/****************************************************************************** * * Copyright 2014 The Android Open Source Project * Copyright 2003 - 2004 Open Interface North America, Inc. All rights * reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ /******************************************************************************* $Revision: #1 $ ******************************************************************************/ /** @file The functions in this file relate to the allocation of available bits to subbands within the SBC/eSBC frame, along with support functions for computing frame length and bitrate. @ingroup codec_internal */ /** @addtogroup codec_internal @{ */ #include #include "oi_utils.h" uint32_t OI_SBC_MaxBitpool(OI_CODEC_SBC_FRAME_INFO* frame) { switch (frame->mode) { case SBC_MONO: case SBC_DUAL_CHANNEL: return 16 * frame->nrof_subbands; case SBC_STEREO: case SBC_JOINT_STEREO: return 32 * frame->nrof_subbands; } ERROR(("Invalid frame mode %d", frame->mode)); OI_ASSERT(false); return 0; /* Should never be reached */ } PRIVATE uint16_t internal_CalculateFramelen(OI_CODEC_SBC_FRAME_INFO* frame) { uint16_t nbits = frame->nrof_blocks * frame->bitpool; uint16_t nrof_subbands = frame->nrof_subbands; uint16_t result = nbits; if (frame->mode == SBC_JOINT_STEREO) { result += nrof_subbands + (8 * nrof_subbands); } else { if (frame->mode == SBC_DUAL_CHANNEL) { result += nbits; } if (frame->mode == SBC_MONO) { result += 4 * nrof_subbands; } else { result += 8 * nrof_subbands; } } return SBC_HEADER_LEN + (result + 7) / 8; } PRIVATE uint32_t internal_CalculateBitrate(OI_CODEC_SBC_FRAME_INFO* frame) { OI_UINT blocksbands; blocksbands = frame->nrof_subbands * frame->nrof_blocks; return DIVIDE(8 * internal_CalculateFramelen(frame) * frame->frequency, blocksbands); } INLINE uint16_t OI_SBC_CalculateFrameAndHeaderlen( OI_CODEC_SBC_FRAME_INFO* frame, OI_UINT* headerLen_) { OI_UINT headerLen = SBC_HEADER_LEN + frame->nrof_subbands * frame->nrof_channels / 2; if (frame->mode == SBC_JOINT_STEREO) { headerLen++; } *headerLen_ = headerLen; return internal_CalculateFramelen(frame); } #define MIN(x, y) ((x) < (y) ? (x) : (y)) /* * Computes the bit need for each sample and as also returns a counts of bit * needs that are greater than one. This count is used in the first phase of bit * allocation. * * We also compute a preferred bitpool value that this is the minimum bitpool * needed to guarantee lossless representation of the audio data. The preferred * bitpool may be larger than the bits actually required but the only input we * have are the scale factors. For example, it takes 2 bits to represent values * in the range -1 .. +1 but the scale factor is 0. To guarantee lossless * representation we add 2 to each scale factor and sum them to come up with the * preferred bitpool. This is not ideal because 0 requires 0 bits but we * currently have no way of knowing this. * * @param bitneed Array to return bitneeds for each subband * * @param ch Channel 0 or 1 * * @param preferredBitpool Returns the number of reserved bits * * @return The SBC bit need * */ OI_UINT computeBitneed(OI_CODEC_SBC_COMMON_CONTEXT* common, uint8_t* bitneeds, OI_UINT ch, OI_UINT* preferredBitpool) { static const int8_t offset4[4][4] = { {-1, 0, 0, 0}, {-2, 0, 0, 1}, {-2, 0, 0, 1}, {-2, 0, 0, 1}}; static const int8_t offset8[4][8] = {{-2, 0, 0, 0, 0, 0, 0, 1}, {-3, 0, 0, 0, 0, 0, 1, 2}, {-4, 0, 0, 0, 0, 0, 1, 2}, {-4, 0, 0, 0, 0, 0, 1, 2}}; const OI_UINT nrof_subbands = common->frameInfo.nrof_subbands; OI_UINT sb; int8_t* scale_factor = &common->scale_factor[ch ? nrof_subbands : 0]; OI_UINT bitcount = 0; uint8_t maxBits = 0; uint8_t prefBits = 0; if (common->frameInfo.alloc == SBC_SNR) { for (sb = 0; sb < nrof_subbands; sb++) { OI_INT bits = scale_factor[sb]; if (bits > maxBits) { maxBits = bits; } bitneeds[sb] = bits; if (bitneeds[sb] > 1) { bitcount += bits; } prefBits += 2 + bits; } } else { const int8_t* offset; if (nrof_subbands == 4) { offset = offset4[common->frameInfo.freqIndex]; } else { offset = offset8[common->frameInfo.freqIndex]; } for (sb = 0; sb < nrof_subbands; sb++) { OI_INT bits = scale_factor[sb]; if (bits > maxBits) { maxBits = bits; } prefBits += 2 + bits; if (bits) { bits -= offset[sb]; if (bits > 0) { bits /= 2; } bits += 5; } bitneeds[sb] = bits; if (bitneeds[sb] > 1) { bitcount += bits; } } } common->maxBitneed = OI_MAX(maxBits, common->maxBitneed); *preferredBitpool += prefBits; return bitcount; } /* * Explanation of the adjustToFitBitpool inner loop. * * The inner loop computes the effect of adjusting the bit allocation up or * down. Allocations must be 0 or in the range 2..16. This is accomplished by * the following code: * * for (s = bands - 1; s >= 0; --s) { * OI_INT bits = bitadjust + bitneeds[s]; * bits = bits < 2 ? 0 : bits; * bits = bits > 16 ? 16 : bits; * count += bits; * } * * This loop can be optimized to perform 4 operations at a time as follows: * * Adjustment is computed as a 7 bit signed value and added to the bitneed. * * Negative allocations are zeroed by masking. (n & 0x40) >> 6 puts the * sign bit into bit 0, adding this to 0x7F give us a mask of 0x80 * for -ve values and 0x7F for +ve values. * * n &= 0x7F + (n & 0x40) >> 6) * * Allocations greater than 16 are truncated to 16. Adjusted allocations are in * the range 0..31 so we know that bit 4 indicates values >= 16. We use this bit * to create a mask that zeroes bits 0 .. 3 if bit 4 is set. * * n &= (15 + (n >> 4)) * * Allocations of 1 are disallowed. Add and shift creates a mask that * eliminates the illegal value * * n &= ((n + 14) >> 4) | 0x1E * * These operations can be performed in 8 bits without overflowing so we can * operate on 4 values at once. */ /* * Encoder/Decoder * * Computes adjustment +/- of bitneeds to fill bitpool and returns overall * adjustment and excess bits. * * @param bitpool The bitpool we have to work within * * @param bitneeds An array of bit needs (more acturately allocation * prioritities) for each subband across all blocks in the SBC * frame * * @param subbands The number of subbands over which the adkustment is * calculated. For mono and dual mode this is 4 or 8, for * stereo or joint stereo this is 8 or 16. * * @param bitcount A starting point for the adjustment * * @param excess Returns the excess bits after the adjustment * * @return The adjustment. */ OI_INT adjustToFitBitpool(const OI_UINT bitpool, uint32_t* bitneeds, const OI_UINT subbands, OI_UINT bitcount, OI_UINT* excess) { OI_INT maxBitadjust = 0; OI_INT bitadjust = (bitcount > bitpool) ? -8 : 8; OI_INT chop = 8; /* * This is essentially a binary search for the optimal adjustment value. */ while ((bitcount != bitpool) && chop) { uint32_t total = 0; OI_UINT count; uint32_t adjust4; OI_INT i; adjust4 = bitadjust & 0x7F; adjust4 |= (adjust4 << 8); adjust4 |= (adjust4 << 16); for (i = (subbands / 4 - 1); i >= 0; --i) { uint32_t mask; uint32_t n = bitneeds[i] + adjust4; mask = 0x7F7F7F7F + ((n & 0x40404040) >> 6); n &= mask; mask = 0x0F0F0F0F + ((n & 0x10101010) >> 4); n &= mask; mask = (((n + 0x0E0E0E0E) >> 4) | 0x1E1E1E1E); n &= mask; total += n; } count = (total & 0xFFFF) + (total >> 16); count = (count & 0xFF) + (count >> 8); chop >>= 1; if (count > bitpool) { bitadjust -= chop; } else { maxBitadjust = bitadjust; bitcount = count; bitadjust += chop; } } *excess = bitpool - bitcount; return maxBitadjust; } /* * The bit allocator trys to avoid single bit allocations except as a last * resort. So in the case where a bitneed of 1 was passed over during the * adsjustment phase 2 bits are now allocated. */ INLINE OI_INT allocAdjustedBits(uint8_t* dest, OI_INT bits, OI_INT excess) { if (bits < 16) { if (bits > 1) { if (excess) { ++bits; --excess; } } else if ((bits == 1) && (excess > 1)) { bits = 2; excess -= 2; } else { bits = 0; } } else { bits = 16; } *dest = (uint8_t)bits; return excess; } /* * Excess bits not allocated by allocaAdjustedBits are allocated round-robin. */ INLINE OI_INT allocExcessBits(uint8_t* dest, OI_INT excess) { if (*dest < 16) { *dest += 1; return excess - 1; } else { return excess; } } void oneChannelBitAllocation(OI_CODEC_SBC_COMMON_CONTEXT* common, BITNEED_UNION1* bitneeds, OI_UINT ch, OI_UINT bitcount) { const uint8_t nrof_subbands = common->frameInfo.nrof_subbands; OI_UINT excess; OI_UINT sb; OI_INT bitadjust; uint8_t RESTRICT* allocBits; { OI_UINT ex; bitadjust = adjustToFitBitpool(common->frameInfo.bitpool, bitneeds->uint32, nrof_subbands, bitcount, &ex); /* We want the compiler to put excess into a register */ excess = ex; } /* * Allocate adjusted bits */ allocBits = &common->bits.uint8[ch ? nrof_subbands : 0]; sb = 0; while (sb < nrof_subbands) { excess = allocAdjustedBits(&allocBits[sb], bitneeds->uint8[sb] + bitadjust, excess); ++sb; } sb = 0; while (excess) { excess = allocExcessBits(&allocBits[sb], excess); ++sb; } } void monoBitAllocation(OI_CODEC_SBC_COMMON_CONTEXT* common) { BITNEED_UNION1 bitneeds; OI_UINT bitcount; OI_UINT bitpoolPreference = 0; bitcount = computeBitneed(common, bitneeds.uint8, 0, &bitpoolPreference); oneChannelBitAllocation(common, &bitneeds, 0, bitcount); } /** @} */