/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include "DwarfOp.h" #include "MemoryFake.h" #include "RegsFake.h" namespace unwindstack { template class DwarfOpTest : public ::testing::Test { protected: void SetUp() override { op_memory_.Clear(); regular_memory_.Clear(); mem_.reset(new DwarfMemory(&op_memory_)); op_.reset(new DwarfOp(mem_.get(), ®ular_memory_)); } MemoryFake op_memory_; MemoryFake regular_memory_; std::unique_ptr mem_; std::unique_ptr> op_; }; TYPED_TEST_SUITE_P(DwarfOpTest); TYPED_TEST_P(DwarfOpTest, decode) { // Memory error. ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_MEMORY_INVALID, this->op_->LastErrorCode()); EXPECT_EQ(0U, this->op_->LastErrorAddress()); // No error. this->op_memory_.SetMemory(0, std::vector{0x96}); this->mem_->set_cur_offset(0); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_NONE, this->op_->LastErrorCode()); ASSERT_EQ(0x96U, this->op_->cur_op()); ASSERT_EQ(1U, this->mem_->cur_offset()); } TYPED_TEST_P(DwarfOpTest, eval) { // Memory error. ASSERT_FALSE(this->op_->Eval(0, 2)); ASSERT_EQ(DWARF_ERROR_MEMORY_INVALID, this->op_->LastErrorCode()); EXPECT_EQ(0U, this->op_->LastErrorAddress()); // Register set. // Do this first, to verify that subsequent calls reset the value. this->op_memory_.SetMemory(0, std::vector{0x50}); ASSERT_TRUE(this->op_->Eval(0, 1)); ASSERT_TRUE(this->op_->is_register()); ASSERT_EQ(1U, this->mem_->cur_offset()); ASSERT_EQ(1U, this->op_->StackSize()); // Multi operation opcodes. std::vector opcode_buffer = { 0x08, 0x04, 0x08, 0x03, 0x08, 0x02, 0x08, 0x01, }; this->op_memory_.SetMemory(0, opcode_buffer); ASSERT_TRUE(this->op_->Eval(0, 8)); ASSERT_EQ(DWARF_ERROR_NONE, this->op_->LastErrorCode()); ASSERT_FALSE(this->op_->is_register()); ASSERT_EQ(8U, this->mem_->cur_offset()); ASSERT_EQ(4U, this->op_->StackSize()); ASSERT_EQ(1U, this->op_->StackAt(0)); ASSERT_EQ(2U, this->op_->StackAt(1)); ASSERT_EQ(3U, this->op_->StackAt(2)); ASSERT_EQ(4U, this->op_->StackAt(3)); // Infinite loop. this->op_memory_.SetMemory(0, std::vector{0x2f, 0xfd, 0xff}); ASSERT_FALSE(this->op_->Eval(0, 4)); ASSERT_EQ(DWARF_ERROR_TOO_MANY_ITERATIONS, this->op_->LastErrorCode()); ASSERT_FALSE(this->op_->is_register()); ASSERT_EQ(0U, this->op_->StackSize()); } TYPED_TEST_P(DwarfOpTest, illegal_opcode) { // Fill the buffer with all of the illegal opcodes. std::vector opcode_buffer = {0x00, 0x01, 0x02, 0x04, 0x05, 0x07}; for (size_t opcode = 0xa0; opcode < 256; opcode++) { opcode_buffer.push_back(opcode); } this->op_memory_.SetMemory(0, opcode_buffer); for (size_t i = 0; i < opcode_buffer.size(); i++) { ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_ILLEGAL_VALUE, this->op_->LastErrorCode()); ASSERT_EQ(opcode_buffer[i], this->op_->cur_op()); } } TYPED_TEST_P(DwarfOpTest, not_implemented) { std::vector opcode_buffer = { // Push values so that any not implemented ops will return the right error. 0x08, 0x03, 0x08, 0x02, 0x08, 0x01, // xderef 0x18, // fbreg 0x91, 0x01, // piece 0x93, 0x01, // xderef_size 0x95, 0x01, // push_object_address 0x97, // call2 0x98, 0x01, 0x02, // call4 0x99, 0x01, 0x02, 0x03, 0x04, // call_ref 0x9a, // form_tls_address 0x9b, // call_frame_cfa 0x9c, // bit_piece 0x9d, 0x01, 0x01, // implicit_value 0x9e, 0x01, // stack_value 0x9f, }; this->op_memory_.SetMemory(0, opcode_buffer); // Push the stack values. ASSERT_TRUE(this->op_->Decode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_TRUE(this->op_->Decode()); while (this->mem_->cur_offset() < opcode_buffer.size()) { ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_NOT_IMPLEMENTED, this->op_->LastErrorCode()); } } TYPED_TEST_P(DwarfOpTest, op_addr) { std::vector opcode_buffer = {0x03, 0x12, 0x23, 0x34, 0x45}; if (sizeof(TypeParam) == 8) { opcode_buffer.push_back(0x56); opcode_buffer.push_back(0x67); opcode_buffer.push_back(0x78); opcode_buffer.push_back(0x89); } this->op_memory_.SetMemory(0, opcode_buffer); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x03, this->op_->cur_op()); ASSERT_EQ(1U, this->op_->StackSize()); if (sizeof(TypeParam) == 4) { ASSERT_EQ(0x45342312U, this->op_->StackAt(0)); } else { ASSERT_EQ(0x8978675645342312UL, this->op_->StackAt(0)); } } TYPED_TEST_P(DwarfOpTest, op_deref) { std::vector opcode_buffer = { // Try a dereference with nothing on the stack. 0x06, // Add an address, then dereference. 0x0a, 0x10, 0x20, 0x06, // Now do another dereference that should fail in memory. 0x06, }; this->op_memory_.SetMemory(0, opcode_buffer); TypeParam value = 0x12345678; this->regular_memory_.SetMemory(0x2010, &value, sizeof(value)); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x06, this->op_->cur_op()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_EQ(value, this->op_->StackAt(0)); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_MEMORY_INVALID, this->op_->LastErrorCode()); ASSERT_EQ(0x12345678U, this->op_->LastErrorAddress()); } TYPED_TEST_P(DwarfOpTest, op_deref_size) { this->op_memory_.SetMemory(0, std::vector{0x94}); TypeParam value = 0x12345678; this->regular_memory_.SetMemory(0x2010, &value, sizeof(value)); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); // Read all byte sizes up to the sizeof the type. for (size_t i = 1; i < sizeof(TypeParam); i++) { this->op_memory_.SetMemory( 0, std::vector{0x0a, 0x10, 0x20, 0x94, static_cast(i)}); ASSERT_TRUE(this->op_->Eval(0, 5)) << "Failed at size " << i; ASSERT_EQ(1U, this->op_->StackSize()) << "Failed at size " << i; ASSERT_EQ(0x94, this->op_->cur_op()) << "Failed at size " << i; TypeParam expected_value = 0; memcpy(&expected_value, &value, i); ASSERT_EQ(expected_value, this->op_->StackAt(0)) << "Failed at size " << i; } // Zero byte read. this->op_memory_.SetMemory(0, std::vector{0x0a, 0x10, 0x20, 0x94, 0x00}); ASSERT_FALSE(this->op_->Eval(0, 5)); ASSERT_EQ(DWARF_ERROR_ILLEGAL_VALUE, this->op_->LastErrorCode()); // Read too many bytes. this->op_memory_.SetMemory(0, std::vector{0x0a, 0x10, 0x20, 0x94, sizeof(TypeParam) + 1}); ASSERT_FALSE(this->op_->Eval(0, 5)); ASSERT_EQ(DWARF_ERROR_ILLEGAL_VALUE, this->op_->LastErrorCode()); // Force bad memory read. this->op_memory_.SetMemory(0, std::vector{0x0a, 0x10, 0x40, 0x94, 0x01}); ASSERT_FALSE(this->op_->Eval(0, 5)); ASSERT_EQ(DWARF_ERROR_MEMORY_INVALID, this->op_->LastErrorCode()); EXPECT_EQ(0x4010U, this->op_->LastErrorAddress()); } TYPED_TEST_P(DwarfOpTest, const_unsigned) { std::vector opcode_buffer = { // const1u 0x08, 0x12, 0x08, 0xff, // const2u 0x0a, 0x45, 0x12, 0x0a, 0x00, 0xff, // const4u 0x0c, 0x12, 0x23, 0x34, 0x45, 0x0c, 0x03, 0x02, 0x01, 0xff, // const8u 0x0e, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x0e, 0x87, 0x98, 0xa9, 0xba, 0xcb, 0xdc, 0xed, 0xfe, }; this->op_memory_.SetMemory(0, opcode_buffer); // const1u ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x08, this->op_->cur_op()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_EQ(0x12U, this->op_->StackAt(0)); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x08, this->op_->cur_op()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_EQ(0xffU, this->op_->StackAt(0)); // const2u ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x0a, this->op_->cur_op()); ASSERT_EQ(3U, this->op_->StackSize()); ASSERT_EQ(0x1245U, this->op_->StackAt(0)); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x0a, this->op_->cur_op()); ASSERT_EQ(4U, this->op_->StackSize()); ASSERT_EQ(0xff00U, this->op_->StackAt(0)); // const4u ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x0c, this->op_->cur_op()); ASSERT_EQ(5U, this->op_->StackSize()); ASSERT_EQ(0x45342312U, this->op_->StackAt(0)); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x0c, this->op_->cur_op()); ASSERT_EQ(6U, this->op_->StackSize()); ASSERT_EQ(0xff010203U, this->op_->StackAt(0)); // const8u ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x0e, this->op_->cur_op()); ASSERT_EQ(7U, this->op_->StackSize()); if (sizeof(TypeParam) == 4) { ASSERT_EQ(0x05060708U, this->op_->StackAt(0)); } else { ASSERT_EQ(0x0102030405060708ULL, this->op_->StackAt(0)); } ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x0e, this->op_->cur_op()); ASSERT_EQ(8U, this->op_->StackSize()); if (sizeof(TypeParam) == 4) { ASSERT_EQ(0xbaa99887UL, this->op_->StackAt(0)); } else { ASSERT_EQ(0xfeeddccbbaa99887ULL, this->op_->StackAt(0)); } } TYPED_TEST_P(DwarfOpTest, const_signed) { std::vector opcode_buffer = { // const1s 0x09, 0x12, 0x09, 0xff, // const2s 0x0b, 0x21, 0x32, 0x0b, 0x08, 0xff, // const4s 0x0d, 0x45, 0x34, 0x23, 0x12, 0x0d, 0x01, 0x02, 0x03, 0xff, // const8s 0x0f, 0x89, 0x78, 0x67, 0x56, 0x45, 0x34, 0x23, 0x12, 0x0f, 0x04, 0x03, 0x02, 0x01, 0xef, 0xef, 0xef, 0xff, }; this->op_memory_.SetMemory(0, opcode_buffer); // const1s ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x09, this->op_->cur_op()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_EQ(0x12U, this->op_->StackAt(0)); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x09, this->op_->cur_op()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_EQ(static_cast(-1), this->op_->StackAt(0)); // const2s ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x0b, this->op_->cur_op()); ASSERT_EQ(3U, this->op_->StackSize()); ASSERT_EQ(0x3221U, this->op_->StackAt(0)); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x0b, this->op_->cur_op()); ASSERT_EQ(4U, this->op_->StackSize()); ASSERT_EQ(static_cast(-248), this->op_->StackAt(0)); // const4s ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x0d, this->op_->cur_op()); ASSERT_EQ(5U, this->op_->StackSize()); ASSERT_EQ(0x12233445U, this->op_->StackAt(0)); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x0d, this->op_->cur_op()); ASSERT_EQ(6U, this->op_->StackSize()); ASSERT_EQ(static_cast(-16580095), this->op_->StackAt(0)); // const8s ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x0f, this->op_->cur_op()); ASSERT_EQ(7U, this->op_->StackSize()); if (sizeof(TypeParam) == 4) { ASSERT_EQ(0x56677889ULL, this->op_->StackAt(0)); } else { ASSERT_EQ(0x1223344556677889ULL, this->op_->StackAt(0)); } ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x0f, this->op_->cur_op()); ASSERT_EQ(8U, this->op_->StackSize()); if (sizeof(TypeParam) == 4) { ASSERT_EQ(0x01020304U, this->op_->StackAt(0)); } else { ASSERT_EQ(static_cast(-4521264810949884LL), this->op_->StackAt(0)); } } TYPED_TEST_P(DwarfOpTest, const_uleb) { std::vector opcode_buffer = { // Single byte ULEB128 0x10, 0x22, 0x10, 0x7f, // Multi byte ULEB128 0x10, 0xa2, 0x22, 0x10, 0xa2, 0x74, 0x10, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x09, 0x10, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x79, }; this->op_memory_.SetMemory(0, opcode_buffer); // Single byte ULEB128 ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x10, this->op_->cur_op()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_EQ(0x22U, this->op_->StackAt(0)); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x10, this->op_->cur_op()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_EQ(0x7fU, this->op_->StackAt(0)); // Multi byte ULEB128 ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x10, this->op_->cur_op()); ASSERT_EQ(3U, this->op_->StackSize()); ASSERT_EQ(0x1122U, this->op_->StackAt(0)); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x10, this->op_->cur_op()); ASSERT_EQ(4U, this->op_->StackSize()); ASSERT_EQ(0x3a22U, this->op_->StackAt(0)); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x10, this->op_->cur_op()); ASSERT_EQ(5U, this->op_->StackSize()); if (sizeof(TypeParam) == 4) { ASSERT_EQ(0x5080c101U, this->op_->StackAt(0)); } else { ASSERT_EQ(0x9101c305080c101ULL, this->op_->StackAt(0)); } ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x10, this->op_->cur_op()); ASSERT_EQ(6U, this->op_->StackSize()); if (sizeof(TypeParam) == 4) { ASSERT_EQ(0x5080c101U, this->op_->StackAt(0)); } else { ASSERT_EQ(0x79101c305080c101ULL, this->op_->StackAt(0)); } } TYPED_TEST_P(DwarfOpTest, const_sleb) { std::vector opcode_buffer = { // Single byte SLEB128 0x11, 0x22, 0x11, 0x7f, // Multi byte SLEB128 0x11, 0xa2, 0x22, 0x11, 0xa2, 0x74, 0x11, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x09, 0x11, }; if (sizeof(TypeParam) == 4) { opcode_buffer.push_back(0xb8); opcode_buffer.push_back(0xd3); opcode_buffer.push_back(0x63); } else { opcode_buffer.push_back(0x81); opcode_buffer.push_back(0x82); opcode_buffer.push_back(0x83); opcode_buffer.push_back(0x84); opcode_buffer.push_back(0x85); opcode_buffer.push_back(0x86); opcode_buffer.push_back(0x87); opcode_buffer.push_back(0x88); opcode_buffer.push_back(0x79); } this->op_memory_.SetMemory(0, opcode_buffer); // Single byte SLEB128 ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x11, this->op_->cur_op()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_EQ(0x22U, this->op_->StackAt(0)); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x11, this->op_->cur_op()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_EQ(static_cast(-1), this->op_->StackAt(0)); // Multi byte SLEB128 ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x11, this->op_->cur_op()); ASSERT_EQ(3U, this->op_->StackSize()); ASSERT_EQ(0x1122U, this->op_->StackAt(0)); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x11, this->op_->cur_op()); ASSERT_EQ(4U, this->op_->StackSize()); ASSERT_EQ(static_cast(-1502), this->op_->StackAt(0)); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x11, this->op_->cur_op()); ASSERT_EQ(5U, this->op_->StackSize()); if (sizeof(TypeParam) == 4) { ASSERT_EQ(0x5080c101U, this->op_->StackAt(0)); } else { ASSERT_EQ(0x9101c305080c101ULL, this->op_->StackAt(0)); } ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x11, this->op_->cur_op()); ASSERT_EQ(6U, this->op_->StackSize()); if (sizeof(TypeParam) == 4) { ASSERT_EQ(static_cast(-464456), this->op_->StackAt(0)); } else { ASSERT_EQ(static_cast(-499868564803501823LL), this->op_->StackAt(0)); } } TYPED_TEST_P(DwarfOpTest, op_dup) { std::vector opcode_buffer = { // Should fail since nothing is on the stack. 0x12, // Push on a value and dup. 0x08, 0x15, 0x12, // Do it again. 0x08, 0x23, 0x12, }; this->op_memory_.SetMemory(0, opcode_buffer); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(0x12, this->op_->cur_op()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x12, this->op_->cur_op()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_EQ(0x15U, this->op_->StackAt(0)); ASSERT_EQ(0x15U, this->op_->StackAt(1)); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(3U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x12, this->op_->cur_op()); ASSERT_EQ(4U, this->op_->StackSize()); ASSERT_EQ(0x23U, this->op_->StackAt(0)); ASSERT_EQ(0x23U, this->op_->StackAt(1)); ASSERT_EQ(0x15U, this->op_->StackAt(2)); ASSERT_EQ(0x15U, this->op_->StackAt(3)); } TYPED_TEST_P(DwarfOpTest, op_drop) { std::vector opcode_buffer = { // Push a couple of values. 0x08, 0x10, 0x08, 0x20, // Drop the values. 0x13, 0x13, // Attempt to drop empty stack. 0x13, }; this->op_memory_.SetMemory(0, opcode_buffer); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x13, this->op_->cur_op()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_EQ(0x10U, this->op_->StackAt(0)); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x13, this->op_->cur_op()); ASSERT_EQ(0U, this->op_->StackSize()); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(0x13, this->op_->cur_op()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); } TYPED_TEST_P(DwarfOpTest, op_over) { std::vector opcode_buffer = { // Push a couple of values. 0x08, 0x1a, 0x08, 0xed, // Copy a value. 0x14, // Remove all but one element. 0x13, 0x13, // Provoke a failure with this opcode. 0x14, }; this->op_memory_.SetMemory(0, opcode_buffer); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x14, this->op_->cur_op()); ASSERT_EQ(3U, this->op_->StackSize()); ASSERT_EQ(0x1aU, this->op_->StackAt(0)); ASSERT_EQ(0xedU, this->op_->StackAt(1)); ASSERT_EQ(0x1aU, this->op_->StackAt(2)); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(0x14, this->op_->cur_op()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); } TYPED_TEST_P(DwarfOpTest, op_pick) { std::vector opcode_buffer = { // Choose a zero index with an empty stack. 0x15, 0x0, // Push a few values. 0x08, 0x1a, 0x08, 0xed, 0x08, 0x34, // Copy the value at offset 2. 0x15, 0x01, // Copy the last value in the stack. 0x15, 0x03, // Choose an invalid index. 0x15, 0x10, }; this->op_memory_.SetMemory(0, opcode_buffer); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(0x15, this->op_->cur_op()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(3U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x15, this->op_->cur_op()); ASSERT_EQ(4U, this->op_->StackSize()); ASSERT_EQ(0xedU, this->op_->StackAt(0)); ASSERT_EQ(0x34U, this->op_->StackAt(1)); ASSERT_EQ(0xedU, this->op_->StackAt(2)); ASSERT_EQ(0x1aU, this->op_->StackAt(3)); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x15, this->op_->cur_op()); ASSERT_EQ(5U, this->op_->StackSize()); ASSERT_EQ(0x1aU, this->op_->StackAt(0)); ASSERT_EQ(0xedU, this->op_->StackAt(1)); ASSERT_EQ(0x34U, this->op_->StackAt(2)); ASSERT_EQ(0xedU, this->op_->StackAt(3)); ASSERT_EQ(0x1aU, this->op_->StackAt(4)); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(0x15, this->op_->cur_op()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); } TYPED_TEST_P(DwarfOpTest, op_swap) { std::vector opcode_buffer = { // Push a couple of values. 0x08, 0x26, 0x08, 0xab, // Swap values. 0x16, // Pop a value to cause a failure. 0x13, 0x16, }; this->op_memory_.SetMemory(0, opcode_buffer); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_EQ(0xabU, this->op_->StackAt(0)); ASSERT_EQ(0x26U, this->op_->StackAt(1)); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x16, this->op_->cur_op()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_EQ(0x26U, this->op_->StackAt(0)); ASSERT_EQ(0xabU, this->op_->StackAt(1)); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(0x16, this->op_->cur_op()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); } TYPED_TEST_P(DwarfOpTest, op_rot) { std::vector opcode_buffer = { // Rotate that should cause a failure. 0x17, 0x08, 0x10, // Only 1 value on stack, should fail. 0x17, 0x08, 0x20, // Only 2 values on stack, should fail. 0x17, 0x08, 0x30, // Should rotate properly. 0x17, }; this->op_memory_.SetMemory(0, opcode_buffer); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(3U, this->op_->StackSize()); ASSERT_EQ(0x30U, this->op_->StackAt(0)); ASSERT_EQ(0x20U, this->op_->StackAt(1)); ASSERT_EQ(0x10U, this->op_->StackAt(2)); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x17, this->op_->cur_op()); ASSERT_EQ(3U, this->op_->StackSize()); ASSERT_EQ(0x20U, this->op_->StackAt(0)); ASSERT_EQ(0x10U, this->op_->StackAt(1)); ASSERT_EQ(0x30U, this->op_->StackAt(2)); } TYPED_TEST_P(DwarfOpTest, op_abs) { std::vector opcode_buffer = { // Abs that should fail. 0x19, // A value that is already positive. 0x08, 0x10, 0x19, // A value that is negative. 0x11, 0x7f, 0x19, // A value that is large and negative. 0x11, 0x81, 0x80, 0x80, 0x80, }; if (sizeof(TypeParam) == 4) { opcode_buffer.push_back(0x08); } else { opcode_buffer.push_back(0x80); opcode_buffer.push_back(0x80); opcode_buffer.push_back(0x01); } opcode_buffer.push_back(0x19); this->op_memory_.SetMemory(0, opcode_buffer); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_EQ(0x10U, this->op_->StackAt(0)); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x19, this->op_->cur_op()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_EQ(0x10U, this->op_->StackAt(0)); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x19, this->op_->cur_op()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_EQ(0x1U, this->op_->StackAt(0)); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(3U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x19, this->op_->cur_op()); ASSERT_EQ(3U, this->op_->StackSize()); if (sizeof(TypeParam) == 4) { ASSERT_EQ(2147483647U, this->op_->StackAt(0)); } else { ASSERT_EQ(4398046511105UL, this->op_->StackAt(0)); } } TYPED_TEST_P(DwarfOpTest, op_and) { std::vector opcode_buffer = { // No stack, and op will fail. 0x1b, // Push a single value. 0x08, 0x20, // One element stack, and op will fail. 0x1b, // Push another value. 0x08, 0x02, 0x1b, // Push on two negative values. 0x11, 0x7c, 0x11, 0x7f, 0x1b, // Push one negative, one positive. 0x11, 0x10, 0x11, 0x7c, 0x1b, // Divide by zero. 0x11, 0x10, 0x11, 0x00, 0x1b, }; this->op_memory_.SetMemory(0, opcode_buffer); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); // Two positive values. ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x1b, this->op_->cur_op()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_EQ(0x10U, this->op_->StackAt(0)); // Two negative values. ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(3U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x1b, this->op_->cur_op()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_EQ(0x04U, this->op_->StackAt(0)); // One negative value, one positive value. ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(3U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(4U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x1b, this->op_->cur_op()); ASSERT_EQ(3U, this->op_->StackSize()); ASSERT_EQ(static_cast(-4), this->op_->StackAt(0)); // Divide by zero. ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(4U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(5U, this->op_->StackSize()); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_ILLEGAL_VALUE, this->op_->LastErrorCode()); } TYPED_TEST_P(DwarfOpTest, op_div) { std::vector opcode_buffer = { // No stack, and op will fail. 0x1a, // Push a single value. 0x08, 0x48, // One element stack, and op will fail. 0x1a, // Push another value. 0x08, 0xf0, 0x1a, }; this->op_memory_.SetMemory(0, opcode_buffer); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x1a, this->op_->cur_op()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_EQ(0x40U, this->op_->StackAt(0)); } TYPED_TEST_P(DwarfOpTest, op_minus) { std::vector opcode_buffer = { // No stack, and op will fail. 0x1c, // Push a single value. 0x08, 0x48, // One element stack, and op will fail. 0x1c, // Push another value. 0x08, 0x04, 0x1c, }; this->op_memory_.SetMemory(0, opcode_buffer); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x1c, this->op_->cur_op()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_EQ(0x44U, this->op_->StackAt(0)); } TYPED_TEST_P(DwarfOpTest, op_mod) { std::vector opcode_buffer = { // No stack, and op will fail. 0x1d, // Push a single value. 0x08, 0x47, // One element stack, and op will fail. 0x1d, // Push another value. 0x08, 0x04, 0x1d, // Try a mod of zero. 0x08, 0x01, 0x08, 0x00, 0x1d, }; this->op_memory_.SetMemory(0, opcode_buffer); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x1d, this->op_->cur_op()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_EQ(0x03U, this->op_->StackAt(0)); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(3U, this->op_->StackSize()); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_ILLEGAL_VALUE, this->op_->LastErrorCode()); } TYPED_TEST_P(DwarfOpTest, op_mul) { std::vector opcode_buffer = { // No stack, and op will fail. 0x1e, // Push a single value. 0x08, 0x48, // One element stack, and op will fail. 0x1e, // Push another value. 0x08, 0x04, 0x1e, }; this->op_memory_.SetMemory(0, opcode_buffer); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x1e, this->op_->cur_op()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_EQ(0x120U, this->op_->StackAt(0)); } TYPED_TEST_P(DwarfOpTest, op_neg) { std::vector opcode_buffer = { // No stack, and op will fail. 0x1f, // Push a single value. 0x08, 0x48, 0x1f, // Push a negative value. 0x11, 0x7f, 0x1f, }; this->op_memory_.SetMemory(0, opcode_buffer); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x1f, this->op_->cur_op()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_EQ(static_cast(-72), this->op_->StackAt(0)); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x1f, this->op_->cur_op()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_EQ(0x01U, this->op_->StackAt(0)); } TYPED_TEST_P(DwarfOpTest, op_not) { std::vector opcode_buffer = { // No stack, and op will fail. 0x20, // Push a single value. 0x08, 0x4, 0x20, // Push a negative value. 0x11, 0x7c, 0x20, }; this->op_memory_.SetMemory(0, opcode_buffer); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x20, this->op_->cur_op()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_EQ(static_cast(-5), this->op_->StackAt(0)); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x20, this->op_->cur_op()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_EQ(0x03U, this->op_->StackAt(0)); } TYPED_TEST_P(DwarfOpTest, op_or) { std::vector opcode_buffer = { // No stack, and op will fail. 0x21, // Push a single value. 0x08, 0x48, // One element stack, and op will fail. 0x21, // Push another value. 0x08, 0xf4, 0x21, }; this->op_memory_.SetMemory(0, opcode_buffer); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x21, this->op_->cur_op()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_EQ(0xfcU, this->op_->StackAt(0)); } TYPED_TEST_P(DwarfOpTest, op_plus) { std::vector opcode_buffer = { // No stack, and op will fail. 0x22, // Push a single value. 0x08, 0xff, // One element stack, and op will fail. 0x22, // Push another value. 0x08, 0xf2, 0x22, }; this->op_memory_.SetMemory(0, opcode_buffer); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x22, this->op_->cur_op()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_EQ(0x1f1U, this->op_->StackAt(0)); } TYPED_TEST_P(DwarfOpTest, op_plus_uconst) { std::vector opcode_buffer = { // No stack, and op will fail. 0x23, // Push a single value. 0x08, 0x50, 0x23, 0x80, 0x51, }; this->op_memory_.SetMemory(0, opcode_buffer); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x23, this->op_->cur_op()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_EQ(0x28d0U, this->op_->StackAt(0)); } TYPED_TEST_P(DwarfOpTest, op_shl) { std::vector opcode_buffer = { // No stack, and op will fail. 0x24, // Push a single value. 0x08, 0x67, // One element stack, and op will fail. 0x24, // Push another value. 0x08, 0x03, 0x24, }; this->op_memory_.SetMemory(0, opcode_buffer); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x24, this->op_->cur_op()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_EQ(0x338U, this->op_->StackAt(0)); } TYPED_TEST_P(DwarfOpTest, op_shr) { std::vector opcode_buffer = { // No stack, and op will fail. 0x25, // Push a single value. 0x11, 0x70, // One element stack, and op will fail. 0x25, // Push another value. 0x08, 0x03, 0x25, }; this->op_memory_.SetMemory(0, opcode_buffer); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x25, this->op_->cur_op()); ASSERT_EQ(1U, this->op_->StackSize()); if (sizeof(TypeParam) == 4) { ASSERT_EQ(0x1ffffffeU, this->op_->StackAt(0)); } else { ASSERT_EQ(0x1ffffffffffffffeULL, this->op_->StackAt(0)); } } TYPED_TEST_P(DwarfOpTest, op_shra) { std::vector opcode_buffer = { // No stack, and op will fail. 0x26, // Push a single value. 0x11, 0x70, // One element stack, and op will fail. 0x26, // Push another value. 0x08, 0x03, 0x26, }; this->op_memory_.SetMemory(0, opcode_buffer); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x26, this->op_->cur_op()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_EQ(static_cast(-2), this->op_->StackAt(0)); } TYPED_TEST_P(DwarfOpTest, op_xor) { std::vector opcode_buffer = { // No stack, and op will fail. 0x27, // Push a single value. 0x08, 0x11, // One element stack, and op will fail. 0x27, // Push another value. 0x08, 0x41, 0x27, }; this->op_memory_.SetMemory(0, opcode_buffer); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(2U, this->op_->StackSize()); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x27, this->op_->cur_op()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_EQ(0x50U, this->op_->StackAt(0)); } TYPED_TEST_P(DwarfOpTest, op_bra) { std::vector opcode_buffer = { // No stack, and op will fail. 0x28, // Push on a non-zero value with a positive branch. 0x08, 0x11, 0x28, 0x02, 0x01, // Push on a zero value with a positive branch. 0x08, 0x00, 0x28, 0x05, 0x00, // Push on a non-zero value with a negative branch. 0x08, 0x11, 0x28, 0xfc, 0xff, // Push on a zero value with a negative branch. 0x08, 0x00, 0x28, 0xf0, 0xff, }; this->op_memory_.SetMemory(0, opcode_buffer); ASSERT_FALSE(this->op_->Decode()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); // Push on a non-zero value with a positive branch. ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(1U, this->op_->StackSize()); uint64_t offset = this->mem_->cur_offset() + 3; ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x28, this->op_->cur_op()); ASSERT_EQ(0U, this->op_->StackSize()); ASSERT_EQ(offset + 0x102, this->mem_->cur_offset()); // Push on a zero value with a positive branch. this->mem_->set_cur_offset(offset); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(1U, this->op_->StackSize()); offset = this->mem_->cur_offset() + 3; ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x28, this->op_->cur_op()); ASSERT_EQ(0U, this->op_->StackSize()); ASSERT_EQ(offset - 5, this->mem_->cur_offset()); // Push on a non-zero value with a negative branch. this->mem_->set_cur_offset(offset); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(1U, this->op_->StackSize()); offset = this->mem_->cur_offset() + 3; ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x28, this->op_->cur_op()); ASSERT_EQ(0U, this->op_->StackSize()); ASSERT_EQ(offset - 4, this->mem_->cur_offset()); // Push on a zero value with a negative branch. this->mem_->set_cur_offset(offset); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(1U, this->op_->StackSize()); offset = this->mem_->cur_offset() + 3; ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x28, this->op_->cur_op()); ASSERT_EQ(0U, this->op_->StackSize()); ASSERT_EQ(offset + 16, this->mem_->cur_offset()); } TYPED_TEST_P(DwarfOpTest, compare_opcode_stack_error) { // All of the ops require two stack elements. Loop through all of these // ops with potential errors. std::vector opcode_buffer = { 0xff, // Place holder for compare op. 0x08, 0x11, 0xff, // Place holder for compare op. }; for (uint8_t opcode = 0x29; opcode <= 0x2e; opcode++) { opcode_buffer[0] = opcode; opcode_buffer[3] = opcode; this->op_memory_.SetMemory(0, opcode_buffer); ASSERT_FALSE(this->op_->Eval(0, 1)); ASSERT_EQ(opcode, this->op_->cur_op()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); ASSERT_FALSE(this->op_->Eval(1, 4)); ASSERT_EQ(opcode, this->op_->cur_op()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_EQ(DWARF_ERROR_STACK_INDEX_NOT_VALID, this->op_->LastErrorCode()); } } TYPED_TEST_P(DwarfOpTest, compare_opcodes) { // Have three different checks for each compare op: // - Both values the same. // - The first value larger than the second. // - The second value larger than the first. std::vector opcode_buffer = { // Values the same. 0x08, 0x11, 0x08, 0x11, 0xff, // Placeholder. // First value larger. 0x08, 0x12, 0x08, 0x10, 0xff, // Placeholder. // Second value larger. 0x08, 0x10, 0x08, 0x12, 0xff, // Placeholder. }; // Opcode followed by the expected values on the stack. std::vector expected = { 0x29, 1, 0, 0, // eq 0x2a, 1, 1, 0, // ge 0x2b, 0, 1, 0, // gt 0x2c, 1, 0, 1, // le 0x2d, 0, 0, 1, // lt 0x2e, 0, 1, 1, // ne }; for (size_t i = 0; i < expected.size(); i += 4) { opcode_buffer[4] = expected[i]; opcode_buffer[9] = expected[i]; opcode_buffer[14] = expected[i]; this->op_memory_.SetMemory(0, opcode_buffer); ASSERT_TRUE(this->op_->Eval(0, 15)) << "Op: 0x" << std::hex << static_cast(expected[i]) << " failed"; ASSERT_EQ(3U, this->op_->StackSize()); ASSERT_EQ(expected[i + 1], this->op_->StackAt(2)); ASSERT_EQ(expected[i + 2], this->op_->StackAt(1)); ASSERT_EQ(expected[i + 3], this->op_->StackAt(0)); } } TYPED_TEST_P(DwarfOpTest, op_skip) { std::vector opcode_buffer = { // Positive value. 0x2f, 0x10, 0x20, // Negative value. 0x2f, 0xfd, 0xff, }; this->op_memory_.SetMemory(0, opcode_buffer); uint64_t offset = this->mem_->cur_offset() + 3; ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x2f, this->op_->cur_op()); ASSERT_EQ(0U, this->op_->StackSize()); ASSERT_EQ(offset + 0x2010, this->mem_->cur_offset()); this->mem_->set_cur_offset(offset); offset = this->mem_->cur_offset() + 3; ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x2f, this->op_->cur_op()); ASSERT_EQ(0U, this->op_->StackSize()); ASSERT_EQ(offset - 3, this->mem_->cur_offset()); } TYPED_TEST_P(DwarfOpTest, op_lit) { std::vector opcode_buffer; // Verify every lit opcode. for (uint8_t op = 0x30; op <= 0x4f; op++) { opcode_buffer.push_back(op); } this->op_memory_.SetMemory(0, opcode_buffer); for (size_t i = 0; i < opcode_buffer.size(); i++) { uint32_t op = opcode_buffer[i]; ASSERT_TRUE(this->op_->Eval(i, i + 1)) << "Failed op: 0x" << std::hex << op; ASSERT_EQ(op, this->op_->cur_op()); ASSERT_EQ(1U, this->op_->StackSize()) << "Failed op: 0x" << std::hex << op; ASSERT_EQ(op - 0x30U, this->op_->StackAt(0)) << "Failed op: 0x" << std::hex << op; } } TYPED_TEST_P(DwarfOpTest, op_reg) { std::vector opcode_buffer; // Verify every reg opcode. for (uint8_t op = 0x50; op <= 0x6f; op++) { opcode_buffer.push_back(op); } this->op_memory_.SetMemory(0, opcode_buffer); for (size_t i = 0; i < opcode_buffer.size(); i++) { uint32_t op = opcode_buffer[i]; ASSERT_TRUE(this->op_->Eval(i, i + 1)) << "Failed op: 0x" << std::hex << op; ASSERT_EQ(op, this->op_->cur_op()); ASSERT_TRUE(this->op_->is_register()) << "Failed op: 0x" << std::hex << op; ASSERT_EQ(1U, this->op_->StackSize()) << "Failed op: 0x" << std::hex << op; ASSERT_EQ(op - 0x50U, this->op_->StackAt(0)) << "Failed op: 0x" << std::hex << op; } } TYPED_TEST_P(DwarfOpTest, op_regx) { std::vector opcode_buffer = { 0x90, 0x02, 0x90, 0x80, 0x15, }; this->op_memory_.SetMemory(0, opcode_buffer); ASSERT_TRUE(this->op_->Eval(0, 2)); ASSERT_EQ(0x90, this->op_->cur_op()); ASSERT_TRUE(this->op_->is_register()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_EQ(0x02U, this->op_->StackAt(0)); ASSERT_TRUE(this->op_->Eval(2, 5)); ASSERT_EQ(0x90, this->op_->cur_op()); ASSERT_TRUE(this->op_->is_register()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_EQ(0xa80U, this->op_->StackAt(0)); } TYPED_TEST_P(DwarfOpTest, op_breg) { std::vector opcode_buffer; // Verify every reg opcode. for (uint8_t op = 0x70; op <= 0x8f; op++) { // Positive value added to register. opcode_buffer.push_back(op); opcode_buffer.push_back(0x12); // Negative value added to register. opcode_buffer.push_back(op); opcode_buffer.push_back(0x7e); } this->op_memory_.SetMemory(0, opcode_buffer); RegsImplFake regs(32); for (size_t i = 0; i < 32; i++) { regs[i] = i + 10; } RegsInfo regs_info(®s); this->op_->set_regs_info(®s_info); uint64_t offset = 0; for (uint32_t op = 0x70; op <= 0x8f; op++) { // Positive value added to register. ASSERT_TRUE(this->op_->Eval(offset, offset + 2)) << "Failed op: 0x" << std::hex << op; ASSERT_EQ(op, this->op_->cur_op()); ASSERT_EQ(1U, this->op_->StackSize()) << "Failed op: 0x" << std::hex << op; ASSERT_EQ(op - 0x70 + 10 + 0x12, this->op_->StackAt(0)) << "Failed op: 0x" << std::hex << op; offset += 2; // Negative value added to register. ASSERT_TRUE(this->op_->Eval(offset, offset + 2)) << "Failed op: 0x" << std::hex << op; ASSERT_EQ(op, this->op_->cur_op()); ASSERT_EQ(1U, this->op_->StackSize()) << "Failed op: 0x" << std::hex << op; ASSERT_EQ(op - 0x70 + 10 - 2, this->op_->StackAt(0)) << "Failed op: 0x" << std::hex << op; offset += 2; } } TYPED_TEST_P(DwarfOpTest, op_breg_invalid_register) { std::vector opcode_buffer = { 0x7f, 0x12, 0x80, 0x12, }; this->op_memory_.SetMemory(0, opcode_buffer); RegsImplFake regs(16); for (size_t i = 0; i < 16; i++) { regs[i] = i + 10; } RegsInfo regs_info(®s); this->op_->set_regs_info(®s_info); // Should pass since this references the last regsister. ASSERT_TRUE(this->op_->Eval(0, 2)); ASSERT_EQ(0x7fU, this->op_->cur_op()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_EQ(0x2bU, this->op_->StackAt(0)); // Should fail since this references a non-existent register. ASSERT_FALSE(this->op_->Eval(2, 4)); ASSERT_EQ(DWARF_ERROR_ILLEGAL_VALUE, this->op_->LastErrorCode()); } TYPED_TEST_P(DwarfOpTest, op_bregx) { std::vector opcode_buffer = {// Positive value added to register. 0x92, 0x05, 0x20, // Negative value added to register. 0x92, 0x06, 0x80, 0x7e, // Illegal register. 0x92, 0x80, 0x15, 0x80, 0x02}; this->op_memory_.SetMemory(0, opcode_buffer); RegsImplFake regs(10); regs[5] = 0x45; regs[6] = 0x190; RegsInfo regs_info(®s); this->op_->set_regs_info(®s_info); ASSERT_TRUE(this->op_->Eval(0, 3)); ASSERT_EQ(0x92, this->op_->cur_op()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_EQ(0x65U, this->op_->StackAt(0)); ASSERT_TRUE(this->op_->Eval(3, 7)); ASSERT_EQ(0x92, this->op_->cur_op()); ASSERT_EQ(1U, this->op_->StackSize()); ASSERT_EQ(0x90U, this->op_->StackAt(0)); ASSERT_FALSE(this->op_->Eval(7, 12)); ASSERT_EQ(DWARF_ERROR_ILLEGAL_VALUE, this->op_->LastErrorCode()); } TYPED_TEST_P(DwarfOpTest, op_nop) { this->op_memory_.SetMemory(0, std::vector{0x96}); ASSERT_TRUE(this->op_->Decode()); ASSERT_EQ(0x96, this->op_->cur_op()); ASSERT_EQ(0U, this->op_->StackSize()); } TYPED_TEST_P(DwarfOpTest, is_dex_pc) { // Special sequence that indicates this is a dex pc. this->op_memory_.SetMemory(0, std::vector{0x0c, 'D', 'E', 'X', '1', 0x13}); ASSERT_TRUE(this->op_->Eval(0, 6)); EXPECT_TRUE(this->op_->dex_pc_set()); // Try without the last op. ASSERT_TRUE(this->op_->Eval(0, 5)); EXPECT_FALSE(this->op_->dex_pc_set()); // Change the constant. this->op_memory_.SetMemory(0, std::vector{0x0c, 'D', 'E', 'X', '2', 0x13}); ASSERT_TRUE(this->op_->Eval(0, 6)); EXPECT_FALSE(this->op_->dex_pc_set()); } REGISTER_TYPED_TEST_SUITE_P(DwarfOpTest, decode, eval, illegal_opcode, not_implemented, op_addr, op_deref, op_deref_size, const_unsigned, const_signed, const_uleb, const_sleb, op_dup, op_drop, op_over, op_pick, op_swap, op_rot, op_abs, op_and, op_div, op_minus, op_mod, op_mul, op_neg, op_not, op_or, op_plus, op_plus_uconst, op_shl, op_shr, op_shra, op_xor, op_bra, compare_opcode_stack_error, compare_opcodes, op_skip, op_lit, op_reg, op_regx, op_breg, op_breg_invalid_register, op_bregx, op_nop, is_dex_pc); typedef ::testing::Types DwarfOpTestTypes; INSTANTIATE_TYPED_TEST_SUITE_P(Libunwindstack, DwarfOpTest, DwarfOpTestTypes); } // namespace unwindstack