/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "Operations" #include "LSHProjection.h" #include #include #include "CpuExecutor.h" #include "LegacyUtils.h" #include "Tracing.h" #include "nnapi/Types.h" namespace android { namespace nn { LSHProjection::LSHProjection(const Operation& operation, RunTimeOperandInfo* operands) { input_ = GetInput(operation, operands, kInputTensor); weight_ = GetInput(operation, operands, kWeightTensor); hash_ = GetInput(operation, operands, kHashTensor); type_ = static_cast( getScalarData(*GetInput(operation, operands, kTypeParam))); output_ = GetOutput(operation, operands, kOutputTensor); } bool LSHProjection::Prepare(const Operation& operation, RunTimeOperandInfo* operands, Shape* outputShape) { // Check that none of the required inputs are omitted. constexpr int requiredInputs[] = {kHashTensor, kInputTensor, kTypeParam}; for (const int requiredInput : requiredInputs) { NN_RET_CHECK(!IsNullInput(GetInput(operation, operands, requiredInput))) << "required input " << requiredInput << " is omitted"; } NN_CHECK_EQ(NumOutputs(operation), 1); const RunTimeOperandInfo* hash = GetInput(operation, operands, kHashTensor); NN_CHECK_EQ(NumDimensions(hash), 2); // Support up to 32 bits. NN_CHECK(SizeOfDimension(hash, 1) <= 32); const RunTimeOperandInfo* input = GetInput(operation, operands, kInputTensor); NN_CHECK(NumDimensions(input) >= 1); const auto& typeOperand = operands[operation.inputs[kTypeParam]]; NN_RET_CHECK(typeOperand.length >= sizeof(int32_t)); auto type = static_cast(getScalarData(typeOperand)); switch (type) { case LSHProjectionType_SPARSE: case LSHProjectionType_SPARSE_DEPRECATED: NN_CHECK(NumInputsWithValues(operation, operands) == 3); outputShape->dimensions = {SizeOfDimension(hash, 0)}; break; case LSHProjectionType_DENSE: { RunTimeOperandInfo* weight = GetInput(operation, operands, kWeightTensor); NN_CHECK_EQ(NumInputsWithValues(operation, operands), 4); NN_CHECK_EQ(NumDimensions(weight), 1); NN_CHECK_EQ(SizeOfDimension(weight, 0), SizeOfDimension(input, 0)); outputShape->dimensions = {SizeOfDimension(hash, 0) * SizeOfDimension(hash, 1)}; break; } default: return false; } outputShape->type = OperandType::TENSOR_INT32; outputShape->offset = 0; outputShape->scale = 0.f; return true; } // Compute sign bit of dot product of hash(seed, input) and weight. // NOTE: use float as seed, and convert it to double as a temporary solution // to match the trained model. This is going to be changed once the new // model is trained in an optimized method. // template int runningSignBit(const RunTimeOperandInfo* input, const RunTimeOperandInfo* weight, float seed) { double score = 0.0; int input_item_bytes = nonExtensionOperandSizeOfData(input->type, input->dimensions) / SizeOfDimension(input, 0); char* input_ptr = (char*)(input->buffer); const size_t seed_size = sizeof(seed); const size_t key_bytes = seed_size + input_item_bytes; std::unique_ptr key(new char[key_bytes]); for (uint32_t i = 0; i < SizeOfDimension(input, 0); ++i) { // Create running hash id and value for current dimension. memcpy(key.get(), &seed, seed_size); memcpy(key.get() + seed_size, input_ptr, input_item_bytes); int64_t hash_signature = farmhash::Fingerprint64(key.get(), key_bytes); double running_value = static_cast(hash_signature); input_ptr += input_item_bytes; if (weight->lifetime == Operand::LifeTime::NO_VALUE) { score += running_value; } else { score += static_cast(reinterpret_cast(weight->buffer)[i]) * running_value; } } return (score > 0) ? 1 : 0; } template void SparseLshProjection(LSHProjectionType type, const RunTimeOperandInfo* hash, const RunTimeOperandInfo* input, const RunTimeOperandInfo* weight, int32_t* out_buf) { int num_hash = SizeOfDimension(hash, 0); int num_bits = SizeOfDimension(hash, 1); for (int i = 0; i < num_hash; i++) { int32_t hash_signature = 0; for (int j = 0; j < num_bits; j++) { T seed = reinterpret_cast(hash->buffer)[i * num_bits + j]; int bit = runningSignBit(input, weight, static_cast(seed)); hash_signature = (hash_signature << 1) | bit; } if (type == LSHProjectionType_SPARSE_DEPRECATED) { *out_buf++ = hash_signature; } else { *out_buf++ = hash_signature + i * (1 << num_bits); } } } template void DenseLshProjection(const RunTimeOperandInfo* hash, const RunTimeOperandInfo* input, const RunTimeOperandInfo* weight, int32_t* out_buf) { int num_hash = SizeOfDimension(hash, 0); int num_bits = SizeOfDimension(hash, 1); for (int i = 0; i < num_hash; i++) { for (int j = 0; j < num_bits; j++) { T seed = reinterpret_cast(hash->buffer)[i * num_bits + j]; int bit = runningSignBit(input, weight, static_cast(seed)); *out_buf++ = bit; } } } template bool LSHProjection::Eval() { NNTRACE_COMP("LSHProjection::Eval"); int32_t* out_buf = reinterpret_cast(output_->buffer); switch (type_) { case LSHProjectionType_DENSE: DenseLshProjection(hash_, input_, weight_, out_buf); break; case LSHProjectionType_SPARSE: case LSHProjectionType_SPARSE_DEPRECATED: SparseLshProjection(type_, hash_, input_, weight_, out_buf); break; default: return false; } return true; } template bool LSHProjection::Eval(); template bool LSHProjection::Eval<_Float16>(); template int runningSignBit(const RunTimeOperandInfo* input, const RunTimeOperandInfo* weight, float seed); template int runningSignBit<_Float16>(const RunTimeOperandInfo* input, const RunTimeOperandInfo* weight, float seed); template void SparseLshProjection(LSHProjectionType type, const RunTimeOperandInfo* hash, const RunTimeOperandInfo* input, const RunTimeOperandInfo* weight, int32_t* outBuffer); template void SparseLshProjection<_Float16>(LSHProjectionType type, const RunTimeOperandInfo* hash, const RunTimeOperandInfo* input, const RunTimeOperandInfo* weight, int32_t* outBuffer); template void DenseLshProjection(const RunTimeOperandInfo* hash, const RunTimeOperandInfo* input, const RunTimeOperandInfo* weight, int32_t* outBuffer); template void DenseLshProjection<_Float16>(const RunTimeOperandInfo* hash, const RunTimeOperandInfo* input, const RunTimeOperandInfo* weight, int32_t* outBuffer); } // namespace nn } // namespace android