/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "Operations" #include "QuantizedLSTM.h" #include #include #include #include #include "CpuExecutor.h" #include "CpuOperationUtils.h" #include "Tracing.h" namespace android { namespace nn { namespace { template inline T* GetBuffer(RunTimeOperandInfo* operand) { return reinterpret_cast(operand->buffer); } template inline const T* GetBuffer(const RunTimeOperandInfo* operand) { return reinterpret_cast(operand->buffer); } using tflite::Dims; // The function below is taken from TF Lite implementation in order to decouple // NN API from TF Lite dependency. Original function, with a description of its // parameters and types can be found by this link: // https://github.com/tensorflow/tensorflow/blob/0d697e5fc4c05c699eea0764364104ea500ccc68/tensorflow/contrib/lite/kernels/internal/reference/reference_ops.h#L1926 // // clang-format off template void quantizedLstmStep(const uint8_t* input_data_uint8, const Dims<4>& input_dims, const uint8_t* prev_activ_data_uint8, const Dims<4>& prev_activ_dims, const uint8_t* weights_data_uint8, const Dims<4>& weights_dims, const int32_t* bias_data_int32, const Dims<4>& bias_dims, const int16_t* prevCellState_data_int16, const Dims<4>& prevCellState_dims, int16_t* output_state_data_int16, const Dims<4>& output_state_dims, uint8_t* output_activ_data_uint8, const Dims<4>& output_activ_dims, uint8_t* concat_temp_data_uint8, const Dims<4>& concat_temp_dims, int16_t* activ_temp_data_int16, const Dims<4>& activ_temp_dims, int32_t weights_zero_point, int32_t accum_multiplier, int accum_shift) { // Gather dimensions information, and perform consistency checks. const int outer_size = MatchingFlatSizeSkipDim(input_dims, 0, prev_activ_dims, prevCellState_dims, output_state_dims, output_activ_dims); TFLITE_CHECK_EQ(ArraySize(weights_dims, 2), 1); TFLITE_CHECK_EQ(ArraySize(weights_dims, 3), 1); const int input_depth = ArraySize(input_dims, 0); const int prev_activ_depth = ArraySize(prev_activ_dims, 0); const int total_input_depth = prev_activ_depth + input_depth; TFLITE_CHECK_EQ(ArraySize(weights_dims, 0), total_input_depth); TFLITE_CHECK_EQ(MatchingArraySize(bias_dims, 1, bias_dims, 2, bias_dims, 3), 1); const int intern_activ_depth = MatchingArraySize(weights_dims, 1, bias_dims, 0); TFLITE_CHECK_EQ(intern_activ_depth % 4, 0); const int output_depth = MatchingArraySize(prevCellState_dims, 0, prev_activ_dims, 0, output_state_dims, 0, output_activ_dims, 0); TFLITE_CHECK_EQ(output_depth, intern_activ_depth / 4); const int fc_batches = FlatSizeSkipDim(activ_temp_dims, 0); const int fc_output_depth = MatchingArraySize(weights_dims, 1, activ_temp_dims, 0); const int fc_accum_depth = ArraySize(weights_dims, 0); TFLITE_CHECK_EQ(fc_output_depth, 4 * output_depth); // Depth-concatenate prev_activ and input data together. uint8_t const* concat_input_arrays_data[2] = {input_data_uint8, prev_activ_data_uint8}; Dims<4> const* concat_input_arrays_dims[2] = {&input_dims, &prev_activ_dims}; tflite::reference_ops::Concatenation( 0, concat_input_arrays_data, concat_input_arrays_dims, 2, concat_temp_data_uint8, concat_temp_dims); // Implementation of the fully connected node inside the LSTM cell. // The operands are 8-bit integers, the accumulators are internally 32bit // integers, and the output is 16-bit fixed-point with 3 integer bits so // the output range is [-2^3, 2^3] == [-8, 8]. The rationale for that // is explained in the function comment above. for (int b = 0; b < fc_batches; ++b) { for (int out_c = 0; out_c < fc_output_depth; ++out_c) { // Internal accumulation. // Initialize accumulator with the bias-value. int32_t accum = bias_data_int32[out_c]; // Accumulation loop. for (int d = 0; d < fc_accum_depth; ++d) { int16_t input_val = concat_temp_data_uint8[b * fc_accum_depth + d] - 128; int16_t weights_val = weights_data_uint8[out_c * fc_accum_depth + d] - weights_zero_point; accum += input_val * weights_val; } // Down-scale the final int32 accumulator to the scale used by our // (16-bit, using 3 integer bits) fixed-point format. The quantized // multiplier and shift here have been pre-computed offline // (e.g. by toco). accum = tflite::MultiplyByQuantizedMultiplier(accum, accum_multiplier, accum_shift); // Saturate, cast to int16, and store to the temporary activations array. accum = std::max(-32768, std::min(32767, accum)); activ_temp_data_int16[out_c + fc_output_depth * b] = accum; } } // Rest of the LSTM cell: tanh and logistic math functions, and some adds // and muls, all done in 16-bit fixed-point. for (int b = 0; b < outer_size; ++b) { for (int c = 0; c < output_depth; ++c) { // Define the fixed-point data types that we will use here. All use // int16 as the underlying integer type i.e. all are 16-bit fixed-point. // They only differ by the number of integral vs. fractional bits, // determining the range of values that they can represent. // // F0 uses 0 integer bits, range [-1, 1]. // This is the return type of math functions such as tanh, logistic, // whose range is in [-1, 1]. using F0 = gemmlowp::FixedPoint; // F3 uses 3 integer bits, range [-8, 8]. // This is the range of the previous fully-connected node's output, // which is our input here. using F3 = gemmlowp::FixedPoint; // FS uses StateIntegerBits integer bits, range [-2^StateIntegerBits, // 2^StateIntegerBits]. It's used to represent the internal state, whose // number of integer bits is currently dictated by the model. See comment // on the StateIntegerBits template parameter above. using FS = gemmlowp::FixedPoint; // Implementation of input gate, using fixed-point logistic function. F3 input_gate_input = F3::FromRaw( activ_temp_data_int16[b * fc_output_depth + 0 * output_depth + c]); F0 input_gate_output = gemmlowp::logistic(input_gate_input); // Implementation of input modulation gate, using fixed-point tanh // function. F3 input_modulation_gate_input = F3::FromRaw( activ_temp_data_int16[b * fc_output_depth + 1 * output_depth + c]); F0 input_modulation_gate_output = gemmlowp::tanh(input_modulation_gate_input); // Implementation of forget gate, using fixed-point logistic function. F3 forget_gate_input = F3::FromRaw( activ_temp_data_int16[b * fc_output_depth + 2 * output_depth + c]); F0 forget_gate_output = gemmlowp::logistic(forget_gate_input); // Implementation of output gate, using fixed-point logistic function. F3 output_gate_input = F3::FromRaw( activ_temp_data_int16[b * fc_output_depth + 3 * output_depth + c]); F0 output_gate_output = gemmlowp::logistic(output_gate_input); // Implementation of internal multiplication nodes, still in fixed-point. F0 input_times_input_modulation = input_gate_output * input_modulation_gate_output; FS prevCellState = FS::FromRaw(prevCellState_data_int16[b * output_depth + c]); FS prevCellState_times_forget_state = forget_gate_output * prevCellState; // Implementation of internal addition node, saturating. FS new_state = gemmlowp::SaturatingAdd( gemmlowp::Rescale(input_times_input_modulation), prevCellState_times_forget_state); // Implementation of last internal Tanh node, still in fixed-point. // Since a Tanh fixed-point implementation is specialized for a given // number or integer bits, and each specialization can have a substantial // code size, and we already used above a Tanh on an input with 3 integer // bits, and per the table in the above function comment there is no // significant accuracy to be lost by clamping to [-8, +8] for a // 3-integer-bits representation, let us just do that. This helps people // porting this to targets where code footprint must be minimized. F3 new_state_f3 = gemmlowp::Rescale<3>(new_state); F0 output_activ_int16 = output_gate_output * gemmlowp::tanh(new_state_f3); // Store the new internal state back to memory, as 16-bit integers. // Note: here we store the original value with StateIntegerBits, not // the rescaled 3-integer-bits value fed to tanh. output_state_data_int16[b * output_depth + c] = new_state.raw(); // Down-scale the output activations to 8-bit integers, saturating, // and store back to memory. int16_t rescaled_output_activ = gemmlowp::RoundingDivideByPOT(output_activ_int16.raw(), 8); int16_t clamped_output_activ = std::max(-128, std::min(127, rescaled_output_activ)); output_activ_data_uint8[b * output_depth + c] = 128 + clamped_output_activ; } } } // clang-format on // The function assigns a 2D matrix to a submatrix of the weights at a given row // and column offsets. void assignWeightsSubmatrix(const RunTimeOperandInfo* submatrix, const int32_t offset_row, const int32_t offset_column, const std::vector& weightsDims, uint8_t* weights) { const uint8_t* submatrixValues = GetBuffer(submatrix); const std::vector submatrixDims = submatrix->shape().dimensions; for (uint32_t i = 0; i < submatrixDims[0] * submatrixDims[1]; ++i) { const uint32_t row = i / submatrixDims[1]; const uint32_t column = i % submatrixDims[1]; weights[(row + offset_row) * weightsDims[1] + column + offset_column] = submatrixValues[i]; } } } // namespace QuantizedLSTMCell::QuantizedLSTMCell(const Operation& operation, RunTimeOperandInfo* operands) { input_ = GetInput(operation, operands, kInputTensor); inputToInputWeights_ = GetInput(operation, operands, kInputToInputWeightsTensor); inputToForgetWeights_ = GetInput(operation, operands, kInputToForgetWeightsTensor); inputToCellWeights_ = GetInput(operation, operands, kInputToCellWeightsTensor); inputToOutputWeights_ = GetInput(operation, operands, kInputToOutputWeightsTensor); recurrentToInputWeights_ = GetInput(operation, operands, kRecurrentToInputWeightsTensor); recurrentToForgetWeights_ = GetInput(operation, operands, kRecurrentToForgetWeightsTensor); recurrentToCellWeights_ = GetInput(operation, operands, kRecurrentToCellWeightsTensor); recurrentToOutputWeights_ = GetInput(operation, operands, kRecurrentToOutputWeightsTensor); inputGateBias_ = GetInput(operation, operands, kInputGateBiasTensor); forgetGateBias_ = GetInput(operation, operands, kForgetGateBiasTensor); cellGateBias_ = GetInput(operation, operands, kCellGateBiasTensor); outputGateBias_ = GetInput(operation, operands, kOutputGateBiasTensor); prevCellState_ = GetInput(operation, operands, kPrevCellStateTensor); prevOutput_ = GetInput(operation, operands, kPrevOutputTensor); cellStateOut_ = GetOutput(operation, operands, kCellStateOutTensor); output_ = GetOutput(operation, operands, kOutputTensor); } bool QuantizedLSTMCell::prepare(const Operation& operation, RunTimeOperandInfo* operands, Shape* cellStateOutShape, Shape* outputShape) { auto input = GetInput(operation, operands, kInputTensor); NN_RET_CHECK_EQ(NumDimensions(input), 2); NN_RET_CHECK_EQ(input->scale, 1. / 128.0); NN_RET_CHECK_EQ(input->zeroPoint, 128); const uint32_t numBatches = SizeOfDimension(input, 0); const uint32_t inputSize = SizeOfDimension(input, 1); auto prevOutput = GetInput(operation, operands, kPrevOutputTensor); NN_RET_CHECK_EQ(NumDimensions(prevOutput), 2); NN_RET_CHECK_EQ(SizeOfDimension(prevOutput, 0), numBatches); NN_RET_CHECK_EQ(prevOutput->scale, 1. / 128.0); NN_RET_CHECK_EQ(prevOutput->zeroPoint, 128); const uint32_t outputSize = SizeOfDimension(prevOutput, 1); auto inputToInputWeights = GetInput(operation, operands, kInputToInputWeightsTensor); const float weightsScale = inputToInputWeights->scale; NN_RET_CHECK(weightsScale != 0); const float weightsZeroPoint = inputToInputWeights->zeroPoint; auto checkWeightsShape = [&](const RunTimeOperandInfo* weights, uint32_t columns) -> bool { NN_RET_CHECK_EQ(NumDimensions(weights), 2); NN_RET_CHECK_EQ(SizeOfDimension(weights, 0), outputSize); NN_RET_CHECK_EQ(SizeOfDimension(weights, 1), columns); NN_RET_CHECK_EQ(weights->scale, weightsScale); NN_RET_CHECK_EQ(weights->zeroPoint, weightsZeroPoint); return true; }; auto inputToForgetWeights = GetInput(operation, operands, kInputToForgetWeightsTensor); auto inputToCellWeights = GetInput(operation, operands, kInputToCellWeightsTensor); auto inputToOutputWeights = GetInput(operation, operands, kInputToOutputWeightsTensor); NN_RET_CHECK(checkWeightsShape(inputToInputWeights, inputSize)); NN_RET_CHECK(checkWeightsShape(inputToForgetWeights, inputSize)); NN_RET_CHECK(checkWeightsShape(inputToCellWeights, inputSize)); NN_RET_CHECK(checkWeightsShape(inputToOutputWeights, inputSize)); auto recurrentToInputWeights = GetInput(operation, operands, kRecurrentToInputWeightsTensor); auto recurrentToForgetWeights = GetInput(operation, operands, kRecurrentToForgetWeightsTensor); auto recurrentToCellWeights = GetInput(operation, operands, kRecurrentToCellWeightsTensor); auto recurrentToOutputWeights = GetInput(operation, operands, kRecurrentToOutputWeightsTensor); NN_RET_CHECK(checkWeightsShape(recurrentToInputWeights, outputSize)); NN_RET_CHECK(checkWeightsShape(recurrentToForgetWeights, outputSize)); NN_RET_CHECK(checkWeightsShape(recurrentToCellWeights, outputSize)); NN_RET_CHECK(checkWeightsShape(recurrentToOutputWeights, outputSize)); auto inputGateBias = GetInput(operation, operands, kInputGateBiasTensor); const float biasScale = inputGateBias->scale; NN_RET_CHECK_EQ(biasScale, weightsScale / 128.0); const float biasZeroPoint = inputGateBias->zeroPoint; NN_RET_CHECK_EQ(biasZeroPoint, 0); auto checkBiasShape = [&](const RunTimeOperandInfo* bias) -> bool { NN_RET_CHECK_EQ(NumDimensions(bias), 1); NN_RET_CHECK_EQ(SizeOfDimension(bias, 0), outputSize); NN_RET_CHECK_EQ(bias->scale, biasScale); NN_RET_CHECK_EQ(bias->zeroPoint, biasZeroPoint); return true; }; auto forgetGateBias = GetInput(operation, operands, kForgetGateBiasTensor); auto cellGateBias = GetInput(operation, operands, kCellGateBiasTensor); auto outputGateBias = GetInput(operation, operands, kOutputGateBiasTensor); NN_RET_CHECK(checkBiasShape(inputGateBias)); NN_RET_CHECK(checkBiasShape(forgetGateBias)); NN_RET_CHECK(checkBiasShape(cellGateBias)); NN_RET_CHECK(checkBiasShape(outputGateBias)); auto prevCellState = GetInput(operation, operands, kPrevCellStateTensor); NN_CHECK_EQ(NumDimensions(prevCellState), 2); NN_CHECK_EQ(SizeOfDimension(prevCellState, 0), numBatches); NN_CHECK_EQ(SizeOfDimension(prevCellState, 1), outputSize); NN_CHECK_EQ(prevCellState->zeroPoint, 0); // Cell state range for quantized LSTM is a function of StateIntegerBits and // can be calculated as: // [-2^StateIntegerBits, 2^StateIntegerBits * 32767/32768]. // Therefore, for a fixed StateIntegerBits parameter, cell state scale is // equal to 2^StateIntegerBits * 2^(-15) = 2^(StateIntegerBits - 15) and // therefore: // StateIntegerBits = log2(cell state scale) + 15 int stateScaleLog2Rounded; NN_CHECK(tflite::CheckedLog2(prevCellState->scale, &stateScaleLog2Rounded)); const int stateIntegerBits = 15 + stateScaleLog2Rounded; // We only support StateIntegerBits == 4 NN_CHECK(stateIntegerBits == 4); *cellStateOutShape = prevCellState->shape(); *outputShape = prevOutput->shape(); return true; } // The function contatenates 8 input weight matrices into one. Resulting matrix // has a shape [4 * outputSize, outputSize + inputSize]. The matrix is // constructed as follows: // +-----------------------------------+ // | recurrentToInput | inputToInput | // |-------------------+---------------| // | recurrentToCell | inputToCell | // |-------------------+---------------| // | recurrentToForget | inputToForget | // |-------------------+---------------| // | recurrentToOutput | inputToOutput | // +-----------------------------------+ void QuantizedLSTMCell::concatenateWeights(const std::vector& weightsDims, uint8_t* weights) { const int outputSize = SizeOfDimension(inputToInputWeights_, 0); assignWeightsSubmatrix(inputToInputWeights_, 0 * outputSize, outputSize, weightsDims, weights); assignWeightsSubmatrix(inputToCellWeights_, 1 * outputSize, outputSize, weightsDims, weights); assignWeightsSubmatrix(inputToForgetWeights_, 2 * outputSize, outputSize, weightsDims, weights); assignWeightsSubmatrix(inputToOutputWeights_, 3 * outputSize, outputSize, weightsDims, weights); assignWeightsSubmatrix(recurrentToInputWeights_, 0 * outputSize, 0, weightsDims, weights); assignWeightsSubmatrix(recurrentToCellWeights_, 1 * outputSize, 0, weightsDims, weights); assignWeightsSubmatrix(recurrentToForgetWeights_, 2 * outputSize, 0, weightsDims, weights); assignWeightsSubmatrix(recurrentToOutputWeights_, 3 * outputSize, 0, weightsDims, weights); } // The function concatenate four bias vectors of shape [outputSize] into one // vector of shape [4 * outputSize]. void QuantizedLSTMCell::concatenateBiases(uint32_t outputSize, int32_t* bias) { memcpy(bias + 0 * outputSize, GetBuffer(inputGateBias_), sizeof(int32_t) * outputSize); memcpy(bias + 1 * outputSize, GetBuffer(cellGateBias_), sizeof(int32_t) * outputSize); memcpy(bias + 2 * outputSize, GetBuffer(forgetGateBias_), sizeof(int32_t) * outputSize); memcpy(bias + 3 * outputSize, GetBuffer(outputGateBias_), sizeof(int32_t) * outputSize); } bool QuantizedLSTMCell::eval() { NNTRACE_COMP("QuantizedLSTM::eval"); Shape weightsShape; weightsShape.dimensions = {4 * SizeOfDimension(prevOutput_, 1), SizeOfDimension(input_, 1) + SizeOfDimension(prevOutput_, 1)}; std::vector weights(getNumberOfElements(weightsShape)); concatenateWeights(weightsShape.dimensions, weights.data()); Shape biasShape; biasShape.dimensions = {getSizeOfDimension(weightsShape, 0)}; std::vector bias(getNumberOfElements(biasShape)); concatenateBiases(SizeOfDimension(prevOutput_, 1), bias.data()); Shape concatTempShape; concatTempShape.dimensions = {SizeOfDimension(input_, 0), getSizeOfDimension(weightsShape, 1)}; Shape activationTempShape; activationTempShape.dimensions = {SizeOfDimension(input_, 0), getSizeOfDimension(weightsShape, 0)}; std::vector concatTemp(getNumberOfElements(concatTempShape)); std::vector activationTemp(getNumberOfElements(activationTempShape)); // From https://arxiv.org/pdf/1712.05877, for a fully-connected layer, // accumulator multiplier is equal to: // (input scale) * (weights scale) / (fully-connected output scale) // In our case fully-connected output scale is fixed and equal to // 2^(-12) (See LSTMCell definition in TF Lite for more details on that). // But bias scale is set to (input scale) * (weights scale) (also from the // paper), so we can multiply it to an inverse of the fc-output scale to get // the multiplier value: double realAccumMultiplier = 4096 * inputGateBias_->scale; int32_t accumMultiplier; int accumShift; tflite::QuantizeMultiplier(realAccumMultiplier, &accumMultiplier, &accumShift); quantizedLstmStep<4>( // Inputs. GetBuffer(input_), convertShapeToDims(input_->shape()), GetBuffer(prevOutput_), convertShapeToDims(prevOutput_->shape()), weights.data(), convertShapeToDims(weightsShape), bias.data(), convertShapeToDims(biasShape), GetBuffer(prevCellState_), convertShapeToDims(prevCellState_->shape()), // Outputs. GetBuffer(cellStateOut_), convertShapeToDims(cellStateOut_->shape()), GetBuffer(output_), convertShapeToDims(output_->shape()), concatTemp.data(), convertShapeToDims(concatTempShape), activationTemp.data(), convertShapeToDims(activationTempShape), inputToInputWeights_->zeroPoint, accumMultiplier, accumShift); return true; } } // namespace nn } // namespace android