/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // This test only tests internal APIs, and has dependencies on internal header // files, including NN API HIDL definitions. // It is not part of CTS. #include #include #include #include #include "Manager.h" #include "Memory.h" #include "TestMemory.h" #include "TestNeuralNetworksWrapper.h" using WrapperCompilation = ::android::nn::test_wrapper::Compilation; using WrapperExecution = ::android::nn::test_wrapper::Execution; using WrapperMemory = ::android::nn::test_wrapper::Memory; using WrapperModel = ::android::nn::test_wrapper::Model; using WrapperOperandType = ::android::nn::test_wrapper::OperandType; using WrapperResult = ::android::nn::test_wrapper::Result; using WrapperType = ::android::nn::test_wrapper::Type; namespace { // Tests to ensure that various kinds of memory leaks do not occur. // // The fixture checks that no anonymous shared memory regions are leaked by // comparing the count of /dev/ashmem mappings in SetUp and TearDown. This could // break if the test or framework starts lazily instantiating something that // creates a mapping - at that point the way the test works needs to be // reinvestigated. The filename /dev/ashmem is a documented part of the Android // kernel interface (see // https://source.android.com/devices/architecture/kernel/reqs-interfaces). // // (We can also get very unlucky and mask a memory leak by unrelated unmapping // somewhere else. This seems unlikely enough to not deal with.) class MemoryLeakTest : public ::testing::Test { protected: void SetUp() override; void TearDown() override; private: size_t GetAshmemMappingsCount(); size_t mStartingMapCount = 0; bool mIsCpuOnly; }; void MemoryLeakTest::SetUp() { mIsCpuOnly = android::nn::DeviceManager::get()->getUseCpuOnly(); mStartingMapCount = GetAshmemMappingsCount(); } void MemoryLeakTest::TearDown() { android::nn::DeviceManager::get()->setUseCpuOnly(mIsCpuOnly); const size_t endingMapCount = GetAshmemMappingsCount(); ASSERT_EQ(mStartingMapCount, endingMapCount); } size_t MemoryLeakTest::GetAshmemMappingsCount() { std::ifstream mappingsStream("/proc/self/maps"); if (!mappingsStream.good()) { // errno is set by std::ifstream on Linux ADD_FAILURE() << "Failed to open /proc/self/maps: " << std::strerror(errno); return 0; } std::string line; int mapCount = 0; while (std::getline(mappingsStream, line)) { if (line.find("/dev/ashmem") != std::string::npos) { ++mapCount; } } return mapCount; } // As well as serving as a functional test for ASharedMemory, also // serves as a regression test for http://b/69685100 "RunTimePoolInfo // leaks shared memory regions". // // TODO: test non-zero offset. TEST_F(MemoryLeakTest, TestASharedMemory) { // Layout where to place matrix2 and matrix3 in the memory we'll allocate. // We have gaps to test that we don't assume contiguity. constexpr uint32_t offsetForMatrix2 = 20; constexpr uint32_t offsetForMatrix3 = offsetForMatrix2 + sizeof(matrix2) + 30; constexpr uint32_t weightsSize = offsetForMatrix3 + sizeof(matrix3) + 60; int weightsFd = ASharedMemory_create("weights", weightsSize); ASSERT_GT(weightsFd, -1); uint8_t* weightsData = (uint8_t*)mmap(nullptr, weightsSize, PROT_READ | PROT_WRITE, MAP_SHARED, weightsFd, 0); ASSERT_NE(weightsData, nullptr); memcpy(weightsData + offsetForMatrix2, matrix2, sizeof(matrix2)); memcpy(weightsData + offsetForMatrix3, matrix3, sizeof(matrix3)); WrapperMemory weights(weightsSize, PROT_READ | PROT_WRITE, weightsFd, 0); ASSERT_TRUE(weights.isValid()); WrapperModel model; WrapperOperandType matrixType(WrapperType::TENSOR_FLOAT32, {3, 4}); WrapperOperandType scalarType(WrapperType::INT32, {}); int32_t activation(0); auto a = model.addOperand(&matrixType); auto b = model.addOperand(&matrixType); auto c = model.addOperand(&matrixType); auto d = model.addOperand(&matrixType); auto e = model.addOperand(&matrixType); auto f = model.addOperand(&scalarType); model.setOperandValueFromMemory(e, &weights, offsetForMatrix2, sizeof(Matrix3x4)); model.setOperandValueFromMemory(a, &weights, offsetForMatrix3, sizeof(Matrix3x4)); model.setOperandValue(f, &activation, sizeof(activation)); model.addOperation(ANEURALNETWORKS_ADD, {a, c, f}, {b}); model.addOperation(ANEURALNETWORKS_ADD, {b, e, f}, {d}); model.identifyInputsAndOutputs({c}, {d}); ASSERT_TRUE(model.isValid()); model.finish(); // Test the two node model. constexpr uint32_t offsetForMatrix1 = 20; constexpr size_t inputSize = offsetForMatrix1 + sizeof(Matrix3x4); int inputFd = ASharedMemory_create("input", inputSize); ASSERT_GT(inputFd, -1); uint8_t* inputData = (uint8_t*)mmap(nullptr, inputSize, PROT_READ | PROT_WRITE, MAP_SHARED, inputFd, 0); ASSERT_NE(inputData, nullptr); memcpy(inputData + offsetForMatrix1, matrix1, sizeof(Matrix3x4)); WrapperMemory input(inputSize, PROT_READ, inputFd, 0); ASSERT_TRUE(input.isValid()); constexpr uint32_t offsetForActual = 32; constexpr size_t outputSize = offsetForActual + sizeof(Matrix3x4); int outputFd = ASharedMemory_create("output", outputSize); ASSERT_GT(outputFd, -1); uint8_t* outputData = (uint8_t*)mmap(nullptr, outputSize, PROT_READ | PROT_WRITE, MAP_SHARED, outputFd, 0); ASSERT_NE(outputData, nullptr); memset(outputData, 0, outputSize); WrapperMemory actual(outputSize, PROT_READ | PROT_WRITE, outputFd, 0); ASSERT_TRUE(actual.isValid()); WrapperCompilation compilation2(&model); ASSERT_EQ(compilation2.finish(), WrapperResult::NO_ERROR); WrapperExecution execution2(&compilation2); ASSERT_EQ(execution2.setInputFromMemory(0, &input, offsetForMatrix1, sizeof(Matrix3x4)), WrapperResult::NO_ERROR); ASSERT_EQ(execution2.setOutputFromMemory(0, &actual, offsetForActual, sizeof(Matrix3x4)), WrapperResult::NO_ERROR); ASSERT_EQ(execution2.compute(), WrapperResult::NO_ERROR); ASSERT_EQ( CompareMatrices(expected3, *reinterpret_cast(outputData + offsetForActual)), 0); munmap(weightsData, weightsSize); munmap(inputData, inputSize); munmap(outputData, outputSize); close(weightsFd); close(inputFd); close(outputFd); } #ifndef NNTEST_ONLY_PUBLIC_API // Regression test for http://b/73663843, conv_2d trying to allocate too much memory. TEST_F(MemoryLeakTest, convTooLarge) { android::nn::DeviceManager::get()->setUseCpuOnly(true); WrapperModel model; // This kernel/input size will make convQuant8 allocate 12 * 13 * 13 * 128 * 92 * 92, which is // just outside of signed int range (0x82F56000) - this will fail due to CPU implementation // limitations WrapperOperandType type3(WrapperType::INT32, {}); WrapperOperandType type2(WrapperType::TENSOR_INT32, {128}, 0.25, 0); WrapperOperandType type0(WrapperType::TENSOR_QUANT8_ASYMM, {12, 104, 104, 128}, 0.5, 0); WrapperOperandType type4(WrapperType::TENSOR_QUANT8_ASYMM, {12, 92, 92, 128}, 1.0, 0); WrapperOperandType type1(WrapperType::TENSOR_QUANT8_ASYMM, {128, 13, 13, 128}, 0.5, 0); // Operands auto op1 = model.addOperand(&type0); auto op2 = model.addOperand(&type1); auto op3 = model.addOperand(&type2); auto pad0 = model.addOperand(&type3); auto act = model.addOperand(&type3); auto stride = model.addOperand(&type3); auto op4 = model.addOperand(&type4); // Operations uint8_t op2_init[128 * 13 * 13 * 128] = {}; model.setOperandValue(op2, op2_init, sizeof(op2_init)); int32_t op3_init[128] = {}; model.setOperandValue(op3, op3_init, sizeof(op3_init)); int32_t pad0_init[] = {0}; model.setOperandValue(pad0, pad0_init, sizeof(pad0_init)); int32_t act_init[] = {0}; model.setOperandValue(act, act_init, sizeof(act_init)); int32_t stride_init[] = {1}; model.setOperandValue(stride, stride_init, sizeof(stride_init)); model.addOperation(ANEURALNETWORKS_CONV_2D, {op1, op2, op3, pad0, pad0, pad0, pad0, stride, stride, act}, {op4}); // Inputs and outputs model.identifyInputsAndOutputs({op1}, {op4}); ASSERT_TRUE(model.isValid()); model.finish(); // Compilation WrapperCompilation compilation(&model); ASSERT_EQ(WrapperResult::NO_ERROR, compilation.finish()); WrapperExecution execution(&compilation); // Set input and outputs static uint8_t input[12 * 104 * 104 * 128] = {}; ASSERT_EQ(WrapperResult::NO_ERROR, execution.setInput(0, input, sizeof(input))); static uint8_t output[12 * 92 * 92 * 128] = {}; ASSERT_EQ(WrapperResult::NO_ERROR, execution.setOutput(0, output, sizeof(output))); // This shouldn't segfault WrapperResult r = execution.compute(); ASSERT_EQ(WrapperResult::OP_FAILED, r); } #endif // NNTEST_ONLY_PUBLIC_API } // end namespace