// // Copyright (C) 2020 The Android Open Source Project // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include #include #include #include #include #include #include #include #include #include #include #include #include #include "update_engine/common/terminator.h" #include "update_engine/common/utils.h" #include "update_engine/payload_consumer/bzip_extent_writer.h" #include "update_engine/payload_consumer/cached_file_descriptor.h" #include "update_engine/payload_consumer/extent_reader.h" #include "update_engine/payload_consumer/extent_writer.h" #include "update_engine/payload_consumer/fec_file_descriptor.h" #include "update_engine/payload_consumer/file_descriptor_utils.h" #include "update_engine/payload_consumer/install_plan.h" #include "update_engine/payload_consumer/mount_history.h" #include "update_engine/payload_consumer/payload_constants.h" #include "update_engine/payload_consumer/xz_extent_writer.h" namespace chromeos_update_engine { namespace { constexpr uint64_t kCacheSize = 1024 * 1024; // 1MB // Discard the tail of the block device referenced by |fd|, from the offset // |data_size| until the end of the block device. Returns whether the data was // discarded. bool DiscardPartitionTail(const FileDescriptorPtr& fd, uint64_t data_size) { uint64_t part_size = fd->BlockDevSize(); if (!part_size || part_size <= data_size) return false; struct blkioctl_request { int number; const char* name; }; const std::initializer_list blkioctl_requests = { {BLKDISCARD, "BLKDISCARD"}, {BLKSECDISCARD, "BLKSECDISCARD"}, #ifdef BLKZEROOUT {BLKZEROOUT, "BLKZEROOUT"}, #endif }; for (const auto& req : blkioctl_requests) { int error = 0; if (fd->BlkIoctl(req.number, data_size, part_size - data_size, &error) && error == 0) { return true; } LOG(WARNING) << "Error discarding the last " << (part_size - data_size) / 1024 << " KiB using ioctl(" << req.name << ")"; } return false; } } // namespace // Opens path for read/write. On success returns an open FileDescriptor // and sets *err to 0. On failure, sets *err to errno and returns nullptr. FileDescriptorPtr OpenFile(const char* path, int mode, bool cache_writes, int* err) { // Try to mark the block device read-only based on the mode. Ignore any // failure since this won't work when passing regular files. bool read_only = (mode & O_ACCMODE) == O_RDONLY; utils::SetBlockDeviceReadOnly(path, read_only); FileDescriptorPtr fd(new EintrSafeFileDescriptor()); if (cache_writes && !read_only) { fd = FileDescriptorPtr(new CachedFileDescriptor(fd, kCacheSize)); LOG(INFO) << "Caching writes."; } if (!fd->Open(path, mode, 000)) { *err = errno; PLOG(ERROR) << "Unable to open file " << path; return nullptr; } *err = 0; return fd; } class BsdiffExtentFile : public bsdiff::FileInterface { public: BsdiffExtentFile(std::unique_ptr reader, size_t size) : BsdiffExtentFile(std::move(reader), nullptr, size) {} BsdiffExtentFile(std::unique_ptr writer, size_t size) : BsdiffExtentFile(nullptr, std::move(writer), size) {} ~BsdiffExtentFile() override = default; bool Read(void* buf, size_t count, size_t* bytes_read) override { TEST_AND_RETURN_FALSE(reader_->Read(buf, count)); *bytes_read = count; offset_ += count; return true; } bool Write(const void* buf, size_t count, size_t* bytes_written) override { TEST_AND_RETURN_FALSE(writer_->Write(buf, count)); *bytes_written = count; offset_ += count; return true; } bool Seek(off_t pos) override { if (reader_ != nullptr) { TEST_AND_RETURN_FALSE(reader_->Seek(pos)); offset_ = pos; } else { // For writes technically there should be no change of position, or it // should be equivalent of current offset. TEST_AND_RETURN_FALSE(offset_ == static_cast(pos)); } return true; } bool Close() override { return true; } bool GetSize(uint64_t* size) override { *size = size_; return true; } private: BsdiffExtentFile(std::unique_ptr reader, std::unique_ptr writer, size_t size) : reader_(std::move(reader)), writer_(std::move(writer)), size_(size), offset_(0) {} std::unique_ptr reader_; std::unique_ptr writer_; uint64_t size_; uint64_t offset_; DISALLOW_COPY_AND_ASSIGN(BsdiffExtentFile); }; // A class to be passed to |puffpatch| for reading from |source_fd_| and writing // into |target_fd_|. class PuffinExtentStream : public puffin::StreamInterface { public: // Constructor for creating a stream for reading from an |ExtentReader|. PuffinExtentStream(std::unique_ptr reader, uint64_t size) : PuffinExtentStream(std::move(reader), nullptr, size) {} // Constructor for creating a stream for writing to an |ExtentWriter|. PuffinExtentStream(std::unique_ptr writer, uint64_t size) : PuffinExtentStream(nullptr, std::move(writer), size) {} ~PuffinExtentStream() override = default; bool GetSize(uint64_t* size) const override { *size = size_; return true; } bool GetOffset(uint64_t* offset) const override { *offset = offset_; return true; } bool Seek(uint64_t offset) override { if (is_read_) { TEST_AND_RETURN_FALSE(reader_->Seek(offset)); offset_ = offset; } else { // For writes technically there should be no change of position, or it // should equivalent of current offset. TEST_AND_RETURN_FALSE(offset_ == offset); } return true; } bool Read(void* buffer, size_t count) override { TEST_AND_RETURN_FALSE(is_read_); TEST_AND_RETURN_FALSE(reader_->Read(buffer, count)); offset_ += count; return true; } bool Write(const void* buffer, size_t count) override { TEST_AND_RETURN_FALSE(!is_read_); TEST_AND_RETURN_FALSE(writer_->Write(buffer, count)); offset_ += count; return true; } bool Close() override { return true; } private: PuffinExtentStream(std::unique_ptr reader, std::unique_ptr writer, uint64_t size) : reader_(std::move(reader)), writer_(std::move(writer)), size_(size), offset_(0), is_read_(reader_ ? true : false) {} std::unique_ptr reader_; std::unique_ptr writer_; uint64_t size_; uint64_t offset_; bool is_read_; DISALLOW_COPY_AND_ASSIGN(PuffinExtentStream); }; PartitionWriter::PartitionWriter( const PartitionUpdate& partition_update, const InstallPlan::Partition& install_part, DynamicPartitionControlInterface* dynamic_control, size_t block_size, bool is_interactive) : partition_update_(partition_update), install_part_(install_part), dynamic_control_(dynamic_control), interactive_(is_interactive), block_size_(block_size) {} PartitionWriter::~PartitionWriter() { Close(); } bool PartitionWriter::OpenSourcePartition(uint32_t source_slot, bool source_may_exist) { source_path_.clear(); if (!source_may_exist) { return true; } if (install_part_.source_size > 0 && !install_part_.source_path.empty()) { source_path_ = install_part_.source_path; int err; source_fd_ = OpenFile(source_path_.c_str(), O_RDONLY, false, &err); if (source_fd_ == nullptr) { LOG(ERROR) << "Unable to open source partition " << install_part_.name << " on slot " << BootControlInterface::SlotName(source_slot) << ", file " << source_path_; return false; } } return true; } bool PartitionWriter::Init(const InstallPlan* install_plan, bool source_may_exist, size_t next_op_index) { const PartitionUpdate& partition = partition_update_; uint32_t source_slot = install_plan->source_slot; uint32_t target_slot = install_plan->target_slot; TEST_AND_RETURN_FALSE(OpenSourcePartition(source_slot, source_may_exist)); // We shouldn't open the source partition in certain cases, e.g. some dynamic // partitions in delta payload, partitions included in the full payload for // partial updates. Use the source size as the indicator. target_path_ = install_part_.target_path; int err; int flags = O_RDWR; if (!interactive_) flags |= O_DSYNC; LOG(INFO) << "Opening " << target_path_ << " partition with" << (interactive_ ? "out" : "") << " O_DSYNC"; target_fd_ = OpenFile(target_path_.c_str(), flags, true, &err); if (!target_fd_) { LOG(ERROR) << "Unable to open target partition " << partition.partition_name() << " on slot " << BootControlInterface::SlotName(target_slot) << ", file " << target_path_; return false; } LOG(INFO) << "Applying " << partition.operations().size() << " operations to partition \"" << partition.partition_name() << "\""; // Discard the end of the partition, but ignore failures. DiscardPartitionTail(target_fd_, install_part_.target_size); return true; } bool PartitionWriter::PerformReplaceOperation(const InstallOperation& operation, const void* data, size_t count) { // Setup the ExtentWriter stack based on the operation type. std::unique_ptr writer = CreateBaseExtentWriter(); if (operation.type() == InstallOperation::REPLACE_BZ) { writer.reset(new BzipExtentWriter(std::move(writer))); } else if (operation.type() == InstallOperation::REPLACE_XZ) { writer.reset(new XzExtentWriter(std::move(writer))); } TEST_AND_RETURN_FALSE(writer->Init(operation.dst_extents(), block_size_)); TEST_AND_RETURN_FALSE(writer->Write(data, operation.data_length())); return true; } bool PartitionWriter::PerformZeroOrDiscardOperation( const InstallOperation& operation) { #ifdef BLKZEROOUT bool attempt_ioctl = true; int request = (operation.type() == InstallOperation::ZERO ? BLKZEROOUT : BLKDISCARD); #else // !defined(BLKZEROOUT) bool attempt_ioctl = false; int request = 0; #endif // !defined(BLKZEROOUT) brillo::Blob zeros; for (const Extent& extent : operation.dst_extents()) { const uint64_t start = extent.start_block() * block_size_; const uint64_t length = extent.num_blocks() * block_size_; if (attempt_ioctl) { int result = 0; if (target_fd_->BlkIoctl(request, start, length, &result) && result == 0) continue; attempt_ioctl = false; } // In case of failure, we fall back to writing 0 to the selected region. zeros.resize(16 * block_size_); for (uint64_t offset = 0; offset < length; offset += zeros.size()) { uint64_t chunk_length = std::min(length - offset, static_cast(zeros.size())); TEST_AND_RETURN_FALSE(utils::WriteAll( target_fd_, zeros.data(), chunk_length, start + offset)); } } return true; } bool PartitionWriter::PerformSourceCopyOperation( const InstallOperation& operation, ErrorCode* error) { TEST_AND_RETURN_FALSE(source_fd_ != nullptr); // The device may optimize the SOURCE_COPY operation. // Being this a device-specific optimization let DynamicPartitionController // decide it the operation should be skipped. const PartitionUpdate& partition = partition_update_; const auto& partition_control = dynamic_control_; InstallOperation buf; const bool should_optimize = partition_control->OptimizeOperation( partition.partition_name(), operation, &buf); const InstallOperation& optimized = should_optimize ? buf : operation; if (operation.has_src_sha256_hash()) { bool read_ok; brillo::Blob source_hash; brillo::Blob expected_source_hash(operation.src_sha256_hash().begin(), operation.src_sha256_hash().end()); // We fall back to use the error corrected device if the hash of the raw // device doesn't match or there was an error reading the source partition. // Note that this code will also fall back if writing the target partition // fails. if (should_optimize) { // Hash operation.src_extents(), then copy optimized.src_extents to // optimized.dst_extents. read_ok = fd_utils::ReadAndHashExtents( source_fd_, operation.src_extents(), block_size_, &source_hash) && fd_utils::CopyAndHashExtents(source_fd_, optimized.src_extents(), target_fd_, optimized.dst_extents(), block_size_, nullptr /* skip hashing */); } else { read_ok = fd_utils::CopyAndHashExtents(source_fd_, operation.src_extents(), target_fd_, operation.dst_extents(), block_size_, &source_hash); } if (read_ok && expected_source_hash == source_hash) return true; LOG(WARNING) << "Source hash from RAW device mismatched, attempting to " "correct using ECC"; if (!OpenCurrentECCPartition()) { // The following function call will return false since the source hash // mismatches, but we still want to call it so it prints the appropriate // log message. return ValidateSourceHash(source_hash, operation, source_fd_, error); } LOG(WARNING) << "Source hash from RAW device mismatched: found " << base::HexEncode(source_hash.data(), source_hash.size()) << ", expected " << base::HexEncode(expected_source_hash.data(), expected_source_hash.size()); if (should_optimize) { TEST_AND_RETURN_FALSE(fd_utils::ReadAndHashExtents( source_ecc_fd_, operation.src_extents(), block_size_, &source_hash)); TEST_AND_RETURN_FALSE( fd_utils::CopyAndHashExtents(source_ecc_fd_, optimized.src_extents(), target_fd_, optimized.dst_extents(), block_size_, nullptr /* skip hashing */)); } else { TEST_AND_RETURN_FALSE( fd_utils::CopyAndHashExtents(source_ecc_fd_, operation.src_extents(), target_fd_, operation.dst_extents(), block_size_, &source_hash)); } TEST_AND_RETURN_FALSE( ValidateSourceHash(source_hash, operation, source_ecc_fd_, error)); // At this point reading from the error corrected device worked, but // reading from the raw device failed, so this is considered a recovered // failure. source_ecc_recovered_failures_++; } else { // When the operation doesn't include a source hash, we attempt the error // corrected device first since we can't verify the block in the raw device // at this point, but we fall back to the raw device since the error // corrected device can be shorter or not available. if (OpenCurrentECCPartition() && fd_utils::CopyAndHashExtents(source_ecc_fd_, optimized.src_extents(), target_fd_, optimized.dst_extents(), block_size_, nullptr)) { return true; } TEST_AND_RETURN_FALSE(fd_utils::CopyAndHashExtents(source_fd_, optimized.src_extents(), target_fd_, optimized.dst_extents(), block_size_, nullptr)); } return true; } bool PartitionWriter::PerformSourceBsdiffOperation( const InstallOperation& operation, ErrorCode* error, const void* data, size_t count) { FileDescriptorPtr source_fd = ChooseSourceFD(operation, error); TEST_AND_RETURN_FALSE(source_fd != nullptr); auto reader = std::make_unique(); TEST_AND_RETURN_FALSE( reader->Init(source_fd, operation.src_extents(), block_size_)); auto src_file = std::make_unique( std::move(reader), utils::BlocksInExtents(operation.src_extents()) * block_size_); auto writer = CreateBaseExtentWriter(); TEST_AND_RETURN_FALSE(writer->Init(operation.dst_extents(), block_size_)); auto dst_file = std::make_unique( std::move(writer), utils::BlocksInExtents(operation.dst_extents()) * block_size_); TEST_AND_RETURN_FALSE(bsdiff::bspatch(std::move(src_file), std::move(dst_file), reinterpret_cast(data), count) == 0); return true; } bool PartitionWriter::PerformPuffDiffOperation( const InstallOperation& operation, ErrorCode* error, const void* data, size_t count) { FileDescriptorPtr source_fd = ChooseSourceFD(operation, error); TEST_AND_RETURN_FALSE(source_fd != nullptr); auto reader = std::make_unique(); TEST_AND_RETURN_FALSE( reader->Init(source_fd, operation.src_extents(), block_size_)); puffin::UniqueStreamPtr src_stream(new PuffinExtentStream( std::move(reader), utils::BlocksInExtents(operation.src_extents()) * block_size_)); auto writer = CreateBaseExtentWriter(); TEST_AND_RETURN_FALSE(writer->Init(operation.dst_extents(), block_size_)); puffin::UniqueStreamPtr dst_stream(new PuffinExtentStream( std::move(writer), utils::BlocksInExtents(operation.dst_extents()) * block_size_)); constexpr size_t kMaxCacheSize = 5 * 1024 * 1024; // Total 5MB cache. TEST_AND_RETURN_FALSE( puffin::PuffPatch(std::move(src_stream), std::move(dst_stream), reinterpret_cast(data), count, kMaxCacheSize)); return true; } FileDescriptorPtr PartitionWriter::ChooseSourceFD( const InstallOperation& operation, ErrorCode* error) { if (source_fd_ == nullptr) { LOG(ERROR) << "ChooseSourceFD fail: source_fd_ == nullptr"; return nullptr; } if (!operation.has_src_sha256_hash()) { // When the operation doesn't include a source hash, we attempt the error // corrected device first since we can't verify the block in the raw device // at this point, but we first need to make sure all extents are readable // since the error corrected device can be shorter or not available. if (OpenCurrentECCPartition() && fd_utils::ReadAndHashExtents( source_ecc_fd_, operation.src_extents(), block_size_, nullptr)) { return source_ecc_fd_; } return source_fd_; } brillo::Blob source_hash; brillo::Blob expected_source_hash(operation.src_sha256_hash().begin(), operation.src_sha256_hash().end()); if (fd_utils::ReadAndHashExtents( source_fd_, operation.src_extents(), block_size_, &source_hash) && source_hash == expected_source_hash) { return source_fd_; } // We fall back to use the error corrected device if the hash of the raw // device doesn't match or there was an error reading the source partition. if (!OpenCurrentECCPartition()) { // The following function call will return false since the source hash // mismatches, but we still want to call it so it prints the appropriate // log message. ValidateSourceHash(source_hash, operation, source_fd_, error); return nullptr; } LOG(WARNING) << "Source hash from RAW device mismatched: found " << base::HexEncode(source_hash.data(), source_hash.size()) << ", expected " << base::HexEncode(expected_source_hash.data(), expected_source_hash.size()); if (fd_utils::ReadAndHashExtents( source_ecc_fd_, operation.src_extents(), block_size_, &source_hash) && ValidateSourceHash(source_hash, operation, source_ecc_fd_, error)) { // At this point reading from the error corrected device worked, but // reading from the raw device failed, so this is considered a recovered // failure. source_ecc_recovered_failures_++; return source_ecc_fd_; } return nullptr; } bool PartitionWriter::OpenCurrentECCPartition() { // No support for ECC for full payloads. // Full payload should not have any opeartion that requires ECC partitions. if (source_ecc_fd_) return true; if (source_ecc_open_failure_) return false; #if USE_FEC const PartitionUpdate& partition = partition_update_; const InstallPlan::Partition& install_part = install_part_; std::string path = install_part.source_path; FileDescriptorPtr fd(new FecFileDescriptor()); if (!fd->Open(path.c_str(), O_RDONLY, 0)) { PLOG(ERROR) << "Unable to open ECC source partition " << partition.partition_name() << ", file " << path; source_ecc_open_failure_ = true; return false; } source_ecc_fd_ = fd; #else // No support for ECC compiled. source_ecc_open_failure_ = true; #endif // USE_FEC return !source_ecc_open_failure_; } int PartitionWriter::Close() { int err = 0; if (source_fd_ && !source_fd_->Close()) { err = errno; PLOG(ERROR) << "Error closing source partition"; if (!err) err = 1; } source_fd_.reset(); source_path_.clear(); if (target_fd_ && !target_fd_->Close()) { err = errno; PLOG(ERROR) << "Error closing target partition"; if (!err) err = 1; } target_fd_.reset(); target_path_.clear(); if (source_ecc_fd_ && !source_ecc_fd_->Close()) { err = errno; PLOG(ERROR) << "Error closing ECC source partition"; if (!err) err = 1; } source_ecc_fd_.reset(); source_ecc_open_failure_ = false; return -err; } void PartitionWriter::CheckpointUpdateProgress(size_t next_op_index) { target_fd_->Flush(); } std::unique_ptr PartitionWriter::CreateBaseExtentWriter() { return std::make_unique(target_fd_); } } // namespace chromeos_update_engine