/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // Class used to build a model through a succession of successive calls // to the NN API. #ifndef ANDROID_FRAMEWORKS_ML_NN_RUNTIME_MODEL_BUILDER_H #define ANDROID_FRAMEWORKS_ML_NN_RUNTIME_MODEL_BUILDER_H #include #include #include #include "Memory.h" #include "NeuralNetworks.h" namespace android { namespace nn { class CompilationBuilder; class Device; class ExecutionPlan; class RuntimeMemory; class ModelBuilder { public: ModelBuilder() {} // Returns an operand/operation type corresponding to a given extension operand/operation type. int getExtensionType(const char* extensionName, uint16_t typeWithinExtension, int32_t* type); // Adds an operand to the model. int addOperand(const ANeuralNetworksOperandType& type); int setOperandValue(uint32_t index, const void* buffer, size_t length); int setOperandValueFromMemory(uint32_t index, const RuntimeMemory* memory, uint32_t offset, size_t length); int setOperandValueFromModel(uint32_t index, const ModelBuilder* value); int setOperandSymmPerChannelQuantParams( uint32_t index, const ANeuralNetworksSymmPerChannelQuantParams& extraParams); int setOperandExtensionData(uint32_t index, const void* data, size_t length); int addOperation(ANeuralNetworksOperationType type, uint32_t inputCount, const uint32_t* inputs, uint32_t outputCount, const uint32_t* outputs); int identifyInputsAndOutputs(uint32_t inputCount, const uint32_t* inputs, uint32_t outputCount, const uint32_t* outputs); int relaxComputationFloat32toFloat16(bool allow); bool isComputationFloat32RelaxedToFloat16() const { return mRelaxComputationFloat32toFloat16; } int finish(); bool isFinished() const { return mCompletedModel; } bool isValid() const { return !mInvalidModel; } bool hasOEMOperation() const { return mHasOEMOperation; } bool hasExtensionOperation() const { return mHasExtensionOperation; } // explicitDeviceList is true if the list of devices was provided explicitly // via the ANeuralNetworksModel_createForDevices API (which has certain // special semantics) and false otherwise. int createCompilation(CompilationBuilder** compilation, const std::vector>& devices, bool explicitDeviceList = false); Model makeModel() const; uint32_t operandCount() const { // We don't allow more than uint32_t worth of operands return static_cast(mOperands.size()); } uint32_t operationCount() const { // We don't allow more than uint32_t worth of operations return static_cast(mOperations.size()); } uint32_t inputCount() const { return static_cast(mInputIndexes.size()); } uint32_t outputCount() const { return static_cast(mOutputIndexes.size()); } uint32_t getInputOperandIndex(uint32_t i) const { CHECK_LT(i, mInputIndexes.size()); return mInputIndexes[i]; } const std::vector& getInputOperandIndexes() const { return mInputIndexes; } const Operand& getInputOperand(uint32_t i) const { uint32_t index = getInputOperandIndex(i); CHECK_LT(index, mOperands.size()); return mOperands[index]; } uint32_t getOutputOperandIndex(uint32_t i) const { CHECK_LT(i, mOutputIndexes.size()); return mOutputIndexes[i]; } const std::vector& getOutputOperandIndexes() const { return mOutputIndexes; } const Operand& getOutputOperand(uint32_t i) const { uint32_t index = getOutputOperandIndex(i); CHECK_LT(index, mOperands.size()); return mOperands[index]; } const Operand& getOperand(uint32_t index) const { return mOperands[index]; } const Operation& getOperation(uint32_t index) const { return mOperations[index]; } const MemoryTracker& getMemories() const { return mMemories; } const std::vector& getOperations() const { return mOperations; } const std::vector& getSortedOperationMapping() const { return mSortedOperationIndexMap; } const uint8_t* getPointerToOperandValue(uint32_t offset) const { return mSmallOperandValues.data() + offset; } uint32_t referencedModelCount() const { return static_cast(mReferencedModels.size()); } const ModelBuilder* getReferencedModel(uint32_t i) const { CHECK_LT(i, mReferencedModels.size()); return mReferencedModels[i]; } const ModelBuilder* getReferencedModel(const Operand& operand) const { CHECK(operand.lifetime == Operand::LifeTime::SUBGRAPH); return getReferencedModel(operand.location.offset); } // simulateFailureResultCode == ANEURALNETWORKS_NO_ERROR means behave normally. int partitionTheWork(const std::vector>& devices, uint32_t preference, uint32_t priority, const OptionalTimePoint& deadline, ExecutionPlan* plan, int simulateFailureResultCode = ANEURALNETWORKS_NO_ERROR) const; private: // TODO(b/132322449): move partitionTheWork, findBestDeviceForEachOperation, // getPerformance, supportedByControlFlowInterpreter, // isControlFlowOperationWithOperandOfUnknownSize, partitionTheWorkInternal, // sortIntoRunOrder to CompilationBuilder? // Populates bestDeviceForOperation // // For 0 <= i < operationCount(), produces // // 0 <= (*bestDeviceForOperation)[i] <= devices.size() // // (*bestDeviceForOperation)[i] == devices.size() is a special value meaning // that this is a control flow operation scheduled for interpreted execution // (see LogicalStep). int findBestDeviceForEachOperation(uint32_t preference, const std::vector>& devices, std::vector* bestDeviceForOperation) const; float getPerformance(uint32_t preference, const std::shared_ptr device) const; float getPerformance(uint32_t preference, const std::shared_ptr device, uint32_t operationIndex) const; bool supportedByControlFlowInterpreter(uint32_t operationIndex) const; // Returns true if the operation is IF or WHILE and has an inner or outer // input or output of unknown size. bool isControlFlowOperationWithOperandOfUnknownSize(uint32_t operationIndex) const; int partitionTheWorkInternal(uint32_t sourceModelIndex, const std::vector>& devices, uint32_t preference, uint32_t priority, const OptionalTimePoint& deadline, ExecutionPlan* plan) const; // Return true if either mCompleteModel or mInvalidModel is true. bool badState(const char* name); // Removes some trailing operation inputs that are set to default values. // // Some drivers reject operations based on the argument count even when the // optional arguments are set to default values. This transformation enables // more drivers to execute the model. See http://b/147105700. void removeTrailingArgumentsWithDefaultValues(); uint32_t getNumTrailingArgumentsToRemove(const Operation& operation) const; // Sorts the operations to be in the correct order for single threaded // node-at-a-time execution. bool sortIntoRunOrder(); // Copies the large values to a shared memory, if we have any. int copyLargeValuesToSharedMemory(); // The operations of the graph. std::vector mOperations; // The mapping from sorted index to the original index of operations in mOperations. // mSortedOperationIndexMap is empty before sortIntoRunOrder() is called. std::vector mSortedOperationIndexMap; // Is at least one of those operations an OEM_OPERATION? bool mHasOEMOperation = false; // Is at least one of those operations an extension operation? bool mHasExtensionOperation = false; // The description of the operands of the graph. std::vector mOperands; // Is at least one of those operands an OEM operand? bool mHasOEMOperand = false; // The indexes of input operands of the model. std::vector mInputIndexes; // The indexes of output operands of the model. std::vector mOutputIndexes; MemoryTracker mMemories; // The value of the small operands that are defined at model // creation time. std::vector mSmallOperandValues; struct LargeValue { uint32_t operandIndex; const void* buffer; }; // Operand index and buffer pointer for all the large operand values of this model. std::vector mLargeOperandValues; // The shared memory region that will contain the large values. std::unique_ptr mLargeValueMemory; // Once the model has been finished, we should not allow further // modifications to the model. bool mCompletedModel = false; // Any invalid manipulation of the model will mark the model invalid. // No further modifications are allowed to the model. bool mInvalidModel = false; // 'true' indicates TENSOR_FLOAT32 may be calculated with range and/or // precision as low as that of the IEEE 754 16-bit floating-point format. // 'false' indicates TENSOR_FLOAT32 must be calculated using at least the // range and precision of the IEEE 754 32-bit floating-point format. bool mRelaxComputationFloat32toFloat16 = false; // Models referenced by operands in this model. std::vector mReferencedModels; // Main subgraphs of models referenced by operands in this model. Required // for validateOperation(). std::vector mReferencedSubgraphsForValidation; class ModelMaker; }; } // namespace nn } // namespace android #endif // ANDROID_FRAMEWORKS_ML_NN_RUNTIME_MODEL_BUILDER_H