/******************************************************************************
*
* Copyright 1999-2012 Broadcom Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/******************************************************************************
*
* This file contains security manager protocol utility functions
*
******************************************************************************/
#include "bt_target.h"
#include
#include
#include "bt_utils.h"
#include "btm_ble_api.h"
#include "btm_ble_int.h"
#include "device/include/controller.h"
#include "hcimsgs.h"
#include "osi/include/osi.h"
#include "p_256_ecc_pp.h"
#include "smp_int.h"
#include "stack/btm/btm_dev.h"
#include "stack/btm/btm_sec.h"
#include "stack/crypto_toolbox/crypto_toolbox.h"
#include "stack/include/acl_api.h"
#include
extern tBTM_CB btm_cb; // TODO Remove
using base::Bind;
using crypto_toolbox::aes_128;
#ifndef SMP_MAX_ENC_REPEAT
#define SMP_MAX_ENC_REPEAT 3
#endif
static void smp_process_stk(tSMP_CB* p_cb, Octet16* p);
static Octet16 smp_calculate_legacy_short_term_key(tSMP_CB* p_cb);
static void smp_process_private_key(tSMP_CB* p_cb);
#define SMP_PASSKEY_MASK 0xfff00000
// If there is data saved here, then use its info instead
// This needs to be cleared on a successfult pairing using the oob data
static tSMP_LOC_OOB_DATA saved_local_oob_data = {};
void smp_save_local_oob_data(tSMP_CB* p_cb) {
saved_local_oob_data = p_cb->sc_oob_data.loc_oob_data;
}
void smp_clear_local_oob_data() { saved_local_oob_data = {}; }
static bool is_empty(tSMP_LOC_OOB_DATA* data) {
tSMP_LOC_OOB_DATA empty_data = {};
return memcmp(data, &empty_data, sizeof(tSMP_LOC_OOB_DATA)) == 0;
}
void smp_debug_print_nbyte_little_endian(uint8_t* p, const char* key_name,
uint8_t len) {
}
inline void smp_debug_print_nbyte_little_endian(const Octet16& p,
const char* key_name,
uint8_t len) {
smp_debug_print_nbyte_little_endian(const_cast(p.data()), key_name,
len);
}
void smp_debug_print_nbyte_big_endian(uint8_t* p, const char* key_name,
uint8_t len) {
}
/** This function is called to process a passkey. */
void smp_proc_passkey(tSMP_CB* p_cb, BT_OCTET8 rand) {
uint8_t* tt = p_cb->tk.data();
uint32_t passkey; /* 19655 test number; */
uint8_t* pp = rand;
SMP_TRACE_DEBUG("%s", __func__);
STREAM_TO_UINT32(passkey, pp);
passkey &= ~SMP_PASSKEY_MASK;
/* truncate by maximum value */
while (passkey > BTM_MAX_PASSKEY_VAL) passkey >>= 1;
/* save the TK */
p_cb->tk = {0};
UINT32_TO_STREAM(tt, passkey);
if (p_cb->p_callback) {
tSMP_EVT_DATA smp_evt_data;
smp_evt_data.passkey = passkey;
(*p_cb->p_callback)(SMP_PASSKEY_NOTIF_EVT, p_cb->pairing_bda,
&smp_evt_data);
}
if (p_cb->selected_association_model == SMP_MODEL_SEC_CONN_PASSKEY_DISP) {
tSMP_INT_DATA smp_int_data;
smp_int_data.passkey = passkey;
smp_sm_event(&smp_cb, SMP_KEY_READY_EVT, &smp_int_data);
} else {
tSMP_KEY key;
key.key_type = SMP_KEY_TYPE_TK;
key.p_data = p_cb->tk.data();
tSMP_INT_DATA smp_int_data;
smp_int_data.key = key;
smp_sm_event(p_cb, SMP_KEY_READY_EVT, &smp_int_data);
}
}
/*******************************************************************************
*
* Function smp_generate_passkey
*
* Description This function is called to generate passkey.
*
* Returns void
*
******************************************************************************/
void smp_generate_passkey(tSMP_CB* p_cb, UNUSED_ATTR tSMP_INT_DATA* p_data) {
SMP_TRACE_DEBUG("%s", __func__);
/* generate MRand or SRand */
btsnd_hcic_ble_rand(Bind(&smp_proc_passkey, p_cb));
}
/*******************************************************************************
*
* Function smp_generate_stk
*
* Description This function is called to generate STK calculated by
* running AES with the TK value as key and a concatenation of
* the random values.
*
* Returns void
*
******************************************************************************/
void smp_generate_stk(tSMP_CB* p_cb, UNUSED_ATTR tSMP_INT_DATA* p_data) {
Octet16 output;
SMP_TRACE_DEBUG("%s", __func__);
if (p_cb->le_secure_connections_mode_is_used) {
SMP_TRACE_DEBUG("FOR LE SC LTK IS USED INSTEAD OF STK");
output = p_cb->ltk;
} else {
output = smp_calculate_legacy_short_term_key(p_cb);
}
smp_process_stk(p_cb, &output);
}
/**
* This function is called to calculate CSRK
*/
void smp_compute_csrk(uint16_t div, tSMP_CB* p_cb) {
uint8_t buffer[4]; /* for (r || DIV) r=1*/
uint16_t r = 1;
uint8_t* p = buffer;
p_cb->div = div;
SMP_TRACE_DEBUG("%s: div=%x", __func__, p_cb->div);
const Octet16& er = BTM_GetDeviceEncRoot();
/* CSRK = d1(ER, DIV, 1) */
UINT16_TO_STREAM(p, p_cb->div);
UINT16_TO_STREAM(p, r);
p_cb->csrk = aes_128(er, buffer, 4);
smp_send_csrk_info(p_cb, NULL);
}
/**
* This function is called to calculate CSRK, starting with DIV generation.
*/
void smp_generate_csrk(tSMP_CB* p_cb, UNUSED_ATTR tSMP_INT_DATA* p_data) {
bool div_status;
SMP_TRACE_DEBUG("smp_generate_csrk");
div_status = btm_get_local_div(p_cb->pairing_bda, &p_cb->div);
if (div_status) {
smp_compute_csrk(p_cb->div, p_cb);
} else {
SMP_TRACE_DEBUG("Generate DIV for CSRK");
btsnd_hcic_ble_rand(Bind(
[](tSMP_CB* p_cb, BT_OCTET8 rand) {
uint16_t div;
STREAM_TO_UINT16(div, rand);
smp_compute_csrk(div, p_cb);
},
p_cb));
}
}
/*******************************************************************************
* Function smp_concatenate_peer - LSB first
* add pairing command sent from local device into p1.
******************************************************************************/
void smp_concatenate_local(tSMP_CB* p_cb, uint8_t** p_data, uint8_t op_code) {
uint8_t* p = *p_data;
SMP_TRACE_DEBUG("%s", __func__);
UINT8_TO_STREAM(p, op_code);
UINT8_TO_STREAM(p, p_cb->local_io_capability);
UINT8_TO_STREAM(p, p_cb->loc_oob_flag);
UINT8_TO_STREAM(p, p_cb->loc_auth_req);
UINT8_TO_STREAM(p, p_cb->loc_enc_size);
UINT8_TO_STREAM(p, p_cb->local_i_key);
UINT8_TO_STREAM(p, p_cb->local_r_key);
*p_data = p;
}
/*******************************************************************************
* Function smp_concatenate_peer - LSB first
* add pairing command received from peer device into p1.
******************************************************************************/
void smp_concatenate_peer(tSMP_CB* p_cb, uint8_t** p_data, uint8_t op_code) {
uint8_t* p = *p_data;
SMP_TRACE_DEBUG("smp_concatenate_peer ");
UINT8_TO_STREAM(p, op_code);
UINT8_TO_STREAM(p, p_cb->peer_io_caps);
UINT8_TO_STREAM(p, p_cb->peer_oob_flag);
UINT8_TO_STREAM(p, p_cb->peer_auth_req);
UINT8_TO_STREAM(p, p_cb->peer_enc_size);
UINT8_TO_STREAM(p, p_cb->peer_i_key);
UINT8_TO_STREAM(p, p_cb->peer_r_key);
*p_data = p;
}
/** Generate Confirm/Compare Step1:
* p1 = (MSB) pres || preq || rat' || iat' (LSB)
* Fill in values LSB first thus
* p1 = iat' || rat' || preq || pres
*/
Octet16 smp_gen_p1_4_confirm(tSMP_CB* p_cb,
tBLE_ADDR_TYPE remote_bd_addr_type) {
SMP_TRACE_DEBUG("%s", __func__);
Octet16 p1;
uint8_t* p = p1.data();
if (p_cb->role == HCI_ROLE_CENTRAL) {
/* iat': initiator's (local) address type */
UINT8_TO_STREAM(p, p_cb->addr_type);
/* rat': responder's (remote) address type */
UINT8_TO_STREAM(p, remote_bd_addr_type);
/* preq : Pairing Request (local) command */
smp_concatenate_local(p_cb, &p, SMP_OPCODE_PAIRING_REQ);
/* pres : Pairing Response (remote) command */
smp_concatenate_peer(p_cb, &p, SMP_OPCODE_PAIRING_RSP);
} else {
/* iat': initiator's (remote) address type */
UINT8_TO_STREAM(p, remote_bd_addr_type);
/* rat': responder's (local) address type */
UINT8_TO_STREAM(p, p_cb->addr_type);
/* preq : Pairing Request (remote) command */
smp_concatenate_peer(p_cb, &p, SMP_OPCODE_PAIRING_REQ);
/* pres : Pairing Response (local) command */
smp_concatenate_local(p_cb, &p, SMP_OPCODE_PAIRING_RSP);
}
smp_debug_print_nbyte_little_endian(p1, "p1 = iat' || rat' || preq || pres",
16);
return p1;
}
/** Generate Confirm/Compare Step2:
* p2 = (MSB) padding || ia || ra (LSB)
* Fill values LSB first and thus:
* p2 = ra || ia || padding
*/
Octet16 smp_gen_p2_4_confirm(tSMP_CB* p_cb, const RawAddress& remote_bda) {
SMP_TRACE_DEBUG("%s", __func__);
Octet16 p2{0};
uint8_t* p = p2.data();
/* 32-bit Padding */
memset(p, 0, OCTET16_LEN);
if (p_cb->role == HCI_ROLE_CENTRAL) {
/* ra : Responder's (remote) address */
BDADDR_TO_STREAM(p, remote_bda);
/* ia : Initiator's (local) address */
BDADDR_TO_STREAM(p, p_cb->local_bda);
} else {
/* ra : Responder's (local) address */
BDADDR_TO_STREAM(p, p_cb->local_bda);
/* ia : Initiator's (remote) address */
BDADDR_TO_STREAM(p, remote_bda);
}
smp_debug_print_nbyte_little_endian(p2, "p2 = ra || ia || padding", 16);
return p2;
}
/*******************************************************************************
*
* Function smp_calculate_comfirm
*
* Description This function (c1) is called to calculate Confirm value.
*
* Returns tSMP_STATUS status of confirmation calculation
*
******************************************************************************/
tSMP_STATUS smp_calculate_comfirm(tSMP_CB* p_cb, const Octet16& rand,
Octet16* output) {
SMP_TRACE_DEBUG("%s", __func__);
RawAddress remote_bda;
tBLE_ADDR_TYPE remote_bd_addr_type = BLE_ADDR_PUBLIC;
/* get remote connection specific bluetooth address */
if (!BTM_ReadRemoteConnectionAddr(p_cb->pairing_bda, remote_bda,
&remote_bd_addr_type)) {
SMP_TRACE_ERROR("%s: cannot obtain remote device address", __func__);
return SMP_PAIR_FAIL_UNKNOWN;
}
/* get local connection specific bluetooth address */
BTM_ReadConnectionAddr(p_cb->pairing_bda, p_cb->local_bda, &p_cb->addr_type);
/* generate p1 = pres || preq || rat' || iat' */
Octet16 p1 = smp_gen_p1_4_confirm(p_cb, remote_bd_addr_type);
/* p1' = rand XOR p1 */
smp_xor_128(&p1, rand);
smp_debug_print_nbyte_little_endian(p1, "p1' = p1 XOR r", 16);
/* calculate e1 = e(k, p1'), where k = TK */
smp_debug_print_nbyte_little_endian(p_cb->tk.data(), "TK", 16);
Octet16 e1 = aes_128(p_cb->tk, p1);
smp_debug_print_nbyte_little_endian(e1.data(), "e1 = e(k, p1')", 16);
/* generate p2 = padding || ia || ra */
Octet16 p2 = smp_gen_p2_4_confirm(p_cb, remote_bda);
/* calculate p2' = (p2 XOR e1) */
smp_xor_128(&p2, e1);
smp_debug_print_nbyte_little_endian(p2, "p2' = p2 XOR e1", 16);
/* calculate: c1 = e(k, p2') */
*output = aes_128(p_cb->tk, p2);
return SMP_SUCCESS;
}
/*******************************************************************************
*
* Function smp_generate_confirm
*
* Description This function is called when random number (MRand or SRand)
* is generated by the controller and the stack needs to
* calculate c1 value (MConfirm or SConfirm) for the first time
*
* Returns void
*
******************************************************************************/
static void smp_generate_confirm(tSMP_CB* p_cb) {
SMP_TRACE_DEBUG("%s", __func__);
smp_debug_print_nbyte_little_endian(p_cb->rand.data(), "local_rand", 16);
Octet16 output;
tSMP_STATUS status = smp_calculate_comfirm(p_cb, p_cb->rand, &output);
if (status != SMP_SUCCESS) {
tSMP_INT_DATA smp_int_data;
smp_int_data.status = status;
smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &smp_int_data);
return;
}
tSMP_KEY key;
p_cb->confirm = output;
smp_debug_print_nbyte_little_endian(p_cb->confirm, "Local Confirm generated",
16);
key.key_type = SMP_KEY_TYPE_CFM;
key.p_data = output.data();
tSMP_INT_DATA smp_int_data;
smp_int_data.key = key;
smp_sm_event(p_cb, SMP_KEY_READY_EVT, &smp_int_data);
}
/*******************************************************************************
*
* Function smp_generate_srand_mrand_confirm
*
* Description This function is called to start the second pairing phase by
* start generating random number.
*
*
* Returns void
*
******************************************************************************/
void smp_generate_srand_mrand_confirm(tSMP_CB* p_cb,
UNUSED_ATTR tSMP_INT_DATA* p_data) {
SMP_TRACE_DEBUG("%s", __func__);
/* generate MRand or SRand */
btsnd_hcic_ble_rand(Bind(
[](tSMP_CB* p_cb, BT_OCTET8 rand) {
memcpy(p_cb->rand.data(), rand, 8);
/* generate 64 MSB of MRand or SRand */
btsnd_hcic_ble_rand(Bind(
[](tSMP_CB* p_cb, BT_OCTET8 rand) {
memcpy((void*)&p_cb->rand[8], rand, BT_OCTET8_LEN);
smp_generate_confirm(p_cb);
},
p_cb));
},
p_cb));
}
/*******************************************************************************
*
* Function smp_generate_compare
*
* Description This function is called when random number (MRand or SRand)
* is received from remote device and the c1 value (MConfirm
* or SConfirm) needs to be generated to authenticate remote
* device.
*
* Returns void
*
******************************************************************************/
void smp_generate_compare(tSMP_CB* p_cb, UNUSED_ATTR tSMP_INT_DATA* p_data) {
SMP_TRACE_DEBUG("smp_generate_compare ");
smp_debug_print_nbyte_little_endian(p_cb->rrand, "peer rand", 16);
Octet16 output;
tSMP_STATUS status = smp_calculate_comfirm(p_cb, p_cb->rrand, &output);
if (status != SMP_SUCCESS) {
tSMP_INT_DATA smp_int_data;
smp_int_data.status = status;
smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &smp_int_data);
return;
}
tSMP_KEY key;
smp_debug_print_nbyte_little_endian(output.data(), "Remote Confirm generated",
16);
key.key_type = SMP_KEY_TYPE_CMP;
key.p_data = output.data();
tSMP_INT_DATA smp_int_data;
smp_int_data.key = key;
smp_sm_event(p_cb, SMP_KEY_READY_EVT, &smp_int_data);
}
/** This function is called when STK is generated proceed to send the encrypt
* the link using STK. */
static void smp_process_stk(tSMP_CB* p_cb, Octet16* p) {
tSMP_KEY key;
SMP_TRACE_DEBUG("smp_process_stk ");
smp_mask_enc_key(p_cb->loc_enc_size, p);
key.key_type = SMP_KEY_TYPE_STK;
key.p_data = p->data();
tSMP_INT_DATA smp_int_data;
smp_int_data.key = key;
smp_sm_event(p_cb, SMP_KEY_READY_EVT, &smp_int_data);
}
/** This function calculates EDIV = Y xor DIV */
static void smp_process_ediv(tSMP_CB* p_cb, Octet16& p) {
tSMP_KEY key;
uint8_t* pp = p.data();
uint16_t y;
SMP_TRACE_DEBUG("smp_process_ediv ");
STREAM_TO_UINT16(y, pp);
/* EDIV = Y xor DIV */
p_cb->ediv = p_cb->div ^ y;
/* send LTK ready */
SMP_TRACE_ERROR("LTK ready");
key.key_type = SMP_KEY_TYPE_LTK;
key.p_data = p.data();
tSMP_INT_DATA smp_int_data;
smp_int_data.key = key;
smp_sm_event(p_cb, SMP_KEY_READY_EVT, &smp_int_data);
}
/**
* This function is to proceed generate Y = E(DHK, Rand)
*/
static void smp_generate_y(tSMP_CB* p_cb, BT_OCTET8 rand) {
SMP_TRACE_DEBUG("%s ", __func__);
const Octet16& dhk = BTM_GetDeviceDHK();
memcpy(p_cb->enc_rand, rand, BT_OCTET8_LEN);
Octet16 output = aes_128(dhk, rand, BT_OCTET8_LEN);
smp_process_ediv(p_cb, output);
}
/**
* Calculate LTK = d1(ER, DIV, 0)= e(ER, DIV)
*/
static void smp_generate_ltk_cont(uint16_t div, tSMP_CB* p_cb) {
p_cb->div = div;
SMP_TRACE_DEBUG("%s", __func__);
const Octet16& er = BTM_GetDeviceEncRoot();
/* LTK = d1(ER, DIV, 0)= e(ER, DIV)*/
Octet16 ltk = aes_128(er, (uint8_t*)&p_cb->div, sizeof(uint16_t));
/* mask the LTK */
smp_mask_enc_key(p_cb->loc_enc_size, <k);
p_cb->ltk = ltk;
/* generate EDIV and rand now */
btsnd_hcic_ble_rand(Bind(&smp_generate_y, p_cb));
}
/*******************************************************************************
*
* Function smp_generate_ltk
*
* Description This function is called:
* - in legacy pairing - to calculate LTK, starting with DIV
* generation;
* - in LE Secure Connections pairing over LE transport - to
* process LTK already generated to encrypt LE link;
* - in LE Secure Connections pairing over BR/EDR transport -
* to start BR/EDR Link Key processing.
*
* Returns void
*
******************************************************************************/
void smp_generate_ltk(tSMP_CB* p_cb, UNUSED_ATTR tSMP_INT_DATA* p_data) {
SMP_TRACE_DEBUG("%s", __func__);
if (smp_get_br_state() == SMP_BR_STATE_BOND_PENDING) {
smp_br_process_link_key(p_cb, NULL);
return;
} else if (p_cb->le_secure_connections_mode_is_used) {
smp_process_secure_connection_long_term_key();
return;
}
bool div_status = btm_get_local_div(p_cb->pairing_bda, &p_cb->div);
if (div_status) {
smp_generate_ltk_cont(p_cb->div, p_cb);
} else {
SMP_TRACE_DEBUG("%s: Generate DIV for LTK", __func__);
/* generate MRand or SRand */
btsnd_hcic_ble_rand(Bind(
[](tSMP_CB* p_cb, BT_OCTET8 rand) {
uint16_t div;
STREAM_TO_UINT16(div, rand);
smp_generate_ltk_cont(div, p_cb);
},
p_cb));
}
}
/* The function calculates legacy STK */
Octet16 smp_calculate_legacy_short_term_key(tSMP_CB* p_cb) {
SMP_TRACE_DEBUG("%s", __func__);
Octet16 text{0};
if (p_cb->role == HCI_ROLE_CENTRAL) {
memcpy(text.data(), p_cb->rand.data(), BT_OCTET8_LEN);
memcpy(text.data() + BT_OCTET8_LEN, p_cb->rrand.data(), BT_OCTET8_LEN);
} else {
memcpy(text.data(), p_cb->rrand.data(), BT_OCTET8_LEN);
memcpy(text.data() + BT_OCTET8_LEN, p_cb->rand.data(), BT_OCTET8_LEN);
}
/* generate STK = Etk(rand|rrand)*/
return aes_128(p_cb->tk, text);
}
/*******************************************************************************
*
* Function smp_create_private_key
*
* Description This function is called to create private key used to
* calculate public key and DHKey.
* The function starts private key creation requesting
* for the controller to generate [0-7] octets of private key.
*
* Returns void
*
******************************************************************************/
void smp_create_private_key(tSMP_CB* p_cb, tSMP_INT_DATA* p_data) {
SMP_TRACE_DEBUG("%s", __func__);
// Only use the stored OOB data if we are in an oob association model
if (p_cb->selected_association_model == SMP_MODEL_SEC_CONN_OOB) {
LOG_WARN("OOB Association Model");
// Make sure our data isn't empty, otherwise we generate new and eventually
// pairing will fail Not much we can do about it at this point, just have to
// generate new data The data will be cleared after the advertiser times
// out, so if the advertiser times out we want the pairing to fail anyway.
if (!is_empty(&saved_local_oob_data)) {
LOG_WARN("Found OOB data, loading keys");
for (int i = 0; i < BT_OCTET32_LEN; i++) {
p_cb->private_key[i] = saved_local_oob_data.private_key_used[i];
p_cb->loc_publ_key.x[i] = saved_local_oob_data.publ_key_used.x[i];
p_cb->loc_publ_key.y[i] = saved_local_oob_data.publ_key_used.y[i];
}
p_cb->sc_oob_data.loc_oob_data = saved_local_oob_data;
p_cb->local_random = saved_local_oob_data.randomizer;
smp_process_private_key(p_cb);
return;
}
LOG_WARN("OOB Association Model with no saved data present");
}
btsnd_hcic_ble_rand(Bind(
[](tSMP_CB* p_cb, BT_OCTET8 rand) {
memcpy((void*)p_cb->private_key, rand, BT_OCTET8_LEN);
btsnd_hcic_ble_rand(Bind(
[](tSMP_CB* p_cb, BT_OCTET8 rand) {
memcpy((void*)&p_cb->private_key[8], rand, BT_OCTET8_LEN);
btsnd_hcic_ble_rand(Bind(
[](tSMP_CB* p_cb, BT_OCTET8 rand) {
memcpy((void*)&p_cb->private_key[16], rand, BT_OCTET8_LEN);
btsnd_hcic_ble_rand(Bind(
[](tSMP_CB* p_cb, BT_OCTET8 rand) {
memcpy((void*)&p_cb->private_key[24], rand,
BT_OCTET8_LEN);
smp_process_private_key(p_cb);
},
p_cb));
},
p_cb));
},
p_cb));
},
p_cb));
}
/*******************************************************************************
*
* Function smp_use_oob_private_key
*
* Description This function is called
* - to save the secret key used to calculate the public key
* used in calculations of commitment sent OOB to a peer
* - to use this secret key to recalculate the public key and
* start the process of sending this public key to the peer
* if secret/public keys have to be reused.
* If the keys aren't supposed to be reused, continue from the
* point from which request for OOB data was issued.
*
* Returns void
*
******************************************************************************/
void smp_use_oob_private_key(tSMP_CB* p_cb, tSMP_INT_DATA* p_data) {
LOG_INFO("req_oob_type: %d, role: %d", p_cb->req_oob_type, p_cb->role);
switch (p_cb->req_oob_type) {
case SMP_OOB_BOTH:
case SMP_OOB_LOCAL:
LOG_INFO("restore secret key");
memcpy(p_cb->private_key, p_cb->sc_oob_data.loc_oob_data.private_key_used,
BT_OCTET32_LEN);
smp_process_private_key(p_cb);
break;
default:
LOG_INFO("create secret key anew");
smp_set_state(SMP_STATE_PAIR_REQ_RSP);
smp_decide_association_model(p_cb, NULL);
break;
}
}
/*******************************************************************************
*
* Function smp_process_private_key
*
* Description This function processes private key.
* It calculates public key and notifies SM that private key /
* public key pair is created.
*
* Returns void
*
******************************************************************************/
void smp_process_private_key(tSMP_CB* p_cb) {
Point public_key;
BT_OCTET32 private_key;
SMP_TRACE_DEBUG("%s", __func__);
memcpy(private_key, p_cb->private_key, BT_OCTET32_LEN);
ECC_PointMult(&public_key, &(curve_p256.G), (uint32_t*)private_key);
memcpy(p_cb->loc_publ_key.x, public_key.x, BT_OCTET32_LEN);
memcpy(p_cb->loc_publ_key.y, public_key.y, BT_OCTET32_LEN);
smp_debug_print_nbyte_little_endian(p_cb->private_key, "private",
BT_OCTET32_LEN);
smp_debug_print_nbyte_little_endian(p_cb->loc_publ_key.x, "local public(x)",
BT_OCTET32_LEN);
smp_debug_print_nbyte_little_endian(p_cb->loc_publ_key.y, "local public(y)",
BT_OCTET32_LEN);
p_cb->flags |= SMP_PAIR_FLAG_HAVE_LOCAL_PUBL_KEY;
smp_sm_event(p_cb, SMP_LOC_PUBL_KEY_CRTD_EVT, NULL);
}
/*******************************************************************************
*
* Function smp_compute_dhkey
*
* Description The function:
* - calculates a new public key using as input local private
* key and peer public key;
* - saves the new public key x-coordinate as DHKey.
*
* Returns void
*
******************************************************************************/
void smp_compute_dhkey(tSMP_CB* p_cb) {
Point peer_publ_key, new_publ_key;
BT_OCTET32 private_key;
SMP_TRACE_DEBUG("%s", __func__);
memcpy(private_key, p_cb->private_key, BT_OCTET32_LEN);
memcpy(peer_publ_key.x, p_cb->peer_publ_key.x, BT_OCTET32_LEN);
memcpy(peer_publ_key.y, p_cb->peer_publ_key.y, BT_OCTET32_LEN);
ECC_PointMult(&new_publ_key, &peer_publ_key, (uint32_t*)private_key);
memcpy(p_cb->dhkey, new_publ_key.x, BT_OCTET32_LEN);
smp_debug_print_nbyte_little_endian(p_cb->dhkey, "Old DHKey", BT_OCTET32_LEN);
smp_debug_print_nbyte_little_endian(p_cb->private_key, "private",
BT_OCTET32_LEN);
smp_debug_print_nbyte_little_endian(p_cb->peer_publ_key.x, "rem public(x)",
BT_OCTET32_LEN);
smp_debug_print_nbyte_little_endian(p_cb->peer_publ_key.y, "rem public(y)",
BT_OCTET32_LEN);
smp_debug_print_nbyte_little_endian(p_cb->dhkey, "Reverted DHKey",
BT_OCTET32_LEN);
}
/** The function calculates and saves local commmitment in CB. */
void smp_calculate_local_commitment(tSMP_CB* p_cb) {
uint8_t random_input;
SMP_TRACE_DEBUG("%s", __func__);
switch (p_cb->selected_association_model) {
case SMP_MODEL_SEC_CONN_JUSTWORKS:
case SMP_MODEL_SEC_CONN_NUM_COMP:
if (p_cb->role == HCI_ROLE_CENTRAL)
SMP_TRACE_WARNING(
"local commitment calc on central is not expected "
"for Just Works/Numeric Comparison models");
p_cb->commitment = crypto_toolbox::f4(
p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand, 0);
break;
case SMP_MODEL_SEC_CONN_PASSKEY_ENT:
case SMP_MODEL_SEC_CONN_PASSKEY_DISP:
random_input =
smp_calculate_random_input(p_cb->local_random.data(), p_cb->round);
p_cb->commitment =
crypto_toolbox::f4(p_cb->loc_publ_key.x, p_cb->peer_publ_key.x,
p_cb->rand, random_input);
break;
case SMP_MODEL_SEC_CONN_OOB:
SMP_TRACE_WARNING(
"local commitment calc is expected for OOB model BEFORE pairing");
p_cb->commitment = crypto_toolbox::f4(
p_cb->loc_publ_key.x, p_cb->loc_publ_key.x, p_cb->local_random, 0);
break;
default:
SMP_TRACE_ERROR("Association Model = %d is not used in LE SC",
p_cb->selected_association_model);
return;
}
SMP_TRACE_EVENT("local commitment calculation is completed");
}
/** The function calculates peer commmitment */
Octet16 smp_calculate_peer_commitment(tSMP_CB* p_cb) {
uint8_t ri;
SMP_TRACE_DEBUG("%s", __func__);
Octet16 output;
switch (p_cb->selected_association_model) {
case SMP_MODEL_SEC_CONN_JUSTWORKS:
case SMP_MODEL_SEC_CONN_NUM_COMP:
if (p_cb->role == HCI_ROLE_PERIPHERAL)
SMP_TRACE_WARNING(
"peer commitment calc on peripheral is not expected "
"for Just Works/Numeric Comparison models");
output = crypto_toolbox::f4(p_cb->peer_publ_key.x, p_cb->loc_publ_key.x,
p_cb->rrand, 0);
break;
case SMP_MODEL_SEC_CONN_PASSKEY_ENT:
case SMP_MODEL_SEC_CONN_PASSKEY_DISP:
ri = smp_calculate_random_input(p_cb->peer_random.data(), p_cb->round);
output = crypto_toolbox::f4(p_cb->peer_publ_key.x, p_cb->loc_publ_key.x,
p_cb->rrand, ri);
break;
case SMP_MODEL_SEC_CONN_OOB:
output = crypto_toolbox::f4(p_cb->peer_publ_key.x, p_cb->peer_publ_key.x,
p_cb->peer_random, 0);
break;
default:
SMP_TRACE_ERROR("Association Model = %d is not used in LE SC",
p_cb->selected_association_model);
return output;
}
SMP_TRACE_EVENT("peer commitment calculation is completed");
return output;
}
/*******************************************************************************
*
* Function smp_calculate_numeric_comparison_display_number
*
* Description The function calculates and saves number to display in
* numeric comparison association mode.
*
* Returns void
*
******************************************************************************/
void smp_calculate_numeric_comparison_display_number(tSMP_CB* p_cb,
tSMP_INT_DATA* p_data) {
SMP_TRACE_DEBUG("%s", __func__);
if (p_cb->role == HCI_ROLE_CENTRAL) {
p_cb->number_to_display = crypto_toolbox::g2(
p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand, p_cb->rrand);
} else {
p_cb->number_to_display = crypto_toolbox::g2(
p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand, p_cb->rand);
}
if (p_cb->number_to_display >= (BTM_MAX_PASSKEY_VAL + 1)) {
tSMP_INT_DATA smp_int_data;
smp_int_data.status = SMP_PAIR_FAIL_UNKNOWN;
p_cb->failure = SMP_PAIR_FAIL_UNKNOWN;
smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &smp_int_data);
return;
}
SMP_TRACE_EVENT("Number to display in numeric comparison = %d",
p_cb->number_to_display);
p_cb->cb_evt = SMP_NC_REQ_EVT;
tSMP_INT_DATA smp_int_data;
smp_int_data.passkey = p_cb->number_to_display;
smp_sm_event(p_cb, SMP_SC_DSPL_NC_EVT, &smp_int_data);
return;
}
/*******************************************************************************
*
* Function smp_calculate_local_dhkey_check
*
* Description The function calculates and saves local device DHKey check
* value in CB.
* Before doing this it calls
* smp_calculate_f5_mackey_and_long_term_key(...).
* to calculate MacKey and LTK.
* MacKey is used in dhkey calculation.
*
* Returns void
*
******************************************************************************/
void smp_calculate_local_dhkey_check(tSMP_CB* p_cb, tSMP_INT_DATA* p_data) {
uint8_t iocap[3], a[7], b[7];
SMP_TRACE_DEBUG("%s", __func__);
smp_calculate_f5_mackey_and_long_term_key(p_cb);
smp_collect_local_io_capabilities(iocap, p_cb);
smp_collect_local_ble_address(a, p_cb);
smp_collect_peer_ble_address(b, p_cb);
p_cb->dhkey_check = crypto_toolbox::f6(p_cb->mac_key, p_cb->rand, p_cb->rrand,
p_cb->peer_random, iocap, a, b);
SMP_TRACE_EVENT("local DHKey check calculation is completed");
}
/*******************************************************************************
*
* Function smp_calculate_peer_dhkey_check
*
* Description The function calculates peer device DHKey check value.
*
* Returns void
*
******************************************************************************/
void smp_calculate_peer_dhkey_check(tSMP_CB* p_cb, tSMP_INT_DATA* p_data) {
uint8_t iocap[3], a[7], b[7];
tSMP_KEY key;
SMP_TRACE_DEBUG("%s", __func__);
smp_collect_peer_io_capabilities(iocap, p_cb);
smp_collect_local_ble_address(a, p_cb);
smp_collect_peer_ble_address(b, p_cb);
Octet16 param_buf = crypto_toolbox::f6(p_cb->mac_key, p_cb->rrand, p_cb->rand,
p_cb->local_random, iocap, b, a);
SMP_TRACE_EVENT("peer DHKey check calculation is completed");
key.key_type = SMP_KEY_TYPE_PEER_DHK_CHCK;
key.p_data = param_buf.data();
tSMP_INT_DATA smp_int_data;
smp_int_data.key = key;
smp_sm_event(p_cb, SMP_SC_KEY_READY_EVT, &smp_int_data);
}
/*******************************************************************************
*
* Function smp_calculate_link_key_from_long_term_key
*
* Description The function calculates and saves BR/EDR link key derived
* from LE SC LTK.
*
* Returns false if out of resources, true in other cases.
*
******************************************************************************/
bool smp_calculate_link_key_from_long_term_key(tSMP_CB* p_cb) {
tBTM_SEC_DEV_REC* p_dev_rec;
RawAddress bda_for_lk;
tBLE_ADDR_TYPE conn_addr_type;
SMP_TRACE_DEBUG("%s", __func__);
if (p_cb->id_addr_rcvd && p_cb->id_addr_type == BLE_ADDR_PUBLIC) {
SMP_TRACE_DEBUG(
"Use rcvd identity address as BD_ADDR of LK rcvd identity address");
bda_for_lk = p_cb->id_addr;
} else if ((BTM_ReadRemoteConnectionAddr(p_cb->pairing_bda, bda_for_lk,
&conn_addr_type)) &&
conn_addr_type == BLE_ADDR_PUBLIC) {
SMP_TRACE_DEBUG("Use rcvd connection address as BD_ADDR of LK");
} else {
SMP_TRACE_WARNING("Don't have peer public address to associate with LK");
return false;
}
p_dev_rec = btm_find_dev(p_cb->pairing_bda);
if (p_dev_rec == NULL) {
SMP_TRACE_ERROR("%s failed to find Security Record", __func__);
return false;
}
Octet16 link_key =
crypto_toolbox::ltk_to_link_key(p_cb->ltk, p_cb->key_derivation_h7_used);
uint8_t link_key_type;
if (btm_cb.security_mode == BTM_SEC_MODE_SC) {
/* Secure Connections Only Mode */
link_key_type = BTM_LKEY_TYPE_AUTH_COMB_P_256;
} else if (controller_get_interface()->supports_secure_connections()) {
/* both transports are SC capable */
if (p_cb->sec_level == SMP_SEC_AUTHENTICATED)
link_key_type = BTM_LKEY_TYPE_AUTH_COMB_P_256;
else
link_key_type = BTM_LKEY_TYPE_UNAUTH_COMB_P_256;
} else if (btm_cb.security_mode == BTM_SEC_MODE_SP) {
/* BR/EDR transport is SSP capable */
if (p_cb->sec_level == SMP_SEC_AUTHENTICATED)
link_key_type = BTM_LKEY_TYPE_AUTH_COMB;
else
link_key_type = BTM_LKEY_TYPE_UNAUTH_COMB;
} else {
SMP_TRACE_ERROR("%s failed to update link_key. Sec Mode = %d, sm4 = 0x%02x",
__func__, btm_cb.security_mode, p_dev_rec->sm4);
return false;
}
link_key_type += BTM_LTK_DERIVED_LKEY_OFFSET;
Octet16 notif_link_key;
std::reverse_copy(link_key.begin(), link_key.end(), notif_link_key.begin());
btm_sec_link_key_notification(bda_for_lk, notif_link_key, link_key_type);
SMP_TRACE_EVENT("%s is completed", __func__);
return true;
}
/** The function calculates and saves SC LTK derived from BR/EDR link key. */
bool smp_calculate_long_term_key_from_link_key(tSMP_CB* p_cb) {
tBTM_SEC_DEV_REC* p_dev_rec;
SMP_TRACE_DEBUG("%s", __func__);
p_dev_rec = btm_find_dev(p_cb->pairing_bda);
if (p_dev_rec == NULL) {
SMP_TRACE_ERROR("%s failed to find Security Record", __func__);
return false;
}
uint8_t br_link_key_type;
br_link_key_type = BTM_SecGetDeviceLinkKeyType(p_cb->pairing_bda);
if (br_link_key_type == BTM_LKEY_TYPE_IGNORE) {
SMP_TRACE_ERROR("%s failed to retrieve BR link type", __func__);
return false;
}
if ((br_link_key_type != BTM_LKEY_TYPE_AUTH_COMB_P_256) &&
(br_link_key_type != BTM_LKEY_TYPE_UNAUTH_COMB_P_256)) {
SMP_TRACE_ERROR("%s LE SC LTK can't be derived from LK %d", __func__,
br_link_key_type);
return false;
}
Octet16 rev_link_key;
std::reverse_copy(p_dev_rec->link_key.begin(), p_dev_rec->link_key.end(),
rev_link_key.begin());
p_cb->ltk = crypto_toolbox::link_key_to_ltk(rev_link_key,
p_cb->key_derivation_h7_used);
p_cb->sec_level = (br_link_key_type == BTM_LKEY_TYPE_AUTH_COMB_P_256)
? SMP_SEC_AUTHENTICATED
: SMP_SEC_UNAUTHENTICATE;
SMP_TRACE_EVENT("%s is completed", __func__);
return true;
}
/**
* This function generates nonce.
*/
void smp_start_nonce_generation(tSMP_CB* p_cb) {
SMP_TRACE_DEBUG("%s", __func__);
btsnd_hcic_ble_rand(Bind(
[](tSMP_CB* p_cb, BT_OCTET8 rand) {
memcpy(p_cb->rand.data(), rand, BT_OCTET8_LEN);
btsnd_hcic_ble_rand(Bind(
[](tSMP_CB* p_cb, BT_OCTET8 rand) {
memcpy(p_cb->rand.data() + 8, rand, BT_OCTET8_LEN);
SMP_TRACE_DEBUG("%s round %d", __func__, p_cb->round);
/* notifies SM that it has new nonce. */
smp_sm_event(p_cb, SMP_HAVE_LOC_NONCE_EVT, NULL);
},
p_cb));
},
p_cb));
}