/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "Operations" #include "RNN.h" #include #include "CpuExecutor.h" #include "CpuOperationUtils.h" #include "Tracing.h" namespace android { namespace nn { RNN::RNN(const Operation& operation, RunTimeOperandInfo* operands) { NNTRACE_TRANS("RNN::RNN"); input_ = GetInput(operation, operands, kInputTensor); weights_ = GetInput(operation, operands, kWeightsTensor); recurrent_weights_ = GetInput(operation, operands, kRecurrentWeightsTensor); hidden_state_in_ = GetInput(operation, operands, kHiddenStateInTensor); bias_ = GetInput(operation, operands, kBiasTensor); activation_ = static_cast( getScalarData(operands[operation.inputs[kActivationParam]])); hidden_state_out_ = GetOutput(operation, operands, kHiddenStateOutTensor); output_ = GetOutput(operation, operands, kOutputTensor); } bool RNN::Prepare(const Operation& operation, RunTimeOperandInfo* operands, Shape* hiddenStateShape, Shape* outputShape) { NNTRACE_TRANS("RNN::Prepare"); // Check we have all the inputs and outputs we need. const int num_inputs = NumInputsWithValues(operation, operands); NN_CHECK(num_inputs == 6); NN_CHECK_EQ(NumOutputs(operation), 2); const RunTimeOperandInfo* input = GetInput(operation, operands, kInputTensor); const RunTimeOperandInfo* input_weights = GetInput(operation, operands, kWeightsTensor); const RunTimeOperandInfo* recurrent_weights = GetInput(operation, operands, kRecurrentWeightsTensor); const RunTimeOperandInfo* bias = GetInput(operation, operands, kBiasTensor); // Check all the parameters of tensor match within themselves and match the // input configuration. const uint32_t batch_size = SizeOfDimension(input, 0); const uint32_t num_units = SizeOfDimension(input_weights, 0); NN_CHECK_EQ(SizeOfDimension(input, 1), SizeOfDimension(input_weights, 1)); NN_CHECK_EQ(SizeOfDimension(input_weights, 0), SizeOfDimension(bias, 0)); NN_CHECK_EQ(SizeOfDimension(recurrent_weights, 0), SizeOfDimension(bias, 0)); NN_CHECK_EQ(SizeOfDimension(recurrent_weights, 1), SizeOfDimension(bias, 0)); const Shape& inputShape = input->shape(); // Resize state. hiddenStateShape->type = inputShape.type; hiddenStateShape->dimensions = {batch_size, num_units}; // Resize output. outputShape->type = inputShape.type; outputShape->dimensions = {batch_size, num_units}; return true; } bool RNN::Eval() { switch (input_->type) { case OperandType::TENSOR_FLOAT16: { RNNStep<_Float16>(reinterpret_cast<_Float16*>(input_->buffer), input_->shape(), reinterpret_cast<_Float16*>(hidden_state_in_->buffer), reinterpret_cast<_Float16*>(bias_->buffer), reinterpret_cast<_Float16*>(weights_->buffer), weights_->shape(), reinterpret_cast<_Float16*>(recurrent_weights_->buffer), recurrent_weights_->shape(), activation_, reinterpret_cast<_Float16*>(output_->buffer)); memcpy(hidden_state_out_->buffer, output_->buffer, sizeof(_Float16) * getNumberOfElements(output_->shape())); break; } case OperandType::TENSOR_FLOAT32: { RNNStep(reinterpret_cast(input_->buffer), input_->shape(), reinterpret_cast(hidden_state_in_->buffer), reinterpret_cast(bias_->buffer), reinterpret_cast(weights_->buffer), weights_->shape(), reinterpret_cast(recurrent_weights_->buffer), recurrent_weights_->shape(), activation_, reinterpret_cast(output_->buffer)); memcpy(hidden_state_out_->buffer, output_->buffer, sizeof(float) * getNumberOfElements(output_->shape())); break; } default: { LOG(ERROR) << "Unsupported data type: " << static_cast(input_->type); return false; } } return true; } template bool RNN::RNNStep(const T* inputData, const Shape& inputShape, const T* hiddenStateInputData, const T* biasData, const T* weightsData, const Shape& weightsShape, const T* recurrentWeightsData, const Shape& recurrentWeightsShape, const int32_t activation, T* outputData) { NNTRACE_COMP("RNN::Eval"); Shape dummyShape; uint32_t numUnits = weightsShape.dimensions[0]; return RNNStep(inputData, inputShape, /*auxInputData=*/nullptr, /*auxInputShape=*/dummyShape, hiddenStateInputData, biasData, weightsData, weightsShape, /*auxWeightsData=*/nullptr, /*auxWeightsShape=*/dummyShape, recurrentWeightsData, recurrentWeightsShape, activation, /*outputBatchStride=*/numUnits, /*outputBatchOffset=*/0, outputData); } // A more general version of the RNNStep function. // Auxiliary input is treated as if it was concatenated to a regular input and // the result was multiplied by the weights matrix which was also concatenated // with auxiliary weights. template bool RNN::RNNStep(const T* inputData, const Shape& inputShape, const T* auxInputData, const Shape& auxInputShape, const T* hiddenStateInputData, const T* biasData, const T* weightsData, const Shape& weightsShape, const T* auxWeightsData, const Shape& auxWeightsShape, const T* recurrentWeightsData, const Shape& recurrentWeightsShape, const int32_t activation, const uint32_t outputBatchStride, const uint32_t outputBatchOffset, T* outputData, T* hiddenStateOutput) { NNTRACE_COMP("RNN::Eval"); const uint32_t batch_size = inputShape.dimensions[0]; const uint32_t num_units = weightsShape.dimensions[0]; const uint32_t input_size = inputShape.dimensions[1]; const uint32_t input_weights_stride = weightsShape.dimensions[1]; const uint32_t recurrent_weights_stride = recurrentWeightsShape.dimensions[1]; uint32_t aux_input_size = 0; uint32_t aux_input_weights_stride = 0; bool hasAuxInput = (auxInputData != nullptr); if (hasAuxInput) { aux_input_size = auxInputShape.dimensions[1]; aux_input_weights_stride = auxWeightsShape.dimensions[1]; } // For each batch for (uint32_t b = 0; b < batch_size; b++) { // Initialize the pointer to input, output and bias. const T* input_ptr_batch = inputData + b * input_size; const T* hidden_state_in_ptr_batch = hiddenStateInputData + b * num_units; const T* aux_input_ptr_batch = nullptr; if (hasAuxInput) { aux_input_ptr_batch = auxInputData + b * aux_input_size; } T* output_ptr_batch = outputData + b * outputBatchStride + outputBatchOffset; // Initialize input_weights and recurrent_weights. const T* input_weights_ptr = weightsData; const T* recurrent_weights_ptr = recurrentWeightsData; const T* aux_input_weights_ptr = nullptr; if (hasAuxInput) { aux_input_weights_ptr = auxWeightsData; } // Output = bias for (uint32_t o = 0; o < num_units; o++) { output_ptr_batch[o] = biasData[o]; } // Output += input * input_weights for (uint32_t o = 0; o < num_units; o++) { for (uint32_t i = 0; i < input_size; i++) { output_ptr_batch[o] += input_ptr_batch[i] * input_weights_ptr[i]; } input_weights_ptr += input_weights_stride; } if (hasAuxInput) { // Output += aux_input * aux_input_weights for (uint32_t o = 0; o < num_units; o++) { for (uint32_t i = 0; i < input_size; i++) { output_ptr_batch[o] += aux_input_ptr_batch[i] * aux_input_weights_ptr[i]; } aux_input_weights_ptr += aux_input_weights_stride; } } // Output += recurrent_weights * hidden_state for (uint32_t o = 0; o < num_units; o++) { for (uint32_t h = 0; h < num_units; h++) { output_ptr_batch[o] += hidden_state_in_ptr_batch[h] * recurrent_weights_ptr[h]; } recurrent_weights_ptr += recurrent_weights_stride; } // Output = activation(Output) for (uint32_t o = 0; o < num_units; o++) { output_ptr_batch[o] = (ActivationFunctor(static_cast(activation)))(output_ptr_batch[o]); if (hiddenStateOutput != nullptr) { *hiddenStateOutput = output_ptr_batch[o]; ++hiddenStateOutput; } } } return true; } template bool RNN::RNNStep<_Float16>(const _Float16* inputData, const Shape& inputShape, const _Float16* hiddenStateInputData, const _Float16* biasData, const _Float16* weightsData, const Shape& weightsShape, const _Float16* recurrentWeightsData, const Shape& recurrentWeightsShape, int32_t activation, _Float16* outputData); template bool RNN::RNNStep<_Float16>(const _Float16* inputData, const Shape& inputShape, const _Float16* auxInputData, const Shape& auxInputShape, const _Float16* hiddenStateInputData, const _Float16* biasData, const _Float16* weightsData, const Shape& weightsShape, const _Float16* auxWeightsData, const Shape& auxWeightsShape, const _Float16* recurrentWeightsData, const Shape& recurrentWeightsShape, const int32_t activation, const uint32_t outputBatchStride, const uint32_t outputBatchOffset, _Float16* outputData, _Float16* hiddenStateOutput); template bool RNN::RNNStep(const float* inputData, const Shape& inputShape, const float* hiddenStateInputData, const float* biasData, const float* weightsData, const Shape& weightsShape, const float* recurrentWeightsData, const Shape& recurrentWeightsShape, int32_t activation, float* outputData); template bool RNN::RNNStep(const float* inputData, const Shape& inputShape, const float* auxInputData, const Shape& auxInputShape, const float* hiddenStateInputData, const float* biasData, const float* weightsData, const Shape& weightsShape, const float* auxWeightsData, const Shape& auxWeightsShape, const float* recurrentWeightsData, const Shape& recurrentWeightsShape, int32_t activation, uint32_t outputBatchStride, uint32_t outputBatchStep, float* outputData, float* hiddenStateOutput); } // namespace nn } // namespace android