/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "Operations" #include "LSTM.h" #include #include #include "CpuExecutor.h" #include "CpuOperationUtils.h" #include "LegacyUtils.h" #include "OperationsUtils.h" #include "Tracing.h" #include "nnapi/Types.h" namespace android { namespace nn { namespace { template inline T* GetBuffer(RunTimeOperandInfo* operand) { return reinterpret_cast(operand->buffer); } template inline const T* GetBuffer(const RunTimeOperandInfo* operand) { return reinterpret_cast(operand->buffer); } template inline const T* GetOptionalBuffer(const RunTimeOperandInfo* operand) { return !IsNullInput(operand) ? reinterpret_cast(operand->buffer) : nullptr; } } // anonymous namespace LSTMCell::LSTMCell(const Operation& operation, RunTimeOperandInfo* operands) { input_ = GetInput(operation, operands, kInputTensor); input_to_input_weights_ = GetInput(operation, operands, kInputToInputWeightsTensor); // optional input_to_forget_weights_ = GetInput(operation, operands, kInputToForgetWeightsTensor); input_to_cell_weights_ = GetInput(operation, operands, kInputToCellWeightsTensor); input_to_output_weights_ = GetInput(operation, operands, kInputToOutputWeightsTensor); recurrent_to_input_weights_ = GetInput(operation, operands, kRecurrentToInputWeightsTensor); // optional recurrent_to_forget_weights_ = GetInput(operation, operands, kRecurrentToForgetWeightsTensor); recurrent_to_cell_weights_ = GetInput(operation, operands, kRecurrentToCellWeightsTensor); recurrent_to_output_weights_ = GetInput(operation, operands, kRecurrentToOutputWeightsTensor); cell_to_input_weights_ = GetInput(operation, operands, kCellToInputWeightsTensor); // optional cell_to_forget_weights_ = GetInput(operation, operands, kCellToForgetWeightsTensor); // optional cell_to_output_weights_ = GetInput(operation, operands, kCellToOutputWeightsTensor); // optional input_gate_bias_ = GetInput(operation, operands, kInputGateBiasTensor); forget_gate_bias_ = GetInput(operation, operands, kForgetGateBiasTensor); cell_bias_ = GetInput(operation, operands, kCellGateBiasTensor); output_gate_bias_ = GetInput(operation, operands, kOutputGateBiasTensor); projection_weights_ = GetInput(operation, operands, kProjectionWeightsTensor); // optional projection_bias_ = GetInput(operation, operands, kProjectionBiasTensor); // optional output_state_in_ = GetInput(operation, operands, kOutputStateInTensor); cell_state_in_ = GetInput(operation, operands, kCellStateInTensor); const auto& activationOperand = *GetInput(operation, operands, kActivationParam); params_.activation = static_cast(getScalarDataWithDefault( activationOperand, TfLiteFusedActivation::kTfLiteActNone)); const auto& cellClipOperand = *GetInput(operation, operands, kCellClipParam); const auto& projClipOperand = *GetInput(operation, operands, kProjClipParam); if (input_->type == OperandType::TENSOR_FLOAT32) { params_.cell_clip = getScalarDataWithDefault(cellClipOperand, 0.0f); params_.proj_clip = getScalarDataWithDefault(projClipOperand, 0.0f); } else { params_.cell_clip = static_cast(getScalarDataWithDefault<_Float16>(cellClipOperand, 0.0f)); params_.proj_clip = static_cast(getScalarDataWithDefault<_Float16>(projClipOperand, 0.0f)); } // We check the version of LSTM by checking the number of the inputs to the // op. For LSTM version 1.0 there were 23 inputs and for 1.2 there are 27. if (operation.inputs.size() == 27) { input_layer_norm_weights_ = GetInput(operation, operands, kInputLayerNormWeightsTensor); // optional forget_layer_norm_weights_ = GetInput(operation, operands, kForgetLayerNormWeightsTensor); // optional cell_layer_norm_weights_ = GetInput(operation, operands, kCellLayerNormWeightsTensor); // optional output_layer_norm_weights_ = GetInput(operation, operands, kOutputLayerNormWeightsTensor); // optional } else { // For LSTM from HAL v1.0 assign operands with no values static RunTimeOperandInfo no_value; no_value.lifetime = Operand::LifeTime::NO_VALUE; input_layer_norm_weights_ = &no_value; forget_layer_norm_weights_ = &no_value; cell_layer_norm_weights_ = &no_value; output_layer_norm_weights_ = &no_value; } output_state_out_ = GetOutput(operation, operands, kOutputStateOutTensor); cell_state_out_ = GetOutput(operation, operands, kCellStateOutTensor); output_ = GetOutput(operation, operands, kOutputTensor); scratch_buffer_ = GetOutput(operation, operands, kScratchBufferTensor); } // static bool LSTMCell::CheckInputTensorDimensions( const RunTimeOperandInfo* input_, const RunTimeOperandInfo* input_to_input_weights, const RunTimeOperandInfo* input_to_forget_weights, const RunTimeOperandInfo* input_to_cell_weights, const RunTimeOperandInfo* input_to_output_weights, const RunTimeOperandInfo* recurrent_to_input_weights, const RunTimeOperandInfo* recurrent_to_forget_weights, const RunTimeOperandInfo* recurrent_to_cell_weights, const RunTimeOperandInfo* recurrent_to_output_weights, const RunTimeOperandInfo* cell_to_input_weights, const RunTimeOperandInfo* cell_to_forget_weights, const RunTimeOperandInfo* cell_to_output_weights, const RunTimeOperandInfo* input_gate_bias, const RunTimeOperandInfo* forget_gate_bias, const RunTimeOperandInfo* cell_bias, const RunTimeOperandInfo* output_gate_bias, const RunTimeOperandInfo* projection_weights, const RunTimeOperandInfo* projection_bias, const RunTimeOperandInfo* input_layer_norm_weights, const RunTimeOperandInfo* forget_layer_norm_weights, const RunTimeOperandInfo* cell_layer_norm_weights, const RunTimeOperandInfo* output_layer_norm_weights, uint32_t n_input, uint32_t n_output, uint32_t n_cell, LSTMParams* params) { // Making sure clipping parameters have valid values. // == 0 means no clipping // > 0 means clipping NN_CHECK(params->cell_clip >= 0); NN_CHECK(params->proj_clip >= 0); if (!IsNullInput(input_to_input_weights)) { NN_CHECK_EQ(NumDimensions(input_to_input_weights), 2); NN_CHECK_EQ(SizeOfDimension(input_to_input_weights, 0), n_cell); NN_CHECK_EQ(SizeOfDimension(input_to_input_weights, 1), n_input); } NN_CHECK_EQ(NumDimensions(input_to_forget_weights), 2); NN_CHECK_EQ(SizeOfDimension(input_to_forget_weights, 0), n_cell); NN_CHECK_EQ(SizeOfDimension(input_to_forget_weights, 1), n_input); NN_CHECK_EQ(NumDimensions(input_to_cell_weights), 2); NN_CHECK_EQ(SizeOfDimension(input_to_cell_weights, 0), n_cell); NN_CHECK_EQ(SizeOfDimension(input_to_cell_weights, 1), n_input); if (!IsNullInput(recurrent_to_input_weights)) { NN_CHECK_EQ(NumDimensions(recurrent_to_input_weights), 2); NN_CHECK_EQ(SizeOfDimension(recurrent_to_input_weights, 0), n_cell); NN_CHECK_EQ(SizeOfDimension(recurrent_to_input_weights, 1), n_output); } NN_CHECK_EQ(NumDimensions(recurrent_to_forget_weights), 2); NN_CHECK_EQ(SizeOfDimension(recurrent_to_forget_weights, 0), n_cell); NN_CHECK_EQ(SizeOfDimension(recurrent_to_forget_weights, 1), n_output); NN_CHECK_EQ(NumDimensions(recurrent_to_cell_weights), 2); NN_CHECK_EQ(SizeOfDimension(recurrent_to_cell_weights, 0), n_cell); NN_CHECK_EQ(SizeOfDimension(recurrent_to_cell_weights, 1), n_output); // We make sure the input-gate's parameters are either both present (regular // LSTM) or not at all (CIFG-LSTM). const bool cifg_weights_all_or_none = (!IsNullInput(input_to_input_weights) && !IsNullInput(recurrent_to_input_weights)) || (IsNullInput(input_to_input_weights) && IsNullInput(recurrent_to_input_weights)); NN_CHECK(cifg_weights_all_or_none); if (!IsNullInput(cell_to_input_weights)) { NN_CHECK_EQ(NumDimensions(cell_to_input_weights), 1); NN_CHECK_EQ(SizeOfDimension(cell_to_input_weights, 0), n_cell); } if (!IsNullInput(cell_to_forget_weights)) { NN_CHECK_EQ(NumDimensions(cell_to_forget_weights), 1); NN_CHECK_EQ(SizeOfDimension(cell_to_forget_weights, 0), n_cell); } if (!IsNullInput(cell_to_output_weights)) { NN_CHECK_EQ(NumDimensions(cell_to_output_weights), 1); NN_CHECK_EQ(SizeOfDimension(cell_to_output_weights, 0), n_cell); } // Making sure the peephole weights are there all or none. params->use_cifg = IsNullInput(input_to_input_weights); const bool peephole_weights_all_or_none = ((!IsNullInput(cell_to_input_weights) || params->use_cifg) && !IsNullInput(cell_to_forget_weights) && !IsNullInput(cell_to_output_weights)) || (IsNullInput(cell_to_input_weights) && IsNullInput(cell_to_forget_weights) && IsNullInput(cell_to_output_weights)); NN_CHECK(peephole_weights_all_or_none); // Since we have already checked that weights are all there or none, we can // check the existence of only one to the get the condition. params->use_peephole = !IsNullInput(cell_to_output_weights); // Checking output instead of input layer norm weights because input can be // omitted ones can be omited in case CIFG LSTM is used. params->use_layer_norm = !IsNullInput(output_layer_norm_weights); params->use_projection_weight = (projection_weights->lifetime != Operand::LifeTime::NO_VALUE); params->use_projection_bias = (projection_bias->lifetime != Operand::LifeTime::NO_VALUE); // Make sure the input gate bias is present only when not a CIFG-LSTM. if (params->use_cifg) { NN_CHECK(IsNullInput(input_gate_bias)); } else { NN_CHECK_EQ(NumDimensions(input_gate_bias), 1); NN_CHECK_EQ(SizeOfDimension(input_gate_bias, 0), n_cell); } NN_CHECK_EQ(NumDimensions(forget_gate_bias), 1); NN_CHECK_EQ(SizeOfDimension(forget_gate_bias, 0), n_cell); NN_CHECK_EQ(NumDimensions(cell_bias), 1); NN_CHECK_EQ(SizeOfDimension(cell_bias, 0), n_cell); NN_CHECK_EQ(NumDimensions(output_gate_bias), 1); NN_CHECK_EQ(SizeOfDimension(output_gate_bias, 0), n_cell); if (!IsNullInput(projection_weights)) { NN_CHECK_EQ(NumDimensions(projection_weights), 2); NN_CHECK_EQ(SizeOfDimension(projection_weights, 0), n_output); NN_CHECK_EQ(SizeOfDimension(projection_weights, 1), n_cell); } if (!IsNullInput(projection_bias)) { NN_CHECK_EQ(NumDimensions(projection_bias), 1); NN_CHECK_EQ(SizeOfDimension(projection_bias, 0), n_output); } // Making sure the projection tensors are consistent: // 1) If projection weight is not present, then projection bias should not be // present. // 2) If projection weight is present, then projection bias is optional. // TODO: make sure this is correct. const bool projecton_tensors_consistent = (!IsNullInput(projection_weights) || IsNullInput(projection_bias)); NN_CHECK(projecton_tensors_consistent == true); if (!IsNullInput(input_layer_norm_weights)) { NN_CHECK_EQ(NumDimensions(input_layer_norm_weights), 1); NN_CHECK_EQ(SizeOfDimension(input_layer_norm_weights, 0), n_cell); } if (!IsNullInput(forget_layer_norm_weights)) { NN_CHECK_EQ(NumDimensions(forget_layer_norm_weights), 1); NN_CHECK_EQ(SizeOfDimension(forget_layer_norm_weights, 0), n_cell); } if (!IsNullInput(cell_layer_norm_weights)) { NN_CHECK_EQ(NumDimensions(cell_layer_norm_weights), 1); NN_CHECK_EQ(SizeOfDimension(cell_layer_norm_weights, 0), n_cell); } if (!IsNullInput(output_layer_norm_weights)) { NN_CHECK_EQ(NumDimensions(output_layer_norm_weights), 1); NN_CHECK_EQ(SizeOfDimension(output_layer_norm_weights, 0), n_cell); } if (params->use_cifg) { NN_RET_CHECK(IsNullInput(input_layer_norm_weights)) << "input_layer_norm_weights are provided while CIFG is used"; const bool layer_norm_weights_all_or_none_cifg = (IsNullInput(forget_layer_norm_weights) && IsNullInput(cell_layer_norm_weights) && IsNullInput(output_layer_norm_weights)) || (!IsNullInput(forget_layer_norm_weights) && !IsNullInput(cell_layer_norm_weights) && !IsNullInput(output_layer_norm_weights)); NN_RET_CHECK(layer_norm_weights_all_or_none_cifg); } else { const bool layer_norm_weights_all_or_none = (IsNullInput(input_layer_norm_weights) && IsNullInput(forget_layer_norm_weights) && IsNullInput(cell_layer_norm_weights) && IsNullInput(output_layer_norm_weights)) || (!IsNullInput(input_layer_norm_weights) && !IsNullInput(forget_layer_norm_weights) && !IsNullInput(cell_layer_norm_weights) && !IsNullInput(output_layer_norm_weights)); NN_RET_CHECK(layer_norm_weights_all_or_none); } return true; } bool LSTMCell::Prepare(const Operation& operation, RunTimeOperandInfo* operands, Shape* scratchShape, Shape* outputStateShape, Shape* cellStateShape, Shape* outputShape) { // Check we have all the inputs and outputs we need. NN_CHECK(NumInputsWithValues(operation, operands) >= 15 && NumInputsWithValues(operation, operands) <= 27); constexpr int requiredInputs[] = { kInputTensor, kInputToForgetWeightsTensor, kInputToCellWeightsTensor, kInputToOutputWeightsTensor, kRecurrentToForgetWeightsTensor, kRecurrentToCellWeightsTensor, kRecurrentToOutputWeightsTensor, kForgetGateBiasTensor, kCellGateBiasTensor, kOutputGateBiasTensor, kOutputStateInTensor, kCellStateInTensor, kActivationParam, kCellClipParam, kProjClipParam, }; for (const int requiredInput : requiredInputs) { NN_RET_CHECK(!IsNullInput(GetInput(operation, operands, requiredInput))) << "required input " << requiredInput << " is omitted"; } NN_CHECK_EQ(NumOutputs(operation), 4); // Check that the scalar operands' buffers are large enough. const auto& activationOperand = *GetInput(operation, operands, kActivationParam); NN_RET_CHECK(activationOperand.length >= sizeof(int32_t)); const auto& cellClipOperand = *GetInput(operation, operands, kCellClipParam); const auto& projClipOperand = *GetInput(operation, operands, kProjClipParam); if (input_->type == OperandType::TENSOR_FLOAT32) { NN_RET_CHECK(cellClipOperand.length >= sizeof(float)); NN_RET_CHECK(projClipOperand.length >= sizeof(float)); } else { NN_RET_CHECK(cellClipOperand.length >= sizeof(_Float16)); NN_RET_CHECK(projClipOperand.length >= sizeof(_Float16)); } // Inferring batch size, number of outputs and number of cells from the // input tensors. NN_CHECK(NumDimensions(input_) > 1); const uint32_t n_batch = SizeOfDimension(input_, 0); const uint32_t n_input = SizeOfDimension(input_, 1); const uint32_t n_cell = SizeOfDimension(input_to_output_weights_, 0); NN_CHECK_EQ(NumDimensions(input_to_output_weights_), 2); NN_CHECK_EQ(SizeOfDimension(input_to_output_weights_, 1), n_input); NN_CHECK_EQ(NumDimensions(recurrent_to_output_weights_), 2); NN_CHECK_EQ(SizeOfDimension(recurrent_to_output_weights_, 0), n_cell); const uint32_t n_output = SizeOfDimension(recurrent_to_output_weights_, 1); // Check that input tensor dimensions matches with each other. if (!CheckInputTensorDimensions( input_, input_to_input_weights_, input_to_forget_weights_, input_to_cell_weights_, input_to_output_weights_, recurrent_to_input_weights_, recurrent_to_forget_weights_, recurrent_to_cell_weights_, recurrent_to_output_weights_, cell_to_input_weights_, cell_to_forget_weights_, cell_to_output_weights_, input_gate_bias_, forget_gate_bias_, cell_bias_, output_gate_bias_, projection_weights_, projection_bias_, input_layer_norm_weights_, forget_layer_norm_weights_, cell_layer_norm_weights_, output_layer_norm_weights_, n_input, n_output, n_cell, ¶ms_)) { return false; } // Resize the output and output_state tensors. const Shape& inputShape = input_->shape(); outputShape->type = inputShape.type; outputShape->dimensions = {n_batch, n_output}; outputShape->offset = inputShape.offset; outputShape->scale = inputShape.scale; outputStateShape->type = inputShape.type; outputStateShape->dimensions = {n_batch, n_output}; outputStateShape->offset = inputShape.offset; outputStateShape->scale = inputShape.scale; cellStateShape->type = inputShape.type; cellStateShape->dimensions = {n_batch, n_cell}; cellStateShape->offset = inputShape.offset; cellStateShape->scale = inputShape.scale; if (params_.use_cifg) { // Reserving space for Cell, Forget, Output gates scratchShape->dimensions = {n_batch, n_cell * 3}; } else { // Reserving space for Input, Cell, Forget, Output gates scratchShape->dimensions = {n_batch, n_cell * 4}; } scratchShape->type = inputShape.type; scratchShape->offset = inputShape.offset; scratchShape->scale = inputShape.scale; return true; } // static bool LSTMCell::LSTMEvalFloat32( const LSTMParams& params, const float* input_buffer, const Shape& input_shape, const float* input_to_input_weights_buffer, const float* input_to_forget_weights_buffer, const float* input_to_cell_weights_buffer, const float* input_to_output_weights_buffer, const Shape& input_to_output_weights_shape, const float* recurrent_to_input_weights_buffer, const float* recurrent_to_forget_weights_buffer, const float* recurrent_to_cell_weights_buffer, const float* recurrent_to_output_weights_buffer, const Shape& recurrent_to_output_weights_shape, const float* cell_to_input_weights_buffer, const float* cell_to_forget_weights_buffer, const float* cell_to_output_weights_buffer, const float* aux_input_buffer, const float* aux_input_to_input_weights_buffer, const float* aux_input_to_forget_weights_buffer, const float* aux_input_to_cell_weights_buffer, const float* aux_input_to_output_weights_buffer, const float* input_gate_bias_buffer, const float* forget_gate_bias_buffer, const float* cell_bias_buffer, const float* output_gate_bias_buffer, const float* projection_weights_buffer, const float* projection_bias_buffer, const float* output_state_in_buffer, const float* cell_state_in_buffer, const float* input_layer_norm_weights_buffer, const float* forget_layer_norm_weights_buffer, const float* cell_layer_norm_weights_buffer, const float* output_layer_norm_weights_buffer, float* output_state_out_buffer, float* cell_state_out_buffer, float* output_buffer, float* scratch_buffer_buffer, bool timeMajor, bool forwardSequence) { NNTRACE_COMP("LSTMCell::LSTMEvalFloat32"); const uint32_t inputRank = getNumberOfDimensions(input_shape); NN_CHECK(inputRank == 2 || inputRank == 3); const uint32_t maxTime = (inputRank == 3) ? getSizeOfDimension(input_shape, timeMajor ? 0 : 1) : 1; const uint32_t batchSize = (inputRank == 3) ? getSizeOfDimension(input_shape, timeMajor ? 1 : 0) : getSizeOfDimension(input_shape, 0); const uint32_t inputSize = getSizeOfDimension(input_shape, inputRank - 1); const uint32_t numCells = getSizeOfDimension(input_to_output_weights_shape, 0); const uint32_t outputSize = getSizeOfDimension(recurrent_to_output_weights_shape, 1); Shape batchInputShape = input_shape; batchInputShape.dimensions = {batchSize, inputSize}; const uint32_t batchInputSize = batchSize * inputSize; const uint32_t batchOutputSize = batchSize * outputSize; std::vector transposedInput; const bool hasAuxInput = (aux_input_buffer != nullptr); std::vector transposedAuxInput; std::vector transposedOutput; Shape transposedInputShape; Shape transposedOutputShape; if (!timeMajor) { transposedInput.resize(maxTime * batchInputSize); transposeFirstTwoDimensions(input_buffer, input_shape, transposedInput.data()); if (hasAuxInput) { transposedAuxInput.resize(maxTime * batchInputSize); transposeFirstTwoDimensions(aux_input_buffer, input_shape, transposedAuxInput.data()); } transposeFirstTwoDimensions(input_shape, &transposedInputShape); transposedOutput.resize(maxTime * batchOutputSize); transposedOutputShape = transposedInputShape; transposedOutputShape.dimensions[2] = outputSize; } const float* inputData = timeMajor ? input_buffer : transposedInput.data(); const float* auxInputData = hasAuxInput ? (timeMajor ? aux_input_buffer : transposedAuxInput.data()) : nullptr; float* outputData = timeMajor ? output_buffer : transposedOutput.data(); std::vector outputStateInCurrentTimeStep( output_state_in_buffer, output_state_in_buffer + batchSize * outputSize); std::vector cellStateInCurrentTimeStep(cell_state_in_buffer, cell_state_in_buffer + batchSize * numCells); const float* inputCurrentTimeStep = inputData + (forwardSequence ? 0 : batchInputSize * (maxTime - 1)); const float* auxInputCurrentTimeStep = hasAuxInput ? (auxInputData + (forwardSequence ? 0 : batchInputSize * (maxTime - 1))) : nullptr; float* outputCurrentTimeStep = outputData + (forwardSequence ? 0 : batchOutputSize * (maxTime - 1)); const int batchInputDelta = (forwardSequence ? 1 : -1) * static_cast(batchInputSize); const int batchOutputDelta = (forwardSequence ? 1 : -1) * static_cast(batchOutputSize); for (int t = 0; t < maxTime; ++t) { LSTMStep(params, inputCurrentTimeStep, batchInputShape, input_to_input_weights_buffer, input_to_forget_weights_buffer, input_to_cell_weights_buffer, input_to_output_weights_buffer, input_to_output_weights_shape, recurrent_to_input_weights_buffer, recurrent_to_forget_weights_buffer, recurrent_to_cell_weights_buffer, recurrent_to_output_weights_buffer, recurrent_to_output_weights_shape, cell_to_input_weights_buffer, cell_to_forget_weights_buffer, cell_to_output_weights_buffer, auxInputCurrentTimeStep, aux_input_to_input_weights_buffer, aux_input_to_forget_weights_buffer, aux_input_to_cell_weights_buffer, aux_input_to_output_weights_buffer, input_gate_bias_buffer, forget_gate_bias_buffer, cell_bias_buffer, output_gate_bias_buffer, projection_weights_buffer, projection_bias_buffer, outputStateInCurrentTimeStep.data(), cellStateInCurrentTimeStep.data(), input_layer_norm_weights_buffer, forget_layer_norm_weights_buffer, cell_layer_norm_weights_buffer, output_layer_norm_weights_buffer, output_state_out_buffer, cell_state_out_buffer, outputCurrentTimeStep, scratch_buffer_buffer); inputCurrentTimeStep += batchInputDelta; if (hasAuxInput) { auxInputCurrentTimeStep += batchInputDelta; } outputCurrentTimeStep += batchOutputDelta; outputStateInCurrentTimeStep.assign(output_state_out_buffer, output_state_out_buffer + batchSize * outputSize); cellStateInCurrentTimeStep.assign(cell_state_out_buffer, cell_state_out_buffer + batchSize * numCells); } if (!timeMajor) { transposeFirstTwoDimensions(transposedOutput.data(), transposedOutputShape, output_buffer); } return true; } // static bool LSTMCell::LSTMEvalFloat16( const LSTMParams& params, const _Float16* input_buffer, const Shape& input_shape, const _Float16* input_to_input_weights_buffer, const _Float16* input_to_forget_weights_buffer, const _Float16* input_to_cell_weights_buffer, const _Float16* input_to_output_weights_buffer, const Shape& input_to_output_weights_shape, const _Float16* recurrent_to_input_weights_buffer, const _Float16* recurrent_to_forget_weights_buffer, const _Float16* recurrent_to_cell_weights_buffer, const _Float16* recurrent_to_output_weights_buffer, const Shape& recurrent_to_output_weights_shape, const _Float16* cell_to_input_weights_buffer, const _Float16* cell_to_forget_weights_buffer, const _Float16* cell_to_output_weights_buffer, const _Float16* aux_input_buffer, const _Float16* aux_input_to_input_weights_buffer, const _Float16* aux_input_to_forget_weights_buffer, const _Float16* aux_input_to_cell_weights_buffer, const _Float16* aux_input_to_output_weights_buffer, const _Float16* input_gate_bias_buffer, const _Float16* forget_gate_bias_buffer, const _Float16* cell_bias_buffer, const _Float16* output_gate_bias_buffer, const _Float16* projection_weights_buffer, const _Float16* projection_bias_buffer, const _Float16* output_state_in_buffer, const _Float16* cell_state_in_buffer, const _Float16* input_layer_norm_weights_buffer, const _Float16* forget_layer_norm_weights_buffer, const _Float16* cell_layer_norm_weights_buffer, const _Float16* output_layer_norm_weights_buffer, _Float16* output_state_out_buffer, _Float16* cell_state_out_buffer, _Float16* output_buffer, _Float16* scratch_buffer_buffer, bool timeMajor, bool forwardSequence) { NNTRACE_COMP("LSTMCell::LSTMEvalFloat16"); const uint32_t inputRank = getNumberOfDimensions(input_shape); NN_CHECK(inputRank == 2 || inputRank == 3); const uint32_t maxTime = (inputRank == 3) ? getSizeOfDimension(input_shape, timeMajor ? 0 : 1) : 1; const uint32_t batchSize = (inputRank == 3) ? getSizeOfDimension(input_shape, timeMajor ? 1 : 0) : getSizeOfDimension(input_shape, 0); const uint32_t inputSize = getSizeOfDimension(input_shape, inputRank - 1); const uint32_t numCells = getSizeOfDimension(input_to_output_weights_shape, 0); const uint32_t outputSize = getSizeOfDimension(recurrent_to_output_weights_shape, 1); Shape batchInputShape = input_shape; batchInputShape.dimensions = {batchSize, inputSize}; const uint32_t batchInputSize = batchSize * inputSize; const uint32_t batchOutputSize = batchSize * outputSize; std::vector input_float32(maxTime * batchInputSize); convertFloat16ToFloat32(input_buffer, &input_float32); std::vector input_to_input_weights_float32(numCells * inputSize); if (input_to_input_weights_buffer != nullptr) { convertFloat16ToFloat32(input_to_input_weights_buffer, &input_to_input_weights_float32); } std::vector input_to_forget_weights_float32(numCells * inputSize); convertFloat16ToFloat32(input_to_forget_weights_buffer, &input_to_forget_weights_float32); std::vector input_to_cell_weights_float32(numCells * inputSize); convertFloat16ToFloat32(input_to_cell_weights_buffer, &input_to_cell_weights_float32); std::vector input_to_output_weights_float32(numCells * inputSize); convertFloat16ToFloat32(input_to_output_weights_buffer, &input_to_output_weights_float32); std::vector recurrent_to_input_weights_float32(numCells * outputSize); if (recurrent_to_input_weights_buffer != nullptr) { convertFloat16ToFloat32(recurrent_to_input_weights_buffer, &recurrent_to_input_weights_float32); } std::vector recurrent_to_forget_weights_float32(numCells * outputSize); convertFloat16ToFloat32(recurrent_to_forget_weights_buffer, &recurrent_to_forget_weights_float32); std::vector recurrent_to_cell_weights_float32(numCells * outputSize); convertFloat16ToFloat32(recurrent_to_cell_weights_buffer, &recurrent_to_cell_weights_float32); std::vector recurrent_to_output_weights_float32(numCells * outputSize); convertFloat16ToFloat32(recurrent_to_output_weights_buffer, &recurrent_to_output_weights_float32); std::vector cell_to_input_weights_float32(numCells); if (cell_to_input_weights_buffer != nullptr) { convertFloat16ToFloat32(cell_to_input_weights_buffer, &cell_to_input_weights_float32); } std::vector cell_to_forget_weights_float32(numCells); if (cell_to_forget_weights_buffer != nullptr) { convertFloat16ToFloat32(cell_to_forget_weights_buffer, &cell_to_forget_weights_float32); } std::vector cell_to_output_weights_float32(numCells); if (cell_to_output_weights_buffer != nullptr) { convertFloat16ToFloat32(cell_to_output_weights_buffer, &cell_to_output_weights_float32); } std::vector aux_input_float32(maxTime * batchInputSize); if (aux_input_buffer != nullptr) { convertFloat16ToFloat32(aux_input_buffer, &aux_input_float32); } std::vector aux_input_to_input_weights_float32(numCells * inputSize); if (aux_input_to_input_weights_buffer != nullptr) { convertFloat16ToFloat32(aux_input_to_input_weights_buffer, &aux_input_to_input_weights_float32); } std::vector aux_input_to_forget_weights_float32(numCells * inputSize); if (aux_input_to_forget_weights_buffer != nullptr) { convertFloat16ToFloat32(aux_input_to_forget_weights_buffer, &aux_input_to_forget_weights_float32); } std::vector aux_input_to_cell_weights_float32(numCells * inputSize); if (aux_input_to_cell_weights_buffer != nullptr) { convertFloat16ToFloat32(aux_input_to_cell_weights_buffer, &aux_input_to_cell_weights_float32); } std::vector aux_input_to_output_weights_float32(numCells * inputSize); if (aux_input_to_output_weights_buffer != nullptr) { convertFloat16ToFloat32(aux_input_to_output_weights_buffer, &aux_input_to_output_weights_float32); } std::vector input_gate_bias_float32(numCells); if (input_gate_bias_buffer != nullptr) { convertFloat16ToFloat32(input_gate_bias_buffer, &input_gate_bias_float32); } std::vector forget_gate_bias_float32(numCells); convertFloat16ToFloat32(forget_gate_bias_buffer, &forget_gate_bias_float32); std::vector cell_bias_float32(numCells); convertFloat16ToFloat32(cell_bias_buffer, &cell_bias_float32); std::vector output_gate_bias_float32(numCells); convertFloat16ToFloat32(output_gate_bias_buffer, &output_gate_bias_float32); std::vector projection_weights_float32(numCells * outputSize); if (projection_weights_buffer != nullptr) { convertFloat16ToFloat32(projection_weights_buffer, &projection_weights_float32); } std::vector projection_bias_float32(outputSize); if (projection_bias_buffer != nullptr) { convertFloat16ToFloat32(projection_bias_buffer, &projection_bias_float32); } std::vector input_layer_norm_weights_float32(numCells); if (input_layer_norm_weights_buffer != nullptr) { convertFloat16ToFloat32(input_layer_norm_weights_buffer, &input_layer_norm_weights_float32); } std::vector forget_layer_norm_weights_float32(numCells); if (forget_layer_norm_weights_buffer != nullptr) { convertFloat16ToFloat32(forget_layer_norm_weights_buffer, &forget_layer_norm_weights_float32); } std::vector cell_layer_norm_weights_float32(numCells); if (cell_layer_norm_weights_buffer != nullptr) { convertFloat16ToFloat32(cell_layer_norm_weights_buffer, &cell_layer_norm_weights_float32); } std::vector output_layer_norm_weights_float32(numCells); if (output_layer_norm_weights_buffer != nullptr) { convertFloat16ToFloat32(output_layer_norm_weights_buffer, &output_layer_norm_weights_float32); } std::vector output_state_out_float32(batchOutputSize); convertFloat16ToFloat32(output_state_out_buffer, &output_state_out_float32); std::vector cell_state_out_float32(batchSize * numCells); convertFloat16ToFloat32(cell_state_out_buffer, &cell_state_out_float32); std::vector output_float32(maxTime * batchOutputSize); convertFloat16ToFloat32(output_buffer, &output_float32); std::vector scratch_buffer_float32(params.use_cifg ? 3 * batchSize * numCells : 4 * batchSize * numCells); convertFloat16ToFloat32(scratch_buffer_buffer, &scratch_buffer_float32); std::vector transposedInput; const bool hasAuxInput = (aux_input_buffer != nullptr); std::vector transposedAuxInput; std::vector transposedOutput; Shape transposedInputShape; Shape transposedOutputShape; if (!timeMajor) { transposedInput.resize(maxTime * batchInputSize); transposeFirstTwoDimensions(input_float32.data(), input_shape, transposedInput.data()); if (hasAuxInput) { transposedAuxInput.resize(maxTime * batchInputSize); transposeFirstTwoDimensions(aux_input_float32.data(), input_shape, transposedAuxInput.data()); } transposeFirstTwoDimensions(input_shape, &transposedInputShape); transposedOutput.resize(maxTime * batchOutputSize); transposedOutputShape = transposedInputShape; transposedOutputShape.dimensions[2] = outputSize; } const float* inputData = timeMajor ? input_float32.data() : transposedInput.data(); const float* auxInputData = hasAuxInput ? (timeMajor ? aux_input_float32.data() : transposedAuxInput.data()) : nullptr; float* outputData = timeMajor ? output_float32.data() : transposedOutput.data(); std::vector outputStateInCurrentTimeStep(batchSize * outputSize); convertFloat16ToFloat32(output_state_in_buffer, &outputStateInCurrentTimeStep); std::vector cellStateInCurrentTimeStep(batchSize * numCells); convertFloat16ToFloat32(cell_state_in_buffer, &cellStateInCurrentTimeStep); const float* inputCurrentTimeStep = inputData + (forwardSequence ? 0 : batchInputSize * (maxTime - 1)); const float* auxInputCurrentTimeStep = hasAuxInput ? (auxInputData + (forwardSequence ? 0 : batchInputSize * (maxTime - 1))) : nullptr; float* outputCurrentTimeStep = outputData + (forwardSequence ? 0 : batchOutputSize * (maxTime - 1)); const int batchInputDelta = (forwardSequence ? 1 : -1) * static_cast(batchInputSize); const int batchOutputDelta = (forwardSequence ? 1 : -1) * static_cast(batchOutputSize); for (int t = 0; t < maxTime; ++t) { LSTMStep(params, inputCurrentTimeStep, batchInputShape, input_to_input_weights_float32.data(), input_to_forget_weights_float32.data(), input_to_cell_weights_float32.data(), input_to_output_weights_float32.data(), input_to_output_weights_shape, recurrent_to_input_weights_float32.data(), recurrent_to_forget_weights_float32.data(), recurrent_to_cell_weights_float32.data(), recurrent_to_output_weights_float32.data(), recurrent_to_output_weights_shape, cell_to_input_weights_float32.data(), cell_to_forget_weights_float32.data(), cell_to_output_weights_float32.data(), auxInputCurrentTimeStep, aux_input_to_input_weights_float32.data(), aux_input_to_forget_weights_float32.data(), aux_input_to_cell_weights_float32.data(), aux_input_to_output_weights_float32.data(), input_gate_bias_float32.data(), forget_gate_bias_float32.data(), cell_bias_float32.data(), output_gate_bias_float32.data(), projection_weights_float32.data(), projection_bias_float32.data(), outputStateInCurrentTimeStep.data(), cellStateInCurrentTimeStep.data(), input_layer_norm_weights_float32.data(), forget_layer_norm_weights_float32.data(), cell_layer_norm_weights_float32.data(), output_layer_norm_weights_float32.data(), output_state_out_float32.data(), cell_state_out_float32.data(), outputCurrentTimeStep, scratch_buffer_float32.data()); inputCurrentTimeStep += batchInputDelta; if (hasAuxInput) { auxInputCurrentTimeStep += batchInputDelta; } outputCurrentTimeStep += batchOutputDelta; outputStateInCurrentTimeStep = output_state_out_float32; cellStateInCurrentTimeStep = cell_state_out_float32; } if (!timeMajor) { transposeFirstTwoDimensions(transposedOutput.data(), transposedOutputShape, output_float32.data()); } convertFloat32ToFloat16(output_state_out_float32, output_state_out_buffer); convertFloat32ToFloat16(cell_state_out_float32, cell_state_out_buffer); convertFloat32ToFloat16(output_float32, output_buffer); convertFloat32ToFloat16(scratch_buffer_float32, scratch_buffer_buffer); return true; } // static bool LSTMCell::LSTMStep( const LSTMParams& params, const float* input_buffer, const Shape& input_shape, const float* input_to_input_weights_buffer, const float* input_to_forget_weights_buffer, const float* input_to_cell_weights_buffer, const float* input_to_output_weights_buffer, const Shape& input_to_output_weights_shape, const float* recurrent_to_input_weights_buffer, const float* recurrent_to_forget_weights_buffer, const float* recurrent_to_cell_weights_buffer, const float* recurrent_to_output_weights_buffer, const Shape& recurrent_to_output_weights_shape, const float* cell_to_input_weights_buffer, const float* cell_to_forget_weights_buffer, const float* cell_to_output_weights_buffer, const float* aux_input_buffer, const float* aux_input_to_input_weights_buffer, const float* aux_input_to_forget_weights_buffer, const float* aux_input_to_cell_weights_buffer, const float* aux_input_to_output_weights_buffer, const float* input_gate_bias_buffer, const float* forget_gate_bias_buffer, const float* cell_bias_buffer, const float* output_gate_bias_buffer, const float* projection_weights_buffer, const float* projection_bias_buffer, const float* output_state_in_buffer, const float* cell_state_in_buffer, const float* input_layer_norm_weights_buffer, const float* forget_layer_norm_weights_buffer, const float* cell_layer_norm_weights_buffer, const float* output_layer_norm_weights_buffer, float* output_state_out_buffer, float* cell_state_out_buffer, float* output_buffer, float* scratch_buffer_buffer) { NNTRACE_COMP("LSTMCell::LSTMStep"); const uint32_t n_batch = input_shape.dimensions[0]; const uint32_t n_input = input_shape.dimensions[1]; // n_cell and n_output will be the same size when there is no projection. const uint32_t n_cell = input_to_output_weights_shape.dimensions[0]; const uint32_t n_output = recurrent_to_output_weights_shape.dimensions[1]; const uint32_t n_aux_input = aux_input_buffer == nullptr ? 0 : n_input; // Index the scratch buffers pointers to the global scratch buffer. float* input_gate_scratch = nullptr; float* cell_scratch = nullptr; float* forget_gate_scratch = nullptr; float* output_gate_scratch = nullptr; if (params.use_cifg) { cell_scratch = scratch_buffer_buffer; forget_gate_scratch = cell_scratch + n_cell * n_batch; output_gate_scratch = cell_scratch + 2 * n_cell * n_batch; } else { input_gate_scratch = scratch_buffer_buffer; cell_scratch = input_gate_scratch + n_cell * n_batch; forget_gate_scratch = input_gate_scratch + 2 * n_cell * n_batch; output_gate_scratch = input_gate_scratch + 3 * n_cell * n_batch; } if (!params.use_layer_norm) { // Initialize scratch buffers with bias. if (!params.use_cifg) { tflite::tensor_utils::VectorBatchVectorAssign(input_gate_bias_buffer, n_cell, n_batch, input_gate_scratch); } tflite::tensor_utils::VectorBatchVectorAssign(forget_gate_bias_buffer, n_cell, n_batch, forget_gate_scratch); tflite::tensor_utils::VectorBatchVectorAssign(cell_bias_buffer, n_cell, n_batch, cell_scratch); tflite::tensor_utils::VectorBatchVectorAssign(output_gate_bias_buffer, n_cell, n_batch, output_gate_scratch); } else { // Initialize scratch buffers with zeroes. if (!params.use_cifg) { std::fill_n(input_gate_scratch, n_cell * n_batch, 0.0f); } std::fill_n(forget_gate_scratch, n_cell * n_batch, 0.0f); std::fill_n(cell_scratch, n_cell * n_batch, 0.0f); std::fill_n(output_gate_scratch, n_cell * n_batch, 0.0f); } // For each batch and cell: compute input_weight * input. if (!params.use_cifg) { tflite::tensor_utils::MatrixBatchVectorMultiplyAccumulate(input_to_input_weights_buffer, n_cell, n_input, input_buffer, n_batch, input_gate_scratch); } tflite::tensor_utils::MatrixBatchVectorMultiplyAccumulate(input_to_forget_weights_buffer, n_cell, n_input, input_buffer, n_batch, forget_gate_scratch); tflite::tensor_utils::MatrixBatchVectorMultiplyAccumulate( input_to_cell_weights_buffer, n_cell, n_input, input_buffer, n_batch, cell_scratch); tflite::tensor_utils::MatrixBatchVectorMultiplyAccumulate(input_to_output_weights_buffer, n_cell, n_input, input_buffer, n_batch, output_gate_scratch); // If auxiliary input is available then compute aux_input_weight * aux_input if (aux_input_buffer != nullptr) { if (!params.use_cifg) { tflite::tensor_utils::MatrixBatchVectorMultiplyAccumulate( aux_input_to_input_weights_buffer, n_cell, n_aux_input, aux_input_buffer, n_batch, input_gate_scratch); } tflite::tensor_utils::MatrixBatchVectorMultiplyAccumulate( aux_input_to_forget_weights_buffer, n_cell, n_aux_input, aux_input_buffer, n_batch, forget_gate_scratch); tflite::tensor_utils::MatrixBatchVectorMultiplyAccumulate( aux_input_to_cell_weights_buffer, n_cell, n_aux_input, aux_input_buffer, n_batch, cell_scratch); tflite::tensor_utils::MatrixBatchVectorMultiplyAccumulate( aux_input_to_output_weights_buffer, n_cell, n_aux_input, aux_input_buffer, n_batch, output_gate_scratch); } // For each batch and cell: compute recurrent_weight * output_state. if (!params.use_cifg) { tflite::tensor_utils::MatrixBatchVectorMultiplyAccumulate( recurrent_to_input_weights_buffer, n_cell, n_output, output_state_in_buffer, n_batch, input_gate_scratch); } tflite::tensor_utils::MatrixBatchVectorMultiplyAccumulate( recurrent_to_forget_weights_buffer, n_cell, n_output, output_state_in_buffer, n_batch, forget_gate_scratch); tflite::tensor_utils::MatrixBatchVectorMultiplyAccumulate( recurrent_to_cell_weights_buffer, n_cell, n_output, output_state_in_buffer, n_batch, cell_scratch); tflite::tensor_utils::MatrixBatchVectorMultiplyAccumulate( recurrent_to_output_weights_buffer, n_cell, n_output, output_state_in_buffer, n_batch, output_gate_scratch); // For each batch and cell: update input gate. if (!params.use_cifg) { if (params.use_peephole) { tflite::tensor_utils::VectorBatchVectorCwiseProductAccumulate( cell_to_input_weights_buffer, n_cell, cell_state_in_buffer, n_batch, input_gate_scratch); } if (params.use_layer_norm) { tflite::tensor_utils::MeanStddevNormalization(input_gate_scratch, input_gate_scratch, n_cell, n_batch); tflite::tensor_utils::VectorBatchVectorCwiseProduct(input_layer_norm_weights_buffer, n_cell, input_gate_scratch, n_batch, input_gate_scratch); tflite::tensor_utils::VectorBatchVectorAdd(input_gate_bias_buffer, n_cell, n_batch, input_gate_scratch); } tflite::tensor_utils::ApplySigmoidToVector(input_gate_scratch, n_cell * n_batch, input_gate_scratch); } // For each batch and cell: update forget gate. if (params.use_peephole) { tflite::tensor_utils::VectorBatchVectorCwiseProductAccumulate(cell_to_forget_weights_buffer, n_cell, cell_state_in_buffer, n_batch, forget_gate_scratch); } if (params.use_layer_norm) { tflite::tensor_utils::MeanStddevNormalization(forget_gate_scratch, forget_gate_scratch, n_cell, n_batch); tflite::tensor_utils::VectorBatchVectorCwiseProduct(forget_layer_norm_weights_buffer, n_cell, forget_gate_scratch, n_batch, forget_gate_scratch); tflite::tensor_utils::VectorBatchVectorAdd(forget_gate_bias_buffer, n_cell, n_batch, forget_gate_scratch); } tflite::tensor_utils::ApplySigmoidToVector(forget_gate_scratch, n_cell * n_batch, forget_gate_scratch); // For each batch and cell: update the cell. if (params.use_layer_norm) { tflite::tensor_utils::MeanStddevNormalization(cell_scratch, cell_scratch, n_cell, n_batch); tflite::tensor_utils::VectorBatchVectorCwiseProduct(cell_layer_norm_weights_buffer, n_cell, cell_scratch, n_batch, cell_scratch); tflite::tensor_utils::VectorBatchVectorAdd(cell_bias_buffer, n_cell, n_batch, cell_scratch); } tflite::tensor_utils::VectorVectorCwiseProduct(forget_gate_scratch, cell_state_in_buffer, n_batch * n_cell, cell_state_out_buffer); tflite::tensor_utils::ApplyActivationToVector(cell_scratch, n_batch * n_cell, params.activation, cell_scratch); if (params.use_cifg) { tflite::tensor_utils::Sub1Vector(forget_gate_scratch, n_batch * n_cell, forget_gate_scratch); tflite::tensor_utils::VectorVectorCwiseProductAccumulate( cell_scratch, forget_gate_scratch, n_batch * n_cell, cell_state_out_buffer); } else { tflite::tensor_utils::VectorVectorCwiseProductAccumulate( cell_scratch, input_gate_scratch, n_batch * n_cell, cell_state_out_buffer); } if (params.cell_clip > 0.0) { tflite::tensor_utils::CwiseClipping(cell_state_out_buffer, n_batch * n_cell, params.cell_clip); } // For each batch and cell: update the output gate. if (params.use_peephole) { tflite::tensor_utils::VectorBatchVectorCwiseProductAccumulate(cell_to_output_weights_buffer, n_cell, cell_state_out_buffer, n_batch, output_gate_scratch); } if (params.use_layer_norm) { tflite::tensor_utils::MeanStddevNormalization(output_gate_scratch, output_gate_scratch, n_cell, n_batch); tflite::tensor_utils::VectorBatchVectorCwiseProduct(output_layer_norm_weights_buffer, n_cell, output_gate_scratch, n_batch, output_gate_scratch); tflite::tensor_utils::VectorBatchVectorAdd(output_gate_bias_buffer, n_cell, n_batch, output_gate_scratch); } tflite::tensor_utils::ApplySigmoidToVector(output_gate_scratch, n_batch * n_cell, output_gate_scratch); tflite::tensor_utils::ApplyActivationToVector(cell_state_out_buffer, n_batch * n_cell, params.activation, cell_scratch); tflite::tensor_utils::VectorVectorCwiseProduct(output_gate_scratch, cell_scratch, n_batch * n_cell, output_gate_scratch); // For each batch: update the projection and output_state. if (params.use_projection_weight) { if (params.use_projection_bias) { tflite::tensor_utils::VectorBatchVectorAssign(projection_bias_buffer, n_output, n_batch, output_buffer); } else { std::fill_n(output_buffer, n_batch * n_output, 0.0f); } tflite::tensor_utils::MatrixBatchVectorMultiplyAccumulate( projection_weights_buffer, n_output, n_cell, output_gate_scratch, n_batch, output_buffer); if (params.proj_clip > 0.0) { tflite::tensor_utils::CwiseClipping(output_buffer, n_batch * n_output, params.proj_clip); } } else { std::copy_n(output_gate_scratch, n_batch * n_output, output_buffer); } std::copy_n(output_buffer, n_batch * n_output, output_state_out_buffer); return true; } bool LSTMCell::Eval() { switch (input_->type) { case OperandType::TENSOR_FLOAT32: { LSTMEvalFloat32(params_, GetBuffer(input_), input_->shape(), GetBuffer(input_to_input_weights_), GetBuffer(input_to_forget_weights_), GetBuffer(input_to_cell_weights_), GetBuffer(input_to_output_weights_), input_to_output_weights_->shape(), GetBuffer(recurrent_to_input_weights_), GetBuffer(recurrent_to_forget_weights_), GetBuffer(recurrent_to_cell_weights_), GetBuffer(recurrent_to_output_weights_), recurrent_to_output_weights_->shape(), GetBuffer(cell_to_input_weights_), GetBuffer(cell_to_forget_weights_), GetBuffer(cell_to_output_weights_), /*aux_input_buffer=*/nullptr, /*aux_input_to_input_weights_buffer=*/nullptr, /*aux_input_to_forget_weights_buffer=*/nullptr, /*aux_input_to_cell_weights_buffer=*/nullptr, /*aux_input_to_output_weights_buffer=*/nullptr, GetBuffer(input_gate_bias_), GetBuffer(forget_gate_bias_), GetBuffer(cell_bias_), GetBuffer(output_gate_bias_), GetBuffer(projection_weights_), GetBuffer(projection_bias_), GetBuffer(output_state_in_), GetBuffer(cell_state_in_), GetBuffer(input_layer_norm_weights_), GetBuffer(forget_layer_norm_weights_), GetBuffer(cell_layer_norm_weights_), GetBuffer(output_layer_norm_weights_), GetBuffer(output_state_out_), GetBuffer(cell_state_out_), GetBuffer(output_), GetBuffer(scratch_buffer_)); } break; case OperandType::TENSOR_FLOAT16: { LSTMEvalFloat16(params_, GetBuffer(input_), input_->shape(), GetOptionalBuffer(input_to_input_weights_), GetBuffer(input_to_forget_weights_), GetBuffer(input_to_cell_weights_), GetBuffer(input_to_output_weights_), input_to_output_weights_->shape(), GetOptionalBuffer(recurrent_to_input_weights_), GetBuffer(recurrent_to_forget_weights_), GetBuffer(recurrent_to_cell_weights_), GetBuffer(recurrent_to_output_weights_), recurrent_to_output_weights_->shape(), GetOptionalBuffer(cell_to_input_weights_), GetOptionalBuffer(cell_to_forget_weights_), GetOptionalBuffer(cell_to_output_weights_), /*aux_input_buffer=*/nullptr, /*aux_input_to_input_weights_buffer=*/nullptr, /*aux_input_to_forget_weights_buffer=*/nullptr, /*aux_input_to_cell_weights_buffer=*/nullptr, /*aux_input_to_output_weights_buffer=*/nullptr, GetOptionalBuffer(input_gate_bias_), GetBuffer(forget_gate_bias_), GetBuffer(cell_bias_), GetBuffer(output_gate_bias_), GetOptionalBuffer(projection_weights_), GetOptionalBuffer(projection_bias_), GetBuffer(output_state_in_), GetBuffer(cell_state_in_), GetOptionalBuffer(input_layer_norm_weights_), GetOptionalBuffer(forget_layer_norm_weights_), GetOptionalBuffer(cell_layer_norm_weights_), GetOptionalBuffer(output_layer_norm_weights_), GetBuffer<_Float16>(output_state_out_), GetBuffer<_Float16>(cell_state_out_), GetBuffer<_Float16>(output_), GetBuffer<_Float16>(scratch_buffer_)); } break; default: { LOG(ERROR) << "Unsupported data type: " << static_cast(input_->type); return false; } } return true; } } // namespace nn } // namespace android