/* * Copyright (C) 2020 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include "CompilationBuilder.h" #include "ExecutionPlan.h" #include "HalUtils.h" #include "Manager.h" #include "TestNeuralNetworksWrapper.h" namespace android::nn { namespace { using sample_driver::SampleDriverPartial; using Result = test_wrapper::Result; using WrapperOperandType = test_wrapper::OperandType; using WrapperCompilation = test_wrapper::Compilation; using WrapperExecution = test_wrapper::Execution; using WrapperType = test_wrapper::Type; using WrapperModel = test_wrapper::Model; class EmptyOperationResolver : public IOperationResolver { public: const OperationRegistration* findOperation(OperationType) const override { return nullptr; } }; const char* kTestDriverName = "nnapi-test-sqrt-failing"; // A driver that only supports SQRT and fails during execution. class FailingTestDriver : public SampleDriverPartial { public: // EmptyOperationResolver causes execution to fail. FailingTestDriver() : SampleDriverPartial(kTestDriverName, &mEmptyOperationResolver) {} hardware::Return getCapabilities_1_3(getCapabilities_1_3_cb cb) override { cb(V1_3::ErrorStatus::NONE, makeCapabilities(0.1)); // Faster than CPU. return hardware::Void(); } private: std::vector getSupportedOperationsImpl(const V1_3::Model& model) const override { std::vector supported(model.main.operations.size()); std::transform(model.main.operations.begin(), model.main.operations.end(), supported.begin(), [](const V1_3::Operation& operation) { return operation.type == V1_3::OperationType::SQRT; }); return supported; } const EmptyOperationResolver mEmptyOperationResolver; }; class FailingDriverTest : public ::testing::Test { virtual void SetUp() { DeviceManager* deviceManager = DeviceManager::get(); if (deviceManager->getUseCpuOnly() || !DeviceManager::partitioningAllowsFallback(deviceManager->getPartitioning())) { GTEST_SKIP(); } mTestDevice = DeviceManager::forTest_makeDriverDevice( makeSharedDevice(kTestDriverName, new FailingTestDriver())); deviceManager->forTest_setDevices({ mTestDevice, DeviceManager::getCpuDevice(), }); } virtual void TearDown() { DeviceManager::get()->forTest_reInitializeDeviceList(); } protected: std::shared_ptr mTestDevice; }; // Regression test for b/152623150. TEST_F(FailingDriverTest, FailAfterInterpretedWhile) { // Model: // f = input0 // b = input1 // while CAST(b): # Identity cast. // f = CAST(f) // # FailingTestDriver fails here. When partial CPU fallback happens, // # it should not loop forever. // output0 = SQRT(f) WrapperOperandType floatType(WrapperType::TENSOR_FLOAT32, {2}); WrapperOperandType boolType(WrapperType::TENSOR_BOOL8, {1}); WrapperModel conditionModel; { uint32_t f = conditionModel.addOperand(&floatType); uint32_t b = conditionModel.addOperand(&boolType); uint32_t out = conditionModel.addOperand(&boolType); conditionModel.addOperation(ANEURALNETWORKS_CAST, {b}, {out}); conditionModel.identifyInputsAndOutputs({f, b}, {out}); ASSERT_EQ(conditionModel.finish(), Result::NO_ERROR); ASSERT_TRUE(conditionModel.isValid()); } WrapperModel bodyModel; { uint32_t f = bodyModel.addOperand(&floatType); uint32_t b = bodyModel.addOperand(&boolType); uint32_t out = bodyModel.addOperand(&floatType); bodyModel.addOperation(ANEURALNETWORKS_CAST, {f}, {out}); bodyModel.identifyInputsAndOutputs({f, b}, {out}); ASSERT_EQ(bodyModel.finish(), Result::NO_ERROR); ASSERT_TRUE(bodyModel.isValid()); } WrapperModel model; { uint32_t fInput = model.addOperand(&floatType); uint32_t bInput = model.addOperand(&boolType); uint32_t fTmp = model.addOperand(&floatType); uint32_t fSqrt = model.addOperand(&floatType); uint32_t cond = model.addModelOperand(&conditionModel); uint32_t body = model.addModelOperand(&bodyModel); model.addOperation(ANEURALNETWORKS_WHILE, {cond, body, fInput, bInput}, {fTmp}); model.addOperation(ANEURALNETWORKS_SQRT, {fTmp}, {fSqrt}); model.identifyInputsAndOutputs({fInput, bInput}, {fSqrt}); ASSERT_TRUE(model.isValid()); ASSERT_EQ(model.finish(), Result::NO_ERROR); } WrapperCompilation compilation(&model); ASSERT_EQ(compilation.finish(), Result::NO_ERROR); const CompilationBuilder* compilationBuilder = reinterpret_cast(compilation.getHandle()); const ExecutionPlan& plan = compilationBuilder->forTest_getExecutionPlan(); const std::vector>& steps = plan.forTest_compoundGetSteps(); ASSERT_EQ(steps.size(), 6u); ASSERT_TRUE(steps[0]->isWhile()); ASSERT_TRUE(steps[1]->isExecution()); ASSERT_EQ(steps[1]->executionStep()->getDevice(), DeviceManager::getCpuDevice()); ASSERT_TRUE(steps[2]->isGoto()); ASSERT_TRUE(steps[3]->isExecution()); ASSERT_EQ(steps[3]->executionStep()->getDevice(), DeviceManager::getCpuDevice()); ASSERT_TRUE(steps[4]->isGoto()); ASSERT_TRUE(steps[5]->isExecution()); ASSERT_EQ(steps[5]->executionStep()->getDevice(), mTestDevice); WrapperExecution execution(&compilation); const float fInput[] = {12 * 12, 5 * 5}; const bool8 bInput = false; float fSqrt[] = {0, 0}; ASSERT_EQ(execution.setInput(0, &fInput), Result::NO_ERROR); ASSERT_EQ(execution.setInput(1, &bInput), Result::NO_ERROR); ASSERT_EQ(execution.setOutput(0, &fSqrt), Result::NO_ERROR); ASSERT_EQ(execution.compute(), Result::NO_ERROR); ASSERT_EQ(fSqrt[0], 12); ASSERT_EQ(fSqrt[1], 5); } // Regression test for b/155923033. TEST_F(FailingDriverTest, SimplePlan) { // Model: // output0 = SQRT(input0) // // This results in a SIMPLE execution plan. When FailingTestDriver fails, // partial CPU fallback should complete the execution. WrapperOperandType floatType(WrapperType::TENSOR_FLOAT32, {2}); WrapperModel model; { uint32_t fInput = model.addOperand(&floatType); uint32_t fSqrt = model.addOperand(&floatType); model.addOperation(ANEURALNETWORKS_SQRT, {fInput}, {fSqrt}); model.identifyInputsAndOutputs({fInput}, {fSqrt}); ASSERT_TRUE(model.isValid()); ASSERT_EQ(model.finish(), Result::NO_ERROR); } WrapperCompilation compilation(&model); ASSERT_EQ(compilation.finish(), Result::NO_ERROR); const CompilationBuilder* compilationBuilder = reinterpret_cast(compilation.getHandle()); const ExecutionPlan& plan = compilationBuilder->forTest_getExecutionPlan(); ASSERT_TRUE(plan.isSimple()); WrapperExecution execution(&compilation); const float fInput[] = {12 * 12, 5 * 5}; float fSqrt[] = {0, 0}; ASSERT_EQ(execution.setInput(0, &fInput), Result::NO_ERROR); ASSERT_EQ(execution.setOutput(0, &fSqrt), Result::NO_ERROR); ASSERT_EQ(execution.compute(), Result::NO_ERROR); ASSERT_EQ(fSqrt[0], 12); ASSERT_EQ(fSqrt[1], 5); } } // namespace } // namespace android::nn