/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include "TestNeuralNetworksWrapper.h" using namespace android::nn::test_wrapper; namespace { // We try the following model: // // op2 = ADD(op0, op1) // op4 = TRANSPOSE(op2, op3) // // where op0 is a required model input, should be of dimension (A, B). // op1 is a required constant, should be of dimension (A, 1). // op2 is an internal operand, should be of dimension (A, B). // op3 is an omitted optional constant / model input, should be of dimension (2). // op4 is a model output, should be of dimension (B, A). // // For each operand, we test combinations of dimensions specification level during model // construction time and execution time (if any). All other relevant combinations of the // basic scenarios are then iterated over in TestAll. Note that we don't want to just use // googletest's parametrized tests (TEST_P) as the 16k combinations generated too many // lines of output for the test infrastructure to handle correctly. // Which operand to test enum class UnspecifiedOperand { INPUT_MANDATORY, CONST_MANDATORY, TEMPORARY_VARIABLE, INPUT_OPTIONAL, CONST_OPTIONAL, OUTPUT }; // How well the dimensional information is specified enum class SpecificationLevel { FULLY_SPECIFIED, // all dimensions are clearly specified without any ambiguity UNSPECIFIED_DIM, // certain dimension is set to 0 as unknown, but rank is well-specified UNSPECIFIED_RANK, // rank is set to 0 as unknown, passing an empty vector for dims UNSPECIFIED_TYPE // only during execution time, passing nullptr for operand type }; using UnspecifiedDimensionsTestParam = std::tuple; // execution time // Indexing constexpr uint32_t kIndex0_Model = 0; // op0, model constexpr uint32_t kIndex1_Model = 1; // op1, model constexpr uint32_t kIndex2_Model = 2; // op2, model constexpr uint32_t kIndex3_Model = 3; // op3, model constexpr uint32_t kIndex4_Model = 4; // op4, model constexpr uint32_t kIndex0_Execution = 5; // op0, execution constexpr uint32_t kIndex3_Execution = 6; // op3, execution constexpr uint32_t kIndex4_Execution = 7; // op4, execution constexpr uint32_t kIndexCount = 8; // count constexpr int32_t kValueA = 0; constexpr int32_t kValueB = 2; constexpr uint32_t kDimAGood = 2; constexpr uint32_t kDimABad = 3; class UnspecifiedDimensionsTest : public ::testing::TestWithParam { enum class OptionalType { CONST, INPUT }; // omitted operand op3 is an input or const enum class BufferSize { LESS, EQUAL, MORE }; // only used for output buffer size enum class OperandLocation { BUFFER, MEMORY }; // where the operand reside enum class InOutType { INPUT, OUTPUT }; // parameter for setInOut() // Whether input/output padding is implicitly disabled, enabled, or explicitly disabled enum class PaddingEnabled { DEFAULT, ENABLED, DISABLED }; class SharedMemoryForTest { public: SharedMemoryForTest() : memory(nullptr), fd(-1), buffer(nullptr) {} ~SharedMemoryForTest() { if (buffer != nullptr) { munmap(buffer, kLength); } if (fd > -1) { close(fd); } } void initialize(size_t size, const void* data) { fd = ASharedMemory_create(nullptr, kLength); ASSERT_GT(fd, -1); buffer = (uint8_t*)mmap(nullptr, kLength, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); ASSERT_NE(buffer, nullptr); memcpy(buffer, data, size); memory = std::make_shared(kLength, PROT_READ | PROT_WRITE, fd, 0); ASSERT_TRUE(memory->isValid()); } const Memory* getMemory() const { return memory.get(); } const uint8_t* getBuffer() const { return buffer; } private: DISALLOW_COPY_AND_ASSIGN(SharedMemoryForTest); std::shared_ptr memory; int fd; uint8_t* buffer; // Always allocate an ashmem of 64 bytes. This is large enough for all use cases. static constexpr size_t kLength = 64; }; std::string toString(SpecificationLevel level) { switch (level) { case SpecificationLevel::FULLY_SPECIFIED: return "FULLY_SPECIFIED"; case SpecificationLevel::UNSPECIFIED_DIM: return "UNSPECIFIED_DIM"; case SpecificationLevel::UNSPECIFIED_RANK: return "UNSPECIFIED_RANK"; case SpecificationLevel::UNSPECIFIED_TYPE: return "UNSPECIFIED_TYPE"; default: return "UNKNOWN"; } } std::string toString(BufferSize b) { switch (b) { case BufferSize::LESS: return "LESS"; case BufferSize::EQUAL: return "EQUAL"; case BufferSize::MORE: return "MORE"; default: return "UNKNOWN"; } } std::string toString(OperandLocation loc) { switch (loc) { case OperandLocation::BUFFER: return "BUFFER"; case OperandLocation::MEMORY: return "MEMORY"; default: return "UNKNOWN"; } } std::string toString(PaddingEnabled enabled) { switch (enabled) { case PaddingEnabled::DEFAULT: return "DEFAULT"; case PaddingEnabled::ENABLED: return "ENABLED"; case PaddingEnabled::DISABLED: return "DISABLED"; default: return "UNKNOWN"; } } protected: virtual void SetUp() { uint32_t modelIndex, executionIndex; switch (kUnspecifiedOperand) { case UnspecifiedOperand::INPUT_MANDATORY: modelIndex = kIndex0_Model; executionIndex = kIndex0_Execution; mBadIndexChoices = {kIndexCount, modelIndex, executionIndex}; mOperandLocationChoices = {OperandLocation::BUFFER, OperandLocation::MEMORY}; mBufferSizeChoices = {BufferSize::LESS, BufferSize::EQUAL, BufferSize::MORE}; mEnablePaddingChoices = {PaddingEnabled::DEFAULT, PaddingEnabled::ENABLED, PaddingEnabled::DISABLED}; break; case UnspecifiedOperand::CONST_MANDATORY: modelIndex = kIndex1_Model; executionIndex = kIndexCount; mBadIndexChoices = {kIndexCount, modelIndex}; mOperandLocationChoices = {OperandLocation::BUFFER, OperandLocation::MEMORY}; break; case UnspecifiedOperand::TEMPORARY_VARIABLE: modelIndex = kIndex2_Model; executionIndex = kIndexCount; mBadIndexChoices = {kIndexCount, modelIndex}; mOperandLocationChoices = {OperandLocation::BUFFER}; break; case UnspecifiedOperand::INPUT_OPTIONAL: modelIndex = kIndex3_Model; executionIndex = kIndex3_Execution; mBadIndexChoices = {kIndexCount}; mOptionalType = OptionalType::INPUT; mOperandLocationChoices = {OperandLocation::BUFFER}; break; case UnspecifiedOperand::CONST_OPTIONAL: modelIndex = kIndex3_Model; executionIndex = kIndexCount; mBadIndexChoices = {kIndexCount}; mOperandLocationChoices = {OperandLocation::BUFFER}; break; case UnspecifiedOperand::OUTPUT: modelIndex = kIndex4_Model; executionIndex = kIndex4_Execution; mBadIndexChoices = {kIndexCount, modelIndex, executionIndex}; mOperandLocationChoices = {OperandLocation::BUFFER, OperandLocation::MEMORY}; mBufferSizeChoices = {BufferSize::LESS, BufferSize::EQUAL, BufferSize::MORE}; mEnablePaddingChoices = {PaddingEnabled::DEFAULT, PaddingEnabled::ENABLED, PaddingEnabled::DISABLED}; break; default: break; } std::vector levels{ SpecificationLevel::UNSPECIFIED_DIM, SpecificationLevel::FULLY_SPECIFIED, SpecificationLevel::UNSPECIFIED_DIM, SpecificationLevel::FULLY_SPECIFIED, SpecificationLevel::UNSPECIFIED_DIM, SpecificationLevel::FULLY_SPECIFIED, SpecificationLevel::FULLY_SPECIFIED, SpecificationLevel::FULLY_SPECIFIED}; levels[modelIndex] = kSpecificationLevelModel; if (executionIndex < kIndexCount) { levels[executionIndex] = kSpecificationLevelExecution; } mSpecificationLevels = std::move(levels); } OperandType getType(uint32_t index, const std::vector& dim) { const SpecificationLevel l = mSpecificationLevels[index]; std::vector setDim; if (l != SpecificationLevel::UNSPECIFIED_RANK) { for (auto d : dim) { if (d == 0) { setDim.push_back(mBadIndex != index ? kDimAGood : kDimABad); } else { setDim.push_back(l == SpecificationLevel::FULLY_SPECIFIED ? d : 0); } } } float scale = mOperandTypes[index] == Type::TENSOR_QUANT8_ASYMM ? 1.0 : 0.0; return OperandType(mOperandTypes[index], setDim, scale, 0); } uint32_t getSize(uint32_t index, const std::vector& dim, BufferSize s = BufferSize::EQUAL) { uint32_t n = 1; for (auto d : dim) { n *= (d == 0 ? (mBadIndex != index ? kDimAGood : kDimABad) : d); } if (s == BufferSize::LESS) { n /= 2; } else if (s == BufferSize::MORE) { n *= 2; } return n; }; template Result setInOut(Execution* execution, uint32_t index, uint32_t opIndex, const std::vector& dim, void* buffer, const SharedMemoryForTest* memory, InOutType inOutType, BufferSize bufferSize = BufferSize::EQUAL) { const auto kLevel = mSpecificationLevels[index]; size_t size = (buffer == nullptr) ? 0 : getSize(index, dim, bufferSize) * sizeof(T); auto type = getType(index, dim); ANeuralNetworksOperandType* t = (kLevel == SpecificationLevel::UNSPECIFIED_TYPE) ? nullptr : &type.operandType; if (mOperandLocation == OperandLocation::MEMORY && memory != nullptr) { if (inOutType == InOutType::INPUT) { return execution->setInputFromMemory(opIndex, memory->getMemory(), 0, size, t); } else { return execution->setOutputFromMemory(opIndex, memory->getMemory(), 0, size, t); } } else { if (inOutType == InOutType::INPUT) { return execution->setInput(opIndex, buffer, size, t); } else { return execution->setOutput(opIndex, buffer, size, t); } } return Result::NO_ERROR; } template void TestOne() { // Phase 1: Build Model Model model; auto type0 = getType(kIndex0_Model, {kValueA, kValueB}); auto type1 = getType(kIndex1_Model, {kValueA, 1}); auto type2 = getType(kIndex2_Model, {kValueA, kValueB}); auto type3 = getType(kIndex3_Model, {2}); auto type4 = getType(kIndex4_Model, {kValueB, kValueA}); OperandType typeActivation(Type::INT32, {}); // activation auto op0 = model.addOperand(&type0); auto op1 = model.addOperand(&type1); auto op2 = model.addOperand(&type2); auto op3 = model.addOperand(&type3); auto op4 = model.addOperand(&type4); auto act = model.addOperand(&typeActivation); T bufferOp1[2] = {1, 2}; SharedMemoryForTest memoryOp1; memoryOp1.initialize(sizeof(bufferOp1), bufferOp1); if (mOperandLocation == OperandLocation::BUFFER) { model.setOperandValue(op1, bufferOp1, sizeof(bufferOp1)); } else { model.setOperandValueFromMemory(op1, memoryOp1.getMemory(), 0, sizeof(bufferOp1)); } int32_t kActivation = 0; model.setOperandValue(act, &kActivation, sizeof(int32_t)); if (mOptionalType == OptionalType::CONST) { model.setOperandValue(op3, nullptr, 0); } model.addOperation(ANEURALNETWORKS_ADD, {op0, op1, act}, {op2}); model.addOperation(ANEURALNETWORKS_TRANSPOSE, {op2, op3}, {op4}); if (mOptionalType == OptionalType::CONST) { model.identifyInputsAndOutputs({op0}, {op4}); } else { model.identifyInputsAndOutputs({op0, op3}, {op4}); } bool expected = expectModelIsValid(); ASSERT_EQ(model.isValid(), expected); Result result = model.finish(); if (expected) { ASSERT_EQ(result, Result::NO_ERROR); } else { // There is no contract (yet) for specific errors in NeuralNetworks.h, // so we just assert on not being successful. ASSERT_NE(result, Result::NO_ERROR); return; } // Phase 2: Compile Model, should always pass Compilation compilation(&model); ASSERT_EQ(compilation.finish(), Result::NO_ERROR); std::vector valueBChoices = {1, 2}; for (const auto valueB : valueBChoices) { SCOPED_TRACE("ValueB: " + std::to_string(valueB)); if (valueB != kValueB && (mSpecificationLevels[kIndex0_Model] == SpecificationLevel::FULLY_SPECIFIED || mSpecificationLevels[kIndex2_Model] == SpecificationLevel::FULLY_SPECIFIED || mSpecificationLevels[kIndex4_Model] == SpecificationLevel::FULLY_SPECIFIED)) { continue; } // Phase 3: Set Execution Input/Output Execution execution(&compilation); // Enable padding if (mEnablePadding == PaddingEnabled::ENABLED) { ASSERT_EQ(execution.enableInputAndOutputPadding(true), Result::NO_ERROR); } else if (mEnablePadding == PaddingEnabled::DISABLED) { ASSERT_EQ(execution.enableInputAndOutputPadding(false), Result::NO_ERROR); } // Set input0 Result result; T bufferOp0[6] = {1, 2, 3, 4, 5, 6}; SharedMemoryForTest memoryOp0; memoryOp0.initialize(sizeof(bufferOp0), bufferOp0); result = setInOut(&execution, kIndex0_Execution, 0, {kValueA, valueB}, bufferOp0, &memoryOp0, InOutType::INPUT, mBufferSize); ASSERT_EQ(result, expectSetInput0()); if (result != Result::NO_ERROR) continue; // Set input1, omitted if (mOptionalType == OptionalType::INPUT) { result = setInOut(&execution, kIndex3_Execution, 1, {2}, nullptr, nullptr, InOutType::INPUT); ASSERT_EQ(result, expectSetInput1()); if (result != Result::NO_ERROR) continue; } // Set output0 T bufferOp4[16]; SharedMemoryForTest memoryOp4; memoryOp4.initialize(sizeof(bufferOp4), bufferOp4); result = setInOut(&execution, kIndex4_Execution, 0, {valueB, kValueA}, bufferOp4, &memoryOp4, InOutType::OUTPUT, mBufferSize); ASSERT_EQ(result, expectSetOutput0()); if (result != Result::NO_ERROR) continue; // Phase 4: Compute and Compare Results result = execution.compute(); ASSERT_EQ(result, expectCompute()); if (result == Result::OP_FAILED) continue; std::vector outputShape; ASSERT_EQ(execution.getOutputOperandDimensions(0, &outputShape), result); std::vector expectedOutputShape = {valueB, kDimAGood}; ASSERT_EQ(outputShape, expectedOutputShape); if (result == Result::OUTPUT_INSUFFICIENT_SIZE) continue; const T* outputBuffer = mOperandLocation == OperandLocation::MEMORY ? reinterpret_cast(memoryOp4.getBuffer()) : bufferOp4; T expected_1x2[2] = {2, 4}; T expected_2x2[4] = {2, 5, 3, 6}; for (uint32_t i = 0; i < kDimAGood * valueB; i++) { ASSERT_EQ(outputBuffer[i], valueB == 1 ? expected_1x2[i] : expected_2x2[i]); } } } // Expect invalid model for the following cases // - op1 is not fully specified (const operand must be fully specified) // - op1 has bad dimension value (const operand size is checked with buffer size) bool expectModelIsValid() { const auto kLevel1_Model = mSpecificationLevels[kIndex1_Model]; if (kLevel1_Model != SpecificationLevel::FULLY_SPECIFIED || mBadIndex == kIndex1_Model) { return false; } return true; } // Expect BAD_DATA on input0 for the following cases // - the provided type is not fully specified // - the provided type does not agree with the type set at model construction time // - no type is provided and the type is not fully specified at model construction time // - the buffer size (length) is less than needed // - the buffer size (length) is more than needed and padding is not enabled Result expectSetInput0() { const auto kLevel0_Model = mSpecificationLevels[kIndex0_Model]; const auto kLevel0_Execution = mSpecificationLevels[kIndex0_Execution]; switch (kLevel0_Execution) { case SpecificationLevel::UNSPECIFIED_DIM: case SpecificationLevel::UNSPECIFIED_RANK: return Result::BAD_DATA; case SpecificationLevel::FULLY_SPECIFIED: if ((mBadIndex == kIndex0_Execution || mBadIndex == kIndex0_Model) && kLevel0_Model != SpecificationLevel::UNSPECIFIED_RANK) { return Result::BAD_DATA; } if (mBufferSize == BufferSize::LESS) { return Result::BAD_DATA; } if (mEnablePadding != PaddingEnabled::ENABLED && mBufferSize == BufferSize::MORE) { return Result::BAD_DATA; } break; case SpecificationLevel::UNSPECIFIED_TYPE: if (kLevel0_Model == SpecificationLevel::UNSPECIFIED_DIM || kLevel0_Model == SpecificationLevel::UNSPECIFIED_RANK) { return Result::BAD_DATA; } if (mBufferSize == BufferSize::LESS) { return Result::BAD_DATA; } if (mEnablePadding != PaddingEnabled::ENABLED && mBufferSize == BufferSize::MORE) { return Result::BAD_DATA; } // This is the case when the dimension is incorrectly specified in the model. // With incorrect dimension, the needed size is 2 * 3 = 6 data type size. // BufferSize::EQUAL (2 * 2 = 4 data type size) cannot provide enough length. if (mBadIndex == kIndex0_Model && mBufferSize == BufferSize::EQUAL) { return Result::BAD_DATA; } break; default: break; } return Result::NO_ERROR; } // Expect BAD_DATA on input1 for the following cases // - the provided type is less detailed as the type set at model construction time Result expectSetInput1() { const auto kLevel3_Model = mSpecificationLevels[kIndex3_Model]; const auto kLevel3_Execution = mSpecificationLevels[kIndex3_Execution]; switch (kLevel3_Execution) { case SpecificationLevel::UNSPECIFIED_DIM: if (kLevel3_Model == SpecificationLevel::FULLY_SPECIFIED) { return Result::BAD_DATA; } break; case SpecificationLevel::UNSPECIFIED_RANK: if (kLevel3_Model != SpecificationLevel::UNSPECIFIED_RANK) { return Result::BAD_DATA; } break; default: break; } return Result::NO_ERROR; } // Expect BAD_DATA on output0 for the following cases // - the provided type is less detailed as the type set at model construction time // - the provided type does not agree with the type set at model construction time // - the buffer size (length) is less than needed // - the buffer size (length) is more than needed and padding is not enabled Result expectSetOutput0() { const auto kLevel4_Model = mSpecificationLevels[kIndex4_Model]; const auto kLevel4_Execution = mSpecificationLevels[kIndex4_Execution]; switch (kLevel4_Execution) { case SpecificationLevel::UNSPECIFIED_DIM: if (kLevel4_Model == SpecificationLevel::FULLY_SPECIFIED || (kLevel4_Model == SpecificationLevel::UNSPECIFIED_DIM && (mBadIndex == kIndex4_Model || mBadIndex == kIndex4_Execution))) { return Result::BAD_DATA; } break; case SpecificationLevel::UNSPECIFIED_RANK: if (kLevel4_Model != SpecificationLevel::UNSPECIFIED_RANK) { return Result::BAD_DATA; } break; case SpecificationLevel::FULLY_SPECIFIED: if ((mBadIndex == kIndex4_Model || mBadIndex == kIndex4_Execution) && kLevel4_Model != SpecificationLevel::UNSPECIFIED_RANK) { return Result::BAD_DATA; } if (mBufferSize == BufferSize::LESS) { return Result::BAD_DATA; } if (mEnablePadding != PaddingEnabled::ENABLED && mBufferSize == BufferSize::MORE) { return Result::BAD_DATA; } break; case SpecificationLevel::UNSPECIFIED_TYPE: if (kLevel4_Model == SpecificationLevel::FULLY_SPECIFIED) { if (mBufferSize == BufferSize::LESS) { return Result::BAD_DATA; } if (mEnablePadding != PaddingEnabled::ENABLED && mBufferSize == BufferSize::MORE) { return Result::BAD_DATA; } // This is the case when the dimension is incorrectly specified in the model. // With incorrect dimension, the needed size is 2 * 3 = 6 data type size. // BufferSize::EQUAL (2 * 2 = 4 data type size) cannot provide enough length. if (mBadIndex == kIndex4_Model && mBufferSize == BufferSize::EQUAL) { return Result::BAD_DATA; } } break; default: break; } return Result::NO_ERROR; } // Expect failure for the following cases // - one of the operands has bad dimension -> OP_FAILED // - insufficient output buffer -> OUTPUT_INSUFFICIENT_SIZE Result expectCompute() { if (mBadIndex < 8) { return Result::OP_FAILED; } else if (mBufferSize == BufferSize::LESS) { return Result::OUTPUT_INSUFFICIENT_SIZE; } return Result::NO_ERROR; } // Iterate over combinations of // - mBadIndexChoices: which operand has incorrect dimension // - mOperandLocationChoices: where the operand reside, buffer or shared memory // - mBufferSizeChoices: whether the provided buffer/memory size is sufficient // - mEnablePaddingChoices: whether input/output memory padding is enabled template void TestAll() { SCOPED_TRACE("Model: " + toString(kSpecificationLevelModel)); SCOPED_TRACE("Execution: " + toString(kSpecificationLevelExecution)); mOperandTypes = {TensorType, TensorType, TensorType, Type::TENSOR_INT32, TensorType, TensorType, Type::TENSOR_INT32, TensorType}; for (const auto kBadIndex : mBadIndexChoices) { mBadIndex = kBadIndex; SCOPED_TRACE("Bad Index: " + std::to_string(mBadIndex)); if (mBadIndex < 8 && (mSpecificationLevels[mBadIndex] == SpecificationLevel::UNSPECIFIED_RANK || mSpecificationLevels[mBadIndex] == SpecificationLevel::UNSPECIFIED_TYPE)) { continue; } for (const auto kOperandLocation : mOperandLocationChoices) { mOperandLocation = kOperandLocation; SCOPED_TRACE("Operand Location: " + toString(mOperandLocation)); for (const auto kBufferSize : mBufferSizeChoices) { mBufferSize = kBufferSize; SCOPED_TRACE("Buffer Size: " + toString(mBufferSize)); for (const auto kEnablePadding : mEnablePaddingChoices) { mEnablePadding = kEnablePadding; SCOPED_TRACE("Enable Padding: " + toString(mEnablePadding)); TestOne(); } } } } } const UnspecifiedOperand kUnspecifiedOperand = std::get<0>(GetParam()); const SpecificationLevel kSpecificationLevelModel = std::get<1>(GetParam()); const SpecificationLevel kSpecificationLevelExecution = std::get<2>(GetParam()); std::vector mSpecificationLevels; std::vector mOperandTypes; OptionalType mOptionalType = OptionalType::CONST; // Iterate all combinations in TestAll() std::vector mBadIndexChoices; std::vector mOperandLocationChoices; std::vector mBufferSizeChoices = {BufferSize::EQUAL}; std::vector mEnablePaddingChoices = {PaddingEnabled::DEFAULT}; uint32_t mBadIndex; OperandLocation mOperandLocation; BufferSize mBufferSize; PaddingEnabled mEnablePadding; }; TEST_P(UnspecifiedDimensionsTest, Float32) { TestAll(); } TEST_P(UnspecifiedDimensionsTest, Quant8) { TestAll(); } TEST_P(UnspecifiedDimensionsTest, Float16) { TestAll<_Float16, Type::TENSOR_FLOAT16>(); } static const auto kAllSpecificationLevelsModel = testing::Values(SpecificationLevel::FULLY_SPECIFIED, SpecificationLevel::UNSPECIFIED_DIM, SpecificationLevel::UNSPECIFIED_RANK); static const auto kAllSpecificationLevelsExecution = testing::Values(SpecificationLevel::FULLY_SPECIFIED, SpecificationLevel::UNSPECIFIED_DIM, SpecificationLevel::UNSPECIFIED_RANK, SpecificationLevel::UNSPECIFIED_TYPE); static const auto kFullySpecified = testing::Values(SpecificationLevel::FULLY_SPECIFIED); INSTANTIATE_TEST_SUITE_P(ModelInputTest, UnspecifiedDimensionsTest, testing::Combine(testing::Values(UnspecifiedOperand::INPUT_MANDATORY), kAllSpecificationLevelsModel, kAllSpecificationLevelsExecution)); INSTANTIATE_TEST_SUITE_P(ConstantParameterTest, UnspecifiedDimensionsTest, testing::Combine(testing::Values(UnspecifiedOperand::CONST_MANDATORY), kAllSpecificationLevelsModel, kFullySpecified)); INSTANTIATE_TEST_SUITE_P(TemporaryVariableTest, UnspecifiedDimensionsTest, testing::Combine(testing::Values(UnspecifiedOperand::TEMPORARY_VARIABLE), kAllSpecificationLevelsModel, kFullySpecified)); INSTANTIATE_TEST_SUITE_P(OptionalConstantTest, UnspecifiedDimensionsTest, testing::Combine(testing::Values(UnspecifiedOperand::CONST_OPTIONAL), kAllSpecificationLevelsModel, kFullySpecified)); INSTANTIATE_TEST_SUITE_P(OptionalInputTest, UnspecifiedDimensionsTest, testing::Combine(testing::Values(UnspecifiedOperand::INPUT_OPTIONAL), kAllSpecificationLevelsModel, kAllSpecificationLevelsExecution)); INSTANTIATE_TEST_SUITE_P(ModelOutputTest, UnspecifiedDimensionsTest, testing::Combine(testing::Values(UnspecifiedOperand::OUTPUT), kAllSpecificationLevelsModel, kAllSpecificationLevelsExecution)); } // end namespace