS0ERR)) { LOG(DEBUG) << __func__ << ": retry without EDNS0"; n = res_nmkquery(QUERY, name, cl, type, /*data=*/nullptr, /*datalen=*/0, buf, sizeof(buf), res_temp.netcontext_flags); n = res_nsend(&res_temp, buf, n, t->answer.data(), anslen, &rcode, 0); } } LOG(DEBUG) << __func__ << ": rcode=" << hp->rcode << ", ancount=" << ntohs(hp->ancount); t->n = n; return { .ancount = ntohs(hp->ancount), .rcode = rcode, .qerrno = errno, .event = event, }; } } // namespace static int res_queryN_parallel(const char* name, res_target* target, res_state res, int* herrno) { std::vector> results; results.reserve(2); std::chrono::milliseconds sleepTimeMs{}; for (res_target* t = target; t; t = t->next) { results.emplace_back(std::async(std::launch::async, doQuery, name, t, res, sleepTimeMs)); // Avoiding gateways drop packets if queries are sent too close together // Only needed if we have multiple queries in a row. if (t->next) { int sleepFlag = android::net::Experiments::getInstance()->getFlag( "parallel_lookup_sleep_time", SLEEP_TIME_MS); if (sleepFlag > 1000) sleepFlag = 1000; sleepTimeMs = std::chrono::milliseconds(sleepFlag); } } int ancount = 0; int rcode = 0; for (auto& f : results) { const QueryResult& r = f.get(); if (r.herrno == NO_RECOVERY) { *herrno = r.herrno; return -1; } res->event->MergeFrom(r.event); ancount += r.ancount; rcode = r.rcode; errno = r.qerrno; } if (ancount == 0) { *herrno = getHerrnoFromRcode(rcode); return -1; } return ancount; } static int res_queryN_wrapper(const char* name, res_target* target, res_state res, int* herrno) { const bool parallel_lookup = android::net::Experiments::getInstance()->getFlag("parallel_lookup_release", 1); if (parallel_lookup) return res_queryN_parallel(name, target, res, herrno); return res_queryN(name, target, res, herrno); } /* * Formulate a normal query, send, and await answer. * Returned answer is placed in supplied buffer "answer". * Perform preliminary check of answer, returning success only * if no error is indicated and the answer count is nonzero. * Return the size of the response on success, -1 on error. * Error number is left in *herrno. * * Caller must parse answer and determine whether it answers the question. */ static int res_queryN(const char* name, res_target* target, res_state res, int* herrno) { uint8_t buf[MAXPACKET]; int n; struct res_target* t; int rcode; int ancount; assert(name != NULL); /* XXX: target may be NULL??? */ rcode = NOERROR; ancount = 0; for (t = target; t; t = t->next) { HEADER* hp = (HEADER*)(void*)t->answer.data(); bool retried = false; again: hp->rcode = NOERROR; /* default */ /* make it easier... */ int cl = t->qclass; int type = t->qtype; const int anslen = t->answer.size(); LOG(DEBUG) << __func__ << ": (" << cl << ", " << type << ")"; n = res_nmkquery(QUERY, name, cl, type, /*data=*/nullptr, /*datalen=*/0, buf, sizeof(buf), res->netcontext_flags); if (n > 0 && (res->netcontext_flags & (NET_CONTEXT_FLAG_USE_DNS_OVER_TLS | NET_CONTEXT_FLAG_USE_EDNS)) && !retried) // TODO: remove the retry flag and provide a sufficient test coverage. n = res_nopt(res, n, buf, sizeof(buf), anslen); if (n <= 0) { LOG(ERROR) << __func__ << ": res_nmkquery failed"; *herrno = NO_RECOVERY; return n; } n = res_nsend(res, buf, n, t->answer.data(), anslen, &rcode, 0); if (n < 0 || hp->rcode != NOERROR || ntohs(hp->ancount) == 0) { // Record rcode from DNS response header only if no timeout. // Keep rcode timeout for reporting later if any. if (rcode != RCODE_TIMEOUT) rcode = hp->rcode; // record most recent error // if the query choked with EDNS0, retry without EDNS0 that when the server // has no response, resovler won't retry and do nothing. Even fallback to UDP, // we also has the same symptom if EDNS is enabled. if ((res->netcontext_flags & (NET_CONTEXT_FLAG_USE_DNS_OVER_TLS | NET_CONTEXT_FLAG_USE_EDNS)) && (res->_flags & RES_F_EDNS0ERR) && !retried) { LOG(DEBUG) << __func__ << ": retry without EDNS0"; retried = true; goto again; } LOG(DEBUG) << __func__ << ": rcode=" << hp->rcode << ", ancount=" << ntohs(hp->ancount); continue; } ancount += ntohs(hp->ancount); t->n = n; } if (ancount == 0) { *herrno = getHerrnoFromRcode(rcode); return -1; } return ancount; } /* * Formulate a normal query, send, and retrieve answer in supplied buffer. * Return the size of the response on success, -1 on error. * If enabled, implement search rules until answer or unrecoverable failure * is detected. Error code, if any, is left in *herrno. */ static int res_searchN(const char* name, res_target* target, res_state res, int* herrno) { const char* cp; HEADER* hp; uint32_t dots; int ret, saved_herrno; int got_nodata = 0, got_servfail = 0, tried_as_is = 0; assert(name != NULL); assert(target != NULL); hp = (HEADER*)(void*)target->answer.data(); errno = 0; *herrno = HOST_NOT_FOUND; /* default, if we never query */ dots = 0; for (cp = name; *cp; cp++) dots += (*cp == '.'); const bool trailing_dot = (cp > name && *--cp == '.') ? true : false; /* * If there are dots in the name already, let's just give it a try * 'as is'. The threshold can be set with the "ndots" option. */ saved_herrno = -1; if (dots >= res->ndots) { ret = res_querydomainN(name, NULL, target, res, herrno); if (ret > 0) return (ret); saved_herrno = *herrno; tried_as_is++; } /* * We do at least one level of search if * - there is no dot, or * - there is at least one dot and there is no trailing dot. */ if ((!dots) || (dots && !trailing_dot)) { int done = 0; /* Unfortunately we need to set stuff up before * the domain stuff is tried. Will have a better * fix after thread pools are used. */ resolv_populate_res_for_net(res); for (const auto& domain : res->search_domains) { ret = res_querydomainN(name, domain.c_str(), target, res, herrno); if (ret > 0) return ret; /* * If no server present, give up. * If name isn't found in this domain, * keep trying higher domains in the search list * (if that's enabled). * On a NO_DATA error, keep trying, otherwise * a wildcard entry of another type could keep us * from finding this entry higher in the domain. * If we get some other error (negative answer or * server failure), then stop searching up, * but try the input name below in case it's * fully-qualified. */ if (errno == ECONNREFUSED) { *herrno = TRY_AGAIN; return -1; } switch (*herrno) { case NO_DATA: got_nodata++; [[fallthrough]]; case HOST_NOT_FOUND: /* keep trying */ break; case TRY_AGAIN: if (hp->rcode == SERVFAIL) { /* try next search element, if any */ got_servfail++; break; } [[fallthrough]]; default: /* anything else implies that we're done */ done++; } } } /* * if we have not already tried the name "as is", do that now. * note that we do this regardless of how many dots were in the * name or whether it ends with a dot. */ if (!tried_as_is) { ret = res_querydomainN(name, NULL, target, res, herrno); if (ret > 0) return ret; } /* * if we got here, we didn't satisfy the search. * if we did an initial full query, return that query's h_errno * (note that we wouldn't be here if that query had succeeded). * else if we ever got a nodata, send that back as the reason. * else send back meaningless h_errno, that being the one from * the last DNSRCH we did. */ if (saved_herrno != -1) *herrno = saved_herrno; else if (got_nodata) *herrno = NO_DATA; else if (got_servfail) *herrno = TRY_AGAIN; return -1; } // Perform a call on res_query on the concatenation of name and domain, // removing a trailing dot from name if domain is NULL. static int res_querydomainN(const char* name, const char* domain, res_target* target, res_state res, int* herrno) { char nbuf[MAXDNAME]; const char* longname = nbuf; size_t n, d; assert(name != NULL); if (domain == NULL) { // Check for trailing '.'; copy without '.' if present. n = strlen(name); if (n + 1 > sizeof(nbuf)) { *herrno = NO_RECOVERY; return -1; } if (n > 0 && name[--n] == '.') { strncpy(nbuf, name, n); nbuf[n] = '\0'; } else longname = name; } else { n = strlen(name); d = strlen(domain); if (n + 1 + d + 1 > sizeof(nbuf)) { *herrno = NO_RECOVERY; return -1; } snprintf(nbuf, sizeof(nbuf), "%s.%s", name, domain); } return res_queryN_wrapper(longname, target, res, herrno); }