/* * Copyright (C) 2016, The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include "android/net/wifi/nl80211/IApInterface.h" #include "wificond/tests/mock_netlink_manager.h" #include "wificond/tests/mock_netlink_utils.h" #include "wificond/tests/mock_scan_utils.h" #include "wificond/server.h" using android::net::wifi::nl80211::IApInterface; using android::net::wifi::nl80211::IClientInterface; using android::wifi_system::InterfaceTool; using android::wifi_system::MockInterfaceTool; using std::unique_ptr; using std::vector; using testing::Eq; using testing::Invoke; using testing::NiceMock; using testing::Return; using testing::Sequence; using testing::StrEq; using testing::_; using namespace std::placeholders; namespace android { namespace wificond { namespace { const char kFakeInterfaceName[] = "testif0"; const char kFakeInterfaceName1[] = "testif1"; const char kFakeInterfaceNameP2p[] = "testif-p2p0"; const char kFateInterfaceNameInvalid[] = "testif-invalid"; const uint32_t kFakeInterfaceIndex = 34; const uint32_t kFakeInterfaceIndex1 = 36; const uint32_t kFakeInterfaceIndexP2p = 36; const uint32_t kFakeWiphyIndex = 0; const std::array kFakeInterfaceMacAddress = {0x45, 0x54, 0xad, 0x67, 0x98, 0xf6}; const std::array kFakeInterfaceMacAddress1 = {0x05, 0x04, 0xef, 0x27, 0x12, 0xff}; const std::array kFakeInterfaceMacAddressP2p = {0x15, 0x24, 0xef, 0x27, 0x12, 0xff}; // This is a helper function to mock the behavior of // NetlinkUtils::GetInterfaces(). // |wiphy_index| is mapped to first parameters of GetInterfaces(). // |response| is mapped to second parameters of GetInterfaces(). // |mock_response| and |mock_return_value| are additional parameters used // for specifying expected results, bool MockGetInterfacesResponse( const vector& mock_response, bool mock_return_value, uint32_t wiphy_index, vector* response) { for (const auto& interface : mock_response) { response->emplace_back(interface); } return mock_return_value; } class ServerTest : public ::testing::Test { protected: void SetUp() override { ON_CALL(*if_tool_, SetUpState(_, _)).WillByDefault(Return(true)); ON_CALL(*netlink_utils_, GetWiphyIndex(_)).WillByDefault(Return(true)); ON_CALL(*netlink_utils_, GetWiphyIndex(_, _)).WillByDefault(Return(true)); ON_CALL(*netlink_utils_, GetInterfaces(_, _)) .WillByDefault(Invoke(bind( MockGetInterfacesResponse, mock_interfaces, true, _1, _2))); ON_CALL(*netlink_utils_, GetWiphyInfo(0, _, _, _)) .WillByDefault([]( uint32_t wiphy_index, BandInfo* band_info, ScanCapabilities* scan_capabilities, WiphyFeatures* wiphy_features) { band_info->band_2g = {1, 2, 3, 4, 5}; return true; }); ON_CALL(*netlink_utils_, GetWiphyInfo(1, _, _, _)) .WillByDefault([]( uint32_t wiphy_index, BandInfo* band_info, ScanCapabilities* scan_capabilities, WiphyFeatures* wiphy_features) { band_info->band_60g = {6, 7, 8, 9, 10}; return true; }); } NiceMock* if_tool_ = new NiceMock; unique_ptr> netlink_manager_{ new NiceMock()}; unique_ptr> netlink_utils_{ new NiceMock(netlink_manager_.get())}; unique_ptr> scan_utils_{ new NiceMock(netlink_manager_.get())}; const vector mock_interfaces = { // Client interface InterfaceInfo( kFakeInterfaceIndex, kFakeWiphyIndex, std::string(kFakeInterfaceName), std::array(kFakeInterfaceMacAddress)), // AP Interface InterfaceInfo( kFakeInterfaceIndex1, kFakeWiphyIndex, std::string(kFakeInterfaceName1), std::array(kFakeInterfaceMacAddress1)), // p2p interface InterfaceInfo( kFakeInterfaceIndexP2p, kFakeWiphyIndex, std::string(kFakeInterfaceNameP2p), std::array(kFakeInterfaceMacAddressP2p)) }; Server server_{unique_ptr(if_tool_), netlink_utils_.get(), scan_utils_.get()}; }; // class ServerTest } // namespace TEST_F(ServerTest, CanSetUpApInterface) { sp ap_if; EXPECT_CALL(*netlink_utils_, SubscribeRegDomainChange(_, _)); EXPECT_TRUE(server_.createApInterface(kFakeInterfaceName, &ap_if).isOk()); EXPECT_NE(nullptr, ap_if.get()); } TEST_F(ServerTest, CanSupportMultipleInterfaces) { sp ap_if; EXPECT_TRUE(server_.createApInterface(kFakeInterfaceName, &ap_if).isOk()); EXPECT_NE(nullptr, ap_if.get()); sp second_ap_if; // We won't throw on a second interface request. EXPECT_TRUE(server_.createApInterface(kFakeInterfaceName, &second_ap_if).isOk()); // But this time we won't get an interface back. EXPECT_NE(nullptr, second_ap_if.get()); } TEST_F(ServerTest, CanDestroyInterfaces) { sp ap_if; EXPECT_TRUE(server_.createApInterface(kFakeInterfaceName, &ap_if).isOk()); // When we tear down the interface, we expect the driver to be unloaded. EXPECT_CALL(*netlink_utils_, UnsubscribeRegDomainChange(_)); EXPECT_TRUE(server_.tearDownInterfaces().isOk()); // After a tearDown, we should be able to create another interface. EXPECT_TRUE(server_.createApInterface(kFakeInterfaceName, &ap_if).isOk()); } TEST_F(ServerTest, CanTeardownApInterface) { sp ap_if; EXPECT_TRUE(server_.createApInterface(kFakeInterfaceName, &ap_if).isOk()); EXPECT_NE(nullptr, ap_if.get()); // Try to remove an invalid iface name, this should fail. bool success = true; EXPECT_TRUE(server_.tearDownApInterface( kFateInterfaceNameInvalid, &success).isOk()); EXPECT_FALSE(success); EXPECT_TRUE(server_.tearDownApInterface(kFakeInterfaceName, &success).isOk()); EXPECT_TRUE(success); } TEST_F(ServerTest, CanTeardownClientInterface) { sp client_if; EXPECT_TRUE(server_.createClientInterface( kFakeInterfaceName, &client_if).isOk()); EXPECT_NE(nullptr, client_if.get()); // Try to remove an invalid iface name, this should fail. bool success = true; EXPECT_TRUE(server_.tearDownClientInterface( kFateInterfaceNameInvalid, &success).isOk()); EXPECT_FALSE(success); EXPECT_TRUE(server_.tearDownClientInterface( kFakeInterfaceName, &success).isOk()); EXPECT_TRUE(success); } TEST_F(ServerTest, CanTeardownMultipleClientInterfacesOnSameWiphy) { sp client_if; // add iface 0 on wiphy 0 ON_CALL(*netlink_utils_, GetWiphyIndex(_, _)).WillByDefault( [](uint32_t* out_wiphy_index, const std::string& iface_name) { *out_wiphy_index = 0; return true; }); EXPECT_TRUE(server_.createClientInterface( kFakeInterfaceName, &client_if).isOk()); EXPECT_NE(nullptr, client_if.get()); // bands non-empty { std::optional> out_frequencies; EXPECT_TRUE(server_.getAvailable2gChannels(&out_frequencies).isOk()); EXPECT_TRUE(out_frequencies.has_value()); EXPECT_FALSE(out_frequencies->empty()); } sp client_if1; // add iface 1 on wiphy 0 ON_CALL(*netlink_utils_, GetWiphyIndex(_, _)).WillByDefault( [](uint32_t* out_wiphy_index, const std::string& iface_name) { *out_wiphy_index = 0; return true; }); EXPECT_TRUE(server_.createClientInterface( kFakeInterfaceName1, &client_if1).isOk()); EXPECT_NE(nullptr, client_if1.get()); // bands still non-empty { std::optional> out_frequencies; EXPECT_TRUE(server_.getAvailable2gChannels(&out_frequencies).isOk()); EXPECT_TRUE(out_frequencies.has_value()); EXPECT_FALSE(out_frequencies->empty()); } // tear down iface 0 { bool success = true; EXPECT_TRUE(server_.tearDownClientInterface( kFakeInterfaceName, &success).isOk()); EXPECT_TRUE(success); } // bands still non-empty { std::optional> out_frequencies; EXPECT_TRUE(server_.getAvailable2gChannels(&out_frequencies).isOk()); EXPECT_TRUE(out_frequencies.has_value()); EXPECT_FALSE(out_frequencies->empty()); } // tear down iface 1 { bool success = true; EXPECT_TRUE(server_.tearDownClientInterface( kFakeInterfaceName1, &success).isOk()); EXPECT_TRUE(success); } // bands now empty { std::optional> out_frequencies; EXPECT_TRUE(server_.getAvailable2gChannels(&out_frequencies).isOk()); EXPECT_FALSE(out_frequencies.has_value()); } } TEST_F(ServerTest, CanTeardownMultipleClientInterfacesOnDifferentWiphy) { sp client_if; // add iface 0 on wiphy 0, supports 2GHz ON_CALL(*netlink_utils_, GetWiphyIndex(_, _)).WillByDefault( [](uint32_t* out_wiphy_index, const std::string& iface_name) { *out_wiphy_index = 0; return true; }); EXPECT_TRUE(server_.createClientInterface( kFakeInterfaceName, &client_if).isOk()); EXPECT_NE(nullptr, client_if.get()); // 2G bands non-empty { std::optional> out_frequencies; EXPECT_TRUE(server_.getAvailable2gChannels(&out_frequencies).isOk()); EXPECT_TRUE(out_frequencies.has_value()); EXPECT_FALSE(out_frequencies->empty()); } // 60G bands empty { std::optional> out_frequencies; EXPECT_TRUE(server_.getAvailable60gChannels(&out_frequencies).isOk()); EXPECT_FALSE(out_frequencies.has_value()); } sp client_if1; // add iface 1 on wiphy 1, supports 60GHz ON_CALL(*netlink_utils_, GetWiphyIndex(_, _)).WillByDefault( [](uint32_t* out_wiphy_index, const std::string& iface_name) { *out_wiphy_index = 1; return true; }); EXPECT_TRUE(server_.createClientInterface( kFakeInterfaceName1, &client_if1).isOk()); EXPECT_NE(nullptr, client_if1.get()); // 2G bands still non-empty { std::optional> out_frequencies; EXPECT_TRUE(server_.getAvailable2gChannels(&out_frequencies).isOk()); EXPECT_TRUE(out_frequencies.has_value()); EXPECT_FALSE(out_frequencies->empty()); } // 60G bands non-empty { std::optional> out_frequencies; EXPECT_TRUE(server_.getAvailable60gChannels(&out_frequencies).isOk()); EXPECT_TRUE(out_frequencies.has_value()); EXPECT_FALSE(out_frequencies->empty()); } // tear down iface 0 { bool success = true; EXPECT_TRUE(server_.tearDownClientInterface( kFakeInterfaceName, &success).isOk()); EXPECT_TRUE(success); } // 2G bands now empty { std::optional> out_frequencies; EXPECT_TRUE(server_.getAvailable2gChannels(&out_frequencies).isOk()); EXPECT_FALSE(out_frequencies.has_value()); } // 60G bands still non-empty { std::optional> out_frequencies; EXPECT_TRUE(server_.getAvailable60gChannels(&out_frequencies).isOk()); EXPECT_TRUE(out_frequencies.has_value()); EXPECT_FALSE(out_frequencies->empty()); } // tear down iface 1 { bool success = true; EXPECT_TRUE(server_.tearDownClientInterface( kFakeInterfaceName1, &success).isOk()); EXPECT_TRUE(success); } // 2G bands still empty { std::optional> out_frequencies; EXPECT_TRUE(server_.getAvailable2gChannels(&out_frequencies).isOk()); EXPECT_FALSE(out_frequencies.has_value()); } // 60G bands now empty { std::optional> out_frequencies; EXPECT_TRUE(server_.getAvailable60gChannels(&out_frequencies).isOk()); EXPECT_FALSE(out_frequencies.has_value()); } } TEST_F(ServerTest, CanCreateTeardownApAndClientInterface) { sp client_if; sp ap_if; EXPECT_TRUE(server_.createClientInterface(kFakeInterfaceName, &client_if).isOk()); EXPECT_NE(nullptr, client_if.get()); EXPECT_TRUE(server_.createApInterface(kFakeInterfaceName1, &ap_if).isOk()); EXPECT_NE(nullptr, ap_if.get()); bool success = true; // Try to remove an invalid iface name, this should fail. EXPECT_TRUE(server_.tearDownClientInterface( kFateInterfaceNameInvalid, &success).isOk()); EXPECT_FALSE(success); EXPECT_TRUE(server_.tearDownApInterface( kFateInterfaceNameInvalid, &success).isOk()); EXPECT_FALSE(success); EXPECT_TRUE(server_.tearDownClientInterface( kFakeInterfaceName, &success).isOk()); EXPECT_TRUE(success); EXPECT_TRUE(server_.tearDownApInterface( kFakeInterfaceName1, &success).isOk()); EXPECT_TRUE(success); } TEST_F(ServerTest, CanDestroyApAndClientInterfaces) { sp client_if; sp ap_if; EXPECT_TRUE(server_.createClientInterface( kFakeInterfaceName, &client_if).isOk()); EXPECT_NE(nullptr, client_if.get()); EXPECT_TRUE(server_.createApInterface(kFakeInterfaceName1, &ap_if).isOk()); EXPECT_NE(nullptr, ap_if.get()); // When we tear down the interfaces, we expect the iface to be unloaded. EXPECT_CALL(*if_tool_, SetUpState(StrEq(kFakeInterfaceName), Eq(false))).Times(2); EXPECT_CALL(*if_tool_, SetUpState(StrEq(kFakeInterfaceName1), Eq(false))).Times(2); EXPECT_TRUE(server_.tearDownInterfaces().isOk()); } } // namespace wificond } // namespace android