/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include "MemoryFileAtOffset.h" #include "MemoryRange.h" namespace unwindstack { bool MapInfo::InitFileMemoryFromPreviousReadOnlyMap(MemoryFileAtOffset* memory) { // One last attempt, see if the previous map is read-only with the // same name and stretches across this map. if (prev_real_map() == nullptr || prev_real_map()->flags() != PROT_READ) { return false; } uint64_t map_size = end() - prev_real_map()->end(); if (!memory->Init(name(), prev_real_map()->offset(), map_size)) { return false; } uint64_t max_size; if (!Elf::GetInfo(memory, &max_size) || max_size < map_size) { return false; } if (!memory->Init(name(), prev_real_map()->offset(), max_size)) { return false; } set_elf_offset(offset() - prev_real_map()->offset()); set_elf_start_offset(prev_real_map()->offset()); return true; } Memory* MapInfo::GetFileMemory() { std::unique_ptr memory(new MemoryFileAtOffset); if (offset() == 0) { if (memory->Init(name(), 0)) { return memory.release(); } return nullptr; } // These are the possibilities when the offset is non-zero. // - There is an elf file embedded in a file, and the offset is the // the start of the elf in the file. // - There is an elf file embedded in a file, and the offset is the // the start of the executable part of the file. The actual start // of the elf is in the read-only segment preceeding this map. // - The whole file is an elf file, and the offset needs to be saved. // // Map in just the part of the file for the map. If this is not // a valid elf, then reinit as if the whole file is an elf file. // If the offset is a valid elf, then determine the size of the map // and reinit to that size. This is needed because the dynamic linker // only maps in a portion of the original elf, and never the symbol // file data. uint64_t map_size = end() - start(); if (!memory->Init(name(), offset(), map_size)) { return nullptr; } // Check if the start of this map is an embedded elf. uint64_t max_size = 0; if (Elf::GetInfo(memory.get(), &max_size)) { set_elf_start_offset(offset()); if (max_size > map_size) { if (memory->Init(name(), offset(), max_size)) { return memory.release(); } // Try to reinit using the default map_size. if (memory->Init(name(), offset(), map_size)) { return memory.release(); } set_elf_start_offset(0); return nullptr; } return memory.release(); } // No elf at offset, try to init as if the whole file is an elf. if (memory->Init(name(), 0) && Elf::IsValidElf(memory.get())) { set_elf_offset(offset()); // Need to check how to set the elf start offset. If this map is not // the r-x map of a r-- map, then use the real offset value. Otherwise, // use 0. if (prev_real_map() == nullptr || prev_real_map()->offset() != 0 || prev_real_map()->flags() != PROT_READ || prev_real_map()->name() != name()) { set_elf_start_offset(offset()); } return memory.release(); } // See if the map previous to this one contains a read-only map // that represents the real start of the elf data. if (InitFileMemoryFromPreviousReadOnlyMap(memory.get())) { return memory.release(); } // Failed to find elf at start of file or at read-only map, return // file object from the current map. if (memory->Init(name(), offset(), map_size)) { return memory.release(); } return nullptr; } Memory* MapInfo::CreateMemory(const std::shared_ptr& process_memory) { if (end() <= start()) { return nullptr; } set_elf_offset(0); // Fail on device maps. if (flags() & MAPS_FLAGS_DEVICE_MAP) { return nullptr; } // First try and use the file associated with the info. if (!name().empty()) { Memory* memory = GetFileMemory(); if (memory != nullptr) { return memory; } } if (process_memory == nullptr) { return nullptr; } set_memory_backed_elf(true); // Need to verify that this elf is valid. It's possible that // only part of the elf file to be mapped into memory is in the executable // map. In this case, there will be another read-only map that includes the // first part of the elf file. This is done if the linker rosegment // option is used. std::unique_ptr memory(new MemoryRange(process_memory, start(), end() - start(), 0)); if (Elf::IsValidElf(memory.get())) { // Might need to peek at the next map to create a memory object that // includes that map too. if (offset() != 0 || name().empty() || next_real_map() == nullptr || offset() >= next_real_map()->offset() || next_real_map()->name() != name()) { return memory.release(); } // There is a possibility that the elf object has already been created // in the next map. Since this should be a very uncommon path, just // redo the work. If this happens, the elf for this map will eventually // be discarded. MemoryRanges* ranges = new MemoryRanges; ranges->Insert(new MemoryRange(process_memory, start(), end() - start(), 0)); ranges->Insert(new MemoryRange(process_memory, next_real_map()->start(), next_real_map()->end() - next_real_map()->start(), next_real_map()->offset() - offset())); return ranges; } // Find the read-only map by looking at the previous map. The linker // doesn't guarantee that this invariant will always be true. However, // if that changes, there is likely something else that will change and // break something. if (offset() == 0 || name().empty() || prev_real_map() == nullptr || prev_real_map()->name() != name() || prev_real_map()->offset() >= offset()) { set_memory_backed_elf(false); return nullptr; } // Make sure that relative pc values are corrected properly. set_elf_offset(offset() - prev_real_map()->offset()); // Use this as the elf start offset, otherwise, you always get offsets into // the r-x section, which is not quite the right information. set_elf_start_offset(prev_real_map()->offset()); MemoryRanges* ranges = new MemoryRanges; ranges->Insert(new MemoryRange(process_memory, prev_real_map()->start(), prev_real_map()->end() - prev_real_map()->start(), 0)); ranges->Insert(new MemoryRange(process_memory, start(), end() - start(), elf_offset())); return ranges; } Elf* MapInfo::GetElf(const std::shared_ptr& process_memory, ArchEnum expected_arch) { { // Make sure no other thread is trying to add the elf to this map. std::lock_guard guard(elf_mutex()); if (elf().get() != nullptr) { return elf().get(); } bool locked = false; if (Elf::CachingEnabled() && !name().empty()) { Elf::CacheLock(); locked = true; if (Elf::CacheGet(this)) { Elf::CacheUnlock(); return elf().get(); } } Memory* memory = CreateMemory(process_memory); if (locked) { if (Elf::CacheAfterCreateMemory(this)) { delete memory; Elf::CacheUnlock(); return elf().get(); } } elf().reset(new Elf(memory)); // If the init fails, keep the elf around as an invalid object so we // don't try to reinit the object. elf()->Init(); if (elf()->valid() && expected_arch != elf()->arch()) { // Make the elf invalid, mismatch between arch and expected arch. elf()->Invalidate(); } if (locked) { Elf::CacheAdd(this); Elf::CacheUnlock(); } } if (!elf()->valid()) { set_elf_start_offset(offset()); } else if (prev_real_map() != nullptr && elf_start_offset() != offset() && prev_real_map()->offset() == elf_start_offset() && prev_real_map()->name() == name()) { // If there is a read-only map then a read-execute map that represents the // same elf object, make sure the previous map is using the same elf // object if it hasn't already been set. std::lock_guard guard(prev_real_map()->elf_mutex()); if (prev_real_map()->elf().get() == nullptr) { prev_real_map()->set_elf(elf()); prev_real_map()->set_memory_backed_elf(memory_backed_elf()); } else { // Discard this elf, and use the elf from the previous map instead. set_elf(prev_real_map()->elf()); } } return elf().get(); } bool MapInfo::GetFunctionName(uint64_t addr, SharedString* name, uint64_t* func_offset) { { // Make sure no other thread is trying to update this elf object. std::lock_guard guard(elf_mutex()); if (elf() == nullptr) { return false; } } // No longer need the lock, once the elf object is created, it is not deleted // until this object is deleted. return elf()->GetFunctionName(addr, name, func_offset); } uint64_t MapInfo::GetLoadBias(const std::shared_ptr& process_memory) { int64_t cur_load_bias = load_bias().load(); if (cur_load_bias != INT64_MAX) { return cur_load_bias; } { // Make sure no other thread is trying to add the elf to this map. std::lock_guard guard(elf_mutex()); if (elf() != nullptr) { if (elf()->valid()) { cur_load_bias = elf()->GetLoadBias(); set_load_bias(cur_load_bias); return cur_load_bias; } else { set_load_bias(0); return 0; } } } // Call lightweight static function that will only read enough of the // elf data to get the load bias. std::unique_ptr memory(CreateMemory(process_memory)); cur_load_bias = Elf::GetLoadBias(memory.get()); set_load_bias(cur_load_bias); return cur_load_bias; } MapInfo::~MapInfo() { ElfFields* elf_fields = elf_fields_.load(); if (elf_fields != nullptr) { delete elf_fields->build_id_.load(); delete elf_fields; } } SharedString MapInfo::GetBuildID() { SharedString* id = build_id().load(); if (id != nullptr) { return *id; } // No need to lock, at worst if multiple threads do this at the same // time it should be detected and only one thread should win and // save the data. // Now need to see if the elf object exists. // Make sure no other thread is trying to add the elf to this map. elf_mutex().lock(); Elf* elf_obj = elf().get(); elf_mutex().unlock(); std::string result; if (elf_obj != nullptr) { result = elf_obj->GetBuildID(); } else { // This will only work if we can get the file associated with this memory. // If this is only available in memory, then the section name information // is not present and we will not be able to find the build id info. std::unique_ptr memory(GetFileMemory()); if (memory != nullptr) { result = Elf::GetBuildID(memory.get()); } } return SetBuildID(std::move(result)); } SharedString MapInfo::SetBuildID(std::string&& new_build_id) { std::unique_ptr new_build_id_ptr(new SharedString(std::move(new_build_id))); SharedString* expected_id = nullptr; // Strong version since we need to reliably return the stored pointer. if (build_id().compare_exchange_strong(expected_id, new_build_id_ptr.get())) { // Value saved, so make sure the memory is not freed. return *new_build_id_ptr.release(); } else { // The expected value is set to the stored value on failure. return *expected_id; } } MapInfo::ElfFields& MapInfo::GetElfFields() { ElfFields* elf_fields = elf_fields_.load(std::memory_order_acquire); if (elf_fields != nullptr) { return *elf_fields; } // Allocate and initialize the field in thread-safe way. std::unique_ptr desired(new ElfFields()); ElfFields* expected = nullptr; // Strong version is reliable. Weak version might randomly return false. if (elf_fields_.compare_exchange_strong(expected, desired.get())) { return *desired.release(); // Success: we transferred the pointer ownership to the field. } else { return *expected; // Failure: 'expected' is updated to the value set by the other thread. } } std::string MapInfo::GetPrintableBuildID() { std::string raw_build_id = GetBuildID(); if (raw_build_id.empty()) { return ""; } std::string printable_build_id; for (const char& c : raw_build_id) { // Use %hhx to avoid sign extension on abis that have signed chars. printable_build_id += android::base::StringPrintf("%02hhx", c); } return printable_build_id; } } // namespace unwindstack