/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include namespace android::audio_utils { void Balance::setChannelMask(audio_channel_mask_t channelMask) { using namespace ::android::audio_utils::channels; channelMask = static_cast(channelMask & ~AUDIO_CHANNEL_HAPTIC_ALL); if (!audio_is_output_channel(channelMask) // invalid mask || mChannelMask == channelMask) { // no need to do anything return; } mChannelMask = channelMask; mChannelCount = audio_channel_count_from_out_mask(channelMask); // save mBalance into balance for later restoring, then reset const float balance = mBalance; mBalance = 0.f; // reset mVolumes mVolumes.resize(mChannelCount); std::fill(mVolumes.begin(), mVolumes.end(), 1.f); // reset ramping variables mRampBalance = 0.f; mRampVolumes.clear(); if (audio_channel_mask_get_representation(mChannelMask) == AUDIO_CHANNEL_REPRESENTATION_INDEX) { mSides.clear(); // mSides unused for channel index masks. setBalance(balance); // recompute balance return; } mSides.resize(mChannelCount); // If LFE and LFE2 both exist, it should be L and R in 22.2 int lfe = -1; int lfe2 = -1; constexpr unsigned LFE_CHANNEL_INDEX = 3; constexpr unsigned LFE2_CHANNEL_INDEX = 23; for (unsigned i = 0, channel = channelMask; channel != 0; ++i) { const int index = __builtin_ctz(channel); mSides[i] = sideFromChannelIdx(index); // Keep track of LFE indices if (index == LFE_CHANNEL_INDEX) { lfe = i; } else if (index == LFE2_CHANNEL_INDEX) { lfe2 = i; } channel &= ~(1 << index); } if (lfe >= 0 && lfe2 >= 0) { // if both LFEs exist assign to L and R. mSides[lfe] = AUDIO_GEOMETRY_SIDE_LEFT; mSides[lfe2] = AUDIO_GEOMETRY_SIDE_RIGHT; } setBalance(balance); // recompute balance } void Balance::process(float *buffer, size_t frames) { if (mBalance == 0.f || mChannelCount < 2) { return; } if (mRamp) { if (mRampVolumes.size() != mVolumes.size()) { // If mRampVolumes is empty, we do not ramp in this process() but directly // apply the existing mVolumes. We save the balance and volume state here // and fall through to non-ramping code below. The next process() will ramp if needed. mRampBalance = mBalance; mRampVolumes = mVolumes; } else if (mRampBalance != mBalance) { if (frames > 0) { std::vector mDeltas(mVolumes.size()); const float r = 1.f / frames; for (size_t j = 0; j < mChannelCount; ++j) { mDeltas[j] = (mVolumes[j] - mRampVolumes[j]) * r; } // ramped balance for (size_t i = 0; i < frames; ++i) { const float findex = i; for (size_t j = 0; j < mChannelCount; ++j) { // better precision: delta * i *buffer++ *= mRampVolumes[j] + mDeltas[j] * findex; } } } mRampBalance = mBalance; mRampVolumes = mVolumes; return; } // fall through } // non-ramped balance for (size_t i = 0; i < frames; ++i) { for (size_t j = 0; j < mChannelCount; ++j) { *buffer++ *= mVolumes[j]; } } } void Balance::computeStereoBalance(float balance, float *left, float *right) const { if (balance > 0.f) { *left = mCurve(1.f - balance); *right = 1.f; } else if (balance < 0.f) { *left = 1.f; *right = mCurve(1.f + balance); } else { *left = 1.f; *right = 1.f; } // Functionally: // *left = balance > 0.f ? mCurve(1.f - balance) : 1.f; // *right = balance < 0.f ? mCurve(1.f + balance) : 1.f; } std::string Balance::toString() const { std::stringstream ss; ss << "balance " << mBalance << " channelCount " << mChannelCount << " volumes:"; for (float volume : mVolumes) { ss << " " << volume; } // we do not show mSides, which is only valid for channel position masks. return ss.str(); } void Balance::setBalance(float balance) { using namespace ::android::audio_utils::channels; if (mBalance == balance // no change || isnan(balance) || fabs(balance) > 1.f) { // balance out of range return; } mBalance = balance; if (mChannelCount < 2) { // if channel count is 1, mVolumes[0] is already set to 1.f return; // and if channel count < 2, we don't do anything in process(). } // Handle the common cases: // stereo and channel index masks only affect the first two channels as left and right. if (mChannelMask == AUDIO_CHANNEL_OUT_STEREO || audio_channel_mask_get_representation(mChannelMask) == AUDIO_CHANNEL_REPRESENTATION_INDEX) { computeStereoBalance(balance, &mVolumes[0], &mVolumes[1]); return; } // For position masks with more than 2 channels, we consider which side the // speaker position is on to figure the volume used. float balanceVolumes[3]; // left, right, center (we don't care the order) static_assert(AUDIO_GEOMETRY_SIDE_LEFT >= 0 && AUDIO_GEOMETRY_SIDE_LEFT <= std::size(balanceVolumes)); static_assert(AUDIO_GEOMETRY_SIDE_RIGHT >= 0 && AUDIO_GEOMETRY_SIDE_RIGHT <= std::size(balanceVolumes)); static_assert(AUDIO_GEOMETRY_SIDE_CENTER >= 0 && AUDIO_GEOMETRY_SIDE_CENTER <= std::size(balanceVolumes)); computeStereoBalance(balance, &balanceVolumes[AUDIO_GEOMETRY_SIDE_LEFT], &balanceVolumes[AUDIO_GEOMETRY_SIDE_RIGHT]); balanceVolumes[AUDIO_GEOMETRY_SIDE_CENTER] = 1.f; // center TODO: consider center scaling. for (size_t i = 0; i < mVolumes.size(); ++i) { mVolumes[i] = balanceVolumes[mSides[i]]; } } } // namespace android::audio_utils