/* * Copyright (C) 2021 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "keystore2_engine.h" #include #include #include #include #include #include #include #include #include #include #include #include #define AT __func__ << ":" << __LINE__ << " " constexpr const char keystore2_service_name[] = "android.system.keystore2.IKeystoreService/default"; const std::string keystore2_grant_id_prefix("ks2_keystore-engine_grant_id:"); /** * Keystore 2.0 namespace identifiers. * Keep in sync with system/sepolicy/private/keystore2_key_contexts. */ constexpr const int64_t KS2_NAMESPACE_WIFI = 102; namespace ks2 = ::aidl::android::system::keystore2; namespace KMV1 = ::aidl::android::hardware::security::keymint; namespace { int64_t getNamespaceforCurrentUid() { auto uid = getuid(); switch (uid) { case AID_WIFI: return KS2_NAMESPACE_WIFI; // 0 is the super user namespace, and nothing has access to this namespace on user builds. // So this will always fail. default: return 0; } } struct Keystore2KeyBackend { ks2::KeyDescriptor descriptor_; std::shared_ptr i_keystore_security_level_; }; /* key_backend_dup is called when one of the RSA or EC_KEY objects is duplicated. */ extern "C" int key_backend_dup(CRYPTO_EX_DATA* /* to */, const CRYPTO_EX_DATA* /* from */, void** from_d, int /* index */, long /* argl */, void* /* argp */) { auto key_backend = reinterpret_cast*>(*from_d); if (key_backend != nullptr) { *from_d = new std::shared_ptr(*key_backend); } return 1; } /* key_backend_free is called when one of the RSA, DSA or EC_KEY object is freed. */ extern "C" void key_backend_free(void* /* parent */, void* ptr, CRYPTO_EX_DATA* /* ad */, int /* index */, long /* argl */, void* /* argp */) { delete reinterpret_cast*>(ptr); } extern "C" int rsa_private_transform(RSA* rsa, uint8_t* out, const uint8_t* in, size_t len); extern "C" int ecdsa_sign(const uint8_t* digest, size_t digest_len, uint8_t* sig, unsigned int* sig_len, EC_KEY* ec_key); /* KeystoreEngine is a BoringSSL ENGINE that implements RSA and ECDSA by * forwarding the requested operations to Keystore. */ class Keystore2Engine { public: Keystore2Engine() : rsa_index_(RSA_get_ex_new_index(0 /* argl */, nullptr /* argp */, nullptr /* new_func */, key_backend_dup, key_backend_free)), ec_key_index_(EC_KEY_get_ex_new_index(0 /* argl */, nullptr /* argp */, nullptr /* new_func */, key_backend_dup, key_backend_free)), engine_(ENGINE_new()) { memset(&rsa_method_, 0, sizeof(rsa_method_)); rsa_method_.common.is_static = 1; rsa_method_.private_transform = rsa_private_transform; rsa_method_.flags = RSA_FLAG_OPAQUE; ENGINE_set_RSA_method(engine_, &rsa_method_, sizeof(rsa_method_)); memset(&ecdsa_method_, 0, sizeof(ecdsa_method_)); ecdsa_method_.common.is_static = 1; ecdsa_method_.sign = ecdsa_sign; ecdsa_method_.flags = ECDSA_FLAG_OPAQUE; ENGINE_set_ECDSA_method(engine_, &ecdsa_method_, sizeof(ecdsa_method_)); } int rsa_ex_index() const { return rsa_index_; } int ec_key_ex_index() const { return ec_key_index_; } const ENGINE* engine() const { return engine_; } static const Keystore2Engine& get() { static Keystore2Engine engine; return engine; } private: const int rsa_index_; const int ec_key_index_; RSA_METHOD rsa_method_; ECDSA_METHOD ecdsa_method_; ENGINE* const engine_; }; #define OWNERSHIP_TRANSFERRED(x) x.release() /* wrap_rsa returns an |EVP_PKEY| that contains an RSA key where the public * part is taken from |public_rsa| and the private operations are forwarded to * KeyStore and operate on the key named |key_id|. */ bssl::UniquePtr wrap_rsa(std::shared_ptr key_backend, const RSA* public_rsa) { bssl::UniquePtr rsa(RSA_new_method(Keystore2Engine::get().engine())); if (rsa.get() == nullptr) { return nullptr; } auto key_backend_copy = new decltype(key_backend)(key_backend); if (!RSA_set_ex_data(rsa.get(), Keystore2Engine::get().rsa_ex_index(), key_backend_copy)) { delete key_backend_copy; return nullptr; } rsa->n = BN_dup(public_rsa->n); rsa->e = BN_dup(public_rsa->e); if (rsa->n == nullptr || rsa->e == nullptr) { return nullptr; } bssl::UniquePtr result(EVP_PKEY_new()); if (result.get() == nullptr || !EVP_PKEY_assign_RSA(result.get(), rsa.get())) { return nullptr; } OWNERSHIP_TRANSFERRED(rsa); return result; } /* wrap_ecdsa returns an |EVP_PKEY| that contains an ECDSA key where the public * part is taken from |public_rsa| and the private operations are forwarded to * KeyStore and operate on the key named |key_id|. */ bssl::UniquePtr wrap_ecdsa(std::shared_ptr key_backend, const EC_KEY* public_ecdsa) { bssl::UniquePtr ec(EC_KEY_new_method(Keystore2Engine::get().engine())); if (ec.get() == nullptr) { return nullptr; } if (!EC_KEY_set_group(ec.get(), EC_KEY_get0_group(public_ecdsa)) || !EC_KEY_set_public_key(ec.get(), EC_KEY_get0_public_key(public_ecdsa))) { return nullptr; } auto key_backend_copy = new decltype(key_backend)(key_backend); if (!EC_KEY_set_ex_data(ec.get(), Keystore2Engine::get().ec_key_ex_index(), key_backend_copy)) { delete key_backend_copy; return nullptr; } bssl::UniquePtr result(EVP_PKEY_new()); if (result.get() == nullptr || !EVP_PKEY_assign_EC_KEY(result.get(), ec.get())) { return nullptr; } OWNERSHIP_TRANSFERRED(ec); return result; } std::optional> keystore2_sign(const Keystore2KeyBackend& key_backend, std::vector input, KMV1::Algorithm algorithm) { auto sec_level = key_backend.i_keystore_security_level_; ks2::CreateOperationResponse response; std::vector op_params(4); op_params[0] = KMV1::KeyParameter{ .tag = KMV1::Tag::PURPOSE, .value = KMV1::KeyParameterValue::make( KMV1::KeyPurpose::SIGN)}; op_params[1] = KMV1::KeyParameter{ .tag = KMV1::Tag::ALGORITHM, .value = KMV1::KeyParameterValue::make(algorithm)}; op_params[2] = KMV1::KeyParameter{ .tag = KMV1::Tag::PADDING, .value = KMV1::KeyParameterValue::make( KMV1::PaddingMode::NONE)}; op_params[3] = KMV1::KeyParameter{.tag = KMV1::Tag::DIGEST, .value = KMV1::KeyParameterValue::make( KMV1::Digest::NONE)}; auto rc = sec_level->createOperation(key_backend.descriptor_, op_params, false /* forced */, &response); if (!rc.isOk()) { auto exception_code = rc.getExceptionCode(); if (exception_code == EX_SERVICE_SPECIFIC) { LOG(ERROR) << AT << "Keystore createOperation returned service specific error: " << rc.getServiceSpecificError(); } else { LOG(ERROR) << AT << "Communication with Keystore createOperation failed error: " << exception_code; } return std::nullopt; } auto op = response.iOperation; std::optional> output = std::nullopt; rc = op->finish(std::move(input), {}, &output); if (!rc.isOk()) { auto exception_code = rc.getExceptionCode(); if (exception_code == EX_SERVICE_SPECIFIC) { LOG(ERROR) << AT << "Keystore finish returned service specific error: " << rc.getServiceSpecificError(); } else { LOG(ERROR) << AT << "Communication with Keystore finish failed error: " << exception_code; } return std::nullopt; } if (!output) { LOG(ERROR) << AT << "We did not get a signature from Keystore."; } return output; } /* rsa_private_transform takes a big-endian integer from |in|, calculates the * d'th power of it, modulo the RSA modulus, and writes the result as a * big-endian integer to |out|. Both |in| and |out| are |len| bytes long. It * returns one on success and zero otherwise. */ extern "C" int rsa_private_transform(RSA* rsa, uint8_t* out, const uint8_t* in, size_t len) { auto key_backend = reinterpret_cast*>( RSA_get_ex_data(rsa, Keystore2Engine::get().rsa_ex_index())); if (key_backend == nullptr) { LOG(ERROR) << AT << "Invalid key."; return 0; } auto output = keystore2_sign(**key_backend, std::vector(in, in + len), KMV1::Algorithm::RSA); if (!output) { return 0; } if (output->size() > len) { /* The result of the RSA operation can never be larger than the size of * the modulus so we assume that the result has extra zeros on the * left. This provides attackers with an oracle, but there's nothing * that we can do about it here. */ LOG(WARNING) << "Reply len " << output->size() << " greater than expected " << len; memcpy(out, &output->data()[output->size() - len], len); } else if (output->size() < len) { /* If the Keystore implementation returns a short value we assume that * it's because it removed leading zeros from the left side. This is * bad because it provides attackers with an oracle but we cannot do * anything about a broken Keystore implementation here. */ LOG(WARNING) << "Reply len " << output->size() << " less than expected " << len; memset(out, 0, len); memcpy(out + len - output->size(), output->data(), output->size()); } else { memcpy(out, output->data(), len); } return 1; } /* ecdsa_sign signs |digest_len| bytes from |digest| with |ec_key| and writes * the resulting signature (an ASN.1 encoded blob) to |sig|. It returns one on * success and zero otherwise. */ extern "C" int ecdsa_sign(const uint8_t* digest, size_t digest_len, uint8_t* sig, unsigned int* sig_len, EC_KEY* ec_key) { auto key_backend = reinterpret_cast*>( EC_KEY_get_ex_data(ec_key, Keystore2Engine::get().ec_key_ex_index())); if (key_backend == nullptr) { LOG(ERROR) << AT << "Invalid key."; return 0; } size_t ecdsa_size = ECDSA_size(ec_key); auto output = keystore2_sign(**key_backend, std::vector(digest, digest + digest_len), KMV1::Algorithm::EC); if (!output) { LOG(ERROR) << "There was an error during ecdsa_sign."; return 0; } if (output->size() == 0) { LOG(ERROR) << "No valid signature returned"; return 0; } else if (output->size() > ecdsa_size) { LOG(ERROR) << "Signature is too large"; return 0; } memcpy(sig, output->data(), output->size()); *sig_len = output->size(); return 1; } } // namespace /* EVP_PKEY_from_keystore returns an |EVP_PKEY| that contains either an RSA or * ECDSA key where the public part of the key reflects the value of the key * named |key_id| in Keystore and the private operations are forwarded onto * KeyStore. */ extern "C" EVP_PKEY* EVP_PKEY_from_keystore2(const char* key_id) { ::ndk::SpAIBinder keystoreBinder(AServiceManager_checkService(keystore2_service_name)); auto keystore2 = ks2::IKeystoreService::fromBinder(keystoreBinder); if (!keystore2) { LOG(ERROR) << AT << "Unable to connect to Keystore 2.0."; return nullptr; } std::string alias = key_id; if (android::base::StartsWith(alias, "USRPKEY_")) { LOG(WARNING) << AT << "Keystore backend used with legacy alias prefix - ignoring."; alias = alias.substr(8); } ks2::KeyDescriptor descriptor = { .domain = ks2::Domain::SELINUX, .nspace = getNamespaceforCurrentUid(), .alias = alias, .blob = std::nullopt, }; // If the key_id starts with the grant id prefix, we parse the following string as numeric // grant id. We can then use the grant domain without alias to load the designated key. if (alias.find(keystore2_grant_id_prefix) == 0) { std::stringstream s(alias.substr(keystore2_grant_id_prefix.size())); s >> std::hex >> reinterpret_cast(descriptor.nspace); descriptor.domain = ks2::Domain::GRANT; descriptor.alias = std::nullopt; } ks2::KeyEntryResponse response; auto rc = keystore2->getKeyEntry(descriptor, &response); if (!rc.isOk()) { auto exception_code = rc.getExceptionCode(); if (exception_code == EX_SERVICE_SPECIFIC) { LOG(ERROR) << AT << "Keystore getKeyEntry returned service specific error: " << rc.getServiceSpecificError(); } else { LOG(ERROR) << AT << "Communication with Keystore getKeyEntry failed error: " << exception_code; } return nullptr; } if (!response.metadata.certificate) { LOG(ERROR) << AT << "No public key found."; return nullptr; } const uint8_t* p = response.metadata.certificate->data(); bssl::UniquePtr x509(d2i_X509(nullptr, &p, response.metadata.certificate->size())); if (!x509) { LOG(ERROR) << AT << "Failed to parse x509 certificate."; return nullptr; } bssl::UniquePtr pkey(X509_get_pubkey(x509.get())); if (!pkey) { LOG(ERROR) << AT << "Failed to extract public key."; return nullptr; } auto key_backend = std::make_shared( Keystore2KeyBackend{response.metadata.key, response.iSecurityLevel}); bssl::UniquePtr result; switch (EVP_PKEY_type(pkey->type)) { case EVP_PKEY_RSA: { bssl::UniquePtr public_rsa(EVP_PKEY_get1_RSA(pkey.get())); result = wrap_rsa(key_backend, public_rsa.get()); break; } case EVP_PKEY_EC: { bssl::UniquePtr public_ecdsa(EVP_PKEY_get1_EC_KEY(pkey.get())); result = wrap_ecdsa(key_backend, public_ecdsa.get()); break; } default: LOG(ERROR) << AT << "Unsupported key type " << EVP_PKEY_type(pkey->type); return nullptr; } return result.release(); }