/* * Copyright (C) 2020 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "Operations" #include #include #include "OperationResolver.h" #include "Tracing.h" #ifdef NN_INCLUDE_CPU_IMPLEMENTATION #include #include "CpuOperationUtils.h" #endif // NN_INCLUDE_CPU_IMPLEMENTATION namespace android { namespace nn { namespace local_response_norm { constexpr char kOperationName[] = "LOCAL_RESPONSE_NORMALIZATION"; constexpr uint32_t kNumInputs = 6; constexpr uint32_t kInputTensor = 0; constexpr uint32_t kRadiusScalar = 1; constexpr uint32_t kBiasScalar = 2; constexpr uint32_t kAlphaScalar = 3; constexpr uint32_t kBetaScalar = 4; constexpr uint32_t kAxisScalar = 5; constexpr uint32_t kNumOutputs = 1; constexpr uint32_t kOutputTensor = 0; #ifdef NN_INCLUDE_CPU_IMPLEMENTATION namespace { inline bool localResponseNormFloat32Impl(const float* inputData, const Shape& inputShape, int32_t radius, float bias, float alpha, float beta, int32_t axis, float* outputData, const Shape& outputShape) { NNTRACE_TRANS("localResponseNormFloat32"); const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis); const uint32_t axisSize = getSizeOfDimension(inputShape, axis); const uint32_t innerSize = getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape)); for (uint32_t outer = 0; outer < outerSize; ++outer) { const float* inputBase = inputData + outer * axisSize * innerSize; float* outputBase = outputData + outer * axisSize * innerSize; for (uint32_t inner = 0; inner < innerSize; ++inner, ++inputBase, ++outputBase) { for (int32_t i = 0; i < axisSize; i++) { const int32_t dBegin = std::max(0, i - radius); // Add 1 on dEnd to comply with optimized_ops in TFLite const int32_t dEnd = std::min(static_cast(axisSize), i + radius + 1); float sum = 0.0f; for (int32_t d = dBegin; d < dEnd; d++) { float val = inputBase[d * innerSize]; sum += val * val; } float multiplier = std::pow(bias + alpha * sum, -beta); outputBase[i * innerSize] = inputBase[i * innerSize] * multiplier; } } } return true; } template bool localResponseNorm(const T* inputData, const Shape& inputShape, int32_t radius, T bias, T alpha, T beta, int32_t axis, T* outputData, const Shape& outputShape); template <> bool localResponseNorm(const float* inputData, const Shape& inputShape, int32_t radius, float bias, float alpha, float beta, int32_t axis, float* outputData, const Shape& outputShape) { int32_t ndim = getNumberOfDimensions(inputShape); NN_CHECK(handleNegativeAxis(inputShape, &axis)); radius = std::min(radius, static_cast(inputShape.dimensions[axis])); // TFLite optimized implementation only supports computation along the last axis if (axis == ndim - 1) { NNTRACE_COMP("optimized_ops::LocalResponseNormalization::float"); tflite::LocalResponseNormalizationParams param = { .range = radius, .bias = bias, .alpha = alpha, .beta = beta}; tflite::optimized_ops::LocalResponseNormalization( param, convertShapeToTflshape(inputShape), inputData, convertShapeToTflshape(outputShape), outputData); return true; } else { return localResponseNormFloat32Impl(inputData, inputShape, radius, bias, alpha, beta, axis, outputData, outputShape); } } template <> bool localResponseNorm<_Float16>(const _Float16* inputData, const Shape& inputShape, int32_t radius, _Float16 bias, _Float16 alpha, _Float16 beta, int32_t axis, _Float16* outputData, const Shape& outputShape) { NNTRACE_TRANS("localResponseNormFloat16"); std::vector inputDataFloat32(getNumberOfElements(inputShape)); convertFloat16ToFloat32(inputData, &inputDataFloat32); std::vector outputDataFloat32(getNumberOfElements(outputShape)); localResponseNorm(inputDataFloat32.data(), inputShape, radius, bias, alpha, beta, axis, outputDataFloat32.data(), outputShape); convertFloat32ToFloat16(outputDataFloat32, outputData); return true; } template bool executeTyped(IOperationExecutionContext* context) { int32_t axis = context->getNumInputs() == kNumInputs ? context->getInputValue(kAxisScalar) : -1; NN_RET_CHECK(handleNegativeAxis(context->getInputShape(kInputTensor), &axis)); return localResponseNorm( context->getInputBuffer(kInputTensor), context->getInputShape(kInputTensor), context->getInputValue(kRadiusScalar), context->getInputValue(kBiasScalar), context->getInputValue(kAlphaScalar), context->getInputValue(kBetaScalar), axis, context->getOutputBuffer(kOutputTensor), context->getOutputShape(kOutputTensor)); } } // namespace #endif // NN_INCLUDE_CPU_IMPLEMENTATION Result validate(const IOperationValidationContext* context) { NN_RET_CHECK(context->getNumInputs() == kNumInputs || context->getNumInputs() == kNumInputs - 1); NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs); const OperandType inputType = context->getInputType(kInputTensor); std::vector inExpectedTypes; std::vector outExpectedTypes; auto minSupportedVersion = Version::ANDROID_OC_MR1; if (inputType == OperandType::TENSOR_FLOAT32) { minSupportedVersion = Version::ANDROID_OC_MR1; inExpectedTypes = { OperandType::TENSOR_FLOAT32, OperandType::INT32, OperandType::FLOAT32, OperandType::FLOAT32, OperandType::FLOAT32, }; outExpectedTypes = {OperandType::TENSOR_FLOAT32}; } else if (inputType == OperandType::TENSOR_FLOAT16) { minSupportedVersion = Version::ANDROID_Q; inExpectedTypes = { OperandType::TENSOR_FLOAT16, OperandType::INT32, OperandType::FLOAT16, OperandType::FLOAT16, OperandType::FLOAT16, }; outExpectedTypes = {OperandType::TENSOR_FLOAT16}; } else { NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName; } if (context->getNumInputs() == kNumInputs) { inExpectedTypes.push_back(OperandType::INT32); minSupportedVersion = Version::ANDROID_Q; } else if (context->getInputShape(kInputTensor).dimensions.size() != 4) { minSupportedVersion = Version::ANDROID_Q; } const Shape& input = context->getInputShape(kInputTensor); if (hasKnownRank(input)) { NN_RET_CHECK_LE(getNumberOfDimensions(input), 4); } NN_RET_CHECK(validateInputTypes(context, inExpectedTypes)); NN_RET_CHECK(validateOutputTypes(context, {inputType})); return minSupportedVersion; } #ifdef NN_INCLUDE_CPU_IMPLEMENTATION bool prepare(IOperationExecutionContext* context) { const Shape& input = context->getInputShape(kInputTensor); int32_t numDimensions = getNumberOfDimensions(input); int32_t axis = context->getNumInputs() == kNumInputs ? context->getInputValue(kAxisScalar) : -1; NN_RET_CHECK_LE(numDimensions, 4); NN_RET_CHECK_GE(axis, -numDimensions); NN_RET_CHECK_LT(axis, numDimensions); const int32_t radius = context->getInputValue(kRadiusScalar); NN_RET_CHECK_GE(radius, 0); return context->setOutputShape(kOutputTensor, input); } bool execute(IOperationExecutionContext* context) { switch (context->getInputType(kInputTensor)) { case OperandType::TENSOR_FLOAT32: return executeTyped(context); case OperandType::TENSOR_FLOAT16: return executeTyped<_Float16>(context); default: NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName; } } #endif // NN_INCLUDE_CPU_IMPLEMENTATION } // namespace local_response_norm NN_REGISTER_OPERATION(LOCAL_RESPONSE_NORMALIZATION, local_response_norm::kOperationName, local_response_norm::validate, local_response_norm::prepare, local_response_norm::execute); } // namespace nn } // namespace android