1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for C++ declarations.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/AST/ASTConsumer.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/ComparisonCategories.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/AST/TypeLoc.h"
26 #include "clang/AST/TypeOrdering.h"
27 #include "clang/Basic/AttributeCommonInfo.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/LiteralSupport.h"
31 #include "clang/Lex/Preprocessor.h"
32 #include "clang/Sema/CXXFieldCollector.h"
33 #include "clang/Sema/DeclSpec.h"
34 #include "clang/Sema/Initialization.h"
35 #include "clang/Sema/Lookup.h"
36 #include "clang/Sema/ParsedTemplate.h"
37 #include "clang/Sema/Scope.h"
38 #include "clang/Sema/ScopeInfo.h"
39 #include "clang/Sema/SemaInternal.h"
40 #include "clang/Sema/Template.h"
41 #include "llvm/ADT/ScopeExit.h"
42 #include "llvm/ADT/SmallString.h"
43 #include "llvm/ADT/STLExtras.h"
44 #include "llvm/ADT/StringExtras.h"
45 #include <map>
46 #include <set>
47
48 using namespace clang;
49
50 //===----------------------------------------------------------------------===//
51 // CheckDefaultArgumentVisitor
52 //===----------------------------------------------------------------------===//
53
54 namespace {
55 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
56 /// the default argument of a parameter to determine whether it
57 /// contains any ill-formed subexpressions. For example, this will
58 /// diagnose the use of local variables or parameters within the
59 /// default argument expression.
60 class CheckDefaultArgumentVisitor
61 : public ConstStmtVisitor<CheckDefaultArgumentVisitor, bool> {
62 Sema &S;
63 const Expr *DefaultArg;
64
65 public:
CheckDefaultArgumentVisitor(Sema & S,const Expr * DefaultArg)66 CheckDefaultArgumentVisitor(Sema &S, const Expr *DefaultArg)
67 : S(S), DefaultArg(DefaultArg) {}
68
69 bool VisitExpr(const Expr *Node);
70 bool VisitDeclRefExpr(const DeclRefExpr *DRE);
71 bool VisitCXXThisExpr(const CXXThisExpr *ThisE);
72 bool VisitLambdaExpr(const LambdaExpr *Lambda);
73 bool VisitPseudoObjectExpr(const PseudoObjectExpr *POE);
74 };
75
76 /// VisitExpr - Visit all of the children of this expression.
VisitExpr(const Expr * Node)77 bool CheckDefaultArgumentVisitor::VisitExpr(const Expr *Node) {
78 bool IsInvalid = false;
79 for (const Stmt *SubStmt : Node->children())
80 IsInvalid |= Visit(SubStmt);
81 return IsInvalid;
82 }
83
84 /// VisitDeclRefExpr - Visit a reference to a declaration, to
85 /// determine whether this declaration can be used in the default
86 /// argument expression.
VisitDeclRefExpr(const DeclRefExpr * DRE)87 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(const DeclRefExpr *DRE) {
88 const NamedDecl *Decl = DRE->getDecl();
89 if (const auto *Param = dyn_cast<ParmVarDecl>(Decl)) {
90 // C++ [dcl.fct.default]p9:
91 // [...] parameters of a function shall not be used in default
92 // argument expressions, even if they are not evaluated. [...]
93 //
94 // C++17 [dcl.fct.default]p9 (by CWG 2082):
95 // [...] A parameter shall not appear as a potentially-evaluated
96 // expression in a default argument. [...]
97 //
98 if (DRE->isNonOdrUse() != NOUR_Unevaluated)
99 return S.Diag(DRE->getBeginLoc(),
100 diag::err_param_default_argument_references_param)
101 << Param->getDeclName() << DefaultArg->getSourceRange();
102 } else if (const auto *VDecl = dyn_cast<VarDecl>(Decl)) {
103 // C++ [dcl.fct.default]p7:
104 // Local variables shall not be used in default argument
105 // expressions.
106 //
107 // C++17 [dcl.fct.default]p7 (by CWG 2082):
108 // A local variable shall not appear as a potentially-evaluated
109 // expression in a default argument.
110 //
111 // C++20 [dcl.fct.default]p7 (DR as part of P0588R1, see also CWG 2346):
112 // Note: A local variable cannot be odr-used (6.3) in a default argument.
113 //
114 if (VDecl->isLocalVarDecl() && !DRE->isNonOdrUse())
115 return S.Diag(DRE->getBeginLoc(),
116 diag::err_param_default_argument_references_local)
117 << VDecl->getDeclName() << DefaultArg->getSourceRange();
118 }
119
120 return false;
121 }
122
123 /// VisitCXXThisExpr - Visit a C++ "this" expression.
VisitCXXThisExpr(const CXXThisExpr * ThisE)124 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(const CXXThisExpr *ThisE) {
125 // C++ [dcl.fct.default]p8:
126 // The keyword this shall not be used in a default argument of a
127 // member function.
128 return S.Diag(ThisE->getBeginLoc(),
129 diag::err_param_default_argument_references_this)
130 << ThisE->getSourceRange();
131 }
132
VisitPseudoObjectExpr(const PseudoObjectExpr * POE)133 bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(
134 const PseudoObjectExpr *POE) {
135 bool Invalid = false;
136 for (const Expr *E : POE->semantics()) {
137 // Look through bindings.
138 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) {
139 E = OVE->getSourceExpr();
140 assert(E && "pseudo-object binding without source expression?");
141 }
142
143 Invalid |= Visit(E);
144 }
145 return Invalid;
146 }
147
VisitLambdaExpr(const LambdaExpr * Lambda)148 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(const LambdaExpr *Lambda) {
149 // C++11 [expr.lambda.prim]p13:
150 // A lambda-expression appearing in a default argument shall not
151 // implicitly or explicitly capture any entity.
152 if (Lambda->capture_begin() == Lambda->capture_end())
153 return false;
154
155 return S.Diag(Lambda->getBeginLoc(), diag::err_lambda_capture_default_arg);
156 }
157 } // namespace
158
159 void
CalledDecl(SourceLocation CallLoc,const CXXMethodDecl * Method)160 Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
161 const CXXMethodDecl *Method) {
162 // If we have an MSAny spec already, don't bother.
163 if (!Method || ComputedEST == EST_MSAny)
164 return;
165
166 const FunctionProtoType *Proto
167 = Method->getType()->getAs<FunctionProtoType>();
168 Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
169 if (!Proto)
170 return;
171
172 ExceptionSpecificationType EST = Proto->getExceptionSpecType();
173
174 // If we have a throw-all spec at this point, ignore the function.
175 if (ComputedEST == EST_None)
176 return;
177
178 if (EST == EST_None && Method->hasAttr<NoThrowAttr>())
179 EST = EST_BasicNoexcept;
180
181 switch (EST) {
182 case EST_Unparsed:
183 case EST_Uninstantiated:
184 case EST_Unevaluated:
185 llvm_unreachable("should not see unresolved exception specs here");
186
187 // If this function can throw any exceptions, make a note of that.
188 case EST_MSAny:
189 case EST_None:
190 // FIXME: Whichever we see last of MSAny and None determines our result.
191 // We should make a consistent, order-independent choice here.
192 ClearExceptions();
193 ComputedEST = EST;
194 return;
195 case EST_NoexceptFalse:
196 ClearExceptions();
197 ComputedEST = EST_None;
198 return;
199 // FIXME: If the call to this decl is using any of its default arguments, we
200 // need to search them for potentially-throwing calls.
201 // If this function has a basic noexcept, it doesn't affect the outcome.
202 case EST_BasicNoexcept:
203 case EST_NoexceptTrue:
204 case EST_NoThrow:
205 return;
206 // If we're still at noexcept(true) and there's a throw() callee,
207 // change to that specification.
208 case EST_DynamicNone:
209 if (ComputedEST == EST_BasicNoexcept)
210 ComputedEST = EST_DynamicNone;
211 return;
212 case EST_DependentNoexcept:
213 llvm_unreachable(
214 "should not generate implicit declarations for dependent cases");
215 case EST_Dynamic:
216 break;
217 }
218 assert(EST == EST_Dynamic && "EST case not considered earlier.");
219 assert(ComputedEST != EST_None &&
220 "Shouldn't collect exceptions when throw-all is guaranteed.");
221 ComputedEST = EST_Dynamic;
222 // Record the exceptions in this function's exception specification.
223 for (const auto &E : Proto->exceptions())
224 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
225 Exceptions.push_back(E);
226 }
227
CalledStmt(Stmt * S)228 void Sema::ImplicitExceptionSpecification::CalledStmt(Stmt *S) {
229 if (!S || ComputedEST == EST_MSAny)
230 return;
231
232 // FIXME:
233 //
234 // C++0x [except.spec]p14:
235 // [An] implicit exception-specification specifies the type-id T if and
236 // only if T is allowed by the exception-specification of a function directly
237 // invoked by f's implicit definition; f shall allow all exceptions if any
238 // function it directly invokes allows all exceptions, and f shall allow no
239 // exceptions if every function it directly invokes allows no exceptions.
240 //
241 // Note in particular that if an implicit exception-specification is generated
242 // for a function containing a throw-expression, that specification can still
243 // be noexcept(true).
244 //
245 // Note also that 'directly invoked' is not defined in the standard, and there
246 // is no indication that we should only consider potentially-evaluated calls.
247 //
248 // Ultimately we should implement the intent of the standard: the exception
249 // specification should be the set of exceptions which can be thrown by the
250 // implicit definition. For now, we assume that any non-nothrow expression can
251 // throw any exception.
252
253 if (Self->canThrow(S))
254 ComputedEST = EST_None;
255 }
256
ConvertParamDefaultArgument(const ParmVarDecl * Param,Expr * Arg,SourceLocation EqualLoc)257 ExprResult Sema::ConvertParamDefaultArgument(const ParmVarDecl *Param,
258 Expr *Arg,
259 SourceLocation EqualLoc) {
260 if (RequireCompleteType(Param->getLocation(), Param->getType(),
261 diag::err_typecheck_decl_incomplete_type))
262 return true;
263
264 // C++ [dcl.fct.default]p5
265 // A default argument expression is implicitly converted (clause
266 // 4) to the parameter type. The default argument expression has
267 // the same semantic constraints as the initializer expression in
268 // a declaration of a variable of the parameter type, using the
269 // copy-initialization semantics (8.5).
270 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
271 Param);
272 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
273 EqualLoc);
274 InitializationSequence InitSeq(*this, Entity, Kind, Arg);
275 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
276 if (Result.isInvalid())
277 return true;
278 Arg = Result.getAs<Expr>();
279
280 CheckCompletedExpr(Arg, EqualLoc);
281 Arg = MaybeCreateExprWithCleanups(Arg);
282
283 return Arg;
284 }
285
SetParamDefaultArgument(ParmVarDecl * Param,Expr * Arg,SourceLocation EqualLoc)286 void Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
287 SourceLocation EqualLoc) {
288 // Add the default argument to the parameter
289 Param->setDefaultArg(Arg);
290
291 // We have already instantiated this parameter; provide each of the
292 // instantiations with the uninstantiated default argument.
293 UnparsedDefaultArgInstantiationsMap::iterator InstPos
294 = UnparsedDefaultArgInstantiations.find(Param);
295 if (InstPos != UnparsedDefaultArgInstantiations.end()) {
296 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
297 InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
298
299 // We're done tracking this parameter's instantiations.
300 UnparsedDefaultArgInstantiations.erase(InstPos);
301 }
302 }
303
304 /// ActOnParamDefaultArgument - Check whether the default argument
305 /// provided for a function parameter is well-formed. If so, attach it
306 /// to the parameter declaration.
307 void
ActOnParamDefaultArgument(Decl * param,SourceLocation EqualLoc,Expr * DefaultArg)308 Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
309 Expr *DefaultArg) {
310 if (!param || !DefaultArg)
311 return;
312
313 ParmVarDecl *Param = cast<ParmVarDecl>(param);
314 UnparsedDefaultArgLocs.erase(Param);
315
316 auto Fail = [&] {
317 Param->setInvalidDecl();
318 Param->setDefaultArg(new (Context) OpaqueValueExpr(
319 EqualLoc, Param->getType().getNonReferenceType(), VK_RValue));
320 };
321
322 // Default arguments are only permitted in C++
323 if (!getLangOpts().CPlusPlus) {
324 Diag(EqualLoc, diag::err_param_default_argument)
325 << DefaultArg->getSourceRange();
326 return Fail();
327 }
328
329 // Check for unexpanded parameter packs.
330 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
331 return Fail();
332 }
333
334 // C++11 [dcl.fct.default]p3
335 // A default argument expression [...] shall not be specified for a
336 // parameter pack.
337 if (Param->isParameterPack()) {
338 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
339 << DefaultArg->getSourceRange();
340 // Recover by discarding the default argument.
341 Param->setDefaultArg(nullptr);
342 return;
343 }
344
345 ExprResult Result = ConvertParamDefaultArgument(Param, DefaultArg, EqualLoc);
346 if (Result.isInvalid())
347 return Fail();
348
349 DefaultArg = Result.getAs<Expr>();
350
351 // Check that the default argument is well-formed
352 CheckDefaultArgumentVisitor DefaultArgChecker(*this, DefaultArg);
353 if (DefaultArgChecker.Visit(DefaultArg))
354 return Fail();
355
356 SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
357 }
358
359 /// ActOnParamUnparsedDefaultArgument - We've seen a default
360 /// argument for a function parameter, but we can't parse it yet
361 /// because we're inside a class definition. Note that this default
362 /// argument will be parsed later.
ActOnParamUnparsedDefaultArgument(Decl * param,SourceLocation EqualLoc,SourceLocation ArgLoc)363 void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
364 SourceLocation EqualLoc,
365 SourceLocation ArgLoc) {
366 if (!param)
367 return;
368
369 ParmVarDecl *Param = cast<ParmVarDecl>(param);
370 Param->setUnparsedDefaultArg();
371 UnparsedDefaultArgLocs[Param] = ArgLoc;
372 }
373
374 /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
375 /// the default argument for the parameter param failed.
ActOnParamDefaultArgumentError(Decl * param,SourceLocation EqualLoc)376 void Sema::ActOnParamDefaultArgumentError(Decl *param,
377 SourceLocation EqualLoc) {
378 if (!param)
379 return;
380
381 ParmVarDecl *Param = cast<ParmVarDecl>(param);
382 Param->setInvalidDecl();
383 UnparsedDefaultArgLocs.erase(Param);
384 Param->setDefaultArg(new(Context)
385 OpaqueValueExpr(EqualLoc,
386 Param->getType().getNonReferenceType(),
387 VK_RValue));
388 }
389
390 /// CheckExtraCXXDefaultArguments - Check for any extra default
391 /// arguments in the declarator, which is not a function declaration
392 /// or definition and therefore is not permitted to have default
393 /// arguments. This routine should be invoked for every declarator
394 /// that is not a function declaration or definition.
CheckExtraCXXDefaultArguments(Declarator & D)395 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
396 // C++ [dcl.fct.default]p3
397 // A default argument expression shall be specified only in the
398 // parameter-declaration-clause of a function declaration or in a
399 // template-parameter (14.1). It shall not be specified for a
400 // parameter pack. If it is specified in a
401 // parameter-declaration-clause, it shall not occur within a
402 // declarator or abstract-declarator of a parameter-declaration.
403 bool MightBeFunction = D.isFunctionDeclarationContext();
404 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
405 DeclaratorChunk &chunk = D.getTypeObject(i);
406 if (chunk.Kind == DeclaratorChunk::Function) {
407 if (MightBeFunction) {
408 // This is a function declaration. It can have default arguments, but
409 // keep looking in case its return type is a function type with default
410 // arguments.
411 MightBeFunction = false;
412 continue;
413 }
414 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
415 ++argIdx) {
416 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
417 if (Param->hasUnparsedDefaultArg()) {
418 std::unique_ptr<CachedTokens> Toks =
419 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens);
420 SourceRange SR;
421 if (Toks->size() > 1)
422 SR = SourceRange((*Toks)[1].getLocation(),
423 Toks->back().getLocation());
424 else
425 SR = UnparsedDefaultArgLocs[Param];
426 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
427 << SR;
428 } else if (Param->getDefaultArg()) {
429 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
430 << Param->getDefaultArg()->getSourceRange();
431 Param->setDefaultArg(nullptr);
432 }
433 }
434 } else if (chunk.Kind != DeclaratorChunk::Paren) {
435 MightBeFunction = false;
436 }
437 }
438 }
439
functionDeclHasDefaultArgument(const FunctionDecl * FD)440 static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
441 return std::any_of(FD->param_begin(), FD->param_end(), [](ParmVarDecl *P) {
442 return P->hasDefaultArg() && !P->hasInheritedDefaultArg();
443 });
444 }
445
446 /// MergeCXXFunctionDecl - Merge two declarations of the same C++
447 /// function, once we already know that they have the same
448 /// type. Subroutine of MergeFunctionDecl. Returns true if there was an
449 /// error, false otherwise.
MergeCXXFunctionDecl(FunctionDecl * New,FunctionDecl * Old,Scope * S)450 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
451 Scope *S) {
452 bool Invalid = false;
453
454 // The declaration context corresponding to the scope is the semantic
455 // parent, unless this is a local function declaration, in which case
456 // it is that surrounding function.
457 DeclContext *ScopeDC = New->isLocalExternDecl()
458 ? New->getLexicalDeclContext()
459 : New->getDeclContext();
460
461 // Find the previous declaration for the purpose of default arguments.
462 FunctionDecl *PrevForDefaultArgs = Old;
463 for (/**/; PrevForDefaultArgs;
464 // Don't bother looking back past the latest decl if this is a local
465 // extern declaration; nothing else could work.
466 PrevForDefaultArgs = New->isLocalExternDecl()
467 ? nullptr
468 : PrevForDefaultArgs->getPreviousDecl()) {
469 // Ignore hidden declarations.
470 if (!LookupResult::isVisible(*this, PrevForDefaultArgs))
471 continue;
472
473 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) &&
474 !New->isCXXClassMember()) {
475 // Ignore default arguments of old decl if they are not in
476 // the same scope and this is not an out-of-line definition of
477 // a member function.
478 continue;
479 }
480
481 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) {
482 // If only one of these is a local function declaration, then they are
483 // declared in different scopes, even though isDeclInScope may think
484 // they're in the same scope. (If both are local, the scope check is
485 // sufficient, and if neither is local, then they are in the same scope.)
486 continue;
487 }
488
489 // We found the right previous declaration.
490 break;
491 }
492
493 // C++ [dcl.fct.default]p4:
494 // For non-template functions, default arguments can be added in
495 // later declarations of a function in the same
496 // scope. Declarations in different scopes have completely
497 // distinct sets of default arguments. That is, declarations in
498 // inner scopes do not acquire default arguments from
499 // declarations in outer scopes, and vice versa. In a given
500 // function declaration, all parameters subsequent to a
501 // parameter with a default argument shall have default
502 // arguments supplied in this or previous declarations. A
503 // default argument shall not be redefined by a later
504 // declaration (not even to the same value).
505 //
506 // C++ [dcl.fct.default]p6:
507 // Except for member functions of class templates, the default arguments
508 // in a member function definition that appears outside of the class
509 // definition are added to the set of default arguments provided by the
510 // member function declaration in the class definition.
511 for (unsigned p = 0, NumParams = PrevForDefaultArgs
512 ? PrevForDefaultArgs->getNumParams()
513 : 0;
514 p < NumParams; ++p) {
515 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p);
516 ParmVarDecl *NewParam = New->getParamDecl(p);
517
518 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false;
519 bool NewParamHasDfl = NewParam->hasDefaultArg();
520
521 if (OldParamHasDfl && NewParamHasDfl) {
522 unsigned DiagDefaultParamID =
523 diag::err_param_default_argument_redefinition;
524
525 // MSVC accepts that default parameters be redefined for member functions
526 // of template class. The new default parameter's value is ignored.
527 Invalid = true;
528 if (getLangOpts().MicrosoftExt) {
529 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New);
530 if (MD && MD->getParent()->getDescribedClassTemplate()) {
531 // Merge the old default argument into the new parameter.
532 NewParam->setHasInheritedDefaultArg();
533 if (OldParam->hasUninstantiatedDefaultArg())
534 NewParam->setUninstantiatedDefaultArg(
535 OldParam->getUninstantiatedDefaultArg());
536 else
537 NewParam->setDefaultArg(OldParam->getInit());
538 DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
539 Invalid = false;
540 }
541 }
542
543 // FIXME: If we knew where the '=' was, we could easily provide a fix-it
544 // hint here. Alternatively, we could walk the type-source information
545 // for NewParam to find the last source location in the type... but it
546 // isn't worth the effort right now. This is the kind of test case that
547 // is hard to get right:
548 // int f(int);
549 // void g(int (*fp)(int) = f);
550 // void g(int (*fp)(int) = &f);
551 Diag(NewParam->getLocation(), DiagDefaultParamID)
552 << NewParam->getDefaultArgRange();
553
554 // Look for the function declaration where the default argument was
555 // actually written, which may be a declaration prior to Old.
556 for (auto Older = PrevForDefaultArgs;
557 OldParam->hasInheritedDefaultArg(); /**/) {
558 Older = Older->getPreviousDecl();
559 OldParam = Older->getParamDecl(p);
560 }
561
562 Diag(OldParam->getLocation(), diag::note_previous_definition)
563 << OldParam->getDefaultArgRange();
564 } else if (OldParamHasDfl) {
565 // Merge the old default argument into the new parameter unless the new
566 // function is a friend declaration in a template class. In the latter
567 // case the default arguments will be inherited when the friend
568 // declaration will be instantiated.
569 if (New->getFriendObjectKind() == Decl::FOK_None ||
570 !New->getLexicalDeclContext()->isDependentContext()) {
571 // It's important to use getInit() here; getDefaultArg()
572 // strips off any top-level ExprWithCleanups.
573 NewParam->setHasInheritedDefaultArg();
574 if (OldParam->hasUnparsedDefaultArg())
575 NewParam->setUnparsedDefaultArg();
576 else if (OldParam->hasUninstantiatedDefaultArg())
577 NewParam->setUninstantiatedDefaultArg(
578 OldParam->getUninstantiatedDefaultArg());
579 else
580 NewParam->setDefaultArg(OldParam->getInit());
581 }
582 } else if (NewParamHasDfl) {
583 if (New->getDescribedFunctionTemplate()) {
584 // Paragraph 4, quoted above, only applies to non-template functions.
585 Diag(NewParam->getLocation(),
586 diag::err_param_default_argument_template_redecl)
587 << NewParam->getDefaultArgRange();
588 Diag(PrevForDefaultArgs->getLocation(),
589 diag::note_template_prev_declaration)
590 << false;
591 } else if (New->getTemplateSpecializationKind()
592 != TSK_ImplicitInstantiation &&
593 New->getTemplateSpecializationKind() != TSK_Undeclared) {
594 // C++ [temp.expr.spec]p21:
595 // Default function arguments shall not be specified in a declaration
596 // or a definition for one of the following explicit specializations:
597 // - the explicit specialization of a function template;
598 // - the explicit specialization of a member function template;
599 // - the explicit specialization of a member function of a class
600 // template where the class template specialization to which the
601 // member function specialization belongs is implicitly
602 // instantiated.
603 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
604 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
605 << New->getDeclName()
606 << NewParam->getDefaultArgRange();
607 } else if (New->getDeclContext()->isDependentContext()) {
608 // C++ [dcl.fct.default]p6 (DR217):
609 // Default arguments for a member function of a class template shall
610 // be specified on the initial declaration of the member function
611 // within the class template.
612 //
613 // Reading the tea leaves a bit in DR217 and its reference to DR205
614 // leads me to the conclusion that one cannot add default function
615 // arguments for an out-of-line definition of a member function of a
616 // dependent type.
617 int WhichKind = 2;
618 if (CXXRecordDecl *Record
619 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
620 if (Record->getDescribedClassTemplate())
621 WhichKind = 0;
622 else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
623 WhichKind = 1;
624 else
625 WhichKind = 2;
626 }
627
628 Diag(NewParam->getLocation(),
629 diag::err_param_default_argument_member_template_redecl)
630 << WhichKind
631 << NewParam->getDefaultArgRange();
632 }
633 }
634 }
635
636 // DR1344: If a default argument is added outside a class definition and that
637 // default argument makes the function a special member function, the program
638 // is ill-formed. This can only happen for constructors.
639 if (isa<CXXConstructorDecl>(New) &&
640 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
641 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
642 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
643 if (NewSM != OldSM) {
644 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
645 assert(NewParam->hasDefaultArg());
646 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
647 << NewParam->getDefaultArgRange() << NewSM;
648 Diag(Old->getLocation(), diag::note_previous_declaration);
649 }
650 }
651
652 const FunctionDecl *Def;
653 // C++11 [dcl.constexpr]p1: If any declaration of a function or function
654 // template has a constexpr specifier then all its declarations shall
655 // contain the constexpr specifier.
656 if (New->getConstexprKind() != Old->getConstexprKind()) {
657 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
658 << New << static_cast<int>(New->getConstexprKind())
659 << static_cast<int>(Old->getConstexprKind());
660 Diag(Old->getLocation(), diag::note_previous_declaration);
661 Invalid = true;
662 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
663 Old->isDefined(Def) &&
664 // If a friend function is inlined but does not have 'inline'
665 // specifier, it is a definition. Do not report attribute conflict
666 // in this case, redefinition will be diagnosed later.
667 (New->isInlineSpecified() ||
668 New->getFriendObjectKind() == Decl::FOK_None)) {
669 // C++11 [dcl.fcn.spec]p4:
670 // If the definition of a function appears in a translation unit before its
671 // first declaration as inline, the program is ill-formed.
672 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
673 Diag(Def->getLocation(), diag::note_previous_definition);
674 Invalid = true;
675 }
676
677 // C++17 [temp.deduct.guide]p3:
678 // Two deduction guide declarations in the same translation unit
679 // for the same class template shall not have equivalent
680 // parameter-declaration-clauses.
681 if (isa<CXXDeductionGuideDecl>(New) &&
682 !New->isFunctionTemplateSpecialization() && isVisible(Old)) {
683 Diag(New->getLocation(), diag::err_deduction_guide_redeclared);
684 Diag(Old->getLocation(), diag::note_previous_declaration);
685 }
686
687 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
688 // argument expression, that declaration shall be a definition and shall be
689 // the only declaration of the function or function template in the
690 // translation unit.
691 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
692 functionDeclHasDefaultArgument(Old)) {
693 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
694 Diag(Old->getLocation(), diag::note_previous_declaration);
695 Invalid = true;
696 }
697
698 // C++11 [temp.friend]p4 (DR329):
699 // When a function is defined in a friend function declaration in a class
700 // template, the function is instantiated when the function is odr-used.
701 // The same restrictions on multiple declarations and definitions that
702 // apply to non-template function declarations and definitions also apply
703 // to these implicit definitions.
704 const FunctionDecl *OldDefinition = nullptr;
705 if (New->isThisDeclarationInstantiatedFromAFriendDefinition() &&
706 Old->isDefined(OldDefinition, true))
707 CheckForFunctionRedefinition(New, OldDefinition);
708
709 return Invalid;
710 }
711
712 NamedDecl *
ActOnDecompositionDeclarator(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParamLists)713 Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D,
714 MultiTemplateParamsArg TemplateParamLists) {
715 assert(D.isDecompositionDeclarator());
716 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
717
718 // The syntax only allows a decomposition declarator as a simple-declaration,
719 // a for-range-declaration, or a condition in Clang, but we parse it in more
720 // cases than that.
721 if (!D.mayHaveDecompositionDeclarator()) {
722 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
723 << Decomp.getSourceRange();
724 return nullptr;
725 }
726
727 if (!TemplateParamLists.empty()) {
728 // FIXME: There's no rule against this, but there are also no rules that
729 // would actually make it usable, so we reject it for now.
730 Diag(TemplateParamLists.front()->getTemplateLoc(),
731 diag::err_decomp_decl_template);
732 return nullptr;
733 }
734
735 Diag(Decomp.getLSquareLoc(),
736 !getLangOpts().CPlusPlus17
737 ? diag::ext_decomp_decl
738 : D.getContext() == DeclaratorContext::Condition
739 ? diag::ext_decomp_decl_cond
740 : diag::warn_cxx14_compat_decomp_decl)
741 << Decomp.getSourceRange();
742
743 // The semantic context is always just the current context.
744 DeclContext *const DC = CurContext;
745
746 // C++17 [dcl.dcl]/8:
747 // The decl-specifier-seq shall contain only the type-specifier auto
748 // and cv-qualifiers.
749 // C++2a [dcl.dcl]/8:
750 // If decl-specifier-seq contains any decl-specifier other than static,
751 // thread_local, auto, or cv-qualifiers, the program is ill-formed.
752 auto &DS = D.getDeclSpec();
753 {
754 SmallVector<StringRef, 8> BadSpecifiers;
755 SmallVector<SourceLocation, 8> BadSpecifierLocs;
756 SmallVector<StringRef, 8> CPlusPlus20Specifiers;
757 SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs;
758 if (auto SCS = DS.getStorageClassSpec()) {
759 if (SCS == DeclSpec::SCS_static) {
760 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS));
761 CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc());
762 } else {
763 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS));
764 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc());
765 }
766 }
767 if (auto TSCS = DS.getThreadStorageClassSpec()) {
768 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS));
769 CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc());
770 }
771 if (DS.hasConstexprSpecifier()) {
772 BadSpecifiers.push_back(
773 DeclSpec::getSpecifierName(DS.getConstexprSpecifier()));
774 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc());
775 }
776 if (DS.isInlineSpecified()) {
777 BadSpecifiers.push_back("inline");
778 BadSpecifierLocs.push_back(DS.getInlineSpecLoc());
779 }
780 if (!BadSpecifiers.empty()) {
781 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec);
782 Err << (int)BadSpecifiers.size()
783 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " ");
784 // Don't add FixItHints to remove the specifiers; we do still respect
785 // them when building the underlying variable.
786 for (auto Loc : BadSpecifierLocs)
787 Err << SourceRange(Loc, Loc);
788 } else if (!CPlusPlus20Specifiers.empty()) {
789 auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(),
790 getLangOpts().CPlusPlus20
791 ? diag::warn_cxx17_compat_decomp_decl_spec
792 : diag::ext_decomp_decl_spec);
793 Warn << (int)CPlusPlus20Specifiers.size()
794 << llvm::join(CPlusPlus20Specifiers.begin(),
795 CPlusPlus20Specifiers.end(), " ");
796 for (auto Loc : CPlusPlus20SpecifierLocs)
797 Warn << SourceRange(Loc, Loc);
798 }
799 // We can't recover from it being declared as a typedef.
800 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
801 return nullptr;
802 }
803
804 // C++2a [dcl.struct.bind]p1:
805 // A cv that includes volatile is deprecated
806 if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) &&
807 getLangOpts().CPlusPlus20)
808 Diag(DS.getVolatileSpecLoc(),
809 diag::warn_deprecated_volatile_structured_binding);
810
811 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
812 QualType R = TInfo->getType();
813
814 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
815 UPPC_DeclarationType))
816 D.setInvalidType();
817
818 // The syntax only allows a single ref-qualifier prior to the decomposition
819 // declarator. No other declarator chunks are permitted. Also check the type
820 // specifier here.
821 if (DS.getTypeSpecType() != DeclSpec::TST_auto ||
822 D.hasGroupingParens() || D.getNumTypeObjects() > 1 ||
823 (D.getNumTypeObjects() == 1 &&
824 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) {
825 Diag(Decomp.getLSquareLoc(),
826 (D.hasGroupingParens() ||
827 (D.getNumTypeObjects() &&
828 D.getTypeObject(0).Kind == DeclaratorChunk::Paren))
829 ? diag::err_decomp_decl_parens
830 : diag::err_decomp_decl_type)
831 << R;
832
833 // In most cases, there's no actual problem with an explicitly-specified
834 // type, but a function type won't work here, and ActOnVariableDeclarator
835 // shouldn't be called for such a type.
836 if (R->isFunctionType())
837 D.setInvalidType();
838 }
839
840 // Build the BindingDecls.
841 SmallVector<BindingDecl*, 8> Bindings;
842
843 // Build the BindingDecls.
844 for (auto &B : D.getDecompositionDeclarator().bindings()) {
845 // Check for name conflicts.
846 DeclarationNameInfo NameInfo(B.Name, B.NameLoc);
847 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
848 ForVisibleRedeclaration);
849 LookupName(Previous, S,
850 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit());
851
852 // It's not permitted to shadow a template parameter name.
853 if (Previous.isSingleResult() &&
854 Previous.getFoundDecl()->isTemplateParameter()) {
855 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
856 Previous.getFoundDecl());
857 Previous.clear();
858 }
859
860 bool ConsiderLinkage = DC->isFunctionOrMethod() &&
861 DS.getStorageClassSpec() == DeclSpec::SCS_extern;
862 FilterLookupForScope(Previous, DC, S, ConsiderLinkage,
863 /*AllowInlineNamespace*/false);
864 if (!Previous.empty()) {
865 auto *Old = Previous.getRepresentativeDecl();
866 Diag(B.NameLoc, diag::err_redefinition) << B.Name;
867 Diag(Old->getLocation(), diag::note_previous_definition);
868 }
869
870 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name);
871 PushOnScopeChains(BD, S, true);
872 Bindings.push_back(BD);
873 ParsingInitForAutoVars.insert(BD);
874 }
875
876 // There are no prior lookup results for the variable itself, because it
877 // is unnamed.
878 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr,
879 Decomp.getLSquareLoc());
880 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
881 ForVisibleRedeclaration);
882
883 // Build the variable that holds the non-decomposed object.
884 bool AddToScope = true;
885 NamedDecl *New =
886 ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
887 MultiTemplateParamsArg(), AddToScope, Bindings);
888 if (AddToScope) {
889 S->AddDecl(New);
890 CurContext->addHiddenDecl(New);
891 }
892
893 if (isInOpenMPDeclareTargetContext())
894 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
895
896 return New;
897 }
898
checkSimpleDecomposition(Sema & S,ArrayRef<BindingDecl * > Bindings,ValueDecl * Src,QualType DecompType,const llvm::APSInt & NumElems,QualType ElemType,llvm::function_ref<ExprResult (SourceLocation,Expr *,unsigned)> GetInit)899 static bool checkSimpleDecomposition(
900 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src,
901 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType,
902 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) {
903 if ((int64_t)Bindings.size() != NumElems) {
904 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
905 << DecompType << (unsigned)Bindings.size() << NumElems.toString(10)
906 << (NumElems < Bindings.size());
907 return true;
908 }
909
910 unsigned I = 0;
911 for (auto *B : Bindings) {
912 SourceLocation Loc = B->getLocation();
913 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
914 if (E.isInvalid())
915 return true;
916 E = GetInit(Loc, E.get(), I++);
917 if (E.isInvalid())
918 return true;
919 B->setBinding(ElemType, E.get());
920 }
921
922 return false;
923 }
924
checkArrayLikeDecomposition(Sema & S,ArrayRef<BindingDecl * > Bindings,ValueDecl * Src,QualType DecompType,const llvm::APSInt & NumElems,QualType ElemType)925 static bool checkArrayLikeDecomposition(Sema &S,
926 ArrayRef<BindingDecl *> Bindings,
927 ValueDecl *Src, QualType DecompType,
928 const llvm::APSInt &NumElems,
929 QualType ElemType) {
930 return checkSimpleDecomposition(
931 S, Bindings, Src, DecompType, NumElems, ElemType,
932 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
933 ExprResult E = S.ActOnIntegerConstant(Loc, I);
934 if (E.isInvalid())
935 return ExprError();
936 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc);
937 });
938 }
939
checkArrayDecomposition(Sema & S,ArrayRef<BindingDecl * > Bindings,ValueDecl * Src,QualType DecompType,const ConstantArrayType * CAT)940 static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
941 ValueDecl *Src, QualType DecompType,
942 const ConstantArrayType *CAT) {
943 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType,
944 llvm::APSInt(CAT->getSize()),
945 CAT->getElementType());
946 }
947
checkVectorDecomposition(Sema & S,ArrayRef<BindingDecl * > Bindings,ValueDecl * Src,QualType DecompType,const VectorType * VT)948 static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
949 ValueDecl *Src, QualType DecompType,
950 const VectorType *VT) {
951 return checkArrayLikeDecomposition(
952 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()),
953 S.Context.getQualifiedType(VT->getElementType(),
954 DecompType.getQualifiers()));
955 }
956
checkComplexDecomposition(Sema & S,ArrayRef<BindingDecl * > Bindings,ValueDecl * Src,QualType DecompType,const ComplexType * CT)957 static bool checkComplexDecomposition(Sema &S,
958 ArrayRef<BindingDecl *> Bindings,
959 ValueDecl *Src, QualType DecompType,
960 const ComplexType *CT) {
961 return checkSimpleDecomposition(
962 S, Bindings, Src, DecompType, llvm::APSInt::get(2),
963 S.Context.getQualifiedType(CT->getElementType(),
964 DecompType.getQualifiers()),
965 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
966 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base);
967 });
968 }
969
printTemplateArgs(const PrintingPolicy & PrintingPolicy,TemplateArgumentListInfo & Args)970 static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy,
971 TemplateArgumentListInfo &Args) {
972 SmallString<128> SS;
973 llvm::raw_svector_ostream OS(SS);
974 bool First = true;
975 for (auto &Arg : Args.arguments()) {
976 if (!First)
977 OS << ", ";
978 Arg.getArgument().print(PrintingPolicy, OS);
979 First = false;
980 }
981 return std::string(OS.str());
982 }
983
lookupStdTypeTraitMember(Sema & S,LookupResult & TraitMemberLookup,SourceLocation Loc,StringRef Trait,TemplateArgumentListInfo & Args,unsigned DiagID)984 static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup,
985 SourceLocation Loc, StringRef Trait,
986 TemplateArgumentListInfo &Args,
987 unsigned DiagID) {
988 auto DiagnoseMissing = [&] {
989 if (DiagID)
990 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(),
991 Args);
992 return true;
993 };
994
995 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine.
996 NamespaceDecl *Std = S.getStdNamespace();
997 if (!Std)
998 return DiagnoseMissing();
999
1000 // Look up the trait itself, within namespace std. We can diagnose various
1001 // problems with this lookup even if we've been asked to not diagnose a
1002 // missing specialization, because this can only fail if the user has been
1003 // declaring their own names in namespace std or we don't support the
1004 // standard library implementation in use.
1005 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait),
1006 Loc, Sema::LookupOrdinaryName);
1007 if (!S.LookupQualifiedName(Result, Std))
1008 return DiagnoseMissing();
1009 if (Result.isAmbiguous())
1010 return true;
1011
1012 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>();
1013 if (!TraitTD) {
1014 Result.suppressDiagnostics();
1015 NamedDecl *Found = *Result.begin();
1016 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait;
1017 S.Diag(Found->getLocation(), diag::note_declared_at);
1018 return true;
1019 }
1020
1021 // Build the template-id.
1022 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args);
1023 if (TraitTy.isNull())
1024 return true;
1025 if (!S.isCompleteType(Loc, TraitTy)) {
1026 if (DiagID)
1027 S.RequireCompleteType(
1028 Loc, TraitTy, DiagID,
1029 printTemplateArgs(S.Context.getPrintingPolicy(), Args));
1030 return true;
1031 }
1032
1033 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl();
1034 assert(RD && "specialization of class template is not a class?");
1035
1036 // Look up the member of the trait type.
1037 S.LookupQualifiedName(TraitMemberLookup, RD);
1038 return TraitMemberLookup.isAmbiguous();
1039 }
1040
1041 static TemplateArgumentLoc
getTrivialIntegralTemplateArgument(Sema & S,SourceLocation Loc,QualType T,uint64_t I)1042 getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T,
1043 uint64_t I) {
1044 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T);
1045 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc);
1046 }
1047
1048 static TemplateArgumentLoc
getTrivialTypeTemplateArgument(Sema & S,SourceLocation Loc,QualType T)1049 getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) {
1050 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc);
1051 }
1052
1053 namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; }
1054
isTupleLike(Sema & S,SourceLocation Loc,QualType T,llvm::APSInt & Size)1055 static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T,
1056 llvm::APSInt &Size) {
1057 EnterExpressionEvaluationContext ContextRAII(
1058 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1059
1060 DeclarationName Value = S.PP.getIdentifierInfo("value");
1061 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName);
1062
1063 // Form template argument list for tuple_size<T>.
1064 TemplateArgumentListInfo Args(Loc, Loc);
1065 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1066
1067 // If there's no tuple_size specialization or the lookup of 'value' is empty,
1068 // it's not tuple-like.
1069 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/ 0) ||
1070 R.empty())
1071 return IsTupleLike::NotTupleLike;
1072
1073 // If we get this far, we've committed to the tuple interpretation, but
1074 // we can still fail if there actually isn't a usable ::value.
1075
1076 struct ICEDiagnoser : Sema::VerifyICEDiagnoser {
1077 LookupResult &R;
1078 TemplateArgumentListInfo &Args;
1079 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args)
1080 : R(R), Args(Args) {}
1081 Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
1082 SourceLocation Loc) override {
1083 return S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant)
1084 << printTemplateArgs(S.Context.getPrintingPolicy(), Args);
1085 }
1086 } Diagnoser(R, Args);
1087
1088 ExprResult E =
1089 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false);
1090 if (E.isInvalid())
1091 return IsTupleLike::Error;
1092
1093 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser);
1094 if (E.isInvalid())
1095 return IsTupleLike::Error;
1096
1097 return IsTupleLike::TupleLike;
1098 }
1099
1100 /// \return std::tuple_element<I, T>::type.
getTupleLikeElementType(Sema & S,SourceLocation Loc,unsigned I,QualType T)1101 static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc,
1102 unsigned I, QualType T) {
1103 // Form template argument list for tuple_element<I, T>.
1104 TemplateArgumentListInfo Args(Loc, Loc);
1105 Args.addArgument(
1106 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1107 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1108
1109 DeclarationName TypeDN = S.PP.getIdentifierInfo("type");
1110 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName);
1111 if (lookupStdTypeTraitMember(
1112 S, R, Loc, "tuple_element", Args,
1113 diag::err_decomp_decl_std_tuple_element_not_specialized))
1114 return QualType();
1115
1116 auto *TD = R.getAsSingle<TypeDecl>();
1117 if (!TD) {
1118 R.suppressDiagnostics();
1119 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized)
1120 << printTemplateArgs(S.Context.getPrintingPolicy(), Args);
1121 if (!R.empty())
1122 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at);
1123 return QualType();
1124 }
1125
1126 return S.Context.getTypeDeclType(TD);
1127 }
1128
1129 namespace {
1130 struct InitializingBinding {
1131 Sema &S;
InitializingBinding__anonedc74bd70811::InitializingBinding1132 InitializingBinding(Sema &S, BindingDecl *BD) : S(S) {
1133 Sema::CodeSynthesisContext Ctx;
1134 Ctx.Kind = Sema::CodeSynthesisContext::InitializingStructuredBinding;
1135 Ctx.PointOfInstantiation = BD->getLocation();
1136 Ctx.Entity = BD;
1137 S.pushCodeSynthesisContext(Ctx);
1138 }
~InitializingBinding__anonedc74bd70811::InitializingBinding1139 ~InitializingBinding() {
1140 S.popCodeSynthesisContext();
1141 }
1142 };
1143 }
1144
checkTupleLikeDecomposition(Sema & S,ArrayRef<BindingDecl * > Bindings,VarDecl * Src,QualType DecompType,const llvm::APSInt & TupleSize)1145 static bool checkTupleLikeDecomposition(Sema &S,
1146 ArrayRef<BindingDecl *> Bindings,
1147 VarDecl *Src, QualType DecompType,
1148 const llvm::APSInt &TupleSize) {
1149 if ((int64_t)Bindings.size() != TupleSize) {
1150 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1151 << DecompType << (unsigned)Bindings.size() << TupleSize.toString(10)
1152 << (TupleSize < Bindings.size());
1153 return true;
1154 }
1155
1156 if (Bindings.empty())
1157 return false;
1158
1159 DeclarationName GetDN = S.PP.getIdentifierInfo("get");
1160
1161 // [dcl.decomp]p3:
1162 // The unqualified-id get is looked up in the scope of E by class member
1163 // access lookup ...
1164 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName);
1165 bool UseMemberGet = false;
1166 if (S.isCompleteType(Src->getLocation(), DecompType)) {
1167 if (auto *RD = DecompType->getAsCXXRecordDecl())
1168 S.LookupQualifiedName(MemberGet, RD);
1169 if (MemberGet.isAmbiguous())
1170 return true;
1171 // ... and if that finds at least one declaration that is a function
1172 // template whose first template parameter is a non-type parameter ...
1173 for (NamedDecl *D : MemberGet) {
1174 if (FunctionTemplateDecl *FTD =
1175 dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) {
1176 TemplateParameterList *TPL = FTD->getTemplateParameters();
1177 if (TPL->size() != 0 &&
1178 isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) {
1179 // ... the initializer is e.get<i>().
1180 UseMemberGet = true;
1181 break;
1182 }
1183 }
1184 }
1185 }
1186
1187 unsigned I = 0;
1188 for (auto *B : Bindings) {
1189 InitializingBinding InitContext(S, B);
1190 SourceLocation Loc = B->getLocation();
1191
1192 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1193 if (E.isInvalid())
1194 return true;
1195
1196 // e is an lvalue if the type of the entity is an lvalue reference and
1197 // an xvalue otherwise
1198 if (!Src->getType()->isLValueReferenceType())
1199 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp,
1200 E.get(), nullptr, VK_XValue,
1201 FPOptionsOverride());
1202
1203 TemplateArgumentListInfo Args(Loc, Loc);
1204 Args.addArgument(
1205 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1206
1207 if (UseMemberGet) {
1208 // if [lookup of member get] finds at least one declaration, the
1209 // initializer is e.get<i-1>().
1210 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false,
1211 CXXScopeSpec(), SourceLocation(), nullptr,
1212 MemberGet, &Args, nullptr);
1213 if (E.isInvalid())
1214 return true;
1215
1216 E = S.BuildCallExpr(nullptr, E.get(), Loc, None, Loc);
1217 } else {
1218 // Otherwise, the initializer is get<i-1>(e), where get is looked up
1219 // in the associated namespaces.
1220 Expr *Get = UnresolvedLookupExpr::Create(
1221 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(),
1222 DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args,
1223 UnresolvedSetIterator(), UnresolvedSetIterator());
1224
1225 Expr *Arg = E.get();
1226 E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc);
1227 }
1228 if (E.isInvalid())
1229 return true;
1230 Expr *Init = E.get();
1231
1232 // Given the type T designated by std::tuple_element<i - 1, E>::type,
1233 QualType T = getTupleLikeElementType(S, Loc, I, DecompType);
1234 if (T.isNull())
1235 return true;
1236
1237 // each vi is a variable of type "reference to T" initialized with the
1238 // initializer, where the reference is an lvalue reference if the
1239 // initializer is an lvalue and an rvalue reference otherwise
1240 QualType RefType =
1241 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName());
1242 if (RefType.isNull())
1243 return true;
1244 auto *RefVD = VarDecl::Create(
1245 S.Context, Src->getDeclContext(), Loc, Loc,
1246 B->getDeclName().getAsIdentifierInfo(), RefType,
1247 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass());
1248 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext());
1249 RefVD->setTSCSpec(Src->getTSCSpec());
1250 RefVD->setImplicit();
1251 if (Src->isInlineSpecified())
1252 RefVD->setInlineSpecified();
1253 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD);
1254
1255 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD);
1256 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc);
1257 InitializationSequence Seq(S, Entity, Kind, Init);
1258 E = Seq.Perform(S, Entity, Kind, Init);
1259 if (E.isInvalid())
1260 return true;
1261 E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false);
1262 if (E.isInvalid())
1263 return true;
1264 RefVD->setInit(E.get());
1265 S.CheckCompleteVariableDeclaration(RefVD);
1266
1267 E = S.BuildDeclarationNameExpr(CXXScopeSpec(),
1268 DeclarationNameInfo(B->getDeclName(), Loc),
1269 RefVD);
1270 if (E.isInvalid())
1271 return true;
1272
1273 B->setBinding(T, E.get());
1274 I++;
1275 }
1276
1277 return false;
1278 }
1279
1280 /// Find the base class to decompose in a built-in decomposition of a class type.
1281 /// This base class search is, unfortunately, not quite like any other that we
1282 /// perform anywhere else in C++.
findDecomposableBaseClass(Sema & S,SourceLocation Loc,const CXXRecordDecl * RD,CXXCastPath & BasePath)1283 static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc,
1284 const CXXRecordDecl *RD,
1285 CXXCastPath &BasePath) {
1286 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier,
1287 CXXBasePath &Path) {
1288 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields();
1289 };
1290
1291 const CXXRecordDecl *ClassWithFields = nullptr;
1292 AccessSpecifier AS = AS_public;
1293 if (RD->hasDirectFields())
1294 // [dcl.decomp]p4:
1295 // Otherwise, all of E's non-static data members shall be public direct
1296 // members of E ...
1297 ClassWithFields = RD;
1298 else {
1299 // ... or of ...
1300 CXXBasePaths Paths;
1301 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD));
1302 if (!RD->lookupInBases(BaseHasFields, Paths)) {
1303 // If no classes have fields, just decompose RD itself. (This will work
1304 // if and only if zero bindings were provided.)
1305 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public);
1306 }
1307
1308 CXXBasePath *BestPath = nullptr;
1309 for (auto &P : Paths) {
1310 if (!BestPath)
1311 BestPath = &P;
1312 else if (!S.Context.hasSameType(P.back().Base->getType(),
1313 BestPath->back().Base->getType())) {
1314 // ... the same ...
1315 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1316 << false << RD << BestPath->back().Base->getType()
1317 << P.back().Base->getType();
1318 return DeclAccessPair();
1319 } else if (P.Access < BestPath->Access) {
1320 BestPath = &P;
1321 }
1322 }
1323
1324 // ... unambiguous ...
1325 QualType BaseType = BestPath->back().Base->getType();
1326 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) {
1327 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base)
1328 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths);
1329 return DeclAccessPair();
1330 }
1331
1332 // ... [accessible, implied by other rules] base class of E.
1333 S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD),
1334 *BestPath, diag::err_decomp_decl_inaccessible_base);
1335 AS = BestPath->Access;
1336
1337 ClassWithFields = BaseType->getAsCXXRecordDecl();
1338 S.BuildBasePathArray(Paths, BasePath);
1339 }
1340
1341 // The above search did not check whether the selected class itself has base
1342 // classes with fields, so check that now.
1343 CXXBasePaths Paths;
1344 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) {
1345 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1346 << (ClassWithFields == RD) << RD << ClassWithFields
1347 << Paths.front().back().Base->getType();
1348 return DeclAccessPair();
1349 }
1350
1351 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS);
1352 }
1353
checkMemberDecomposition(Sema & S,ArrayRef<BindingDecl * > Bindings,ValueDecl * Src,QualType DecompType,const CXXRecordDecl * OrigRD)1354 static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
1355 ValueDecl *Src, QualType DecompType,
1356 const CXXRecordDecl *OrigRD) {
1357 if (S.RequireCompleteType(Src->getLocation(), DecompType,
1358 diag::err_incomplete_type))
1359 return true;
1360
1361 CXXCastPath BasePath;
1362 DeclAccessPair BasePair =
1363 findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath);
1364 const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(BasePair.getDecl());
1365 if (!RD)
1366 return true;
1367 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD),
1368 DecompType.getQualifiers());
1369
1370 auto DiagnoseBadNumberOfBindings = [&]() -> bool {
1371 unsigned NumFields =
1372 std::count_if(RD->field_begin(), RD->field_end(),
1373 [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); });
1374 assert(Bindings.size() != NumFields);
1375 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1376 << DecompType << (unsigned)Bindings.size() << NumFields
1377 << (NumFields < Bindings.size());
1378 return true;
1379 };
1380
1381 // all of E's non-static data members shall be [...] well-formed
1382 // when named as e.name in the context of the structured binding,
1383 // E shall not have an anonymous union member, ...
1384 unsigned I = 0;
1385 for (auto *FD : RD->fields()) {
1386 if (FD->isUnnamedBitfield())
1387 continue;
1388
1389 // All the non-static data members are required to be nameable, so they
1390 // must all have names.
1391 if (!FD->getDeclName()) {
1392 if (RD->isLambda()) {
1393 S.Diag(Src->getLocation(), diag::err_decomp_decl_lambda);
1394 S.Diag(RD->getLocation(), diag::note_lambda_decl);
1395 return true;
1396 }
1397
1398 if (FD->isAnonymousStructOrUnion()) {
1399 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member)
1400 << DecompType << FD->getType()->isUnionType();
1401 S.Diag(FD->getLocation(), diag::note_declared_at);
1402 return true;
1403 }
1404
1405 // FIXME: Are there any other ways we could have an anonymous member?
1406 }
1407
1408 // We have a real field to bind.
1409 if (I >= Bindings.size())
1410 return DiagnoseBadNumberOfBindings();
1411 auto *B = Bindings[I++];
1412 SourceLocation Loc = B->getLocation();
1413
1414 // The field must be accessible in the context of the structured binding.
1415 // We already checked that the base class is accessible.
1416 // FIXME: Add 'const' to AccessedEntity's classes so we can remove the
1417 // const_cast here.
1418 S.CheckStructuredBindingMemberAccess(
1419 Loc, const_cast<CXXRecordDecl *>(OrigRD),
1420 DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess(
1421 BasePair.getAccess(), FD->getAccess())));
1422
1423 // Initialize the binding to Src.FD.
1424 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1425 if (E.isInvalid())
1426 return true;
1427 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase,
1428 VK_LValue, &BasePath);
1429 if (E.isInvalid())
1430 return true;
1431 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc,
1432 CXXScopeSpec(), FD,
1433 DeclAccessPair::make(FD, FD->getAccess()),
1434 DeclarationNameInfo(FD->getDeclName(), Loc));
1435 if (E.isInvalid())
1436 return true;
1437
1438 // If the type of the member is T, the referenced type is cv T, where cv is
1439 // the cv-qualification of the decomposition expression.
1440 //
1441 // FIXME: We resolve a defect here: if the field is mutable, we do not add
1442 // 'const' to the type of the field.
1443 Qualifiers Q = DecompType.getQualifiers();
1444 if (FD->isMutable())
1445 Q.removeConst();
1446 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get());
1447 }
1448
1449 if (I != Bindings.size())
1450 return DiagnoseBadNumberOfBindings();
1451
1452 return false;
1453 }
1454
CheckCompleteDecompositionDeclaration(DecompositionDecl * DD)1455 void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) {
1456 QualType DecompType = DD->getType();
1457
1458 // If the type of the decomposition is dependent, then so is the type of
1459 // each binding.
1460 if (DecompType->isDependentType()) {
1461 for (auto *B : DD->bindings())
1462 B->setType(Context.DependentTy);
1463 return;
1464 }
1465
1466 DecompType = DecompType.getNonReferenceType();
1467 ArrayRef<BindingDecl*> Bindings = DD->bindings();
1468
1469 // C++1z [dcl.decomp]/2:
1470 // If E is an array type [...]
1471 // As an extension, we also support decomposition of built-in complex and
1472 // vector types.
1473 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) {
1474 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT))
1475 DD->setInvalidDecl();
1476 return;
1477 }
1478 if (auto *VT = DecompType->getAs<VectorType>()) {
1479 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT))
1480 DD->setInvalidDecl();
1481 return;
1482 }
1483 if (auto *CT = DecompType->getAs<ComplexType>()) {
1484 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT))
1485 DD->setInvalidDecl();
1486 return;
1487 }
1488
1489 // C++1z [dcl.decomp]/3:
1490 // if the expression std::tuple_size<E>::value is a well-formed integral
1491 // constant expression, [...]
1492 llvm::APSInt TupleSize(32);
1493 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) {
1494 case IsTupleLike::Error:
1495 DD->setInvalidDecl();
1496 return;
1497
1498 case IsTupleLike::TupleLike:
1499 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize))
1500 DD->setInvalidDecl();
1501 return;
1502
1503 case IsTupleLike::NotTupleLike:
1504 break;
1505 }
1506
1507 // C++1z [dcl.dcl]/8:
1508 // [E shall be of array or non-union class type]
1509 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl();
1510 if (!RD || RD->isUnion()) {
1511 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type)
1512 << DD << !RD << DecompType;
1513 DD->setInvalidDecl();
1514 return;
1515 }
1516
1517 // C++1z [dcl.decomp]/4:
1518 // all of E's non-static data members shall be [...] direct members of
1519 // E or of the same unambiguous public base class of E, ...
1520 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD))
1521 DD->setInvalidDecl();
1522 }
1523
1524 /// Merge the exception specifications of two variable declarations.
1525 ///
1526 /// This is called when there's a redeclaration of a VarDecl. The function
1527 /// checks if the redeclaration might have an exception specification and
1528 /// validates compatibility and merges the specs if necessary.
MergeVarDeclExceptionSpecs(VarDecl * New,VarDecl * Old)1529 void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
1530 // Shortcut if exceptions are disabled.
1531 if (!getLangOpts().CXXExceptions)
1532 return;
1533
1534 assert(Context.hasSameType(New->getType(), Old->getType()) &&
1535 "Should only be called if types are otherwise the same.");
1536
1537 QualType NewType = New->getType();
1538 QualType OldType = Old->getType();
1539
1540 // We're only interested in pointers and references to functions, as well
1541 // as pointers to member functions.
1542 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
1543 NewType = R->getPointeeType();
1544 OldType = OldType->castAs<ReferenceType>()->getPointeeType();
1545 } else if (const PointerType *P = NewType->getAs<PointerType>()) {
1546 NewType = P->getPointeeType();
1547 OldType = OldType->castAs<PointerType>()->getPointeeType();
1548 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
1549 NewType = M->getPointeeType();
1550 OldType = OldType->castAs<MemberPointerType>()->getPointeeType();
1551 }
1552
1553 if (!NewType->isFunctionProtoType())
1554 return;
1555
1556 // There's lots of special cases for functions. For function pointers, system
1557 // libraries are hopefully not as broken so that we don't need these
1558 // workarounds.
1559 if (CheckEquivalentExceptionSpec(
1560 OldType->getAs<FunctionProtoType>(), Old->getLocation(),
1561 NewType->getAs<FunctionProtoType>(), New->getLocation())) {
1562 New->setInvalidDecl();
1563 }
1564 }
1565
1566 /// CheckCXXDefaultArguments - Verify that the default arguments for a
1567 /// function declaration are well-formed according to C++
1568 /// [dcl.fct.default].
CheckCXXDefaultArguments(FunctionDecl * FD)1569 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
1570 unsigned NumParams = FD->getNumParams();
1571 unsigned ParamIdx = 0;
1572
1573 // This checking doesn't make sense for explicit specializations; their
1574 // default arguments are determined by the declaration we're specializing,
1575 // not by FD.
1576 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
1577 return;
1578 if (auto *FTD = FD->getDescribedFunctionTemplate())
1579 if (FTD->isMemberSpecialization())
1580 return;
1581
1582 // Find first parameter with a default argument
1583 for (; ParamIdx < NumParams; ++ParamIdx) {
1584 ParmVarDecl *Param = FD->getParamDecl(ParamIdx);
1585 if (Param->hasDefaultArg())
1586 break;
1587 }
1588
1589 // C++20 [dcl.fct.default]p4:
1590 // In a given function declaration, each parameter subsequent to a parameter
1591 // with a default argument shall have a default argument supplied in this or
1592 // a previous declaration, unless the parameter was expanded from a
1593 // parameter pack, or shall be a function parameter pack.
1594 for (; ParamIdx < NumParams; ++ParamIdx) {
1595 ParmVarDecl *Param = FD->getParamDecl(ParamIdx);
1596 if (!Param->hasDefaultArg() && !Param->isParameterPack() &&
1597 !(CurrentInstantiationScope &&
1598 CurrentInstantiationScope->isLocalPackExpansion(Param))) {
1599 if (Param->isInvalidDecl())
1600 /* We already complained about this parameter. */;
1601 else if (Param->getIdentifier())
1602 Diag(Param->getLocation(),
1603 diag::err_param_default_argument_missing_name)
1604 << Param->getIdentifier();
1605 else
1606 Diag(Param->getLocation(),
1607 diag::err_param_default_argument_missing);
1608 }
1609 }
1610 }
1611
1612 /// Check that the given type is a literal type. Issue a diagnostic if not,
1613 /// if Kind is Diagnose.
1614 /// \return \c true if a problem has been found (and optionally diagnosed).
1615 template <typename... Ts>
CheckLiteralType(Sema & SemaRef,Sema::CheckConstexprKind Kind,SourceLocation Loc,QualType T,unsigned DiagID,Ts &&...DiagArgs)1616 static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind,
1617 SourceLocation Loc, QualType T, unsigned DiagID,
1618 Ts &&...DiagArgs) {
1619 if (T->isDependentType())
1620 return false;
1621
1622 switch (Kind) {
1623 case Sema::CheckConstexprKind::Diagnose:
1624 return SemaRef.RequireLiteralType(Loc, T, DiagID,
1625 std::forward<Ts>(DiagArgs)...);
1626
1627 case Sema::CheckConstexprKind::CheckValid:
1628 return !T->isLiteralType(SemaRef.Context);
1629 }
1630
1631 llvm_unreachable("unknown CheckConstexprKind");
1632 }
1633
1634 /// Determine whether a destructor cannot be constexpr due to
CheckConstexprDestructorSubobjects(Sema & SemaRef,const CXXDestructorDecl * DD,Sema::CheckConstexprKind Kind)1635 static bool CheckConstexprDestructorSubobjects(Sema &SemaRef,
1636 const CXXDestructorDecl *DD,
1637 Sema::CheckConstexprKind Kind) {
1638 auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) {
1639 const CXXRecordDecl *RD =
1640 T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1641 if (!RD || RD->hasConstexprDestructor())
1642 return true;
1643
1644 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1645 SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject)
1646 << static_cast<int>(DD->getConstexprKind()) << !FD
1647 << (FD ? FD->getDeclName() : DeclarationName()) << T;
1648 SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject)
1649 << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T;
1650 }
1651 return false;
1652 };
1653
1654 const CXXRecordDecl *RD = DD->getParent();
1655 for (const CXXBaseSpecifier &B : RD->bases())
1656 if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr))
1657 return false;
1658 for (const FieldDecl *FD : RD->fields())
1659 if (!Check(FD->getLocation(), FD->getType(), FD))
1660 return false;
1661 return true;
1662 }
1663
1664 /// Check whether a function's parameter types are all literal types. If so,
1665 /// return true. If not, produce a suitable diagnostic and return false.
CheckConstexprParameterTypes(Sema & SemaRef,const FunctionDecl * FD,Sema::CheckConstexprKind Kind)1666 static bool CheckConstexprParameterTypes(Sema &SemaRef,
1667 const FunctionDecl *FD,
1668 Sema::CheckConstexprKind Kind) {
1669 unsigned ArgIndex = 0;
1670 const auto *FT = FD->getType()->castAs<FunctionProtoType>();
1671 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
1672 e = FT->param_type_end();
1673 i != e; ++i, ++ArgIndex) {
1674 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
1675 SourceLocation ParamLoc = PD->getLocation();
1676 if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i,
1677 diag::err_constexpr_non_literal_param, ArgIndex + 1,
1678 PD->getSourceRange(), isa<CXXConstructorDecl>(FD),
1679 FD->isConsteval()))
1680 return false;
1681 }
1682 return true;
1683 }
1684
1685 /// Check whether a function's return type is a literal type. If so, return
1686 /// true. If not, produce a suitable diagnostic and return false.
CheckConstexprReturnType(Sema & SemaRef,const FunctionDecl * FD,Sema::CheckConstexprKind Kind)1687 static bool CheckConstexprReturnType(Sema &SemaRef, const FunctionDecl *FD,
1688 Sema::CheckConstexprKind Kind) {
1689 if (CheckLiteralType(SemaRef, Kind, FD->getLocation(), FD->getReturnType(),
1690 diag::err_constexpr_non_literal_return,
1691 FD->isConsteval()))
1692 return false;
1693 return true;
1694 }
1695
1696 /// Get diagnostic %select index for tag kind for
1697 /// record diagnostic message.
1698 /// WARNING: Indexes apply to particular diagnostics only!
1699 ///
1700 /// \returns diagnostic %select index.
getRecordDiagFromTagKind(TagTypeKind Tag)1701 static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
1702 switch (Tag) {
1703 case TTK_Struct: return 0;
1704 case TTK_Interface: return 1;
1705 case TTK_Class: return 2;
1706 default: llvm_unreachable("Invalid tag kind for record diagnostic!");
1707 }
1708 }
1709
1710 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
1711 Stmt *Body,
1712 Sema::CheckConstexprKind Kind);
1713
1714 // Check whether a function declaration satisfies the requirements of a
1715 // constexpr function definition or a constexpr constructor definition. If so,
1716 // return true. If not, produce appropriate diagnostics (unless asked not to by
1717 // Kind) and return false.
1718 //
1719 // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
CheckConstexprFunctionDefinition(const FunctionDecl * NewFD,CheckConstexprKind Kind)1720 bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD,
1721 CheckConstexprKind Kind) {
1722 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
1723 if (MD && MD->isInstance()) {
1724 // C++11 [dcl.constexpr]p4:
1725 // The definition of a constexpr constructor shall satisfy the following
1726 // constraints:
1727 // - the class shall not have any virtual base classes;
1728 //
1729 // FIXME: This only applies to constructors and destructors, not arbitrary
1730 // member functions.
1731 const CXXRecordDecl *RD = MD->getParent();
1732 if (RD->getNumVBases()) {
1733 if (Kind == CheckConstexprKind::CheckValid)
1734 return false;
1735
1736 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
1737 << isa<CXXConstructorDecl>(NewFD)
1738 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
1739 for (const auto &I : RD->vbases())
1740 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
1741 << I.getSourceRange();
1742 return false;
1743 }
1744 }
1745
1746 if (!isa<CXXConstructorDecl>(NewFD)) {
1747 // C++11 [dcl.constexpr]p3:
1748 // The definition of a constexpr function shall satisfy the following
1749 // constraints:
1750 // - it shall not be virtual; (removed in C++20)
1751 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
1752 if (Method && Method->isVirtual()) {
1753 if (getLangOpts().CPlusPlus20) {
1754 if (Kind == CheckConstexprKind::Diagnose)
1755 Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual);
1756 } else {
1757 if (Kind == CheckConstexprKind::CheckValid)
1758 return false;
1759
1760 Method = Method->getCanonicalDecl();
1761 Diag(Method->getLocation(), diag::err_constexpr_virtual);
1762
1763 // If it's not obvious why this function is virtual, find an overridden
1764 // function which uses the 'virtual' keyword.
1765 const CXXMethodDecl *WrittenVirtual = Method;
1766 while (!WrittenVirtual->isVirtualAsWritten())
1767 WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
1768 if (WrittenVirtual != Method)
1769 Diag(WrittenVirtual->getLocation(),
1770 diag::note_overridden_virtual_function);
1771 return false;
1772 }
1773 }
1774
1775 // - its return type shall be a literal type;
1776 if (!CheckConstexprReturnType(*this, NewFD, Kind))
1777 return false;
1778 }
1779
1780 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(NewFD)) {
1781 // A destructor can be constexpr only if the defaulted destructor could be;
1782 // we don't need to check the members and bases if we already know they all
1783 // have constexpr destructors.
1784 if (!Dtor->getParent()->defaultedDestructorIsConstexpr()) {
1785 if (Kind == CheckConstexprKind::CheckValid)
1786 return false;
1787 if (!CheckConstexprDestructorSubobjects(*this, Dtor, Kind))
1788 return false;
1789 }
1790 }
1791
1792 // - each of its parameter types shall be a literal type;
1793 if (!CheckConstexprParameterTypes(*this, NewFD, Kind))
1794 return false;
1795
1796 Stmt *Body = NewFD->getBody();
1797 assert(Body &&
1798 "CheckConstexprFunctionDefinition called on function with no body");
1799 return CheckConstexprFunctionBody(*this, NewFD, Body, Kind);
1800 }
1801
1802 /// Check the given declaration statement is legal within a constexpr function
1803 /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
1804 ///
1805 /// \return true if the body is OK (maybe only as an extension), false if we
1806 /// have diagnosed a problem.
CheckConstexprDeclStmt(Sema & SemaRef,const FunctionDecl * Dcl,DeclStmt * DS,SourceLocation & Cxx1yLoc,Sema::CheckConstexprKind Kind)1807 static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
1808 DeclStmt *DS, SourceLocation &Cxx1yLoc,
1809 Sema::CheckConstexprKind Kind) {
1810 // C++11 [dcl.constexpr]p3 and p4:
1811 // The definition of a constexpr function(p3) or constructor(p4) [...] shall
1812 // contain only
1813 for (const auto *DclIt : DS->decls()) {
1814 switch (DclIt->getKind()) {
1815 case Decl::StaticAssert:
1816 case Decl::Using:
1817 case Decl::UsingShadow:
1818 case Decl::UsingDirective:
1819 case Decl::UnresolvedUsingTypename:
1820 case Decl::UnresolvedUsingValue:
1821 // - static_assert-declarations
1822 // - using-declarations,
1823 // - using-directives,
1824 continue;
1825
1826 case Decl::Typedef:
1827 case Decl::TypeAlias: {
1828 // - typedef declarations and alias-declarations that do not define
1829 // classes or enumerations,
1830 const auto *TN = cast<TypedefNameDecl>(DclIt);
1831 if (TN->getUnderlyingType()->isVariablyModifiedType()) {
1832 // Don't allow variably-modified types in constexpr functions.
1833 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1834 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
1835 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
1836 << TL.getSourceRange() << TL.getType()
1837 << isa<CXXConstructorDecl>(Dcl);
1838 }
1839 return false;
1840 }
1841 continue;
1842 }
1843
1844 case Decl::Enum:
1845 case Decl::CXXRecord:
1846 // C++1y allows types to be defined, not just declared.
1847 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) {
1848 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1849 SemaRef.Diag(DS->getBeginLoc(),
1850 SemaRef.getLangOpts().CPlusPlus14
1851 ? diag::warn_cxx11_compat_constexpr_type_definition
1852 : diag::ext_constexpr_type_definition)
1853 << isa<CXXConstructorDecl>(Dcl);
1854 } else if (!SemaRef.getLangOpts().CPlusPlus14) {
1855 return false;
1856 }
1857 }
1858 continue;
1859
1860 case Decl::EnumConstant:
1861 case Decl::IndirectField:
1862 case Decl::ParmVar:
1863 // These can only appear with other declarations which are banned in
1864 // C++11 and permitted in C++1y, so ignore them.
1865 continue;
1866
1867 case Decl::Var:
1868 case Decl::Decomposition: {
1869 // C++1y [dcl.constexpr]p3 allows anything except:
1870 // a definition of a variable of non-literal type or of static or
1871 // thread storage duration or [before C++2a] for which no
1872 // initialization is performed.
1873 const auto *VD = cast<VarDecl>(DclIt);
1874 if (VD->isThisDeclarationADefinition()) {
1875 if (VD->isStaticLocal()) {
1876 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1877 SemaRef.Diag(VD->getLocation(),
1878 diag::err_constexpr_local_var_static)
1879 << isa<CXXConstructorDecl>(Dcl)
1880 << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
1881 }
1882 return false;
1883 }
1884 if (CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(),
1885 diag::err_constexpr_local_var_non_literal_type,
1886 isa<CXXConstructorDecl>(Dcl)))
1887 return false;
1888 if (!VD->getType()->isDependentType() &&
1889 !VD->hasInit() && !VD->isCXXForRangeDecl()) {
1890 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1891 SemaRef.Diag(
1892 VD->getLocation(),
1893 SemaRef.getLangOpts().CPlusPlus20
1894 ? diag::warn_cxx17_compat_constexpr_local_var_no_init
1895 : diag::ext_constexpr_local_var_no_init)
1896 << isa<CXXConstructorDecl>(Dcl);
1897 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
1898 return false;
1899 }
1900 continue;
1901 }
1902 }
1903 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1904 SemaRef.Diag(VD->getLocation(),
1905 SemaRef.getLangOpts().CPlusPlus14
1906 ? diag::warn_cxx11_compat_constexpr_local_var
1907 : diag::ext_constexpr_local_var)
1908 << isa<CXXConstructorDecl>(Dcl);
1909 } else if (!SemaRef.getLangOpts().CPlusPlus14) {
1910 return false;
1911 }
1912 continue;
1913 }
1914
1915 case Decl::NamespaceAlias:
1916 case Decl::Function:
1917 // These are disallowed in C++11 and permitted in C++1y. Allow them
1918 // everywhere as an extension.
1919 if (!Cxx1yLoc.isValid())
1920 Cxx1yLoc = DS->getBeginLoc();
1921 continue;
1922
1923 default:
1924 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1925 SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
1926 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
1927 }
1928 return false;
1929 }
1930 }
1931
1932 return true;
1933 }
1934
1935 /// Check that the given field is initialized within a constexpr constructor.
1936 ///
1937 /// \param Dcl The constexpr constructor being checked.
1938 /// \param Field The field being checked. This may be a member of an anonymous
1939 /// struct or union nested within the class being checked.
1940 /// \param Inits All declarations, including anonymous struct/union members and
1941 /// indirect members, for which any initialization was provided.
1942 /// \param Diagnosed Whether we've emitted the error message yet. Used to attach
1943 /// multiple notes for different members to the same error.
1944 /// \param Kind Whether we're diagnosing a constructor as written or determining
1945 /// whether the formal requirements are satisfied.
1946 /// \return \c false if we're checking for validity and the constructor does
1947 /// not satisfy the requirements on a constexpr constructor.
CheckConstexprCtorInitializer(Sema & SemaRef,const FunctionDecl * Dcl,FieldDecl * Field,llvm::SmallSet<Decl *,16> & Inits,bool & Diagnosed,Sema::CheckConstexprKind Kind)1948 static bool CheckConstexprCtorInitializer(Sema &SemaRef,
1949 const FunctionDecl *Dcl,
1950 FieldDecl *Field,
1951 llvm::SmallSet<Decl*, 16> &Inits,
1952 bool &Diagnosed,
1953 Sema::CheckConstexprKind Kind) {
1954 // In C++20 onwards, there's nothing to check for validity.
1955 if (Kind == Sema::CheckConstexprKind::CheckValid &&
1956 SemaRef.getLangOpts().CPlusPlus20)
1957 return true;
1958
1959 if (Field->isInvalidDecl())
1960 return true;
1961
1962 if (Field->isUnnamedBitfield())
1963 return true;
1964
1965 // Anonymous unions with no variant members and empty anonymous structs do not
1966 // need to be explicitly initialized. FIXME: Anonymous structs that contain no
1967 // indirect fields don't need initializing.
1968 if (Field->isAnonymousStructOrUnion() &&
1969 (Field->getType()->isUnionType()
1970 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
1971 : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
1972 return true;
1973
1974 if (!Inits.count(Field)) {
1975 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1976 if (!Diagnosed) {
1977 SemaRef.Diag(Dcl->getLocation(),
1978 SemaRef.getLangOpts().CPlusPlus20
1979 ? diag::warn_cxx17_compat_constexpr_ctor_missing_init
1980 : diag::ext_constexpr_ctor_missing_init);
1981 Diagnosed = true;
1982 }
1983 SemaRef.Diag(Field->getLocation(),
1984 diag::note_constexpr_ctor_missing_init);
1985 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
1986 return false;
1987 }
1988 } else if (Field->isAnonymousStructOrUnion()) {
1989 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
1990 for (auto *I : RD->fields())
1991 // If an anonymous union contains an anonymous struct of which any member
1992 // is initialized, all members must be initialized.
1993 if (!RD->isUnion() || Inits.count(I))
1994 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
1995 Kind))
1996 return false;
1997 }
1998 return true;
1999 }
2000
2001 /// Check the provided statement is allowed in a constexpr function
2002 /// definition.
2003 static bool
CheckConstexprFunctionStmt(Sema & SemaRef,const FunctionDecl * Dcl,Stmt * S,SmallVectorImpl<SourceLocation> & ReturnStmts,SourceLocation & Cxx1yLoc,SourceLocation & Cxx2aLoc,Sema::CheckConstexprKind Kind)2004 CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
2005 SmallVectorImpl<SourceLocation> &ReturnStmts,
2006 SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc,
2007 Sema::CheckConstexprKind Kind) {
2008 // - its function-body shall be [...] a compound-statement that contains only
2009 switch (S->getStmtClass()) {
2010 case Stmt::NullStmtClass:
2011 // - null statements,
2012 return true;
2013
2014 case Stmt::DeclStmtClass:
2015 // - static_assert-declarations
2016 // - using-declarations,
2017 // - using-directives,
2018 // - typedef declarations and alias-declarations that do not define
2019 // classes or enumerations,
2020 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc, Kind))
2021 return false;
2022 return true;
2023
2024 case Stmt::ReturnStmtClass:
2025 // - and exactly one return statement;
2026 if (isa<CXXConstructorDecl>(Dcl)) {
2027 // C++1y allows return statements in constexpr constructors.
2028 if (!Cxx1yLoc.isValid())
2029 Cxx1yLoc = S->getBeginLoc();
2030 return true;
2031 }
2032
2033 ReturnStmts.push_back(S->getBeginLoc());
2034 return true;
2035
2036 case Stmt::CompoundStmtClass: {
2037 // C++1y allows compound-statements.
2038 if (!Cxx1yLoc.isValid())
2039 Cxx1yLoc = S->getBeginLoc();
2040
2041 CompoundStmt *CompStmt = cast<CompoundStmt>(S);
2042 for (auto *BodyIt : CompStmt->body()) {
2043 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
2044 Cxx1yLoc, Cxx2aLoc, Kind))
2045 return false;
2046 }
2047 return true;
2048 }
2049
2050 case Stmt::AttributedStmtClass:
2051 if (!Cxx1yLoc.isValid())
2052 Cxx1yLoc = S->getBeginLoc();
2053 return true;
2054
2055 case Stmt::IfStmtClass: {
2056 // C++1y allows if-statements.
2057 if (!Cxx1yLoc.isValid())
2058 Cxx1yLoc = S->getBeginLoc();
2059
2060 IfStmt *If = cast<IfStmt>(S);
2061 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
2062 Cxx1yLoc, Cxx2aLoc, Kind))
2063 return false;
2064 if (If->getElse() &&
2065 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
2066 Cxx1yLoc, Cxx2aLoc, Kind))
2067 return false;
2068 return true;
2069 }
2070
2071 case Stmt::WhileStmtClass:
2072 case Stmt::DoStmtClass:
2073 case Stmt::ForStmtClass:
2074 case Stmt::CXXForRangeStmtClass:
2075 case Stmt::ContinueStmtClass:
2076 // C++1y allows all of these. We don't allow them as extensions in C++11,
2077 // because they don't make sense without variable mutation.
2078 if (!SemaRef.getLangOpts().CPlusPlus14)
2079 break;
2080 if (!Cxx1yLoc.isValid())
2081 Cxx1yLoc = S->getBeginLoc();
2082 for (Stmt *SubStmt : S->children())
2083 if (SubStmt &&
2084 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2085 Cxx1yLoc, Cxx2aLoc, Kind))
2086 return false;
2087 return true;
2088
2089 case Stmt::SwitchStmtClass:
2090 case Stmt::CaseStmtClass:
2091 case Stmt::DefaultStmtClass:
2092 case Stmt::BreakStmtClass:
2093 // C++1y allows switch-statements, and since they don't need variable
2094 // mutation, we can reasonably allow them in C++11 as an extension.
2095 if (!Cxx1yLoc.isValid())
2096 Cxx1yLoc = S->getBeginLoc();
2097 for (Stmt *SubStmt : S->children())
2098 if (SubStmt &&
2099 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2100 Cxx1yLoc, Cxx2aLoc, Kind))
2101 return false;
2102 return true;
2103
2104 case Stmt::GCCAsmStmtClass:
2105 case Stmt::MSAsmStmtClass:
2106 // C++2a allows inline assembly statements.
2107 case Stmt::CXXTryStmtClass:
2108 if (Cxx2aLoc.isInvalid())
2109 Cxx2aLoc = S->getBeginLoc();
2110 for (Stmt *SubStmt : S->children()) {
2111 if (SubStmt &&
2112 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2113 Cxx1yLoc, Cxx2aLoc, Kind))
2114 return false;
2115 }
2116 return true;
2117
2118 case Stmt::CXXCatchStmtClass:
2119 // Do not bother checking the language mode (already covered by the
2120 // try block check).
2121 if (!CheckConstexprFunctionStmt(SemaRef, Dcl,
2122 cast<CXXCatchStmt>(S)->getHandlerBlock(),
2123 ReturnStmts, Cxx1yLoc, Cxx2aLoc, Kind))
2124 return false;
2125 return true;
2126
2127 default:
2128 if (!isa<Expr>(S))
2129 break;
2130
2131 // C++1y allows expression-statements.
2132 if (!Cxx1yLoc.isValid())
2133 Cxx1yLoc = S->getBeginLoc();
2134 return true;
2135 }
2136
2137 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2138 SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
2139 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
2140 }
2141 return false;
2142 }
2143
2144 /// Check the body for the given constexpr function declaration only contains
2145 /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
2146 ///
2147 /// \return true if the body is OK, false if we have found or diagnosed a
2148 /// problem.
CheckConstexprFunctionBody(Sema & SemaRef,const FunctionDecl * Dcl,Stmt * Body,Sema::CheckConstexprKind Kind)2149 static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
2150 Stmt *Body,
2151 Sema::CheckConstexprKind Kind) {
2152 SmallVector<SourceLocation, 4> ReturnStmts;
2153
2154 if (isa<CXXTryStmt>(Body)) {
2155 // C++11 [dcl.constexpr]p3:
2156 // The definition of a constexpr function shall satisfy the following
2157 // constraints: [...]
2158 // - its function-body shall be = delete, = default, or a
2159 // compound-statement
2160 //
2161 // C++11 [dcl.constexpr]p4:
2162 // In the definition of a constexpr constructor, [...]
2163 // - its function-body shall not be a function-try-block;
2164 //
2165 // This restriction is lifted in C++2a, as long as inner statements also
2166 // apply the general constexpr rules.
2167 switch (Kind) {
2168 case Sema::CheckConstexprKind::CheckValid:
2169 if (!SemaRef.getLangOpts().CPlusPlus20)
2170 return false;
2171 break;
2172
2173 case Sema::CheckConstexprKind::Diagnose:
2174 SemaRef.Diag(Body->getBeginLoc(),
2175 !SemaRef.getLangOpts().CPlusPlus20
2176 ? diag::ext_constexpr_function_try_block_cxx20
2177 : diag::warn_cxx17_compat_constexpr_function_try_block)
2178 << isa<CXXConstructorDecl>(Dcl);
2179 break;
2180 }
2181 }
2182
2183 // - its function-body shall be [...] a compound-statement that contains only
2184 // [... list of cases ...]
2185 //
2186 // Note that walking the children here is enough to properly check for
2187 // CompoundStmt and CXXTryStmt body.
2188 SourceLocation Cxx1yLoc, Cxx2aLoc;
2189 for (Stmt *SubStmt : Body->children()) {
2190 if (SubStmt &&
2191 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2192 Cxx1yLoc, Cxx2aLoc, Kind))
2193 return false;
2194 }
2195
2196 if (Kind == Sema::CheckConstexprKind::CheckValid) {
2197 // If this is only valid as an extension, report that we don't satisfy the
2198 // constraints of the current language.
2199 if ((Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus20) ||
2200 (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17))
2201 return false;
2202 } else if (Cxx2aLoc.isValid()) {
2203 SemaRef.Diag(Cxx2aLoc,
2204 SemaRef.getLangOpts().CPlusPlus20
2205 ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt
2206 : diag::ext_constexpr_body_invalid_stmt_cxx20)
2207 << isa<CXXConstructorDecl>(Dcl);
2208 } else if (Cxx1yLoc.isValid()) {
2209 SemaRef.Diag(Cxx1yLoc,
2210 SemaRef.getLangOpts().CPlusPlus14
2211 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
2212 : diag::ext_constexpr_body_invalid_stmt)
2213 << isa<CXXConstructorDecl>(Dcl);
2214 }
2215
2216 if (const CXXConstructorDecl *Constructor
2217 = dyn_cast<CXXConstructorDecl>(Dcl)) {
2218 const CXXRecordDecl *RD = Constructor->getParent();
2219 // DR1359:
2220 // - every non-variant non-static data member and base class sub-object
2221 // shall be initialized;
2222 // DR1460:
2223 // - if the class is a union having variant members, exactly one of them
2224 // shall be initialized;
2225 if (RD->isUnion()) {
2226 if (Constructor->getNumCtorInitializers() == 0 &&
2227 RD->hasVariantMembers()) {
2228 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2229 SemaRef.Diag(
2230 Dcl->getLocation(),
2231 SemaRef.getLangOpts().CPlusPlus20
2232 ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init
2233 : diag::ext_constexpr_union_ctor_no_init);
2234 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
2235 return false;
2236 }
2237 }
2238 } else if (!Constructor->isDependentContext() &&
2239 !Constructor->isDelegatingConstructor()) {
2240 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
2241
2242 // Skip detailed checking if we have enough initializers, and we would
2243 // allow at most one initializer per member.
2244 bool AnyAnonStructUnionMembers = false;
2245 unsigned Fields = 0;
2246 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
2247 E = RD->field_end(); I != E; ++I, ++Fields) {
2248 if (I->isAnonymousStructOrUnion()) {
2249 AnyAnonStructUnionMembers = true;
2250 break;
2251 }
2252 }
2253 // DR1460:
2254 // - if the class is a union-like class, but is not a union, for each of
2255 // its anonymous union members having variant members, exactly one of
2256 // them shall be initialized;
2257 if (AnyAnonStructUnionMembers ||
2258 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
2259 // Check initialization of non-static data members. Base classes are
2260 // always initialized so do not need to be checked. Dependent bases
2261 // might not have initializers in the member initializer list.
2262 llvm::SmallSet<Decl*, 16> Inits;
2263 for (const auto *I: Constructor->inits()) {
2264 if (FieldDecl *FD = I->getMember())
2265 Inits.insert(FD);
2266 else if (IndirectFieldDecl *ID = I->getIndirectMember())
2267 Inits.insert(ID->chain_begin(), ID->chain_end());
2268 }
2269
2270 bool Diagnosed = false;
2271 for (auto *I : RD->fields())
2272 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
2273 Kind))
2274 return false;
2275 }
2276 }
2277 } else {
2278 if (ReturnStmts.empty()) {
2279 // C++1y doesn't require constexpr functions to contain a 'return'
2280 // statement. We still do, unless the return type might be void, because
2281 // otherwise if there's no return statement, the function cannot
2282 // be used in a core constant expression.
2283 bool OK = SemaRef.getLangOpts().CPlusPlus14 &&
2284 (Dcl->getReturnType()->isVoidType() ||
2285 Dcl->getReturnType()->isDependentType());
2286 switch (Kind) {
2287 case Sema::CheckConstexprKind::Diagnose:
2288 SemaRef.Diag(Dcl->getLocation(),
2289 OK ? diag::warn_cxx11_compat_constexpr_body_no_return
2290 : diag::err_constexpr_body_no_return)
2291 << Dcl->isConsteval();
2292 if (!OK)
2293 return false;
2294 break;
2295
2296 case Sema::CheckConstexprKind::CheckValid:
2297 // The formal requirements don't include this rule in C++14, even
2298 // though the "must be able to produce a constant expression" rules
2299 // still imply it in some cases.
2300 if (!SemaRef.getLangOpts().CPlusPlus14)
2301 return false;
2302 break;
2303 }
2304 } else if (ReturnStmts.size() > 1) {
2305 switch (Kind) {
2306 case Sema::CheckConstexprKind::Diagnose:
2307 SemaRef.Diag(
2308 ReturnStmts.back(),
2309 SemaRef.getLangOpts().CPlusPlus14
2310 ? diag::warn_cxx11_compat_constexpr_body_multiple_return
2311 : diag::ext_constexpr_body_multiple_return);
2312 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
2313 SemaRef.Diag(ReturnStmts[I],
2314 diag::note_constexpr_body_previous_return);
2315 break;
2316
2317 case Sema::CheckConstexprKind::CheckValid:
2318 if (!SemaRef.getLangOpts().CPlusPlus14)
2319 return false;
2320 break;
2321 }
2322 }
2323 }
2324
2325 // C++11 [dcl.constexpr]p5:
2326 // if no function argument values exist such that the function invocation
2327 // substitution would produce a constant expression, the program is
2328 // ill-formed; no diagnostic required.
2329 // C++11 [dcl.constexpr]p3:
2330 // - every constructor call and implicit conversion used in initializing the
2331 // return value shall be one of those allowed in a constant expression.
2332 // C++11 [dcl.constexpr]p4:
2333 // - every constructor involved in initializing non-static data members and
2334 // base class sub-objects shall be a constexpr constructor.
2335 //
2336 // Note that this rule is distinct from the "requirements for a constexpr
2337 // function", so is not checked in CheckValid mode.
2338 SmallVector<PartialDiagnosticAt, 8> Diags;
2339 if (Kind == Sema::CheckConstexprKind::Diagnose &&
2340 !Expr::isPotentialConstantExpr(Dcl, Diags)) {
2341 SemaRef.Diag(Dcl->getLocation(),
2342 diag::ext_constexpr_function_never_constant_expr)
2343 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
2344 for (size_t I = 0, N = Diags.size(); I != N; ++I)
2345 SemaRef.Diag(Diags[I].first, Diags[I].second);
2346 // Don't return false here: we allow this for compatibility in
2347 // system headers.
2348 }
2349
2350 return true;
2351 }
2352
2353 /// Get the class that is directly named by the current context. This is the
2354 /// class for which an unqualified-id in this scope could name a constructor
2355 /// or destructor.
2356 ///
2357 /// If the scope specifier denotes a class, this will be that class.
2358 /// If the scope specifier is empty, this will be the class whose
2359 /// member-specification we are currently within. Otherwise, there
2360 /// is no such class.
getCurrentClass(Scope *,const CXXScopeSpec * SS)2361 CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) {
2362 assert(getLangOpts().CPlusPlus && "No class names in C!");
2363
2364 if (SS && SS->isInvalid())
2365 return nullptr;
2366
2367 if (SS && SS->isNotEmpty()) {
2368 DeclContext *DC = computeDeclContext(*SS, true);
2369 return dyn_cast_or_null<CXXRecordDecl>(DC);
2370 }
2371
2372 return dyn_cast_or_null<CXXRecordDecl>(CurContext);
2373 }
2374
2375 /// isCurrentClassName - Determine whether the identifier II is the
2376 /// name of the class type currently being defined. In the case of
2377 /// nested classes, this will only return true if II is the name of
2378 /// the innermost class.
isCurrentClassName(const IdentifierInfo & II,Scope * S,const CXXScopeSpec * SS)2379 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S,
2380 const CXXScopeSpec *SS) {
2381 CXXRecordDecl *CurDecl = getCurrentClass(S, SS);
2382 return CurDecl && &II == CurDecl->getIdentifier();
2383 }
2384
2385 /// Determine whether the identifier II is a typo for the name of
2386 /// the class type currently being defined. If so, update it to the identifier
2387 /// that should have been used.
isCurrentClassNameTypo(IdentifierInfo * & II,const CXXScopeSpec * SS)2388 bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
2389 assert(getLangOpts().CPlusPlus && "No class names in C!");
2390
2391 if (!getLangOpts().SpellChecking)
2392 return false;
2393
2394 CXXRecordDecl *CurDecl;
2395 if (SS && SS->isSet() && !SS->isInvalid()) {
2396 DeclContext *DC = computeDeclContext(*SS, true);
2397 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
2398 } else
2399 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
2400
2401 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
2402 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
2403 < II->getLength()) {
2404 II = CurDecl->getIdentifier();
2405 return true;
2406 }
2407
2408 return false;
2409 }
2410
2411 /// Determine whether the given class is a base class of the given
2412 /// class, including looking at dependent bases.
findCircularInheritance(const CXXRecordDecl * Class,const CXXRecordDecl * Current)2413 static bool findCircularInheritance(const CXXRecordDecl *Class,
2414 const CXXRecordDecl *Current) {
2415 SmallVector<const CXXRecordDecl*, 8> Queue;
2416
2417 Class = Class->getCanonicalDecl();
2418 while (true) {
2419 for (const auto &I : Current->bases()) {
2420 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
2421 if (!Base)
2422 continue;
2423
2424 Base = Base->getDefinition();
2425 if (!Base)
2426 continue;
2427
2428 if (Base->getCanonicalDecl() == Class)
2429 return true;
2430
2431 Queue.push_back(Base);
2432 }
2433
2434 if (Queue.empty())
2435 return false;
2436
2437 Current = Queue.pop_back_val();
2438 }
2439
2440 return false;
2441 }
2442
2443 /// Check the validity of a C++ base class specifier.
2444 ///
2445 /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
2446 /// and returns NULL otherwise.
2447 CXXBaseSpecifier *
CheckBaseSpecifier(CXXRecordDecl * Class,SourceRange SpecifierRange,bool Virtual,AccessSpecifier Access,TypeSourceInfo * TInfo,SourceLocation EllipsisLoc)2448 Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
2449 SourceRange SpecifierRange,
2450 bool Virtual, AccessSpecifier Access,
2451 TypeSourceInfo *TInfo,
2452 SourceLocation EllipsisLoc) {
2453 QualType BaseType = TInfo->getType();
2454 if (BaseType->containsErrors()) {
2455 // Already emitted a diagnostic when parsing the error type.
2456 return nullptr;
2457 }
2458 // C++ [class.union]p1:
2459 // A union shall not have base classes.
2460 if (Class->isUnion()) {
2461 Diag(Class->getLocation(), diag::err_base_clause_on_union)
2462 << SpecifierRange;
2463 return nullptr;
2464 }
2465
2466 if (EllipsisLoc.isValid() &&
2467 !TInfo->getType()->containsUnexpandedParameterPack()) {
2468 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2469 << TInfo->getTypeLoc().getSourceRange();
2470 EllipsisLoc = SourceLocation();
2471 }
2472
2473 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
2474
2475 if (BaseType->isDependentType()) {
2476 // Make sure that we don't have circular inheritance among our dependent
2477 // bases. For non-dependent bases, the check for completeness below handles
2478 // this.
2479 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
2480 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
2481 ((BaseDecl = BaseDecl->getDefinition()) &&
2482 findCircularInheritance(Class, BaseDecl))) {
2483 Diag(BaseLoc, diag::err_circular_inheritance)
2484 << BaseType << Context.getTypeDeclType(Class);
2485
2486 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
2487 Diag(BaseDecl->getLocation(), diag::note_previous_decl)
2488 << BaseType;
2489
2490 return nullptr;
2491 }
2492 }
2493
2494 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2495 Class->getTagKind() == TTK_Class,
2496 Access, TInfo, EllipsisLoc);
2497 }
2498
2499 // Base specifiers must be record types.
2500 if (!BaseType->isRecordType()) {
2501 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
2502 return nullptr;
2503 }
2504
2505 // C++ [class.union]p1:
2506 // A union shall not be used as a base class.
2507 if (BaseType->isUnionType()) {
2508 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
2509 return nullptr;
2510 }
2511
2512 // For the MS ABI, propagate DLL attributes to base class templates.
2513 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2514 if (Attr *ClassAttr = getDLLAttr(Class)) {
2515 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
2516 BaseType->getAsCXXRecordDecl())) {
2517 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate,
2518 BaseLoc);
2519 }
2520 }
2521 }
2522
2523 // C++ [class.derived]p2:
2524 // The class-name in a base-specifier shall not be an incompletely
2525 // defined class.
2526 if (RequireCompleteType(BaseLoc, BaseType,
2527 diag::err_incomplete_base_class, SpecifierRange)) {
2528 Class->setInvalidDecl();
2529 return nullptr;
2530 }
2531
2532 // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
2533 RecordDecl *BaseDecl = BaseType->castAs<RecordType>()->getDecl();
2534 assert(BaseDecl && "Record type has no declaration");
2535 BaseDecl = BaseDecl->getDefinition();
2536 assert(BaseDecl && "Base type is not incomplete, but has no definition");
2537 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
2538 assert(CXXBaseDecl && "Base type is not a C++ type");
2539
2540 // Microsoft docs say:
2541 // "If a base-class has a code_seg attribute, derived classes must have the
2542 // same attribute."
2543 const auto *BaseCSA = CXXBaseDecl->getAttr<CodeSegAttr>();
2544 const auto *DerivedCSA = Class->getAttr<CodeSegAttr>();
2545 if ((DerivedCSA || BaseCSA) &&
2546 (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) {
2547 Diag(Class->getLocation(), diag::err_mismatched_code_seg_base);
2548 Diag(CXXBaseDecl->getLocation(), diag::note_base_class_specified_here)
2549 << CXXBaseDecl;
2550 return nullptr;
2551 }
2552
2553 // A class which contains a flexible array member is not suitable for use as a
2554 // base class:
2555 // - If the layout determines that a base comes before another base,
2556 // the flexible array member would index into the subsequent base.
2557 // - If the layout determines that base comes before the derived class,
2558 // the flexible array member would index into the derived class.
2559 if (CXXBaseDecl->hasFlexibleArrayMember()) {
2560 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
2561 << CXXBaseDecl->getDeclName();
2562 return nullptr;
2563 }
2564
2565 // C++ [class]p3:
2566 // If a class is marked final and it appears as a base-type-specifier in
2567 // base-clause, the program is ill-formed.
2568 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
2569 Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
2570 << CXXBaseDecl->getDeclName()
2571 << FA->isSpelledAsSealed();
2572 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
2573 << CXXBaseDecl->getDeclName() << FA->getRange();
2574 return nullptr;
2575 }
2576
2577 if (BaseDecl->isInvalidDecl())
2578 Class->setInvalidDecl();
2579
2580 // Create the base specifier.
2581 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2582 Class->getTagKind() == TTK_Class,
2583 Access, TInfo, EllipsisLoc);
2584 }
2585
2586 /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
2587 /// one entry in the base class list of a class specifier, for
2588 /// example:
2589 /// class foo : public bar, virtual private baz {
2590 /// 'public bar' and 'virtual private baz' are each base-specifiers.
2591 BaseResult
ActOnBaseSpecifier(Decl * classdecl,SourceRange SpecifierRange,ParsedAttributes & Attributes,bool Virtual,AccessSpecifier Access,ParsedType basetype,SourceLocation BaseLoc,SourceLocation EllipsisLoc)2592 Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
2593 ParsedAttributes &Attributes,
2594 bool Virtual, AccessSpecifier Access,
2595 ParsedType basetype, SourceLocation BaseLoc,
2596 SourceLocation EllipsisLoc) {
2597 if (!classdecl)
2598 return true;
2599
2600 AdjustDeclIfTemplate(classdecl);
2601 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
2602 if (!Class)
2603 return true;
2604
2605 // We haven't yet attached the base specifiers.
2606 Class->setIsParsingBaseSpecifiers();
2607
2608 // We do not support any C++11 attributes on base-specifiers yet.
2609 // Diagnose any attributes we see.
2610 for (const ParsedAttr &AL : Attributes) {
2611 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute)
2612 continue;
2613 Diag(AL.getLoc(), AL.getKind() == ParsedAttr::UnknownAttribute
2614 ? (unsigned)diag::warn_unknown_attribute_ignored
2615 : (unsigned)diag::err_base_specifier_attribute)
2616 << AL << AL.getRange();
2617 }
2618
2619 TypeSourceInfo *TInfo = nullptr;
2620 GetTypeFromParser(basetype, &TInfo);
2621
2622 if (EllipsisLoc.isInvalid() &&
2623 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
2624 UPPC_BaseType))
2625 return true;
2626
2627 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
2628 Virtual, Access, TInfo,
2629 EllipsisLoc))
2630 return BaseSpec;
2631 else
2632 Class->setInvalidDecl();
2633
2634 return true;
2635 }
2636
2637 /// Use small set to collect indirect bases. As this is only used
2638 /// locally, there's no need to abstract the small size parameter.
2639 typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
2640
2641 /// Recursively add the bases of Type. Don't add Type itself.
2642 static void
NoteIndirectBases(ASTContext & Context,IndirectBaseSet & Set,const QualType & Type)2643 NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
2644 const QualType &Type)
2645 {
2646 // Even though the incoming type is a base, it might not be
2647 // a class -- it could be a template parm, for instance.
2648 if (auto Rec = Type->getAs<RecordType>()) {
2649 auto Decl = Rec->getAsCXXRecordDecl();
2650
2651 // Iterate over its bases.
2652 for (const auto &BaseSpec : Decl->bases()) {
2653 QualType Base = Context.getCanonicalType(BaseSpec.getType())
2654 .getUnqualifiedType();
2655 if (Set.insert(Base).second)
2656 // If we've not already seen it, recurse.
2657 NoteIndirectBases(Context, Set, Base);
2658 }
2659 }
2660 }
2661
2662 /// Performs the actual work of attaching the given base class
2663 /// specifiers to a C++ class.
AttachBaseSpecifiers(CXXRecordDecl * Class,MutableArrayRef<CXXBaseSpecifier * > Bases)2664 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class,
2665 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2666 if (Bases.empty())
2667 return false;
2668
2669 // Used to keep track of which base types we have already seen, so
2670 // that we can properly diagnose redundant direct base types. Note
2671 // that the key is always the unqualified canonical type of the base
2672 // class.
2673 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
2674
2675 // Used to track indirect bases so we can see if a direct base is
2676 // ambiguous.
2677 IndirectBaseSet IndirectBaseTypes;
2678
2679 // Copy non-redundant base specifiers into permanent storage.
2680 unsigned NumGoodBases = 0;
2681 bool Invalid = false;
2682 for (unsigned idx = 0; idx < Bases.size(); ++idx) {
2683 QualType NewBaseType
2684 = Context.getCanonicalType(Bases[idx]->getType());
2685 NewBaseType = NewBaseType.getLocalUnqualifiedType();
2686
2687 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
2688 if (KnownBase) {
2689 // C++ [class.mi]p3:
2690 // A class shall not be specified as a direct base class of a
2691 // derived class more than once.
2692 Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class)
2693 << KnownBase->getType() << Bases[idx]->getSourceRange();
2694
2695 // Delete the duplicate base class specifier; we're going to
2696 // overwrite its pointer later.
2697 Context.Deallocate(Bases[idx]);
2698
2699 Invalid = true;
2700 } else {
2701 // Okay, add this new base class.
2702 KnownBase = Bases[idx];
2703 Bases[NumGoodBases++] = Bases[idx];
2704
2705 // Note this base's direct & indirect bases, if there could be ambiguity.
2706 if (Bases.size() > 1)
2707 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType);
2708
2709 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
2710 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2711 if (Class->isInterface() &&
2712 (!RD->isInterfaceLike() ||
2713 KnownBase->getAccessSpecifier() != AS_public)) {
2714 // The Microsoft extension __interface does not permit bases that
2715 // are not themselves public interfaces.
2716 Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface)
2717 << getRecordDiagFromTagKind(RD->getTagKind()) << RD
2718 << RD->getSourceRange();
2719 Invalid = true;
2720 }
2721 if (RD->hasAttr<WeakAttr>())
2722 Class->addAttr(WeakAttr::CreateImplicit(Context));
2723 }
2724 }
2725 }
2726
2727 // Attach the remaining base class specifiers to the derived class.
2728 Class->setBases(Bases.data(), NumGoodBases);
2729
2730 // Check that the only base classes that are duplicate are virtual.
2731 for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
2732 // Check whether this direct base is inaccessible due to ambiguity.
2733 QualType BaseType = Bases[idx]->getType();
2734
2735 // Skip all dependent types in templates being used as base specifiers.
2736 // Checks below assume that the base specifier is a CXXRecord.
2737 if (BaseType->isDependentType())
2738 continue;
2739
2740 CanQualType CanonicalBase = Context.getCanonicalType(BaseType)
2741 .getUnqualifiedType();
2742
2743 if (IndirectBaseTypes.count(CanonicalBase)) {
2744 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2745 /*DetectVirtual=*/true);
2746 bool found
2747 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
2748 assert(found);
2749 (void)found;
2750
2751 if (Paths.isAmbiguous(CanonicalBase))
2752 Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class)
2753 << BaseType << getAmbiguousPathsDisplayString(Paths)
2754 << Bases[idx]->getSourceRange();
2755 else
2756 assert(Bases[idx]->isVirtual());
2757 }
2758
2759 // Delete the base class specifier, since its data has been copied
2760 // into the CXXRecordDecl.
2761 Context.Deallocate(Bases[idx]);
2762 }
2763
2764 return Invalid;
2765 }
2766
2767 /// ActOnBaseSpecifiers - Attach the given base specifiers to the
2768 /// class, after checking whether there are any duplicate base
2769 /// classes.
ActOnBaseSpecifiers(Decl * ClassDecl,MutableArrayRef<CXXBaseSpecifier * > Bases)2770 void Sema::ActOnBaseSpecifiers(Decl *ClassDecl,
2771 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2772 if (!ClassDecl || Bases.empty())
2773 return;
2774
2775 AdjustDeclIfTemplate(ClassDecl);
2776 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases);
2777 }
2778
2779 /// Determine whether the type \p Derived is a C++ class that is
2780 /// derived from the type \p Base.
IsDerivedFrom(SourceLocation Loc,QualType Derived,QualType Base)2781 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) {
2782 if (!getLangOpts().CPlusPlus)
2783 return false;
2784
2785 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2786 if (!DerivedRD)
2787 return false;
2788
2789 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2790 if (!BaseRD)
2791 return false;
2792
2793 // If either the base or the derived type is invalid, don't try to
2794 // check whether one is derived from the other.
2795 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
2796 return false;
2797
2798 // FIXME: In a modules build, do we need the entire path to be visible for us
2799 // to be able to use the inheritance relationship?
2800 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2801 return false;
2802
2803 return DerivedRD->isDerivedFrom(BaseRD);
2804 }
2805
2806 /// Determine whether the type \p Derived is a C++ class that is
2807 /// derived from the type \p Base.
IsDerivedFrom(SourceLocation Loc,QualType Derived,QualType Base,CXXBasePaths & Paths)2808 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
2809 CXXBasePaths &Paths) {
2810 if (!getLangOpts().CPlusPlus)
2811 return false;
2812
2813 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2814 if (!DerivedRD)
2815 return false;
2816
2817 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2818 if (!BaseRD)
2819 return false;
2820
2821 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2822 return false;
2823
2824 return DerivedRD->isDerivedFrom(BaseRD, Paths);
2825 }
2826
BuildBasePathArray(const CXXBasePath & Path,CXXCastPath & BasePathArray)2827 static void BuildBasePathArray(const CXXBasePath &Path,
2828 CXXCastPath &BasePathArray) {
2829 // We first go backward and check if we have a virtual base.
2830 // FIXME: It would be better if CXXBasePath had the base specifier for
2831 // the nearest virtual base.
2832 unsigned Start = 0;
2833 for (unsigned I = Path.size(); I != 0; --I) {
2834 if (Path[I - 1].Base->isVirtual()) {
2835 Start = I - 1;
2836 break;
2837 }
2838 }
2839
2840 // Now add all bases.
2841 for (unsigned I = Start, E = Path.size(); I != E; ++I)
2842 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
2843 }
2844
2845
BuildBasePathArray(const CXXBasePaths & Paths,CXXCastPath & BasePathArray)2846 void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
2847 CXXCastPath &BasePathArray) {
2848 assert(BasePathArray.empty() && "Base path array must be empty!");
2849 assert(Paths.isRecordingPaths() && "Must record paths!");
2850 return ::BuildBasePathArray(Paths.front(), BasePathArray);
2851 }
2852 /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
2853 /// conversion (where Derived and Base are class types) is
2854 /// well-formed, meaning that the conversion is unambiguous (and
2855 /// that all of the base classes are accessible). Returns true
2856 /// and emits a diagnostic if the code is ill-formed, returns false
2857 /// otherwise. Loc is the location where this routine should point to
2858 /// if there is an error, and Range is the source range to highlight
2859 /// if there is an error.
2860 ///
2861 /// If either InaccessibleBaseID or AmbiguousBaseConvID are 0, then the
2862 /// diagnostic for the respective type of error will be suppressed, but the
2863 /// check for ill-formed code will still be performed.
2864 bool
CheckDerivedToBaseConversion(QualType Derived,QualType Base,unsigned InaccessibleBaseID,unsigned AmbiguousBaseConvID,SourceLocation Loc,SourceRange Range,DeclarationName Name,CXXCastPath * BasePath,bool IgnoreAccess)2865 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2866 unsigned InaccessibleBaseID,
2867 unsigned AmbiguousBaseConvID,
2868 SourceLocation Loc, SourceRange Range,
2869 DeclarationName Name,
2870 CXXCastPath *BasePath,
2871 bool IgnoreAccess) {
2872 // First, determine whether the path from Derived to Base is
2873 // ambiguous. This is slightly more expensive than checking whether
2874 // the Derived to Base conversion exists, because here we need to
2875 // explore multiple paths to determine if there is an ambiguity.
2876 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2877 /*DetectVirtual=*/false);
2878 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2879 if (!DerivationOkay)
2880 return true;
2881
2882 const CXXBasePath *Path = nullptr;
2883 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType()))
2884 Path = &Paths.front();
2885
2886 // For MSVC compatibility, check if Derived directly inherits from Base. Clang
2887 // warns about this hierarchy under -Winaccessible-base, but MSVC allows the
2888 // user to access such bases.
2889 if (!Path && getLangOpts().MSVCCompat) {
2890 for (const CXXBasePath &PossiblePath : Paths) {
2891 if (PossiblePath.size() == 1) {
2892 Path = &PossiblePath;
2893 if (AmbiguousBaseConvID)
2894 Diag(Loc, diag::ext_ms_ambiguous_direct_base)
2895 << Base << Derived << Range;
2896 break;
2897 }
2898 }
2899 }
2900
2901 if (Path) {
2902 if (!IgnoreAccess) {
2903 // Check that the base class can be accessed.
2904 switch (
2905 CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) {
2906 case AR_inaccessible:
2907 return true;
2908 case AR_accessible:
2909 case AR_dependent:
2910 case AR_delayed:
2911 break;
2912 }
2913 }
2914
2915 // Build a base path if necessary.
2916 if (BasePath)
2917 ::BuildBasePathArray(*Path, *BasePath);
2918 return false;
2919 }
2920
2921 if (AmbiguousBaseConvID) {
2922 // We know that the derived-to-base conversion is ambiguous, and
2923 // we're going to produce a diagnostic. Perform the derived-to-base
2924 // search just one more time to compute all of the possible paths so
2925 // that we can print them out. This is more expensive than any of
2926 // the previous derived-to-base checks we've done, but at this point
2927 // performance isn't as much of an issue.
2928 Paths.clear();
2929 Paths.setRecordingPaths(true);
2930 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2931 assert(StillOkay && "Can only be used with a derived-to-base conversion");
2932 (void)StillOkay;
2933
2934 // Build up a textual representation of the ambiguous paths, e.g.,
2935 // D -> B -> A, that will be used to illustrate the ambiguous
2936 // conversions in the diagnostic. We only print one of the paths
2937 // to each base class subobject.
2938 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2939
2940 Diag(Loc, AmbiguousBaseConvID)
2941 << Derived << Base << PathDisplayStr << Range << Name;
2942 }
2943 return true;
2944 }
2945
2946 bool
CheckDerivedToBaseConversion(QualType Derived,QualType Base,SourceLocation Loc,SourceRange Range,CXXCastPath * BasePath,bool IgnoreAccess)2947 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2948 SourceLocation Loc, SourceRange Range,
2949 CXXCastPath *BasePath,
2950 bool IgnoreAccess) {
2951 return CheckDerivedToBaseConversion(
2952 Derived, Base, diag::err_upcast_to_inaccessible_base,
2953 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(),
2954 BasePath, IgnoreAccess);
2955 }
2956
2957
2958 /// Builds a string representing ambiguous paths from a
2959 /// specific derived class to different subobjects of the same base
2960 /// class.
2961 ///
2962 /// This function builds a string that can be used in error messages
2963 /// to show the different paths that one can take through the
2964 /// inheritance hierarchy to go from the derived class to different
2965 /// subobjects of a base class. The result looks something like this:
2966 /// @code
2967 /// struct D -> struct B -> struct A
2968 /// struct D -> struct C -> struct A
2969 /// @endcode
getAmbiguousPathsDisplayString(CXXBasePaths & Paths)2970 std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
2971 std::string PathDisplayStr;
2972 std::set<unsigned> DisplayedPaths;
2973 for (CXXBasePaths::paths_iterator Path = Paths.begin();
2974 Path != Paths.end(); ++Path) {
2975 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
2976 // We haven't displayed a path to this particular base
2977 // class subobject yet.
2978 PathDisplayStr += "\n ";
2979 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
2980 for (CXXBasePath::const_iterator Element = Path->begin();
2981 Element != Path->end(); ++Element)
2982 PathDisplayStr += " -> " + Element->Base->getType().getAsString();
2983 }
2984 }
2985
2986 return PathDisplayStr;
2987 }
2988
2989 //===----------------------------------------------------------------------===//
2990 // C++ class member Handling
2991 //===----------------------------------------------------------------------===//
2992
2993 /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
ActOnAccessSpecifier(AccessSpecifier Access,SourceLocation ASLoc,SourceLocation ColonLoc,const ParsedAttributesView & Attrs)2994 bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc,
2995 SourceLocation ColonLoc,
2996 const ParsedAttributesView &Attrs) {
2997 assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
2998 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
2999 ASLoc, ColonLoc);
3000 CurContext->addHiddenDecl(ASDecl);
3001 return ProcessAccessDeclAttributeList(ASDecl, Attrs);
3002 }
3003
3004 /// CheckOverrideControl - Check C++11 override control semantics.
CheckOverrideControl(NamedDecl * D)3005 void Sema::CheckOverrideControl(NamedDecl *D) {
3006 if (D->isInvalidDecl())
3007 return;
3008
3009 // We only care about "override" and "final" declarations.
3010 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
3011 return;
3012
3013 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
3014
3015 // We can't check dependent instance methods.
3016 if (MD && MD->isInstance() &&
3017 (MD->getParent()->hasAnyDependentBases() ||
3018 MD->getType()->isDependentType()))
3019 return;
3020
3021 if (MD && !MD->isVirtual()) {
3022 // If we have a non-virtual method, check if if hides a virtual method.
3023 // (In that case, it's most likely the method has the wrong type.)
3024 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
3025 FindHiddenVirtualMethods(MD, OverloadedMethods);
3026
3027 if (!OverloadedMethods.empty()) {
3028 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
3029 Diag(OA->getLocation(),
3030 diag::override_keyword_hides_virtual_member_function)
3031 << "override" << (OverloadedMethods.size() > 1);
3032 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
3033 Diag(FA->getLocation(),
3034 diag::override_keyword_hides_virtual_member_function)
3035 << (FA->isSpelledAsSealed() ? "sealed" : "final")
3036 << (OverloadedMethods.size() > 1);
3037 }
3038 NoteHiddenVirtualMethods(MD, OverloadedMethods);
3039 MD->setInvalidDecl();
3040 return;
3041 }
3042 // Fall through into the general case diagnostic.
3043 // FIXME: We might want to attempt typo correction here.
3044 }
3045
3046 if (!MD || !MD->isVirtual()) {
3047 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
3048 Diag(OA->getLocation(),
3049 diag::override_keyword_only_allowed_on_virtual_member_functions)
3050 << "override" << FixItHint::CreateRemoval(OA->getLocation());
3051 D->dropAttr<OverrideAttr>();
3052 }
3053 if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
3054 Diag(FA->getLocation(),
3055 diag::override_keyword_only_allowed_on_virtual_member_functions)
3056 << (FA->isSpelledAsSealed() ? "sealed" : "final")
3057 << FixItHint::CreateRemoval(FA->getLocation());
3058 D->dropAttr<FinalAttr>();
3059 }
3060 return;
3061 }
3062
3063 // C++11 [class.virtual]p5:
3064 // If a function is marked with the virt-specifier override and
3065 // does not override a member function of a base class, the program is
3066 // ill-formed.
3067 bool HasOverriddenMethods = MD->size_overridden_methods() != 0;
3068 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
3069 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
3070 << MD->getDeclName();
3071 }
3072
DiagnoseAbsenceOfOverrideControl(NamedDecl * D,bool Inconsistent)3073 void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent) {
3074 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
3075 return;
3076 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
3077 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>())
3078 return;
3079
3080 SourceLocation Loc = MD->getLocation();
3081 SourceLocation SpellingLoc = Loc;
3082 if (getSourceManager().isMacroArgExpansion(Loc))
3083 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin();
3084 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc);
3085 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc))
3086 return;
3087
3088 if (MD->size_overridden_methods() > 0) {
3089 auto EmitDiag = [&](unsigned DiagInconsistent, unsigned DiagSuggest) {
3090 unsigned DiagID =
3091 Inconsistent && !Diags.isIgnored(DiagInconsistent, MD->getLocation())
3092 ? DiagInconsistent
3093 : DiagSuggest;
3094 Diag(MD->getLocation(), DiagID) << MD->getDeclName();
3095 const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
3096 Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
3097 };
3098 if (isa<CXXDestructorDecl>(MD))
3099 EmitDiag(
3100 diag::warn_inconsistent_destructor_marked_not_override_overriding,
3101 diag::warn_suggest_destructor_marked_not_override_overriding);
3102 else
3103 EmitDiag(diag::warn_inconsistent_function_marked_not_override_overriding,
3104 diag::warn_suggest_function_marked_not_override_overriding);
3105 }
3106 }
3107
3108 /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
3109 /// function overrides a virtual member function marked 'final', according to
3110 /// C++11 [class.virtual]p4.
CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl * New,const CXXMethodDecl * Old)3111 bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
3112 const CXXMethodDecl *Old) {
3113 FinalAttr *FA = Old->getAttr<FinalAttr>();
3114 if (!FA)
3115 return false;
3116
3117 Diag(New->getLocation(), diag::err_final_function_overridden)
3118 << New->getDeclName()
3119 << FA->isSpelledAsSealed();
3120 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3121 return true;
3122 }
3123
InitializationHasSideEffects(const FieldDecl & FD)3124 static bool InitializationHasSideEffects(const FieldDecl &FD) {
3125 const Type *T = FD.getType()->getBaseElementTypeUnsafe();
3126 // FIXME: Destruction of ObjC lifetime types has side-effects.
3127 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3128 return !RD->isCompleteDefinition() ||
3129 !RD->hasTrivialDefaultConstructor() ||
3130 !RD->hasTrivialDestructor();
3131 return false;
3132 }
3133
getMSPropertyAttr(const ParsedAttributesView & list)3134 static const ParsedAttr *getMSPropertyAttr(const ParsedAttributesView &list) {
3135 ParsedAttributesView::const_iterator Itr =
3136 llvm::find_if(list, [](const ParsedAttr &AL) {
3137 return AL.isDeclspecPropertyAttribute();
3138 });
3139 if (Itr != list.end())
3140 return &*Itr;
3141 return nullptr;
3142 }
3143
3144 // Check if there is a field shadowing.
CheckShadowInheritedFields(const SourceLocation & Loc,DeclarationName FieldName,const CXXRecordDecl * RD,bool DeclIsField)3145 void Sema::CheckShadowInheritedFields(const SourceLocation &Loc,
3146 DeclarationName FieldName,
3147 const CXXRecordDecl *RD,
3148 bool DeclIsField) {
3149 if (Diags.isIgnored(diag::warn_shadow_field, Loc))
3150 return;
3151
3152 // To record a shadowed field in a base
3153 std::map<CXXRecordDecl*, NamedDecl*> Bases;
3154 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier,
3155 CXXBasePath &Path) {
3156 const auto Base = Specifier->getType()->getAsCXXRecordDecl();
3157 // Record an ambiguous path directly
3158 if (Bases.find(Base) != Bases.end())
3159 return true;
3160 for (const auto Field : Base->lookup(FieldName)) {
3161 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) &&
3162 Field->getAccess() != AS_private) {
3163 assert(Field->getAccess() != AS_none);
3164 assert(Bases.find(Base) == Bases.end());
3165 Bases[Base] = Field;
3166 return true;
3167 }
3168 }
3169 return false;
3170 };
3171
3172 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3173 /*DetectVirtual=*/true);
3174 if (!RD->lookupInBases(FieldShadowed, Paths))
3175 return;
3176
3177 for (const auto &P : Paths) {
3178 auto Base = P.back().Base->getType()->getAsCXXRecordDecl();
3179 auto It = Bases.find(Base);
3180 // Skip duplicated bases
3181 if (It == Bases.end())
3182 continue;
3183 auto BaseField = It->second;
3184 assert(BaseField->getAccess() != AS_private);
3185 if (AS_none !=
3186 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) {
3187 Diag(Loc, diag::warn_shadow_field)
3188 << FieldName << RD << Base << DeclIsField;
3189 Diag(BaseField->getLocation(), diag::note_shadow_field);
3190 Bases.erase(It);
3191 }
3192 }
3193 }
3194
3195 /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
3196 /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
3197 /// bitfield width if there is one, 'InitExpr' specifies the initializer if
3198 /// one has been parsed, and 'InitStyle' is set if an in-class initializer is
3199 /// present (but parsing it has been deferred).
3200 NamedDecl *
ActOnCXXMemberDeclarator(Scope * S,AccessSpecifier AS,Declarator & D,MultiTemplateParamsArg TemplateParameterLists,Expr * BW,const VirtSpecifiers & VS,InClassInitStyle InitStyle)3201 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
3202 MultiTemplateParamsArg TemplateParameterLists,
3203 Expr *BW, const VirtSpecifiers &VS,
3204 InClassInitStyle InitStyle) {
3205 const DeclSpec &DS = D.getDeclSpec();
3206 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3207 DeclarationName Name = NameInfo.getName();
3208 SourceLocation Loc = NameInfo.getLoc();
3209
3210 // For anonymous bitfields, the location should point to the type.
3211 if (Loc.isInvalid())
3212 Loc = D.getBeginLoc();
3213
3214 Expr *BitWidth = static_cast<Expr*>(BW);
3215
3216 assert(isa<CXXRecordDecl>(CurContext));
3217 assert(!DS.isFriendSpecified());
3218
3219 bool isFunc = D.isDeclarationOfFunction();
3220 const ParsedAttr *MSPropertyAttr =
3221 getMSPropertyAttr(D.getDeclSpec().getAttributes());
3222
3223 if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
3224 // The Microsoft extension __interface only permits public member functions
3225 // and prohibits constructors, destructors, operators, non-public member
3226 // functions, static methods and data members.
3227 unsigned InvalidDecl;
3228 bool ShowDeclName = true;
3229 if (!isFunc &&
3230 (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr))
3231 InvalidDecl = 0;
3232 else if (!isFunc)
3233 InvalidDecl = 1;
3234 else if (AS != AS_public)
3235 InvalidDecl = 2;
3236 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
3237 InvalidDecl = 3;
3238 else switch (Name.getNameKind()) {
3239 case DeclarationName::CXXConstructorName:
3240 InvalidDecl = 4;
3241 ShowDeclName = false;
3242 break;
3243
3244 case DeclarationName::CXXDestructorName:
3245 InvalidDecl = 5;
3246 ShowDeclName = false;
3247 break;
3248
3249 case DeclarationName::CXXOperatorName:
3250 case DeclarationName::CXXConversionFunctionName:
3251 InvalidDecl = 6;
3252 break;
3253
3254 default:
3255 InvalidDecl = 0;
3256 break;
3257 }
3258
3259 if (InvalidDecl) {
3260 if (ShowDeclName)
3261 Diag(Loc, diag::err_invalid_member_in_interface)
3262 << (InvalidDecl-1) << Name;
3263 else
3264 Diag(Loc, diag::err_invalid_member_in_interface)
3265 << (InvalidDecl-1) << "";
3266 return nullptr;
3267 }
3268 }
3269
3270 // C++ 9.2p6: A member shall not be declared to have automatic storage
3271 // duration (auto, register) or with the extern storage-class-specifier.
3272 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
3273 // data members and cannot be applied to names declared const or static,
3274 // and cannot be applied to reference members.
3275 switch (DS.getStorageClassSpec()) {
3276 case DeclSpec::SCS_unspecified:
3277 case DeclSpec::SCS_typedef:
3278 case DeclSpec::SCS_static:
3279 break;
3280 case DeclSpec::SCS_mutable:
3281 if (isFunc) {
3282 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
3283
3284 // FIXME: It would be nicer if the keyword was ignored only for this
3285 // declarator. Otherwise we could get follow-up errors.
3286 D.getMutableDeclSpec().ClearStorageClassSpecs();
3287 }
3288 break;
3289 default:
3290 Diag(DS.getStorageClassSpecLoc(),
3291 diag::err_storageclass_invalid_for_member);
3292 D.getMutableDeclSpec().ClearStorageClassSpecs();
3293 break;
3294 }
3295
3296 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
3297 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
3298 !isFunc);
3299
3300 if (DS.hasConstexprSpecifier() && isInstField) {
3301 SemaDiagnosticBuilder B =
3302 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
3303 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
3304 if (InitStyle == ICIS_NoInit) {
3305 B << 0 << 0;
3306 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
3307 B << FixItHint::CreateRemoval(ConstexprLoc);
3308 else {
3309 B << FixItHint::CreateReplacement(ConstexprLoc, "const");
3310 D.getMutableDeclSpec().ClearConstexprSpec();
3311 const char *PrevSpec;
3312 unsigned DiagID;
3313 bool Failed = D.getMutableDeclSpec().SetTypeQual(
3314 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
3315 (void)Failed;
3316 assert(!Failed && "Making a constexpr member const shouldn't fail");
3317 }
3318 } else {
3319 B << 1;
3320 const char *PrevSpec;
3321 unsigned DiagID;
3322 if (D.getMutableDeclSpec().SetStorageClassSpec(
3323 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
3324 Context.getPrintingPolicy())) {
3325 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
3326 "This is the only DeclSpec that should fail to be applied");
3327 B << 1;
3328 } else {
3329 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
3330 isInstField = false;
3331 }
3332 }
3333 }
3334
3335 NamedDecl *Member;
3336 if (isInstField) {
3337 CXXScopeSpec &SS = D.getCXXScopeSpec();
3338
3339 // Data members must have identifiers for names.
3340 if (!Name.isIdentifier()) {
3341 Diag(Loc, diag::err_bad_variable_name)
3342 << Name;
3343 return nullptr;
3344 }
3345
3346 IdentifierInfo *II = Name.getAsIdentifierInfo();
3347
3348 // Member field could not be with "template" keyword.
3349 // So TemplateParameterLists should be empty in this case.
3350 if (TemplateParameterLists.size()) {
3351 TemplateParameterList* TemplateParams = TemplateParameterLists[0];
3352 if (TemplateParams->size()) {
3353 // There is no such thing as a member field template.
3354 Diag(D.getIdentifierLoc(), diag::err_template_member)
3355 << II
3356 << SourceRange(TemplateParams->getTemplateLoc(),
3357 TemplateParams->getRAngleLoc());
3358 } else {
3359 // There is an extraneous 'template<>' for this member.
3360 Diag(TemplateParams->getTemplateLoc(),
3361 diag::err_template_member_noparams)
3362 << II
3363 << SourceRange(TemplateParams->getTemplateLoc(),
3364 TemplateParams->getRAngleLoc());
3365 }
3366 return nullptr;
3367 }
3368
3369 if (SS.isSet() && !SS.isInvalid()) {
3370 // The user provided a superfluous scope specifier inside a class
3371 // definition:
3372 //
3373 // class X {
3374 // int X::member;
3375 // };
3376 if (DeclContext *DC = computeDeclContext(SS, false))
3377 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(),
3378 D.getName().getKind() ==
3379 UnqualifiedIdKind::IK_TemplateId);
3380 else
3381 Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3382 << Name << SS.getRange();
3383
3384 SS.clear();
3385 }
3386
3387 if (MSPropertyAttr) {
3388 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3389 BitWidth, InitStyle, AS, *MSPropertyAttr);
3390 if (!Member)
3391 return nullptr;
3392 isInstField = false;
3393 } else {
3394 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3395 BitWidth, InitStyle, AS);
3396 if (!Member)
3397 return nullptr;
3398 }
3399
3400 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext));
3401 } else {
3402 Member = HandleDeclarator(S, D, TemplateParameterLists);
3403 if (!Member)
3404 return nullptr;
3405
3406 // Non-instance-fields can't have a bitfield.
3407 if (BitWidth) {
3408 if (Member->isInvalidDecl()) {
3409 // don't emit another diagnostic.
3410 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) {
3411 // C++ 9.6p3: A bit-field shall not be a static member.
3412 // "static member 'A' cannot be a bit-field"
3413 Diag(Loc, diag::err_static_not_bitfield)
3414 << Name << BitWidth->getSourceRange();
3415 } else if (isa<TypedefDecl>(Member)) {
3416 // "typedef member 'x' cannot be a bit-field"
3417 Diag(Loc, diag::err_typedef_not_bitfield)
3418 << Name << BitWidth->getSourceRange();
3419 } else {
3420 // A function typedef ("typedef int f(); f a;").
3421 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3422 Diag(Loc, diag::err_not_integral_type_bitfield)
3423 << Name << cast<ValueDecl>(Member)->getType()
3424 << BitWidth->getSourceRange();
3425 }
3426
3427 BitWidth = nullptr;
3428 Member->setInvalidDecl();
3429 }
3430
3431 NamedDecl *NonTemplateMember = Member;
3432 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
3433 NonTemplateMember = FunTmpl->getTemplatedDecl();
3434 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
3435 NonTemplateMember = VarTmpl->getTemplatedDecl();
3436
3437 Member->setAccess(AS);
3438
3439 // If we have declared a member function template or static data member
3440 // template, set the access of the templated declaration as well.
3441 if (NonTemplateMember != Member)
3442 NonTemplateMember->setAccess(AS);
3443
3444 // C++ [temp.deduct.guide]p3:
3445 // A deduction guide [...] for a member class template [shall be
3446 // declared] with the same access [as the template].
3447 if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) {
3448 auto *TD = DG->getDeducedTemplate();
3449 // Access specifiers are only meaningful if both the template and the
3450 // deduction guide are from the same scope.
3451 if (AS != TD->getAccess() &&
3452 TD->getDeclContext()->getRedeclContext()->Equals(
3453 DG->getDeclContext()->getRedeclContext())) {
3454 Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access);
3455 Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access)
3456 << TD->getAccess();
3457 const AccessSpecDecl *LastAccessSpec = nullptr;
3458 for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) {
3459 if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D))
3460 LastAccessSpec = AccessSpec;
3461 }
3462 assert(LastAccessSpec && "differing access with no access specifier");
3463 Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access)
3464 << AS;
3465 }
3466 }
3467 }
3468
3469 if (VS.isOverrideSpecified())
3470 Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc(),
3471 AttributeCommonInfo::AS_Keyword));
3472 if (VS.isFinalSpecified())
3473 Member->addAttr(FinalAttr::Create(
3474 Context, VS.getFinalLoc(), AttributeCommonInfo::AS_Keyword,
3475 static_cast<FinalAttr::Spelling>(VS.isFinalSpelledSealed())));
3476
3477 if (VS.getLastLocation().isValid()) {
3478 // Update the end location of a method that has a virt-specifiers.
3479 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
3480 MD->setRangeEnd(VS.getLastLocation());
3481 }
3482
3483 CheckOverrideControl(Member);
3484
3485 assert((Name || isInstField) && "No identifier for non-field ?");
3486
3487 if (isInstField) {
3488 FieldDecl *FD = cast<FieldDecl>(Member);
3489 FieldCollector->Add(FD);
3490
3491 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
3492 // Remember all explicit private FieldDecls that have a name, no side
3493 // effects and are not part of a dependent type declaration.
3494 if (!FD->isImplicit() && FD->getDeclName() &&
3495 FD->getAccess() == AS_private &&
3496 !FD->hasAttr<UnusedAttr>() &&
3497 !FD->getParent()->isDependentContext() &&
3498 !InitializationHasSideEffects(*FD))
3499 UnusedPrivateFields.insert(FD);
3500 }
3501 }
3502
3503 return Member;
3504 }
3505
3506 namespace {
3507 class UninitializedFieldVisitor
3508 : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
3509 Sema &S;
3510 // List of Decls to generate a warning on. Also remove Decls that become
3511 // initialized.
3512 llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
3513 // List of base classes of the record. Classes are removed after their
3514 // initializers.
3515 llvm::SmallPtrSetImpl<QualType> &BaseClasses;
3516 // Vector of decls to be removed from the Decl set prior to visiting the
3517 // nodes. These Decls may have been initialized in the prior initializer.
3518 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
3519 // If non-null, add a note to the warning pointing back to the constructor.
3520 const CXXConstructorDecl *Constructor;
3521 // Variables to hold state when processing an initializer list. When
3522 // InitList is true, special case initialization of FieldDecls matching
3523 // InitListFieldDecl.
3524 bool InitList;
3525 FieldDecl *InitListFieldDecl;
3526 llvm::SmallVector<unsigned, 4> InitFieldIndex;
3527
3528 public:
3529 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
UninitializedFieldVisitor(Sema & S,llvm::SmallPtrSetImpl<ValueDecl * > & Decls,llvm::SmallPtrSetImpl<QualType> & BaseClasses)3530 UninitializedFieldVisitor(Sema &S,
3531 llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
3532 llvm::SmallPtrSetImpl<QualType> &BaseClasses)
3533 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
3534 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
3535
3536 // Returns true if the use of ME is not an uninitialized use.
IsInitListMemberExprInitialized(MemberExpr * ME,bool CheckReferenceOnly)3537 bool IsInitListMemberExprInitialized(MemberExpr *ME,
3538 bool CheckReferenceOnly) {
3539 llvm::SmallVector<FieldDecl*, 4> Fields;
3540 bool ReferenceField = false;
3541 while (ME) {
3542 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
3543 if (!FD)
3544 return false;
3545 Fields.push_back(FD);
3546 if (FD->getType()->isReferenceType())
3547 ReferenceField = true;
3548 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts());
3549 }
3550
3551 // Binding a reference to an uninitialized field is not an
3552 // uninitialized use.
3553 if (CheckReferenceOnly && !ReferenceField)
3554 return true;
3555
3556 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
3557 // Discard the first field since it is the field decl that is being
3558 // initialized.
3559 for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) {
3560 UsedFieldIndex.push_back((*I)->getFieldIndex());
3561 }
3562
3563 for (auto UsedIter = UsedFieldIndex.begin(),
3564 UsedEnd = UsedFieldIndex.end(),
3565 OrigIter = InitFieldIndex.begin(),
3566 OrigEnd = InitFieldIndex.end();
3567 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
3568 if (*UsedIter < *OrigIter)
3569 return true;
3570 if (*UsedIter > *OrigIter)
3571 break;
3572 }
3573
3574 return false;
3575 }
3576
HandleMemberExpr(MemberExpr * ME,bool CheckReferenceOnly,bool AddressOf)3577 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
3578 bool AddressOf) {
3579 if (isa<EnumConstantDecl>(ME->getMemberDecl()))
3580 return;
3581
3582 // FieldME is the inner-most MemberExpr that is not an anonymous struct
3583 // or union.
3584 MemberExpr *FieldME = ME;
3585
3586 bool AllPODFields = FieldME->getType().isPODType(S.Context);
3587
3588 Expr *Base = ME;
3589 while (MemberExpr *SubME =
3590 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) {
3591
3592 if (isa<VarDecl>(SubME->getMemberDecl()))
3593 return;
3594
3595 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl()))
3596 if (!FD->isAnonymousStructOrUnion())
3597 FieldME = SubME;
3598
3599 if (!FieldME->getType().isPODType(S.Context))
3600 AllPODFields = false;
3601
3602 Base = SubME->getBase();
3603 }
3604
3605 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts())) {
3606 Visit(Base);
3607 return;
3608 }
3609
3610 if (AddressOf && AllPODFields)
3611 return;
3612
3613 ValueDecl* FoundVD = FieldME->getMemberDecl();
3614
3615 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) {
3616 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
3617 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
3618 }
3619
3620 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
3621 QualType T = BaseCast->getType();
3622 if (T->isPointerType() &&
3623 BaseClasses.count(T->getPointeeType())) {
3624 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
3625 << T->getPointeeType() << FoundVD;
3626 }
3627 }
3628 }
3629
3630 if (!Decls.count(FoundVD))
3631 return;
3632
3633 const bool IsReference = FoundVD->getType()->isReferenceType();
3634
3635 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
3636 // Special checking for initializer lists.
3637 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
3638 return;
3639 }
3640 } else {
3641 // Prevent double warnings on use of unbounded references.
3642 if (CheckReferenceOnly && !IsReference)
3643 return;
3644 }
3645
3646 unsigned diag = IsReference
3647 ? diag::warn_reference_field_is_uninit
3648 : diag::warn_field_is_uninit;
3649 S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
3650 if (Constructor)
3651 S.Diag(Constructor->getLocation(),
3652 diag::note_uninit_in_this_constructor)
3653 << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
3654
3655 }
3656
HandleValue(Expr * E,bool AddressOf)3657 void HandleValue(Expr *E, bool AddressOf) {
3658 E = E->IgnoreParens();
3659
3660 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3661 HandleMemberExpr(ME, false /*CheckReferenceOnly*/,
3662 AddressOf /*AddressOf*/);
3663 return;
3664 }
3665
3666 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3667 Visit(CO->getCond());
3668 HandleValue(CO->getTrueExpr(), AddressOf);
3669 HandleValue(CO->getFalseExpr(), AddressOf);
3670 return;
3671 }
3672
3673 if (BinaryConditionalOperator *BCO =
3674 dyn_cast<BinaryConditionalOperator>(E)) {
3675 Visit(BCO->getCond());
3676 HandleValue(BCO->getFalseExpr(), AddressOf);
3677 return;
3678 }
3679
3680 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
3681 HandleValue(OVE->getSourceExpr(), AddressOf);
3682 return;
3683 }
3684
3685 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3686 switch (BO->getOpcode()) {
3687 default:
3688 break;
3689 case(BO_PtrMemD):
3690 case(BO_PtrMemI):
3691 HandleValue(BO->getLHS(), AddressOf);
3692 Visit(BO->getRHS());
3693 return;
3694 case(BO_Comma):
3695 Visit(BO->getLHS());
3696 HandleValue(BO->getRHS(), AddressOf);
3697 return;
3698 }
3699 }
3700
3701 Visit(E);
3702 }
3703
CheckInitListExpr(InitListExpr * ILE)3704 void CheckInitListExpr(InitListExpr *ILE) {
3705 InitFieldIndex.push_back(0);
3706 for (auto Child : ILE->children()) {
3707 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) {
3708 CheckInitListExpr(SubList);
3709 } else {
3710 Visit(Child);
3711 }
3712 ++InitFieldIndex.back();
3713 }
3714 InitFieldIndex.pop_back();
3715 }
3716
CheckInitializer(Expr * E,const CXXConstructorDecl * FieldConstructor,FieldDecl * Field,const Type * BaseClass)3717 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
3718 FieldDecl *Field, const Type *BaseClass) {
3719 // Remove Decls that may have been initialized in the previous
3720 // initializer.
3721 for (ValueDecl* VD : DeclsToRemove)
3722 Decls.erase(VD);
3723 DeclsToRemove.clear();
3724
3725 Constructor = FieldConstructor;
3726 InitListExpr *ILE = dyn_cast<InitListExpr>(E);
3727
3728 if (ILE && Field) {
3729 InitList = true;
3730 InitListFieldDecl = Field;
3731 InitFieldIndex.clear();
3732 CheckInitListExpr(ILE);
3733 } else {
3734 InitList = false;
3735 Visit(E);
3736 }
3737
3738 if (Field)
3739 Decls.erase(Field);
3740 if (BaseClass)
3741 BaseClasses.erase(BaseClass->getCanonicalTypeInternal());
3742 }
3743
VisitMemberExpr(MemberExpr * ME)3744 void VisitMemberExpr(MemberExpr *ME) {
3745 // All uses of unbounded reference fields will warn.
3746 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/);
3747 }
3748
VisitImplicitCastExpr(ImplicitCastExpr * E)3749 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
3750 if (E->getCastKind() == CK_LValueToRValue) {
3751 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3752 return;
3753 }
3754
3755 Inherited::VisitImplicitCastExpr(E);
3756 }
3757
VisitCXXConstructExpr(CXXConstructExpr * E)3758 void VisitCXXConstructExpr(CXXConstructExpr *E) {
3759 if (E->getConstructor()->isCopyConstructor()) {
3760 Expr *ArgExpr = E->getArg(0);
3761 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
3762 if (ILE->getNumInits() == 1)
3763 ArgExpr = ILE->getInit(0);
3764 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
3765 if (ICE->getCastKind() == CK_NoOp)
3766 ArgExpr = ICE->getSubExpr();
3767 HandleValue(ArgExpr, false /*AddressOf*/);
3768 return;
3769 }
3770 Inherited::VisitCXXConstructExpr(E);
3771 }
3772
VisitCXXMemberCallExpr(CXXMemberCallExpr * E)3773 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3774 Expr *Callee = E->getCallee();
3775 if (isa<MemberExpr>(Callee)) {
3776 HandleValue(Callee, false /*AddressOf*/);
3777 for (auto Arg : E->arguments())
3778 Visit(Arg);
3779 return;
3780 }
3781
3782 Inherited::VisitCXXMemberCallExpr(E);
3783 }
3784
VisitCallExpr(CallExpr * E)3785 void VisitCallExpr(CallExpr *E) {
3786 // Treat std::move as a use.
3787 if (E->isCallToStdMove()) {
3788 HandleValue(E->getArg(0), /*AddressOf=*/false);
3789 return;
3790 }
3791
3792 Inherited::VisitCallExpr(E);
3793 }
3794
VisitCXXOperatorCallExpr(CXXOperatorCallExpr * E)3795 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
3796 Expr *Callee = E->getCallee();
3797
3798 if (isa<UnresolvedLookupExpr>(Callee))
3799 return Inherited::VisitCXXOperatorCallExpr(E);
3800
3801 Visit(Callee);
3802 for (auto Arg : E->arguments())
3803 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
3804 }
3805
VisitBinaryOperator(BinaryOperator * E)3806 void VisitBinaryOperator(BinaryOperator *E) {
3807 // If a field assignment is detected, remove the field from the
3808 // uninitiailized field set.
3809 if (E->getOpcode() == BO_Assign)
3810 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
3811 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3812 if (!FD->getType()->isReferenceType())
3813 DeclsToRemove.push_back(FD);
3814
3815 if (E->isCompoundAssignmentOp()) {
3816 HandleValue(E->getLHS(), false /*AddressOf*/);
3817 Visit(E->getRHS());
3818 return;
3819 }
3820
3821 Inherited::VisitBinaryOperator(E);
3822 }
3823
VisitUnaryOperator(UnaryOperator * E)3824 void VisitUnaryOperator(UnaryOperator *E) {
3825 if (E->isIncrementDecrementOp()) {
3826 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3827 return;
3828 }
3829 if (E->getOpcode() == UO_AddrOf) {
3830 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) {
3831 HandleValue(ME->getBase(), true /*AddressOf*/);
3832 return;
3833 }
3834 }
3835
3836 Inherited::VisitUnaryOperator(E);
3837 }
3838 };
3839
3840 // Diagnose value-uses of fields to initialize themselves, e.g.
3841 // foo(foo)
3842 // where foo is not also a parameter to the constructor.
3843 // Also diagnose across field uninitialized use such as
3844 // x(y), y(x)
3845 // TODO: implement -Wuninitialized and fold this into that framework.
DiagnoseUninitializedFields(Sema & SemaRef,const CXXConstructorDecl * Constructor)3846 static void DiagnoseUninitializedFields(
3847 Sema &SemaRef, const CXXConstructorDecl *Constructor) {
3848
3849 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
3850 Constructor->getLocation())) {
3851 return;
3852 }
3853
3854 if (Constructor->isInvalidDecl())
3855 return;
3856
3857 const CXXRecordDecl *RD = Constructor->getParent();
3858
3859 if (RD->isDependentContext())
3860 return;
3861
3862 // Holds fields that are uninitialized.
3863 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
3864
3865 // At the beginning, all fields are uninitialized.
3866 for (auto *I : RD->decls()) {
3867 if (auto *FD = dyn_cast<FieldDecl>(I)) {
3868 UninitializedFields.insert(FD);
3869 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
3870 UninitializedFields.insert(IFD->getAnonField());
3871 }
3872 }
3873
3874 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
3875 for (auto I : RD->bases())
3876 UninitializedBaseClasses.insert(I.getType().getCanonicalType());
3877
3878 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3879 return;
3880
3881 UninitializedFieldVisitor UninitializedChecker(SemaRef,
3882 UninitializedFields,
3883 UninitializedBaseClasses);
3884
3885 for (const auto *FieldInit : Constructor->inits()) {
3886 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3887 break;
3888
3889 Expr *InitExpr = FieldInit->getInit();
3890 if (!InitExpr)
3891 continue;
3892
3893 if (CXXDefaultInitExpr *Default =
3894 dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
3895 InitExpr = Default->getExpr();
3896 if (!InitExpr)
3897 continue;
3898 // In class initializers will point to the constructor.
3899 UninitializedChecker.CheckInitializer(InitExpr, Constructor,
3900 FieldInit->getAnyMember(),
3901 FieldInit->getBaseClass());
3902 } else {
3903 UninitializedChecker.CheckInitializer(InitExpr, nullptr,
3904 FieldInit->getAnyMember(),
3905 FieldInit->getBaseClass());
3906 }
3907 }
3908 }
3909 } // namespace
3910
3911 /// Enter a new C++ default initializer scope. After calling this, the
3912 /// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
3913 /// parsing or instantiating the initializer failed.
ActOnStartCXXInClassMemberInitializer()3914 void Sema::ActOnStartCXXInClassMemberInitializer() {
3915 // Create a synthetic function scope to represent the call to the constructor
3916 // that notionally surrounds a use of this initializer.
3917 PushFunctionScope();
3918 }
3919
ActOnStartTrailingRequiresClause(Scope * S,Declarator & D)3920 void Sema::ActOnStartTrailingRequiresClause(Scope *S, Declarator &D) {
3921 if (!D.isFunctionDeclarator())
3922 return;
3923 auto &FTI = D.getFunctionTypeInfo();
3924 if (!FTI.Params)
3925 return;
3926 for (auto &Param : ArrayRef<DeclaratorChunk::ParamInfo>(FTI.Params,
3927 FTI.NumParams)) {
3928 auto *ParamDecl = cast<NamedDecl>(Param.Param);
3929 if (ParamDecl->getDeclName())
3930 PushOnScopeChains(ParamDecl, S, /*AddToContext=*/false);
3931 }
3932 }
3933
ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr)3934 ExprResult Sema::ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr) {
3935 return ActOnRequiresClause(ConstraintExpr);
3936 }
3937
ActOnRequiresClause(ExprResult ConstraintExpr)3938 ExprResult Sema::ActOnRequiresClause(ExprResult ConstraintExpr) {
3939 if (ConstraintExpr.isInvalid())
3940 return ExprError();
3941
3942 ConstraintExpr = CorrectDelayedTyposInExpr(ConstraintExpr);
3943 if (ConstraintExpr.isInvalid())
3944 return ExprError();
3945
3946 if (DiagnoseUnexpandedParameterPack(ConstraintExpr.get(),
3947 UPPC_RequiresClause))
3948 return ExprError();
3949
3950 return ConstraintExpr;
3951 }
3952
3953 /// This is invoked after parsing an in-class initializer for a
3954 /// non-static C++ class member, and after instantiating an in-class initializer
3955 /// in a class template. Such actions are deferred until the class is complete.
ActOnFinishCXXInClassMemberInitializer(Decl * D,SourceLocation InitLoc,Expr * InitExpr)3956 void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
3957 SourceLocation InitLoc,
3958 Expr *InitExpr) {
3959 // Pop the notional constructor scope we created earlier.
3960 PopFunctionScopeInfo(nullptr, D);
3961
3962 FieldDecl *FD = dyn_cast<FieldDecl>(D);
3963 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&
3964 "must set init style when field is created");
3965
3966 if (!InitExpr) {
3967 D->setInvalidDecl();
3968 if (FD)
3969 FD->removeInClassInitializer();
3970 return;
3971 }
3972
3973 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
3974 FD->setInvalidDecl();
3975 FD->removeInClassInitializer();
3976 return;
3977 }
3978
3979 ExprResult Init = InitExpr;
3980 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
3981 InitializedEntity Entity =
3982 InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD);
3983 InitializationKind Kind =
3984 FD->getInClassInitStyle() == ICIS_ListInit
3985 ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(),
3986 InitExpr->getBeginLoc(),
3987 InitExpr->getEndLoc())
3988 : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc);
3989 InitializationSequence Seq(*this, Entity, Kind, InitExpr);
3990 Init = Seq.Perform(*this, Entity, Kind, InitExpr);
3991 if (Init.isInvalid()) {
3992 FD->setInvalidDecl();
3993 return;
3994 }
3995 }
3996
3997 // C++11 [class.base.init]p7:
3998 // The initialization of each base and member constitutes a
3999 // full-expression.
4000 Init = ActOnFinishFullExpr(Init.get(), InitLoc, /*DiscardedValue*/ false);
4001 if (Init.isInvalid()) {
4002 FD->setInvalidDecl();
4003 return;
4004 }
4005
4006 InitExpr = Init.get();
4007
4008 FD->setInClassInitializer(InitExpr);
4009 }
4010
4011 /// Find the direct and/or virtual base specifiers that
4012 /// correspond to the given base type, for use in base initialization
4013 /// within a constructor.
FindBaseInitializer(Sema & SemaRef,CXXRecordDecl * ClassDecl,QualType BaseType,const CXXBaseSpecifier * & DirectBaseSpec,const CXXBaseSpecifier * & VirtualBaseSpec)4014 static bool FindBaseInitializer(Sema &SemaRef,
4015 CXXRecordDecl *ClassDecl,
4016 QualType BaseType,
4017 const CXXBaseSpecifier *&DirectBaseSpec,
4018 const CXXBaseSpecifier *&VirtualBaseSpec) {
4019 // First, check for a direct base class.
4020 DirectBaseSpec = nullptr;
4021 for (const auto &Base : ClassDecl->bases()) {
4022 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
4023 // We found a direct base of this type. That's what we're
4024 // initializing.
4025 DirectBaseSpec = &Base;
4026 break;
4027 }
4028 }
4029
4030 // Check for a virtual base class.
4031 // FIXME: We might be able to short-circuit this if we know in advance that
4032 // there are no virtual bases.
4033 VirtualBaseSpec = nullptr;
4034 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
4035 // We haven't found a base yet; search the class hierarchy for a
4036 // virtual base class.
4037 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
4038 /*DetectVirtual=*/false);
4039 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(),
4040 SemaRef.Context.getTypeDeclType(ClassDecl),
4041 BaseType, Paths)) {
4042 for (CXXBasePaths::paths_iterator Path = Paths.begin();
4043 Path != Paths.end(); ++Path) {
4044 if (Path->back().Base->isVirtual()) {
4045 VirtualBaseSpec = Path->back().Base;
4046 break;
4047 }
4048 }
4049 }
4050 }
4051
4052 return DirectBaseSpec || VirtualBaseSpec;
4053 }
4054
4055 /// Handle a C++ member initializer using braced-init-list syntax.
4056 MemInitResult
ActOnMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,Expr * InitList,SourceLocation EllipsisLoc)4057 Sema::ActOnMemInitializer(Decl *ConstructorD,
4058 Scope *S,
4059 CXXScopeSpec &SS,
4060 IdentifierInfo *MemberOrBase,
4061 ParsedType TemplateTypeTy,
4062 const DeclSpec &DS,
4063 SourceLocation IdLoc,
4064 Expr *InitList,
4065 SourceLocation EllipsisLoc) {
4066 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
4067 DS, IdLoc, InitList,
4068 EllipsisLoc);
4069 }
4070
4071 /// Handle a C++ member initializer using parentheses syntax.
4072 MemInitResult
ActOnMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,SourceLocation LParenLoc,ArrayRef<Expr * > Args,SourceLocation RParenLoc,SourceLocation EllipsisLoc)4073 Sema::ActOnMemInitializer(Decl *ConstructorD,
4074 Scope *S,
4075 CXXScopeSpec &SS,
4076 IdentifierInfo *MemberOrBase,
4077 ParsedType TemplateTypeTy,
4078 const DeclSpec &DS,
4079 SourceLocation IdLoc,
4080 SourceLocation LParenLoc,
4081 ArrayRef<Expr *> Args,
4082 SourceLocation RParenLoc,
4083 SourceLocation EllipsisLoc) {
4084 Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc);
4085 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
4086 DS, IdLoc, List, EllipsisLoc);
4087 }
4088
4089 namespace {
4090
4091 // Callback to only accept typo corrections that can be a valid C++ member
4092 // intializer: either a non-static field member or a base class.
4093 class MemInitializerValidatorCCC final : public CorrectionCandidateCallback {
4094 public:
MemInitializerValidatorCCC(CXXRecordDecl * ClassDecl)4095 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
4096 : ClassDecl(ClassDecl) {}
4097
ValidateCandidate(const TypoCorrection & candidate)4098 bool ValidateCandidate(const TypoCorrection &candidate) override {
4099 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
4100 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
4101 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
4102 return isa<TypeDecl>(ND);
4103 }
4104 return false;
4105 }
4106
clone()4107 std::unique_ptr<CorrectionCandidateCallback> clone() override {
4108 return std::make_unique<MemInitializerValidatorCCC>(*this);
4109 }
4110
4111 private:
4112 CXXRecordDecl *ClassDecl;
4113 };
4114
4115 }
4116
tryLookupCtorInitMemberDecl(CXXRecordDecl * ClassDecl,CXXScopeSpec & SS,ParsedType TemplateTypeTy,IdentifierInfo * MemberOrBase)4117 ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl,
4118 CXXScopeSpec &SS,
4119 ParsedType TemplateTypeTy,
4120 IdentifierInfo *MemberOrBase) {
4121 if (SS.getScopeRep() || TemplateTypeTy)
4122 return nullptr;
4123 DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
4124 if (Result.empty())
4125 return nullptr;
4126 ValueDecl *Member;
4127 if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
4128 (Member = dyn_cast<IndirectFieldDecl>(Result.front())))
4129 return Member;
4130 return nullptr;
4131 }
4132
4133 /// Handle a C++ member initializer.
4134 MemInitResult
BuildMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,Expr * Init,SourceLocation EllipsisLoc)4135 Sema::BuildMemInitializer(Decl *ConstructorD,
4136 Scope *S,
4137 CXXScopeSpec &SS,
4138 IdentifierInfo *MemberOrBase,
4139 ParsedType TemplateTypeTy,
4140 const DeclSpec &DS,
4141 SourceLocation IdLoc,
4142 Expr *Init,
4143 SourceLocation EllipsisLoc) {
4144 ExprResult Res = CorrectDelayedTyposInExpr(Init);
4145 if (!Res.isUsable())
4146 return true;
4147 Init = Res.get();
4148
4149 if (!ConstructorD)
4150 return true;
4151
4152 AdjustDeclIfTemplate(ConstructorD);
4153
4154 CXXConstructorDecl *Constructor
4155 = dyn_cast<CXXConstructorDecl>(ConstructorD);
4156 if (!Constructor) {
4157 // The user wrote a constructor initializer on a function that is
4158 // not a C++ constructor. Ignore the error for now, because we may
4159 // have more member initializers coming; we'll diagnose it just
4160 // once in ActOnMemInitializers.
4161 return true;
4162 }
4163
4164 CXXRecordDecl *ClassDecl = Constructor->getParent();
4165
4166 // C++ [class.base.init]p2:
4167 // Names in a mem-initializer-id are looked up in the scope of the
4168 // constructor's class and, if not found in that scope, are looked
4169 // up in the scope containing the constructor's definition.
4170 // [Note: if the constructor's class contains a member with the
4171 // same name as a direct or virtual base class of the class, a
4172 // mem-initializer-id naming the member or base class and composed
4173 // of a single identifier refers to the class member. A
4174 // mem-initializer-id for the hidden base class may be specified
4175 // using a qualified name. ]
4176
4177 // Look for a member, first.
4178 if (ValueDecl *Member = tryLookupCtorInitMemberDecl(
4179 ClassDecl, SS, TemplateTypeTy, MemberOrBase)) {
4180 if (EllipsisLoc.isValid())
4181 Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
4182 << MemberOrBase
4183 << SourceRange(IdLoc, Init->getSourceRange().getEnd());
4184
4185 return BuildMemberInitializer(Member, Init, IdLoc);
4186 }
4187 // It didn't name a member, so see if it names a class.
4188 QualType BaseType;
4189 TypeSourceInfo *TInfo = nullptr;
4190
4191 if (TemplateTypeTy) {
4192 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
4193 if (BaseType.isNull())
4194 return true;
4195 } else if (DS.getTypeSpecType() == TST_decltype) {
4196 BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
4197 } else if (DS.getTypeSpecType() == TST_decltype_auto) {
4198 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
4199 return true;
4200 } else {
4201 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
4202 LookupParsedName(R, S, &SS);
4203
4204 TypeDecl *TyD = R.getAsSingle<TypeDecl>();
4205 if (!TyD) {
4206 if (R.isAmbiguous()) return true;
4207
4208 // We don't want access-control diagnostics here.
4209 R.suppressDiagnostics();
4210
4211 if (SS.isSet() && isDependentScopeSpecifier(SS)) {
4212 bool NotUnknownSpecialization = false;
4213 DeclContext *DC = computeDeclContext(SS, false);
4214 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
4215 NotUnknownSpecialization = !Record->hasAnyDependentBases();
4216
4217 if (!NotUnknownSpecialization) {
4218 // When the scope specifier can refer to a member of an unknown
4219 // specialization, we take it as a type name.
4220 BaseType = CheckTypenameType(ETK_None, SourceLocation(),
4221 SS.getWithLocInContext(Context),
4222 *MemberOrBase, IdLoc);
4223 if (BaseType.isNull())
4224 return true;
4225
4226 TInfo = Context.CreateTypeSourceInfo(BaseType);
4227 DependentNameTypeLoc TL =
4228 TInfo->getTypeLoc().castAs<DependentNameTypeLoc>();
4229 if (!TL.isNull()) {
4230 TL.setNameLoc(IdLoc);
4231 TL.setElaboratedKeywordLoc(SourceLocation());
4232 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4233 }
4234
4235 R.clear();
4236 R.setLookupName(MemberOrBase);
4237 }
4238 }
4239
4240 // If no results were found, try to correct typos.
4241 TypoCorrection Corr;
4242 MemInitializerValidatorCCC CCC(ClassDecl);
4243 if (R.empty() && BaseType.isNull() &&
4244 (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
4245 CCC, CTK_ErrorRecovery, ClassDecl))) {
4246 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
4247 // We have found a non-static data member with a similar
4248 // name to what was typed; complain and initialize that
4249 // member.
4250 diagnoseTypo(Corr,
4251 PDiag(diag::err_mem_init_not_member_or_class_suggest)
4252 << MemberOrBase << true);
4253 return BuildMemberInitializer(Member, Init, IdLoc);
4254 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
4255 const CXXBaseSpecifier *DirectBaseSpec;
4256 const CXXBaseSpecifier *VirtualBaseSpec;
4257 if (FindBaseInitializer(*this, ClassDecl,
4258 Context.getTypeDeclType(Type),
4259 DirectBaseSpec, VirtualBaseSpec)) {
4260 // We have found a direct or virtual base class with a
4261 // similar name to what was typed; complain and initialize
4262 // that base class.
4263 diagnoseTypo(Corr,
4264 PDiag(diag::err_mem_init_not_member_or_class_suggest)
4265 << MemberOrBase << false,
4266 PDiag() /*Suppress note, we provide our own.*/);
4267
4268 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
4269 : VirtualBaseSpec;
4270 Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here)
4271 << BaseSpec->getType() << BaseSpec->getSourceRange();
4272
4273 TyD = Type;
4274 }
4275 }
4276 }
4277
4278 if (!TyD && BaseType.isNull()) {
4279 Diag(IdLoc, diag::err_mem_init_not_member_or_class)
4280 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
4281 return true;
4282 }
4283 }
4284
4285 if (BaseType.isNull()) {
4286 BaseType = Context.getTypeDeclType(TyD);
4287 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false);
4288 if (SS.isSet()) {
4289 BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(),
4290 BaseType);
4291 TInfo = Context.CreateTypeSourceInfo(BaseType);
4292 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>();
4293 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
4294 TL.setElaboratedKeywordLoc(SourceLocation());
4295 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4296 }
4297 }
4298 }
4299
4300 if (!TInfo)
4301 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
4302
4303 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
4304 }
4305
4306 MemInitResult
BuildMemberInitializer(ValueDecl * Member,Expr * Init,SourceLocation IdLoc)4307 Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
4308 SourceLocation IdLoc) {
4309 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
4310 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
4311 assert((DirectMember || IndirectMember) &&
4312 "Member must be a FieldDecl or IndirectFieldDecl");
4313
4314 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4315 return true;
4316
4317 if (Member->isInvalidDecl())
4318 return true;
4319
4320 MultiExprArg Args;
4321 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4322 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4323 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
4324 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
4325 } else {
4326 // Template instantiation doesn't reconstruct ParenListExprs for us.
4327 Args = Init;
4328 }
4329
4330 SourceRange InitRange = Init->getSourceRange();
4331
4332 if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
4333 // Can't check initialization for a member of dependent type or when
4334 // any of the arguments are type-dependent expressions.
4335 DiscardCleanupsInEvaluationContext();
4336 } else {
4337 bool InitList = false;
4338 if (isa<InitListExpr>(Init)) {
4339 InitList = true;
4340 Args = Init;
4341 }
4342
4343 // Initialize the member.
4344 InitializedEntity MemberEntity =
4345 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
4346 : InitializedEntity::InitializeMember(IndirectMember,
4347 nullptr);
4348 InitializationKind Kind =
4349 InitList ? InitializationKind::CreateDirectList(
4350 IdLoc, Init->getBeginLoc(), Init->getEndLoc())
4351 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
4352 InitRange.getEnd());
4353
4354 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
4355 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
4356 nullptr);
4357 if (MemberInit.isInvalid())
4358 return true;
4359
4360 // C++11 [class.base.init]p7:
4361 // The initialization of each base and member constitutes a
4362 // full-expression.
4363 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(),
4364 /*DiscardedValue*/ false);
4365 if (MemberInit.isInvalid())
4366 return true;
4367
4368 Init = MemberInit.get();
4369 }
4370
4371 if (DirectMember) {
4372 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
4373 InitRange.getBegin(), Init,
4374 InitRange.getEnd());
4375 } else {
4376 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
4377 InitRange.getBegin(), Init,
4378 InitRange.getEnd());
4379 }
4380 }
4381
4382 MemInitResult
BuildDelegatingInitializer(TypeSourceInfo * TInfo,Expr * Init,CXXRecordDecl * ClassDecl)4383 Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
4384 CXXRecordDecl *ClassDecl) {
4385 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
4386 if (!LangOpts.CPlusPlus11)
4387 return Diag(NameLoc, diag::err_delegating_ctor)
4388 << TInfo->getTypeLoc().getLocalSourceRange();
4389 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
4390
4391 bool InitList = true;
4392 MultiExprArg Args = Init;
4393 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4394 InitList = false;
4395 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4396 }
4397
4398 SourceRange InitRange = Init->getSourceRange();
4399 // Initialize the object.
4400 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
4401 QualType(ClassDecl->getTypeForDecl(), 0));
4402 InitializationKind Kind =
4403 InitList ? InitializationKind::CreateDirectList(
4404 NameLoc, Init->getBeginLoc(), Init->getEndLoc())
4405 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
4406 InitRange.getEnd());
4407 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
4408 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
4409 Args, nullptr);
4410 if (DelegationInit.isInvalid())
4411 return true;
4412
4413 assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
4414 "Delegating constructor with no target?");
4415
4416 // C++11 [class.base.init]p7:
4417 // The initialization of each base and member constitutes a
4418 // full-expression.
4419 DelegationInit = ActOnFinishFullExpr(
4420 DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false);
4421 if (DelegationInit.isInvalid())
4422 return true;
4423
4424 // If we are in a dependent context, template instantiation will
4425 // perform this type-checking again. Just save the arguments that we
4426 // received in a ParenListExpr.
4427 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4428 // of the information that we have about the base
4429 // initializer. However, deconstructing the ASTs is a dicey process,
4430 // and this approach is far more likely to get the corner cases right.
4431 if (CurContext->isDependentContext())
4432 DelegationInit = Init;
4433
4434 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
4435 DelegationInit.getAs<Expr>(),
4436 InitRange.getEnd());
4437 }
4438
4439 MemInitResult
BuildBaseInitializer(QualType BaseType,TypeSourceInfo * BaseTInfo,Expr * Init,CXXRecordDecl * ClassDecl,SourceLocation EllipsisLoc)4440 Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
4441 Expr *Init, CXXRecordDecl *ClassDecl,
4442 SourceLocation EllipsisLoc) {
4443 SourceLocation BaseLoc
4444 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
4445
4446 if (!BaseType->isDependentType() && !BaseType->isRecordType())
4447 return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
4448 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4449
4450 // C++ [class.base.init]p2:
4451 // [...] Unless the mem-initializer-id names a nonstatic data
4452 // member of the constructor's class or a direct or virtual base
4453 // of that class, the mem-initializer is ill-formed. A
4454 // mem-initializer-list can initialize a base class using any
4455 // name that denotes that base class type.
4456 bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
4457
4458 SourceRange InitRange = Init->getSourceRange();
4459 if (EllipsisLoc.isValid()) {
4460 // This is a pack expansion.
4461 if (!BaseType->containsUnexpandedParameterPack()) {
4462 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
4463 << SourceRange(BaseLoc, InitRange.getEnd());
4464
4465 EllipsisLoc = SourceLocation();
4466 }
4467 } else {
4468 // Check for any unexpanded parameter packs.
4469 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
4470 return true;
4471
4472 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4473 return true;
4474 }
4475
4476 // Check for direct and virtual base classes.
4477 const CXXBaseSpecifier *DirectBaseSpec = nullptr;
4478 const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
4479 if (!Dependent) {
4480 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
4481 BaseType))
4482 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
4483
4484 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
4485 VirtualBaseSpec);
4486
4487 // C++ [base.class.init]p2:
4488 // Unless the mem-initializer-id names a nonstatic data member of the
4489 // constructor's class or a direct or virtual base of that class, the
4490 // mem-initializer is ill-formed.
4491 if (!DirectBaseSpec && !VirtualBaseSpec) {
4492 // If the class has any dependent bases, then it's possible that
4493 // one of those types will resolve to the same type as
4494 // BaseType. Therefore, just treat this as a dependent base
4495 // class initialization. FIXME: Should we try to check the
4496 // initialization anyway? It seems odd.
4497 if (ClassDecl->hasAnyDependentBases())
4498 Dependent = true;
4499 else
4500 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
4501 << BaseType << Context.getTypeDeclType(ClassDecl)
4502 << BaseTInfo->getTypeLoc().getLocalSourceRange();
4503 }
4504 }
4505
4506 if (Dependent) {
4507 DiscardCleanupsInEvaluationContext();
4508
4509 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4510 /*IsVirtual=*/false,
4511 InitRange.getBegin(), Init,
4512 InitRange.getEnd(), EllipsisLoc);
4513 }
4514
4515 // C++ [base.class.init]p2:
4516 // If a mem-initializer-id is ambiguous because it designates both
4517 // a direct non-virtual base class and an inherited virtual base
4518 // class, the mem-initializer is ill-formed.
4519 if (DirectBaseSpec && VirtualBaseSpec)
4520 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
4521 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4522
4523 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
4524 if (!BaseSpec)
4525 BaseSpec = VirtualBaseSpec;
4526
4527 // Initialize the base.
4528 bool InitList = true;
4529 MultiExprArg Args = Init;
4530 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4531 InitList = false;
4532 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4533 }
4534
4535 InitializedEntity BaseEntity =
4536 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
4537 InitializationKind Kind =
4538 InitList ? InitializationKind::CreateDirectList(BaseLoc)
4539 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
4540 InitRange.getEnd());
4541 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
4542 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
4543 if (BaseInit.isInvalid())
4544 return true;
4545
4546 // C++11 [class.base.init]p7:
4547 // The initialization of each base and member constitutes a
4548 // full-expression.
4549 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(),
4550 /*DiscardedValue*/ false);
4551 if (BaseInit.isInvalid())
4552 return true;
4553
4554 // If we are in a dependent context, template instantiation will
4555 // perform this type-checking again. Just save the arguments that we
4556 // received in a ParenListExpr.
4557 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4558 // of the information that we have about the base
4559 // initializer. However, deconstructing the ASTs is a dicey process,
4560 // and this approach is far more likely to get the corner cases right.
4561 if (CurContext->isDependentContext())
4562 BaseInit = Init;
4563
4564 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4565 BaseSpec->isVirtual(),
4566 InitRange.getBegin(),
4567 BaseInit.getAs<Expr>(),
4568 InitRange.getEnd(), EllipsisLoc);
4569 }
4570
4571 // Create a static_cast\<T&&>(expr).
CastForMoving(Sema & SemaRef,Expr * E,QualType T=QualType ())4572 static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
4573 if (T.isNull()) T = E->getType();
4574 QualType TargetType = SemaRef.BuildReferenceType(
4575 T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
4576 SourceLocation ExprLoc = E->getBeginLoc();
4577 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
4578 TargetType, ExprLoc);
4579
4580 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
4581 SourceRange(ExprLoc, ExprLoc),
4582 E->getSourceRange()).get();
4583 }
4584
4585 /// ImplicitInitializerKind - How an implicit base or member initializer should
4586 /// initialize its base or member.
4587 enum ImplicitInitializerKind {
4588 IIK_Default,
4589 IIK_Copy,
4590 IIK_Move,
4591 IIK_Inherit
4592 };
4593
4594 static bool
BuildImplicitBaseInitializer(Sema & SemaRef,CXXConstructorDecl * Constructor,ImplicitInitializerKind ImplicitInitKind,CXXBaseSpecifier * BaseSpec,bool IsInheritedVirtualBase,CXXCtorInitializer * & CXXBaseInit)4595 BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4596 ImplicitInitializerKind ImplicitInitKind,
4597 CXXBaseSpecifier *BaseSpec,
4598 bool IsInheritedVirtualBase,
4599 CXXCtorInitializer *&CXXBaseInit) {
4600 InitializedEntity InitEntity
4601 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
4602 IsInheritedVirtualBase);
4603
4604 ExprResult BaseInit;
4605
4606 switch (ImplicitInitKind) {
4607 case IIK_Inherit:
4608 case IIK_Default: {
4609 InitializationKind InitKind
4610 = InitializationKind::CreateDefault(Constructor->getLocation());
4611 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4612 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4613 break;
4614 }
4615
4616 case IIK_Move:
4617 case IIK_Copy: {
4618 bool Moving = ImplicitInitKind == IIK_Move;
4619 ParmVarDecl *Param = Constructor->getParamDecl(0);
4620 QualType ParamType = Param->getType().getNonReferenceType();
4621
4622 Expr *CopyCtorArg =
4623 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4624 SourceLocation(), Param, false,
4625 Constructor->getLocation(), ParamType,
4626 VK_LValue, nullptr);
4627
4628 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
4629
4630 // Cast to the base class to avoid ambiguities.
4631 QualType ArgTy =
4632 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
4633 ParamType.getQualifiers());
4634
4635 if (Moving) {
4636 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
4637 }
4638
4639 CXXCastPath BasePath;
4640 BasePath.push_back(BaseSpec);
4641 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
4642 CK_UncheckedDerivedToBase,
4643 Moving ? VK_XValue : VK_LValue,
4644 &BasePath).get();
4645
4646 InitializationKind InitKind
4647 = InitializationKind::CreateDirect(Constructor->getLocation(),
4648 SourceLocation(), SourceLocation());
4649 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
4650 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
4651 break;
4652 }
4653 }
4654
4655 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
4656 if (BaseInit.isInvalid())
4657 return true;
4658
4659 CXXBaseInit =
4660 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4661 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
4662 SourceLocation()),
4663 BaseSpec->isVirtual(),
4664 SourceLocation(),
4665 BaseInit.getAs<Expr>(),
4666 SourceLocation(),
4667 SourceLocation());
4668
4669 return false;
4670 }
4671
RefersToRValueRef(Expr * MemRef)4672 static bool RefersToRValueRef(Expr *MemRef) {
4673 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
4674 return Referenced->getType()->isRValueReferenceType();
4675 }
4676
4677 static bool
BuildImplicitMemberInitializer(Sema & SemaRef,CXXConstructorDecl * Constructor,ImplicitInitializerKind ImplicitInitKind,FieldDecl * Field,IndirectFieldDecl * Indirect,CXXCtorInitializer * & CXXMemberInit)4678 BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4679 ImplicitInitializerKind ImplicitInitKind,
4680 FieldDecl *Field, IndirectFieldDecl *Indirect,
4681 CXXCtorInitializer *&CXXMemberInit) {
4682 if (Field->isInvalidDecl())
4683 return true;
4684
4685 SourceLocation Loc = Constructor->getLocation();
4686
4687 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
4688 bool Moving = ImplicitInitKind == IIK_Move;
4689 ParmVarDecl *Param = Constructor->getParamDecl(0);
4690 QualType ParamType = Param->getType().getNonReferenceType();
4691
4692 // Suppress copying zero-width bitfields.
4693 if (Field->isZeroLengthBitField(SemaRef.Context))
4694 return false;
4695
4696 Expr *MemberExprBase =
4697 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4698 SourceLocation(), Param, false,
4699 Loc, ParamType, VK_LValue, nullptr);
4700
4701 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
4702
4703 if (Moving) {
4704 MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
4705 }
4706
4707 // Build a reference to this field within the parameter.
4708 CXXScopeSpec SS;
4709 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
4710 Sema::LookupMemberName);
4711 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
4712 : cast<ValueDecl>(Field), AS_public);
4713 MemberLookup.resolveKind();
4714 ExprResult CtorArg
4715 = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
4716 ParamType, Loc,
4717 /*IsArrow=*/false,
4718 SS,
4719 /*TemplateKWLoc=*/SourceLocation(),
4720 /*FirstQualifierInScope=*/nullptr,
4721 MemberLookup,
4722 /*TemplateArgs=*/nullptr,
4723 /*S*/nullptr);
4724 if (CtorArg.isInvalid())
4725 return true;
4726
4727 // C++11 [class.copy]p15:
4728 // - if a member m has rvalue reference type T&&, it is direct-initialized
4729 // with static_cast<T&&>(x.m);
4730 if (RefersToRValueRef(CtorArg.get())) {
4731 CtorArg = CastForMoving(SemaRef, CtorArg.get());
4732 }
4733
4734 InitializedEntity Entity =
4735 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4736 /*Implicit*/ true)
4737 : InitializedEntity::InitializeMember(Field, nullptr,
4738 /*Implicit*/ true);
4739
4740 // Direct-initialize to use the copy constructor.
4741 InitializationKind InitKind =
4742 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
4743
4744 Expr *CtorArgE = CtorArg.getAs<Expr>();
4745 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE);
4746 ExprResult MemberInit =
4747 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1));
4748 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4749 if (MemberInit.isInvalid())
4750 return true;
4751
4752 if (Indirect)
4753 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4754 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4755 else
4756 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4757 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4758 return false;
4759 }
4760
4761 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
4762 "Unhandled implicit init kind!");
4763
4764 QualType FieldBaseElementType =
4765 SemaRef.Context.getBaseElementType(Field->getType());
4766
4767 if (FieldBaseElementType->isRecordType()) {
4768 InitializedEntity InitEntity =
4769 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4770 /*Implicit*/ true)
4771 : InitializedEntity::InitializeMember(Field, nullptr,
4772 /*Implicit*/ true);
4773 InitializationKind InitKind =
4774 InitializationKind::CreateDefault(Loc);
4775
4776 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4777 ExprResult MemberInit =
4778 InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4779
4780 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4781 if (MemberInit.isInvalid())
4782 return true;
4783
4784 if (Indirect)
4785 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4786 Indirect, Loc,
4787 Loc,
4788 MemberInit.get(),
4789 Loc);
4790 else
4791 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4792 Field, Loc, Loc,
4793 MemberInit.get(),
4794 Loc);
4795 return false;
4796 }
4797
4798 if (!Field->getParent()->isUnion()) {
4799 if (FieldBaseElementType->isReferenceType()) {
4800 SemaRef.Diag(Constructor->getLocation(),
4801 diag::err_uninitialized_member_in_ctor)
4802 << (int)Constructor->isImplicit()
4803 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4804 << 0 << Field->getDeclName();
4805 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4806 return true;
4807 }
4808
4809 if (FieldBaseElementType.isConstQualified()) {
4810 SemaRef.Diag(Constructor->getLocation(),
4811 diag::err_uninitialized_member_in_ctor)
4812 << (int)Constructor->isImplicit()
4813 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4814 << 1 << Field->getDeclName();
4815 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4816 return true;
4817 }
4818 }
4819
4820 if (FieldBaseElementType.hasNonTrivialObjCLifetime()) {
4821 // ARC and Weak:
4822 // Default-initialize Objective-C pointers to NULL.
4823 CXXMemberInit
4824 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
4825 Loc, Loc,
4826 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
4827 Loc);
4828 return false;
4829 }
4830
4831 // Nothing to initialize.
4832 CXXMemberInit = nullptr;
4833 return false;
4834 }
4835
4836 namespace {
4837 struct BaseAndFieldInfo {
4838 Sema &S;
4839 CXXConstructorDecl *Ctor;
4840 bool AnyErrorsInInits;
4841 ImplicitInitializerKind IIK;
4842 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
4843 SmallVector<CXXCtorInitializer*, 8> AllToInit;
4844 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
4845
BaseAndFieldInfo__anonedc74bd71211::BaseAndFieldInfo4846 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
4847 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
4848 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
4849 if (Ctor->getInheritedConstructor())
4850 IIK = IIK_Inherit;
4851 else if (Generated && Ctor->isCopyConstructor())
4852 IIK = IIK_Copy;
4853 else if (Generated && Ctor->isMoveConstructor())
4854 IIK = IIK_Move;
4855 else
4856 IIK = IIK_Default;
4857 }
4858
isImplicitCopyOrMove__anonedc74bd71211::BaseAndFieldInfo4859 bool isImplicitCopyOrMove() const {
4860 switch (IIK) {
4861 case IIK_Copy:
4862 case IIK_Move:
4863 return true;
4864
4865 case IIK_Default:
4866 case IIK_Inherit:
4867 return false;
4868 }
4869
4870 llvm_unreachable("Invalid ImplicitInitializerKind!");
4871 }
4872
addFieldInitializer__anonedc74bd71211::BaseAndFieldInfo4873 bool addFieldInitializer(CXXCtorInitializer *Init) {
4874 AllToInit.push_back(Init);
4875
4876 // Check whether this initializer makes the field "used".
4877 if (Init->getInit()->HasSideEffects(S.Context))
4878 S.UnusedPrivateFields.remove(Init->getAnyMember());
4879
4880 return false;
4881 }
4882
isInactiveUnionMember__anonedc74bd71211::BaseAndFieldInfo4883 bool isInactiveUnionMember(FieldDecl *Field) {
4884 RecordDecl *Record = Field->getParent();
4885 if (!Record->isUnion())
4886 return false;
4887
4888 if (FieldDecl *Active =
4889 ActiveUnionMember.lookup(Record->getCanonicalDecl()))
4890 return Active != Field->getCanonicalDecl();
4891
4892 // In an implicit copy or move constructor, ignore any in-class initializer.
4893 if (isImplicitCopyOrMove())
4894 return true;
4895
4896 // If there's no explicit initialization, the field is active only if it
4897 // has an in-class initializer...
4898 if (Field->hasInClassInitializer())
4899 return false;
4900 // ... or it's an anonymous struct or union whose class has an in-class
4901 // initializer.
4902 if (!Field->isAnonymousStructOrUnion())
4903 return true;
4904 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
4905 return !FieldRD->hasInClassInitializer();
4906 }
4907
4908 /// Determine whether the given field is, or is within, a union member
4909 /// that is inactive (because there was an initializer given for a different
4910 /// member of the union, or because the union was not initialized at all).
isWithinInactiveUnionMember__anonedc74bd71211::BaseAndFieldInfo4911 bool isWithinInactiveUnionMember(FieldDecl *Field,
4912 IndirectFieldDecl *Indirect) {
4913 if (!Indirect)
4914 return isInactiveUnionMember(Field);
4915
4916 for (auto *C : Indirect->chain()) {
4917 FieldDecl *Field = dyn_cast<FieldDecl>(C);
4918 if (Field && isInactiveUnionMember(Field))
4919 return true;
4920 }
4921 return false;
4922 }
4923 };
4924 }
4925
4926 /// Determine whether the given type is an incomplete or zero-lenfgth
4927 /// array type.
isIncompleteOrZeroLengthArrayType(ASTContext & Context,QualType T)4928 static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
4929 if (T->isIncompleteArrayType())
4930 return true;
4931
4932 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
4933 if (!ArrayT->getSize())
4934 return true;
4935
4936 T = ArrayT->getElementType();
4937 }
4938
4939 return false;
4940 }
4941
CollectFieldInitializer(Sema & SemaRef,BaseAndFieldInfo & Info,FieldDecl * Field,IndirectFieldDecl * Indirect=nullptr)4942 static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
4943 FieldDecl *Field,
4944 IndirectFieldDecl *Indirect = nullptr) {
4945 if (Field->isInvalidDecl())
4946 return false;
4947
4948 // Overwhelmingly common case: we have a direct initializer for this field.
4949 if (CXXCtorInitializer *Init =
4950 Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
4951 return Info.addFieldInitializer(Init);
4952
4953 // C++11 [class.base.init]p8:
4954 // if the entity is a non-static data member that has a
4955 // brace-or-equal-initializer and either
4956 // -- the constructor's class is a union and no other variant member of that
4957 // union is designated by a mem-initializer-id or
4958 // -- the constructor's class is not a union, and, if the entity is a member
4959 // of an anonymous union, no other member of that union is designated by
4960 // a mem-initializer-id,
4961 // the entity is initialized as specified in [dcl.init].
4962 //
4963 // We also apply the same rules to handle anonymous structs within anonymous
4964 // unions.
4965 if (Info.isWithinInactiveUnionMember(Field, Indirect))
4966 return false;
4967
4968 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
4969 ExprResult DIE =
4970 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field);
4971 if (DIE.isInvalid())
4972 return true;
4973
4974 auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true);
4975 SemaRef.checkInitializerLifetime(Entity, DIE.get());
4976
4977 CXXCtorInitializer *Init;
4978 if (Indirect)
4979 Init = new (SemaRef.Context)
4980 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
4981 SourceLocation(), DIE.get(), SourceLocation());
4982 else
4983 Init = new (SemaRef.Context)
4984 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
4985 SourceLocation(), DIE.get(), SourceLocation());
4986 return Info.addFieldInitializer(Init);
4987 }
4988
4989 // Don't initialize incomplete or zero-length arrays.
4990 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
4991 return false;
4992
4993 // Don't try to build an implicit initializer if there were semantic
4994 // errors in any of the initializers (and therefore we might be
4995 // missing some that the user actually wrote).
4996 if (Info.AnyErrorsInInits)
4997 return false;
4998
4999 CXXCtorInitializer *Init = nullptr;
5000 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
5001 Indirect, Init))
5002 return true;
5003
5004 if (!Init)
5005 return false;
5006
5007 return Info.addFieldInitializer(Init);
5008 }
5009
5010 bool
SetDelegatingInitializer(CXXConstructorDecl * Constructor,CXXCtorInitializer * Initializer)5011 Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
5012 CXXCtorInitializer *Initializer) {
5013 assert(Initializer->isDelegatingInitializer());
5014 Constructor->setNumCtorInitializers(1);
5015 CXXCtorInitializer **initializer =
5016 new (Context) CXXCtorInitializer*[1];
5017 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
5018 Constructor->setCtorInitializers(initializer);
5019
5020 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
5021 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
5022 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
5023 }
5024
5025 DelegatingCtorDecls.push_back(Constructor);
5026
5027 DiagnoseUninitializedFields(*this, Constructor);
5028
5029 return false;
5030 }
5031
SetCtorInitializers(CXXConstructorDecl * Constructor,bool AnyErrors,ArrayRef<CXXCtorInitializer * > Initializers)5032 bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
5033 ArrayRef<CXXCtorInitializer *> Initializers) {
5034 if (Constructor->isDependentContext()) {
5035 // Just store the initializers as written, they will be checked during
5036 // instantiation.
5037 if (!Initializers.empty()) {
5038 Constructor->setNumCtorInitializers(Initializers.size());
5039 CXXCtorInitializer **baseOrMemberInitializers =
5040 new (Context) CXXCtorInitializer*[Initializers.size()];
5041 memcpy(baseOrMemberInitializers, Initializers.data(),
5042 Initializers.size() * sizeof(CXXCtorInitializer*));
5043 Constructor->setCtorInitializers(baseOrMemberInitializers);
5044 }
5045
5046 // Let template instantiation know whether we had errors.
5047 if (AnyErrors)
5048 Constructor->setInvalidDecl();
5049
5050 return false;
5051 }
5052
5053 BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
5054
5055 // We need to build the initializer AST according to order of construction
5056 // and not what user specified in the Initializers list.
5057 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
5058 if (!ClassDecl)
5059 return true;
5060
5061 bool HadError = false;
5062
5063 for (unsigned i = 0; i < Initializers.size(); i++) {
5064 CXXCtorInitializer *Member = Initializers[i];
5065
5066 if (Member->isBaseInitializer())
5067 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
5068 else {
5069 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
5070
5071 if (IndirectFieldDecl *F = Member->getIndirectMember()) {
5072 for (auto *C : F->chain()) {
5073 FieldDecl *FD = dyn_cast<FieldDecl>(C);
5074 if (FD && FD->getParent()->isUnion())
5075 Info.ActiveUnionMember.insert(std::make_pair(
5076 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
5077 }
5078 } else if (FieldDecl *FD = Member->getMember()) {
5079 if (FD->getParent()->isUnion())
5080 Info.ActiveUnionMember.insert(std::make_pair(
5081 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
5082 }
5083 }
5084 }
5085
5086 // Keep track of the direct virtual bases.
5087 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
5088 for (auto &I : ClassDecl->bases()) {
5089 if (I.isVirtual())
5090 DirectVBases.insert(&I);
5091 }
5092
5093 // Push virtual bases before others.
5094 for (auto &VBase : ClassDecl->vbases()) {
5095 if (CXXCtorInitializer *Value
5096 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
5097 // [class.base.init]p7, per DR257:
5098 // A mem-initializer where the mem-initializer-id names a virtual base
5099 // class is ignored during execution of a constructor of any class that
5100 // is not the most derived class.
5101 if (ClassDecl->isAbstract()) {
5102 // FIXME: Provide a fixit to remove the base specifier. This requires
5103 // tracking the location of the associated comma for a base specifier.
5104 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
5105 << VBase.getType() << ClassDecl;
5106 DiagnoseAbstractType(ClassDecl);
5107 }
5108
5109 Info.AllToInit.push_back(Value);
5110 } else if (!AnyErrors && !ClassDecl->isAbstract()) {
5111 // [class.base.init]p8, per DR257:
5112 // If a given [...] base class is not named by a mem-initializer-id
5113 // [...] and the entity is not a virtual base class of an abstract
5114 // class, then [...] the entity is default-initialized.
5115 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
5116 CXXCtorInitializer *CXXBaseInit;
5117 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5118 &VBase, IsInheritedVirtualBase,
5119 CXXBaseInit)) {
5120 HadError = true;
5121 continue;
5122 }
5123
5124 Info.AllToInit.push_back(CXXBaseInit);
5125 }
5126 }
5127
5128 // Non-virtual bases.
5129 for (auto &Base : ClassDecl->bases()) {
5130 // Virtuals are in the virtual base list and already constructed.
5131 if (Base.isVirtual())
5132 continue;
5133
5134 if (CXXCtorInitializer *Value
5135 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
5136 Info.AllToInit.push_back(Value);
5137 } else if (!AnyErrors) {
5138 CXXCtorInitializer *CXXBaseInit;
5139 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5140 &Base, /*IsInheritedVirtualBase=*/false,
5141 CXXBaseInit)) {
5142 HadError = true;
5143 continue;
5144 }
5145
5146 Info.AllToInit.push_back(CXXBaseInit);
5147 }
5148 }
5149
5150 // Fields.
5151 for (auto *Mem : ClassDecl->decls()) {
5152 if (auto *F = dyn_cast<FieldDecl>(Mem)) {
5153 // C++ [class.bit]p2:
5154 // A declaration for a bit-field that omits the identifier declares an
5155 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
5156 // initialized.
5157 if (F->isUnnamedBitfield())
5158 continue;
5159
5160 // If we're not generating the implicit copy/move constructor, then we'll
5161 // handle anonymous struct/union fields based on their individual
5162 // indirect fields.
5163 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
5164 continue;
5165
5166 if (CollectFieldInitializer(*this, Info, F))
5167 HadError = true;
5168 continue;
5169 }
5170
5171 // Beyond this point, we only consider default initialization.
5172 if (Info.isImplicitCopyOrMove())
5173 continue;
5174
5175 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
5176 if (F->getType()->isIncompleteArrayType()) {
5177 assert(ClassDecl->hasFlexibleArrayMember() &&
5178 "Incomplete array type is not valid");
5179 continue;
5180 }
5181
5182 // Initialize each field of an anonymous struct individually.
5183 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
5184 HadError = true;
5185
5186 continue;
5187 }
5188 }
5189
5190 unsigned NumInitializers = Info.AllToInit.size();
5191 if (NumInitializers > 0) {
5192 Constructor->setNumCtorInitializers(NumInitializers);
5193 CXXCtorInitializer **baseOrMemberInitializers =
5194 new (Context) CXXCtorInitializer*[NumInitializers];
5195 memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
5196 NumInitializers * sizeof(CXXCtorInitializer*));
5197 Constructor->setCtorInitializers(baseOrMemberInitializers);
5198
5199 // Constructors implicitly reference the base and member
5200 // destructors.
5201 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
5202 Constructor->getParent());
5203 }
5204
5205 return HadError;
5206 }
5207
PopulateKeysForFields(FieldDecl * Field,SmallVectorImpl<const void * > & IdealInits)5208 static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
5209 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
5210 const RecordDecl *RD = RT->getDecl();
5211 if (RD->isAnonymousStructOrUnion()) {
5212 for (auto *Field : RD->fields())
5213 PopulateKeysForFields(Field, IdealInits);
5214 return;
5215 }
5216 }
5217 IdealInits.push_back(Field->getCanonicalDecl());
5218 }
5219
GetKeyForBase(ASTContext & Context,QualType BaseType)5220 static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
5221 return Context.getCanonicalType(BaseType).getTypePtr();
5222 }
5223
GetKeyForMember(ASTContext & Context,CXXCtorInitializer * Member)5224 static const void *GetKeyForMember(ASTContext &Context,
5225 CXXCtorInitializer *Member) {
5226 if (!Member->isAnyMemberInitializer())
5227 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
5228
5229 return Member->getAnyMember()->getCanonicalDecl();
5230 }
5231
DiagnoseBaseOrMemInitializerOrder(Sema & SemaRef,const CXXConstructorDecl * Constructor,ArrayRef<CXXCtorInitializer * > Inits)5232 static void DiagnoseBaseOrMemInitializerOrder(
5233 Sema &SemaRef, const CXXConstructorDecl *Constructor,
5234 ArrayRef<CXXCtorInitializer *> Inits) {
5235 if (Constructor->getDeclContext()->isDependentContext())
5236 return;
5237
5238 // Don't check initializers order unless the warning is enabled at the
5239 // location of at least one initializer.
5240 bool ShouldCheckOrder = false;
5241 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5242 CXXCtorInitializer *Init = Inits[InitIndex];
5243 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
5244 Init->getSourceLocation())) {
5245 ShouldCheckOrder = true;
5246 break;
5247 }
5248 }
5249 if (!ShouldCheckOrder)
5250 return;
5251
5252 // Build the list of bases and members in the order that they'll
5253 // actually be initialized. The explicit initializers should be in
5254 // this same order but may be missing things.
5255 SmallVector<const void*, 32> IdealInitKeys;
5256
5257 const CXXRecordDecl *ClassDecl = Constructor->getParent();
5258
5259 // 1. Virtual bases.
5260 for (const auto &VBase : ClassDecl->vbases())
5261 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
5262
5263 // 2. Non-virtual bases.
5264 for (const auto &Base : ClassDecl->bases()) {
5265 if (Base.isVirtual())
5266 continue;
5267 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
5268 }
5269
5270 // 3. Direct fields.
5271 for (auto *Field : ClassDecl->fields()) {
5272 if (Field->isUnnamedBitfield())
5273 continue;
5274
5275 PopulateKeysForFields(Field, IdealInitKeys);
5276 }
5277
5278 unsigned NumIdealInits = IdealInitKeys.size();
5279 unsigned IdealIndex = 0;
5280
5281 CXXCtorInitializer *PrevInit = nullptr;
5282 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5283 CXXCtorInitializer *Init = Inits[InitIndex];
5284 const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
5285
5286 // Scan forward to try to find this initializer in the idealized
5287 // initializers list.
5288 for (; IdealIndex != NumIdealInits; ++IdealIndex)
5289 if (InitKey == IdealInitKeys[IdealIndex])
5290 break;
5291
5292 // If we didn't find this initializer, it must be because we
5293 // scanned past it on a previous iteration. That can only
5294 // happen if we're out of order; emit a warning.
5295 if (IdealIndex == NumIdealInits && PrevInit) {
5296 Sema::SemaDiagnosticBuilder D =
5297 SemaRef.Diag(PrevInit->getSourceLocation(),
5298 diag::warn_initializer_out_of_order);
5299
5300 if (PrevInit->isAnyMemberInitializer())
5301 D << 0 << PrevInit->getAnyMember()->getDeclName();
5302 else
5303 D << 1 << PrevInit->getTypeSourceInfo()->getType();
5304
5305 if (Init->isAnyMemberInitializer())
5306 D << 0 << Init->getAnyMember()->getDeclName();
5307 else
5308 D << 1 << Init->getTypeSourceInfo()->getType();
5309
5310 // Move back to the initializer's location in the ideal list.
5311 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
5312 if (InitKey == IdealInitKeys[IdealIndex])
5313 break;
5314
5315 assert(IdealIndex < NumIdealInits &&
5316 "initializer not found in initializer list");
5317 }
5318
5319 PrevInit = Init;
5320 }
5321 }
5322
5323 namespace {
CheckRedundantInit(Sema & S,CXXCtorInitializer * Init,CXXCtorInitializer * & PrevInit)5324 bool CheckRedundantInit(Sema &S,
5325 CXXCtorInitializer *Init,
5326 CXXCtorInitializer *&PrevInit) {
5327 if (!PrevInit) {
5328 PrevInit = Init;
5329 return false;
5330 }
5331
5332 if (FieldDecl *Field = Init->getAnyMember())
5333 S.Diag(Init->getSourceLocation(),
5334 diag::err_multiple_mem_initialization)
5335 << Field->getDeclName()
5336 << Init->getSourceRange();
5337 else {
5338 const Type *BaseClass = Init->getBaseClass();
5339 assert(BaseClass && "neither field nor base");
5340 S.Diag(Init->getSourceLocation(),
5341 diag::err_multiple_base_initialization)
5342 << QualType(BaseClass, 0)
5343 << Init->getSourceRange();
5344 }
5345 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
5346 << 0 << PrevInit->getSourceRange();
5347
5348 return true;
5349 }
5350
5351 typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
5352 typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
5353
CheckRedundantUnionInit(Sema & S,CXXCtorInitializer * Init,RedundantUnionMap & Unions)5354 bool CheckRedundantUnionInit(Sema &S,
5355 CXXCtorInitializer *Init,
5356 RedundantUnionMap &Unions) {
5357 FieldDecl *Field = Init->getAnyMember();
5358 RecordDecl *Parent = Field->getParent();
5359 NamedDecl *Child = Field;
5360
5361 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
5362 if (Parent->isUnion()) {
5363 UnionEntry &En = Unions[Parent];
5364 if (En.first && En.first != Child) {
5365 S.Diag(Init->getSourceLocation(),
5366 diag::err_multiple_mem_union_initialization)
5367 << Field->getDeclName()
5368 << Init->getSourceRange();
5369 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
5370 << 0 << En.second->getSourceRange();
5371 return true;
5372 }
5373 if (!En.first) {
5374 En.first = Child;
5375 En.second = Init;
5376 }
5377 if (!Parent->isAnonymousStructOrUnion())
5378 return false;
5379 }
5380
5381 Child = Parent;
5382 Parent = cast<RecordDecl>(Parent->getDeclContext());
5383 }
5384
5385 return false;
5386 }
5387 }
5388
5389 /// ActOnMemInitializers - Handle the member initializers for a constructor.
ActOnMemInitializers(Decl * ConstructorDecl,SourceLocation ColonLoc,ArrayRef<CXXCtorInitializer * > MemInits,bool AnyErrors)5390 void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
5391 SourceLocation ColonLoc,
5392 ArrayRef<CXXCtorInitializer*> MemInits,
5393 bool AnyErrors) {
5394 if (!ConstructorDecl)
5395 return;
5396
5397 AdjustDeclIfTemplate(ConstructorDecl);
5398
5399 CXXConstructorDecl *Constructor
5400 = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
5401
5402 if (!Constructor) {
5403 Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
5404 return;
5405 }
5406
5407 // Mapping for the duplicate initializers check.
5408 // For member initializers, this is keyed with a FieldDecl*.
5409 // For base initializers, this is keyed with a Type*.
5410 llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
5411
5412 // Mapping for the inconsistent anonymous-union initializers check.
5413 RedundantUnionMap MemberUnions;
5414
5415 bool HadError = false;
5416 for (unsigned i = 0; i < MemInits.size(); i++) {
5417 CXXCtorInitializer *Init = MemInits[i];
5418
5419 // Set the source order index.
5420 Init->setSourceOrder(i);
5421
5422 if (Init->isAnyMemberInitializer()) {
5423 const void *Key = GetKeyForMember(Context, Init);
5424 if (CheckRedundantInit(*this, Init, Members[Key]) ||
5425 CheckRedundantUnionInit(*this, Init, MemberUnions))
5426 HadError = true;
5427 } else if (Init->isBaseInitializer()) {
5428 const void *Key = GetKeyForMember(Context, Init);
5429 if (CheckRedundantInit(*this, Init, Members[Key]))
5430 HadError = true;
5431 } else {
5432 assert(Init->isDelegatingInitializer());
5433 // This must be the only initializer
5434 if (MemInits.size() != 1) {
5435 Diag(Init->getSourceLocation(),
5436 diag::err_delegating_initializer_alone)
5437 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
5438 // We will treat this as being the only initializer.
5439 }
5440 SetDelegatingInitializer(Constructor, MemInits[i]);
5441 // Return immediately as the initializer is set.
5442 return;
5443 }
5444 }
5445
5446 if (HadError)
5447 return;
5448
5449 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
5450
5451 SetCtorInitializers(Constructor, AnyErrors, MemInits);
5452
5453 DiagnoseUninitializedFields(*this, Constructor);
5454 }
5455
5456 void
MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,CXXRecordDecl * ClassDecl)5457 Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
5458 CXXRecordDecl *ClassDecl) {
5459 // Ignore dependent contexts. Also ignore unions, since their members never
5460 // have destructors implicitly called.
5461 if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
5462 return;
5463
5464 // FIXME: all the access-control diagnostics are positioned on the
5465 // field/base declaration. That's probably good; that said, the
5466 // user might reasonably want to know why the destructor is being
5467 // emitted, and we currently don't say.
5468
5469 // Non-static data members.
5470 for (auto *Field : ClassDecl->fields()) {
5471 if (Field->isInvalidDecl())
5472 continue;
5473
5474 // Don't destroy incomplete or zero-length arrays.
5475 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
5476 continue;
5477
5478 QualType FieldType = Context.getBaseElementType(Field->getType());
5479
5480 const RecordType* RT = FieldType->getAs<RecordType>();
5481 if (!RT)
5482 continue;
5483
5484 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5485 if (FieldClassDecl->isInvalidDecl())
5486 continue;
5487 if (FieldClassDecl->hasIrrelevantDestructor())
5488 continue;
5489 // The destructor for an implicit anonymous union member is never invoked.
5490 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
5491 continue;
5492
5493 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
5494 assert(Dtor && "No dtor found for FieldClassDecl!");
5495 CheckDestructorAccess(Field->getLocation(), Dtor,
5496 PDiag(diag::err_access_dtor_field)
5497 << Field->getDeclName()
5498 << FieldType);
5499
5500 MarkFunctionReferenced(Location, Dtor);
5501 DiagnoseUseOfDecl(Dtor, Location);
5502 }
5503
5504 // We only potentially invoke the destructors of potentially constructed
5505 // subobjects.
5506 bool VisitVirtualBases = !ClassDecl->isAbstract();
5507
5508 // If the destructor exists and has already been marked used in the MS ABI,
5509 // then virtual base destructors have already been checked and marked used.
5510 // Skip checking them again to avoid duplicate diagnostics.
5511 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5512 CXXDestructorDecl *Dtor = ClassDecl->getDestructor();
5513 if (Dtor && Dtor->isUsed())
5514 VisitVirtualBases = false;
5515 }
5516
5517 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
5518
5519 // Bases.
5520 for (const auto &Base : ClassDecl->bases()) {
5521 // Bases are always records in a well-formed non-dependent class.
5522 const RecordType *RT = Base.getType()->getAs<RecordType>();
5523
5524 // Remember direct virtual bases.
5525 if (Base.isVirtual()) {
5526 if (!VisitVirtualBases)
5527 continue;
5528 DirectVirtualBases.insert(RT);
5529 }
5530
5531 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5532 // If our base class is invalid, we probably can't get its dtor anyway.
5533 if (BaseClassDecl->isInvalidDecl())
5534 continue;
5535 if (BaseClassDecl->hasIrrelevantDestructor())
5536 continue;
5537
5538 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5539 assert(Dtor && "No dtor found for BaseClassDecl!");
5540
5541 // FIXME: caret should be on the start of the class name
5542 CheckDestructorAccess(Base.getBeginLoc(), Dtor,
5543 PDiag(diag::err_access_dtor_base)
5544 << Base.getType() << Base.getSourceRange(),
5545 Context.getTypeDeclType(ClassDecl));
5546
5547 MarkFunctionReferenced(Location, Dtor);
5548 DiagnoseUseOfDecl(Dtor, Location);
5549 }
5550
5551 if (VisitVirtualBases)
5552 MarkVirtualBaseDestructorsReferenced(Location, ClassDecl,
5553 &DirectVirtualBases);
5554 }
5555
MarkVirtualBaseDestructorsReferenced(SourceLocation Location,CXXRecordDecl * ClassDecl,llvm::SmallPtrSetImpl<const RecordType * > * DirectVirtualBases)5556 void Sema::MarkVirtualBaseDestructorsReferenced(
5557 SourceLocation Location, CXXRecordDecl *ClassDecl,
5558 llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases) {
5559 // Virtual bases.
5560 for (const auto &VBase : ClassDecl->vbases()) {
5561 // Bases are always records in a well-formed non-dependent class.
5562 const RecordType *RT = VBase.getType()->castAs<RecordType>();
5563
5564 // Ignore already visited direct virtual bases.
5565 if (DirectVirtualBases && DirectVirtualBases->count(RT))
5566 continue;
5567
5568 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5569 // If our base class is invalid, we probably can't get its dtor anyway.
5570 if (BaseClassDecl->isInvalidDecl())
5571 continue;
5572 if (BaseClassDecl->hasIrrelevantDestructor())
5573 continue;
5574
5575 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5576 assert(Dtor && "No dtor found for BaseClassDecl!");
5577 if (CheckDestructorAccess(
5578 ClassDecl->getLocation(), Dtor,
5579 PDiag(diag::err_access_dtor_vbase)
5580 << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
5581 Context.getTypeDeclType(ClassDecl)) ==
5582 AR_accessible) {
5583 CheckDerivedToBaseConversion(
5584 Context.getTypeDeclType(ClassDecl), VBase.getType(),
5585 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
5586 SourceRange(), DeclarationName(), nullptr);
5587 }
5588
5589 MarkFunctionReferenced(Location, Dtor);
5590 DiagnoseUseOfDecl(Dtor, Location);
5591 }
5592 }
5593
ActOnDefaultCtorInitializers(Decl * CDtorDecl)5594 void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
5595 if (!CDtorDecl)
5596 return;
5597
5598 if (CXXConstructorDecl *Constructor
5599 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
5600 SetCtorInitializers(Constructor, /*AnyErrors=*/false);
5601 DiagnoseUninitializedFields(*this, Constructor);
5602 }
5603 }
5604
isAbstractType(SourceLocation Loc,QualType T)5605 bool Sema::isAbstractType(SourceLocation Loc, QualType T) {
5606 if (!getLangOpts().CPlusPlus)
5607 return false;
5608
5609 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl();
5610 if (!RD)
5611 return false;
5612
5613 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a
5614 // class template specialization here, but doing so breaks a lot of code.
5615
5616 // We can't answer whether something is abstract until it has a
5617 // definition. If it's currently being defined, we'll walk back
5618 // over all the declarations when we have a full definition.
5619 const CXXRecordDecl *Def = RD->getDefinition();
5620 if (!Def || Def->isBeingDefined())
5621 return false;
5622
5623 return RD->isAbstract();
5624 }
5625
RequireNonAbstractType(SourceLocation Loc,QualType T,TypeDiagnoser & Diagnoser)5626 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
5627 TypeDiagnoser &Diagnoser) {
5628 if (!isAbstractType(Loc, T))
5629 return false;
5630
5631 T = Context.getBaseElementType(T);
5632 Diagnoser.diagnose(*this, Loc, T);
5633 DiagnoseAbstractType(T->getAsCXXRecordDecl());
5634 return true;
5635 }
5636
DiagnoseAbstractType(const CXXRecordDecl * RD)5637 void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
5638 // Check if we've already emitted the list of pure virtual functions
5639 // for this class.
5640 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
5641 return;
5642
5643 // If the diagnostic is suppressed, don't emit the notes. We're only
5644 // going to emit them once, so try to attach them to a diagnostic we're
5645 // actually going to show.
5646 if (Diags.isLastDiagnosticIgnored())
5647 return;
5648
5649 CXXFinalOverriderMap FinalOverriders;
5650 RD->getFinalOverriders(FinalOverriders);
5651
5652 // Keep a set of seen pure methods so we won't diagnose the same method
5653 // more than once.
5654 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
5655
5656 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
5657 MEnd = FinalOverriders.end();
5658 M != MEnd;
5659 ++M) {
5660 for (OverridingMethods::iterator SO = M->second.begin(),
5661 SOEnd = M->second.end();
5662 SO != SOEnd; ++SO) {
5663 // C++ [class.abstract]p4:
5664 // A class is abstract if it contains or inherits at least one
5665 // pure virtual function for which the final overrider is pure
5666 // virtual.
5667
5668 //
5669 if (SO->second.size() != 1)
5670 continue;
5671
5672 if (!SO->second.front().Method->isPure())
5673 continue;
5674
5675 if (!SeenPureMethods.insert(SO->second.front().Method).second)
5676 continue;
5677
5678 Diag(SO->second.front().Method->getLocation(),
5679 diag::note_pure_virtual_function)
5680 << SO->second.front().Method->getDeclName() << RD->getDeclName();
5681 }
5682 }
5683
5684 if (!PureVirtualClassDiagSet)
5685 PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
5686 PureVirtualClassDiagSet->insert(RD);
5687 }
5688
5689 namespace {
5690 struct AbstractUsageInfo {
5691 Sema &S;
5692 CXXRecordDecl *Record;
5693 CanQualType AbstractType;
5694 bool Invalid;
5695
AbstractUsageInfo__anonedc74bd71411::AbstractUsageInfo5696 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
5697 : S(S), Record(Record),
5698 AbstractType(S.Context.getCanonicalType(
5699 S.Context.getTypeDeclType(Record))),
5700 Invalid(false) {}
5701
DiagnoseAbstractType__anonedc74bd71411::AbstractUsageInfo5702 void DiagnoseAbstractType() {
5703 if (Invalid) return;
5704 S.DiagnoseAbstractType(Record);
5705 Invalid = true;
5706 }
5707
5708 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
5709 };
5710
5711 struct CheckAbstractUsage {
5712 AbstractUsageInfo &Info;
5713 const NamedDecl *Ctx;
5714
CheckAbstractUsage__anonedc74bd71411::CheckAbstractUsage5715 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
5716 : Info(Info), Ctx(Ctx) {}
5717
Visit__anonedc74bd71411::CheckAbstractUsage5718 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5719 switch (TL.getTypeLocClass()) {
5720 #define ABSTRACT_TYPELOC(CLASS, PARENT)
5721 #define TYPELOC(CLASS, PARENT) \
5722 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
5723 #include "clang/AST/TypeLocNodes.def"
5724 }
5725 }
5726
Check__anonedc74bd71411::CheckAbstractUsage5727 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5728 Visit(TL.getReturnLoc(), Sema::AbstractReturnType);
5729 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
5730 if (!TL.getParam(I))
5731 continue;
5732
5733 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
5734 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
5735 }
5736 }
5737
Check__anonedc74bd71411::CheckAbstractUsage5738 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5739 Visit(TL.getElementLoc(), Sema::AbstractArrayType);
5740 }
5741
Check__anonedc74bd71411::CheckAbstractUsage5742 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5743 // Visit the type parameters from a permissive context.
5744 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
5745 TemplateArgumentLoc TAL = TL.getArgLoc(I);
5746 if (TAL.getArgument().getKind() == TemplateArgument::Type)
5747 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
5748 Visit(TSI->getTypeLoc(), Sema::AbstractNone);
5749 // TODO: other template argument types?
5750 }
5751 }
5752
5753 // Visit pointee types from a permissive context.
5754 #define CheckPolymorphic(Type) \
5755 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
5756 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
5757 }
5758 CheckPolymorphic(PointerTypeLoc)
CheckPolymorphic__anonedc74bd71411::CheckAbstractUsage5759 CheckPolymorphic(ReferenceTypeLoc)
5760 CheckPolymorphic(MemberPointerTypeLoc)
5761 CheckPolymorphic(BlockPointerTypeLoc)
5762 CheckPolymorphic(AtomicTypeLoc)
5763
5764 /// Handle all the types we haven't given a more specific
5765 /// implementation for above.
5766 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5767 // Every other kind of type that we haven't called out already
5768 // that has an inner type is either (1) sugar or (2) contains that
5769 // inner type in some way as a subobject.
5770 if (TypeLoc Next = TL.getNextTypeLoc())
5771 return Visit(Next, Sel);
5772
5773 // If there's no inner type and we're in a permissive context,
5774 // don't diagnose.
5775 if (Sel == Sema::AbstractNone) return;
5776
5777 // Check whether the type matches the abstract type.
5778 QualType T = TL.getType();
5779 if (T->isArrayType()) {
5780 Sel = Sema::AbstractArrayType;
5781 T = Info.S.Context.getBaseElementType(T);
5782 }
5783 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
5784 if (CT != Info.AbstractType) return;
5785
5786 // It matched; do some magic.
5787 if (Sel == Sema::AbstractArrayType) {
5788 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
5789 << T << TL.getSourceRange();
5790 } else {
5791 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
5792 << Sel << T << TL.getSourceRange();
5793 }
5794 Info.DiagnoseAbstractType();
5795 }
5796 };
5797
CheckType(const NamedDecl * D,TypeLoc TL,Sema::AbstractDiagSelID Sel)5798 void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
5799 Sema::AbstractDiagSelID Sel) {
5800 CheckAbstractUsage(*this, D).Visit(TL, Sel);
5801 }
5802
5803 }
5804
5805 /// Check for invalid uses of an abstract type in a method declaration.
CheckAbstractClassUsage(AbstractUsageInfo & Info,CXXMethodDecl * MD)5806 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5807 CXXMethodDecl *MD) {
5808 // No need to do the check on definitions, which require that
5809 // the return/param types be complete.
5810 if (MD->doesThisDeclarationHaveABody())
5811 return;
5812
5813 // For safety's sake, just ignore it if we don't have type source
5814 // information. This should never happen for non-implicit methods,
5815 // but...
5816 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
5817 Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
5818 }
5819
5820 /// Check for invalid uses of an abstract type within a class definition.
CheckAbstractClassUsage(AbstractUsageInfo & Info,CXXRecordDecl * RD)5821 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5822 CXXRecordDecl *RD) {
5823 for (auto *D : RD->decls()) {
5824 if (D->isImplicit()) continue;
5825
5826 // Methods and method templates.
5827 if (isa<CXXMethodDecl>(D)) {
5828 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
5829 } else if (isa<FunctionTemplateDecl>(D)) {
5830 FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
5831 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
5832
5833 // Fields and static variables.
5834 } else if (isa<FieldDecl>(D)) {
5835 FieldDecl *FD = cast<FieldDecl>(D);
5836 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
5837 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
5838 } else if (isa<VarDecl>(D)) {
5839 VarDecl *VD = cast<VarDecl>(D);
5840 if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
5841 Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
5842
5843 // Nested classes and class templates.
5844 } else if (isa<CXXRecordDecl>(D)) {
5845 CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
5846 } else if (isa<ClassTemplateDecl>(D)) {
5847 CheckAbstractClassUsage(Info,
5848 cast<ClassTemplateDecl>(D)->getTemplatedDecl());
5849 }
5850 }
5851 }
5852
ReferenceDllExportedMembers(Sema & S,CXXRecordDecl * Class)5853 static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) {
5854 Attr *ClassAttr = getDLLAttr(Class);
5855 if (!ClassAttr)
5856 return;
5857
5858 assert(ClassAttr->getKind() == attr::DLLExport);
5859
5860 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
5861
5862 if (TSK == TSK_ExplicitInstantiationDeclaration)
5863 // Don't go any further if this is just an explicit instantiation
5864 // declaration.
5865 return;
5866
5867 // Add a context note to explain how we got to any diagnostics produced below.
5868 struct MarkingClassDllexported {
5869 Sema &S;
5870 MarkingClassDllexported(Sema &S, CXXRecordDecl *Class,
5871 SourceLocation AttrLoc)
5872 : S(S) {
5873 Sema::CodeSynthesisContext Ctx;
5874 Ctx.Kind = Sema::CodeSynthesisContext::MarkingClassDllexported;
5875 Ctx.PointOfInstantiation = AttrLoc;
5876 Ctx.Entity = Class;
5877 S.pushCodeSynthesisContext(Ctx);
5878 }
5879 ~MarkingClassDllexported() {
5880 S.popCodeSynthesisContext();
5881 }
5882 } MarkingDllexportedContext(S, Class, ClassAttr->getLocation());
5883
5884 if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
5885 S.MarkVTableUsed(Class->getLocation(), Class, true);
5886
5887 for (Decl *Member : Class->decls()) {
5888 // Defined static variables that are members of an exported base
5889 // class must be marked export too.
5890 auto *VD = dyn_cast<VarDecl>(Member);
5891 if (VD && Member->getAttr<DLLExportAttr>() &&
5892 VD->getStorageClass() == SC_Static &&
5893 TSK == TSK_ImplicitInstantiation)
5894 S.MarkVariableReferenced(VD->getLocation(), VD);
5895
5896 auto *MD = dyn_cast<CXXMethodDecl>(Member);
5897 if (!MD)
5898 continue;
5899
5900 if (Member->getAttr<DLLExportAttr>()) {
5901 if (MD->isUserProvided()) {
5902 // Instantiate non-default class member functions ...
5903
5904 // .. except for certain kinds of template specializations.
5905 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited())
5906 continue;
5907
5908 S.MarkFunctionReferenced(Class->getLocation(), MD);
5909
5910 // The function will be passed to the consumer when its definition is
5911 // encountered.
5912 } else if (MD->isExplicitlyDefaulted()) {
5913 // Synthesize and instantiate explicitly defaulted methods.
5914 S.MarkFunctionReferenced(Class->getLocation(), MD);
5915
5916 if (TSK != TSK_ExplicitInstantiationDefinition) {
5917 // Except for explicit instantiation defs, we will not see the
5918 // definition again later, so pass it to the consumer now.
5919 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
5920 }
5921 } else if (!MD->isTrivial() ||
5922 MD->isCopyAssignmentOperator() ||
5923 MD->isMoveAssignmentOperator()) {
5924 // Synthesize and instantiate non-trivial implicit methods, and the copy
5925 // and move assignment operators. The latter are exported even if they
5926 // are trivial, because the address of an operator can be taken and
5927 // should compare equal across libraries.
5928 S.MarkFunctionReferenced(Class->getLocation(), MD);
5929
5930 // There is no later point when we will see the definition of this
5931 // function, so pass it to the consumer now.
5932 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
5933 }
5934 }
5935 }
5936 }
5937
checkForMultipleExportedDefaultConstructors(Sema & S,CXXRecordDecl * Class)5938 static void checkForMultipleExportedDefaultConstructors(Sema &S,
5939 CXXRecordDecl *Class) {
5940 // Only the MS ABI has default constructor closures, so we don't need to do
5941 // this semantic checking anywhere else.
5942 if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft())
5943 return;
5944
5945 CXXConstructorDecl *LastExportedDefaultCtor = nullptr;
5946 for (Decl *Member : Class->decls()) {
5947 // Look for exported default constructors.
5948 auto *CD = dyn_cast<CXXConstructorDecl>(Member);
5949 if (!CD || !CD->isDefaultConstructor())
5950 continue;
5951 auto *Attr = CD->getAttr<DLLExportAttr>();
5952 if (!Attr)
5953 continue;
5954
5955 // If the class is non-dependent, mark the default arguments as ODR-used so
5956 // that we can properly codegen the constructor closure.
5957 if (!Class->isDependentContext()) {
5958 for (ParmVarDecl *PD : CD->parameters()) {
5959 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD);
5960 S.DiscardCleanupsInEvaluationContext();
5961 }
5962 }
5963
5964 if (LastExportedDefaultCtor) {
5965 S.Diag(LastExportedDefaultCtor->getLocation(),
5966 diag::err_attribute_dll_ambiguous_default_ctor)
5967 << Class;
5968 S.Diag(CD->getLocation(), diag::note_entity_declared_at)
5969 << CD->getDeclName();
5970 return;
5971 }
5972 LastExportedDefaultCtor = CD;
5973 }
5974 }
5975
checkCUDADeviceBuiltinSurfaceClassTemplate(Sema & S,CXXRecordDecl * Class)5976 static void checkCUDADeviceBuiltinSurfaceClassTemplate(Sema &S,
5977 CXXRecordDecl *Class) {
5978 bool ErrorReported = false;
5979 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S,
5980 ClassTemplateDecl *TD) {
5981 if (ErrorReported)
5982 return;
5983 S.Diag(TD->getLocation(),
5984 diag::err_cuda_device_builtin_surftex_cls_template)
5985 << /*surface*/ 0 << TD;
5986 ErrorReported = true;
5987 };
5988
5989 ClassTemplateDecl *TD = Class->getDescribedClassTemplate();
5990 if (!TD) {
5991 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class);
5992 if (!SD) {
5993 S.Diag(Class->getLocation(),
5994 diag::err_cuda_device_builtin_surftex_ref_decl)
5995 << /*surface*/ 0 << Class;
5996 S.Diag(Class->getLocation(),
5997 diag::note_cuda_device_builtin_surftex_should_be_template_class)
5998 << Class;
5999 return;
6000 }
6001 TD = SD->getSpecializedTemplate();
6002 }
6003
6004 TemplateParameterList *Params = TD->getTemplateParameters();
6005 unsigned N = Params->size();
6006
6007 if (N != 2) {
6008 reportIllegalClassTemplate(S, TD);
6009 S.Diag(TD->getLocation(),
6010 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args)
6011 << TD << 2;
6012 }
6013 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6014 reportIllegalClassTemplate(S, TD);
6015 S.Diag(TD->getLocation(),
6016 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6017 << TD << /*1st*/ 0 << /*type*/ 0;
6018 }
6019 if (N > 1) {
6020 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1));
6021 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) {
6022 reportIllegalClassTemplate(S, TD);
6023 S.Diag(TD->getLocation(),
6024 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6025 << TD << /*2nd*/ 1 << /*integer*/ 1;
6026 }
6027 }
6028 }
6029
checkCUDADeviceBuiltinTextureClassTemplate(Sema & S,CXXRecordDecl * Class)6030 static void checkCUDADeviceBuiltinTextureClassTemplate(Sema &S,
6031 CXXRecordDecl *Class) {
6032 bool ErrorReported = false;
6033 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S,
6034 ClassTemplateDecl *TD) {
6035 if (ErrorReported)
6036 return;
6037 S.Diag(TD->getLocation(),
6038 diag::err_cuda_device_builtin_surftex_cls_template)
6039 << /*texture*/ 1 << TD;
6040 ErrorReported = true;
6041 };
6042
6043 ClassTemplateDecl *TD = Class->getDescribedClassTemplate();
6044 if (!TD) {
6045 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class);
6046 if (!SD) {
6047 S.Diag(Class->getLocation(),
6048 diag::err_cuda_device_builtin_surftex_ref_decl)
6049 << /*texture*/ 1 << Class;
6050 S.Diag(Class->getLocation(),
6051 diag::note_cuda_device_builtin_surftex_should_be_template_class)
6052 << Class;
6053 return;
6054 }
6055 TD = SD->getSpecializedTemplate();
6056 }
6057
6058 TemplateParameterList *Params = TD->getTemplateParameters();
6059 unsigned N = Params->size();
6060
6061 if (N != 3) {
6062 reportIllegalClassTemplate(S, TD);
6063 S.Diag(TD->getLocation(),
6064 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args)
6065 << TD << 3;
6066 }
6067 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6068 reportIllegalClassTemplate(S, TD);
6069 S.Diag(TD->getLocation(),
6070 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6071 << TD << /*1st*/ 0 << /*type*/ 0;
6072 }
6073 if (N > 1) {
6074 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1));
6075 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) {
6076 reportIllegalClassTemplate(S, TD);
6077 S.Diag(TD->getLocation(),
6078 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6079 << TD << /*2nd*/ 1 << /*integer*/ 1;
6080 }
6081 }
6082 if (N > 2) {
6083 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(2));
6084 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) {
6085 reportIllegalClassTemplate(S, TD);
6086 S.Diag(TD->getLocation(),
6087 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6088 << TD << /*3rd*/ 2 << /*integer*/ 1;
6089 }
6090 }
6091 }
6092
checkClassLevelCodeSegAttribute(CXXRecordDecl * Class)6093 void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) {
6094 // Mark any compiler-generated routines with the implicit code_seg attribute.
6095 for (auto *Method : Class->methods()) {
6096 if (Method->isUserProvided())
6097 continue;
6098 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true))
6099 Method->addAttr(A);
6100 }
6101 }
6102
6103 /// Check class-level dllimport/dllexport attribute.
checkClassLevelDLLAttribute(CXXRecordDecl * Class)6104 void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) {
6105 Attr *ClassAttr = getDLLAttr(Class);
6106
6107 // MSVC inherits DLL attributes to partial class template specializations.
6108 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && !ClassAttr) {
6109 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) {
6110 if (Attr *TemplateAttr =
6111 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) {
6112 auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext()));
6113 A->setInherited(true);
6114 ClassAttr = A;
6115 }
6116 }
6117 }
6118
6119 if (!ClassAttr)
6120 return;
6121
6122 if (!Class->isExternallyVisible()) {
6123 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern)
6124 << Class << ClassAttr;
6125 return;
6126 }
6127
6128 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
6129 !ClassAttr->isInherited()) {
6130 // Diagnose dll attributes on members of class with dll attribute.
6131 for (Decl *Member : Class->decls()) {
6132 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member))
6133 continue;
6134 InheritableAttr *MemberAttr = getDLLAttr(Member);
6135 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl())
6136 continue;
6137
6138 Diag(MemberAttr->getLocation(),
6139 diag::err_attribute_dll_member_of_dll_class)
6140 << MemberAttr << ClassAttr;
6141 Diag(ClassAttr->getLocation(), diag::note_previous_attribute);
6142 Member->setInvalidDecl();
6143 }
6144 }
6145
6146 if (Class->getDescribedClassTemplate())
6147 // Don't inherit dll attribute until the template is instantiated.
6148 return;
6149
6150 // The class is either imported or exported.
6151 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport;
6152
6153 // Check if this was a dllimport attribute propagated from a derived class to
6154 // a base class template specialization. We don't apply these attributes to
6155 // static data members.
6156 const bool PropagatedImport =
6157 !ClassExported &&
6158 cast<DLLImportAttr>(ClassAttr)->wasPropagatedToBaseTemplate();
6159
6160 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
6161
6162 // Ignore explicit dllexport on explicit class template instantiation
6163 // declarations, except in MinGW mode.
6164 if (ClassExported && !ClassAttr->isInherited() &&
6165 TSK == TSK_ExplicitInstantiationDeclaration &&
6166 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
6167 Class->dropAttr<DLLExportAttr>();
6168 return;
6169 }
6170
6171 // Force declaration of implicit members so they can inherit the attribute.
6172 ForceDeclarationOfImplicitMembers(Class);
6173
6174 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't
6175 // seem to be true in practice?
6176
6177 for (Decl *Member : Class->decls()) {
6178 VarDecl *VD = dyn_cast<VarDecl>(Member);
6179 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
6180
6181 // Only methods and static fields inherit the attributes.
6182 if (!VD && !MD)
6183 continue;
6184
6185 if (MD) {
6186 // Don't process deleted methods.
6187 if (MD->isDeleted())
6188 continue;
6189
6190 if (MD->isInlined()) {
6191 // MinGW does not import or export inline methods. But do it for
6192 // template instantiations.
6193 if (!Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
6194 TSK != TSK_ExplicitInstantiationDeclaration &&
6195 TSK != TSK_ExplicitInstantiationDefinition)
6196 continue;
6197
6198 // MSVC versions before 2015 don't export the move assignment operators
6199 // and move constructor, so don't attempt to import/export them if
6200 // we have a definition.
6201 auto *Ctor = dyn_cast<CXXConstructorDecl>(MD);
6202 if ((MD->isMoveAssignmentOperator() ||
6203 (Ctor && Ctor->isMoveConstructor())) &&
6204 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015))
6205 continue;
6206
6207 // MSVC2015 doesn't export trivial defaulted x-tor but copy assign
6208 // operator is exported anyway.
6209 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
6210 (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial())
6211 continue;
6212 }
6213 }
6214
6215 // Don't apply dllimport attributes to static data members of class template
6216 // instantiations when the attribute is propagated from a derived class.
6217 if (VD && PropagatedImport)
6218 continue;
6219
6220 if (!cast<NamedDecl>(Member)->isExternallyVisible())
6221 continue;
6222
6223 if (!getDLLAttr(Member)) {
6224 InheritableAttr *NewAttr = nullptr;
6225
6226 // Do not export/import inline function when -fno-dllexport-inlines is
6227 // passed. But add attribute for later local static var check.
6228 if (!getLangOpts().DllExportInlines && MD && MD->isInlined() &&
6229 TSK != TSK_ExplicitInstantiationDeclaration &&
6230 TSK != TSK_ExplicitInstantiationDefinition) {
6231 if (ClassExported) {
6232 NewAttr = ::new (getASTContext())
6233 DLLExportStaticLocalAttr(getASTContext(), *ClassAttr);
6234 } else {
6235 NewAttr = ::new (getASTContext())
6236 DLLImportStaticLocalAttr(getASTContext(), *ClassAttr);
6237 }
6238 } else {
6239 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6240 }
6241
6242 NewAttr->setInherited(true);
6243 Member->addAttr(NewAttr);
6244
6245 if (MD) {
6246 // Propagate DLLAttr to friend re-declarations of MD that have already
6247 // been constructed.
6248 for (FunctionDecl *FD = MD->getMostRecentDecl(); FD;
6249 FD = FD->getPreviousDecl()) {
6250 if (FD->getFriendObjectKind() == Decl::FOK_None)
6251 continue;
6252 assert(!getDLLAttr(FD) &&
6253 "friend re-decl should not already have a DLLAttr");
6254 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6255 NewAttr->setInherited(true);
6256 FD->addAttr(NewAttr);
6257 }
6258 }
6259 }
6260 }
6261
6262 if (ClassExported)
6263 DelayedDllExportClasses.push_back(Class);
6264 }
6265
6266 /// Perform propagation of DLL attributes from a derived class to a
6267 /// templated base class for MS compatibility.
propagateDLLAttrToBaseClassTemplate(CXXRecordDecl * Class,Attr * ClassAttr,ClassTemplateSpecializationDecl * BaseTemplateSpec,SourceLocation BaseLoc)6268 void Sema::propagateDLLAttrToBaseClassTemplate(
6269 CXXRecordDecl *Class, Attr *ClassAttr,
6270 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) {
6271 if (getDLLAttr(
6272 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) {
6273 // If the base class template has a DLL attribute, don't try to change it.
6274 return;
6275 }
6276
6277 auto TSK = BaseTemplateSpec->getSpecializationKind();
6278 if (!getDLLAttr(BaseTemplateSpec) &&
6279 (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration ||
6280 TSK == TSK_ImplicitInstantiation)) {
6281 // The template hasn't been instantiated yet (or it has, but only as an
6282 // explicit instantiation declaration or implicit instantiation, which means
6283 // we haven't codegenned any members yet), so propagate the attribute.
6284 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6285 NewAttr->setInherited(true);
6286 BaseTemplateSpec->addAttr(NewAttr);
6287
6288 // If this was an import, mark that we propagated it from a derived class to
6289 // a base class template specialization.
6290 if (auto *ImportAttr = dyn_cast<DLLImportAttr>(NewAttr))
6291 ImportAttr->setPropagatedToBaseTemplate();
6292
6293 // If the template is already instantiated, checkDLLAttributeRedeclaration()
6294 // needs to be run again to work see the new attribute. Otherwise this will
6295 // get run whenever the template is instantiated.
6296 if (TSK != TSK_Undeclared)
6297 checkClassLevelDLLAttribute(BaseTemplateSpec);
6298
6299 return;
6300 }
6301
6302 if (getDLLAttr(BaseTemplateSpec)) {
6303 // The template has already been specialized or instantiated with an
6304 // attribute, explicitly or through propagation. We should not try to change
6305 // it.
6306 return;
6307 }
6308
6309 // The template was previously instantiated or explicitly specialized without
6310 // a dll attribute, It's too late for us to add an attribute, so warn that
6311 // this is unsupported.
6312 Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class)
6313 << BaseTemplateSpec->isExplicitSpecialization();
6314 Diag(ClassAttr->getLocation(), diag::note_attribute);
6315 if (BaseTemplateSpec->isExplicitSpecialization()) {
6316 Diag(BaseTemplateSpec->getLocation(),
6317 diag::note_template_class_explicit_specialization_was_here)
6318 << BaseTemplateSpec;
6319 } else {
6320 Diag(BaseTemplateSpec->getPointOfInstantiation(),
6321 diag::note_template_class_instantiation_was_here)
6322 << BaseTemplateSpec;
6323 }
6324 }
6325
6326 /// Determine the kind of defaulting that would be done for a given function.
6327 ///
6328 /// If the function is both a default constructor and a copy / move constructor
6329 /// (due to having a default argument for the first parameter), this picks
6330 /// CXXDefaultConstructor.
6331 ///
6332 /// FIXME: Check that case is properly handled by all callers.
6333 Sema::DefaultedFunctionKind
getDefaultedFunctionKind(const FunctionDecl * FD)6334 Sema::getDefaultedFunctionKind(const FunctionDecl *FD) {
6335 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
6336 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(FD)) {
6337 if (Ctor->isDefaultConstructor())
6338 return Sema::CXXDefaultConstructor;
6339
6340 if (Ctor->isCopyConstructor())
6341 return Sema::CXXCopyConstructor;
6342
6343 if (Ctor->isMoveConstructor())
6344 return Sema::CXXMoveConstructor;
6345 }
6346
6347 if (MD->isCopyAssignmentOperator())
6348 return Sema::CXXCopyAssignment;
6349
6350 if (MD->isMoveAssignmentOperator())
6351 return Sema::CXXMoveAssignment;
6352
6353 if (isa<CXXDestructorDecl>(FD))
6354 return Sema::CXXDestructor;
6355 }
6356
6357 switch (FD->getDeclName().getCXXOverloadedOperator()) {
6358 case OO_EqualEqual:
6359 return DefaultedComparisonKind::Equal;
6360
6361 case OO_ExclaimEqual:
6362 return DefaultedComparisonKind::NotEqual;
6363
6364 case OO_Spaceship:
6365 // No point allowing this if <=> doesn't exist in the current language mode.
6366 if (!getLangOpts().CPlusPlus20)
6367 break;
6368 return DefaultedComparisonKind::ThreeWay;
6369
6370 case OO_Less:
6371 case OO_LessEqual:
6372 case OO_Greater:
6373 case OO_GreaterEqual:
6374 // No point allowing this if <=> doesn't exist in the current language mode.
6375 if (!getLangOpts().CPlusPlus20)
6376 break;
6377 return DefaultedComparisonKind::Relational;
6378
6379 default:
6380 break;
6381 }
6382
6383 // Not defaultable.
6384 return DefaultedFunctionKind();
6385 }
6386
DefineDefaultedFunction(Sema & S,FunctionDecl * FD,SourceLocation DefaultLoc)6387 static void DefineDefaultedFunction(Sema &S, FunctionDecl *FD,
6388 SourceLocation DefaultLoc) {
6389 Sema::DefaultedFunctionKind DFK = S.getDefaultedFunctionKind(FD);
6390 if (DFK.isComparison())
6391 return S.DefineDefaultedComparison(DefaultLoc, FD, DFK.asComparison());
6392
6393 switch (DFK.asSpecialMember()) {
6394 case Sema::CXXDefaultConstructor:
6395 S.DefineImplicitDefaultConstructor(DefaultLoc,
6396 cast<CXXConstructorDecl>(FD));
6397 break;
6398 case Sema::CXXCopyConstructor:
6399 S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD));
6400 break;
6401 case Sema::CXXCopyAssignment:
6402 S.DefineImplicitCopyAssignment(DefaultLoc, cast<CXXMethodDecl>(FD));
6403 break;
6404 case Sema::CXXDestructor:
6405 S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(FD));
6406 break;
6407 case Sema::CXXMoveConstructor:
6408 S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD));
6409 break;
6410 case Sema::CXXMoveAssignment:
6411 S.DefineImplicitMoveAssignment(DefaultLoc, cast<CXXMethodDecl>(FD));
6412 break;
6413 case Sema::CXXInvalid:
6414 llvm_unreachable("Invalid special member.");
6415 }
6416 }
6417
6418 /// Determine whether a type is permitted to be passed or returned in
6419 /// registers, per C++ [class.temporary]p3.
canPassInRegisters(Sema & S,CXXRecordDecl * D,TargetInfo::CallingConvKind CCK)6420 static bool canPassInRegisters(Sema &S, CXXRecordDecl *D,
6421 TargetInfo::CallingConvKind CCK) {
6422 if (D->isDependentType() || D->isInvalidDecl())
6423 return false;
6424
6425 // Clang <= 4 used the pre-C++11 rule, which ignores move operations.
6426 // The PS4 platform ABI follows the behavior of Clang 3.2.
6427 if (CCK == TargetInfo::CCK_ClangABI4OrPS4)
6428 return !D->hasNonTrivialDestructorForCall() &&
6429 !D->hasNonTrivialCopyConstructorForCall();
6430
6431 if (CCK == TargetInfo::CCK_MicrosoftWin64) {
6432 bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false;
6433 bool DtorIsTrivialForCall = false;
6434
6435 // If a class has at least one non-deleted, trivial copy constructor, it
6436 // is passed according to the C ABI. Otherwise, it is passed indirectly.
6437 //
6438 // Note: This permits classes with non-trivial copy or move ctors to be
6439 // passed in registers, so long as they *also* have a trivial copy ctor,
6440 // which is non-conforming.
6441 if (D->needsImplicitCopyConstructor()) {
6442 if (!D->defaultedCopyConstructorIsDeleted()) {
6443 if (D->hasTrivialCopyConstructor())
6444 CopyCtorIsTrivial = true;
6445 if (D->hasTrivialCopyConstructorForCall())
6446 CopyCtorIsTrivialForCall = true;
6447 }
6448 } else {
6449 for (const CXXConstructorDecl *CD : D->ctors()) {
6450 if (CD->isCopyConstructor() && !CD->isDeleted()) {
6451 if (CD->isTrivial())
6452 CopyCtorIsTrivial = true;
6453 if (CD->isTrivialForCall())
6454 CopyCtorIsTrivialForCall = true;
6455 }
6456 }
6457 }
6458
6459 if (D->needsImplicitDestructor()) {
6460 if (!D->defaultedDestructorIsDeleted() &&
6461 D->hasTrivialDestructorForCall())
6462 DtorIsTrivialForCall = true;
6463 } else if (const auto *DD = D->getDestructor()) {
6464 if (!DD->isDeleted() && DD->isTrivialForCall())
6465 DtorIsTrivialForCall = true;
6466 }
6467
6468 // If the copy ctor and dtor are both trivial-for-calls, pass direct.
6469 if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall)
6470 return true;
6471
6472 // If a class has a destructor, we'd really like to pass it indirectly
6473 // because it allows us to elide copies. Unfortunately, MSVC makes that
6474 // impossible for small types, which it will pass in a single register or
6475 // stack slot. Most objects with dtors are large-ish, so handle that early.
6476 // We can't call out all large objects as being indirect because there are
6477 // multiple x64 calling conventions and the C++ ABI code shouldn't dictate
6478 // how we pass large POD types.
6479
6480 // Note: This permits small classes with nontrivial destructors to be
6481 // passed in registers, which is non-conforming.
6482 bool isAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
6483 uint64_t TypeSize = isAArch64 ? 128 : 64;
6484
6485 if (CopyCtorIsTrivial &&
6486 S.getASTContext().getTypeSize(D->getTypeForDecl()) <= TypeSize)
6487 return true;
6488 return false;
6489 }
6490
6491 // Per C++ [class.temporary]p3, the relevant condition is:
6492 // each copy constructor, move constructor, and destructor of X is
6493 // either trivial or deleted, and X has at least one non-deleted copy
6494 // or move constructor
6495 bool HasNonDeletedCopyOrMove = false;
6496
6497 if (D->needsImplicitCopyConstructor() &&
6498 !D->defaultedCopyConstructorIsDeleted()) {
6499 if (!D->hasTrivialCopyConstructorForCall())
6500 return false;
6501 HasNonDeletedCopyOrMove = true;
6502 }
6503
6504 if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() &&
6505 !D->defaultedMoveConstructorIsDeleted()) {
6506 if (!D->hasTrivialMoveConstructorForCall())
6507 return false;
6508 HasNonDeletedCopyOrMove = true;
6509 }
6510
6511 if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() &&
6512 !D->hasTrivialDestructorForCall())
6513 return false;
6514
6515 for (const CXXMethodDecl *MD : D->methods()) {
6516 if (MD->isDeleted())
6517 continue;
6518
6519 auto *CD = dyn_cast<CXXConstructorDecl>(MD);
6520 if (CD && CD->isCopyOrMoveConstructor())
6521 HasNonDeletedCopyOrMove = true;
6522 else if (!isa<CXXDestructorDecl>(MD))
6523 continue;
6524
6525 if (!MD->isTrivialForCall())
6526 return false;
6527 }
6528
6529 return HasNonDeletedCopyOrMove;
6530 }
6531
6532 /// Report an error regarding overriding, along with any relevant
6533 /// overridden methods.
6534 ///
6535 /// \param DiagID the primary error to report.
6536 /// \param MD the overriding method.
6537 static bool
ReportOverrides(Sema & S,unsigned DiagID,const CXXMethodDecl * MD,llvm::function_ref<bool (const CXXMethodDecl *)> Report)6538 ReportOverrides(Sema &S, unsigned DiagID, const CXXMethodDecl *MD,
6539 llvm::function_ref<bool(const CXXMethodDecl *)> Report) {
6540 bool IssuedDiagnostic = false;
6541 for (const CXXMethodDecl *O : MD->overridden_methods()) {
6542 if (Report(O)) {
6543 if (!IssuedDiagnostic) {
6544 S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
6545 IssuedDiagnostic = true;
6546 }
6547 S.Diag(O->getLocation(), diag::note_overridden_virtual_function);
6548 }
6549 }
6550 return IssuedDiagnostic;
6551 }
6552
6553 /// Perform semantic checks on a class definition that has been
6554 /// completing, introducing implicitly-declared members, checking for
6555 /// abstract types, etc.
6556 ///
6557 /// \param S The scope in which the class was parsed. Null if we didn't just
6558 /// parse a class definition.
6559 /// \param Record The completed class.
CheckCompletedCXXClass(Scope * S,CXXRecordDecl * Record)6560 void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
6561 if (!Record)
6562 return;
6563
6564 if (Record->isAbstract() && !Record->isInvalidDecl()) {
6565 AbstractUsageInfo Info(*this, Record);
6566 CheckAbstractClassUsage(Info, Record);
6567 }
6568
6569 // If this is not an aggregate type and has no user-declared constructor,
6570 // complain about any non-static data members of reference or const scalar
6571 // type, since they will never get initializers.
6572 if (!Record->isInvalidDecl() && !Record->isDependentType() &&
6573 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
6574 !Record->isLambda()) {
6575 bool Complained = false;
6576 for (const auto *F : Record->fields()) {
6577 if (F->hasInClassInitializer() || F->isUnnamedBitfield())
6578 continue;
6579
6580 if (F->getType()->isReferenceType() ||
6581 (F->getType().isConstQualified() && F->getType()->isScalarType())) {
6582 if (!Complained) {
6583 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
6584 << Record->getTagKind() << Record;
6585 Complained = true;
6586 }
6587
6588 Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
6589 << F->getType()->isReferenceType()
6590 << F->getDeclName();
6591 }
6592 }
6593 }
6594
6595 if (Record->getIdentifier()) {
6596 // C++ [class.mem]p13:
6597 // If T is the name of a class, then each of the following shall have a
6598 // name different from T:
6599 // - every member of every anonymous union that is a member of class T.
6600 //
6601 // C++ [class.mem]p14:
6602 // In addition, if class T has a user-declared constructor (12.1), every
6603 // non-static data member of class T shall have a name different from T.
6604 DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
6605 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6606 ++I) {
6607 NamedDecl *D = (*I)->getUnderlyingDecl();
6608 if (((isa<FieldDecl>(D) || isa<UnresolvedUsingValueDecl>(D)) &&
6609 Record->hasUserDeclaredConstructor()) ||
6610 isa<IndirectFieldDecl>(D)) {
6611 Diag((*I)->getLocation(), diag::err_member_name_of_class)
6612 << D->getDeclName();
6613 break;
6614 }
6615 }
6616 }
6617
6618 // Warn if the class has virtual methods but non-virtual public destructor.
6619 if (Record->isPolymorphic() && !Record->isDependentType()) {
6620 CXXDestructorDecl *dtor = Record->getDestructor();
6621 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) &&
6622 !Record->hasAttr<FinalAttr>())
6623 Diag(dtor ? dtor->getLocation() : Record->getLocation(),
6624 diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
6625 }
6626
6627 if (Record->isAbstract()) {
6628 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
6629 Diag(Record->getLocation(), diag::warn_abstract_final_class)
6630 << FA->isSpelledAsSealed();
6631 DiagnoseAbstractType(Record);
6632 }
6633 }
6634
6635 // Warn if the class has a final destructor but is not itself marked final.
6636 if (!Record->hasAttr<FinalAttr>()) {
6637 if (const CXXDestructorDecl *dtor = Record->getDestructor()) {
6638 if (const FinalAttr *FA = dtor->getAttr<FinalAttr>()) {
6639 Diag(FA->getLocation(), diag::warn_final_dtor_non_final_class)
6640 << FA->isSpelledAsSealed()
6641 << FixItHint::CreateInsertion(
6642 getLocForEndOfToken(Record->getLocation()),
6643 (FA->isSpelledAsSealed() ? " sealed" : " final"));
6644 Diag(Record->getLocation(),
6645 diag::note_final_dtor_non_final_class_silence)
6646 << Context.getRecordType(Record) << FA->isSpelledAsSealed();
6647 }
6648 }
6649 }
6650
6651 // See if trivial_abi has to be dropped.
6652 if (Record->hasAttr<TrivialABIAttr>())
6653 checkIllFormedTrivialABIStruct(*Record);
6654
6655 // Set HasTrivialSpecialMemberForCall if the record has attribute
6656 // "trivial_abi".
6657 bool HasTrivialABI = Record->hasAttr<TrivialABIAttr>();
6658
6659 if (HasTrivialABI)
6660 Record->setHasTrivialSpecialMemberForCall();
6661
6662 // Explicitly-defaulted secondary comparison functions (!=, <, <=, >, >=).
6663 // We check these last because they can depend on the properties of the
6664 // primary comparison functions (==, <=>).
6665 llvm::SmallVector<FunctionDecl*, 5> DefaultedSecondaryComparisons;
6666
6667 // Perform checks that can't be done until we know all the properties of a
6668 // member function (whether it's defaulted, deleted, virtual, overriding,
6669 // ...).
6670 auto CheckCompletedMemberFunction = [&](CXXMethodDecl *MD) {
6671 // A static function cannot override anything.
6672 if (MD->getStorageClass() == SC_Static) {
6673 if (ReportOverrides(*this, diag::err_static_overrides_virtual, MD,
6674 [](const CXXMethodDecl *) { return true; }))
6675 return;
6676 }
6677
6678 // A deleted function cannot override a non-deleted function and vice
6679 // versa.
6680 if (ReportOverrides(*this,
6681 MD->isDeleted() ? diag::err_deleted_override
6682 : diag::err_non_deleted_override,
6683 MD, [&](const CXXMethodDecl *V) {
6684 return MD->isDeleted() != V->isDeleted();
6685 })) {
6686 if (MD->isDefaulted() && MD->isDeleted())
6687 // Explain why this defaulted function was deleted.
6688 DiagnoseDeletedDefaultedFunction(MD);
6689 return;
6690 }
6691
6692 // A consteval function cannot override a non-consteval function and vice
6693 // versa.
6694 if (ReportOverrides(*this,
6695 MD->isConsteval() ? diag::err_consteval_override
6696 : diag::err_non_consteval_override,
6697 MD, [&](const CXXMethodDecl *V) {
6698 return MD->isConsteval() != V->isConsteval();
6699 })) {
6700 if (MD->isDefaulted() && MD->isDeleted())
6701 // Explain why this defaulted function was deleted.
6702 DiagnoseDeletedDefaultedFunction(MD);
6703 return;
6704 }
6705 };
6706
6707 auto CheckForDefaultedFunction = [&](FunctionDecl *FD) -> bool {
6708 if (!FD || FD->isInvalidDecl() || !FD->isExplicitlyDefaulted())
6709 return false;
6710
6711 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD);
6712 if (DFK.asComparison() == DefaultedComparisonKind::NotEqual ||
6713 DFK.asComparison() == DefaultedComparisonKind::Relational) {
6714 DefaultedSecondaryComparisons.push_back(FD);
6715 return true;
6716 }
6717
6718 CheckExplicitlyDefaultedFunction(S, FD);
6719 return false;
6720 };
6721
6722 auto CompleteMemberFunction = [&](CXXMethodDecl *M) {
6723 // Check whether the explicitly-defaulted members are valid.
6724 bool Incomplete = CheckForDefaultedFunction(M);
6725
6726 // Skip the rest of the checks for a member of a dependent class.
6727 if (Record->isDependentType())
6728 return;
6729
6730 // For an explicitly defaulted or deleted special member, we defer
6731 // determining triviality until the class is complete. That time is now!
6732 CXXSpecialMember CSM = getSpecialMember(M);
6733 if (!M->isImplicit() && !M->isUserProvided()) {
6734 if (CSM != CXXInvalid) {
6735 M->setTrivial(SpecialMemberIsTrivial(M, CSM));
6736 // Inform the class that we've finished declaring this member.
6737 Record->finishedDefaultedOrDeletedMember(M);
6738 M->setTrivialForCall(
6739 HasTrivialABI ||
6740 SpecialMemberIsTrivial(M, CSM, TAH_ConsiderTrivialABI));
6741 Record->setTrivialForCallFlags(M);
6742 }
6743 }
6744
6745 // Set triviality for the purpose of calls if this is a user-provided
6746 // copy/move constructor or destructor.
6747 if ((CSM == CXXCopyConstructor || CSM == CXXMoveConstructor ||
6748 CSM == CXXDestructor) && M->isUserProvided()) {
6749 M->setTrivialForCall(HasTrivialABI);
6750 Record->setTrivialForCallFlags(M);
6751 }
6752
6753 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() &&
6754 M->hasAttr<DLLExportAttr>()) {
6755 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
6756 M->isTrivial() &&
6757 (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor ||
6758 CSM == CXXDestructor))
6759 M->dropAttr<DLLExportAttr>();
6760
6761 if (M->hasAttr<DLLExportAttr>()) {
6762 // Define after any fields with in-class initializers have been parsed.
6763 DelayedDllExportMemberFunctions.push_back(M);
6764 }
6765 }
6766
6767 // Define defaulted constexpr virtual functions that override a base class
6768 // function right away.
6769 // FIXME: We can defer doing this until the vtable is marked as used.
6770 if (M->isDefaulted() && M->isConstexpr() && M->size_overridden_methods())
6771 DefineDefaultedFunction(*this, M, M->getLocation());
6772
6773 if (!Incomplete)
6774 CheckCompletedMemberFunction(M);
6775 };
6776
6777 // Check the destructor before any other member function. We need to
6778 // determine whether it's trivial in order to determine whether the claas
6779 // type is a literal type, which is a prerequisite for determining whether
6780 // other special member functions are valid and whether they're implicitly
6781 // 'constexpr'.
6782 if (CXXDestructorDecl *Dtor = Record->getDestructor())
6783 CompleteMemberFunction(Dtor);
6784
6785 bool HasMethodWithOverrideControl = false,
6786 HasOverridingMethodWithoutOverrideControl = false;
6787 for (auto *D : Record->decls()) {
6788 if (auto *M = dyn_cast<CXXMethodDecl>(D)) {
6789 // FIXME: We could do this check for dependent types with non-dependent
6790 // bases.
6791 if (!Record->isDependentType()) {
6792 // See if a method overloads virtual methods in a base
6793 // class without overriding any.
6794 if (!M->isStatic())
6795 DiagnoseHiddenVirtualMethods(M);
6796 if (M->hasAttr<OverrideAttr>())
6797 HasMethodWithOverrideControl = true;
6798 else if (M->size_overridden_methods() > 0)
6799 HasOverridingMethodWithoutOverrideControl = true;
6800 }
6801
6802 if (!isa<CXXDestructorDecl>(M))
6803 CompleteMemberFunction(M);
6804 } else if (auto *F = dyn_cast<FriendDecl>(D)) {
6805 CheckForDefaultedFunction(
6806 dyn_cast_or_null<FunctionDecl>(F->getFriendDecl()));
6807 }
6808 }
6809
6810 if (HasOverridingMethodWithoutOverrideControl) {
6811 bool HasInconsistentOverrideControl = HasMethodWithOverrideControl;
6812 for (auto *M : Record->methods())
6813 DiagnoseAbsenceOfOverrideControl(M, HasInconsistentOverrideControl);
6814 }
6815
6816 // Check the defaulted secondary comparisons after any other member functions.
6817 for (FunctionDecl *FD : DefaultedSecondaryComparisons) {
6818 CheckExplicitlyDefaultedFunction(S, FD);
6819
6820 // If this is a member function, we deferred checking it until now.
6821 if (auto *MD = dyn_cast<CXXMethodDecl>(FD))
6822 CheckCompletedMemberFunction(MD);
6823 }
6824
6825 // ms_struct is a request to use the same ABI rules as MSVC. Check
6826 // whether this class uses any C++ features that are implemented
6827 // completely differently in MSVC, and if so, emit a diagnostic.
6828 // That diagnostic defaults to an error, but we allow projects to
6829 // map it down to a warning (or ignore it). It's a fairly common
6830 // practice among users of the ms_struct pragma to mass-annotate
6831 // headers, sweeping up a bunch of types that the project doesn't
6832 // really rely on MSVC-compatible layout for. We must therefore
6833 // support "ms_struct except for C++ stuff" as a secondary ABI.
6834 // Don't emit this diagnostic if the feature was enabled as a
6835 // language option (as opposed to via a pragma or attribute), as
6836 // the option -mms-bitfields otherwise essentially makes it impossible
6837 // to build C++ code, unless this diagnostic is turned off.
6838 if (Record->isMsStruct(Context) && !Context.getLangOpts().MSBitfields &&
6839 (Record->isPolymorphic() || Record->getNumBases())) {
6840 Diag(Record->getLocation(), diag::warn_cxx_ms_struct);
6841 }
6842
6843 checkClassLevelDLLAttribute(Record);
6844 checkClassLevelCodeSegAttribute(Record);
6845
6846 bool ClangABICompat4 =
6847 Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4;
6848 TargetInfo::CallingConvKind CCK =
6849 Context.getTargetInfo().getCallingConvKind(ClangABICompat4);
6850 bool CanPass = canPassInRegisters(*this, Record, CCK);
6851
6852 // Do not change ArgPassingRestrictions if it has already been set to
6853 // APK_CanNeverPassInRegs.
6854 if (Record->getArgPassingRestrictions() != RecordDecl::APK_CanNeverPassInRegs)
6855 Record->setArgPassingRestrictions(CanPass
6856 ? RecordDecl::APK_CanPassInRegs
6857 : RecordDecl::APK_CannotPassInRegs);
6858
6859 // If canPassInRegisters returns true despite the record having a non-trivial
6860 // destructor, the record is destructed in the callee. This happens only when
6861 // the record or one of its subobjects has a field annotated with trivial_abi
6862 // or a field qualified with ObjC __strong/__weak.
6863 if (Context.getTargetInfo().getCXXABI().areArgsDestroyedLeftToRightInCallee())
6864 Record->setParamDestroyedInCallee(true);
6865 else if (Record->hasNonTrivialDestructor())
6866 Record->setParamDestroyedInCallee(CanPass);
6867
6868 if (getLangOpts().ForceEmitVTables) {
6869 // If we want to emit all the vtables, we need to mark it as used. This
6870 // is especially required for cases like vtable assumption loads.
6871 MarkVTableUsed(Record->getInnerLocStart(), Record);
6872 }
6873
6874 if (getLangOpts().CUDA) {
6875 if (Record->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>())
6876 checkCUDADeviceBuiltinSurfaceClassTemplate(*this, Record);
6877 else if (Record->hasAttr<CUDADeviceBuiltinTextureTypeAttr>())
6878 checkCUDADeviceBuiltinTextureClassTemplate(*this, Record);
6879 }
6880 }
6881
6882 /// Look up the special member function that would be called by a special
6883 /// member function for a subobject of class type.
6884 ///
6885 /// \param Class The class type of the subobject.
6886 /// \param CSM The kind of special member function.
6887 /// \param FieldQuals If the subobject is a field, its cv-qualifiers.
6888 /// \param ConstRHS True if this is a copy operation with a const object
6889 /// on its RHS, that is, if the argument to the outer special member
6890 /// function is 'const' and this is not a field marked 'mutable'.
lookupCallFromSpecialMember(Sema & S,CXXRecordDecl * Class,Sema::CXXSpecialMember CSM,unsigned FieldQuals,bool ConstRHS)6891 static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember(
6892 Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM,
6893 unsigned FieldQuals, bool ConstRHS) {
6894 unsigned LHSQuals = 0;
6895 if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment)
6896 LHSQuals = FieldQuals;
6897
6898 unsigned RHSQuals = FieldQuals;
6899 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
6900 RHSQuals = 0;
6901 else if (ConstRHS)
6902 RHSQuals |= Qualifiers::Const;
6903
6904 return S.LookupSpecialMember(Class, CSM,
6905 RHSQuals & Qualifiers::Const,
6906 RHSQuals & Qualifiers::Volatile,
6907 false,
6908 LHSQuals & Qualifiers::Const,
6909 LHSQuals & Qualifiers::Volatile);
6910 }
6911
6912 class Sema::InheritedConstructorInfo {
6913 Sema &S;
6914 SourceLocation UseLoc;
6915
6916 /// A mapping from the base classes through which the constructor was
6917 /// inherited to the using shadow declaration in that base class (or a null
6918 /// pointer if the constructor was declared in that base class).
6919 llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *>
6920 InheritedFromBases;
6921
6922 public:
InheritedConstructorInfo(Sema & S,SourceLocation UseLoc,ConstructorUsingShadowDecl * Shadow)6923 InheritedConstructorInfo(Sema &S, SourceLocation UseLoc,
6924 ConstructorUsingShadowDecl *Shadow)
6925 : S(S), UseLoc(UseLoc) {
6926 bool DiagnosedMultipleConstructedBases = false;
6927 CXXRecordDecl *ConstructedBase = nullptr;
6928 UsingDecl *ConstructedBaseUsing = nullptr;
6929
6930 // Find the set of such base class subobjects and check that there's a
6931 // unique constructed subobject.
6932 for (auto *D : Shadow->redecls()) {
6933 auto *DShadow = cast<ConstructorUsingShadowDecl>(D);
6934 auto *DNominatedBase = DShadow->getNominatedBaseClass();
6935 auto *DConstructedBase = DShadow->getConstructedBaseClass();
6936
6937 InheritedFromBases.insert(
6938 std::make_pair(DNominatedBase->getCanonicalDecl(),
6939 DShadow->getNominatedBaseClassShadowDecl()));
6940 if (DShadow->constructsVirtualBase())
6941 InheritedFromBases.insert(
6942 std::make_pair(DConstructedBase->getCanonicalDecl(),
6943 DShadow->getConstructedBaseClassShadowDecl()));
6944 else
6945 assert(DNominatedBase == DConstructedBase);
6946
6947 // [class.inhctor.init]p2:
6948 // If the constructor was inherited from multiple base class subobjects
6949 // of type B, the program is ill-formed.
6950 if (!ConstructedBase) {
6951 ConstructedBase = DConstructedBase;
6952 ConstructedBaseUsing = D->getUsingDecl();
6953 } else if (ConstructedBase != DConstructedBase &&
6954 !Shadow->isInvalidDecl()) {
6955 if (!DiagnosedMultipleConstructedBases) {
6956 S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor)
6957 << Shadow->getTargetDecl();
6958 S.Diag(ConstructedBaseUsing->getLocation(),
6959 diag::note_ambiguous_inherited_constructor_using)
6960 << ConstructedBase;
6961 DiagnosedMultipleConstructedBases = true;
6962 }
6963 S.Diag(D->getUsingDecl()->getLocation(),
6964 diag::note_ambiguous_inherited_constructor_using)
6965 << DConstructedBase;
6966 }
6967 }
6968
6969 if (DiagnosedMultipleConstructedBases)
6970 Shadow->setInvalidDecl();
6971 }
6972
6973 /// Find the constructor to use for inherited construction of a base class,
6974 /// and whether that base class constructor inherits the constructor from a
6975 /// virtual base class (in which case it won't actually invoke it).
6976 std::pair<CXXConstructorDecl *, bool>
findConstructorForBase(CXXRecordDecl * Base,CXXConstructorDecl * Ctor) const6977 findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const {
6978 auto It = InheritedFromBases.find(Base->getCanonicalDecl());
6979 if (It == InheritedFromBases.end())
6980 return std::make_pair(nullptr, false);
6981
6982 // This is an intermediary class.
6983 if (It->second)
6984 return std::make_pair(
6985 S.findInheritingConstructor(UseLoc, Ctor, It->second),
6986 It->second->constructsVirtualBase());
6987
6988 // This is the base class from which the constructor was inherited.
6989 return std::make_pair(Ctor, false);
6990 }
6991 };
6992
6993 /// Is the special member function which would be selected to perform the
6994 /// specified operation on the specified class type a constexpr constructor?
6995 static bool
specialMemberIsConstexpr(Sema & S,CXXRecordDecl * ClassDecl,Sema::CXXSpecialMember CSM,unsigned Quals,bool ConstRHS,CXXConstructorDecl * InheritedCtor=nullptr,Sema::InheritedConstructorInfo * Inherited=nullptr)6996 specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
6997 Sema::CXXSpecialMember CSM, unsigned Quals,
6998 bool ConstRHS,
6999 CXXConstructorDecl *InheritedCtor = nullptr,
7000 Sema::InheritedConstructorInfo *Inherited = nullptr) {
7001 // If we're inheriting a constructor, see if we need to call it for this base
7002 // class.
7003 if (InheritedCtor) {
7004 assert(CSM == Sema::CXXDefaultConstructor);
7005 auto BaseCtor =
7006 Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first;
7007 if (BaseCtor)
7008 return BaseCtor->isConstexpr();
7009 }
7010
7011 if (CSM == Sema::CXXDefaultConstructor)
7012 return ClassDecl->hasConstexprDefaultConstructor();
7013 if (CSM == Sema::CXXDestructor)
7014 return ClassDecl->hasConstexprDestructor();
7015
7016 Sema::SpecialMemberOverloadResult SMOR =
7017 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS);
7018 if (!SMOR.getMethod())
7019 // A constructor we wouldn't select can't be "involved in initializing"
7020 // anything.
7021 return true;
7022 return SMOR.getMethod()->isConstexpr();
7023 }
7024
7025 /// Determine whether the specified special member function would be constexpr
7026 /// if it were implicitly defined.
defaultedSpecialMemberIsConstexpr(Sema & S,CXXRecordDecl * ClassDecl,Sema::CXXSpecialMember CSM,bool ConstArg,CXXConstructorDecl * InheritedCtor=nullptr,Sema::InheritedConstructorInfo * Inherited=nullptr)7027 static bool defaultedSpecialMemberIsConstexpr(
7028 Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM,
7029 bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr,
7030 Sema::InheritedConstructorInfo *Inherited = nullptr) {
7031 if (!S.getLangOpts().CPlusPlus11)
7032 return false;
7033
7034 // C++11 [dcl.constexpr]p4:
7035 // In the definition of a constexpr constructor [...]
7036 bool Ctor = true;
7037 switch (CSM) {
7038 case Sema::CXXDefaultConstructor:
7039 if (Inherited)
7040 break;
7041 // Since default constructor lookup is essentially trivial (and cannot
7042 // involve, for instance, template instantiation), we compute whether a
7043 // defaulted default constructor is constexpr directly within CXXRecordDecl.
7044 //
7045 // This is important for performance; we need to know whether the default
7046 // constructor is constexpr to determine whether the type is a literal type.
7047 return ClassDecl->defaultedDefaultConstructorIsConstexpr();
7048
7049 case Sema::CXXCopyConstructor:
7050 case Sema::CXXMoveConstructor:
7051 // For copy or move constructors, we need to perform overload resolution.
7052 break;
7053
7054 case Sema::CXXCopyAssignment:
7055 case Sema::CXXMoveAssignment:
7056 if (!S.getLangOpts().CPlusPlus14)
7057 return false;
7058 // In C++1y, we need to perform overload resolution.
7059 Ctor = false;
7060 break;
7061
7062 case Sema::CXXDestructor:
7063 return ClassDecl->defaultedDestructorIsConstexpr();
7064
7065 case Sema::CXXInvalid:
7066 return false;
7067 }
7068
7069 // -- if the class is a non-empty union, or for each non-empty anonymous
7070 // union member of a non-union class, exactly one non-static data member
7071 // shall be initialized; [DR1359]
7072 //
7073 // If we squint, this is guaranteed, since exactly one non-static data member
7074 // will be initialized (if the constructor isn't deleted), we just don't know
7075 // which one.
7076 if (Ctor && ClassDecl->isUnion())
7077 return CSM == Sema::CXXDefaultConstructor
7078 ? ClassDecl->hasInClassInitializer() ||
7079 !ClassDecl->hasVariantMembers()
7080 : true;
7081
7082 // -- the class shall not have any virtual base classes;
7083 if (Ctor && ClassDecl->getNumVBases())
7084 return false;
7085
7086 // C++1y [class.copy]p26:
7087 // -- [the class] is a literal type, and
7088 if (!Ctor && !ClassDecl->isLiteral())
7089 return false;
7090
7091 // -- every constructor involved in initializing [...] base class
7092 // sub-objects shall be a constexpr constructor;
7093 // -- the assignment operator selected to copy/move each direct base
7094 // class is a constexpr function, and
7095 for (const auto &B : ClassDecl->bases()) {
7096 const RecordType *BaseType = B.getType()->getAs<RecordType>();
7097 if (!BaseType) continue;
7098
7099 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7100 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg,
7101 InheritedCtor, Inherited))
7102 return false;
7103 }
7104
7105 // -- every constructor involved in initializing non-static data members
7106 // [...] shall be a constexpr constructor;
7107 // -- every non-static data member and base class sub-object shall be
7108 // initialized
7109 // -- for each non-static data member of X that is of class type (or array
7110 // thereof), the assignment operator selected to copy/move that member is
7111 // a constexpr function
7112 for (const auto *F : ClassDecl->fields()) {
7113 if (F->isInvalidDecl())
7114 continue;
7115 if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer())
7116 continue;
7117 QualType BaseType = S.Context.getBaseElementType(F->getType());
7118 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
7119 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7120 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM,
7121 BaseType.getCVRQualifiers(),
7122 ConstArg && !F->isMutable()))
7123 return false;
7124 } else if (CSM == Sema::CXXDefaultConstructor) {
7125 return false;
7126 }
7127 }
7128
7129 // All OK, it's constexpr!
7130 return true;
7131 }
7132
7133 namespace {
7134 /// RAII object to register a defaulted function as having its exception
7135 /// specification computed.
7136 struct ComputingExceptionSpec {
7137 Sema &S;
7138
ComputingExceptionSpec__anonedc74bd71d11::ComputingExceptionSpec7139 ComputingExceptionSpec(Sema &S, FunctionDecl *FD, SourceLocation Loc)
7140 : S(S) {
7141 Sema::CodeSynthesisContext Ctx;
7142 Ctx.Kind = Sema::CodeSynthesisContext::ExceptionSpecEvaluation;
7143 Ctx.PointOfInstantiation = Loc;
7144 Ctx.Entity = FD;
7145 S.pushCodeSynthesisContext(Ctx);
7146 }
~ComputingExceptionSpec__anonedc74bd71d11::ComputingExceptionSpec7147 ~ComputingExceptionSpec() {
7148 S.popCodeSynthesisContext();
7149 }
7150 };
7151 }
7152
7153 static Sema::ImplicitExceptionSpecification
7154 ComputeDefaultedSpecialMemberExceptionSpec(
7155 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
7156 Sema::InheritedConstructorInfo *ICI);
7157
7158 static Sema::ImplicitExceptionSpecification
7159 ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc,
7160 FunctionDecl *FD,
7161 Sema::DefaultedComparisonKind DCK);
7162
7163 static Sema::ImplicitExceptionSpecification
computeImplicitExceptionSpec(Sema & S,SourceLocation Loc,FunctionDecl * FD)7164 computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, FunctionDecl *FD) {
7165 auto DFK = S.getDefaultedFunctionKind(FD);
7166 if (DFK.isSpecialMember())
7167 return ComputeDefaultedSpecialMemberExceptionSpec(
7168 S, Loc, cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), nullptr);
7169 if (DFK.isComparison())
7170 return ComputeDefaultedComparisonExceptionSpec(S, Loc, FD,
7171 DFK.asComparison());
7172
7173 auto *CD = cast<CXXConstructorDecl>(FD);
7174 assert(CD->getInheritedConstructor() &&
7175 "only defaulted functions and inherited constructors have implicit "
7176 "exception specs");
7177 Sema::InheritedConstructorInfo ICI(
7178 S, Loc, CD->getInheritedConstructor().getShadowDecl());
7179 return ComputeDefaultedSpecialMemberExceptionSpec(
7180 S, Loc, CD, Sema::CXXDefaultConstructor, &ICI);
7181 }
7182
getImplicitMethodEPI(Sema & S,CXXMethodDecl * MD)7183 static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
7184 CXXMethodDecl *MD) {
7185 FunctionProtoType::ExtProtoInfo EPI;
7186
7187 // Build an exception specification pointing back at this member.
7188 EPI.ExceptionSpec.Type = EST_Unevaluated;
7189 EPI.ExceptionSpec.SourceDecl = MD;
7190
7191 // Set the calling convention to the default for C++ instance methods.
7192 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
7193 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
7194 /*IsCXXMethod=*/true));
7195 return EPI;
7196 }
7197
EvaluateImplicitExceptionSpec(SourceLocation Loc,FunctionDecl * FD)7198 void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD) {
7199 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
7200 if (FPT->getExceptionSpecType() != EST_Unevaluated)
7201 return;
7202
7203 // Evaluate the exception specification.
7204 auto IES = computeImplicitExceptionSpec(*this, Loc, FD);
7205 auto ESI = IES.getExceptionSpec();
7206
7207 // Update the type of the special member to use it.
7208 UpdateExceptionSpec(FD, ESI);
7209 }
7210
CheckExplicitlyDefaultedFunction(Scope * S,FunctionDecl * FD)7211 void Sema::CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *FD) {
7212 assert(FD->isExplicitlyDefaulted() && "not explicitly-defaulted");
7213
7214 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD);
7215 if (!DefKind) {
7216 assert(FD->getDeclContext()->isDependentContext());
7217 return;
7218 }
7219
7220 if (DefKind.isSpecialMember()
7221 ? CheckExplicitlyDefaultedSpecialMember(cast<CXXMethodDecl>(FD),
7222 DefKind.asSpecialMember())
7223 : CheckExplicitlyDefaultedComparison(S, FD, DefKind.asComparison()))
7224 FD->setInvalidDecl();
7225 }
7226
CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl * MD,CXXSpecialMember CSM)7227 bool Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD,
7228 CXXSpecialMember CSM) {
7229 CXXRecordDecl *RD = MD->getParent();
7230
7231 assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
7232 "not an explicitly-defaulted special member");
7233
7234 // Defer all checking for special members of a dependent type.
7235 if (RD->isDependentType())
7236 return false;
7237
7238 // Whether this was the first-declared instance of the constructor.
7239 // This affects whether we implicitly add an exception spec and constexpr.
7240 bool First = MD == MD->getCanonicalDecl();
7241
7242 bool HadError = false;
7243
7244 // C++11 [dcl.fct.def.default]p1:
7245 // A function that is explicitly defaulted shall
7246 // -- be a special member function [...] (checked elsewhere),
7247 // -- have the same type (except for ref-qualifiers, and except that a
7248 // copy operation can take a non-const reference) as an implicit
7249 // declaration, and
7250 // -- not have default arguments.
7251 // C++2a changes the second bullet to instead delete the function if it's
7252 // defaulted on its first declaration, unless it's "an assignment operator,
7253 // and its return type differs or its parameter type is not a reference".
7254 bool DeleteOnTypeMismatch = getLangOpts().CPlusPlus20 && First;
7255 bool ShouldDeleteForTypeMismatch = false;
7256 unsigned ExpectedParams = 1;
7257 if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
7258 ExpectedParams = 0;
7259 if (MD->getNumParams() != ExpectedParams) {
7260 // This checks for default arguments: a copy or move constructor with a
7261 // default argument is classified as a default constructor, and assignment
7262 // operations and destructors can't have default arguments.
7263 Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
7264 << CSM << MD->getSourceRange();
7265 HadError = true;
7266 } else if (MD->isVariadic()) {
7267 if (DeleteOnTypeMismatch)
7268 ShouldDeleteForTypeMismatch = true;
7269 else {
7270 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
7271 << CSM << MD->getSourceRange();
7272 HadError = true;
7273 }
7274 }
7275
7276 const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
7277
7278 bool CanHaveConstParam = false;
7279 if (CSM == CXXCopyConstructor)
7280 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
7281 else if (CSM == CXXCopyAssignment)
7282 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
7283
7284 QualType ReturnType = Context.VoidTy;
7285 if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
7286 // Check for return type matching.
7287 ReturnType = Type->getReturnType();
7288
7289 QualType DeclType = Context.getTypeDeclType(RD);
7290 DeclType = Context.getAddrSpaceQualType(DeclType, MD->getMethodQualifiers().getAddressSpace());
7291 QualType ExpectedReturnType = Context.getLValueReferenceType(DeclType);
7292
7293 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
7294 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
7295 << (CSM == CXXMoveAssignment) << ExpectedReturnType;
7296 HadError = true;
7297 }
7298
7299 // A defaulted special member cannot have cv-qualifiers.
7300 if (Type->getMethodQuals().hasConst() || Type->getMethodQuals().hasVolatile()) {
7301 if (DeleteOnTypeMismatch)
7302 ShouldDeleteForTypeMismatch = true;
7303 else {
7304 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
7305 << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14;
7306 HadError = true;
7307 }
7308 }
7309 }
7310
7311 // Check for parameter type matching.
7312 QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType();
7313 bool HasConstParam = false;
7314 if (ExpectedParams && ArgType->isReferenceType()) {
7315 // Argument must be reference to possibly-const T.
7316 QualType ReferentType = ArgType->getPointeeType();
7317 HasConstParam = ReferentType.isConstQualified();
7318
7319 if (ReferentType.isVolatileQualified()) {
7320 if (DeleteOnTypeMismatch)
7321 ShouldDeleteForTypeMismatch = true;
7322 else {
7323 Diag(MD->getLocation(),
7324 diag::err_defaulted_special_member_volatile_param) << CSM;
7325 HadError = true;
7326 }
7327 }
7328
7329 if (HasConstParam && !CanHaveConstParam) {
7330 if (DeleteOnTypeMismatch)
7331 ShouldDeleteForTypeMismatch = true;
7332 else if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
7333 Diag(MD->getLocation(),
7334 diag::err_defaulted_special_member_copy_const_param)
7335 << (CSM == CXXCopyAssignment);
7336 // FIXME: Explain why this special member can't be const.
7337 HadError = true;
7338 } else {
7339 Diag(MD->getLocation(),
7340 diag::err_defaulted_special_member_move_const_param)
7341 << (CSM == CXXMoveAssignment);
7342 HadError = true;
7343 }
7344 }
7345 } else if (ExpectedParams) {
7346 // A copy assignment operator can take its argument by value, but a
7347 // defaulted one cannot.
7348 assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
7349 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
7350 HadError = true;
7351 }
7352
7353 // C++11 [dcl.fct.def.default]p2:
7354 // An explicitly-defaulted function may be declared constexpr only if it
7355 // would have been implicitly declared as constexpr,
7356 // Do not apply this rule to members of class templates, since core issue 1358
7357 // makes such functions always instantiate to constexpr functions. For
7358 // functions which cannot be constexpr (for non-constructors in C++11 and for
7359 // destructors in C++14 and C++17), this is checked elsewhere.
7360 //
7361 // FIXME: This should not apply if the member is deleted.
7362 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
7363 HasConstParam);
7364 if ((getLangOpts().CPlusPlus20 ||
7365 (getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD)
7366 : isa<CXXConstructorDecl>(MD))) &&
7367 MD->isConstexpr() && !Constexpr &&
7368 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
7369 Diag(MD->getBeginLoc(), MD->isConsteval()
7370 ? diag::err_incorrect_defaulted_consteval
7371 : diag::err_incorrect_defaulted_constexpr)
7372 << CSM;
7373 // FIXME: Explain why the special member can't be constexpr.
7374 HadError = true;
7375 }
7376
7377 if (First) {
7378 // C++2a [dcl.fct.def.default]p3:
7379 // If a function is explicitly defaulted on its first declaration, it is
7380 // implicitly considered to be constexpr if the implicit declaration
7381 // would be.
7382 MD->setConstexprKind(Constexpr ? (MD->isConsteval()
7383 ? ConstexprSpecKind::Consteval
7384 : ConstexprSpecKind::Constexpr)
7385 : ConstexprSpecKind::Unspecified);
7386
7387 if (!Type->hasExceptionSpec()) {
7388 // C++2a [except.spec]p3:
7389 // If a declaration of a function does not have a noexcept-specifier
7390 // [and] is defaulted on its first declaration, [...] the exception
7391 // specification is as specified below
7392 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
7393 EPI.ExceptionSpec.Type = EST_Unevaluated;
7394 EPI.ExceptionSpec.SourceDecl = MD;
7395 MD->setType(Context.getFunctionType(ReturnType,
7396 llvm::makeArrayRef(&ArgType,
7397 ExpectedParams),
7398 EPI));
7399 }
7400 }
7401
7402 if (ShouldDeleteForTypeMismatch || ShouldDeleteSpecialMember(MD, CSM)) {
7403 if (First) {
7404 SetDeclDeleted(MD, MD->getLocation());
7405 if (!inTemplateInstantiation() && !HadError) {
7406 Diag(MD->getLocation(), diag::warn_defaulted_method_deleted) << CSM;
7407 if (ShouldDeleteForTypeMismatch) {
7408 Diag(MD->getLocation(), diag::note_deleted_type_mismatch) << CSM;
7409 } else {
7410 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true);
7411 }
7412 }
7413 if (ShouldDeleteForTypeMismatch && !HadError) {
7414 Diag(MD->getLocation(),
7415 diag::warn_cxx17_compat_defaulted_method_type_mismatch) << CSM;
7416 }
7417 } else {
7418 // C++11 [dcl.fct.def.default]p4:
7419 // [For a] user-provided explicitly-defaulted function [...] if such a
7420 // function is implicitly defined as deleted, the program is ill-formed.
7421 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
7422 assert(!ShouldDeleteForTypeMismatch && "deleted non-first decl");
7423 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true);
7424 HadError = true;
7425 }
7426 }
7427
7428 return HadError;
7429 }
7430
7431 namespace {
7432 /// Helper class for building and checking a defaulted comparison.
7433 ///
7434 /// Defaulted functions are built in two phases:
7435 ///
7436 /// * First, the set of operations that the function will perform are
7437 /// identified, and some of them are checked. If any of the checked
7438 /// operations is invalid in certain ways, the comparison function is
7439 /// defined as deleted and no body is built.
7440 /// * Then, if the function is not defined as deleted, the body is built.
7441 ///
7442 /// This is accomplished by performing two visitation steps over the eventual
7443 /// body of the function.
7444 template<typename Derived, typename ResultList, typename Result,
7445 typename Subobject>
7446 class DefaultedComparisonVisitor {
7447 public:
7448 using DefaultedComparisonKind = Sema::DefaultedComparisonKind;
7449
DefaultedComparisonVisitor(Sema & S,CXXRecordDecl * RD,FunctionDecl * FD,DefaultedComparisonKind DCK)7450 DefaultedComparisonVisitor(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
7451 DefaultedComparisonKind DCK)
7452 : S(S), RD(RD), FD(FD), DCK(DCK) {
7453 if (auto *Info = FD->getDefaultedFunctionInfo()) {
7454 // FIXME: Change CreateOverloadedBinOp to take an ArrayRef instead of an
7455 // UnresolvedSet to avoid this copy.
7456 Fns.assign(Info->getUnqualifiedLookups().begin(),
7457 Info->getUnqualifiedLookups().end());
7458 }
7459 }
7460
visit()7461 ResultList visit() {
7462 // The type of an lvalue naming a parameter of this function.
7463 QualType ParamLvalType =
7464 FD->getParamDecl(0)->getType().getNonReferenceType();
7465
7466 ResultList Results;
7467
7468 switch (DCK) {
7469 case DefaultedComparisonKind::None:
7470 llvm_unreachable("not a defaulted comparison");
7471
7472 case DefaultedComparisonKind::Equal:
7473 case DefaultedComparisonKind::ThreeWay:
7474 getDerived().visitSubobjects(Results, RD, ParamLvalType.getQualifiers());
7475 return Results;
7476
7477 case DefaultedComparisonKind::NotEqual:
7478 case DefaultedComparisonKind::Relational:
7479 Results.add(getDerived().visitExpandedSubobject(
7480 ParamLvalType, getDerived().getCompleteObject()));
7481 return Results;
7482 }
7483 llvm_unreachable("");
7484 }
7485
7486 protected:
getDerived()7487 Derived &getDerived() { return static_cast<Derived&>(*this); }
7488
7489 /// Visit the expanded list of subobjects of the given type, as specified in
7490 /// C++2a [class.compare.default].
7491 ///
7492 /// \return \c true if the ResultList object said we're done, \c false if not.
visitSubobjects(ResultList & Results,CXXRecordDecl * Record,Qualifiers Quals)7493 bool visitSubobjects(ResultList &Results, CXXRecordDecl *Record,
7494 Qualifiers Quals) {
7495 // C++2a [class.compare.default]p4:
7496 // The direct base class subobjects of C
7497 for (CXXBaseSpecifier &Base : Record->bases())
7498 if (Results.add(getDerived().visitSubobject(
7499 S.Context.getQualifiedType(Base.getType(), Quals),
7500 getDerived().getBase(&Base))))
7501 return true;
7502
7503 // followed by the non-static data members of C
7504 for (FieldDecl *Field : Record->fields()) {
7505 // Recursively expand anonymous structs.
7506 if (Field->isAnonymousStructOrUnion()) {
7507 if (visitSubobjects(Results, Field->getType()->getAsCXXRecordDecl(),
7508 Quals))
7509 return true;
7510 continue;
7511 }
7512
7513 // Figure out the type of an lvalue denoting this field.
7514 Qualifiers FieldQuals = Quals;
7515 if (Field->isMutable())
7516 FieldQuals.removeConst();
7517 QualType FieldType =
7518 S.Context.getQualifiedType(Field->getType(), FieldQuals);
7519
7520 if (Results.add(getDerived().visitSubobject(
7521 FieldType, getDerived().getField(Field))))
7522 return true;
7523 }
7524
7525 // form a list of subobjects.
7526 return false;
7527 }
7528
visitSubobject(QualType Type,Subobject Subobj)7529 Result visitSubobject(QualType Type, Subobject Subobj) {
7530 // In that list, any subobject of array type is recursively expanded
7531 const ArrayType *AT = S.Context.getAsArrayType(Type);
7532 if (auto *CAT = dyn_cast_or_null<ConstantArrayType>(AT))
7533 return getDerived().visitSubobjectArray(CAT->getElementType(),
7534 CAT->getSize(), Subobj);
7535 return getDerived().visitExpandedSubobject(Type, Subobj);
7536 }
7537
visitSubobjectArray(QualType Type,const llvm::APInt & Size,Subobject Subobj)7538 Result visitSubobjectArray(QualType Type, const llvm::APInt &Size,
7539 Subobject Subobj) {
7540 return getDerived().visitSubobject(Type, Subobj);
7541 }
7542
7543 protected:
7544 Sema &S;
7545 CXXRecordDecl *RD;
7546 FunctionDecl *FD;
7547 DefaultedComparisonKind DCK;
7548 UnresolvedSet<16> Fns;
7549 };
7550
7551 /// Information about a defaulted comparison, as determined by
7552 /// DefaultedComparisonAnalyzer.
7553 struct DefaultedComparisonInfo {
7554 bool Deleted = false;
7555 bool Constexpr = true;
7556 ComparisonCategoryType Category = ComparisonCategoryType::StrongOrdering;
7557
deleted__anonedc74bd71e11::DefaultedComparisonInfo7558 static DefaultedComparisonInfo deleted() {
7559 DefaultedComparisonInfo Deleted;
7560 Deleted.Deleted = true;
7561 return Deleted;
7562 }
7563
add__anonedc74bd71e11::DefaultedComparisonInfo7564 bool add(const DefaultedComparisonInfo &R) {
7565 Deleted |= R.Deleted;
7566 Constexpr &= R.Constexpr;
7567 Category = commonComparisonType(Category, R.Category);
7568 return Deleted;
7569 }
7570 };
7571
7572 /// An element in the expanded list of subobjects of a defaulted comparison, as
7573 /// specified in C++2a [class.compare.default]p4.
7574 struct DefaultedComparisonSubobject {
7575 enum { CompleteObject, Member, Base } Kind;
7576 NamedDecl *Decl;
7577 SourceLocation Loc;
7578 };
7579
7580 /// A visitor over the notional body of a defaulted comparison that determines
7581 /// whether that body would be deleted or constexpr.
7582 class DefaultedComparisonAnalyzer
7583 : public DefaultedComparisonVisitor<DefaultedComparisonAnalyzer,
7584 DefaultedComparisonInfo,
7585 DefaultedComparisonInfo,
7586 DefaultedComparisonSubobject> {
7587 public:
7588 enum DiagnosticKind { NoDiagnostics, ExplainDeleted, ExplainConstexpr };
7589
7590 private:
7591 DiagnosticKind Diagnose;
7592
7593 public:
7594 using Base = DefaultedComparisonVisitor;
7595 using Result = DefaultedComparisonInfo;
7596 using Subobject = DefaultedComparisonSubobject;
7597
7598 friend Base;
7599
DefaultedComparisonAnalyzer(Sema & S,CXXRecordDecl * RD,FunctionDecl * FD,DefaultedComparisonKind DCK,DiagnosticKind Diagnose=NoDiagnostics)7600 DefaultedComparisonAnalyzer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
7601 DefaultedComparisonKind DCK,
7602 DiagnosticKind Diagnose = NoDiagnostics)
7603 : Base(S, RD, FD, DCK), Diagnose(Diagnose) {}
7604
visit()7605 Result visit() {
7606 if ((DCK == DefaultedComparisonKind::Equal ||
7607 DCK == DefaultedComparisonKind::ThreeWay) &&
7608 RD->hasVariantMembers()) {
7609 // C++2a [class.compare.default]p2 [P2002R0]:
7610 // A defaulted comparison operator function for class C is defined as
7611 // deleted if [...] C has variant members.
7612 if (Diagnose == ExplainDeleted) {
7613 S.Diag(FD->getLocation(), diag::note_defaulted_comparison_union)
7614 << FD << RD->isUnion() << RD;
7615 }
7616 return Result::deleted();
7617 }
7618
7619 return Base::visit();
7620 }
7621
7622 private:
getCompleteObject()7623 Subobject getCompleteObject() {
7624 return Subobject{Subobject::CompleteObject, nullptr, FD->getLocation()};
7625 }
7626
getBase(CXXBaseSpecifier * Base)7627 Subobject getBase(CXXBaseSpecifier *Base) {
7628 return Subobject{Subobject::Base, Base->getType()->getAsCXXRecordDecl(),
7629 Base->getBaseTypeLoc()};
7630 }
7631
getField(FieldDecl * Field)7632 Subobject getField(FieldDecl *Field) {
7633 return Subobject{Subobject::Member, Field, Field->getLocation()};
7634 }
7635
visitExpandedSubobject(QualType Type,Subobject Subobj)7636 Result visitExpandedSubobject(QualType Type, Subobject Subobj) {
7637 // C++2a [class.compare.default]p2 [P2002R0]:
7638 // A defaulted <=> or == operator function for class C is defined as
7639 // deleted if any non-static data member of C is of reference type
7640 if (Type->isReferenceType()) {
7641 if (Diagnose == ExplainDeleted) {
7642 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_reference_member)
7643 << FD << RD;
7644 }
7645 return Result::deleted();
7646 }
7647
7648 // [...] Let xi be an lvalue denoting the ith element [...]
7649 OpaqueValueExpr Xi(FD->getLocation(), Type, VK_LValue);
7650 Expr *Args[] = {&Xi, &Xi};
7651
7652 // All operators start by trying to apply that same operator recursively.
7653 OverloadedOperatorKind OO = FD->getOverloadedOperator();
7654 assert(OO != OO_None && "not an overloaded operator!");
7655 return visitBinaryOperator(OO, Args, Subobj);
7656 }
7657
7658 Result
visitBinaryOperator(OverloadedOperatorKind OO,ArrayRef<Expr * > Args,Subobject Subobj,OverloadCandidateSet * SpaceshipCandidates=nullptr)7659 visitBinaryOperator(OverloadedOperatorKind OO, ArrayRef<Expr *> Args,
7660 Subobject Subobj,
7661 OverloadCandidateSet *SpaceshipCandidates = nullptr) {
7662 // Note that there is no need to consider rewritten candidates here if
7663 // we've already found there is no viable 'operator<=>' candidate (and are
7664 // considering synthesizing a '<=>' from '==' and '<').
7665 OverloadCandidateSet CandidateSet(
7666 FD->getLocation(), OverloadCandidateSet::CSK_Operator,
7667 OverloadCandidateSet::OperatorRewriteInfo(
7668 OO, /*AllowRewrittenCandidates=*/!SpaceshipCandidates));
7669
7670 /// C++2a [class.compare.default]p1 [P2002R0]:
7671 /// [...] the defaulted function itself is never a candidate for overload
7672 /// resolution [...]
7673 CandidateSet.exclude(FD);
7674
7675 if (Args[0]->getType()->isOverloadableType())
7676 S.LookupOverloadedBinOp(CandidateSet, OO, Fns, Args);
7677 else {
7678 // FIXME: We determine whether this is a valid expression by checking to
7679 // see if there's a viable builtin operator candidate for it. That isn't
7680 // really what the rules ask us to do, but should give the right results.
7681 S.AddBuiltinOperatorCandidates(OO, FD->getLocation(), Args, CandidateSet);
7682 }
7683
7684 Result R;
7685
7686 OverloadCandidateSet::iterator Best;
7687 switch (CandidateSet.BestViableFunction(S, FD->getLocation(), Best)) {
7688 case OR_Success: {
7689 // C++2a [class.compare.secondary]p2 [P2002R0]:
7690 // The operator function [...] is defined as deleted if [...] the
7691 // candidate selected by overload resolution is not a rewritten
7692 // candidate.
7693 if ((DCK == DefaultedComparisonKind::NotEqual ||
7694 DCK == DefaultedComparisonKind::Relational) &&
7695 !Best->RewriteKind) {
7696 if (Diagnose == ExplainDeleted) {
7697 S.Diag(Best->Function->getLocation(),
7698 diag::note_defaulted_comparison_not_rewritten_callee)
7699 << FD;
7700 }
7701 return Result::deleted();
7702 }
7703
7704 // Throughout C++2a [class.compare]: if overload resolution does not
7705 // result in a usable function, the candidate function is defined as
7706 // deleted. This requires that we selected an accessible function.
7707 //
7708 // Note that this only considers the access of the function when named
7709 // within the type of the subobject, and not the access path for any
7710 // derived-to-base conversion.
7711 CXXRecordDecl *ArgClass = Args[0]->getType()->getAsCXXRecordDecl();
7712 if (ArgClass && Best->FoundDecl.getDecl() &&
7713 Best->FoundDecl.getDecl()->isCXXClassMember()) {
7714 QualType ObjectType = Subobj.Kind == Subobject::Member
7715 ? Args[0]->getType()
7716 : S.Context.getRecordType(RD);
7717 if (!S.isMemberAccessibleForDeletion(
7718 ArgClass, Best->FoundDecl, ObjectType, Subobj.Loc,
7719 Diagnose == ExplainDeleted
7720 ? S.PDiag(diag::note_defaulted_comparison_inaccessible)
7721 << FD << Subobj.Kind << Subobj.Decl
7722 : S.PDiag()))
7723 return Result::deleted();
7724 }
7725
7726 // C++2a [class.compare.default]p3 [P2002R0]:
7727 // A defaulted comparison function is constexpr-compatible if [...]
7728 // no overlod resolution performed [...] results in a non-constexpr
7729 // function.
7730 if (FunctionDecl *BestFD = Best->Function) {
7731 assert(!BestFD->isDeleted() && "wrong overload resolution result");
7732 // If it's not constexpr, explain why not.
7733 if (Diagnose == ExplainConstexpr && !BestFD->isConstexpr()) {
7734 if (Subobj.Kind != Subobject::CompleteObject)
7735 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_not_constexpr)
7736 << Subobj.Kind << Subobj.Decl;
7737 S.Diag(BestFD->getLocation(),
7738 diag::note_defaulted_comparison_not_constexpr_here);
7739 // Bail out after explaining; we don't want any more notes.
7740 return Result::deleted();
7741 }
7742 R.Constexpr &= BestFD->isConstexpr();
7743 }
7744
7745 if (OO == OO_Spaceship && FD->getReturnType()->isUndeducedAutoType()) {
7746 if (auto *BestFD = Best->Function) {
7747 // If any callee has an undeduced return type, deduce it now.
7748 // FIXME: It's not clear how a failure here should be handled. For
7749 // now, we produce an eager diagnostic, because that is forward
7750 // compatible with most (all?) other reasonable options.
7751 if (BestFD->getReturnType()->isUndeducedType() &&
7752 S.DeduceReturnType(BestFD, FD->getLocation(),
7753 /*Diagnose=*/false)) {
7754 // Don't produce a duplicate error when asked to explain why the
7755 // comparison is deleted: we diagnosed that when initially checking
7756 // the defaulted operator.
7757 if (Diagnose == NoDiagnostics) {
7758 S.Diag(
7759 FD->getLocation(),
7760 diag::err_defaulted_comparison_cannot_deduce_undeduced_auto)
7761 << Subobj.Kind << Subobj.Decl;
7762 S.Diag(
7763 Subobj.Loc,
7764 diag::note_defaulted_comparison_cannot_deduce_undeduced_auto)
7765 << Subobj.Kind << Subobj.Decl;
7766 S.Diag(BestFD->getLocation(),
7767 diag::note_defaulted_comparison_cannot_deduce_callee)
7768 << Subobj.Kind << Subobj.Decl;
7769 }
7770 return Result::deleted();
7771 }
7772 if (auto *Info = S.Context.CompCategories.lookupInfoForType(
7773 BestFD->getCallResultType())) {
7774 R.Category = Info->Kind;
7775 } else {
7776 if (Diagnose == ExplainDeleted) {
7777 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_cannot_deduce)
7778 << Subobj.Kind << Subobj.Decl
7779 << BestFD->getCallResultType().withoutLocalFastQualifiers();
7780 S.Diag(BestFD->getLocation(),
7781 diag::note_defaulted_comparison_cannot_deduce_callee)
7782 << Subobj.Kind << Subobj.Decl;
7783 }
7784 return Result::deleted();
7785 }
7786 } else {
7787 Optional<ComparisonCategoryType> Cat =
7788 getComparisonCategoryForBuiltinCmp(Args[0]->getType());
7789 assert(Cat && "no category for builtin comparison?");
7790 R.Category = *Cat;
7791 }
7792 }
7793
7794 // Note that we might be rewriting to a different operator. That call is
7795 // not considered until we come to actually build the comparison function.
7796 break;
7797 }
7798
7799 case OR_Ambiguous:
7800 if (Diagnose == ExplainDeleted) {
7801 unsigned Kind = 0;
7802 if (FD->getOverloadedOperator() == OO_Spaceship && OO != OO_Spaceship)
7803 Kind = OO == OO_EqualEqual ? 1 : 2;
7804 CandidateSet.NoteCandidates(
7805 PartialDiagnosticAt(
7806 Subobj.Loc, S.PDiag(diag::note_defaulted_comparison_ambiguous)
7807 << FD << Kind << Subobj.Kind << Subobj.Decl),
7808 S, OCD_AmbiguousCandidates, Args);
7809 }
7810 R = Result::deleted();
7811 break;
7812
7813 case OR_Deleted:
7814 if (Diagnose == ExplainDeleted) {
7815 if ((DCK == DefaultedComparisonKind::NotEqual ||
7816 DCK == DefaultedComparisonKind::Relational) &&
7817 !Best->RewriteKind) {
7818 S.Diag(Best->Function->getLocation(),
7819 diag::note_defaulted_comparison_not_rewritten_callee)
7820 << FD;
7821 } else {
7822 S.Diag(Subobj.Loc,
7823 diag::note_defaulted_comparison_calls_deleted)
7824 << FD << Subobj.Kind << Subobj.Decl;
7825 S.NoteDeletedFunction(Best->Function);
7826 }
7827 }
7828 R = Result::deleted();
7829 break;
7830
7831 case OR_No_Viable_Function:
7832 // If there's no usable candidate, we're done unless we can rewrite a
7833 // '<=>' in terms of '==' and '<'.
7834 if (OO == OO_Spaceship &&
7835 S.Context.CompCategories.lookupInfoForType(FD->getReturnType())) {
7836 // For any kind of comparison category return type, we need a usable
7837 // '==' and a usable '<'.
7838 if (!R.add(visitBinaryOperator(OO_EqualEqual, Args, Subobj,
7839 &CandidateSet)))
7840 R.add(visitBinaryOperator(OO_Less, Args, Subobj, &CandidateSet));
7841 break;
7842 }
7843
7844 if (Diagnose == ExplainDeleted) {
7845 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_no_viable_function)
7846 << FD << Subobj.Kind << Subobj.Decl;
7847
7848 // For a three-way comparison, list both the candidates for the
7849 // original operator and the candidates for the synthesized operator.
7850 if (SpaceshipCandidates) {
7851 SpaceshipCandidates->NoteCandidates(
7852 S, Args,
7853 SpaceshipCandidates->CompleteCandidates(S, OCD_AllCandidates,
7854 Args, FD->getLocation()));
7855 S.Diag(Subobj.Loc,
7856 diag::note_defaulted_comparison_no_viable_function_synthesized)
7857 << (OO == OO_EqualEqual ? 0 : 1);
7858 }
7859
7860 CandidateSet.NoteCandidates(
7861 S, Args,
7862 CandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args,
7863 FD->getLocation()));
7864 }
7865 R = Result::deleted();
7866 break;
7867 }
7868
7869 return R;
7870 }
7871 };
7872
7873 /// A list of statements.
7874 struct StmtListResult {
7875 bool IsInvalid = false;
7876 llvm::SmallVector<Stmt*, 16> Stmts;
7877
add__anonedc74bd71e11::StmtListResult7878 bool add(const StmtResult &S) {
7879 IsInvalid |= S.isInvalid();
7880 if (IsInvalid)
7881 return true;
7882 Stmts.push_back(S.get());
7883 return false;
7884 }
7885 };
7886
7887 /// A visitor over the notional body of a defaulted comparison that synthesizes
7888 /// the actual body.
7889 class DefaultedComparisonSynthesizer
7890 : public DefaultedComparisonVisitor<DefaultedComparisonSynthesizer,
7891 StmtListResult, StmtResult,
7892 std::pair<ExprResult, ExprResult>> {
7893 SourceLocation Loc;
7894 unsigned ArrayDepth = 0;
7895
7896 public:
7897 using Base = DefaultedComparisonVisitor;
7898 using ExprPair = std::pair<ExprResult, ExprResult>;
7899
7900 friend Base;
7901
DefaultedComparisonSynthesizer(Sema & S,CXXRecordDecl * RD,FunctionDecl * FD,DefaultedComparisonKind DCK,SourceLocation BodyLoc)7902 DefaultedComparisonSynthesizer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
7903 DefaultedComparisonKind DCK,
7904 SourceLocation BodyLoc)
7905 : Base(S, RD, FD, DCK), Loc(BodyLoc) {}
7906
7907 /// Build a suitable function body for this defaulted comparison operator.
build()7908 StmtResult build() {
7909 Sema::CompoundScopeRAII CompoundScope(S);
7910
7911 StmtListResult Stmts = visit();
7912 if (Stmts.IsInvalid)
7913 return StmtError();
7914
7915 ExprResult RetVal;
7916 switch (DCK) {
7917 case DefaultedComparisonKind::None:
7918 llvm_unreachable("not a defaulted comparison");
7919
7920 case DefaultedComparisonKind::Equal: {
7921 // C++2a [class.eq]p3:
7922 // [...] compar[e] the corresponding elements [...] until the first
7923 // index i where xi == yi yields [...] false. If no such index exists,
7924 // V is true. Otherwise, V is false.
7925 //
7926 // Join the comparisons with '&&'s and return the result. Use a right
7927 // fold (traversing the conditions right-to-left), because that
7928 // short-circuits more naturally.
7929 auto OldStmts = std::move(Stmts.Stmts);
7930 Stmts.Stmts.clear();
7931 ExprResult CmpSoFar;
7932 // Finish a particular comparison chain.
7933 auto FinishCmp = [&] {
7934 if (Expr *Prior = CmpSoFar.get()) {
7935 // Convert the last expression to 'return ...;'
7936 if (RetVal.isUnset() && Stmts.Stmts.empty())
7937 RetVal = CmpSoFar;
7938 // Convert any prior comparison to 'if (!(...)) return false;'
7939 else if (Stmts.add(buildIfNotCondReturnFalse(Prior)))
7940 return true;
7941 CmpSoFar = ExprResult();
7942 }
7943 return false;
7944 };
7945 for (Stmt *EAsStmt : llvm::reverse(OldStmts)) {
7946 Expr *E = dyn_cast<Expr>(EAsStmt);
7947 if (!E) {
7948 // Found an array comparison.
7949 if (FinishCmp() || Stmts.add(EAsStmt))
7950 return StmtError();
7951 continue;
7952 }
7953
7954 if (CmpSoFar.isUnset()) {
7955 CmpSoFar = E;
7956 continue;
7957 }
7958 CmpSoFar = S.CreateBuiltinBinOp(Loc, BO_LAnd, E, CmpSoFar.get());
7959 if (CmpSoFar.isInvalid())
7960 return StmtError();
7961 }
7962 if (FinishCmp())
7963 return StmtError();
7964 std::reverse(Stmts.Stmts.begin(), Stmts.Stmts.end());
7965 // If no such index exists, V is true.
7966 if (RetVal.isUnset())
7967 RetVal = S.ActOnCXXBoolLiteral(Loc, tok::kw_true);
7968 break;
7969 }
7970
7971 case DefaultedComparisonKind::ThreeWay: {
7972 // Per C++2a [class.spaceship]p3, as a fallback add:
7973 // return static_cast<R>(std::strong_ordering::equal);
7974 QualType StrongOrdering = S.CheckComparisonCategoryType(
7975 ComparisonCategoryType::StrongOrdering, Loc,
7976 Sema::ComparisonCategoryUsage::DefaultedOperator);
7977 if (StrongOrdering.isNull())
7978 return StmtError();
7979 VarDecl *EqualVD = S.Context.CompCategories.getInfoForType(StrongOrdering)
7980 .getValueInfo(ComparisonCategoryResult::Equal)
7981 ->VD;
7982 RetVal = getDecl(EqualVD);
7983 if (RetVal.isInvalid())
7984 return StmtError();
7985 RetVal = buildStaticCastToR(RetVal.get());
7986 break;
7987 }
7988
7989 case DefaultedComparisonKind::NotEqual:
7990 case DefaultedComparisonKind::Relational:
7991 RetVal = cast<Expr>(Stmts.Stmts.pop_back_val());
7992 break;
7993 }
7994
7995 // Build the final return statement.
7996 if (RetVal.isInvalid())
7997 return StmtError();
7998 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, RetVal.get());
7999 if (ReturnStmt.isInvalid())
8000 return StmtError();
8001 Stmts.Stmts.push_back(ReturnStmt.get());
8002
8003 return S.ActOnCompoundStmt(Loc, Loc, Stmts.Stmts, /*IsStmtExpr=*/false);
8004 }
8005
8006 private:
getDecl(ValueDecl * VD)8007 ExprResult getDecl(ValueDecl *VD) {
8008 return S.BuildDeclarationNameExpr(
8009 CXXScopeSpec(), DeclarationNameInfo(VD->getDeclName(), Loc), VD);
8010 }
8011
getParam(unsigned I)8012 ExprResult getParam(unsigned I) {
8013 ParmVarDecl *PD = FD->getParamDecl(I);
8014 return getDecl(PD);
8015 }
8016
getCompleteObject()8017 ExprPair getCompleteObject() {
8018 unsigned Param = 0;
8019 ExprResult LHS;
8020 if (isa<CXXMethodDecl>(FD)) {
8021 // LHS is '*this'.
8022 LHS = S.ActOnCXXThis(Loc);
8023 if (!LHS.isInvalid())
8024 LHS = S.CreateBuiltinUnaryOp(Loc, UO_Deref, LHS.get());
8025 } else {
8026 LHS = getParam(Param++);
8027 }
8028 ExprResult RHS = getParam(Param++);
8029 assert(Param == FD->getNumParams());
8030 return {LHS, RHS};
8031 }
8032
getBase(CXXBaseSpecifier * Base)8033 ExprPair getBase(CXXBaseSpecifier *Base) {
8034 ExprPair Obj = getCompleteObject();
8035 if (Obj.first.isInvalid() || Obj.second.isInvalid())
8036 return {ExprError(), ExprError()};
8037 CXXCastPath Path = {Base};
8038 return {S.ImpCastExprToType(Obj.first.get(), Base->getType(),
8039 CK_DerivedToBase, VK_LValue, &Path),
8040 S.ImpCastExprToType(Obj.second.get(), Base->getType(),
8041 CK_DerivedToBase, VK_LValue, &Path)};
8042 }
8043
getField(FieldDecl * Field)8044 ExprPair getField(FieldDecl *Field) {
8045 ExprPair Obj = getCompleteObject();
8046 if (Obj.first.isInvalid() || Obj.second.isInvalid())
8047 return {ExprError(), ExprError()};
8048
8049 DeclAccessPair Found = DeclAccessPair::make(Field, Field->getAccess());
8050 DeclarationNameInfo NameInfo(Field->getDeclName(), Loc);
8051 return {S.BuildFieldReferenceExpr(Obj.first.get(), /*IsArrow=*/false, Loc,
8052 CXXScopeSpec(), Field, Found, NameInfo),
8053 S.BuildFieldReferenceExpr(Obj.second.get(), /*IsArrow=*/false, Loc,
8054 CXXScopeSpec(), Field, Found, NameInfo)};
8055 }
8056
8057 // FIXME: When expanding a subobject, register a note in the code synthesis
8058 // stack to say which subobject we're comparing.
8059
buildIfNotCondReturnFalse(ExprResult Cond)8060 StmtResult buildIfNotCondReturnFalse(ExprResult Cond) {
8061 if (Cond.isInvalid())
8062 return StmtError();
8063
8064 ExprResult NotCond = S.CreateBuiltinUnaryOp(Loc, UO_LNot, Cond.get());
8065 if (NotCond.isInvalid())
8066 return StmtError();
8067
8068 ExprResult False = S.ActOnCXXBoolLiteral(Loc, tok::kw_false);
8069 assert(!False.isInvalid() && "should never fail");
8070 StmtResult ReturnFalse = S.BuildReturnStmt(Loc, False.get());
8071 if (ReturnFalse.isInvalid())
8072 return StmtError();
8073
8074 return S.ActOnIfStmt(Loc, false, Loc, nullptr,
8075 S.ActOnCondition(nullptr, Loc, NotCond.get(),
8076 Sema::ConditionKind::Boolean),
8077 Loc, ReturnFalse.get(), SourceLocation(), nullptr);
8078 }
8079
visitSubobjectArray(QualType Type,llvm::APInt Size,ExprPair Subobj)8080 StmtResult visitSubobjectArray(QualType Type, llvm::APInt Size,
8081 ExprPair Subobj) {
8082 QualType SizeType = S.Context.getSizeType();
8083 Size = Size.zextOrTrunc(S.Context.getTypeSize(SizeType));
8084
8085 // Build 'size_t i$n = 0'.
8086 IdentifierInfo *IterationVarName = nullptr;
8087 {
8088 SmallString<8> Str;
8089 llvm::raw_svector_ostream OS(Str);
8090 OS << "i" << ArrayDepth;
8091 IterationVarName = &S.Context.Idents.get(OS.str());
8092 }
8093 VarDecl *IterationVar = VarDecl::Create(
8094 S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType,
8095 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None);
8096 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
8097 IterationVar->setInit(
8098 IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
8099 Stmt *Init = new (S.Context) DeclStmt(DeclGroupRef(IterationVar), Loc, Loc);
8100
8101 auto IterRef = [&] {
8102 ExprResult Ref = S.BuildDeclarationNameExpr(
8103 CXXScopeSpec(), DeclarationNameInfo(IterationVarName, Loc),
8104 IterationVar);
8105 assert(!Ref.isInvalid() && "can't reference our own variable?");
8106 return Ref.get();
8107 };
8108
8109 // Build 'i$n != Size'.
8110 ExprResult Cond = S.CreateBuiltinBinOp(
8111 Loc, BO_NE, IterRef(),
8112 IntegerLiteral::Create(S.Context, Size, SizeType, Loc));
8113 assert(!Cond.isInvalid() && "should never fail");
8114
8115 // Build '++i$n'.
8116 ExprResult Inc = S.CreateBuiltinUnaryOp(Loc, UO_PreInc, IterRef());
8117 assert(!Inc.isInvalid() && "should never fail");
8118
8119 // Build 'a[i$n]' and 'b[i$n]'.
8120 auto Index = [&](ExprResult E) {
8121 if (E.isInvalid())
8122 return ExprError();
8123 return S.CreateBuiltinArraySubscriptExpr(E.get(), Loc, IterRef(), Loc);
8124 };
8125 Subobj.first = Index(Subobj.first);
8126 Subobj.second = Index(Subobj.second);
8127
8128 // Compare the array elements.
8129 ++ArrayDepth;
8130 StmtResult Substmt = visitSubobject(Type, Subobj);
8131 --ArrayDepth;
8132
8133 if (Substmt.isInvalid())
8134 return StmtError();
8135
8136 // For the inner level of an 'operator==', build 'if (!cmp) return false;'.
8137 // For outer levels or for an 'operator<=>' we already have a suitable
8138 // statement that returns as necessary.
8139 if (Expr *ElemCmp = dyn_cast<Expr>(Substmt.get())) {
8140 assert(DCK == DefaultedComparisonKind::Equal &&
8141 "should have non-expression statement");
8142 Substmt = buildIfNotCondReturnFalse(ElemCmp);
8143 if (Substmt.isInvalid())
8144 return StmtError();
8145 }
8146
8147 // Build 'for (...) ...'
8148 return S.ActOnForStmt(Loc, Loc, Init,
8149 S.ActOnCondition(nullptr, Loc, Cond.get(),
8150 Sema::ConditionKind::Boolean),
8151 S.MakeFullDiscardedValueExpr(Inc.get()), Loc,
8152 Substmt.get());
8153 }
8154
visitExpandedSubobject(QualType Type,ExprPair Obj)8155 StmtResult visitExpandedSubobject(QualType Type, ExprPair Obj) {
8156 if (Obj.first.isInvalid() || Obj.second.isInvalid())
8157 return StmtError();
8158
8159 OverloadedOperatorKind OO = FD->getOverloadedOperator();
8160 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(OO);
8161 ExprResult Op;
8162 if (Type->isOverloadableType())
8163 Op = S.CreateOverloadedBinOp(Loc, Opc, Fns, Obj.first.get(),
8164 Obj.second.get(), /*PerformADL=*/true,
8165 /*AllowRewrittenCandidates=*/true, FD);
8166 else
8167 Op = S.CreateBuiltinBinOp(Loc, Opc, Obj.first.get(), Obj.second.get());
8168 if (Op.isInvalid())
8169 return StmtError();
8170
8171 switch (DCK) {
8172 case DefaultedComparisonKind::None:
8173 llvm_unreachable("not a defaulted comparison");
8174
8175 case DefaultedComparisonKind::Equal:
8176 // Per C++2a [class.eq]p2, each comparison is individually contextually
8177 // converted to bool.
8178 Op = S.PerformContextuallyConvertToBool(Op.get());
8179 if (Op.isInvalid())
8180 return StmtError();
8181 return Op.get();
8182
8183 case DefaultedComparisonKind::ThreeWay: {
8184 // Per C++2a [class.spaceship]p3, form:
8185 // if (R cmp = static_cast<R>(op); cmp != 0)
8186 // return cmp;
8187 QualType R = FD->getReturnType();
8188 Op = buildStaticCastToR(Op.get());
8189 if (Op.isInvalid())
8190 return StmtError();
8191
8192 // R cmp = ...;
8193 IdentifierInfo *Name = &S.Context.Idents.get("cmp");
8194 VarDecl *VD =
8195 VarDecl::Create(S.Context, S.CurContext, Loc, Loc, Name, R,
8196 S.Context.getTrivialTypeSourceInfo(R, Loc), SC_None);
8197 S.AddInitializerToDecl(VD, Op.get(), /*DirectInit=*/false);
8198 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(VD), Loc, Loc);
8199
8200 // cmp != 0
8201 ExprResult VDRef = getDecl(VD);
8202 if (VDRef.isInvalid())
8203 return StmtError();
8204 llvm::APInt ZeroVal(S.Context.getIntWidth(S.Context.IntTy), 0);
8205 Expr *Zero =
8206 IntegerLiteral::Create(S.Context, ZeroVal, S.Context.IntTy, Loc);
8207 ExprResult Comp;
8208 if (VDRef.get()->getType()->isOverloadableType())
8209 Comp = S.CreateOverloadedBinOp(Loc, BO_NE, Fns, VDRef.get(), Zero, true,
8210 true, FD);
8211 else
8212 Comp = S.CreateBuiltinBinOp(Loc, BO_NE, VDRef.get(), Zero);
8213 if (Comp.isInvalid())
8214 return StmtError();
8215 Sema::ConditionResult Cond = S.ActOnCondition(
8216 nullptr, Loc, Comp.get(), Sema::ConditionKind::Boolean);
8217 if (Cond.isInvalid())
8218 return StmtError();
8219
8220 // return cmp;
8221 VDRef = getDecl(VD);
8222 if (VDRef.isInvalid())
8223 return StmtError();
8224 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, VDRef.get());
8225 if (ReturnStmt.isInvalid())
8226 return StmtError();
8227
8228 // if (...)
8229 return S.ActOnIfStmt(Loc, /*IsConstexpr=*/false, Loc, InitStmt, Cond, Loc,
8230 ReturnStmt.get(),
8231 /*ElseLoc=*/SourceLocation(), /*Else=*/nullptr);
8232 }
8233
8234 case DefaultedComparisonKind::NotEqual:
8235 case DefaultedComparisonKind::Relational:
8236 // C++2a [class.compare.secondary]p2:
8237 // Otherwise, the operator function yields x @ y.
8238 return Op.get();
8239 }
8240 llvm_unreachable("");
8241 }
8242
8243 /// Build "static_cast<R>(E)".
buildStaticCastToR(Expr * E)8244 ExprResult buildStaticCastToR(Expr *E) {
8245 QualType R = FD->getReturnType();
8246 assert(!R->isUndeducedType() && "type should have been deduced already");
8247
8248 // Don't bother forming a no-op cast in the common case.
8249 if (E->isRValue() && S.Context.hasSameType(E->getType(), R))
8250 return E;
8251 return S.BuildCXXNamedCast(Loc, tok::kw_static_cast,
8252 S.Context.getTrivialTypeSourceInfo(R, Loc), E,
8253 SourceRange(Loc, Loc), SourceRange(Loc, Loc));
8254 }
8255 };
8256 }
8257
8258 /// Perform the unqualified lookups that might be needed to form a defaulted
8259 /// comparison function for the given operator.
lookupOperatorsForDefaultedComparison(Sema & Self,Scope * S,UnresolvedSetImpl & Operators,OverloadedOperatorKind Op)8260 static void lookupOperatorsForDefaultedComparison(Sema &Self, Scope *S,
8261 UnresolvedSetImpl &Operators,
8262 OverloadedOperatorKind Op) {
8263 auto Lookup = [&](OverloadedOperatorKind OO) {
8264 Self.LookupOverloadedOperatorName(OO, S, Operators);
8265 };
8266
8267 // Every defaulted operator looks up itself.
8268 Lookup(Op);
8269 // ... and the rewritten form of itself, if any.
8270 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(Op))
8271 Lookup(ExtraOp);
8272
8273 // For 'operator<=>', we also form a 'cmp != 0' expression, and might
8274 // synthesize a three-way comparison from '<' and '=='. In a dependent
8275 // context, we also need to look up '==' in case we implicitly declare a
8276 // defaulted 'operator=='.
8277 if (Op == OO_Spaceship) {
8278 Lookup(OO_ExclaimEqual);
8279 Lookup(OO_Less);
8280 Lookup(OO_EqualEqual);
8281 }
8282 }
8283
CheckExplicitlyDefaultedComparison(Scope * S,FunctionDecl * FD,DefaultedComparisonKind DCK)8284 bool Sema::CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *FD,
8285 DefaultedComparisonKind DCK) {
8286 assert(DCK != DefaultedComparisonKind::None && "not a defaulted comparison");
8287
8288 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext());
8289 assert(RD && "defaulted comparison is not defaulted in a class");
8290
8291 // Perform any unqualified lookups we're going to need to default this
8292 // function.
8293 if (S) {
8294 UnresolvedSet<32> Operators;
8295 lookupOperatorsForDefaultedComparison(*this, S, Operators,
8296 FD->getOverloadedOperator());
8297 FD->setDefaultedFunctionInfo(FunctionDecl::DefaultedFunctionInfo::Create(
8298 Context, Operators.pairs()));
8299 }
8300
8301 // C++2a [class.compare.default]p1:
8302 // A defaulted comparison operator function for some class C shall be a
8303 // non-template function declared in the member-specification of C that is
8304 // -- a non-static const member of C having one parameter of type
8305 // const C&, or
8306 // -- a friend of C having two parameters of type const C& or two
8307 // parameters of type C.
8308 QualType ExpectedParmType1 = Context.getRecordType(RD);
8309 QualType ExpectedParmType2 =
8310 Context.getLValueReferenceType(ExpectedParmType1.withConst());
8311 if (isa<CXXMethodDecl>(FD))
8312 ExpectedParmType1 = ExpectedParmType2;
8313 for (const ParmVarDecl *Param : FD->parameters()) {
8314 if (!Param->getType()->isDependentType() &&
8315 !Context.hasSameType(Param->getType(), ExpectedParmType1) &&
8316 !Context.hasSameType(Param->getType(), ExpectedParmType2)) {
8317 // Don't diagnose an implicit 'operator=='; we will have diagnosed the
8318 // corresponding defaulted 'operator<=>' already.
8319 if (!FD->isImplicit()) {
8320 Diag(FD->getLocation(), diag::err_defaulted_comparison_param)
8321 << (int)DCK << Param->getType() << ExpectedParmType1
8322 << !isa<CXXMethodDecl>(FD)
8323 << ExpectedParmType2 << Param->getSourceRange();
8324 }
8325 return true;
8326 }
8327 }
8328 if (FD->getNumParams() == 2 &&
8329 !Context.hasSameType(FD->getParamDecl(0)->getType(),
8330 FD->getParamDecl(1)->getType())) {
8331 if (!FD->isImplicit()) {
8332 Diag(FD->getLocation(), diag::err_defaulted_comparison_param_mismatch)
8333 << (int)DCK
8334 << FD->getParamDecl(0)->getType()
8335 << FD->getParamDecl(0)->getSourceRange()
8336 << FD->getParamDecl(1)->getType()
8337 << FD->getParamDecl(1)->getSourceRange();
8338 }
8339 return true;
8340 }
8341
8342 // ... non-static const member ...
8343 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
8344 assert(!MD->isStatic() && "comparison function cannot be a static member");
8345 if (!MD->isConst()) {
8346 SourceLocation InsertLoc;
8347 if (FunctionTypeLoc Loc = MD->getFunctionTypeLoc())
8348 InsertLoc = getLocForEndOfToken(Loc.getRParenLoc());
8349 // Don't diagnose an implicit 'operator=='; we will have diagnosed the
8350 // corresponding defaulted 'operator<=>' already.
8351 if (!MD->isImplicit()) {
8352 Diag(MD->getLocation(), diag::err_defaulted_comparison_non_const)
8353 << (int)DCK << FixItHint::CreateInsertion(InsertLoc, " const");
8354 }
8355
8356 // Add the 'const' to the type to recover.
8357 const auto *FPT = MD->getType()->castAs<FunctionProtoType>();
8358 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8359 EPI.TypeQuals.addConst();
8360 MD->setType(Context.getFunctionType(FPT->getReturnType(),
8361 FPT->getParamTypes(), EPI));
8362 }
8363 } else {
8364 // A non-member function declared in a class must be a friend.
8365 assert(FD->getFriendObjectKind() && "expected a friend declaration");
8366 }
8367
8368 // C++2a [class.eq]p1, [class.rel]p1:
8369 // A [defaulted comparison other than <=>] shall have a declared return
8370 // type bool.
8371 if (DCK != DefaultedComparisonKind::ThreeWay &&
8372 !FD->getDeclaredReturnType()->isDependentType() &&
8373 !Context.hasSameType(FD->getDeclaredReturnType(), Context.BoolTy)) {
8374 Diag(FD->getLocation(), diag::err_defaulted_comparison_return_type_not_bool)
8375 << (int)DCK << FD->getDeclaredReturnType() << Context.BoolTy
8376 << FD->getReturnTypeSourceRange();
8377 return true;
8378 }
8379 // C++2a [class.spaceship]p2 [P2002R0]:
8380 // Let R be the declared return type [...]. If R is auto, [...]. Otherwise,
8381 // R shall not contain a placeholder type.
8382 if (DCK == DefaultedComparisonKind::ThreeWay &&
8383 FD->getDeclaredReturnType()->getContainedDeducedType() &&
8384 !Context.hasSameType(FD->getDeclaredReturnType(),
8385 Context.getAutoDeductType())) {
8386 Diag(FD->getLocation(),
8387 diag::err_defaulted_comparison_deduced_return_type_not_auto)
8388 << (int)DCK << FD->getDeclaredReturnType() << Context.AutoDeductTy
8389 << FD->getReturnTypeSourceRange();
8390 return true;
8391 }
8392
8393 // For a defaulted function in a dependent class, defer all remaining checks
8394 // until instantiation.
8395 if (RD->isDependentType())
8396 return false;
8397
8398 // Determine whether the function should be defined as deleted.
8399 DefaultedComparisonInfo Info =
8400 DefaultedComparisonAnalyzer(*this, RD, FD, DCK).visit();
8401
8402 bool First = FD == FD->getCanonicalDecl();
8403
8404 // If we want to delete the function, then do so; there's nothing else to
8405 // check in that case.
8406 if (Info.Deleted) {
8407 if (!First) {
8408 // C++11 [dcl.fct.def.default]p4:
8409 // [For a] user-provided explicitly-defaulted function [...] if such a
8410 // function is implicitly defined as deleted, the program is ill-formed.
8411 //
8412 // This is really just a consequence of the general rule that you can
8413 // only delete a function on its first declaration.
8414 Diag(FD->getLocation(), diag::err_non_first_default_compare_deletes)
8415 << FD->isImplicit() << (int)DCK;
8416 DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
8417 DefaultedComparisonAnalyzer::ExplainDeleted)
8418 .visit();
8419 return true;
8420 }
8421
8422 SetDeclDeleted(FD, FD->getLocation());
8423 if (!inTemplateInstantiation() && !FD->isImplicit()) {
8424 Diag(FD->getLocation(), diag::warn_defaulted_comparison_deleted)
8425 << (int)DCK;
8426 DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
8427 DefaultedComparisonAnalyzer::ExplainDeleted)
8428 .visit();
8429 }
8430 return false;
8431 }
8432
8433 // C++2a [class.spaceship]p2:
8434 // The return type is deduced as the common comparison type of R0, R1, ...
8435 if (DCK == DefaultedComparisonKind::ThreeWay &&
8436 FD->getDeclaredReturnType()->isUndeducedAutoType()) {
8437 SourceLocation RetLoc = FD->getReturnTypeSourceRange().getBegin();
8438 if (RetLoc.isInvalid())
8439 RetLoc = FD->getBeginLoc();
8440 // FIXME: Should we really care whether we have the complete type and the
8441 // 'enumerator' constants here? A forward declaration seems sufficient.
8442 QualType Cat = CheckComparisonCategoryType(
8443 Info.Category, RetLoc, ComparisonCategoryUsage::DefaultedOperator);
8444 if (Cat.isNull())
8445 return true;
8446 Context.adjustDeducedFunctionResultType(
8447 FD, SubstAutoType(FD->getDeclaredReturnType(), Cat));
8448 }
8449
8450 // C++2a [dcl.fct.def.default]p3 [P2002R0]:
8451 // An explicitly-defaulted function that is not defined as deleted may be
8452 // declared constexpr or consteval only if it is constexpr-compatible.
8453 // C++2a [class.compare.default]p3 [P2002R0]:
8454 // A defaulted comparison function is constexpr-compatible if it satisfies
8455 // the requirements for a constexpr function [...]
8456 // The only relevant requirements are that the parameter and return types are
8457 // literal types. The remaining conditions are checked by the analyzer.
8458 if (FD->isConstexpr()) {
8459 if (CheckConstexprReturnType(*this, FD, CheckConstexprKind::Diagnose) &&
8460 CheckConstexprParameterTypes(*this, FD, CheckConstexprKind::Diagnose) &&
8461 !Info.Constexpr) {
8462 Diag(FD->getBeginLoc(),
8463 diag::err_incorrect_defaulted_comparison_constexpr)
8464 << FD->isImplicit() << (int)DCK << FD->isConsteval();
8465 DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
8466 DefaultedComparisonAnalyzer::ExplainConstexpr)
8467 .visit();
8468 }
8469 }
8470
8471 // C++2a [dcl.fct.def.default]p3 [P2002R0]:
8472 // If a constexpr-compatible function is explicitly defaulted on its first
8473 // declaration, it is implicitly considered to be constexpr.
8474 // FIXME: Only applying this to the first declaration seems problematic, as
8475 // simple reorderings can affect the meaning of the program.
8476 if (First && !FD->isConstexpr() && Info.Constexpr)
8477 FD->setConstexprKind(ConstexprSpecKind::Constexpr);
8478
8479 // C++2a [except.spec]p3:
8480 // If a declaration of a function does not have a noexcept-specifier
8481 // [and] is defaulted on its first declaration, [...] the exception
8482 // specification is as specified below
8483 if (FD->getExceptionSpecType() == EST_None) {
8484 auto *FPT = FD->getType()->castAs<FunctionProtoType>();
8485 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8486 EPI.ExceptionSpec.Type = EST_Unevaluated;
8487 EPI.ExceptionSpec.SourceDecl = FD;
8488 FD->setType(Context.getFunctionType(FPT->getReturnType(),
8489 FPT->getParamTypes(), EPI));
8490 }
8491
8492 return false;
8493 }
8494
DeclareImplicitEqualityComparison(CXXRecordDecl * RD,FunctionDecl * Spaceship)8495 void Sema::DeclareImplicitEqualityComparison(CXXRecordDecl *RD,
8496 FunctionDecl *Spaceship) {
8497 Sema::CodeSynthesisContext Ctx;
8498 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringImplicitEqualityComparison;
8499 Ctx.PointOfInstantiation = Spaceship->getEndLoc();
8500 Ctx.Entity = Spaceship;
8501 pushCodeSynthesisContext(Ctx);
8502
8503 if (FunctionDecl *EqualEqual = SubstSpaceshipAsEqualEqual(RD, Spaceship))
8504 EqualEqual->setImplicit();
8505
8506 popCodeSynthesisContext();
8507 }
8508
DefineDefaultedComparison(SourceLocation UseLoc,FunctionDecl * FD,DefaultedComparisonKind DCK)8509 void Sema::DefineDefaultedComparison(SourceLocation UseLoc, FunctionDecl *FD,
8510 DefaultedComparisonKind DCK) {
8511 assert(FD->isDefaulted() && !FD->isDeleted() &&
8512 !FD->doesThisDeclarationHaveABody());
8513 if (FD->willHaveBody() || FD->isInvalidDecl())
8514 return;
8515
8516 SynthesizedFunctionScope Scope(*this, FD);
8517
8518 // Add a context note for diagnostics produced after this point.
8519 Scope.addContextNote(UseLoc);
8520
8521 {
8522 // Build and set up the function body.
8523 CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent());
8524 SourceLocation BodyLoc =
8525 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation();
8526 StmtResult Body =
8527 DefaultedComparisonSynthesizer(*this, RD, FD, DCK, BodyLoc).build();
8528 if (Body.isInvalid()) {
8529 FD->setInvalidDecl();
8530 return;
8531 }
8532 FD->setBody(Body.get());
8533 FD->markUsed(Context);
8534 }
8535
8536 // The exception specification is needed because we are defining the
8537 // function. Note that this will reuse the body we just built.
8538 ResolveExceptionSpec(UseLoc, FD->getType()->castAs<FunctionProtoType>());
8539
8540 if (ASTMutationListener *L = getASTMutationListener())
8541 L->CompletedImplicitDefinition(FD);
8542 }
8543
8544 static Sema::ImplicitExceptionSpecification
ComputeDefaultedComparisonExceptionSpec(Sema & S,SourceLocation Loc,FunctionDecl * FD,Sema::DefaultedComparisonKind DCK)8545 ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc,
8546 FunctionDecl *FD,
8547 Sema::DefaultedComparisonKind DCK) {
8548 ComputingExceptionSpec CES(S, FD, Loc);
8549 Sema::ImplicitExceptionSpecification ExceptSpec(S);
8550
8551 if (FD->isInvalidDecl())
8552 return ExceptSpec;
8553
8554 // The common case is that we just defined the comparison function. In that
8555 // case, just look at whether the body can throw.
8556 if (FD->hasBody()) {
8557 ExceptSpec.CalledStmt(FD->getBody());
8558 } else {
8559 // Otherwise, build a body so we can check it. This should ideally only
8560 // happen when we're not actually marking the function referenced. (This is
8561 // only really important for efficiency: we don't want to build and throw
8562 // away bodies for comparison functions more than we strictly need to.)
8563
8564 // Pretend to synthesize the function body in an unevaluated context.
8565 // Note that we can't actually just go ahead and define the function here:
8566 // we are not permitted to mark its callees as referenced.
8567 Sema::SynthesizedFunctionScope Scope(S, FD);
8568 EnterExpressionEvaluationContext Context(
8569 S, Sema::ExpressionEvaluationContext::Unevaluated);
8570
8571 CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent());
8572 SourceLocation BodyLoc =
8573 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation();
8574 StmtResult Body =
8575 DefaultedComparisonSynthesizer(S, RD, FD, DCK, BodyLoc).build();
8576 if (!Body.isInvalid())
8577 ExceptSpec.CalledStmt(Body.get());
8578
8579 // FIXME: Can we hold onto this body and just transform it to potentially
8580 // evaluated when we're asked to define the function rather than rebuilding
8581 // it? Either that, or we should only build the bits of the body that we
8582 // need (the expressions, not the statements).
8583 }
8584
8585 return ExceptSpec;
8586 }
8587
CheckDelayedMemberExceptionSpecs()8588 void Sema::CheckDelayedMemberExceptionSpecs() {
8589 decltype(DelayedOverridingExceptionSpecChecks) Overriding;
8590 decltype(DelayedEquivalentExceptionSpecChecks) Equivalent;
8591
8592 std::swap(Overriding, DelayedOverridingExceptionSpecChecks);
8593 std::swap(Equivalent, DelayedEquivalentExceptionSpecChecks);
8594
8595 // Perform any deferred checking of exception specifications for virtual
8596 // destructors.
8597 for (auto &Check : Overriding)
8598 CheckOverridingFunctionExceptionSpec(Check.first, Check.second);
8599
8600 // Perform any deferred checking of exception specifications for befriended
8601 // special members.
8602 for (auto &Check : Equivalent)
8603 CheckEquivalentExceptionSpec(Check.second, Check.first);
8604 }
8605
8606 namespace {
8607 /// CRTP base class for visiting operations performed by a special member
8608 /// function (or inherited constructor).
8609 template<typename Derived>
8610 struct SpecialMemberVisitor {
8611 Sema &S;
8612 CXXMethodDecl *MD;
8613 Sema::CXXSpecialMember CSM;
8614 Sema::InheritedConstructorInfo *ICI;
8615
8616 // Properties of the special member, computed for convenience.
8617 bool IsConstructor = false, IsAssignment = false, ConstArg = false;
8618
SpecialMemberVisitor__anonedc74bd72411::SpecialMemberVisitor8619 SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
8620 Sema::InheritedConstructorInfo *ICI)
8621 : S(S), MD(MD), CSM(CSM), ICI(ICI) {
8622 switch (CSM) {
8623 case Sema::CXXDefaultConstructor:
8624 case Sema::CXXCopyConstructor:
8625 case Sema::CXXMoveConstructor:
8626 IsConstructor = true;
8627 break;
8628 case Sema::CXXCopyAssignment:
8629 case Sema::CXXMoveAssignment:
8630 IsAssignment = true;
8631 break;
8632 case Sema::CXXDestructor:
8633 break;
8634 case Sema::CXXInvalid:
8635 llvm_unreachable("invalid special member kind");
8636 }
8637
8638 if (MD->getNumParams()) {
8639 if (const ReferenceType *RT =
8640 MD->getParamDecl(0)->getType()->getAs<ReferenceType>())
8641 ConstArg = RT->getPointeeType().isConstQualified();
8642 }
8643 }
8644
getDerived__anonedc74bd72411::SpecialMemberVisitor8645 Derived &getDerived() { return static_cast<Derived&>(*this); }
8646
8647 /// Is this a "move" special member?
isMove__anonedc74bd72411::SpecialMemberVisitor8648 bool isMove() const {
8649 return CSM == Sema::CXXMoveConstructor || CSM == Sema::CXXMoveAssignment;
8650 }
8651
8652 /// Look up the corresponding special member in the given class.
lookupIn__anonedc74bd72411::SpecialMemberVisitor8653 Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class,
8654 unsigned Quals, bool IsMutable) {
8655 return lookupCallFromSpecialMember(S, Class, CSM, Quals,
8656 ConstArg && !IsMutable);
8657 }
8658
8659 /// Look up the constructor for the specified base class to see if it's
8660 /// overridden due to this being an inherited constructor.
lookupInheritedCtor__anonedc74bd72411::SpecialMemberVisitor8661 Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) {
8662 if (!ICI)
8663 return {};
8664 assert(CSM == Sema::CXXDefaultConstructor);
8665 auto *BaseCtor =
8666 cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor();
8667 if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first)
8668 return MD;
8669 return {};
8670 }
8671
8672 /// A base or member subobject.
8673 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
8674
8675 /// Get the location to use for a subobject in diagnostics.
getSubobjectLoc__anonedc74bd72411::SpecialMemberVisitor8676 static SourceLocation getSubobjectLoc(Subobject Subobj) {
8677 // FIXME: For an indirect virtual base, the direct base leading to
8678 // the indirect virtual base would be a more useful choice.
8679 if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>())
8680 return B->getBaseTypeLoc();
8681 else
8682 return Subobj.get<FieldDecl*>()->getLocation();
8683 }
8684
8685 enum BasesToVisit {
8686 /// Visit all non-virtual (direct) bases.
8687 VisitNonVirtualBases,
8688 /// Visit all direct bases, virtual or not.
8689 VisitDirectBases,
8690 /// Visit all non-virtual bases, and all virtual bases if the class
8691 /// is not abstract.
8692 VisitPotentiallyConstructedBases,
8693 /// Visit all direct or virtual bases.
8694 VisitAllBases
8695 };
8696
8697 // Visit the bases and members of the class.
visit__anonedc74bd72411::SpecialMemberVisitor8698 bool visit(BasesToVisit Bases) {
8699 CXXRecordDecl *RD = MD->getParent();
8700
8701 if (Bases == VisitPotentiallyConstructedBases)
8702 Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases;
8703
8704 for (auto &B : RD->bases())
8705 if ((Bases == VisitDirectBases || !B.isVirtual()) &&
8706 getDerived().visitBase(&B))
8707 return true;
8708
8709 if (Bases == VisitAllBases)
8710 for (auto &B : RD->vbases())
8711 if (getDerived().visitBase(&B))
8712 return true;
8713
8714 for (auto *F : RD->fields())
8715 if (!F->isInvalidDecl() && !F->isUnnamedBitfield() &&
8716 getDerived().visitField(F))
8717 return true;
8718
8719 return false;
8720 }
8721 };
8722 }
8723
8724 namespace {
8725 struct SpecialMemberDeletionInfo
8726 : SpecialMemberVisitor<SpecialMemberDeletionInfo> {
8727 bool Diagnose;
8728
8729 SourceLocation Loc;
8730
8731 bool AllFieldsAreConst;
8732
SpecialMemberDeletionInfo__anonedc74bd72511::SpecialMemberDeletionInfo8733 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
8734 Sema::CXXSpecialMember CSM,
8735 Sema::InheritedConstructorInfo *ICI, bool Diagnose)
8736 : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose),
8737 Loc(MD->getLocation()), AllFieldsAreConst(true) {}
8738
inUnion__anonedc74bd72511::SpecialMemberDeletionInfo8739 bool inUnion() const { return MD->getParent()->isUnion(); }
8740
getEffectiveCSM__anonedc74bd72511::SpecialMemberDeletionInfo8741 Sema::CXXSpecialMember getEffectiveCSM() {
8742 return ICI ? Sema::CXXInvalid : CSM;
8743 }
8744
8745 bool shouldDeleteForVariantObjCPtrMember(FieldDecl *FD, QualType FieldType);
8746
visitBase__anonedc74bd72511::SpecialMemberDeletionInfo8747 bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); }
visitField__anonedc74bd72511::SpecialMemberDeletionInfo8748 bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); }
8749
8750 bool shouldDeleteForBase(CXXBaseSpecifier *Base);
8751 bool shouldDeleteForField(FieldDecl *FD);
8752 bool shouldDeleteForAllConstMembers();
8753
8754 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
8755 unsigned Quals);
8756 bool shouldDeleteForSubobjectCall(Subobject Subobj,
8757 Sema::SpecialMemberOverloadResult SMOR,
8758 bool IsDtorCallInCtor);
8759
8760 bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
8761 };
8762 }
8763
8764 /// Is the given special member inaccessible when used on the given
8765 /// sub-object.
isAccessible(Subobject Subobj,CXXMethodDecl * target)8766 bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
8767 CXXMethodDecl *target) {
8768 /// If we're operating on a base class, the object type is the
8769 /// type of this special member.
8770 QualType objectTy;
8771 AccessSpecifier access = target->getAccess();
8772 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
8773 objectTy = S.Context.getTypeDeclType(MD->getParent());
8774 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
8775
8776 // If we're operating on a field, the object type is the type of the field.
8777 } else {
8778 objectTy = S.Context.getTypeDeclType(target->getParent());
8779 }
8780
8781 return S.isMemberAccessibleForDeletion(
8782 target->getParent(), DeclAccessPair::make(target, access), objectTy);
8783 }
8784
8785 /// Check whether we should delete a special member due to the implicit
8786 /// definition containing a call to a special member of a subobject.
shouldDeleteForSubobjectCall(Subobject Subobj,Sema::SpecialMemberOverloadResult SMOR,bool IsDtorCallInCtor)8787 bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
8788 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR,
8789 bool IsDtorCallInCtor) {
8790 CXXMethodDecl *Decl = SMOR.getMethod();
8791 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
8792
8793 int DiagKind = -1;
8794
8795 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
8796 DiagKind = !Decl ? 0 : 1;
8797 else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
8798 DiagKind = 2;
8799 else if (!isAccessible(Subobj, Decl))
8800 DiagKind = 3;
8801 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
8802 !Decl->isTrivial()) {
8803 // A member of a union must have a trivial corresponding special member.
8804 // As a weird special case, a destructor call from a union's constructor
8805 // must be accessible and non-deleted, but need not be trivial. Such a
8806 // destructor is never actually called, but is semantically checked as
8807 // if it were.
8808 DiagKind = 4;
8809 }
8810
8811 if (DiagKind == -1)
8812 return false;
8813
8814 if (Diagnose) {
8815 if (Field) {
8816 S.Diag(Field->getLocation(),
8817 diag::note_deleted_special_member_class_subobject)
8818 << getEffectiveCSM() << MD->getParent() << /*IsField*/true
8819 << Field << DiagKind << IsDtorCallInCtor << /*IsObjCPtr*/false;
8820 } else {
8821 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
8822 S.Diag(Base->getBeginLoc(),
8823 diag::note_deleted_special_member_class_subobject)
8824 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false
8825 << Base->getType() << DiagKind << IsDtorCallInCtor
8826 << /*IsObjCPtr*/false;
8827 }
8828
8829 if (DiagKind == 1)
8830 S.NoteDeletedFunction(Decl);
8831 // FIXME: Explain inaccessibility if DiagKind == 3.
8832 }
8833
8834 return true;
8835 }
8836
8837 /// Check whether we should delete a special member function due to having a
8838 /// direct or virtual base class or non-static data member of class type M.
shouldDeleteForClassSubobject(CXXRecordDecl * Class,Subobject Subobj,unsigned Quals)8839 bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
8840 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
8841 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
8842 bool IsMutable = Field && Field->isMutable();
8843
8844 // C++11 [class.ctor]p5:
8845 // -- any direct or virtual base class, or non-static data member with no
8846 // brace-or-equal-initializer, has class type M (or array thereof) and
8847 // either M has no default constructor or overload resolution as applied
8848 // to M's default constructor results in an ambiguity or in a function
8849 // that is deleted or inaccessible
8850 // C++11 [class.copy]p11, C++11 [class.copy]p23:
8851 // -- a direct or virtual base class B that cannot be copied/moved because
8852 // overload resolution, as applied to B's corresponding special member,
8853 // results in an ambiguity or a function that is deleted or inaccessible
8854 // from the defaulted special member
8855 // C++11 [class.dtor]p5:
8856 // -- any direct or virtual base class [...] has a type with a destructor
8857 // that is deleted or inaccessible
8858 if (!(CSM == Sema::CXXDefaultConstructor &&
8859 Field && Field->hasInClassInitializer()) &&
8860 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable),
8861 false))
8862 return true;
8863
8864 // C++11 [class.ctor]p5, C++11 [class.copy]p11:
8865 // -- any direct or virtual base class or non-static data member has a
8866 // type with a destructor that is deleted or inaccessible
8867 if (IsConstructor) {
8868 Sema::SpecialMemberOverloadResult SMOR =
8869 S.LookupSpecialMember(Class, Sema::CXXDestructor,
8870 false, false, false, false, false);
8871 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
8872 return true;
8873 }
8874
8875 return false;
8876 }
8877
shouldDeleteForVariantObjCPtrMember(FieldDecl * FD,QualType FieldType)8878 bool SpecialMemberDeletionInfo::shouldDeleteForVariantObjCPtrMember(
8879 FieldDecl *FD, QualType FieldType) {
8880 // The defaulted special functions are defined as deleted if this is a variant
8881 // member with a non-trivial ownership type, e.g., ObjC __strong or __weak
8882 // type under ARC.
8883 if (!FieldType.hasNonTrivialObjCLifetime())
8884 return false;
8885
8886 // Don't make the defaulted default constructor defined as deleted if the
8887 // member has an in-class initializer.
8888 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer())
8889 return false;
8890
8891 if (Diagnose) {
8892 auto *ParentClass = cast<CXXRecordDecl>(FD->getParent());
8893 S.Diag(FD->getLocation(),
8894 diag::note_deleted_special_member_class_subobject)
8895 << getEffectiveCSM() << ParentClass << /*IsField*/true
8896 << FD << 4 << /*IsDtorCallInCtor*/false << /*IsObjCPtr*/true;
8897 }
8898
8899 return true;
8900 }
8901
8902 /// Check whether we should delete a special member function due to the class
8903 /// having a particular direct or virtual base class.
shouldDeleteForBase(CXXBaseSpecifier * Base)8904 bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
8905 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
8906 // If program is correct, BaseClass cannot be null, but if it is, the error
8907 // must be reported elsewhere.
8908 if (!BaseClass)
8909 return false;
8910 // If we have an inheriting constructor, check whether we're calling an
8911 // inherited constructor instead of a default constructor.
8912 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
8913 if (auto *BaseCtor = SMOR.getMethod()) {
8914 // Note that we do not check access along this path; other than that,
8915 // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false);
8916 // FIXME: Check that the base has a usable destructor! Sink this into
8917 // shouldDeleteForClassSubobject.
8918 if (BaseCtor->isDeleted() && Diagnose) {
8919 S.Diag(Base->getBeginLoc(),
8920 diag::note_deleted_special_member_class_subobject)
8921 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false
8922 << Base->getType() << /*Deleted*/ 1 << /*IsDtorCallInCtor*/ false
8923 << /*IsObjCPtr*/false;
8924 S.NoteDeletedFunction(BaseCtor);
8925 }
8926 return BaseCtor->isDeleted();
8927 }
8928 return shouldDeleteForClassSubobject(BaseClass, Base, 0);
8929 }
8930
8931 /// Check whether we should delete a special member function due to the class
8932 /// having a particular non-static data member.
shouldDeleteForField(FieldDecl * FD)8933 bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
8934 QualType FieldType = S.Context.getBaseElementType(FD->getType());
8935 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
8936
8937 if (inUnion() && shouldDeleteForVariantObjCPtrMember(FD, FieldType))
8938 return true;
8939
8940 if (CSM == Sema::CXXDefaultConstructor) {
8941 // For a default constructor, all references must be initialized in-class
8942 // and, if a union, it must have a non-const member.
8943 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
8944 if (Diagnose)
8945 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
8946 << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0;
8947 return true;
8948 }
8949 // C++11 [class.ctor]p5: any non-variant non-static data member of
8950 // const-qualified type (or array thereof) with no
8951 // brace-or-equal-initializer does not have a user-provided default
8952 // constructor.
8953 if (!inUnion() && FieldType.isConstQualified() &&
8954 !FD->hasInClassInitializer() &&
8955 (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
8956 if (Diagnose)
8957 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
8958 << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1;
8959 return true;
8960 }
8961
8962 if (inUnion() && !FieldType.isConstQualified())
8963 AllFieldsAreConst = false;
8964 } else if (CSM == Sema::CXXCopyConstructor) {
8965 // For a copy constructor, data members must not be of rvalue reference
8966 // type.
8967 if (FieldType->isRValueReferenceType()) {
8968 if (Diagnose)
8969 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
8970 << MD->getParent() << FD << FieldType;
8971 return true;
8972 }
8973 } else if (IsAssignment) {
8974 // For an assignment operator, data members must not be of reference type.
8975 if (FieldType->isReferenceType()) {
8976 if (Diagnose)
8977 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
8978 << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0;
8979 return true;
8980 }
8981 if (!FieldRecord && FieldType.isConstQualified()) {
8982 // C++11 [class.copy]p23:
8983 // -- a non-static data member of const non-class type (or array thereof)
8984 if (Diagnose)
8985 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
8986 << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1;
8987 return true;
8988 }
8989 }
8990
8991 if (FieldRecord) {
8992 // Some additional restrictions exist on the variant members.
8993 if (!inUnion() && FieldRecord->isUnion() &&
8994 FieldRecord->isAnonymousStructOrUnion()) {
8995 bool AllVariantFieldsAreConst = true;
8996
8997 // FIXME: Handle anonymous unions declared within anonymous unions.
8998 for (auto *UI : FieldRecord->fields()) {
8999 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
9000
9001 if (shouldDeleteForVariantObjCPtrMember(&*UI, UnionFieldType))
9002 return true;
9003
9004 if (!UnionFieldType.isConstQualified())
9005 AllVariantFieldsAreConst = false;
9006
9007 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
9008 if (UnionFieldRecord &&
9009 shouldDeleteForClassSubobject(UnionFieldRecord, UI,
9010 UnionFieldType.getCVRQualifiers()))
9011 return true;
9012 }
9013
9014 // At least one member in each anonymous union must be non-const
9015 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
9016 !FieldRecord->field_empty()) {
9017 if (Diagnose)
9018 S.Diag(FieldRecord->getLocation(),
9019 diag::note_deleted_default_ctor_all_const)
9020 << !!ICI << MD->getParent() << /*anonymous union*/1;
9021 return true;
9022 }
9023
9024 // Don't check the implicit member of the anonymous union type.
9025 // This is technically non-conformant, but sanity demands it.
9026 return false;
9027 }
9028
9029 if (shouldDeleteForClassSubobject(FieldRecord, FD,
9030 FieldType.getCVRQualifiers()))
9031 return true;
9032 }
9033
9034 return false;
9035 }
9036
9037 /// C++11 [class.ctor] p5:
9038 /// A defaulted default constructor for a class X is defined as deleted if
9039 /// X is a union and all of its variant members are of const-qualified type.
shouldDeleteForAllConstMembers()9040 bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
9041 // This is a silly definition, because it gives an empty union a deleted
9042 // default constructor. Don't do that.
9043 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) {
9044 bool AnyFields = false;
9045 for (auto *F : MD->getParent()->fields())
9046 if ((AnyFields = !F->isUnnamedBitfield()))
9047 break;
9048 if (!AnyFields)
9049 return false;
9050 if (Diagnose)
9051 S.Diag(MD->getParent()->getLocation(),
9052 diag::note_deleted_default_ctor_all_const)
9053 << !!ICI << MD->getParent() << /*not anonymous union*/0;
9054 return true;
9055 }
9056 return false;
9057 }
9058
9059 /// Determine whether a defaulted special member function should be defined as
9060 /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
9061 /// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
ShouldDeleteSpecialMember(CXXMethodDecl * MD,CXXSpecialMember CSM,InheritedConstructorInfo * ICI,bool Diagnose)9062 bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
9063 InheritedConstructorInfo *ICI,
9064 bool Diagnose) {
9065 if (MD->isInvalidDecl())
9066 return false;
9067 CXXRecordDecl *RD = MD->getParent();
9068 assert(!RD->isDependentType() && "do deletion after instantiation");
9069 if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
9070 return false;
9071
9072 // C++11 [expr.lambda.prim]p19:
9073 // The closure type associated with a lambda-expression has a
9074 // deleted (8.4.3) default constructor and a deleted copy
9075 // assignment operator.
9076 // C++2a adds back these operators if the lambda has no lambda-capture.
9077 if (RD->isLambda() && !RD->lambdaIsDefaultConstructibleAndAssignable() &&
9078 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
9079 if (Diagnose)
9080 Diag(RD->getLocation(), diag::note_lambda_decl);
9081 return true;
9082 }
9083
9084 // For an anonymous struct or union, the copy and assignment special members
9085 // will never be used, so skip the check. For an anonymous union declared at
9086 // namespace scope, the constructor and destructor are used.
9087 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
9088 RD->isAnonymousStructOrUnion())
9089 return false;
9090
9091 // C++11 [class.copy]p7, p18:
9092 // If the class definition declares a move constructor or move assignment
9093 // operator, an implicitly declared copy constructor or copy assignment
9094 // operator is defined as deleted.
9095 if (MD->isImplicit() &&
9096 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
9097 CXXMethodDecl *UserDeclaredMove = nullptr;
9098
9099 // In Microsoft mode up to MSVC 2013, a user-declared move only causes the
9100 // deletion of the corresponding copy operation, not both copy operations.
9101 // MSVC 2015 has adopted the standards conforming behavior.
9102 bool DeletesOnlyMatchingCopy =
9103 getLangOpts().MSVCCompat &&
9104 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015);
9105
9106 if (RD->hasUserDeclaredMoveConstructor() &&
9107 (!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) {
9108 if (!Diagnose) return true;
9109
9110 // Find any user-declared move constructor.
9111 for (auto *I : RD->ctors()) {
9112 if (I->isMoveConstructor()) {
9113 UserDeclaredMove = I;
9114 break;
9115 }
9116 }
9117 assert(UserDeclaredMove);
9118 } else if (RD->hasUserDeclaredMoveAssignment() &&
9119 (!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) {
9120 if (!Diagnose) return true;
9121
9122 // Find any user-declared move assignment operator.
9123 for (auto *I : RD->methods()) {
9124 if (I->isMoveAssignmentOperator()) {
9125 UserDeclaredMove = I;
9126 break;
9127 }
9128 }
9129 assert(UserDeclaredMove);
9130 }
9131
9132 if (UserDeclaredMove) {
9133 Diag(UserDeclaredMove->getLocation(),
9134 diag::note_deleted_copy_user_declared_move)
9135 << (CSM == CXXCopyAssignment) << RD
9136 << UserDeclaredMove->isMoveAssignmentOperator();
9137 return true;
9138 }
9139 }
9140
9141 // Do access control from the special member function
9142 ContextRAII MethodContext(*this, MD);
9143
9144 // C++11 [class.dtor]p5:
9145 // -- for a virtual destructor, lookup of the non-array deallocation function
9146 // results in an ambiguity or in a function that is deleted or inaccessible
9147 if (CSM == CXXDestructor && MD->isVirtual()) {
9148 FunctionDecl *OperatorDelete = nullptr;
9149 DeclarationName Name =
9150 Context.DeclarationNames.getCXXOperatorName(OO_Delete);
9151 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
9152 OperatorDelete, /*Diagnose*/false)) {
9153 if (Diagnose)
9154 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
9155 return true;
9156 }
9157 }
9158
9159 SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose);
9160
9161 // Per DR1611, do not consider virtual bases of constructors of abstract
9162 // classes, since we are not going to construct them.
9163 // Per DR1658, do not consider virtual bases of destructors of abstract
9164 // classes either.
9165 // Per DR2180, for assignment operators we only assign (and thus only
9166 // consider) direct bases.
9167 if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases
9168 : SMI.VisitPotentiallyConstructedBases))
9169 return true;
9170
9171 if (SMI.shouldDeleteForAllConstMembers())
9172 return true;
9173
9174 if (getLangOpts().CUDA) {
9175 // We should delete the special member in CUDA mode if target inference
9176 // failed.
9177 // For inherited constructors (non-null ICI), CSM may be passed so that MD
9178 // is treated as certain special member, which may not reflect what special
9179 // member MD really is. However inferCUDATargetForImplicitSpecialMember
9180 // expects CSM to match MD, therefore recalculate CSM.
9181 assert(ICI || CSM == getSpecialMember(MD));
9182 auto RealCSM = CSM;
9183 if (ICI)
9184 RealCSM = getSpecialMember(MD);
9185
9186 return inferCUDATargetForImplicitSpecialMember(RD, RealCSM, MD,
9187 SMI.ConstArg, Diagnose);
9188 }
9189
9190 return false;
9191 }
9192
DiagnoseDeletedDefaultedFunction(FunctionDecl * FD)9193 void Sema::DiagnoseDeletedDefaultedFunction(FunctionDecl *FD) {
9194 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD);
9195 assert(DFK && "not a defaultable function");
9196 assert(FD->isDefaulted() && FD->isDeleted() && "not defaulted and deleted");
9197
9198 if (DFK.isSpecialMember()) {
9199 ShouldDeleteSpecialMember(cast<CXXMethodDecl>(FD), DFK.asSpecialMember(),
9200 nullptr, /*Diagnose=*/true);
9201 } else {
9202 DefaultedComparisonAnalyzer(
9203 *this, cast<CXXRecordDecl>(FD->getLexicalDeclContext()), FD,
9204 DFK.asComparison(), DefaultedComparisonAnalyzer::ExplainDeleted)
9205 .visit();
9206 }
9207 }
9208
9209 /// Perform lookup for a special member of the specified kind, and determine
9210 /// whether it is trivial. If the triviality can be determined without the
9211 /// lookup, skip it. This is intended for use when determining whether a
9212 /// special member of a containing object is trivial, and thus does not ever
9213 /// perform overload resolution for default constructors.
9214 ///
9215 /// If \p Selected is not \c NULL, \c *Selected will be filled in with the
9216 /// member that was most likely to be intended to be trivial, if any.
9217 ///
9218 /// If \p ForCall is true, look at CXXRecord::HasTrivialSpecialMembersForCall to
9219 /// determine whether the special member is trivial.
findTrivialSpecialMember(Sema & S,CXXRecordDecl * RD,Sema::CXXSpecialMember CSM,unsigned Quals,bool ConstRHS,Sema::TrivialABIHandling TAH,CXXMethodDecl ** Selected)9220 static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
9221 Sema::CXXSpecialMember CSM, unsigned Quals,
9222 bool ConstRHS,
9223 Sema::TrivialABIHandling TAH,
9224 CXXMethodDecl **Selected) {
9225 if (Selected)
9226 *Selected = nullptr;
9227
9228 switch (CSM) {
9229 case Sema::CXXInvalid:
9230 llvm_unreachable("not a special member");
9231
9232 case Sema::CXXDefaultConstructor:
9233 // C++11 [class.ctor]p5:
9234 // A default constructor is trivial if:
9235 // - all the [direct subobjects] have trivial default constructors
9236 //
9237 // Note, no overload resolution is performed in this case.
9238 if (RD->hasTrivialDefaultConstructor())
9239 return true;
9240
9241 if (Selected) {
9242 // If there's a default constructor which could have been trivial, dig it
9243 // out. Otherwise, if there's any user-provided default constructor, point
9244 // to that as an example of why there's not a trivial one.
9245 CXXConstructorDecl *DefCtor = nullptr;
9246 if (RD->needsImplicitDefaultConstructor())
9247 S.DeclareImplicitDefaultConstructor(RD);
9248 for (auto *CI : RD->ctors()) {
9249 if (!CI->isDefaultConstructor())
9250 continue;
9251 DefCtor = CI;
9252 if (!DefCtor->isUserProvided())
9253 break;
9254 }
9255
9256 *Selected = DefCtor;
9257 }
9258
9259 return false;
9260
9261 case Sema::CXXDestructor:
9262 // C++11 [class.dtor]p5:
9263 // A destructor is trivial if:
9264 // - all the direct [subobjects] have trivial destructors
9265 if (RD->hasTrivialDestructor() ||
9266 (TAH == Sema::TAH_ConsiderTrivialABI &&
9267 RD->hasTrivialDestructorForCall()))
9268 return true;
9269
9270 if (Selected) {
9271 if (RD->needsImplicitDestructor())
9272 S.DeclareImplicitDestructor(RD);
9273 *Selected = RD->getDestructor();
9274 }
9275
9276 return false;
9277
9278 case Sema::CXXCopyConstructor:
9279 // C++11 [class.copy]p12:
9280 // A copy constructor is trivial if:
9281 // - the constructor selected to copy each direct [subobject] is trivial
9282 if (RD->hasTrivialCopyConstructor() ||
9283 (TAH == Sema::TAH_ConsiderTrivialABI &&
9284 RD->hasTrivialCopyConstructorForCall())) {
9285 if (Quals == Qualifiers::Const)
9286 // We must either select the trivial copy constructor or reach an
9287 // ambiguity; no need to actually perform overload resolution.
9288 return true;
9289 } else if (!Selected) {
9290 return false;
9291 }
9292 // In C++98, we are not supposed to perform overload resolution here, but we
9293 // treat that as a language defect, as suggested on cxx-abi-dev, to treat
9294 // cases like B as having a non-trivial copy constructor:
9295 // struct A { template<typename T> A(T&); };
9296 // struct B { mutable A a; };
9297 goto NeedOverloadResolution;
9298
9299 case Sema::CXXCopyAssignment:
9300 // C++11 [class.copy]p25:
9301 // A copy assignment operator is trivial if:
9302 // - the assignment operator selected to copy each direct [subobject] is
9303 // trivial
9304 if (RD->hasTrivialCopyAssignment()) {
9305 if (Quals == Qualifiers::Const)
9306 return true;
9307 } else if (!Selected) {
9308 return false;
9309 }
9310 // In C++98, we are not supposed to perform overload resolution here, but we
9311 // treat that as a language defect.
9312 goto NeedOverloadResolution;
9313
9314 case Sema::CXXMoveConstructor:
9315 case Sema::CXXMoveAssignment:
9316 NeedOverloadResolution:
9317 Sema::SpecialMemberOverloadResult SMOR =
9318 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS);
9319
9320 // The standard doesn't describe how to behave if the lookup is ambiguous.
9321 // We treat it as not making the member non-trivial, just like the standard
9322 // mandates for the default constructor. This should rarely matter, because
9323 // the member will also be deleted.
9324 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
9325 return true;
9326
9327 if (!SMOR.getMethod()) {
9328 assert(SMOR.getKind() ==
9329 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
9330 return false;
9331 }
9332
9333 // We deliberately don't check if we found a deleted special member. We're
9334 // not supposed to!
9335 if (Selected)
9336 *Selected = SMOR.getMethod();
9337
9338 if (TAH == Sema::TAH_ConsiderTrivialABI &&
9339 (CSM == Sema::CXXCopyConstructor || CSM == Sema::CXXMoveConstructor))
9340 return SMOR.getMethod()->isTrivialForCall();
9341 return SMOR.getMethod()->isTrivial();
9342 }
9343
9344 llvm_unreachable("unknown special method kind");
9345 }
9346
findUserDeclaredCtor(CXXRecordDecl * RD)9347 static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
9348 for (auto *CI : RD->ctors())
9349 if (!CI->isImplicit())
9350 return CI;
9351
9352 // Look for constructor templates.
9353 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
9354 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
9355 if (CXXConstructorDecl *CD =
9356 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
9357 return CD;
9358 }
9359
9360 return nullptr;
9361 }
9362
9363 /// The kind of subobject we are checking for triviality. The values of this
9364 /// enumeration are used in diagnostics.
9365 enum TrivialSubobjectKind {
9366 /// The subobject is a base class.
9367 TSK_BaseClass,
9368 /// The subobject is a non-static data member.
9369 TSK_Field,
9370 /// The object is actually the complete object.
9371 TSK_CompleteObject
9372 };
9373
9374 /// Check whether the special member selected for a given type would be trivial.
checkTrivialSubobjectCall(Sema & S,SourceLocation SubobjLoc,QualType SubType,bool ConstRHS,Sema::CXXSpecialMember CSM,TrivialSubobjectKind Kind,Sema::TrivialABIHandling TAH,bool Diagnose)9375 static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
9376 QualType SubType, bool ConstRHS,
9377 Sema::CXXSpecialMember CSM,
9378 TrivialSubobjectKind Kind,
9379 Sema::TrivialABIHandling TAH, bool Diagnose) {
9380 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
9381 if (!SubRD)
9382 return true;
9383
9384 CXXMethodDecl *Selected;
9385 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
9386 ConstRHS, TAH, Diagnose ? &Selected : nullptr))
9387 return true;
9388
9389 if (Diagnose) {
9390 if (ConstRHS)
9391 SubType.addConst();
9392
9393 if (!Selected && CSM == Sema::CXXDefaultConstructor) {
9394 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
9395 << Kind << SubType.getUnqualifiedType();
9396 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
9397 S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
9398 } else if (!Selected)
9399 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
9400 << Kind << SubType.getUnqualifiedType() << CSM << SubType;
9401 else if (Selected->isUserProvided()) {
9402 if (Kind == TSK_CompleteObject)
9403 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
9404 << Kind << SubType.getUnqualifiedType() << CSM;
9405 else {
9406 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
9407 << Kind << SubType.getUnqualifiedType() << CSM;
9408 S.Diag(Selected->getLocation(), diag::note_declared_at);
9409 }
9410 } else {
9411 if (Kind != TSK_CompleteObject)
9412 S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
9413 << Kind << SubType.getUnqualifiedType() << CSM;
9414
9415 // Explain why the defaulted or deleted special member isn't trivial.
9416 S.SpecialMemberIsTrivial(Selected, CSM, Sema::TAH_IgnoreTrivialABI,
9417 Diagnose);
9418 }
9419 }
9420
9421 return false;
9422 }
9423
9424 /// Check whether the members of a class type allow a special member to be
9425 /// trivial.
checkTrivialClassMembers(Sema & S,CXXRecordDecl * RD,Sema::CXXSpecialMember CSM,bool ConstArg,Sema::TrivialABIHandling TAH,bool Diagnose)9426 static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
9427 Sema::CXXSpecialMember CSM,
9428 bool ConstArg,
9429 Sema::TrivialABIHandling TAH,
9430 bool Diagnose) {
9431 for (const auto *FI : RD->fields()) {
9432 if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
9433 continue;
9434
9435 QualType FieldType = S.Context.getBaseElementType(FI->getType());
9436
9437 // Pretend anonymous struct or union members are members of this class.
9438 if (FI->isAnonymousStructOrUnion()) {
9439 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
9440 CSM, ConstArg, TAH, Diagnose))
9441 return false;
9442 continue;
9443 }
9444
9445 // C++11 [class.ctor]p5:
9446 // A default constructor is trivial if [...]
9447 // -- no non-static data member of its class has a
9448 // brace-or-equal-initializer
9449 if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
9450 if (Diagnose)
9451 S.Diag(FI->getLocation(), diag::note_nontrivial_default_member_init)
9452 << FI;
9453 return false;
9454 }
9455
9456 // Objective C ARC 4.3.5:
9457 // [...] nontrivally ownership-qualified types are [...] not trivially
9458 // default constructible, copy constructible, move constructible, copy
9459 // assignable, move assignable, or destructible [...]
9460 if (FieldType.hasNonTrivialObjCLifetime()) {
9461 if (Diagnose)
9462 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
9463 << RD << FieldType.getObjCLifetime();
9464 return false;
9465 }
9466
9467 bool ConstRHS = ConstArg && !FI->isMutable();
9468 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS,
9469 CSM, TSK_Field, TAH, Diagnose))
9470 return false;
9471 }
9472
9473 return true;
9474 }
9475
9476 /// Diagnose why the specified class does not have a trivial special member of
9477 /// the given kind.
DiagnoseNontrivial(const CXXRecordDecl * RD,CXXSpecialMember CSM)9478 void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
9479 QualType Ty = Context.getRecordType(RD);
9480
9481 bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment);
9482 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM,
9483 TSK_CompleteObject, TAH_IgnoreTrivialABI,
9484 /*Diagnose*/true);
9485 }
9486
9487 /// Determine whether a defaulted or deleted special member function is trivial,
9488 /// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
9489 /// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
SpecialMemberIsTrivial(CXXMethodDecl * MD,CXXSpecialMember CSM,TrivialABIHandling TAH,bool Diagnose)9490 bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
9491 TrivialABIHandling TAH, bool Diagnose) {
9492 assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
9493
9494 CXXRecordDecl *RD = MD->getParent();
9495
9496 bool ConstArg = false;
9497
9498 // C++11 [class.copy]p12, p25: [DR1593]
9499 // A [special member] is trivial if [...] its parameter-type-list is
9500 // equivalent to the parameter-type-list of an implicit declaration [...]
9501 switch (CSM) {
9502 case CXXDefaultConstructor:
9503 case CXXDestructor:
9504 // Trivial default constructors and destructors cannot have parameters.
9505 break;
9506
9507 case CXXCopyConstructor:
9508 case CXXCopyAssignment: {
9509 // Trivial copy operations always have const, non-volatile parameter types.
9510 ConstArg = true;
9511 const ParmVarDecl *Param0 = MD->getParamDecl(0);
9512 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
9513 if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
9514 if (Diagnose)
9515 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
9516 << Param0->getSourceRange() << Param0->getType()
9517 << Context.getLValueReferenceType(
9518 Context.getRecordType(RD).withConst());
9519 return false;
9520 }
9521 break;
9522 }
9523
9524 case CXXMoveConstructor:
9525 case CXXMoveAssignment: {
9526 // Trivial move operations always have non-cv-qualified parameters.
9527 const ParmVarDecl *Param0 = MD->getParamDecl(0);
9528 const RValueReferenceType *RT =
9529 Param0->getType()->getAs<RValueReferenceType>();
9530 if (!RT || RT->getPointeeType().getCVRQualifiers()) {
9531 if (Diagnose)
9532 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
9533 << Param0->getSourceRange() << Param0->getType()
9534 << Context.getRValueReferenceType(Context.getRecordType(RD));
9535 return false;
9536 }
9537 break;
9538 }
9539
9540 case CXXInvalid:
9541 llvm_unreachable("not a special member");
9542 }
9543
9544 if (MD->getMinRequiredArguments() < MD->getNumParams()) {
9545 if (Diagnose)
9546 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
9547 diag::note_nontrivial_default_arg)
9548 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
9549 return false;
9550 }
9551 if (MD->isVariadic()) {
9552 if (Diagnose)
9553 Diag(MD->getLocation(), diag::note_nontrivial_variadic);
9554 return false;
9555 }
9556
9557 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
9558 // A copy/move [constructor or assignment operator] is trivial if
9559 // -- the [member] selected to copy/move each direct base class subobject
9560 // is trivial
9561 //
9562 // C++11 [class.copy]p12, C++11 [class.copy]p25:
9563 // A [default constructor or destructor] is trivial if
9564 // -- all the direct base classes have trivial [default constructors or
9565 // destructors]
9566 for (const auto &BI : RD->bases())
9567 if (!checkTrivialSubobjectCall(*this, BI.getBeginLoc(), BI.getType(),
9568 ConstArg, CSM, TSK_BaseClass, TAH, Diagnose))
9569 return false;
9570
9571 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
9572 // A copy/move [constructor or assignment operator] for a class X is
9573 // trivial if
9574 // -- for each non-static data member of X that is of class type (or array
9575 // thereof), the constructor selected to copy/move that member is
9576 // trivial
9577 //
9578 // C++11 [class.copy]p12, C++11 [class.copy]p25:
9579 // A [default constructor or destructor] is trivial if
9580 // -- for all of the non-static data members of its class that are of class
9581 // type (or array thereof), each such class has a trivial [default
9582 // constructor or destructor]
9583 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, TAH, Diagnose))
9584 return false;
9585
9586 // C++11 [class.dtor]p5:
9587 // A destructor is trivial if [...]
9588 // -- the destructor is not virtual
9589 if (CSM == CXXDestructor && MD->isVirtual()) {
9590 if (Diagnose)
9591 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
9592 return false;
9593 }
9594
9595 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
9596 // A [special member] for class X is trivial if [...]
9597 // -- class X has no virtual functions and no virtual base classes
9598 if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
9599 if (!Diagnose)
9600 return false;
9601
9602 if (RD->getNumVBases()) {
9603 // Check for virtual bases. We already know that the corresponding
9604 // member in all bases is trivial, so vbases must all be direct.
9605 CXXBaseSpecifier &BS = *RD->vbases_begin();
9606 assert(BS.isVirtual());
9607 Diag(BS.getBeginLoc(), diag::note_nontrivial_has_virtual) << RD << 1;
9608 return false;
9609 }
9610
9611 // Must have a virtual method.
9612 for (const auto *MI : RD->methods()) {
9613 if (MI->isVirtual()) {
9614 SourceLocation MLoc = MI->getBeginLoc();
9615 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
9616 return false;
9617 }
9618 }
9619
9620 llvm_unreachable("dynamic class with no vbases and no virtual functions");
9621 }
9622
9623 // Looks like it's trivial!
9624 return true;
9625 }
9626
9627 namespace {
9628 struct FindHiddenVirtualMethod {
9629 Sema *S;
9630 CXXMethodDecl *Method;
9631 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
9632 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
9633
9634 private:
9635 /// Check whether any most overridden method from MD in Methods
CheckMostOverridenMethods__anonedc74bd72611::FindHiddenVirtualMethod9636 static bool CheckMostOverridenMethods(
9637 const CXXMethodDecl *MD,
9638 const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) {
9639 if (MD->size_overridden_methods() == 0)
9640 return Methods.count(MD->getCanonicalDecl());
9641 for (const CXXMethodDecl *O : MD->overridden_methods())
9642 if (CheckMostOverridenMethods(O, Methods))
9643 return true;
9644 return false;
9645 }
9646
9647 public:
9648 /// Member lookup function that determines whether a given C++
9649 /// method overloads virtual methods in a base class without overriding any,
9650 /// to be used with CXXRecordDecl::lookupInBases().
operator ()__anonedc74bd72611::FindHiddenVirtualMethod9651 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
9652 RecordDecl *BaseRecord =
9653 Specifier->getType()->castAs<RecordType>()->getDecl();
9654
9655 DeclarationName Name = Method->getDeclName();
9656 assert(Name.getNameKind() == DeclarationName::Identifier);
9657
9658 bool foundSameNameMethod = false;
9659 SmallVector<CXXMethodDecl *, 8> overloadedMethods;
9660 for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
9661 Path.Decls = Path.Decls.slice(1)) {
9662 NamedDecl *D = Path.Decls.front();
9663 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
9664 MD = MD->getCanonicalDecl();
9665 foundSameNameMethod = true;
9666 // Interested only in hidden virtual methods.
9667 if (!MD->isVirtual())
9668 continue;
9669 // If the method we are checking overrides a method from its base
9670 // don't warn about the other overloaded methods. Clang deviates from
9671 // GCC by only diagnosing overloads of inherited virtual functions that
9672 // do not override any other virtual functions in the base. GCC's
9673 // -Woverloaded-virtual diagnoses any derived function hiding a virtual
9674 // function from a base class. These cases may be better served by a
9675 // warning (not specific to virtual functions) on call sites when the
9676 // call would select a different function from the base class, were it
9677 // visible.
9678 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example.
9679 if (!S->IsOverload(Method, MD, false))
9680 return true;
9681 // Collect the overload only if its hidden.
9682 if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods))
9683 overloadedMethods.push_back(MD);
9684 }
9685 }
9686
9687 if (foundSameNameMethod)
9688 OverloadedMethods.append(overloadedMethods.begin(),
9689 overloadedMethods.end());
9690 return foundSameNameMethod;
9691 }
9692 };
9693 } // end anonymous namespace
9694
9695 /// Add the most overriden methods from MD to Methods
AddMostOverridenMethods(const CXXMethodDecl * MD,llvm::SmallPtrSetImpl<const CXXMethodDecl * > & Methods)9696 static void AddMostOverridenMethods(const CXXMethodDecl *MD,
9697 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
9698 if (MD->size_overridden_methods() == 0)
9699 Methods.insert(MD->getCanonicalDecl());
9700 else
9701 for (const CXXMethodDecl *O : MD->overridden_methods())
9702 AddMostOverridenMethods(O, Methods);
9703 }
9704
9705 /// Check if a method overloads virtual methods in a base class without
9706 /// overriding any.
FindHiddenVirtualMethods(CXXMethodDecl * MD,SmallVectorImpl<CXXMethodDecl * > & OverloadedMethods)9707 void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
9708 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
9709 if (!MD->getDeclName().isIdentifier())
9710 return;
9711
9712 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
9713 /*bool RecordPaths=*/false,
9714 /*bool DetectVirtual=*/false);
9715 FindHiddenVirtualMethod FHVM;
9716 FHVM.Method = MD;
9717 FHVM.S = this;
9718
9719 // Keep the base methods that were overridden or introduced in the subclass
9720 // by 'using' in a set. A base method not in this set is hidden.
9721 CXXRecordDecl *DC = MD->getParent();
9722 DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
9723 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
9724 NamedDecl *ND = *I;
9725 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
9726 ND = shad->getTargetDecl();
9727 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
9728 AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods);
9729 }
9730
9731 if (DC->lookupInBases(FHVM, Paths))
9732 OverloadedMethods = FHVM.OverloadedMethods;
9733 }
9734
NoteHiddenVirtualMethods(CXXMethodDecl * MD,SmallVectorImpl<CXXMethodDecl * > & OverloadedMethods)9735 void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
9736 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
9737 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
9738 CXXMethodDecl *overloadedMD = OverloadedMethods[i];
9739 PartialDiagnostic PD = PDiag(
9740 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
9741 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
9742 Diag(overloadedMD->getLocation(), PD);
9743 }
9744 }
9745
9746 /// Diagnose methods which overload virtual methods in a base class
9747 /// without overriding any.
DiagnoseHiddenVirtualMethods(CXXMethodDecl * MD)9748 void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
9749 if (MD->isInvalidDecl())
9750 return;
9751
9752 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation()))
9753 return;
9754
9755 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
9756 FindHiddenVirtualMethods(MD, OverloadedMethods);
9757 if (!OverloadedMethods.empty()) {
9758 Diag(MD->getLocation(), diag::warn_overloaded_virtual)
9759 << MD << (OverloadedMethods.size() > 1);
9760
9761 NoteHiddenVirtualMethods(MD, OverloadedMethods);
9762 }
9763 }
9764
checkIllFormedTrivialABIStruct(CXXRecordDecl & RD)9765 void Sema::checkIllFormedTrivialABIStruct(CXXRecordDecl &RD) {
9766 auto PrintDiagAndRemoveAttr = [&](unsigned N) {
9767 // No diagnostics if this is a template instantiation.
9768 if (!isTemplateInstantiation(RD.getTemplateSpecializationKind())) {
9769 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(),
9770 diag::ext_cannot_use_trivial_abi) << &RD;
9771 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(),
9772 diag::note_cannot_use_trivial_abi_reason) << &RD << N;
9773 }
9774 RD.dropAttr<TrivialABIAttr>();
9775 };
9776
9777 // Ill-formed if the copy and move constructors are deleted.
9778 auto HasNonDeletedCopyOrMoveConstructor = [&]() {
9779 // If the type is dependent, then assume it might have
9780 // implicit copy or move ctor because we won't know yet at this point.
9781 if (RD.isDependentType())
9782 return true;
9783 if (RD.needsImplicitCopyConstructor() &&
9784 !RD.defaultedCopyConstructorIsDeleted())
9785 return true;
9786 if (RD.needsImplicitMoveConstructor() &&
9787 !RD.defaultedMoveConstructorIsDeleted())
9788 return true;
9789 for (const CXXConstructorDecl *CD : RD.ctors())
9790 if (CD->isCopyOrMoveConstructor() && !CD->isDeleted())
9791 return true;
9792 return false;
9793 };
9794
9795 if (!HasNonDeletedCopyOrMoveConstructor()) {
9796 PrintDiagAndRemoveAttr(0);
9797 return;
9798 }
9799
9800 // Ill-formed if the struct has virtual functions.
9801 if (RD.isPolymorphic()) {
9802 PrintDiagAndRemoveAttr(1);
9803 return;
9804 }
9805
9806 for (const auto &B : RD.bases()) {
9807 // Ill-formed if the base class is non-trivial for the purpose of calls or a
9808 // virtual base.
9809 if (!B.getType()->isDependentType() &&
9810 !B.getType()->getAsCXXRecordDecl()->canPassInRegisters()) {
9811 PrintDiagAndRemoveAttr(2);
9812 return;
9813 }
9814
9815 if (B.isVirtual()) {
9816 PrintDiagAndRemoveAttr(3);
9817 return;
9818 }
9819 }
9820
9821 for (const auto *FD : RD.fields()) {
9822 // Ill-formed if the field is an ObjectiveC pointer or of a type that is
9823 // non-trivial for the purpose of calls.
9824 QualType FT = FD->getType();
9825 if (FT.getObjCLifetime() == Qualifiers::OCL_Weak) {
9826 PrintDiagAndRemoveAttr(4);
9827 return;
9828 }
9829
9830 if (const auto *RT = FT->getBaseElementTypeUnsafe()->getAs<RecordType>())
9831 if (!RT->isDependentType() &&
9832 !cast<CXXRecordDecl>(RT->getDecl())->canPassInRegisters()) {
9833 PrintDiagAndRemoveAttr(5);
9834 return;
9835 }
9836 }
9837 }
9838
ActOnFinishCXXMemberSpecification(Scope * S,SourceLocation RLoc,Decl * TagDecl,SourceLocation LBrac,SourceLocation RBrac,const ParsedAttributesView & AttrList)9839 void Sema::ActOnFinishCXXMemberSpecification(
9840 Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac,
9841 SourceLocation RBrac, const ParsedAttributesView &AttrList) {
9842 if (!TagDecl)
9843 return;
9844
9845 AdjustDeclIfTemplate(TagDecl);
9846
9847 for (const ParsedAttr &AL : AttrList) {
9848 if (AL.getKind() != ParsedAttr::AT_Visibility)
9849 continue;
9850 AL.setInvalid();
9851 Diag(AL.getLoc(), diag::warn_attribute_after_definition_ignored) << AL;
9852 }
9853
9854 ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
9855 // strict aliasing violation!
9856 reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
9857 FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
9858
9859 CheckCompletedCXXClass(S, cast<CXXRecordDecl>(TagDecl));
9860 }
9861
9862 /// Find the equality comparison functions that should be implicitly declared
9863 /// in a given class definition, per C++2a [class.compare.default]p3.
findImplicitlyDeclaredEqualityComparisons(ASTContext & Ctx,CXXRecordDecl * RD,llvm::SmallVectorImpl<FunctionDecl * > & Spaceships)9864 static void findImplicitlyDeclaredEqualityComparisons(
9865 ASTContext &Ctx, CXXRecordDecl *RD,
9866 llvm::SmallVectorImpl<FunctionDecl *> &Spaceships) {
9867 DeclarationName EqEq = Ctx.DeclarationNames.getCXXOperatorName(OO_EqualEqual);
9868 if (!RD->lookup(EqEq).empty())
9869 // Member operator== explicitly declared: no implicit operator==s.
9870 return;
9871
9872 // Traverse friends looking for an '==' or a '<=>'.
9873 for (FriendDecl *Friend : RD->friends()) {
9874 FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Friend->getFriendDecl());
9875 if (!FD) continue;
9876
9877 if (FD->getOverloadedOperator() == OO_EqualEqual) {
9878 // Friend operator== explicitly declared: no implicit operator==s.
9879 Spaceships.clear();
9880 return;
9881 }
9882
9883 if (FD->getOverloadedOperator() == OO_Spaceship &&
9884 FD->isExplicitlyDefaulted())
9885 Spaceships.push_back(FD);
9886 }
9887
9888 // Look for members named 'operator<=>'.
9889 DeclarationName Cmp = Ctx.DeclarationNames.getCXXOperatorName(OO_Spaceship);
9890 for (NamedDecl *ND : RD->lookup(Cmp)) {
9891 // Note that we could find a non-function here (either a function template
9892 // or a using-declaration). Neither case results in an implicit
9893 // 'operator=='.
9894 if (auto *FD = dyn_cast<FunctionDecl>(ND))
9895 if (FD->isExplicitlyDefaulted())
9896 Spaceships.push_back(FD);
9897 }
9898 }
9899
9900 /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
9901 /// special functions, such as the default constructor, copy
9902 /// constructor, or destructor, to the given C++ class (C++
9903 /// [special]p1). This routine can only be executed just before the
9904 /// definition of the class is complete.
AddImplicitlyDeclaredMembersToClass(CXXRecordDecl * ClassDecl)9905 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
9906 // Don't add implicit special members to templated classes.
9907 // FIXME: This means unqualified lookups for 'operator=' within a class
9908 // template don't work properly.
9909 if (!ClassDecl->isDependentType()) {
9910 if (ClassDecl->needsImplicitDefaultConstructor()) {
9911 ++getASTContext().NumImplicitDefaultConstructors;
9912
9913 if (ClassDecl->hasInheritedConstructor())
9914 DeclareImplicitDefaultConstructor(ClassDecl);
9915 }
9916
9917 if (ClassDecl->needsImplicitCopyConstructor()) {
9918 ++getASTContext().NumImplicitCopyConstructors;
9919
9920 // If the properties or semantics of the copy constructor couldn't be
9921 // determined while the class was being declared, force a declaration
9922 // of it now.
9923 if (ClassDecl->needsOverloadResolutionForCopyConstructor() ||
9924 ClassDecl->hasInheritedConstructor())
9925 DeclareImplicitCopyConstructor(ClassDecl);
9926 // For the MS ABI we need to know whether the copy ctor is deleted. A
9927 // prerequisite for deleting the implicit copy ctor is that the class has
9928 // a move ctor or move assignment that is either user-declared or whose
9929 // semantics are inherited from a subobject. FIXME: We should provide a
9930 // more direct way for CodeGen to ask whether the constructor was deleted.
9931 else if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
9932 (ClassDecl->hasUserDeclaredMoveConstructor() ||
9933 ClassDecl->needsOverloadResolutionForMoveConstructor() ||
9934 ClassDecl->hasUserDeclaredMoveAssignment() ||
9935 ClassDecl->needsOverloadResolutionForMoveAssignment()))
9936 DeclareImplicitCopyConstructor(ClassDecl);
9937 }
9938
9939 if (getLangOpts().CPlusPlus11 &&
9940 ClassDecl->needsImplicitMoveConstructor()) {
9941 ++getASTContext().NumImplicitMoveConstructors;
9942
9943 if (ClassDecl->needsOverloadResolutionForMoveConstructor() ||
9944 ClassDecl->hasInheritedConstructor())
9945 DeclareImplicitMoveConstructor(ClassDecl);
9946 }
9947
9948 if (ClassDecl->needsImplicitCopyAssignment()) {
9949 ++getASTContext().NumImplicitCopyAssignmentOperators;
9950
9951 // If we have a dynamic class, then the copy assignment operator may be
9952 // virtual, so we have to declare it immediately. This ensures that, e.g.,
9953 // it shows up in the right place in the vtable and that we diagnose
9954 // problems with the implicit exception specification.
9955 if (ClassDecl->isDynamicClass() ||
9956 ClassDecl->needsOverloadResolutionForCopyAssignment() ||
9957 ClassDecl->hasInheritedAssignment())
9958 DeclareImplicitCopyAssignment(ClassDecl);
9959 }
9960
9961 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
9962 ++getASTContext().NumImplicitMoveAssignmentOperators;
9963
9964 // Likewise for the move assignment operator.
9965 if (ClassDecl->isDynamicClass() ||
9966 ClassDecl->needsOverloadResolutionForMoveAssignment() ||
9967 ClassDecl->hasInheritedAssignment())
9968 DeclareImplicitMoveAssignment(ClassDecl);
9969 }
9970
9971 if (ClassDecl->needsImplicitDestructor()) {
9972 ++getASTContext().NumImplicitDestructors;
9973
9974 // If we have a dynamic class, then the destructor may be virtual, so we
9975 // have to declare the destructor immediately. This ensures that, e.g., it
9976 // shows up in the right place in the vtable and that we diagnose problems
9977 // with the implicit exception specification.
9978 if (ClassDecl->isDynamicClass() ||
9979 ClassDecl->needsOverloadResolutionForDestructor())
9980 DeclareImplicitDestructor(ClassDecl);
9981 }
9982 }
9983
9984 // C++2a [class.compare.default]p3:
9985 // If the member-specification does not explicitly declare any member or
9986 // friend named operator==, an == operator function is declared implicitly
9987 // for each defaulted three-way comparison operator function defined in
9988 // the member-specification
9989 // FIXME: Consider doing this lazily.
9990 // We do this during the initial parse for a class template, not during
9991 // instantiation, so that we can handle unqualified lookups for 'operator=='
9992 // when parsing the template.
9993 if (getLangOpts().CPlusPlus20 && !inTemplateInstantiation()) {
9994 llvm::SmallVector<FunctionDecl *, 4> DefaultedSpaceships;
9995 findImplicitlyDeclaredEqualityComparisons(Context, ClassDecl,
9996 DefaultedSpaceships);
9997 for (auto *FD : DefaultedSpaceships)
9998 DeclareImplicitEqualityComparison(ClassDecl, FD);
9999 }
10000 }
10001
10002 unsigned
ActOnReenterTemplateScope(Decl * D,llvm::function_ref<Scope * ()> EnterScope)10003 Sema::ActOnReenterTemplateScope(Decl *D,
10004 llvm::function_ref<Scope *()> EnterScope) {
10005 if (!D)
10006 return 0;
10007 AdjustDeclIfTemplate(D);
10008
10009 // In order to get name lookup right, reenter template scopes in order from
10010 // outermost to innermost.
10011 SmallVector<TemplateParameterList *, 4> ParameterLists;
10012 DeclContext *LookupDC = dyn_cast<DeclContext>(D);
10013
10014 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
10015 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i)
10016 ParameterLists.push_back(DD->getTemplateParameterList(i));
10017
10018 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
10019 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
10020 ParameterLists.push_back(FTD->getTemplateParameters());
10021 } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
10022 LookupDC = VD->getDeclContext();
10023
10024 if (VarTemplateDecl *VTD = VD->getDescribedVarTemplate())
10025 ParameterLists.push_back(VTD->getTemplateParameters());
10026 else if (auto *PSD = dyn_cast<VarTemplatePartialSpecializationDecl>(D))
10027 ParameterLists.push_back(PSD->getTemplateParameters());
10028 }
10029 } else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
10030 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i)
10031 ParameterLists.push_back(TD->getTemplateParameterList(i));
10032
10033 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
10034 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate())
10035 ParameterLists.push_back(CTD->getTemplateParameters());
10036 else if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
10037 ParameterLists.push_back(PSD->getTemplateParameters());
10038 }
10039 }
10040 // FIXME: Alias declarations and concepts.
10041
10042 unsigned Count = 0;
10043 Scope *InnermostTemplateScope = nullptr;
10044 for (TemplateParameterList *Params : ParameterLists) {
10045 // Ignore explicit specializations; they don't contribute to the template
10046 // depth.
10047 if (Params->size() == 0)
10048 continue;
10049
10050 InnermostTemplateScope = EnterScope();
10051 for (NamedDecl *Param : *Params) {
10052 if (Param->getDeclName()) {
10053 InnermostTemplateScope->AddDecl(Param);
10054 IdResolver.AddDecl(Param);
10055 }
10056 }
10057 ++Count;
10058 }
10059
10060 // Associate the new template scopes with the corresponding entities.
10061 if (InnermostTemplateScope) {
10062 assert(LookupDC && "no enclosing DeclContext for template lookup");
10063 EnterTemplatedContext(InnermostTemplateScope, LookupDC);
10064 }
10065
10066 return Count;
10067 }
10068
ActOnStartDelayedMemberDeclarations(Scope * S,Decl * RecordD)10069 void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
10070 if (!RecordD) return;
10071 AdjustDeclIfTemplate(RecordD);
10072 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
10073 PushDeclContext(S, Record);
10074 }
10075
ActOnFinishDelayedMemberDeclarations(Scope * S,Decl * RecordD)10076 void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
10077 if (!RecordD) return;
10078 PopDeclContext();
10079 }
10080
10081 /// This is used to implement the constant expression evaluation part of the
10082 /// attribute enable_if extension. There is nothing in standard C++ which would
10083 /// require reentering parameters.
ActOnReenterCXXMethodParameter(Scope * S,ParmVarDecl * Param)10084 void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) {
10085 if (!Param)
10086 return;
10087
10088 S->AddDecl(Param);
10089 if (Param->getDeclName())
10090 IdResolver.AddDecl(Param);
10091 }
10092
10093 /// ActOnStartDelayedCXXMethodDeclaration - We have completed
10094 /// parsing a top-level (non-nested) C++ class, and we are now
10095 /// parsing those parts of the given Method declaration that could
10096 /// not be parsed earlier (C++ [class.mem]p2), such as default
10097 /// arguments. This action should enter the scope of the given
10098 /// Method declaration as if we had just parsed the qualified method
10099 /// name. However, it should not bring the parameters into scope;
10100 /// that will be performed by ActOnDelayedCXXMethodParameter.
ActOnStartDelayedCXXMethodDeclaration(Scope * S,Decl * MethodD)10101 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
10102 }
10103
10104 /// ActOnDelayedCXXMethodParameter - We've already started a delayed
10105 /// C++ method declaration. We're (re-)introducing the given
10106 /// function parameter into scope for use in parsing later parts of
10107 /// the method declaration. For example, we could see an
10108 /// ActOnParamDefaultArgument event for this parameter.
ActOnDelayedCXXMethodParameter(Scope * S,Decl * ParamD)10109 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
10110 if (!ParamD)
10111 return;
10112
10113 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
10114
10115 S->AddDecl(Param);
10116 if (Param->getDeclName())
10117 IdResolver.AddDecl(Param);
10118 }
10119
10120 /// ActOnFinishDelayedCXXMethodDeclaration - We have finished
10121 /// processing the delayed method declaration for Method. The method
10122 /// declaration is now considered finished. There may be a separate
10123 /// ActOnStartOfFunctionDef action later (not necessarily
10124 /// immediately!) for this method, if it was also defined inside the
10125 /// class body.
ActOnFinishDelayedCXXMethodDeclaration(Scope * S,Decl * MethodD)10126 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
10127 if (!MethodD)
10128 return;
10129
10130 AdjustDeclIfTemplate(MethodD);
10131
10132 FunctionDecl *Method = cast<FunctionDecl>(MethodD);
10133
10134 // Now that we have our default arguments, check the constructor
10135 // again. It could produce additional diagnostics or affect whether
10136 // the class has implicitly-declared destructors, among other
10137 // things.
10138 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
10139 CheckConstructor(Constructor);
10140
10141 // Check the default arguments, which we may have added.
10142 if (!Method->isInvalidDecl())
10143 CheckCXXDefaultArguments(Method);
10144 }
10145
10146 // Emit the given diagnostic for each non-address-space qualifier.
10147 // Common part of CheckConstructorDeclarator and CheckDestructorDeclarator.
checkMethodTypeQualifiers(Sema & S,Declarator & D,unsigned DiagID)10148 static void checkMethodTypeQualifiers(Sema &S, Declarator &D, unsigned DiagID) {
10149 const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10150 if (FTI.hasMethodTypeQualifiers() && !D.isInvalidType()) {
10151 bool DiagOccured = false;
10152 FTI.MethodQualifiers->forEachQualifier(
10153 [DiagID, &S, &DiagOccured](DeclSpec::TQ, StringRef QualName,
10154 SourceLocation SL) {
10155 // This diagnostic should be emitted on any qualifier except an addr
10156 // space qualifier. However, forEachQualifier currently doesn't visit
10157 // addr space qualifiers, so there's no way to write this condition
10158 // right now; we just diagnose on everything.
10159 S.Diag(SL, DiagID) << QualName << SourceRange(SL);
10160 DiagOccured = true;
10161 });
10162 if (DiagOccured)
10163 D.setInvalidType();
10164 }
10165 }
10166
10167 /// CheckConstructorDeclarator - Called by ActOnDeclarator to check
10168 /// the well-formedness of the constructor declarator @p D with type @p
10169 /// R. If there are any errors in the declarator, this routine will
10170 /// emit diagnostics and set the invalid bit to true. In any case, the type
10171 /// will be updated to reflect a well-formed type for the constructor and
10172 /// returned.
CheckConstructorDeclarator(Declarator & D,QualType R,StorageClass & SC)10173 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
10174 StorageClass &SC) {
10175 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
10176
10177 // C++ [class.ctor]p3:
10178 // A constructor shall not be virtual (10.3) or static (9.4). A
10179 // constructor can be invoked for a const, volatile or const
10180 // volatile object. A constructor shall not be declared const,
10181 // volatile, or const volatile (9.3.2).
10182 if (isVirtual) {
10183 if (!D.isInvalidType())
10184 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
10185 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
10186 << SourceRange(D.getIdentifierLoc());
10187 D.setInvalidType();
10188 }
10189 if (SC == SC_Static) {
10190 if (!D.isInvalidType())
10191 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
10192 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
10193 << SourceRange(D.getIdentifierLoc());
10194 D.setInvalidType();
10195 SC = SC_None;
10196 }
10197
10198 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
10199 diagnoseIgnoredQualifiers(
10200 diag::err_constructor_return_type, TypeQuals, SourceLocation(),
10201 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(),
10202 D.getDeclSpec().getRestrictSpecLoc(),
10203 D.getDeclSpec().getAtomicSpecLoc());
10204 D.setInvalidType();
10205 }
10206
10207 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_constructor);
10208
10209 // C++0x [class.ctor]p4:
10210 // A constructor shall not be declared with a ref-qualifier.
10211 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10212 if (FTI.hasRefQualifier()) {
10213 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
10214 << FTI.RefQualifierIsLValueRef
10215 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
10216 D.setInvalidType();
10217 }
10218
10219 // Rebuild the function type "R" without any type qualifiers (in
10220 // case any of the errors above fired) and with "void" as the
10221 // return type, since constructors don't have return types.
10222 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>();
10223 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType())
10224 return R;
10225
10226 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
10227 EPI.TypeQuals = Qualifiers();
10228 EPI.RefQualifier = RQ_None;
10229
10230 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI);
10231 }
10232
10233 /// CheckConstructor - Checks a fully-formed constructor for
10234 /// well-formedness, issuing any diagnostics required. Returns true if
10235 /// the constructor declarator is invalid.
CheckConstructor(CXXConstructorDecl * Constructor)10236 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
10237 CXXRecordDecl *ClassDecl
10238 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
10239 if (!ClassDecl)
10240 return Constructor->setInvalidDecl();
10241
10242 // C++ [class.copy]p3:
10243 // A declaration of a constructor for a class X is ill-formed if
10244 // its first parameter is of type (optionally cv-qualified) X and
10245 // either there are no other parameters or else all other
10246 // parameters have default arguments.
10247 if (!Constructor->isInvalidDecl() &&
10248 Constructor->hasOneParamOrDefaultArgs() &&
10249 Constructor->getTemplateSpecializationKind() !=
10250 TSK_ImplicitInstantiation) {
10251 QualType ParamType = Constructor->getParamDecl(0)->getType();
10252 QualType ClassTy = Context.getTagDeclType(ClassDecl);
10253 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
10254 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
10255 const char *ConstRef
10256 = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
10257 : " const &";
10258 Diag(ParamLoc, diag::err_constructor_byvalue_arg)
10259 << FixItHint::CreateInsertion(ParamLoc, ConstRef);
10260
10261 // FIXME: Rather that making the constructor invalid, we should endeavor
10262 // to fix the type.
10263 Constructor->setInvalidDecl();
10264 }
10265 }
10266 }
10267
10268 /// CheckDestructor - Checks a fully-formed destructor definition for
10269 /// well-formedness, issuing any diagnostics required. Returns true
10270 /// on error.
CheckDestructor(CXXDestructorDecl * Destructor)10271 bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
10272 CXXRecordDecl *RD = Destructor->getParent();
10273
10274 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
10275 SourceLocation Loc;
10276
10277 if (!Destructor->isImplicit())
10278 Loc = Destructor->getLocation();
10279 else
10280 Loc = RD->getLocation();
10281
10282 // If we have a virtual destructor, look up the deallocation function
10283 if (FunctionDecl *OperatorDelete =
10284 FindDeallocationFunctionForDestructor(Loc, RD)) {
10285 Expr *ThisArg = nullptr;
10286
10287 // If the notional 'delete this' expression requires a non-trivial
10288 // conversion from 'this' to the type of a destroying operator delete's
10289 // first parameter, perform that conversion now.
10290 if (OperatorDelete->isDestroyingOperatorDelete()) {
10291 QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
10292 if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) {
10293 // C++ [class.dtor]p13:
10294 // ... as if for the expression 'delete this' appearing in a
10295 // non-virtual destructor of the destructor's class.
10296 ContextRAII SwitchContext(*this, Destructor);
10297 ExprResult This =
10298 ActOnCXXThis(OperatorDelete->getParamDecl(0)->getLocation());
10299 assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?");
10300 This = PerformImplicitConversion(This.get(), ParamType, AA_Passing);
10301 if (This.isInvalid()) {
10302 // FIXME: Register this as a context note so that it comes out
10303 // in the right order.
10304 Diag(Loc, diag::note_implicit_delete_this_in_destructor_here);
10305 return true;
10306 }
10307 ThisArg = This.get();
10308 }
10309 }
10310
10311 DiagnoseUseOfDecl(OperatorDelete, Loc);
10312 MarkFunctionReferenced(Loc, OperatorDelete);
10313 Destructor->setOperatorDelete(OperatorDelete, ThisArg);
10314 }
10315 }
10316
10317 return false;
10318 }
10319
10320 /// CheckDestructorDeclarator - Called by ActOnDeclarator to check
10321 /// the well-formednes of the destructor declarator @p D with type @p
10322 /// R. If there are any errors in the declarator, this routine will
10323 /// emit diagnostics and set the declarator to invalid. Even if this happens,
10324 /// will be updated to reflect a well-formed type for the destructor and
10325 /// returned.
CheckDestructorDeclarator(Declarator & D,QualType R,StorageClass & SC)10326 QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
10327 StorageClass& SC) {
10328 // C++ [class.dtor]p1:
10329 // [...] A typedef-name that names a class is a class-name
10330 // (7.1.3); however, a typedef-name that names a class shall not
10331 // be used as the identifier in the declarator for a destructor
10332 // declaration.
10333 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
10334 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
10335 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name)
10336 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
10337 else if (const TemplateSpecializationType *TST =
10338 DeclaratorType->getAs<TemplateSpecializationType>())
10339 if (TST->isTypeAlias())
10340 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name)
10341 << DeclaratorType << 1;
10342
10343 // C++ [class.dtor]p2:
10344 // A destructor is used to destroy objects of its class type. A
10345 // destructor takes no parameters, and no return type can be
10346 // specified for it (not even void). The address of a destructor
10347 // shall not be taken. A destructor shall not be static. A
10348 // destructor can be invoked for a const, volatile or const
10349 // volatile object. A destructor shall not be declared const,
10350 // volatile or const volatile (9.3.2).
10351 if (SC == SC_Static) {
10352 if (!D.isInvalidType())
10353 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
10354 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
10355 << SourceRange(D.getIdentifierLoc())
10356 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
10357
10358 SC = SC_None;
10359 }
10360 if (!D.isInvalidType()) {
10361 // Destructors don't have return types, but the parser will
10362 // happily parse something like:
10363 //
10364 // class X {
10365 // float ~X();
10366 // };
10367 //
10368 // The return type will be eliminated later.
10369 if (D.getDeclSpec().hasTypeSpecifier())
10370 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
10371 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
10372 << SourceRange(D.getIdentifierLoc());
10373 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
10374 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals,
10375 SourceLocation(),
10376 D.getDeclSpec().getConstSpecLoc(),
10377 D.getDeclSpec().getVolatileSpecLoc(),
10378 D.getDeclSpec().getRestrictSpecLoc(),
10379 D.getDeclSpec().getAtomicSpecLoc());
10380 D.setInvalidType();
10381 }
10382 }
10383
10384 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_destructor);
10385
10386 // C++0x [class.dtor]p2:
10387 // A destructor shall not be declared with a ref-qualifier.
10388 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10389 if (FTI.hasRefQualifier()) {
10390 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
10391 << FTI.RefQualifierIsLValueRef
10392 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
10393 D.setInvalidType();
10394 }
10395
10396 // Make sure we don't have any parameters.
10397 if (FTIHasNonVoidParameters(FTI)) {
10398 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
10399
10400 // Delete the parameters.
10401 FTI.freeParams();
10402 D.setInvalidType();
10403 }
10404
10405 // Make sure the destructor isn't variadic.
10406 if (FTI.isVariadic) {
10407 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
10408 D.setInvalidType();
10409 }
10410
10411 // Rebuild the function type "R" without any type qualifiers or
10412 // parameters (in case any of the errors above fired) and with
10413 // "void" as the return type, since destructors don't have return
10414 // types.
10415 if (!D.isInvalidType())
10416 return R;
10417
10418 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>();
10419 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
10420 EPI.Variadic = false;
10421 EPI.TypeQuals = Qualifiers();
10422 EPI.RefQualifier = RQ_None;
10423 return Context.getFunctionType(Context.VoidTy, None, EPI);
10424 }
10425
extendLeft(SourceRange & R,SourceRange Before)10426 static void extendLeft(SourceRange &R, SourceRange Before) {
10427 if (Before.isInvalid())
10428 return;
10429 R.setBegin(Before.getBegin());
10430 if (R.getEnd().isInvalid())
10431 R.setEnd(Before.getEnd());
10432 }
10433
extendRight(SourceRange & R,SourceRange After)10434 static void extendRight(SourceRange &R, SourceRange After) {
10435 if (After.isInvalid())
10436 return;
10437 if (R.getBegin().isInvalid())
10438 R.setBegin(After.getBegin());
10439 R.setEnd(After.getEnd());
10440 }
10441
10442 /// CheckConversionDeclarator - Called by ActOnDeclarator to check the
10443 /// well-formednes of the conversion function declarator @p D with
10444 /// type @p R. If there are any errors in the declarator, this routine
10445 /// will emit diagnostics and return true. Otherwise, it will return
10446 /// false. Either way, the type @p R will be updated to reflect a
10447 /// well-formed type for the conversion operator.
CheckConversionDeclarator(Declarator & D,QualType & R,StorageClass & SC)10448 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
10449 StorageClass& SC) {
10450 // C++ [class.conv.fct]p1:
10451 // Neither parameter types nor return type can be specified. The
10452 // type of a conversion function (8.3.5) is "function taking no
10453 // parameter returning conversion-type-id."
10454 if (SC == SC_Static) {
10455 if (!D.isInvalidType())
10456 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
10457 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
10458 << D.getName().getSourceRange();
10459 D.setInvalidType();
10460 SC = SC_None;
10461 }
10462
10463 TypeSourceInfo *ConvTSI = nullptr;
10464 QualType ConvType =
10465 GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI);
10466
10467 const DeclSpec &DS = D.getDeclSpec();
10468 if (DS.hasTypeSpecifier() && !D.isInvalidType()) {
10469 // Conversion functions don't have return types, but the parser will
10470 // happily parse something like:
10471 //
10472 // class X {
10473 // float operator bool();
10474 // };
10475 //
10476 // The return type will be changed later anyway.
10477 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
10478 << SourceRange(DS.getTypeSpecTypeLoc())
10479 << SourceRange(D.getIdentifierLoc());
10480 D.setInvalidType();
10481 } else if (DS.getTypeQualifiers() && !D.isInvalidType()) {
10482 // It's also plausible that the user writes type qualifiers in the wrong
10483 // place, such as:
10484 // struct S { const operator int(); };
10485 // FIXME: we could provide a fixit to move the qualifiers onto the
10486 // conversion type.
10487 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
10488 << SourceRange(D.getIdentifierLoc()) << 0;
10489 D.setInvalidType();
10490 }
10491
10492 const auto *Proto = R->castAs<FunctionProtoType>();
10493
10494 // Make sure we don't have any parameters.
10495 if (Proto->getNumParams() > 0) {
10496 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
10497
10498 // Delete the parameters.
10499 D.getFunctionTypeInfo().freeParams();
10500 D.setInvalidType();
10501 } else if (Proto->isVariadic()) {
10502 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
10503 D.setInvalidType();
10504 }
10505
10506 // Diagnose "&operator bool()" and other such nonsense. This
10507 // is actually a gcc extension which we don't support.
10508 if (Proto->getReturnType() != ConvType) {
10509 bool NeedsTypedef = false;
10510 SourceRange Before, After;
10511
10512 // Walk the chunks and extract information on them for our diagnostic.
10513 bool PastFunctionChunk = false;
10514 for (auto &Chunk : D.type_objects()) {
10515 switch (Chunk.Kind) {
10516 case DeclaratorChunk::Function:
10517 if (!PastFunctionChunk) {
10518 if (Chunk.Fun.HasTrailingReturnType) {
10519 TypeSourceInfo *TRT = nullptr;
10520 GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT);
10521 if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange());
10522 }
10523 PastFunctionChunk = true;
10524 break;
10525 }
10526 LLVM_FALLTHROUGH;
10527 case DeclaratorChunk::Array:
10528 NeedsTypedef = true;
10529 extendRight(After, Chunk.getSourceRange());
10530 break;
10531
10532 case DeclaratorChunk::Pointer:
10533 case DeclaratorChunk::BlockPointer:
10534 case DeclaratorChunk::Reference:
10535 case DeclaratorChunk::MemberPointer:
10536 case DeclaratorChunk::Pipe:
10537 extendLeft(Before, Chunk.getSourceRange());
10538 break;
10539
10540 case DeclaratorChunk::Paren:
10541 extendLeft(Before, Chunk.Loc);
10542 extendRight(After, Chunk.EndLoc);
10543 break;
10544 }
10545 }
10546
10547 SourceLocation Loc = Before.isValid() ? Before.getBegin() :
10548 After.isValid() ? After.getBegin() :
10549 D.getIdentifierLoc();
10550 auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl);
10551 DB << Before << After;
10552
10553 if (!NeedsTypedef) {
10554 DB << /*don't need a typedef*/0;
10555
10556 // If we can provide a correct fix-it hint, do so.
10557 if (After.isInvalid() && ConvTSI) {
10558 SourceLocation InsertLoc =
10559 getLocForEndOfToken(ConvTSI->getTypeLoc().getEndLoc());
10560 DB << FixItHint::CreateInsertion(InsertLoc, " ")
10561 << FixItHint::CreateInsertionFromRange(
10562 InsertLoc, CharSourceRange::getTokenRange(Before))
10563 << FixItHint::CreateRemoval(Before);
10564 }
10565 } else if (!Proto->getReturnType()->isDependentType()) {
10566 DB << /*typedef*/1 << Proto->getReturnType();
10567 } else if (getLangOpts().CPlusPlus11) {
10568 DB << /*alias template*/2 << Proto->getReturnType();
10569 } else {
10570 DB << /*might not be fixable*/3;
10571 }
10572
10573 // Recover by incorporating the other type chunks into the result type.
10574 // Note, this does *not* change the name of the function. This is compatible
10575 // with the GCC extension:
10576 // struct S { &operator int(); } s;
10577 // int &r = s.operator int(); // ok in GCC
10578 // S::operator int&() {} // error in GCC, function name is 'operator int'.
10579 ConvType = Proto->getReturnType();
10580 }
10581
10582 // C++ [class.conv.fct]p4:
10583 // The conversion-type-id shall not represent a function type nor
10584 // an array type.
10585 if (ConvType->isArrayType()) {
10586 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
10587 ConvType = Context.getPointerType(ConvType);
10588 D.setInvalidType();
10589 } else if (ConvType->isFunctionType()) {
10590 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
10591 ConvType = Context.getPointerType(ConvType);
10592 D.setInvalidType();
10593 }
10594
10595 // Rebuild the function type "R" without any parameters (in case any
10596 // of the errors above fired) and with the conversion type as the
10597 // return type.
10598 if (D.isInvalidType())
10599 R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
10600
10601 // C++0x explicit conversion operators.
10602 if (DS.hasExplicitSpecifier() && !getLangOpts().CPlusPlus20)
10603 Diag(DS.getExplicitSpecLoc(),
10604 getLangOpts().CPlusPlus11
10605 ? diag::warn_cxx98_compat_explicit_conversion_functions
10606 : diag::ext_explicit_conversion_functions)
10607 << SourceRange(DS.getExplicitSpecRange());
10608 }
10609
10610 /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
10611 /// the declaration of the given C++ conversion function. This routine
10612 /// is responsible for recording the conversion function in the C++
10613 /// class, if possible.
ActOnConversionDeclarator(CXXConversionDecl * Conversion)10614 Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
10615 assert(Conversion && "Expected to receive a conversion function declaration");
10616
10617 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
10618
10619 // Make sure we aren't redeclaring the conversion function.
10620 QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
10621 // C++ [class.conv.fct]p1:
10622 // [...] A conversion function is never used to convert a
10623 // (possibly cv-qualified) object to the (possibly cv-qualified)
10624 // same object type (or a reference to it), to a (possibly
10625 // cv-qualified) base class of that type (or a reference to it),
10626 // or to (possibly cv-qualified) void.
10627 QualType ClassType
10628 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
10629 if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
10630 ConvType = ConvTypeRef->getPointeeType();
10631 if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
10632 Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
10633 /* Suppress diagnostics for instantiations. */;
10634 else if (Conversion->size_overridden_methods() != 0)
10635 /* Suppress diagnostics for overriding virtual function in a base class. */;
10636 else if (ConvType->isRecordType()) {
10637 ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
10638 if (ConvType == ClassType)
10639 Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
10640 << ClassType;
10641 else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType))
10642 Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
10643 << ClassType << ConvType;
10644 } else if (ConvType->isVoidType()) {
10645 Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
10646 << ClassType << ConvType;
10647 }
10648
10649 if (FunctionTemplateDecl *ConversionTemplate
10650 = Conversion->getDescribedFunctionTemplate())
10651 return ConversionTemplate;
10652
10653 return Conversion;
10654 }
10655
10656 namespace {
10657 /// Utility class to accumulate and print a diagnostic listing the invalid
10658 /// specifier(s) on a declaration.
10659 struct BadSpecifierDiagnoser {
BadSpecifierDiagnoser__anonedc74bd72a11::BadSpecifierDiagnoser10660 BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID)
10661 : S(S), Diagnostic(S.Diag(Loc, DiagID)) {}
~BadSpecifierDiagnoser__anonedc74bd72a11::BadSpecifierDiagnoser10662 ~BadSpecifierDiagnoser() {
10663 Diagnostic << Specifiers;
10664 }
10665
check__anonedc74bd72a11::BadSpecifierDiagnoser10666 template<typename T> void check(SourceLocation SpecLoc, T Spec) {
10667 return check(SpecLoc, DeclSpec::getSpecifierName(Spec));
10668 }
check__anonedc74bd72a11::BadSpecifierDiagnoser10669 void check(SourceLocation SpecLoc, DeclSpec::TST Spec) {
10670 return check(SpecLoc,
10671 DeclSpec::getSpecifierName(Spec, S.getPrintingPolicy()));
10672 }
check__anonedc74bd72a11::BadSpecifierDiagnoser10673 void check(SourceLocation SpecLoc, const char *Spec) {
10674 if (SpecLoc.isInvalid()) return;
10675 Diagnostic << SourceRange(SpecLoc, SpecLoc);
10676 if (!Specifiers.empty()) Specifiers += " ";
10677 Specifiers += Spec;
10678 }
10679
10680 Sema &S;
10681 Sema::SemaDiagnosticBuilder Diagnostic;
10682 std::string Specifiers;
10683 };
10684 }
10685
10686 /// Check the validity of a declarator that we parsed for a deduction-guide.
10687 /// These aren't actually declarators in the grammar, so we need to check that
10688 /// the user didn't specify any pieces that are not part of the deduction-guide
10689 /// grammar.
CheckDeductionGuideDeclarator(Declarator & D,QualType & R,StorageClass & SC)10690 void Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R,
10691 StorageClass &SC) {
10692 TemplateName GuidedTemplate = D.getName().TemplateName.get().get();
10693 TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl();
10694 assert(GuidedTemplateDecl && "missing template decl for deduction guide");
10695
10696 // C++ [temp.deduct.guide]p3:
10697 // A deduction-gide shall be declared in the same scope as the
10698 // corresponding class template.
10699 if (!CurContext->getRedeclContext()->Equals(
10700 GuidedTemplateDecl->getDeclContext()->getRedeclContext())) {
10701 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope)
10702 << GuidedTemplateDecl;
10703 Diag(GuidedTemplateDecl->getLocation(), diag::note_template_decl_here);
10704 }
10705
10706 auto &DS = D.getMutableDeclSpec();
10707 // We leave 'friend' and 'virtual' to be rejected in the normal way.
10708 if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() ||
10709 DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() ||
10710 DS.isNoreturnSpecified() || DS.hasConstexprSpecifier()) {
10711 BadSpecifierDiagnoser Diagnoser(
10712 *this, D.getIdentifierLoc(),
10713 diag::err_deduction_guide_invalid_specifier);
10714
10715 Diagnoser.check(DS.getStorageClassSpecLoc(), DS.getStorageClassSpec());
10716 DS.ClearStorageClassSpecs();
10717 SC = SC_None;
10718
10719 // 'explicit' is permitted.
10720 Diagnoser.check(DS.getInlineSpecLoc(), "inline");
10721 Diagnoser.check(DS.getNoreturnSpecLoc(), "_Noreturn");
10722 Diagnoser.check(DS.getConstexprSpecLoc(), "constexpr");
10723 DS.ClearConstexprSpec();
10724
10725 Diagnoser.check(DS.getConstSpecLoc(), "const");
10726 Diagnoser.check(DS.getRestrictSpecLoc(), "__restrict");
10727 Diagnoser.check(DS.getVolatileSpecLoc(), "volatile");
10728 Diagnoser.check(DS.getAtomicSpecLoc(), "_Atomic");
10729 Diagnoser.check(DS.getUnalignedSpecLoc(), "__unaligned");
10730 DS.ClearTypeQualifiers();
10731
10732 Diagnoser.check(DS.getTypeSpecComplexLoc(), DS.getTypeSpecComplex());
10733 Diagnoser.check(DS.getTypeSpecSignLoc(), DS.getTypeSpecSign());
10734 Diagnoser.check(DS.getTypeSpecWidthLoc(), DS.getTypeSpecWidth());
10735 Diagnoser.check(DS.getTypeSpecTypeLoc(), DS.getTypeSpecType());
10736 DS.ClearTypeSpecType();
10737 }
10738
10739 if (D.isInvalidType())
10740 return;
10741
10742 // Check the declarator is simple enough.
10743 bool FoundFunction = false;
10744 for (const DeclaratorChunk &Chunk : llvm::reverse(D.type_objects())) {
10745 if (Chunk.Kind == DeclaratorChunk::Paren)
10746 continue;
10747 if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) {
10748 Diag(D.getDeclSpec().getBeginLoc(),
10749 diag::err_deduction_guide_with_complex_decl)
10750 << D.getSourceRange();
10751 break;
10752 }
10753 if (!Chunk.Fun.hasTrailingReturnType()) {
10754 Diag(D.getName().getBeginLoc(),
10755 diag::err_deduction_guide_no_trailing_return_type);
10756 break;
10757 }
10758
10759 // Check that the return type is written as a specialization of
10760 // the template specified as the deduction-guide's name.
10761 ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType();
10762 TypeSourceInfo *TSI = nullptr;
10763 QualType RetTy = GetTypeFromParser(TrailingReturnType, &TSI);
10764 assert(TSI && "deduction guide has valid type but invalid return type?");
10765 bool AcceptableReturnType = false;
10766 bool MightInstantiateToSpecialization = false;
10767 if (auto RetTST =
10768 TSI->getTypeLoc().getAs<TemplateSpecializationTypeLoc>()) {
10769 TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName();
10770 bool TemplateMatches =
10771 Context.hasSameTemplateName(SpecifiedName, GuidedTemplate);
10772 if (SpecifiedName.getKind() == TemplateName::Template && TemplateMatches)
10773 AcceptableReturnType = true;
10774 else {
10775 // This could still instantiate to the right type, unless we know it
10776 // names the wrong class template.
10777 auto *TD = SpecifiedName.getAsTemplateDecl();
10778 MightInstantiateToSpecialization = !(TD && isa<ClassTemplateDecl>(TD) &&
10779 !TemplateMatches);
10780 }
10781 } else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) {
10782 MightInstantiateToSpecialization = true;
10783 }
10784
10785 if (!AcceptableReturnType) {
10786 Diag(TSI->getTypeLoc().getBeginLoc(),
10787 diag::err_deduction_guide_bad_trailing_return_type)
10788 << GuidedTemplate << TSI->getType()
10789 << MightInstantiateToSpecialization
10790 << TSI->getTypeLoc().getSourceRange();
10791 }
10792
10793 // Keep going to check that we don't have any inner declarator pieces (we
10794 // could still have a function returning a pointer to a function).
10795 FoundFunction = true;
10796 }
10797
10798 if (D.isFunctionDefinition())
10799 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function);
10800 }
10801
10802 //===----------------------------------------------------------------------===//
10803 // Namespace Handling
10804 //===----------------------------------------------------------------------===//
10805
10806 /// Diagnose a mismatch in 'inline' qualifiers when a namespace is
10807 /// reopened.
DiagnoseNamespaceInlineMismatch(Sema & S,SourceLocation KeywordLoc,SourceLocation Loc,IdentifierInfo * II,bool * IsInline,NamespaceDecl * PrevNS)10808 static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
10809 SourceLocation Loc,
10810 IdentifierInfo *II, bool *IsInline,
10811 NamespaceDecl *PrevNS) {
10812 assert(*IsInline != PrevNS->isInline());
10813
10814 // HACK: Work around a bug in libstdc++4.6's <atomic>, where
10815 // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
10816 // inline namespaces, with the intention of bringing names into namespace std.
10817 //
10818 // We support this just well enough to get that case working; this is not
10819 // sufficient to support reopening namespaces as inline in general.
10820 if (*IsInline && II && II->getName().startswith("__atomic") &&
10821 S.getSourceManager().isInSystemHeader(Loc)) {
10822 // Mark all prior declarations of the namespace as inline.
10823 for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
10824 NS = NS->getPreviousDecl())
10825 NS->setInline(*IsInline);
10826 // Patch up the lookup table for the containing namespace. This isn't really
10827 // correct, but it's good enough for this particular case.
10828 for (auto *I : PrevNS->decls())
10829 if (auto *ND = dyn_cast<NamedDecl>(I))
10830 PrevNS->getParent()->makeDeclVisibleInContext(ND);
10831 return;
10832 }
10833
10834 if (PrevNS->isInline())
10835 // The user probably just forgot the 'inline', so suggest that it
10836 // be added back.
10837 S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
10838 << FixItHint::CreateInsertion(KeywordLoc, "inline ");
10839 else
10840 S.Diag(Loc, diag::err_inline_namespace_mismatch);
10841
10842 S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
10843 *IsInline = PrevNS->isInline();
10844 }
10845
10846 /// ActOnStartNamespaceDef - This is called at the start of a namespace
10847 /// definition.
ActOnStartNamespaceDef(Scope * NamespcScope,SourceLocation InlineLoc,SourceLocation NamespaceLoc,SourceLocation IdentLoc,IdentifierInfo * II,SourceLocation LBrace,const ParsedAttributesView & AttrList,UsingDirectiveDecl * & UD)10848 Decl *Sema::ActOnStartNamespaceDef(
10849 Scope *NamespcScope, SourceLocation InlineLoc, SourceLocation NamespaceLoc,
10850 SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation LBrace,
10851 const ParsedAttributesView &AttrList, UsingDirectiveDecl *&UD) {
10852 SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
10853 // For anonymous namespace, take the location of the left brace.
10854 SourceLocation Loc = II ? IdentLoc : LBrace;
10855 bool IsInline = InlineLoc.isValid();
10856 bool IsInvalid = false;
10857 bool IsStd = false;
10858 bool AddToKnown = false;
10859 Scope *DeclRegionScope = NamespcScope->getParent();
10860
10861 NamespaceDecl *PrevNS = nullptr;
10862 if (II) {
10863 // C++ [namespace.def]p2:
10864 // The identifier in an original-namespace-definition shall not
10865 // have been previously defined in the declarative region in
10866 // which the original-namespace-definition appears. The
10867 // identifier in an original-namespace-definition is the name of
10868 // the namespace. Subsequently in that declarative region, it is
10869 // treated as an original-namespace-name.
10870 //
10871 // Since namespace names are unique in their scope, and we don't
10872 // look through using directives, just look for any ordinary names
10873 // as if by qualified name lookup.
10874 LookupResult R(*this, II, IdentLoc, LookupOrdinaryName,
10875 ForExternalRedeclaration);
10876 LookupQualifiedName(R, CurContext->getRedeclContext());
10877 NamedDecl *PrevDecl =
10878 R.isSingleResult() ? R.getRepresentativeDecl() : nullptr;
10879 PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
10880
10881 if (PrevNS) {
10882 // This is an extended namespace definition.
10883 if (IsInline != PrevNS->isInline())
10884 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
10885 &IsInline, PrevNS);
10886 } else if (PrevDecl) {
10887 // This is an invalid name redefinition.
10888 Diag(Loc, diag::err_redefinition_different_kind)
10889 << II;
10890 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10891 IsInvalid = true;
10892 // Continue on to push Namespc as current DeclContext and return it.
10893 } else if (II->isStr("std") &&
10894 CurContext->getRedeclContext()->isTranslationUnit()) {
10895 // This is the first "real" definition of the namespace "std", so update
10896 // our cache of the "std" namespace to point at this definition.
10897 PrevNS = getStdNamespace();
10898 IsStd = true;
10899 AddToKnown = !IsInline;
10900 } else {
10901 // We've seen this namespace for the first time.
10902 AddToKnown = !IsInline;
10903 }
10904 } else {
10905 // Anonymous namespaces.
10906
10907 // Determine whether the parent already has an anonymous namespace.
10908 DeclContext *Parent = CurContext->getRedeclContext();
10909 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
10910 PrevNS = TU->getAnonymousNamespace();
10911 } else {
10912 NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
10913 PrevNS = ND->getAnonymousNamespace();
10914 }
10915
10916 if (PrevNS && IsInline != PrevNS->isInline())
10917 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
10918 &IsInline, PrevNS);
10919 }
10920
10921 NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
10922 StartLoc, Loc, II, PrevNS);
10923 if (IsInvalid)
10924 Namespc->setInvalidDecl();
10925
10926 ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
10927 AddPragmaAttributes(DeclRegionScope, Namespc);
10928
10929 // FIXME: Should we be merging attributes?
10930 if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
10931 PushNamespaceVisibilityAttr(Attr, Loc);
10932
10933 if (IsStd)
10934 StdNamespace = Namespc;
10935 if (AddToKnown)
10936 KnownNamespaces[Namespc] = false;
10937
10938 if (II) {
10939 PushOnScopeChains(Namespc, DeclRegionScope);
10940 } else {
10941 // Link the anonymous namespace into its parent.
10942 DeclContext *Parent = CurContext->getRedeclContext();
10943 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
10944 TU->setAnonymousNamespace(Namespc);
10945 } else {
10946 cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
10947 }
10948
10949 CurContext->addDecl(Namespc);
10950
10951 // C++ [namespace.unnamed]p1. An unnamed-namespace-definition
10952 // behaves as if it were replaced by
10953 // namespace unique { /* empty body */ }
10954 // using namespace unique;
10955 // namespace unique { namespace-body }
10956 // where all occurrences of 'unique' in a translation unit are
10957 // replaced by the same identifier and this identifier differs
10958 // from all other identifiers in the entire program.
10959
10960 // We just create the namespace with an empty name and then add an
10961 // implicit using declaration, just like the standard suggests.
10962 //
10963 // CodeGen enforces the "universally unique" aspect by giving all
10964 // declarations semantically contained within an anonymous
10965 // namespace internal linkage.
10966
10967 if (!PrevNS) {
10968 UD = UsingDirectiveDecl::Create(Context, Parent,
10969 /* 'using' */ LBrace,
10970 /* 'namespace' */ SourceLocation(),
10971 /* qualifier */ NestedNameSpecifierLoc(),
10972 /* identifier */ SourceLocation(),
10973 Namespc,
10974 /* Ancestor */ Parent);
10975 UD->setImplicit();
10976 Parent->addDecl(UD);
10977 }
10978 }
10979
10980 ActOnDocumentableDecl(Namespc);
10981
10982 // Although we could have an invalid decl (i.e. the namespace name is a
10983 // redefinition), push it as current DeclContext and try to continue parsing.
10984 // FIXME: We should be able to push Namespc here, so that the each DeclContext
10985 // for the namespace has the declarations that showed up in that particular
10986 // namespace definition.
10987 PushDeclContext(NamespcScope, Namespc);
10988 return Namespc;
10989 }
10990
10991 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl
10992 /// is a namespace alias, returns the namespace it points to.
getNamespaceDecl(NamedDecl * D)10993 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
10994 if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
10995 return AD->getNamespace();
10996 return dyn_cast_or_null<NamespaceDecl>(D);
10997 }
10998
10999 /// ActOnFinishNamespaceDef - This callback is called after a namespace is
11000 /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
ActOnFinishNamespaceDef(Decl * Dcl,SourceLocation RBrace)11001 void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
11002 NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
11003 assert(Namespc && "Invalid parameter, expected NamespaceDecl");
11004 Namespc->setRBraceLoc(RBrace);
11005 PopDeclContext();
11006 if (Namespc->hasAttr<VisibilityAttr>())
11007 PopPragmaVisibility(true, RBrace);
11008 // If this namespace contains an export-declaration, export it now.
11009 if (DeferredExportedNamespaces.erase(Namespc))
11010 Dcl->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported);
11011 }
11012
getStdBadAlloc() const11013 CXXRecordDecl *Sema::getStdBadAlloc() const {
11014 return cast_or_null<CXXRecordDecl>(
11015 StdBadAlloc.get(Context.getExternalSource()));
11016 }
11017
getStdAlignValT() const11018 EnumDecl *Sema::getStdAlignValT() const {
11019 return cast_or_null<EnumDecl>(StdAlignValT.get(Context.getExternalSource()));
11020 }
11021
getStdNamespace() const11022 NamespaceDecl *Sema::getStdNamespace() const {
11023 return cast_or_null<NamespaceDecl>(
11024 StdNamespace.get(Context.getExternalSource()));
11025 }
11026
lookupStdExperimentalNamespace()11027 NamespaceDecl *Sema::lookupStdExperimentalNamespace() {
11028 if (!StdExperimentalNamespaceCache) {
11029 if (auto Std = getStdNamespace()) {
11030 LookupResult Result(*this, &PP.getIdentifierTable().get("experimental"),
11031 SourceLocation(), LookupNamespaceName);
11032 if (!LookupQualifiedName(Result, Std) ||
11033 !(StdExperimentalNamespaceCache =
11034 Result.getAsSingle<NamespaceDecl>()))
11035 Result.suppressDiagnostics();
11036 }
11037 }
11038 return StdExperimentalNamespaceCache;
11039 }
11040
11041 namespace {
11042
11043 enum UnsupportedSTLSelect {
11044 USS_InvalidMember,
11045 USS_MissingMember,
11046 USS_NonTrivial,
11047 USS_Other
11048 };
11049
11050 struct InvalidSTLDiagnoser {
11051 Sema &S;
11052 SourceLocation Loc;
11053 QualType TyForDiags;
11054
operator ()__anonedc74bd72b11::InvalidSTLDiagnoser11055 QualType operator()(UnsupportedSTLSelect Sel = USS_Other, StringRef Name = "",
11056 const VarDecl *VD = nullptr) {
11057 {
11058 auto D = S.Diag(Loc, diag::err_std_compare_type_not_supported)
11059 << TyForDiags << ((int)Sel);
11060 if (Sel == USS_InvalidMember || Sel == USS_MissingMember) {
11061 assert(!Name.empty());
11062 D << Name;
11063 }
11064 }
11065 if (Sel == USS_InvalidMember) {
11066 S.Diag(VD->getLocation(), diag::note_var_declared_here)
11067 << VD << VD->getSourceRange();
11068 }
11069 return QualType();
11070 }
11071 };
11072 } // namespace
11073
CheckComparisonCategoryType(ComparisonCategoryType Kind,SourceLocation Loc,ComparisonCategoryUsage Usage)11074 QualType Sema::CheckComparisonCategoryType(ComparisonCategoryType Kind,
11075 SourceLocation Loc,
11076 ComparisonCategoryUsage Usage) {
11077 assert(getLangOpts().CPlusPlus &&
11078 "Looking for comparison category type outside of C++.");
11079
11080 // Use an elaborated type for diagnostics which has a name containing the
11081 // prepended 'std' namespace but not any inline namespace names.
11082 auto TyForDiags = [&](ComparisonCategoryInfo *Info) {
11083 auto *NNS =
11084 NestedNameSpecifier::Create(Context, nullptr, getStdNamespace());
11085 return Context.getElaboratedType(ETK_None, NNS, Info->getType());
11086 };
11087
11088 // Check if we've already successfully checked the comparison category type
11089 // before. If so, skip checking it again.
11090 ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfo(Kind);
11091 if (Info && FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)]) {
11092 // The only thing we need to check is that the type has a reachable
11093 // definition in the current context.
11094 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type))
11095 return QualType();
11096
11097 return Info->getType();
11098 }
11099
11100 // If lookup failed
11101 if (!Info) {
11102 std::string NameForDiags = "std::";
11103 NameForDiags += ComparisonCategories::getCategoryString(Kind);
11104 Diag(Loc, diag::err_implied_comparison_category_type_not_found)
11105 << NameForDiags << (int)Usage;
11106 return QualType();
11107 }
11108
11109 assert(Info->Kind == Kind);
11110 assert(Info->Record);
11111
11112 // Update the Record decl in case we encountered a forward declaration on our
11113 // first pass. FIXME: This is a bit of a hack.
11114 if (Info->Record->hasDefinition())
11115 Info->Record = Info->Record->getDefinition();
11116
11117 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type))
11118 return QualType();
11119
11120 InvalidSTLDiagnoser UnsupportedSTLError{*this, Loc, TyForDiags(Info)};
11121
11122 if (!Info->Record->isTriviallyCopyable())
11123 return UnsupportedSTLError(USS_NonTrivial);
11124
11125 for (const CXXBaseSpecifier &BaseSpec : Info->Record->bases()) {
11126 CXXRecordDecl *Base = BaseSpec.getType()->getAsCXXRecordDecl();
11127 // Tolerate empty base classes.
11128 if (Base->isEmpty())
11129 continue;
11130 // Reject STL implementations which have at least one non-empty base.
11131 return UnsupportedSTLError();
11132 }
11133
11134 // Check that the STL has implemented the types using a single integer field.
11135 // This expectation allows better codegen for builtin operators. We require:
11136 // (1) The class has exactly one field.
11137 // (2) The field is an integral or enumeration type.
11138 auto FIt = Info->Record->field_begin(), FEnd = Info->Record->field_end();
11139 if (std::distance(FIt, FEnd) != 1 ||
11140 !FIt->getType()->isIntegralOrEnumerationType()) {
11141 return UnsupportedSTLError();
11142 }
11143
11144 // Build each of the require values and store them in Info.
11145 for (ComparisonCategoryResult CCR :
11146 ComparisonCategories::getPossibleResultsForType(Kind)) {
11147 StringRef MemName = ComparisonCategories::getResultString(CCR);
11148 ComparisonCategoryInfo::ValueInfo *ValInfo = Info->lookupValueInfo(CCR);
11149
11150 if (!ValInfo)
11151 return UnsupportedSTLError(USS_MissingMember, MemName);
11152
11153 VarDecl *VD = ValInfo->VD;
11154 assert(VD && "should not be null!");
11155
11156 // Attempt to diagnose reasons why the STL definition of this type
11157 // might be foobar, including it failing to be a constant expression.
11158 // TODO Handle more ways the lookup or result can be invalid.
11159 if (!VD->isStaticDataMember() ||
11160 !VD->isUsableInConstantExpressions(Context))
11161 return UnsupportedSTLError(USS_InvalidMember, MemName, VD);
11162
11163 // Attempt to evaluate the var decl as a constant expression and extract
11164 // the value of its first field as a ICE. If this fails, the STL
11165 // implementation is not supported.
11166 if (!ValInfo->hasValidIntValue())
11167 return UnsupportedSTLError();
11168
11169 MarkVariableReferenced(Loc, VD);
11170 }
11171
11172 // We've successfully built the required types and expressions. Update
11173 // the cache and return the newly cached value.
11174 FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)] = true;
11175 return Info->getType();
11176 }
11177
11178 /// Retrieve the special "std" namespace, which may require us to
11179 /// implicitly define the namespace.
getOrCreateStdNamespace()11180 NamespaceDecl *Sema::getOrCreateStdNamespace() {
11181 if (!StdNamespace) {
11182 // The "std" namespace has not yet been defined, so build one implicitly.
11183 StdNamespace = NamespaceDecl::Create(Context,
11184 Context.getTranslationUnitDecl(),
11185 /*Inline=*/false,
11186 SourceLocation(), SourceLocation(),
11187 &PP.getIdentifierTable().get("std"),
11188 /*PrevDecl=*/nullptr);
11189 getStdNamespace()->setImplicit(true);
11190 }
11191
11192 return getStdNamespace();
11193 }
11194
isStdInitializerList(QualType Ty,QualType * Element)11195 bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
11196 assert(getLangOpts().CPlusPlus &&
11197 "Looking for std::initializer_list outside of C++.");
11198
11199 // We're looking for implicit instantiations of
11200 // template <typename E> class std::initializer_list.
11201
11202 if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
11203 return false;
11204
11205 ClassTemplateDecl *Template = nullptr;
11206 const TemplateArgument *Arguments = nullptr;
11207
11208 if (const RecordType *RT = Ty->getAs<RecordType>()) {
11209
11210 ClassTemplateSpecializationDecl *Specialization =
11211 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
11212 if (!Specialization)
11213 return false;
11214
11215 Template = Specialization->getSpecializedTemplate();
11216 Arguments = Specialization->getTemplateArgs().data();
11217 } else if (const TemplateSpecializationType *TST =
11218 Ty->getAs<TemplateSpecializationType>()) {
11219 Template = dyn_cast_or_null<ClassTemplateDecl>(
11220 TST->getTemplateName().getAsTemplateDecl());
11221 Arguments = TST->getArgs();
11222 }
11223 if (!Template)
11224 return false;
11225
11226 if (!StdInitializerList) {
11227 // Haven't recognized std::initializer_list yet, maybe this is it.
11228 CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
11229 if (TemplateClass->getIdentifier() !=
11230 &PP.getIdentifierTable().get("initializer_list") ||
11231 !getStdNamespace()->InEnclosingNamespaceSetOf(
11232 TemplateClass->getDeclContext()))
11233 return false;
11234 // This is a template called std::initializer_list, but is it the right
11235 // template?
11236 TemplateParameterList *Params = Template->getTemplateParameters();
11237 if (Params->getMinRequiredArguments() != 1)
11238 return false;
11239 if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
11240 return false;
11241
11242 // It's the right template.
11243 StdInitializerList = Template;
11244 }
11245
11246 if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl())
11247 return false;
11248
11249 // This is an instance of std::initializer_list. Find the argument type.
11250 if (Element)
11251 *Element = Arguments[0].getAsType();
11252 return true;
11253 }
11254
LookupStdInitializerList(Sema & S,SourceLocation Loc)11255 static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
11256 NamespaceDecl *Std = S.getStdNamespace();
11257 if (!Std) {
11258 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
11259 return nullptr;
11260 }
11261
11262 LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
11263 Loc, Sema::LookupOrdinaryName);
11264 if (!S.LookupQualifiedName(Result, Std)) {
11265 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
11266 return nullptr;
11267 }
11268 ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
11269 if (!Template) {
11270 Result.suppressDiagnostics();
11271 // We found something weird. Complain about the first thing we found.
11272 NamedDecl *Found = *Result.begin();
11273 S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
11274 return nullptr;
11275 }
11276
11277 // We found some template called std::initializer_list. Now verify that it's
11278 // correct.
11279 TemplateParameterList *Params = Template->getTemplateParameters();
11280 if (Params->getMinRequiredArguments() != 1 ||
11281 !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
11282 S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
11283 return nullptr;
11284 }
11285
11286 return Template;
11287 }
11288
BuildStdInitializerList(QualType Element,SourceLocation Loc)11289 QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
11290 if (!StdInitializerList) {
11291 StdInitializerList = LookupStdInitializerList(*this, Loc);
11292 if (!StdInitializerList)
11293 return QualType();
11294 }
11295
11296 TemplateArgumentListInfo Args(Loc, Loc);
11297 Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
11298 Context.getTrivialTypeSourceInfo(Element,
11299 Loc)));
11300 return Context.getCanonicalType(
11301 CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
11302 }
11303
isInitListConstructor(const FunctionDecl * Ctor)11304 bool Sema::isInitListConstructor(const FunctionDecl *Ctor) {
11305 // C++ [dcl.init.list]p2:
11306 // A constructor is an initializer-list constructor if its first parameter
11307 // is of type std::initializer_list<E> or reference to possibly cv-qualified
11308 // std::initializer_list<E> for some type E, and either there are no other
11309 // parameters or else all other parameters have default arguments.
11310 if (!Ctor->hasOneParamOrDefaultArgs())
11311 return false;
11312
11313 QualType ArgType = Ctor->getParamDecl(0)->getType();
11314 if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
11315 ArgType = RT->getPointeeType().getUnqualifiedType();
11316
11317 return isStdInitializerList(ArgType, nullptr);
11318 }
11319
11320 /// Determine whether a using statement is in a context where it will be
11321 /// apply in all contexts.
IsUsingDirectiveInToplevelContext(DeclContext * CurContext)11322 static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
11323 switch (CurContext->getDeclKind()) {
11324 case Decl::TranslationUnit:
11325 return true;
11326 case Decl::LinkageSpec:
11327 return IsUsingDirectiveInToplevelContext(CurContext->getParent());
11328 default:
11329 return false;
11330 }
11331 }
11332
11333 namespace {
11334
11335 // Callback to only accept typo corrections that are namespaces.
11336 class NamespaceValidatorCCC final : public CorrectionCandidateCallback {
11337 public:
ValidateCandidate(const TypoCorrection & candidate)11338 bool ValidateCandidate(const TypoCorrection &candidate) override {
11339 if (NamedDecl *ND = candidate.getCorrectionDecl())
11340 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
11341 return false;
11342 }
11343
clone()11344 std::unique_ptr<CorrectionCandidateCallback> clone() override {
11345 return std::make_unique<NamespaceValidatorCCC>(*this);
11346 }
11347 };
11348
11349 }
11350
TryNamespaceTypoCorrection(Sema & S,LookupResult & R,Scope * Sc,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * Ident)11351 static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
11352 CXXScopeSpec &SS,
11353 SourceLocation IdentLoc,
11354 IdentifierInfo *Ident) {
11355 R.clear();
11356 NamespaceValidatorCCC CCC{};
11357 if (TypoCorrection Corrected =
11358 S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS, CCC,
11359 Sema::CTK_ErrorRecovery)) {
11360 if (DeclContext *DC = S.computeDeclContext(SS, false)) {
11361 std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
11362 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
11363 Ident->getName().equals(CorrectedStr);
11364 S.diagnoseTypo(Corrected,
11365 S.PDiag(diag::err_using_directive_member_suggest)
11366 << Ident << DC << DroppedSpecifier << SS.getRange(),
11367 S.PDiag(diag::note_namespace_defined_here));
11368 } else {
11369 S.diagnoseTypo(Corrected,
11370 S.PDiag(diag::err_using_directive_suggest) << Ident,
11371 S.PDiag(diag::note_namespace_defined_here));
11372 }
11373 R.addDecl(Corrected.getFoundDecl());
11374 return true;
11375 }
11376 return false;
11377 }
11378
ActOnUsingDirective(Scope * S,SourceLocation UsingLoc,SourceLocation NamespcLoc,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * NamespcName,const ParsedAttributesView & AttrList)11379 Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc,
11380 SourceLocation NamespcLoc, CXXScopeSpec &SS,
11381 SourceLocation IdentLoc,
11382 IdentifierInfo *NamespcName,
11383 const ParsedAttributesView &AttrList) {
11384 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
11385 assert(NamespcName && "Invalid NamespcName.");
11386 assert(IdentLoc.isValid() && "Invalid NamespceName location.");
11387
11388 // This can only happen along a recovery path.
11389 while (S->isTemplateParamScope())
11390 S = S->getParent();
11391 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
11392
11393 UsingDirectiveDecl *UDir = nullptr;
11394 NestedNameSpecifier *Qualifier = nullptr;
11395 if (SS.isSet())
11396 Qualifier = SS.getScopeRep();
11397
11398 // Lookup namespace name.
11399 LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
11400 LookupParsedName(R, S, &SS);
11401 if (R.isAmbiguous())
11402 return nullptr;
11403
11404 if (R.empty()) {
11405 R.clear();
11406 // Allow "using namespace std;" or "using namespace ::std;" even if
11407 // "std" hasn't been defined yet, for GCC compatibility.
11408 if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
11409 NamespcName->isStr("std")) {
11410 Diag(IdentLoc, diag::ext_using_undefined_std);
11411 R.addDecl(getOrCreateStdNamespace());
11412 R.resolveKind();
11413 }
11414 // Otherwise, attempt typo correction.
11415 else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
11416 }
11417
11418 if (!R.empty()) {
11419 NamedDecl *Named = R.getRepresentativeDecl();
11420 NamespaceDecl *NS = R.getAsSingle<NamespaceDecl>();
11421 assert(NS && "expected namespace decl");
11422
11423 // The use of a nested name specifier may trigger deprecation warnings.
11424 DiagnoseUseOfDecl(Named, IdentLoc);
11425
11426 // C++ [namespace.udir]p1:
11427 // A using-directive specifies that the names in the nominated
11428 // namespace can be used in the scope in which the
11429 // using-directive appears after the using-directive. During
11430 // unqualified name lookup (3.4.1), the names appear as if they
11431 // were declared in the nearest enclosing namespace which
11432 // contains both the using-directive and the nominated
11433 // namespace. [Note: in this context, "contains" means "contains
11434 // directly or indirectly". ]
11435
11436 // Find enclosing context containing both using-directive and
11437 // nominated namespace.
11438 DeclContext *CommonAncestor = NS;
11439 while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
11440 CommonAncestor = CommonAncestor->getParent();
11441
11442 UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
11443 SS.getWithLocInContext(Context),
11444 IdentLoc, Named, CommonAncestor);
11445
11446 if (IsUsingDirectiveInToplevelContext(CurContext) &&
11447 !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
11448 Diag(IdentLoc, diag::warn_using_directive_in_header);
11449 }
11450
11451 PushUsingDirective(S, UDir);
11452 } else {
11453 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
11454 }
11455
11456 if (UDir)
11457 ProcessDeclAttributeList(S, UDir, AttrList);
11458
11459 return UDir;
11460 }
11461
PushUsingDirective(Scope * S,UsingDirectiveDecl * UDir)11462 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
11463 // If the scope has an associated entity and the using directive is at
11464 // namespace or translation unit scope, add the UsingDirectiveDecl into
11465 // its lookup structure so qualified name lookup can find it.
11466 DeclContext *Ctx = S->getEntity();
11467 if (Ctx && !Ctx->isFunctionOrMethod())
11468 Ctx->addDecl(UDir);
11469 else
11470 // Otherwise, it is at block scope. The using-directives will affect lookup
11471 // only to the end of the scope.
11472 S->PushUsingDirective(UDir);
11473 }
11474
ActOnUsingDeclaration(Scope * S,AccessSpecifier AS,SourceLocation UsingLoc,SourceLocation TypenameLoc,CXXScopeSpec & SS,UnqualifiedId & Name,SourceLocation EllipsisLoc,const ParsedAttributesView & AttrList)11475 Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS,
11476 SourceLocation UsingLoc,
11477 SourceLocation TypenameLoc, CXXScopeSpec &SS,
11478 UnqualifiedId &Name,
11479 SourceLocation EllipsisLoc,
11480 const ParsedAttributesView &AttrList) {
11481 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
11482
11483 if (SS.isEmpty()) {
11484 Diag(Name.getBeginLoc(), diag::err_using_requires_qualname);
11485 return nullptr;
11486 }
11487
11488 switch (Name.getKind()) {
11489 case UnqualifiedIdKind::IK_ImplicitSelfParam:
11490 case UnqualifiedIdKind::IK_Identifier:
11491 case UnqualifiedIdKind::IK_OperatorFunctionId:
11492 case UnqualifiedIdKind::IK_LiteralOperatorId:
11493 case UnqualifiedIdKind::IK_ConversionFunctionId:
11494 break;
11495
11496 case UnqualifiedIdKind::IK_ConstructorName:
11497 case UnqualifiedIdKind::IK_ConstructorTemplateId:
11498 // C++11 inheriting constructors.
11499 Diag(Name.getBeginLoc(),
11500 getLangOpts().CPlusPlus11
11501 ? diag::warn_cxx98_compat_using_decl_constructor
11502 : diag::err_using_decl_constructor)
11503 << SS.getRange();
11504
11505 if (getLangOpts().CPlusPlus11) break;
11506
11507 return nullptr;
11508
11509 case UnqualifiedIdKind::IK_DestructorName:
11510 Diag(Name.getBeginLoc(), diag::err_using_decl_destructor) << SS.getRange();
11511 return nullptr;
11512
11513 case UnqualifiedIdKind::IK_TemplateId:
11514 Diag(Name.getBeginLoc(), diag::err_using_decl_template_id)
11515 << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
11516 return nullptr;
11517
11518 case UnqualifiedIdKind::IK_DeductionGuideName:
11519 llvm_unreachable("cannot parse qualified deduction guide name");
11520 }
11521
11522 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
11523 DeclarationName TargetName = TargetNameInfo.getName();
11524 if (!TargetName)
11525 return nullptr;
11526
11527 // Warn about access declarations.
11528 if (UsingLoc.isInvalid()) {
11529 Diag(Name.getBeginLoc(), getLangOpts().CPlusPlus11
11530 ? diag::err_access_decl
11531 : diag::warn_access_decl_deprecated)
11532 << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
11533 }
11534
11535 if (EllipsisLoc.isInvalid()) {
11536 if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
11537 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
11538 return nullptr;
11539 } else {
11540 if (!SS.getScopeRep()->containsUnexpandedParameterPack() &&
11541 !TargetNameInfo.containsUnexpandedParameterPack()) {
11542 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
11543 << SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc());
11544 EllipsisLoc = SourceLocation();
11545 }
11546 }
11547
11548 NamedDecl *UD =
11549 BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc,
11550 SS, TargetNameInfo, EllipsisLoc, AttrList,
11551 /*IsInstantiation*/false);
11552 if (UD)
11553 PushOnScopeChains(UD, S, /*AddToContext*/ false);
11554
11555 return UD;
11556 }
11557
11558 /// Determine whether a using declaration considers the given
11559 /// declarations as "equivalent", e.g., if they are redeclarations of
11560 /// the same entity or are both typedefs of the same type.
11561 static bool
IsEquivalentForUsingDecl(ASTContext & Context,NamedDecl * D1,NamedDecl * D2)11562 IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) {
11563 if (D1->getCanonicalDecl() == D2->getCanonicalDecl())
11564 return true;
11565
11566 if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
11567 if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2))
11568 return Context.hasSameType(TD1->getUnderlyingType(),
11569 TD2->getUnderlyingType());
11570
11571 return false;
11572 }
11573
11574
11575 /// Determines whether to create a using shadow decl for a particular
11576 /// decl, given the set of decls existing prior to this using lookup.
CheckUsingShadowDecl(UsingDecl * Using,NamedDecl * Orig,const LookupResult & Previous,UsingShadowDecl * & PrevShadow)11577 bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
11578 const LookupResult &Previous,
11579 UsingShadowDecl *&PrevShadow) {
11580 // Diagnose finding a decl which is not from a base class of the
11581 // current class. We do this now because there are cases where this
11582 // function will silently decide not to build a shadow decl, which
11583 // will pre-empt further diagnostics.
11584 //
11585 // We don't need to do this in C++11 because we do the check once on
11586 // the qualifier.
11587 //
11588 // FIXME: diagnose the following if we care enough:
11589 // struct A { int foo; };
11590 // struct B : A { using A::foo; };
11591 // template <class T> struct C : A {};
11592 // template <class T> struct D : C<T> { using B::foo; } // <---
11593 // This is invalid (during instantiation) in C++03 because B::foo
11594 // resolves to the using decl in B, which is not a base class of D<T>.
11595 // We can't diagnose it immediately because C<T> is an unknown
11596 // specialization. The UsingShadowDecl in D<T> then points directly
11597 // to A::foo, which will look well-formed when we instantiate.
11598 // The right solution is to not collapse the shadow-decl chain.
11599 if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
11600 DeclContext *OrigDC = Orig->getDeclContext();
11601
11602 // Handle enums and anonymous structs.
11603 if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
11604 CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
11605 while (OrigRec->isAnonymousStructOrUnion())
11606 OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
11607
11608 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
11609 if (OrigDC == CurContext) {
11610 Diag(Using->getLocation(),
11611 diag::err_using_decl_nested_name_specifier_is_current_class)
11612 << Using->getQualifierLoc().getSourceRange();
11613 Diag(Orig->getLocation(), diag::note_using_decl_target);
11614 Using->setInvalidDecl();
11615 return true;
11616 }
11617
11618 Diag(Using->getQualifierLoc().getBeginLoc(),
11619 diag::err_using_decl_nested_name_specifier_is_not_base_class)
11620 << Using->getQualifier()
11621 << cast<CXXRecordDecl>(CurContext)
11622 << Using->getQualifierLoc().getSourceRange();
11623 Diag(Orig->getLocation(), diag::note_using_decl_target);
11624 Using->setInvalidDecl();
11625 return true;
11626 }
11627 }
11628
11629 if (Previous.empty()) return false;
11630
11631 NamedDecl *Target = Orig;
11632 if (isa<UsingShadowDecl>(Target))
11633 Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
11634
11635 // If the target happens to be one of the previous declarations, we
11636 // don't have a conflict.
11637 //
11638 // FIXME: but we might be increasing its access, in which case we
11639 // should redeclare it.
11640 NamedDecl *NonTag = nullptr, *Tag = nullptr;
11641 bool FoundEquivalentDecl = false;
11642 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
11643 I != E; ++I) {
11644 NamedDecl *D = (*I)->getUnderlyingDecl();
11645 // We can have UsingDecls in our Previous results because we use the same
11646 // LookupResult for checking whether the UsingDecl itself is a valid
11647 // redeclaration.
11648 if (isa<UsingDecl>(D) || isa<UsingPackDecl>(D))
11649 continue;
11650
11651 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
11652 // C++ [class.mem]p19:
11653 // If T is the name of a class, then [every named member other than
11654 // a non-static data member] shall have a name different from T
11655 if (RD->isInjectedClassName() && !isa<FieldDecl>(Target) &&
11656 !isa<IndirectFieldDecl>(Target) &&
11657 !isa<UnresolvedUsingValueDecl>(Target) &&
11658 DiagnoseClassNameShadow(
11659 CurContext,
11660 DeclarationNameInfo(Using->getDeclName(), Using->getLocation())))
11661 return true;
11662 }
11663
11664 if (IsEquivalentForUsingDecl(Context, D, Target)) {
11665 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I))
11666 PrevShadow = Shadow;
11667 FoundEquivalentDecl = true;
11668 } else if (isEquivalentInternalLinkageDeclaration(D, Target)) {
11669 // We don't conflict with an existing using shadow decl of an equivalent
11670 // declaration, but we're not a redeclaration of it.
11671 FoundEquivalentDecl = true;
11672 }
11673
11674 if (isVisible(D))
11675 (isa<TagDecl>(D) ? Tag : NonTag) = D;
11676 }
11677
11678 if (FoundEquivalentDecl)
11679 return false;
11680
11681 if (FunctionDecl *FD = Target->getAsFunction()) {
11682 NamedDecl *OldDecl = nullptr;
11683 switch (CheckOverload(nullptr, FD, Previous, OldDecl,
11684 /*IsForUsingDecl*/ true)) {
11685 case Ovl_Overload:
11686 return false;
11687
11688 case Ovl_NonFunction:
11689 Diag(Using->getLocation(), diag::err_using_decl_conflict);
11690 break;
11691
11692 // We found a decl with the exact signature.
11693 case Ovl_Match:
11694 // If we're in a record, we want to hide the target, so we
11695 // return true (without a diagnostic) to tell the caller not to
11696 // build a shadow decl.
11697 if (CurContext->isRecord())
11698 return true;
11699
11700 // If we're not in a record, this is an error.
11701 Diag(Using->getLocation(), diag::err_using_decl_conflict);
11702 break;
11703 }
11704
11705 Diag(Target->getLocation(), diag::note_using_decl_target);
11706 Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
11707 Using->setInvalidDecl();
11708 return true;
11709 }
11710
11711 // Target is not a function.
11712
11713 if (isa<TagDecl>(Target)) {
11714 // No conflict between a tag and a non-tag.
11715 if (!Tag) return false;
11716
11717 Diag(Using->getLocation(), diag::err_using_decl_conflict);
11718 Diag(Target->getLocation(), diag::note_using_decl_target);
11719 Diag(Tag->getLocation(), diag::note_using_decl_conflict);
11720 Using->setInvalidDecl();
11721 return true;
11722 }
11723
11724 // No conflict between a tag and a non-tag.
11725 if (!NonTag) return false;
11726
11727 Diag(Using->getLocation(), diag::err_using_decl_conflict);
11728 Diag(Target->getLocation(), diag::note_using_decl_target);
11729 Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
11730 Using->setInvalidDecl();
11731 return true;
11732 }
11733
11734 /// Determine whether a direct base class is a virtual base class.
isVirtualDirectBase(CXXRecordDecl * Derived,CXXRecordDecl * Base)11735 static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) {
11736 if (!Derived->getNumVBases())
11737 return false;
11738 for (auto &B : Derived->bases())
11739 if (B.getType()->getAsCXXRecordDecl() == Base)
11740 return B.isVirtual();
11741 llvm_unreachable("not a direct base class");
11742 }
11743
11744 /// Builds a shadow declaration corresponding to a 'using' declaration.
BuildUsingShadowDecl(Scope * S,UsingDecl * UD,NamedDecl * Orig,UsingShadowDecl * PrevDecl)11745 UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
11746 UsingDecl *UD,
11747 NamedDecl *Orig,
11748 UsingShadowDecl *PrevDecl) {
11749 // If we resolved to another shadow declaration, just coalesce them.
11750 NamedDecl *Target = Orig;
11751 if (isa<UsingShadowDecl>(Target)) {
11752 Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
11753 assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
11754 }
11755
11756 NamedDecl *NonTemplateTarget = Target;
11757 if (auto *TargetTD = dyn_cast<TemplateDecl>(Target))
11758 NonTemplateTarget = TargetTD->getTemplatedDecl();
11759
11760 UsingShadowDecl *Shadow;
11761 if (NonTemplateTarget && isa<CXXConstructorDecl>(NonTemplateTarget)) {
11762 bool IsVirtualBase =
11763 isVirtualDirectBase(cast<CXXRecordDecl>(CurContext),
11764 UD->getQualifier()->getAsRecordDecl());
11765 Shadow = ConstructorUsingShadowDecl::Create(
11766 Context, CurContext, UD->getLocation(), UD, Orig, IsVirtualBase);
11767 } else {
11768 Shadow = UsingShadowDecl::Create(Context, CurContext, UD->getLocation(), UD,
11769 Target);
11770 }
11771 UD->addShadowDecl(Shadow);
11772
11773 Shadow->setAccess(UD->getAccess());
11774 if (Orig->isInvalidDecl() || UD->isInvalidDecl())
11775 Shadow->setInvalidDecl();
11776
11777 Shadow->setPreviousDecl(PrevDecl);
11778
11779 if (S)
11780 PushOnScopeChains(Shadow, S);
11781 else
11782 CurContext->addDecl(Shadow);
11783
11784
11785 return Shadow;
11786 }
11787
11788 /// Hides a using shadow declaration. This is required by the current
11789 /// using-decl implementation when a resolvable using declaration in a
11790 /// class is followed by a declaration which would hide or override
11791 /// one or more of the using decl's targets; for example:
11792 ///
11793 /// struct Base { void foo(int); };
11794 /// struct Derived : Base {
11795 /// using Base::foo;
11796 /// void foo(int);
11797 /// };
11798 ///
11799 /// The governing language is C++03 [namespace.udecl]p12:
11800 ///
11801 /// When a using-declaration brings names from a base class into a
11802 /// derived class scope, member functions in the derived class
11803 /// override and/or hide member functions with the same name and
11804 /// parameter types in a base class (rather than conflicting).
11805 ///
11806 /// There are two ways to implement this:
11807 /// (1) optimistically create shadow decls when they're not hidden
11808 /// by existing declarations, or
11809 /// (2) don't create any shadow decls (or at least don't make them
11810 /// visible) until we've fully parsed/instantiated the class.
11811 /// The problem with (1) is that we might have to retroactively remove
11812 /// a shadow decl, which requires several O(n) operations because the
11813 /// decl structures are (very reasonably) not designed for removal.
11814 /// (2) avoids this but is very fiddly and phase-dependent.
HideUsingShadowDecl(Scope * S,UsingShadowDecl * Shadow)11815 void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
11816 if (Shadow->getDeclName().getNameKind() ==
11817 DeclarationName::CXXConversionFunctionName)
11818 cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
11819
11820 // Remove it from the DeclContext...
11821 Shadow->getDeclContext()->removeDecl(Shadow);
11822
11823 // ...and the scope, if applicable...
11824 if (S) {
11825 S->RemoveDecl(Shadow);
11826 IdResolver.RemoveDecl(Shadow);
11827 }
11828
11829 // ...and the using decl.
11830 Shadow->getUsingDecl()->removeShadowDecl(Shadow);
11831
11832 // TODO: complain somehow if Shadow was used. It shouldn't
11833 // be possible for this to happen, because...?
11834 }
11835
11836 /// Find the base specifier for a base class with the given type.
findDirectBaseWithType(CXXRecordDecl * Derived,QualType DesiredBase,bool & AnyDependentBases)11837 static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived,
11838 QualType DesiredBase,
11839 bool &AnyDependentBases) {
11840 // Check whether the named type is a direct base class.
11841 CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified()
11842 .getUnqualifiedType();
11843 for (auto &Base : Derived->bases()) {
11844 CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified();
11845 if (CanonicalDesiredBase == BaseType)
11846 return &Base;
11847 if (BaseType->isDependentType())
11848 AnyDependentBases = true;
11849 }
11850 return nullptr;
11851 }
11852
11853 namespace {
11854 class UsingValidatorCCC final : public CorrectionCandidateCallback {
11855 public:
UsingValidatorCCC(bool HasTypenameKeyword,bool IsInstantiation,NestedNameSpecifier * NNS,CXXRecordDecl * RequireMemberOf)11856 UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation,
11857 NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf)
11858 : HasTypenameKeyword(HasTypenameKeyword),
11859 IsInstantiation(IsInstantiation), OldNNS(NNS),
11860 RequireMemberOf(RequireMemberOf) {}
11861
ValidateCandidate(const TypoCorrection & Candidate)11862 bool ValidateCandidate(const TypoCorrection &Candidate) override {
11863 NamedDecl *ND = Candidate.getCorrectionDecl();
11864
11865 // Keywords are not valid here.
11866 if (!ND || isa<NamespaceDecl>(ND))
11867 return false;
11868
11869 // Completely unqualified names are invalid for a 'using' declaration.
11870 if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
11871 return false;
11872
11873 // FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would
11874 // reject.
11875
11876 if (RequireMemberOf) {
11877 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
11878 if (FoundRecord && FoundRecord->isInjectedClassName()) {
11879 // No-one ever wants a using-declaration to name an injected-class-name
11880 // of a base class, unless they're declaring an inheriting constructor.
11881 ASTContext &Ctx = ND->getASTContext();
11882 if (!Ctx.getLangOpts().CPlusPlus11)
11883 return false;
11884 QualType FoundType = Ctx.getRecordType(FoundRecord);
11885
11886 // Check that the injected-class-name is named as a member of its own
11887 // type; we don't want to suggest 'using Derived::Base;', since that
11888 // means something else.
11889 NestedNameSpecifier *Specifier =
11890 Candidate.WillReplaceSpecifier()
11891 ? Candidate.getCorrectionSpecifier()
11892 : OldNNS;
11893 if (!Specifier->getAsType() ||
11894 !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType))
11895 return false;
11896
11897 // Check that this inheriting constructor declaration actually names a
11898 // direct base class of the current class.
11899 bool AnyDependentBases = false;
11900 if (!findDirectBaseWithType(RequireMemberOf,
11901 Ctx.getRecordType(FoundRecord),
11902 AnyDependentBases) &&
11903 !AnyDependentBases)
11904 return false;
11905 } else {
11906 auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext());
11907 if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD))
11908 return false;
11909
11910 // FIXME: Check that the base class member is accessible?
11911 }
11912 } else {
11913 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
11914 if (FoundRecord && FoundRecord->isInjectedClassName())
11915 return false;
11916 }
11917
11918 if (isa<TypeDecl>(ND))
11919 return HasTypenameKeyword || !IsInstantiation;
11920
11921 return !HasTypenameKeyword;
11922 }
11923
clone()11924 std::unique_ptr<CorrectionCandidateCallback> clone() override {
11925 return std::make_unique<UsingValidatorCCC>(*this);
11926 }
11927
11928 private:
11929 bool HasTypenameKeyword;
11930 bool IsInstantiation;
11931 NestedNameSpecifier *OldNNS;
11932 CXXRecordDecl *RequireMemberOf;
11933 };
11934 } // end anonymous namespace
11935
11936 /// Builds a using declaration.
11937 ///
11938 /// \param IsInstantiation - Whether this call arises from an
11939 /// instantiation of an unresolved using declaration. We treat
11940 /// the lookup differently for these declarations.
BuildUsingDeclaration(Scope * S,AccessSpecifier AS,SourceLocation UsingLoc,bool HasTypenameKeyword,SourceLocation TypenameLoc,CXXScopeSpec & SS,DeclarationNameInfo NameInfo,SourceLocation EllipsisLoc,const ParsedAttributesView & AttrList,bool IsInstantiation)11941 NamedDecl *Sema::BuildUsingDeclaration(
11942 Scope *S, AccessSpecifier AS, SourceLocation UsingLoc,
11943 bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS,
11944 DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc,
11945 const ParsedAttributesView &AttrList, bool IsInstantiation) {
11946 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
11947 SourceLocation IdentLoc = NameInfo.getLoc();
11948 assert(IdentLoc.isValid() && "Invalid TargetName location.");
11949
11950 // FIXME: We ignore attributes for now.
11951
11952 // For an inheriting constructor declaration, the name of the using
11953 // declaration is the name of a constructor in this class, not in the
11954 // base class.
11955 DeclarationNameInfo UsingName = NameInfo;
11956 if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName)
11957 if (auto *RD = dyn_cast<CXXRecordDecl>(CurContext))
11958 UsingName.setName(Context.DeclarationNames.getCXXConstructorName(
11959 Context.getCanonicalType(Context.getRecordType(RD))));
11960
11961 // Do the redeclaration lookup in the current scope.
11962 LookupResult Previous(*this, UsingName, LookupUsingDeclName,
11963 ForVisibleRedeclaration);
11964 Previous.setHideTags(false);
11965 if (S) {
11966 LookupName(Previous, S);
11967
11968 // It is really dumb that we have to do this.
11969 LookupResult::Filter F = Previous.makeFilter();
11970 while (F.hasNext()) {
11971 NamedDecl *D = F.next();
11972 if (!isDeclInScope(D, CurContext, S))
11973 F.erase();
11974 // If we found a local extern declaration that's not ordinarily visible,
11975 // and this declaration is being added to a non-block scope, ignore it.
11976 // We're only checking for scope conflicts here, not also for violations
11977 // of the linkage rules.
11978 else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() &&
11979 !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary))
11980 F.erase();
11981 }
11982 F.done();
11983 } else {
11984 assert(IsInstantiation && "no scope in non-instantiation");
11985 if (CurContext->isRecord())
11986 LookupQualifiedName(Previous, CurContext);
11987 else {
11988 // No redeclaration check is needed here; in non-member contexts we
11989 // diagnosed all possible conflicts with other using-declarations when
11990 // building the template:
11991 //
11992 // For a dependent non-type using declaration, the only valid case is
11993 // if we instantiate to a single enumerator. We check for conflicts
11994 // between shadow declarations we introduce, and we check in the template
11995 // definition for conflicts between a non-type using declaration and any
11996 // other declaration, which together covers all cases.
11997 //
11998 // A dependent typename using declaration will never successfully
11999 // instantiate, since it will always name a class member, so we reject
12000 // that in the template definition.
12001 }
12002 }
12003
12004 // Check for invalid redeclarations.
12005 if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
12006 SS, IdentLoc, Previous))
12007 return nullptr;
12008
12009 // Check for bad qualifiers.
12010 if (CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, SS, NameInfo,
12011 IdentLoc))
12012 return nullptr;
12013
12014 DeclContext *LookupContext = computeDeclContext(SS);
12015 NamedDecl *D;
12016 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
12017 if (!LookupContext || EllipsisLoc.isValid()) {
12018 if (HasTypenameKeyword) {
12019 // FIXME: not all declaration name kinds are legal here
12020 D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
12021 UsingLoc, TypenameLoc,
12022 QualifierLoc,
12023 IdentLoc, NameInfo.getName(),
12024 EllipsisLoc);
12025 } else {
12026 D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
12027 QualifierLoc, NameInfo, EllipsisLoc);
12028 }
12029 D->setAccess(AS);
12030 CurContext->addDecl(D);
12031 return D;
12032 }
12033
12034 auto Build = [&](bool Invalid) {
12035 UsingDecl *UD =
12036 UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
12037 UsingName, HasTypenameKeyword);
12038 UD->setAccess(AS);
12039 CurContext->addDecl(UD);
12040 UD->setInvalidDecl(Invalid);
12041 return UD;
12042 };
12043 auto BuildInvalid = [&]{ return Build(true); };
12044 auto BuildValid = [&]{ return Build(false); };
12045
12046 if (RequireCompleteDeclContext(SS, LookupContext))
12047 return BuildInvalid();
12048
12049 // Look up the target name.
12050 LookupResult R(*this, NameInfo, LookupOrdinaryName);
12051
12052 // Unlike most lookups, we don't always want to hide tag
12053 // declarations: tag names are visible through the using declaration
12054 // even if hidden by ordinary names, *except* in a dependent context
12055 // where it's important for the sanity of two-phase lookup.
12056 if (!IsInstantiation)
12057 R.setHideTags(false);
12058
12059 // For the purposes of this lookup, we have a base object type
12060 // equal to that of the current context.
12061 if (CurContext->isRecord()) {
12062 R.setBaseObjectType(
12063 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
12064 }
12065
12066 LookupQualifiedName(R, LookupContext);
12067
12068 // Try to correct typos if possible. If constructor name lookup finds no
12069 // results, that means the named class has no explicit constructors, and we
12070 // suppressed declaring implicit ones (probably because it's dependent or
12071 // invalid).
12072 if (R.empty() &&
12073 NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) {
12074 // HACK: Work around a bug in libstdc++'s detection of ::gets. Sometimes
12075 // it will believe that glibc provides a ::gets in cases where it does not,
12076 // and will try to pull it into namespace std with a using-declaration.
12077 // Just ignore the using-declaration in that case.
12078 auto *II = NameInfo.getName().getAsIdentifierInfo();
12079 if (getLangOpts().CPlusPlus14 && II && II->isStr("gets") &&
12080 CurContext->isStdNamespace() &&
12081 isa<TranslationUnitDecl>(LookupContext) &&
12082 getSourceManager().isInSystemHeader(UsingLoc))
12083 return nullptr;
12084 UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(),
12085 dyn_cast<CXXRecordDecl>(CurContext));
12086 if (TypoCorrection Corrected =
12087 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
12088 CTK_ErrorRecovery)) {
12089 // We reject candidates where DroppedSpecifier == true, hence the
12090 // literal '0' below.
12091 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
12092 << NameInfo.getName() << LookupContext << 0
12093 << SS.getRange());
12094
12095 // If we picked a correction with no attached Decl we can't do anything
12096 // useful with it, bail out.
12097 NamedDecl *ND = Corrected.getCorrectionDecl();
12098 if (!ND)
12099 return BuildInvalid();
12100
12101 // If we corrected to an inheriting constructor, handle it as one.
12102 auto *RD = dyn_cast<CXXRecordDecl>(ND);
12103 if (RD && RD->isInjectedClassName()) {
12104 // The parent of the injected class name is the class itself.
12105 RD = cast<CXXRecordDecl>(RD->getParent());
12106
12107 // Fix up the information we'll use to build the using declaration.
12108 if (Corrected.WillReplaceSpecifier()) {
12109 NestedNameSpecifierLocBuilder Builder;
12110 Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
12111 QualifierLoc.getSourceRange());
12112 QualifierLoc = Builder.getWithLocInContext(Context);
12113 }
12114
12115 // In this case, the name we introduce is the name of a derived class
12116 // constructor.
12117 auto *CurClass = cast<CXXRecordDecl>(CurContext);
12118 UsingName.setName(Context.DeclarationNames.getCXXConstructorName(
12119 Context.getCanonicalType(Context.getRecordType(CurClass))));
12120 UsingName.setNamedTypeInfo(nullptr);
12121 for (auto *Ctor : LookupConstructors(RD))
12122 R.addDecl(Ctor);
12123 R.resolveKind();
12124 } else {
12125 // FIXME: Pick up all the declarations if we found an overloaded
12126 // function.
12127 UsingName.setName(ND->getDeclName());
12128 R.addDecl(ND);
12129 }
12130 } else {
12131 Diag(IdentLoc, diag::err_no_member)
12132 << NameInfo.getName() << LookupContext << SS.getRange();
12133 return BuildInvalid();
12134 }
12135 }
12136
12137 if (R.isAmbiguous())
12138 return BuildInvalid();
12139
12140 if (HasTypenameKeyword) {
12141 // If we asked for a typename and got a non-type decl, error out.
12142 if (!R.getAsSingle<TypeDecl>()) {
12143 Diag(IdentLoc, diag::err_using_typename_non_type);
12144 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
12145 Diag((*I)->getUnderlyingDecl()->getLocation(),
12146 diag::note_using_decl_target);
12147 return BuildInvalid();
12148 }
12149 } else {
12150 // If we asked for a non-typename and we got a type, error out,
12151 // but only if this is an instantiation of an unresolved using
12152 // decl. Otherwise just silently find the type name.
12153 if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
12154 Diag(IdentLoc, diag::err_using_dependent_value_is_type);
12155 Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
12156 return BuildInvalid();
12157 }
12158 }
12159
12160 // C++14 [namespace.udecl]p6:
12161 // A using-declaration shall not name a namespace.
12162 if (R.getAsSingle<NamespaceDecl>()) {
12163 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
12164 << SS.getRange();
12165 return BuildInvalid();
12166 }
12167
12168 // C++14 [namespace.udecl]p7:
12169 // A using-declaration shall not name a scoped enumerator.
12170 if (auto *ED = R.getAsSingle<EnumConstantDecl>()) {
12171 if (cast<EnumDecl>(ED->getDeclContext())->isScoped()) {
12172 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_scoped_enum)
12173 << SS.getRange();
12174 return BuildInvalid();
12175 }
12176 }
12177
12178 UsingDecl *UD = BuildValid();
12179
12180 // Some additional rules apply to inheriting constructors.
12181 if (UsingName.getName().getNameKind() ==
12182 DeclarationName::CXXConstructorName) {
12183 // Suppress access diagnostics; the access check is instead performed at the
12184 // point of use for an inheriting constructor.
12185 R.suppressDiagnostics();
12186 if (CheckInheritingConstructorUsingDecl(UD))
12187 return UD;
12188 }
12189
12190 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
12191 UsingShadowDecl *PrevDecl = nullptr;
12192 if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl))
12193 BuildUsingShadowDecl(S, UD, *I, PrevDecl);
12194 }
12195
12196 return UD;
12197 }
12198
BuildUsingPackDecl(NamedDecl * InstantiatedFrom,ArrayRef<NamedDecl * > Expansions)12199 NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom,
12200 ArrayRef<NamedDecl *> Expansions) {
12201 assert(isa<UnresolvedUsingValueDecl>(InstantiatedFrom) ||
12202 isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) ||
12203 isa<UsingPackDecl>(InstantiatedFrom));
12204
12205 auto *UPD =
12206 UsingPackDecl::Create(Context, CurContext, InstantiatedFrom, Expansions);
12207 UPD->setAccess(InstantiatedFrom->getAccess());
12208 CurContext->addDecl(UPD);
12209 return UPD;
12210 }
12211
12212 /// Additional checks for a using declaration referring to a constructor name.
CheckInheritingConstructorUsingDecl(UsingDecl * UD)12213 bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
12214 assert(!UD->hasTypename() && "expecting a constructor name");
12215
12216 const Type *SourceType = UD->getQualifier()->getAsType();
12217 assert(SourceType &&
12218 "Using decl naming constructor doesn't have type in scope spec.");
12219 CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
12220
12221 // Check whether the named type is a direct base class.
12222 bool AnyDependentBases = false;
12223 auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0),
12224 AnyDependentBases);
12225 if (!Base && !AnyDependentBases) {
12226 Diag(UD->getUsingLoc(),
12227 diag::err_using_decl_constructor_not_in_direct_base)
12228 << UD->getNameInfo().getSourceRange()
12229 << QualType(SourceType, 0) << TargetClass;
12230 UD->setInvalidDecl();
12231 return true;
12232 }
12233
12234 if (Base)
12235 Base->setInheritConstructors();
12236
12237 return false;
12238 }
12239
12240 /// Checks that the given using declaration is not an invalid
12241 /// redeclaration. Note that this is checking only for the using decl
12242 /// itself, not for any ill-formedness among the UsingShadowDecls.
CheckUsingDeclRedeclaration(SourceLocation UsingLoc,bool HasTypenameKeyword,const CXXScopeSpec & SS,SourceLocation NameLoc,const LookupResult & Prev)12243 bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
12244 bool HasTypenameKeyword,
12245 const CXXScopeSpec &SS,
12246 SourceLocation NameLoc,
12247 const LookupResult &Prev) {
12248 NestedNameSpecifier *Qual = SS.getScopeRep();
12249
12250 // C++03 [namespace.udecl]p8:
12251 // C++0x [namespace.udecl]p10:
12252 // A using-declaration is a declaration and can therefore be used
12253 // repeatedly where (and only where) multiple declarations are
12254 // allowed.
12255 //
12256 // That's in non-member contexts.
12257 if (!CurContext->getRedeclContext()->isRecord()) {
12258 // A dependent qualifier outside a class can only ever resolve to an
12259 // enumeration type. Therefore it conflicts with any other non-type
12260 // declaration in the same scope.
12261 // FIXME: How should we check for dependent type-type conflicts at block
12262 // scope?
12263 if (Qual->isDependent() && !HasTypenameKeyword) {
12264 for (auto *D : Prev) {
12265 if (!isa<TypeDecl>(D) && !isa<UsingDecl>(D) && !isa<UsingPackDecl>(D)) {
12266 bool OldCouldBeEnumerator =
12267 isa<UnresolvedUsingValueDecl>(D) || isa<EnumConstantDecl>(D);
12268 Diag(NameLoc,
12269 OldCouldBeEnumerator ? diag::err_redefinition
12270 : diag::err_redefinition_different_kind)
12271 << Prev.getLookupName();
12272 Diag(D->getLocation(), diag::note_previous_definition);
12273 return true;
12274 }
12275 }
12276 }
12277 return false;
12278 }
12279
12280 for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
12281 NamedDecl *D = *I;
12282
12283 bool DTypename;
12284 NestedNameSpecifier *DQual;
12285 if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
12286 DTypename = UD->hasTypename();
12287 DQual = UD->getQualifier();
12288 } else if (UnresolvedUsingValueDecl *UD
12289 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
12290 DTypename = false;
12291 DQual = UD->getQualifier();
12292 } else if (UnresolvedUsingTypenameDecl *UD
12293 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
12294 DTypename = true;
12295 DQual = UD->getQualifier();
12296 } else continue;
12297
12298 // using decls differ if one says 'typename' and the other doesn't.
12299 // FIXME: non-dependent using decls?
12300 if (HasTypenameKeyword != DTypename) continue;
12301
12302 // using decls differ if they name different scopes (but note that
12303 // template instantiation can cause this check to trigger when it
12304 // didn't before instantiation).
12305 if (Context.getCanonicalNestedNameSpecifier(Qual) !=
12306 Context.getCanonicalNestedNameSpecifier(DQual))
12307 continue;
12308
12309 Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
12310 Diag(D->getLocation(), diag::note_using_decl) << 1;
12311 return true;
12312 }
12313
12314 return false;
12315 }
12316
12317
12318 /// Checks that the given nested-name qualifier used in a using decl
12319 /// in the current context is appropriately related to the current
12320 /// scope. If an error is found, diagnoses it and returns true.
CheckUsingDeclQualifier(SourceLocation UsingLoc,bool HasTypename,const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,SourceLocation NameLoc)12321 bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
12322 bool HasTypename,
12323 const CXXScopeSpec &SS,
12324 const DeclarationNameInfo &NameInfo,
12325 SourceLocation NameLoc) {
12326 DeclContext *NamedContext = computeDeclContext(SS);
12327
12328 if (!CurContext->isRecord()) {
12329 // C++03 [namespace.udecl]p3:
12330 // C++0x [namespace.udecl]p8:
12331 // A using-declaration for a class member shall be a member-declaration.
12332
12333 // If we weren't able to compute a valid scope, it might validly be a
12334 // dependent class scope or a dependent enumeration unscoped scope. If
12335 // we have a 'typename' keyword, the scope must resolve to a class type.
12336 if ((HasTypename && !NamedContext) ||
12337 (NamedContext && NamedContext->getRedeclContext()->isRecord())) {
12338 auto *RD = NamedContext
12339 ? cast<CXXRecordDecl>(NamedContext->getRedeclContext())
12340 : nullptr;
12341 if (RD && RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), RD))
12342 RD = nullptr;
12343
12344 Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
12345 << SS.getRange();
12346
12347 // If we have a complete, non-dependent source type, try to suggest a
12348 // way to get the same effect.
12349 if (!RD)
12350 return true;
12351
12352 // Find what this using-declaration was referring to.
12353 LookupResult R(*this, NameInfo, LookupOrdinaryName);
12354 R.setHideTags(false);
12355 R.suppressDiagnostics();
12356 LookupQualifiedName(R, RD);
12357
12358 if (R.getAsSingle<TypeDecl>()) {
12359 if (getLangOpts().CPlusPlus11) {
12360 // Convert 'using X::Y;' to 'using Y = X::Y;'.
12361 Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround)
12362 << 0 // alias declaration
12363 << FixItHint::CreateInsertion(SS.getBeginLoc(),
12364 NameInfo.getName().getAsString() +
12365 " = ");
12366 } else {
12367 // Convert 'using X::Y;' to 'typedef X::Y Y;'.
12368 SourceLocation InsertLoc = getLocForEndOfToken(NameInfo.getEndLoc());
12369 Diag(InsertLoc, diag::note_using_decl_class_member_workaround)
12370 << 1 // typedef declaration
12371 << FixItHint::CreateReplacement(UsingLoc, "typedef")
12372 << FixItHint::CreateInsertion(
12373 InsertLoc, " " + NameInfo.getName().getAsString());
12374 }
12375 } else if (R.getAsSingle<VarDecl>()) {
12376 // Don't provide a fixit outside C++11 mode; we don't want to suggest
12377 // repeating the type of the static data member here.
12378 FixItHint FixIt;
12379 if (getLangOpts().CPlusPlus11) {
12380 // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
12381 FixIt = FixItHint::CreateReplacement(
12382 UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = ");
12383 }
12384
12385 Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
12386 << 2 // reference declaration
12387 << FixIt;
12388 } else if (R.getAsSingle<EnumConstantDecl>()) {
12389 // Don't provide a fixit outside C++11 mode; we don't want to suggest
12390 // repeating the type of the enumeration here, and we can't do so if
12391 // the type is anonymous.
12392 FixItHint FixIt;
12393 if (getLangOpts().CPlusPlus11) {
12394 // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
12395 FixIt = FixItHint::CreateReplacement(
12396 UsingLoc,
12397 "constexpr auto " + NameInfo.getName().getAsString() + " = ");
12398 }
12399
12400 Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
12401 << (getLangOpts().CPlusPlus11 ? 4 : 3) // const[expr] variable
12402 << FixIt;
12403 }
12404 return true;
12405 }
12406
12407 // Otherwise, this might be valid.
12408 return false;
12409 }
12410
12411 // The current scope is a record.
12412
12413 // If the named context is dependent, we can't decide much.
12414 if (!NamedContext) {
12415 // FIXME: in C++0x, we can diagnose if we can prove that the
12416 // nested-name-specifier does not refer to a base class, which is
12417 // still possible in some cases.
12418
12419 // Otherwise we have to conservatively report that things might be
12420 // okay.
12421 return false;
12422 }
12423
12424 if (!NamedContext->isRecord()) {
12425 // Ideally this would point at the last name in the specifier,
12426 // but we don't have that level of source info.
12427 Diag(SS.getRange().getBegin(),
12428 diag::err_using_decl_nested_name_specifier_is_not_class)
12429 << SS.getScopeRep() << SS.getRange();
12430 return true;
12431 }
12432
12433 if (!NamedContext->isDependentContext() &&
12434 RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
12435 return true;
12436
12437 if (getLangOpts().CPlusPlus11) {
12438 // C++11 [namespace.udecl]p3:
12439 // In a using-declaration used as a member-declaration, the
12440 // nested-name-specifier shall name a base class of the class
12441 // being defined.
12442
12443 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
12444 cast<CXXRecordDecl>(NamedContext))) {
12445 if (CurContext == NamedContext) {
12446 Diag(NameLoc,
12447 diag::err_using_decl_nested_name_specifier_is_current_class)
12448 << SS.getRange();
12449 return true;
12450 }
12451
12452 if (!cast<CXXRecordDecl>(NamedContext)->isInvalidDecl()) {
12453 Diag(SS.getRange().getBegin(),
12454 diag::err_using_decl_nested_name_specifier_is_not_base_class)
12455 << SS.getScopeRep()
12456 << cast<CXXRecordDecl>(CurContext)
12457 << SS.getRange();
12458 }
12459 return true;
12460 }
12461
12462 return false;
12463 }
12464
12465 // C++03 [namespace.udecl]p4:
12466 // A using-declaration used as a member-declaration shall refer
12467 // to a member of a base class of the class being defined [etc.].
12468
12469 // Salient point: SS doesn't have to name a base class as long as
12470 // lookup only finds members from base classes. Therefore we can
12471 // diagnose here only if we can prove that that can't happen,
12472 // i.e. if the class hierarchies provably don't intersect.
12473
12474 // TODO: it would be nice if "definitely valid" results were cached
12475 // in the UsingDecl and UsingShadowDecl so that these checks didn't
12476 // need to be repeated.
12477
12478 llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases;
12479 auto Collect = [&Bases](const CXXRecordDecl *Base) {
12480 Bases.insert(Base);
12481 return true;
12482 };
12483
12484 // Collect all bases. Return false if we find a dependent base.
12485 if (!cast<CXXRecordDecl>(CurContext)->forallBases(Collect))
12486 return false;
12487
12488 // Returns true if the base is dependent or is one of the accumulated base
12489 // classes.
12490 auto IsNotBase = [&Bases](const CXXRecordDecl *Base) {
12491 return !Bases.count(Base);
12492 };
12493
12494 // Return false if the class has a dependent base or if it or one
12495 // of its bases is present in the base set of the current context.
12496 if (Bases.count(cast<CXXRecordDecl>(NamedContext)) ||
12497 !cast<CXXRecordDecl>(NamedContext)->forallBases(IsNotBase))
12498 return false;
12499
12500 Diag(SS.getRange().getBegin(),
12501 diag::err_using_decl_nested_name_specifier_is_not_base_class)
12502 << SS.getScopeRep()
12503 << cast<CXXRecordDecl>(CurContext)
12504 << SS.getRange();
12505
12506 return true;
12507 }
12508
ActOnAliasDeclaration(Scope * S,AccessSpecifier AS,MultiTemplateParamsArg TemplateParamLists,SourceLocation UsingLoc,UnqualifiedId & Name,const ParsedAttributesView & AttrList,TypeResult Type,Decl * DeclFromDeclSpec)12509 Decl *Sema::ActOnAliasDeclaration(Scope *S, AccessSpecifier AS,
12510 MultiTemplateParamsArg TemplateParamLists,
12511 SourceLocation UsingLoc, UnqualifiedId &Name,
12512 const ParsedAttributesView &AttrList,
12513 TypeResult Type, Decl *DeclFromDeclSpec) {
12514 // Skip up to the relevant declaration scope.
12515 while (S->isTemplateParamScope())
12516 S = S->getParent();
12517 assert((S->getFlags() & Scope::DeclScope) &&
12518 "got alias-declaration outside of declaration scope");
12519
12520 if (Type.isInvalid())
12521 return nullptr;
12522
12523 bool Invalid = false;
12524 DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
12525 TypeSourceInfo *TInfo = nullptr;
12526 GetTypeFromParser(Type.get(), &TInfo);
12527
12528 if (DiagnoseClassNameShadow(CurContext, NameInfo))
12529 return nullptr;
12530
12531 if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
12532 UPPC_DeclarationType)) {
12533 Invalid = true;
12534 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
12535 TInfo->getTypeLoc().getBeginLoc());
12536 }
12537
12538 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
12539 TemplateParamLists.size()
12540 ? forRedeclarationInCurContext()
12541 : ForVisibleRedeclaration);
12542 LookupName(Previous, S);
12543
12544 // Warn about shadowing the name of a template parameter.
12545 if (Previous.isSingleResult() &&
12546 Previous.getFoundDecl()->isTemplateParameter()) {
12547 DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
12548 Previous.clear();
12549 }
12550
12551 assert(Name.Kind == UnqualifiedIdKind::IK_Identifier &&
12552 "name in alias declaration must be an identifier");
12553 TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
12554 Name.StartLocation,
12555 Name.Identifier, TInfo);
12556
12557 NewTD->setAccess(AS);
12558
12559 if (Invalid)
12560 NewTD->setInvalidDecl();
12561
12562 ProcessDeclAttributeList(S, NewTD, AttrList);
12563 AddPragmaAttributes(S, NewTD);
12564
12565 CheckTypedefForVariablyModifiedType(S, NewTD);
12566 Invalid |= NewTD->isInvalidDecl();
12567
12568 bool Redeclaration = false;
12569
12570 NamedDecl *NewND;
12571 if (TemplateParamLists.size()) {
12572 TypeAliasTemplateDecl *OldDecl = nullptr;
12573 TemplateParameterList *OldTemplateParams = nullptr;
12574
12575 if (TemplateParamLists.size() != 1) {
12576 Diag(UsingLoc, diag::err_alias_template_extra_headers)
12577 << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
12578 TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
12579 }
12580 TemplateParameterList *TemplateParams = TemplateParamLists[0];
12581
12582 // Check that we can declare a template here.
12583 if (CheckTemplateDeclScope(S, TemplateParams))
12584 return nullptr;
12585
12586 // Only consider previous declarations in the same scope.
12587 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
12588 /*ExplicitInstantiationOrSpecialization*/false);
12589 if (!Previous.empty()) {
12590 Redeclaration = true;
12591
12592 OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
12593 if (!OldDecl && !Invalid) {
12594 Diag(UsingLoc, diag::err_redefinition_different_kind)
12595 << Name.Identifier;
12596
12597 NamedDecl *OldD = Previous.getRepresentativeDecl();
12598 if (OldD->getLocation().isValid())
12599 Diag(OldD->getLocation(), diag::note_previous_definition);
12600
12601 Invalid = true;
12602 }
12603
12604 if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
12605 if (TemplateParameterListsAreEqual(TemplateParams,
12606 OldDecl->getTemplateParameters(),
12607 /*Complain=*/true,
12608 TPL_TemplateMatch))
12609 OldTemplateParams =
12610 OldDecl->getMostRecentDecl()->getTemplateParameters();
12611 else
12612 Invalid = true;
12613
12614 TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
12615 if (!Invalid &&
12616 !Context.hasSameType(OldTD->getUnderlyingType(),
12617 NewTD->getUnderlyingType())) {
12618 // FIXME: The C++0x standard does not clearly say this is ill-formed,
12619 // but we can't reasonably accept it.
12620 Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
12621 << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
12622 if (OldTD->getLocation().isValid())
12623 Diag(OldTD->getLocation(), diag::note_previous_definition);
12624 Invalid = true;
12625 }
12626 }
12627 }
12628
12629 // Merge any previous default template arguments into our parameters,
12630 // and check the parameter list.
12631 if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
12632 TPC_TypeAliasTemplate))
12633 return nullptr;
12634
12635 TypeAliasTemplateDecl *NewDecl =
12636 TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
12637 Name.Identifier, TemplateParams,
12638 NewTD);
12639 NewTD->setDescribedAliasTemplate(NewDecl);
12640
12641 NewDecl->setAccess(AS);
12642
12643 if (Invalid)
12644 NewDecl->setInvalidDecl();
12645 else if (OldDecl) {
12646 NewDecl->setPreviousDecl(OldDecl);
12647 CheckRedeclarationModuleOwnership(NewDecl, OldDecl);
12648 }
12649
12650 NewND = NewDecl;
12651 } else {
12652 if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) {
12653 setTagNameForLinkagePurposes(TD, NewTD);
12654 handleTagNumbering(TD, S);
12655 }
12656 ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
12657 NewND = NewTD;
12658 }
12659
12660 PushOnScopeChains(NewND, S);
12661 ActOnDocumentableDecl(NewND);
12662 return NewND;
12663 }
12664
ActOnNamespaceAliasDef(Scope * S,SourceLocation NamespaceLoc,SourceLocation AliasLoc,IdentifierInfo * Alias,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * Ident)12665 Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc,
12666 SourceLocation AliasLoc,
12667 IdentifierInfo *Alias, CXXScopeSpec &SS,
12668 SourceLocation IdentLoc,
12669 IdentifierInfo *Ident) {
12670
12671 // Lookup the namespace name.
12672 LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
12673 LookupParsedName(R, S, &SS);
12674
12675 if (R.isAmbiguous())
12676 return nullptr;
12677
12678 if (R.empty()) {
12679 if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
12680 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
12681 return nullptr;
12682 }
12683 }
12684 assert(!R.isAmbiguous() && !R.empty());
12685 NamedDecl *ND = R.getRepresentativeDecl();
12686
12687 // Check if we have a previous declaration with the same name.
12688 LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName,
12689 ForVisibleRedeclaration);
12690 LookupName(PrevR, S);
12691
12692 // Check we're not shadowing a template parameter.
12693 if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) {
12694 DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl());
12695 PrevR.clear();
12696 }
12697
12698 // Filter out any other lookup result from an enclosing scope.
12699 FilterLookupForScope(PrevR, CurContext, S, /*ConsiderLinkage*/false,
12700 /*AllowInlineNamespace*/false);
12701
12702 // Find the previous declaration and check that we can redeclare it.
12703 NamespaceAliasDecl *Prev = nullptr;
12704 if (PrevR.isSingleResult()) {
12705 NamedDecl *PrevDecl = PrevR.getRepresentativeDecl();
12706 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
12707 // We already have an alias with the same name that points to the same
12708 // namespace; check that it matches.
12709 if (AD->getNamespace()->Equals(getNamespaceDecl(ND))) {
12710 Prev = AD;
12711 } else if (isVisible(PrevDecl)) {
12712 Diag(AliasLoc, diag::err_redefinition_different_namespace_alias)
12713 << Alias;
12714 Diag(AD->getLocation(), diag::note_previous_namespace_alias)
12715 << AD->getNamespace();
12716 return nullptr;
12717 }
12718 } else if (isVisible(PrevDecl)) {
12719 unsigned DiagID = isa<NamespaceDecl>(PrevDecl->getUnderlyingDecl())
12720 ? diag::err_redefinition
12721 : diag::err_redefinition_different_kind;
12722 Diag(AliasLoc, DiagID) << Alias;
12723 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
12724 return nullptr;
12725 }
12726 }
12727
12728 // The use of a nested name specifier may trigger deprecation warnings.
12729 DiagnoseUseOfDecl(ND, IdentLoc);
12730
12731 NamespaceAliasDecl *AliasDecl =
12732 NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
12733 Alias, SS.getWithLocInContext(Context),
12734 IdentLoc, ND);
12735 if (Prev)
12736 AliasDecl->setPreviousDecl(Prev);
12737
12738 PushOnScopeChains(AliasDecl, S);
12739 return AliasDecl;
12740 }
12741
12742 namespace {
12743 struct SpecialMemberExceptionSpecInfo
12744 : SpecialMemberVisitor<SpecialMemberExceptionSpecInfo> {
12745 SourceLocation Loc;
12746 Sema::ImplicitExceptionSpecification ExceptSpec;
12747
SpecialMemberExceptionSpecInfo__anonedc74bd73411::SpecialMemberExceptionSpecInfo12748 SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD,
12749 Sema::CXXSpecialMember CSM,
12750 Sema::InheritedConstructorInfo *ICI,
12751 SourceLocation Loc)
12752 : SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {}
12753
12754 bool visitBase(CXXBaseSpecifier *Base);
12755 bool visitField(FieldDecl *FD);
12756
12757 void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
12758 unsigned Quals);
12759
12760 void visitSubobjectCall(Subobject Subobj,
12761 Sema::SpecialMemberOverloadResult SMOR);
12762 };
12763 }
12764
visitBase(CXXBaseSpecifier * Base)12765 bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) {
12766 auto *RT = Base->getType()->getAs<RecordType>();
12767 if (!RT)
12768 return false;
12769
12770 auto *BaseClass = cast<CXXRecordDecl>(RT->getDecl());
12771 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
12772 if (auto *BaseCtor = SMOR.getMethod()) {
12773 visitSubobjectCall(Base, BaseCtor);
12774 return false;
12775 }
12776
12777 visitClassSubobject(BaseClass, Base, 0);
12778 return false;
12779 }
12780
visitField(FieldDecl * FD)12781 bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) {
12782 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) {
12783 Expr *E = FD->getInClassInitializer();
12784 if (!E)
12785 // FIXME: It's a little wasteful to build and throw away a
12786 // CXXDefaultInitExpr here.
12787 // FIXME: We should have a single context note pointing at Loc, and
12788 // this location should be MD->getLocation() instead, since that's
12789 // the location where we actually use the default init expression.
12790 E = S.BuildCXXDefaultInitExpr(Loc, FD).get();
12791 if (E)
12792 ExceptSpec.CalledExpr(E);
12793 } else if (auto *RT = S.Context.getBaseElementType(FD->getType())
12794 ->getAs<RecordType>()) {
12795 visitClassSubobject(cast<CXXRecordDecl>(RT->getDecl()), FD,
12796 FD->getType().getCVRQualifiers());
12797 }
12798 return false;
12799 }
12800
visitClassSubobject(CXXRecordDecl * Class,Subobject Subobj,unsigned Quals)12801 void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class,
12802 Subobject Subobj,
12803 unsigned Quals) {
12804 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
12805 bool IsMutable = Field && Field->isMutable();
12806 visitSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable));
12807 }
12808
visitSubobjectCall(Subobject Subobj,Sema::SpecialMemberOverloadResult SMOR)12809 void SpecialMemberExceptionSpecInfo::visitSubobjectCall(
12810 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) {
12811 // Note, if lookup fails, it doesn't matter what exception specification we
12812 // choose because the special member will be deleted.
12813 if (CXXMethodDecl *MD = SMOR.getMethod())
12814 ExceptSpec.CalledDecl(getSubobjectLoc(Subobj), MD);
12815 }
12816
tryResolveExplicitSpecifier(ExplicitSpecifier & ExplicitSpec)12817 bool Sema::tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec) {
12818 llvm::APSInt Result;
12819 ExprResult Converted = CheckConvertedConstantExpression(
12820 ExplicitSpec.getExpr(), Context.BoolTy, Result, CCEK_ExplicitBool);
12821 ExplicitSpec.setExpr(Converted.get());
12822 if (Converted.isUsable() && !Converted.get()->isValueDependent()) {
12823 ExplicitSpec.setKind(Result.getBoolValue()
12824 ? ExplicitSpecKind::ResolvedTrue
12825 : ExplicitSpecKind::ResolvedFalse);
12826 return true;
12827 }
12828 ExplicitSpec.setKind(ExplicitSpecKind::Unresolved);
12829 return false;
12830 }
12831
ActOnExplicitBoolSpecifier(Expr * ExplicitExpr)12832 ExplicitSpecifier Sema::ActOnExplicitBoolSpecifier(Expr *ExplicitExpr) {
12833 ExplicitSpecifier ES(ExplicitExpr, ExplicitSpecKind::Unresolved);
12834 if (!ExplicitExpr->isTypeDependent())
12835 tryResolveExplicitSpecifier(ES);
12836 return ES;
12837 }
12838
12839 static Sema::ImplicitExceptionSpecification
ComputeDefaultedSpecialMemberExceptionSpec(Sema & S,SourceLocation Loc,CXXMethodDecl * MD,Sema::CXXSpecialMember CSM,Sema::InheritedConstructorInfo * ICI)12840 ComputeDefaultedSpecialMemberExceptionSpec(
12841 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
12842 Sema::InheritedConstructorInfo *ICI) {
12843 ComputingExceptionSpec CES(S, MD, Loc);
12844
12845 CXXRecordDecl *ClassDecl = MD->getParent();
12846
12847 // C++ [except.spec]p14:
12848 // An implicitly declared special member function (Clause 12) shall have an
12849 // exception-specification. [...]
12850 SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, MD->getLocation());
12851 if (ClassDecl->isInvalidDecl())
12852 return Info.ExceptSpec;
12853
12854 // FIXME: If this diagnostic fires, we're probably missing a check for
12855 // attempting to resolve an exception specification before it's known
12856 // at a higher level.
12857 if (S.RequireCompleteType(MD->getLocation(),
12858 S.Context.getRecordType(ClassDecl),
12859 diag::err_exception_spec_incomplete_type))
12860 return Info.ExceptSpec;
12861
12862 // C++1z [except.spec]p7:
12863 // [Look for exceptions thrown by] a constructor selected [...] to
12864 // initialize a potentially constructed subobject,
12865 // C++1z [except.spec]p8:
12866 // The exception specification for an implicitly-declared destructor, or a
12867 // destructor without a noexcept-specifier, is potentially-throwing if and
12868 // only if any of the destructors for any of its potentially constructed
12869 // subojects is potentially throwing.
12870 // FIXME: We respect the first rule but ignore the "potentially constructed"
12871 // in the second rule to resolve a core issue (no number yet) that would have
12872 // us reject:
12873 // struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; };
12874 // struct B : A {};
12875 // struct C : B { void f(); };
12876 // ... due to giving B::~B() a non-throwing exception specification.
12877 Info.visit(Info.IsConstructor ? Info.VisitPotentiallyConstructedBases
12878 : Info.VisitAllBases);
12879
12880 return Info.ExceptSpec;
12881 }
12882
12883 namespace {
12884 /// RAII object to register a special member as being currently declared.
12885 struct DeclaringSpecialMember {
12886 Sema &S;
12887 Sema::SpecialMemberDecl D;
12888 Sema::ContextRAII SavedContext;
12889 bool WasAlreadyBeingDeclared;
12890
DeclaringSpecialMember__anonedc74bd73511::DeclaringSpecialMember12891 DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
12892 : S(S), D(RD, CSM), SavedContext(S, RD) {
12893 WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second;
12894 if (WasAlreadyBeingDeclared)
12895 // This almost never happens, but if it does, ensure that our cache
12896 // doesn't contain a stale result.
12897 S.SpecialMemberCache.clear();
12898 else {
12899 // Register a note to be produced if we encounter an error while
12900 // declaring the special member.
12901 Sema::CodeSynthesisContext Ctx;
12902 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember;
12903 // FIXME: We don't have a location to use here. Using the class's
12904 // location maintains the fiction that we declare all special members
12905 // with the class, but (1) it's not clear that lying about that helps our
12906 // users understand what's going on, and (2) there may be outer contexts
12907 // on the stack (some of which are relevant) and printing them exposes
12908 // our lies.
12909 Ctx.PointOfInstantiation = RD->getLocation();
12910 Ctx.Entity = RD;
12911 Ctx.SpecialMember = CSM;
12912 S.pushCodeSynthesisContext(Ctx);
12913 }
12914 }
~DeclaringSpecialMember__anonedc74bd73511::DeclaringSpecialMember12915 ~DeclaringSpecialMember() {
12916 if (!WasAlreadyBeingDeclared) {
12917 S.SpecialMembersBeingDeclared.erase(D);
12918 S.popCodeSynthesisContext();
12919 }
12920 }
12921
12922 /// Are we already trying to declare this special member?
isAlreadyBeingDeclared__anonedc74bd73511::DeclaringSpecialMember12923 bool isAlreadyBeingDeclared() const {
12924 return WasAlreadyBeingDeclared;
12925 }
12926 };
12927 }
12928
CheckImplicitSpecialMemberDeclaration(Scope * S,FunctionDecl * FD)12929 void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) {
12930 // Look up any existing declarations, but don't trigger declaration of all
12931 // implicit special members with this name.
12932 DeclarationName Name = FD->getDeclName();
12933 LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName,
12934 ForExternalRedeclaration);
12935 for (auto *D : FD->getParent()->lookup(Name))
12936 if (auto *Acceptable = R.getAcceptableDecl(D))
12937 R.addDecl(Acceptable);
12938 R.resolveKind();
12939 R.suppressDiagnostics();
12940
12941 CheckFunctionDeclaration(S, FD, R, /*IsMemberSpecialization*/false);
12942 }
12943
setupImplicitSpecialMemberType(CXXMethodDecl * SpecialMem,QualType ResultTy,ArrayRef<QualType> Args)12944 void Sema::setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem,
12945 QualType ResultTy,
12946 ArrayRef<QualType> Args) {
12947 // Build an exception specification pointing back at this constructor.
12948 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, SpecialMem);
12949
12950 LangAS AS = getDefaultCXXMethodAddrSpace();
12951 if (AS != LangAS::Default) {
12952 EPI.TypeQuals.addAddressSpace(AS);
12953 }
12954
12955 auto QT = Context.getFunctionType(ResultTy, Args, EPI);
12956 SpecialMem->setType(QT);
12957 }
12958
DeclareImplicitDefaultConstructor(CXXRecordDecl * ClassDecl)12959 CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
12960 CXXRecordDecl *ClassDecl) {
12961 // C++ [class.ctor]p5:
12962 // A default constructor for a class X is a constructor of class X
12963 // that can be called without an argument. If there is no
12964 // user-declared constructor for class X, a default constructor is
12965 // implicitly declared. An implicitly-declared default constructor
12966 // is an inline public member of its class.
12967 assert(ClassDecl->needsImplicitDefaultConstructor() &&
12968 "Should not build implicit default constructor!");
12969
12970 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
12971 if (DSM.isAlreadyBeingDeclared())
12972 return nullptr;
12973
12974 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
12975 CXXDefaultConstructor,
12976 false);
12977
12978 // Create the actual constructor declaration.
12979 CanQualType ClassType
12980 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
12981 SourceLocation ClassLoc = ClassDecl->getLocation();
12982 DeclarationName Name
12983 = Context.DeclarationNames.getCXXConstructorName(ClassType);
12984 DeclarationNameInfo NameInfo(Name, ClassLoc);
12985 CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
12986 Context, ClassDecl, ClassLoc, NameInfo, /*Type*/ QualType(),
12987 /*TInfo=*/nullptr, ExplicitSpecifier(),
12988 /*isInline=*/true, /*isImplicitlyDeclared=*/true,
12989 Constexpr ? ConstexprSpecKind::Constexpr
12990 : ConstexprSpecKind::Unspecified);
12991 DefaultCon->setAccess(AS_public);
12992 DefaultCon->setDefaulted();
12993
12994 if (getLangOpts().CUDA) {
12995 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor,
12996 DefaultCon,
12997 /* ConstRHS */ false,
12998 /* Diagnose */ false);
12999 }
13000
13001 setupImplicitSpecialMemberType(DefaultCon, Context.VoidTy, None);
13002
13003 // We don't need to use SpecialMemberIsTrivial here; triviality for default
13004 // constructors is easy to compute.
13005 DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
13006
13007 // Note that we have declared this constructor.
13008 ++getASTContext().NumImplicitDefaultConstructorsDeclared;
13009
13010 Scope *S = getScopeForContext(ClassDecl);
13011 CheckImplicitSpecialMemberDeclaration(S, DefaultCon);
13012
13013 if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
13014 SetDeclDeleted(DefaultCon, ClassLoc);
13015
13016 if (S)
13017 PushOnScopeChains(DefaultCon, S, false);
13018 ClassDecl->addDecl(DefaultCon);
13019
13020 return DefaultCon;
13021 }
13022
DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * Constructor)13023 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
13024 CXXConstructorDecl *Constructor) {
13025 assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
13026 !Constructor->doesThisDeclarationHaveABody() &&
13027 !Constructor->isDeleted()) &&
13028 "DefineImplicitDefaultConstructor - call it for implicit default ctor");
13029 if (Constructor->willHaveBody() || Constructor->isInvalidDecl())
13030 return;
13031
13032 CXXRecordDecl *ClassDecl = Constructor->getParent();
13033 assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
13034
13035 SynthesizedFunctionScope Scope(*this, Constructor);
13036
13037 // The exception specification is needed because we are defining the
13038 // function.
13039 ResolveExceptionSpec(CurrentLocation,
13040 Constructor->getType()->castAs<FunctionProtoType>());
13041 MarkVTableUsed(CurrentLocation, ClassDecl);
13042
13043 // Add a context note for diagnostics produced after this point.
13044 Scope.addContextNote(CurrentLocation);
13045
13046 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) {
13047 Constructor->setInvalidDecl();
13048 return;
13049 }
13050
13051 SourceLocation Loc = Constructor->getEndLoc().isValid()
13052 ? Constructor->getEndLoc()
13053 : Constructor->getLocation();
13054 Constructor->setBody(new (Context) CompoundStmt(Loc));
13055 Constructor->markUsed(Context);
13056
13057 if (ASTMutationListener *L = getASTMutationListener()) {
13058 L->CompletedImplicitDefinition(Constructor);
13059 }
13060
13061 DiagnoseUninitializedFields(*this, Constructor);
13062 }
13063
ActOnFinishDelayedMemberInitializers(Decl * D)13064 void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
13065 // Perform any delayed checks on exception specifications.
13066 CheckDelayedMemberExceptionSpecs();
13067 }
13068
13069 /// Find or create the fake constructor we synthesize to model constructing an
13070 /// object of a derived class via a constructor of a base class.
13071 CXXConstructorDecl *
findInheritingConstructor(SourceLocation Loc,CXXConstructorDecl * BaseCtor,ConstructorUsingShadowDecl * Shadow)13072 Sema::findInheritingConstructor(SourceLocation Loc,
13073 CXXConstructorDecl *BaseCtor,
13074 ConstructorUsingShadowDecl *Shadow) {
13075 CXXRecordDecl *Derived = Shadow->getParent();
13076 SourceLocation UsingLoc = Shadow->getLocation();
13077
13078 // FIXME: Add a new kind of DeclarationName for an inherited constructor.
13079 // For now we use the name of the base class constructor as a member of the
13080 // derived class to indicate a (fake) inherited constructor name.
13081 DeclarationName Name = BaseCtor->getDeclName();
13082
13083 // Check to see if we already have a fake constructor for this inherited
13084 // constructor call.
13085 for (NamedDecl *Ctor : Derived->lookup(Name))
13086 if (declaresSameEntity(cast<CXXConstructorDecl>(Ctor)
13087 ->getInheritedConstructor()
13088 .getConstructor(),
13089 BaseCtor))
13090 return cast<CXXConstructorDecl>(Ctor);
13091
13092 DeclarationNameInfo NameInfo(Name, UsingLoc);
13093 TypeSourceInfo *TInfo =
13094 Context.getTrivialTypeSourceInfo(BaseCtor->getType(), UsingLoc);
13095 FunctionProtoTypeLoc ProtoLoc =
13096 TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
13097
13098 // Check the inherited constructor is valid and find the list of base classes
13099 // from which it was inherited.
13100 InheritedConstructorInfo ICI(*this, Loc, Shadow);
13101
13102 bool Constexpr =
13103 BaseCtor->isConstexpr() &&
13104 defaultedSpecialMemberIsConstexpr(*this, Derived, CXXDefaultConstructor,
13105 false, BaseCtor, &ICI);
13106
13107 CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
13108 Context, Derived, UsingLoc, NameInfo, TInfo->getType(), TInfo,
13109 BaseCtor->getExplicitSpecifier(), /*isInline=*/true,
13110 /*isImplicitlyDeclared=*/true,
13111 Constexpr ? BaseCtor->getConstexprKind() : ConstexprSpecKind::Unspecified,
13112 InheritedConstructor(Shadow, BaseCtor),
13113 BaseCtor->getTrailingRequiresClause());
13114 if (Shadow->isInvalidDecl())
13115 DerivedCtor->setInvalidDecl();
13116
13117 // Build an unevaluated exception specification for this fake constructor.
13118 const FunctionProtoType *FPT = TInfo->getType()->castAs<FunctionProtoType>();
13119 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
13120 EPI.ExceptionSpec.Type = EST_Unevaluated;
13121 EPI.ExceptionSpec.SourceDecl = DerivedCtor;
13122 DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(),
13123 FPT->getParamTypes(), EPI));
13124
13125 // Build the parameter declarations.
13126 SmallVector<ParmVarDecl *, 16> ParamDecls;
13127 for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) {
13128 TypeSourceInfo *TInfo =
13129 Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc);
13130 ParmVarDecl *PD = ParmVarDecl::Create(
13131 Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr,
13132 FPT->getParamType(I), TInfo, SC_None, /*DefArg=*/nullptr);
13133 PD->setScopeInfo(0, I);
13134 PD->setImplicit();
13135 // Ensure attributes are propagated onto parameters (this matters for
13136 // format, pass_object_size, ...).
13137 mergeDeclAttributes(PD, BaseCtor->getParamDecl(I));
13138 ParamDecls.push_back(PD);
13139 ProtoLoc.setParam(I, PD);
13140 }
13141
13142 // Set up the new constructor.
13143 assert(!BaseCtor->isDeleted() && "should not use deleted constructor");
13144 DerivedCtor->setAccess(BaseCtor->getAccess());
13145 DerivedCtor->setParams(ParamDecls);
13146 Derived->addDecl(DerivedCtor);
13147
13148 if (ShouldDeleteSpecialMember(DerivedCtor, CXXDefaultConstructor, &ICI))
13149 SetDeclDeleted(DerivedCtor, UsingLoc);
13150
13151 return DerivedCtor;
13152 }
13153
NoteDeletedInheritingConstructor(CXXConstructorDecl * Ctor)13154 void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) {
13155 InheritedConstructorInfo ICI(*this, Ctor->getLocation(),
13156 Ctor->getInheritedConstructor().getShadowDecl());
13157 ShouldDeleteSpecialMember(Ctor, CXXDefaultConstructor, &ICI,
13158 /*Diagnose*/true);
13159 }
13160
DefineInheritingConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * Constructor)13161 void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
13162 CXXConstructorDecl *Constructor) {
13163 CXXRecordDecl *ClassDecl = Constructor->getParent();
13164 assert(Constructor->getInheritedConstructor() &&
13165 !Constructor->doesThisDeclarationHaveABody() &&
13166 !Constructor->isDeleted());
13167 if (Constructor->willHaveBody() || Constructor->isInvalidDecl())
13168 return;
13169
13170 // Initializations are performed "as if by a defaulted default constructor",
13171 // so enter the appropriate scope.
13172 SynthesizedFunctionScope Scope(*this, Constructor);
13173
13174 // The exception specification is needed because we are defining the
13175 // function.
13176 ResolveExceptionSpec(CurrentLocation,
13177 Constructor->getType()->castAs<FunctionProtoType>());
13178 MarkVTableUsed(CurrentLocation, ClassDecl);
13179
13180 // Add a context note for diagnostics produced after this point.
13181 Scope.addContextNote(CurrentLocation);
13182
13183 ConstructorUsingShadowDecl *Shadow =
13184 Constructor->getInheritedConstructor().getShadowDecl();
13185 CXXConstructorDecl *InheritedCtor =
13186 Constructor->getInheritedConstructor().getConstructor();
13187
13188 // [class.inhctor.init]p1:
13189 // initialization proceeds as if a defaulted default constructor is used to
13190 // initialize the D object and each base class subobject from which the
13191 // constructor was inherited
13192
13193 InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow);
13194 CXXRecordDecl *RD = Shadow->getParent();
13195 SourceLocation InitLoc = Shadow->getLocation();
13196
13197 // Build explicit initializers for all base classes from which the
13198 // constructor was inherited.
13199 SmallVector<CXXCtorInitializer*, 8> Inits;
13200 for (bool VBase : {false, true}) {
13201 for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) {
13202 if (B.isVirtual() != VBase)
13203 continue;
13204
13205 auto *BaseRD = B.getType()->getAsCXXRecordDecl();
13206 if (!BaseRD)
13207 continue;
13208
13209 auto BaseCtor = ICI.findConstructorForBase(BaseRD, InheritedCtor);
13210 if (!BaseCtor.first)
13211 continue;
13212
13213 MarkFunctionReferenced(CurrentLocation, BaseCtor.first);
13214 ExprResult Init = new (Context) CXXInheritedCtorInitExpr(
13215 InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second);
13216
13217 auto *TInfo = Context.getTrivialTypeSourceInfo(B.getType(), InitLoc);
13218 Inits.push_back(new (Context) CXXCtorInitializer(
13219 Context, TInfo, VBase, InitLoc, Init.get(), InitLoc,
13220 SourceLocation()));
13221 }
13222 }
13223
13224 // We now proceed as if for a defaulted default constructor, with the relevant
13225 // initializers replaced.
13226
13227 if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Inits)) {
13228 Constructor->setInvalidDecl();
13229 return;
13230 }
13231
13232 Constructor->setBody(new (Context) CompoundStmt(InitLoc));
13233 Constructor->markUsed(Context);
13234
13235 if (ASTMutationListener *L = getASTMutationListener()) {
13236 L->CompletedImplicitDefinition(Constructor);
13237 }
13238
13239 DiagnoseUninitializedFields(*this, Constructor);
13240 }
13241
DeclareImplicitDestructor(CXXRecordDecl * ClassDecl)13242 CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
13243 // C++ [class.dtor]p2:
13244 // If a class has no user-declared destructor, a destructor is
13245 // declared implicitly. An implicitly-declared destructor is an
13246 // inline public member of its class.
13247 assert(ClassDecl->needsImplicitDestructor());
13248
13249 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
13250 if (DSM.isAlreadyBeingDeclared())
13251 return nullptr;
13252
13253 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
13254 CXXDestructor,
13255 false);
13256
13257 // Create the actual destructor declaration.
13258 CanQualType ClassType
13259 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
13260 SourceLocation ClassLoc = ClassDecl->getLocation();
13261 DeclarationName Name
13262 = Context.DeclarationNames.getCXXDestructorName(ClassType);
13263 DeclarationNameInfo NameInfo(Name, ClassLoc);
13264 CXXDestructorDecl *Destructor =
13265 CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
13266 QualType(), nullptr, /*isInline=*/true,
13267 /*isImplicitlyDeclared=*/true,
13268 Constexpr ? ConstexprSpecKind::Constexpr
13269 : ConstexprSpecKind::Unspecified);
13270 Destructor->setAccess(AS_public);
13271 Destructor->setDefaulted();
13272
13273 if (getLangOpts().CUDA) {
13274 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor,
13275 Destructor,
13276 /* ConstRHS */ false,
13277 /* Diagnose */ false);
13278 }
13279
13280 setupImplicitSpecialMemberType(Destructor, Context.VoidTy, None);
13281
13282 // We don't need to use SpecialMemberIsTrivial here; triviality for
13283 // destructors is easy to compute.
13284 Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
13285 Destructor->setTrivialForCall(ClassDecl->hasAttr<TrivialABIAttr>() ||
13286 ClassDecl->hasTrivialDestructorForCall());
13287
13288 // Note that we have declared this destructor.
13289 ++getASTContext().NumImplicitDestructorsDeclared;
13290
13291 Scope *S = getScopeForContext(ClassDecl);
13292 CheckImplicitSpecialMemberDeclaration(S, Destructor);
13293
13294 // We can't check whether an implicit destructor is deleted before we complete
13295 // the definition of the class, because its validity depends on the alignment
13296 // of the class. We'll check this from ActOnFields once the class is complete.
13297 if (ClassDecl->isCompleteDefinition() &&
13298 ShouldDeleteSpecialMember(Destructor, CXXDestructor))
13299 SetDeclDeleted(Destructor, ClassLoc);
13300
13301 // Introduce this destructor into its scope.
13302 if (S)
13303 PushOnScopeChains(Destructor, S, false);
13304 ClassDecl->addDecl(Destructor);
13305
13306 return Destructor;
13307 }
13308
DefineImplicitDestructor(SourceLocation CurrentLocation,CXXDestructorDecl * Destructor)13309 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
13310 CXXDestructorDecl *Destructor) {
13311 assert((Destructor->isDefaulted() &&
13312 !Destructor->doesThisDeclarationHaveABody() &&
13313 !Destructor->isDeleted()) &&
13314 "DefineImplicitDestructor - call it for implicit default dtor");
13315 if (Destructor->willHaveBody() || Destructor->isInvalidDecl())
13316 return;
13317
13318 CXXRecordDecl *ClassDecl = Destructor->getParent();
13319 assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
13320
13321 SynthesizedFunctionScope Scope(*this, Destructor);
13322
13323 // The exception specification is needed because we are defining the
13324 // function.
13325 ResolveExceptionSpec(CurrentLocation,
13326 Destructor->getType()->castAs<FunctionProtoType>());
13327 MarkVTableUsed(CurrentLocation, ClassDecl);
13328
13329 // Add a context note for diagnostics produced after this point.
13330 Scope.addContextNote(CurrentLocation);
13331
13332 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
13333 Destructor->getParent());
13334
13335 if (CheckDestructor(Destructor)) {
13336 Destructor->setInvalidDecl();
13337 return;
13338 }
13339
13340 SourceLocation Loc = Destructor->getEndLoc().isValid()
13341 ? Destructor->getEndLoc()
13342 : Destructor->getLocation();
13343 Destructor->setBody(new (Context) CompoundStmt(Loc));
13344 Destructor->markUsed(Context);
13345
13346 if (ASTMutationListener *L = getASTMutationListener()) {
13347 L->CompletedImplicitDefinition(Destructor);
13348 }
13349 }
13350
CheckCompleteDestructorVariant(SourceLocation CurrentLocation,CXXDestructorDecl * Destructor)13351 void Sema::CheckCompleteDestructorVariant(SourceLocation CurrentLocation,
13352 CXXDestructorDecl *Destructor) {
13353 if (Destructor->isInvalidDecl())
13354 return;
13355
13356 CXXRecordDecl *ClassDecl = Destructor->getParent();
13357 assert(Context.getTargetInfo().getCXXABI().isMicrosoft() &&
13358 "implicit complete dtors unneeded outside MS ABI");
13359 assert(ClassDecl->getNumVBases() > 0 &&
13360 "complete dtor only exists for classes with vbases");
13361
13362 SynthesizedFunctionScope Scope(*this, Destructor);
13363
13364 // Add a context note for diagnostics produced after this point.
13365 Scope.addContextNote(CurrentLocation);
13366
13367 MarkVirtualBaseDestructorsReferenced(Destructor->getLocation(), ClassDecl);
13368 }
13369
13370 /// Perform any semantic analysis which needs to be delayed until all
13371 /// pending class member declarations have been parsed.
ActOnFinishCXXMemberDecls()13372 void Sema::ActOnFinishCXXMemberDecls() {
13373 // If the context is an invalid C++ class, just suppress these checks.
13374 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
13375 if (Record->isInvalidDecl()) {
13376 DelayedOverridingExceptionSpecChecks.clear();
13377 DelayedEquivalentExceptionSpecChecks.clear();
13378 return;
13379 }
13380 checkForMultipleExportedDefaultConstructors(*this, Record);
13381 }
13382 }
13383
ActOnFinishCXXNonNestedClass()13384 void Sema::ActOnFinishCXXNonNestedClass() {
13385 referenceDLLExportedClassMethods();
13386
13387 if (!DelayedDllExportMemberFunctions.empty()) {
13388 SmallVector<CXXMethodDecl*, 4> WorkList;
13389 std::swap(DelayedDllExportMemberFunctions, WorkList);
13390 for (CXXMethodDecl *M : WorkList) {
13391 DefineDefaultedFunction(*this, M, M->getLocation());
13392
13393 // Pass the method to the consumer to get emitted. This is not necessary
13394 // for explicit instantiation definitions, as they will get emitted
13395 // anyway.
13396 if (M->getParent()->getTemplateSpecializationKind() !=
13397 TSK_ExplicitInstantiationDefinition)
13398 ActOnFinishInlineFunctionDef(M);
13399 }
13400 }
13401 }
13402
referenceDLLExportedClassMethods()13403 void Sema::referenceDLLExportedClassMethods() {
13404 if (!DelayedDllExportClasses.empty()) {
13405 // Calling ReferenceDllExportedMembers might cause the current function to
13406 // be called again, so use a local copy of DelayedDllExportClasses.
13407 SmallVector<CXXRecordDecl *, 4> WorkList;
13408 std::swap(DelayedDllExportClasses, WorkList);
13409 for (CXXRecordDecl *Class : WorkList)
13410 ReferenceDllExportedMembers(*this, Class);
13411 }
13412 }
13413
AdjustDestructorExceptionSpec(CXXDestructorDecl * Destructor)13414 void Sema::AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor) {
13415 assert(getLangOpts().CPlusPlus11 &&
13416 "adjusting dtor exception specs was introduced in c++11");
13417
13418 if (Destructor->isDependentContext())
13419 return;
13420
13421 // C++11 [class.dtor]p3:
13422 // A declaration of a destructor that does not have an exception-
13423 // specification is implicitly considered to have the same exception-
13424 // specification as an implicit declaration.
13425 const auto *DtorType = Destructor->getType()->castAs<FunctionProtoType>();
13426 if (DtorType->hasExceptionSpec())
13427 return;
13428
13429 // Replace the destructor's type, building off the existing one. Fortunately,
13430 // the only thing of interest in the destructor type is its extended info.
13431 // The return and arguments are fixed.
13432 FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
13433 EPI.ExceptionSpec.Type = EST_Unevaluated;
13434 EPI.ExceptionSpec.SourceDecl = Destructor;
13435 Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
13436
13437 // FIXME: If the destructor has a body that could throw, and the newly created
13438 // spec doesn't allow exceptions, we should emit a warning, because this
13439 // change in behavior can break conforming C++03 programs at runtime.
13440 // However, we don't have a body or an exception specification yet, so it
13441 // needs to be done somewhere else.
13442 }
13443
13444 namespace {
13445 /// An abstract base class for all helper classes used in building the
13446 // copy/move operators. These classes serve as factory functions and help us
13447 // avoid using the same Expr* in the AST twice.
13448 class ExprBuilder {
13449 ExprBuilder(const ExprBuilder&) = delete;
13450 ExprBuilder &operator=(const ExprBuilder&) = delete;
13451
13452 protected:
assertNotNull(Expr * E)13453 static Expr *assertNotNull(Expr *E) {
13454 assert(E && "Expression construction must not fail.");
13455 return E;
13456 }
13457
13458 public:
ExprBuilder()13459 ExprBuilder() {}
~ExprBuilder()13460 virtual ~ExprBuilder() {}
13461
13462 virtual Expr *build(Sema &S, SourceLocation Loc) const = 0;
13463 };
13464
13465 class RefBuilder: public ExprBuilder {
13466 VarDecl *Var;
13467 QualType VarType;
13468
13469 public:
build(Sema & S,SourceLocation Loc) const13470 Expr *build(Sema &S, SourceLocation Loc) const override {
13471 return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc));
13472 }
13473
RefBuilder(VarDecl * Var,QualType VarType)13474 RefBuilder(VarDecl *Var, QualType VarType)
13475 : Var(Var), VarType(VarType) {}
13476 };
13477
13478 class ThisBuilder: public ExprBuilder {
13479 public:
build(Sema & S,SourceLocation Loc) const13480 Expr *build(Sema &S, SourceLocation Loc) const override {
13481 return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>());
13482 }
13483 };
13484
13485 class CastBuilder: public ExprBuilder {
13486 const ExprBuilder &Builder;
13487 QualType Type;
13488 ExprValueKind Kind;
13489 const CXXCastPath &Path;
13490
13491 public:
build(Sema & S,SourceLocation Loc) const13492 Expr *build(Sema &S, SourceLocation Loc) const override {
13493 return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type,
13494 CK_UncheckedDerivedToBase, Kind,
13495 &Path).get());
13496 }
13497
CastBuilder(const ExprBuilder & Builder,QualType Type,ExprValueKind Kind,const CXXCastPath & Path)13498 CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind,
13499 const CXXCastPath &Path)
13500 : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {}
13501 };
13502
13503 class DerefBuilder: public ExprBuilder {
13504 const ExprBuilder &Builder;
13505
13506 public:
build(Sema & S,SourceLocation Loc) const13507 Expr *build(Sema &S, SourceLocation Loc) const override {
13508 return assertNotNull(
13509 S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get());
13510 }
13511
DerefBuilder(const ExprBuilder & Builder)13512 DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
13513 };
13514
13515 class MemberBuilder: public ExprBuilder {
13516 const ExprBuilder &Builder;
13517 QualType Type;
13518 CXXScopeSpec SS;
13519 bool IsArrow;
13520 LookupResult &MemberLookup;
13521
13522 public:
build(Sema & S,SourceLocation Loc) const13523 Expr *build(Sema &S, SourceLocation Loc) const override {
13524 return assertNotNull(S.BuildMemberReferenceExpr(
13525 Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(),
13526 nullptr, MemberLookup, nullptr, nullptr).get());
13527 }
13528
MemberBuilder(const ExprBuilder & Builder,QualType Type,bool IsArrow,LookupResult & MemberLookup)13529 MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow,
13530 LookupResult &MemberLookup)
13531 : Builder(Builder), Type(Type), IsArrow(IsArrow),
13532 MemberLookup(MemberLookup) {}
13533 };
13534
13535 class MoveCastBuilder: public ExprBuilder {
13536 const ExprBuilder &Builder;
13537
13538 public:
build(Sema & S,SourceLocation Loc) const13539 Expr *build(Sema &S, SourceLocation Loc) const override {
13540 return assertNotNull(CastForMoving(S, Builder.build(S, Loc)));
13541 }
13542
MoveCastBuilder(const ExprBuilder & Builder)13543 MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
13544 };
13545
13546 class LvalueConvBuilder: public ExprBuilder {
13547 const ExprBuilder &Builder;
13548
13549 public:
build(Sema & S,SourceLocation Loc) const13550 Expr *build(Sema &S, SourceLocation Loc) const override {
13551 return assertNotNull(
13552 S.DefaultLvalueConversion(Builder.build(S, Loc)).get());
13553 }
13554
LvalueConvBuilder(const ExprBuilder & Builder)13555 LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
13556 };
13557
13558 class SubscriptBuilder: public ExprBuilder {
13559 const ExprBuilder &Base;
13560 const ExprBuilder &Index;
13561
13562 public:
build(Sema & S,SourceLocation Loc) const13563 Expr *build(Sema &S, SourceLocation Loc) const override {
13564 return assertNotNull(S.CreateBuiltinArraySubscriptExpr(
13565 Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get());
13566 }
13567
SubscriptBuilder(const ExprBuilder & Base,const ExprBuilder & Index)13568 SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index)
13569 : Base(Base), Index(Index) {}
13570 };
13571
13572 } // end anonymous namespace
13573
13574 /// When generating a defaulted copy or move assignment operator, if a field
13575 /// should be copied with __builtin_memcpy rather than via explicit assignments,
13576 /// do so. This optimization only applies for arrays of scalars, and for arrays
13577 /// of class type where the selected copy/move-assignment operator is trivial.
13578 static StmtResult
buildMemcpyForAssignmentOp(Sema & S,SourceLocation Loc,QualType T,const ExprBuilder & ToB,const ExprBuilder & FromB)13579 buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
13580 const ExprBuilder &ToB, const ExprBuilder &FromB) {
13581 // Compute the size of the memory buffer to be copied.
13582 QualType SizeType = S.Context.getSizeType();
13583 llvm::APInt Size(S.Context.getTypeSize(SizeType),
13584 S.Context.getTypeSizeInChars(T).getQuantity());
13585
13586 // Take the address of the field references for "from" and "to". We
13587 // directly construct UnaryOperators here because semantic analysis
13588 // does not permit us to take the address of an xvalue.
13589 Expr *From = FromB.build(S, Loc);
13590 From = UnaryOperator::Create(
13591 S.Context, From, UO_AddrOf, S.Context.getPointerType(From->getType()),
13592 VK_RValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides());
13593 Expr *To = ToB.build(S, Loc);
13594 To = UnaryOperator::Create(
13595 S.Context, To, UO_AddrOf, S.Context.getPointerType(To->getType()),
13596 VK_RValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides());
13597
13598 const Type *E = T->getBaseElementTypeUnsafe();
13599 bool NeedsCollectableMemCpy =
13600 E->isRecordType() &&
13601 E->castAs<RecordType>()->getDecl()->hasObjectMember();
13602
13603 // Create a reference to the __builtin_objc_memmove_collectable function
13604 StringRef MemCpyName = NeedsCollectableMemCpy ?
13605 "__builtin_objc_memmove_collectable" :
13606 "__builtin_memcpy";
13607 LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
13608 Sema::LookupOrdinaryName);
13609 S.LookupName(R, S.TUScope, true);
13610
13611 FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
13612 if (!MemCpy)
13613 // Something went horribly wrong earlier, and we will have complained
13614 // about it.
13615 return StmtError();
13616
13617 ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
13618 VK_RValue, Loc, nullptr);
13619 assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
13620
13621 Expr *CallArgs[] = {
13622 To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
13623 };
13624 ExprResult Call = S.BuildCallExpr(/*Scope=*/nullptr, MemCpyRef.get(),
13625 Loc, CallArgs, Loc);
13626
13627 assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
13628 return Call.getAs<Stmt>();
13629 }
13630
13631 /// Builds a statement that copies/moves the given entity from \p From to
13632 /// \c To.
13633 ///
13634 /// This routine is used to copy/move the members of a class with an
13635 /// implicitly-declared copy/move assignment operator. When the entities being
13636 /// copied are arrays, this routine builds for loops to copy them.
13637 ///
13638 /// \param S The Sema object used for type-checking.
13639 ///
13640 /// \param Loc The location where the implicit copy/move is being generated.
13641 ///
13642 /// \param T The type of the expressions being copied/moved. Both expressions
13643 /// must have this type.
13644 ///
13645 /// \param To The expression we are copying/moving to.
13646 ///
13647 /// \param From The expression we are copying/moving from.
13648 ///
13649 /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
13650 /// Otherwise, it's a non-static member subobject.
13651 ///
13652 /// \param Copying Whether we're copying or moving.
13653 ///
13654 /// \param Depth Internal parameter recording the depth of the recursion.
13655 ///
13656 /// \returns A statement or a loop that copies the expressions, or StmtResult(0)
13657 /// if a memcpy should be used instead.
13658 static StmtResult
buildSingleCopyAssignRecursively(Sema & S,SourceLocation Loc,QualType T,const ExprBuilder & To,const ExprBuilder & From,bool CopyingBaseSubobject,bool Copying,unsigned Depth=0)13659 buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
13660 const ExprBuilder &To, const ExprBuilder &From,
13661 bool CopyingBaseSubobject, bool Copying,
13662 unsigned Depth = 0) {
13663 // C++11 [class.copy]p28:
13664 // Each subobject is assigned in the manner appropriate to its type:
13665 //
13666 // - if the subobject is of class type, as if by a call to operator= with
13667 // the subobject as the object expression and the corresponding
13668 // subobject of x as a single function argument (as if by explicit
13669 // qualification; that is, ignoring any possible virtual overriding
13670 // functions in more derived classes);
13671 //
13672 // C++03 [class.copy]p13:
13673 // - if the subobject is of class type, the copy assignment operator for
13674 // the class is used (as if by explicit qualification; that is,
13675 // ignoring any possible virtual overriding functions in more derived
13676 // classes);
13677 if (const RecordType *RecordTy = T->getAs<RecordType>()) {
13678 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
13679
13680 // Look for operator=.
13681 DeclarationName Name
13682 = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
13683 LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
13684 S.LookupQualifiedName(OpLookup, ClassDecl, false);
13685
13686 // Prior to C++11, filter out any result that isn't a copy/move-assignment
13687 // operator.
13688 if (!S.getLangOpts().CPlusPlus11) {
13689 LookupResult::Filter F = OpLookup.makeFilter();
13690 while (F.hasNext()) {
13691 NamedDecl *D = F.next();
13692 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
13693 if (Method->isCopyAssignmentOperator() ||
13694 (!Copying && Method->isMoveAssignmentOperator()))
13695 continue;
13696
13697 F.erase();
13698 }
13699 F.done();
13700 }
13701
13702 // Suppress the protected check (C++ [class.protected]) for each of the
13703 // assignment operators we found. This strange dance is required when
13704 // we're assigning via a base classes's copy-assignment operator. To
13705 // ensure that we're getting the right base class subobject (without
13706 // ambiguities), we need to cast "this" to that subobject type; to
13707 // ensure that we don't go through the virtual call mechanism, we need
13708 // to qualify the operator= name with the base class (see below). However,
13709 // this means that if the base class has a protected copy assignment
13710 // operator, the protected member access check will fail. So, we
13711 // rewrite "protected" access to "public" access in this case, since we
13712 // know by construction that we're calling from a derived class.
13713 if (CopyingBaseSubobject) {
13714 for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
13715 L != LEnd; ++L) {
13716 if (L.getAccess() == AS_protected)
13717 L.setAccess(AS_public);
13718 }
13719 }
13720
13721 // Create the nested-name-specifier that will be used to qualify the
13722 // reference to operator=; this is required to suppress the virtual
13723 // call mechanism.
13724 CXXScopeSpec SS;
13725 const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
13726 SS.MakeTrivial(S.Context,
13727 NestedNameSpecifier::Create(S.Context, nullptr, false,
13728 CanonicalT),
13729 Loc);
13730
13731 // Create the reference to operator=.
13732 ExprResult OpEqualRef
13733 = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*IsArrow=*/false,
13734 SS, /*TemplateKWLoc=*/SourceLocation(),
13735 /*FirstQualifierInScope=*/nullptr,
13736 OpLookup,
13737 /*TemplateArgs=*/nullptr, /*S*/nullptr,
13738 /*SuppressQualifierCheck=*/true);
13739 if (OpEqualRef.isInvalid())
13740 return StmtError();
13741
13742 // Build the call to the assignment operator.
13743
13744 Expr *FromInst = From.build(S, Loc);
13745 ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr,
13746 OpEqualRef.getAs<Expr>(),
13747 Loc, FromInst, Loc);
13748 if (Call.isInvalid())
13749 return StmtError();
13750
13751 // If we built a call to a trivial 'operator=' while copying an array,
13752 // bail out. We'll replace the whole shebang with a memcpy.
13753 CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
13754 if (CE && CE->getMethodDecl()->isTrivial() && Depth)
13755 return StmtResult((Stmt*)nullptr);
13756
13757 // Convert to an expression-statement, and clean up any produced
13758 // temporaries.
13759 return S.ActOnExprStmt(Call);
13760 }
13761
13762 // - if the subobject is of scalar type, the built-in assignment
13763 // operator is used.
13764 const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
13765 if (!ArrayTy) {
13766 ExprResult Assignment = S.CreateBuiltinBinOp(
13767 Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc));
13768 if (Assignment.isInvalid())
13769 return StmtError();
13770 return S.ActOnExprStmt(Assignment);
13771 }
13772
13773 // - if the subobject is an array, each element is assigned, in the
13774 // manner appropriate to the element type;
13775
13776 // Construct a loop over the array bounds, e.g.,
13777 //
13778 // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
13779 //
13780 // that will copy each of the array elements.
13781 QualType SizeType = S.Context.getSizeType();
13782
13783 // Create the iteration variable.
13784 IdentifierInfo *IterationVarName = nullptr;
13785 {
13786 SmallString<8> Str;
13787 llvm::raw_svector_ostream OS(Str);
13788 OS << "__i" << Depth;
13789 IterationVarName = &S.Context.Idents.get(OS.str());
13790 }
13791 VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
13792 IterationVarName, SizeType,
13793 S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
13794 SC_None);
13795
13796 // Initialize the iteration variable to zero.
13797 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
13798 IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
13799
13800 // Creates a reference to the iteration variable.
13801 RefBuilder IterationVarRef(IterationVar, SizeType);
13802 LvalueConvBuilder IterationVarRefRVal(IterationVarRef);
13803
13804 // Create the DeclStmt that holds the iteration variable.
13805 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
13806
13807 // Subscript the "from" and "to" expressions with the iteration variable.
13808 SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal);
13809 MoveCastBuilder FromIndexMove(FromIndexCopy);
13810 const ExprBuilder *FromIndex;
13811 if (Copying)
13812 FromIndex = &FromIndexCopy;
13813 else
13814 FromIndex = &FromIndexMove;
13815
13816 SubscriptBuilder ToIndex(To, IterationVarRefRVal);
13817
13818 // Build the copy/move for an individual element of the array.
13819 StmtResult Copy =
13820 buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
13821 ToIndex, *FromIndex, CopyingBaseSubobject,
13822 Copying, Depth + 1);
13823 // Bail out if copying fails or if we determined that we should use memcpy.
13824 if (Copy.isInvalid() || !Copy.get())
13825 return Copy;
13826
13827 // Create the comparison against the array bound.
13828 llvm::APInt Upper
13829 = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
13830 Expr *Comparison = BinaryOperator::Create(
13831 S.Context, IterationVarRefRVal.build(S, Loc),
13832 IntegerLiteral::Create(S.Context, Upper, SizeType, Loc), BO_NE,
13833 S.Context.BoolTy, VK_RValue, OK_Ordinary, Loc, S.CurFPFeatureOverrides());
13834
13835 // Create the pre-increment of the iteration variable. We can determine
13836 // whether the increment will overflow based on the value of the array
13837 // bound.
13838 Expr *Increment = UnaryOperator::Create(
13839 S.Context, IterationVarRef.build(S, Loc), UO_PreInc, SizeType, VK_LValue,
13840 OK_Ordinary, Loc, Upper.isMaxValue(), S.CurFPFeatureOverrides());
13841
13842 // Construct the loop that copies all elements of this array.
13843 return S.ActOnForStmt(
13844 Loc, Loc, InitStmt,
13845 S.ActOnCondition(nullptr, Loc, Comparison, Sema::ConditionKind::Boolean),
13846 S.MakeFullDiscardedValueExpr(Increment), Loc, Copy.get());
13847 }
13848
13849 static StmtResult
buildSingleCopyAssign(Sema & S,SourceLocation Loc,QualType T,const ExprBuilder & To,const ExprBuilder & From,bool CopyingBaseSubobject,bool Copying)13850 buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
13851 const ExprBuilder &To, const ExprBuilder &From,
13852 bool CopyingBaseSubobject, bool Copying) {
13853 // Maybe we should use a memcpy?
13854 if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
13855 T.isTriviallyCopyableType(S.Context))
13856 return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
13857
13858 StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
13859 CopyingBaseSubobject,
13860 Copying, 0));
13861
13862 // If we ended up picking a trivial assignment operator for an array of a
13863 // non-trivially-copyable class type, just emit a memcpy.
13864 if (!Result.isInvalid() && !Result.get())
13865 return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
13866
13867 return Result;
13868 }
13869
DeclareImplicitCopyAssignment(CXXRecordDecl * ClassDecl)13870 CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
13871 // Note: The following rules are largely analoguous to the copy
13872 // constructor rules. Note that virtual bases are not taken into account
13873 // for determining the argument type of the operator. Note also that
13874 // operators taking an object instead of a reference are allowed.
13875 assert(ClassDecl->needsImplicitCopyAssignment());
13876
13877 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
13878 if (DSM.isAlreadyBeingDeclared())
13879 return nullptr;
13880
13881 QualType ArgType = Context.getTypeDeclType(ClassDecl);
13882 LangAS AS = getDefaultCXXMethodAddrSpace();
13883 if (AS != LangAS::Default)
13884 ArgType = Context.getAddrSpaceQualType(ArgType, AS);
13885 QualType RetType = Context.getLValueReferenceType(ArgType);
13886 bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
13887 if (Const)
13888 ArgType = ArgType.withConst();
13889
13890 ArgType = Context.getLValueReferenceType(ArgType);
13891
13892 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
13893 CXXCopyAssignment,
13894 Const);
13895
13896 // An implicitly-declared copy assignment operator is an inline public
13897 // member of its class.
13898 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
13899 SourceLocation ClassLoc = ClassDecl->getLocation();
13900 DeclarationNameInfo NameInfo(Name, ClassLoc);
13901 CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create(
13902 Context, ClassDecl, ClassLoc, NameInfo, QualType(),
13903 /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
13904 /*isInline=*/true,
13905 Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified,
13906 SourceLocation());
13907 CopyAssignment->setAccess(AS_public);
13908 CopyAssignment->setDefaulted();
13909 CopyAssignment->setImplicit();
13910
13911 if (getLangOpts().CUDA) {
13912 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment,
13913 CopyAssignment,
13914 /* ConstRHS */ Const,
13915 /* Diagnose */ false);
13916 }
13917
13918 setupImplicitSpecialMemberType(CopyAssignment, RetType, ArgType);
13919
13920 // Add the parameter to the operator.
13921 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
13922 ClassLoc, ClassLoc,
13923 /*Id=*/nullptr, ArgType,
13924 /*TInfo=*/nullptr, SC_None,
13925 nullptr);
13926 CopyAssignment->setParams(FromParam);
13927
13928 CopyAssignment->setTrivial(
13929 ClassDecl->needsOverloadResolutionForCopyAssignment()
13930 ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
13931 : ClassDecl->hasTrivialCopyAssignment());
13932
13933 // Note that we have added this copy-assignment operator.
13934 ++getASTContext().NumImplicitCopyAssignmentOperatorsDeclared;
13935
13936 Scope *S = getScopeForContext(ClassDecl);
13937 CheckImplicitSpecialMemberDeclaration(S, CopyAssignment);
13938
13939 if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment)) {
13940 ClassDecl->setImplicitCopyAssignmentIsDeleted();
13941 SetDeclDeleted(CopyAssignment, ClassLoc);
13942 }
13943
13944 if (S)
13945 PushOnScopeChains(CopyAssignment, S, false);
13946 ClassDecl->addDecl(CopyAssignment);
13947
13948 return CopyAssignment;
13949 }
13950
13951 /// Diagnose an implicit copy operation for a class which is odr-used, but
13952 /// which is deprecated because the class has a user-declared copy constructor,
13953 /// copy assignment operator, or destructor.
diagnoseDeprecatedCopyOperation(Sema & S,CXXMethodDecl * CopyOp)13954 static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) {
13955 assert(CopyOp->isImplicit());
13956
13957 CXXRecordDecl *RD = CopyOp->getParent();
13958 CXXMethodDecl *UserDeclaredOperation = nullptr;
13959
13960 // In Microsoft mode, assignment operations don't affect constructors and
13961 // vice versa.
13962 if (RD->hasUserDeclaredDestructor()) {
13963 UserDeclaredOperation = RD->getDestructor();
13964 } else if (!isa<CXXConstructorDecl>(CopyOp) &&
13965 RD->hasUserDeclaredCopyConstructor() &&
13966 !S.getLangOpts().MSVCCompat) {
13967 // Find any user-declared copy constructor.
13968 for (auto *I : RD->ctors()) {
13969 if (I->isCopyConstructor()) {
13970 UserDeclaredOperation = I;
13971 break;
13972 }
13973 }
13974 assert(UserDeclaredOperation);
13975 } else if (isa<CXXConstructorDecl>(CopyOp) &&
13976 RD->hasUserDeclaredCopyAssignment() &&
13977 !S.getLangOpts().MSVCCompat) {
13978 // Find any user-declared move assignment operator.
13979 for (auto *I : RD->methods()) {
13980 if (I->isCopyAssignmentOperator()) {
13981 UserDeclaredOperation = I;
13982 break;
13983 }
13984 }
13985 assert(UserDeclaredOperation);
13986 }
13987
13988 if (UserDeclaredOperation && UserDeclaredOperation->isUserProvided()) {
13989 S.Diag(UserDeclaredOperation->getLocation(),
13990 isa<CXXDestructorDecl>(UserDeclaredOperation)
13991 ? diag::warn_deprecated_copy_dtor_operation
13992 : diag::warn_deprecated_copy_operation)
13993 << RD << /*copy assignment*/ !isa<CXXConstructorDecl>(CopyOp);
13994 }
13995 }
13996
DefineImplicitCopyAssignment(SourceLocation CurrentLocation,CXXMethodDecl * CopyAssignOperator)13997 void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
13998 CXXMethodDecl *CopyAssignOperator) {
13999 assert((CopyAssignOperator->isDefaulted() &&
14000 CopyAssignOperator->isOverloadedOperator() &&
14001 CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
14002 !CopyAssignOperator->doesThisDeclarationHaveABody() &&
14003 !CopyAssignOperator->isDeleted()) &&
14004 "DefineImplicitCopyAssignment called for wrong function");
14005 if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl())
14006 return;
14007
14008 CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
14009 if (ClassDecl->isInvalidDecl()) {
14010 CopyAssignOperator->setInvalidDecl();
14011 return;
14012 }
14013
14014 SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
14015
14016 // The exception specification is needed because we are defining the
14017 // function.
14018 ResolveExceptionSpec(CurrentLocation,
14019 CopyAssignOperator->getType()->castAs<FunctionProtoType>());
14020
14021 // Add a context note for diagnostics produced after this point.
14022 Scope.addContextNote(CurrentLocation);
14023
14024 // C++11 [class.copy]p18:
14025 // The [definition of an implicitly declared copy assignment operator] is
14026 // deprecated if the class has a user-declared copy constructor or a
14027 // user-declared destructor.
14028 if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
14029 diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator);
14030
14031 // C++0x [class.copy]p30:
14032 // The implicitly-defined or explicitly-defaulted copy assignment operator
14033 // for a non-union class X performs memberwise copy assignment of its
14034 // subobjects. The direct base classes of X are assigned first, in the
14035 // order of their declaration in the base-specifier-list, and then the
14036 // immediate non-static data members of X are assigned, in the order in
14037 // which they were declared in the class definition.
14038
14039 // The statements that form the synthesized function body.
14040 SmallVector<Stmt*, 8> Statements;
14041
14042 // The parameter for the "other" object, which we are copying from.
14043 ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
14044 Qualifiers OtherQuals = Other->getType().getQualifiers();
14045 QualType OtherRefType = Other->getType();
14046 if (const LValueReferenceType *OtherRef
14047 = OtherRefType->getAs<LValueReferenceType>()) {
14048 OtherRefType = OtherRef->getPointeeType();
14049 OtherQuals = OtherRefType.getQualifiers();
14050 }
14051
14052 // Our location for everything implicitly-generated.
14053 SourceLocation Loc = CopyAssignOperator->getEndLoc().isValid()
14054 ? CopyAssignOperator->getEndLoc()
14055 : CopyAssignOperator->getLocation();
14056
14057 // Builds a DeclRefExpr for the "other" object.
14058 RefBuilder OtherRef(Other, OtherRefType);
14059
14060 // Builds the "this" pointer.
14061 ThisBuilder This;
14062
14063 // Assign base classes.
14064 bool Invalid = false;
14065 for (auto &Base : ClassDecl->bases()) {
14066 // Form the assignment:
14067 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
14068 QualType BaseType = Base.getType().getUnqualifiedType();
14069 if (!BaseType->isRecordType()) {
14070 Invalid = true;
14071 continue;
14072 }
14073
14074 CXXCastPath BasePath;
14075 BasePath.push_back(&Base);
14076
14077 // Construct the "from" expression, which is an implicit cast to the
14078 // appropriately-qualified base type.
14079 CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals),
14080 VK_LValue, BasePath);
14081
14082 // Dereference "this".
14083 DerefBuilder DerefThis(This);
14084 CastBuilder To(DerefThis,
14085 Context.getQualifiedType(
14086 BaseType, CopyAssignOperator->getMethodQualifiers()),
14087 VK_LValue, BasePath);
14088
14089 // Build the copy.
14090 StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
14091 To, From,
14092 /*CopyingBaseSubobject=*/true,
14093 /*Copying=*/true);
14094 if (Copy.isInvalid()) {
14095 CopyAssignOperator->setInvalidDecl();
14096 return;
14097 }
14098
14099 // Success! Record the copy.
14100 Statements.push_back(Copy.getAs<Expr>());
14101 }
14102
14103 // Assign non-static members.
14104 for (auto *Field : ClassDecl->fields()) {
14105 // FIXME: We should form some kind of AST representation for the implied
14106 // memcpy in a union copy operation.
14107 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
14108 continue;
14109
14110 if (Field->isInvalidDecl()) {
14111 Invalid = true;
14112 continue;
14113 }
14114
14115 // Check for members of reference type; we can't copy those.
14116 if (Field->getType()->isReferenceType()) {
14117 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14118 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
14119 Diag(Field->getLocation(), diag::note_declared_at);
14120 Invalid = true;
14121 continue;
14122 }
14123
14124 // Check for members of const-qualified, non-class type.
14125 QualType BaseType = Context.getBaseElementType(Field->getType());
14126 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
14127 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14128 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
14129 Diag(Field->getLocation(), diag::note_declared_at);
14130 Invalid = true;
14131 continue;
14132 }
14133
14134 // Suppress assigning zero-width bitfields.
14135 if (Field->isZeroLengthBitField(Context))
14136 continue;
14137
14138 QualType FieldType = Field->getType().getNonReferenceType();
14139 if (FieldType->isIncompleteArrayType()) {
14140 assert(ClassDecl->hasFlexibleArrayMember() &&
14141 "Incomplete array type is not valid");
14142 continue;
14143 }
14144
14145 // Build references to the field in the object we're copying from and to.
14146 CXXScopeSpec SS; // Intentionally empty
14147 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
14148 LookupMemberName);
14149 MemberLookup.addDecl(Field);
14150 MemberLookup.resolveKind();
14151
14152 MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup);
14153
14154 MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup);
14155
14156 // Build the copy of this field.
14157 StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
14158 To, From,
14159 /*CopyingBaseSubobject=*/false,
14160 /*Copying=*/true);
14161 if (Copy.isInvalid()) {
14162 CopyAssignOperator->setInvalidDecl();
14163 return;
14164 }
14165
14166 // Success! Record the copy.
14167 Statements.push_back(Copy.getAs<Stmt>());
14168 }
14169
14170 if (!Invalid) {
14171 // Add a "return *this;"
14172 ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
14173
14174 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
14175 if (Return.isInvalid())
14176 Invalid = true;
14177 else
14178 Statements.push_back(Return.getAs<Stmt>());
14179 }
14180
14181 if (Invalid) {
14182 CopyAssignOperator->setInvalidDecl();
14183 return;
14184 }
14185
14186 StmtResult Body;
14187 {
14188 CompoundScopeRAII CompoundScope(*this);
14189 Body = ActOnCompoundStmt(Loc, Loc, Statements,
14190 /*isStmtExpr=*/false);
14191 assert(!Body.isInvalid() && "Compound statement creation cannot fail");
14192 }
14193 CopyAssignOperator->setBody(Body.getAs<Stmt>());
14194 CopyAssignOperator->markUsed(Context);
14195
14196 if (ASTMutationListener *L = getASTMutationListener()) {
14197 L->CompletedImplicitDefinition(CopyAssignOperator);
14198 }
14199 }
14200
DeclareImplicitMoveAssignment(CXXRecordDecl * ClassDecl)14201 CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
14202 assert(ClassDecl->needsImplicitMoveAssignment());
14203
14204 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
14205 if (DSM.isAlreadyBeingDeclared())
14206 return nullptr;
14207
14208 // Note: The following rules are largely analoguous to the move
14209 // constructor rules.
14210
14211 QualType ArgType = Context.getTypeDeclType(ClassDecl);
14212 LangAS AS = getDefaultCXXMethodAddrSpace();
14213 if (AS != LangAS::Default)
14214 ArgType = Context.getAddrSpaceQualType(ArgType, AS);
14215 QualType RetType = Context.getLValueReferenceType(ArgType);
14216 ArgType = Context.getRValueReferenceType(ArgType);
14217
14218 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
14219 CXXMoveAssignment,
14220 false);
14221
14222 // An implicitly-declared move assignment operator is an inline public
14223 // member of its class.
14224 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
14225 SourceLocation ClassLoc = ClassDecl->getLocation();
14226 DeclarationNameInfo NameInfo(Name, ClassLoc);
14227 CXXMethodDecl *MoveAssignment = CXXMethodDecl::Create(
14228 Context, ClassDecl, ClassLoc, NameInfo, QualType(),
14229 /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
14230 /*isInline=*/true,
14231 Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified,
14232 SourceLocation());
14233 MoveAssignment->setAccess(AS_public);
14234 MoveAssignment->setDefaulted();
14235 MoveAssignment->setImplicit();
14236
14237 if (getLangOpts().CUDA) {
14238 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment,
14239 MoveAssignment,
14240 /* ConstRHS */ false,
14241 /* Diagnose */ false);
14242 }
14243
14244 // Build an exception specification pointing back at this member.
14245 FunctionProtoType::ExtProtoInfo EPI =
14246 getImplicitMethodEPI(*this, MoveAssignment);
14247 MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
14248
14249 // Add the parameter to the operator.
14250 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
14251 ClassLoc, ClassLoc,
14252 /*Id=*/nullptr, ArgType,
14253 /*TInfo=*/nullptr, SC_None,
14254 nullptr);
14255 MoveAssignment->setParams(FromParam);
14256
14257 MoveAssignment->setTrivial(
14258 ClassDecl->needsOverloadResolutionForMoveAssignment()
14259 ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
14260 : ClassDecl->hasTrivialMoveAssignment());
14261
14262 // Note that we have added this copy-assignment operator.
14263 ++getASTContext().NumImplicitMoveAssignmentOperatorsDeclared;
14264
14265 Scope *S = getScopeForContext(ClassDecl);
14266 CheckImplicitSpecialMemberDeclaration(S, MoveAssignment);
14267
14268 if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
14269 ClassDecl->setImplicitMoveAssignmentIsDeleted();
14270 SetDeclDeleted(MoveAssignment, ClassLoc);
14271 }
14272
14273 if (S)
14274 PushOnScopeChains(MoveAssignment, S, false);
14275 ClassDecl->addDecl(MoveAssignment);
14276
14277 return MoveAssignment;
14278 }
14279
14280 /// Check if we're implicitly defining a move assignment operator for a class
14281 /// with virtual bases. Such a move assignment might move-assign the virtual
14282 /// base multiple times.
checkMoveAssignmentForRepeatedMove(Sema & S,CXXRecordDecl * Class,SourceLocation CurrentLocation)14283 static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class,
14284 SourceLocation CurrentLocation) {
14285 assert(!Class->isDependentContext() && "should not define dependent move");
14286
14287 // Only a virtual base could get implicitly move-assigned multiple times.
14288 // Only a non-trivial move assignment can observe this. We only want to
14289 // diagnose if we implicitly define an assignment operator that assigns
14290 // two base classes, both of which move-assign the same virtual base.
14291 if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() ||
14292 Class->getNumBases() < 2)
14293 return;
14294
14295 llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist;
14296 typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap;
14297 VBaseMap VBases;
14298
14299 for (auto &BI : Class->bases()) {
14300 Worklist.push_back(&BI);
14301 while (!Worklist.empty()) {
14302 CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val();
14303 CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
14304
14305 // If the base has no non-trivial move assignment operators,
14306 // we don't care about moves from it.
14307 if (!Base->hasNonTrivialMoveAssignment())
14308 continue;
14309
14310 // If there's nothing virtual here, skip it.
14311 if (!BaseSpec->isVirtual() && !Base->getNumVBases())
14312 continue;
14313
14314 // If we're not actually going to call a move assignment for this base,
14315 // or the selected move assignment is trivial, skip it.
14316 Sema::SpecialMemberOverloadResult SMOR =
14317 S.LookupSpecialMember(Base, Sema::CXXMoveAssignment,
14318 /*ConstArg*/false, /*VolatileArg*/false,
14319 /*RValueThis*/true, /*ConstThis*/false,
14320 /*VolatileThis*/false);
14321 if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() ||
14322 !SMOR.getMethod()->isMoveAssignmentOperator())
14323 continue;
14324
14325 if (BaseSpec->isVirtual()) {
14326 // We're going to move-assign this virtual base, and its move
14327 // assignment operator is not trivial. If this can happen for
14328 // multiple distinct direct bases of Class, diagnose it. (If it
14329 // only happens in one base, we'll diagnose it when synthesizing
14330 // that base class's move assignment operator.)
14331 CXXBaseSpecifier *&Existing =
14332 VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI))
14333 .first->second;
14334 if (Existing && Existing != &BI) {
14335 S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times)
14336 << Class << Base;
14337 S.Diag(Existing->getBeginLoc(), diag::note_vbase_moved_here)
14338 << (Base->getCanonicalDecl() ==
14339 Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl())
14340 << Base << Existing->getType() << Existing->getSourceRange();
14341 S.Diag(BI.getBeginLoc(), diag::note_vbase_moved_here)
14342 << (Base->getCanonicalDecl() ==
14343 BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl())
14344 << Base << BI.getType() << BaseSpec->getSourceRange();
14345
14346 // Only diagnose each vbase once.
14347 Existing = nullptr;
14348 }
14349 } else {
14350 // Only walk over bases that have defaulted move assignment operators.
14351 // We assume that any user-provided move assignment operator handles
14352 // the multiple-moves-of-vbase case itself somehow.
14353 if (!SMOR.getMethod()->isDefaulted())
14354 continue;
14355
14356 // We're going to move the base classes of Base. Add them to the list.
14357 for (auto &BI : Base->bases())
14358 Worklist.push_back(&BI);
14359 }
14360 }
14361 }
14362 }
14363
DefineImplicitMoveAssignment(SourceLocation CurrentLocation,CXXMethodDecl * MoveAssignOperator)14364 void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
14365 CXXMethodDecl *MoveAssignOperator) {
14366 assert((MoveAssignOperator->isDefaulted() &&
14367 MoveAssignOperator->isOverloadedOperator() &&
14368 MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
14369 !MoveAssignOperator->doesThisDeclarationHaveABody() &&
14370 !MoveAssignOperator->isDeleted()) &&
14371 "DefineImplicitMoveAssignment called for wrong function");
14372 if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl())
14373 return;
14374
14375 CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
14376 if (ClassDecl->isInvalidDecl()) {
14377 MoveAssignOperator->setInvalidDecl();
14378 return;
14379 }
14380
14381 // C++0x [class.copy]p28:
14382 // The implicitly-defined or move assignment operator for a non-union class
14383 // X performs memberwise move assignment of its subobjects. The direct base
14384 // classes of X are assigned first, in the order of their declaration in the
14385 // base-specifier-list, and then the immediate non-static data members of X
14386 // are assigned, in the order in which they were declared in the class
14387 // definition.
14388
14389 // Issue a warning if our implicit move assignment operator will move
14390 // from a virtual base more than once.
14391 checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation);
14392
14393 SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
14394
14395 // The exception specification is needed because we are defining the
14396 // function.
14397 ResolveExceptionSpec(CurrentLocation,
14398 MoveAssignOperator->getType()->castAs<FunctionProtoType>());
14399
14400 // Add a context note for diagnostics produced after this point.
14401 Scope.addContextNote(CurrentLocation);
14402
14403 // The statements that form the synthesized function body.
14404 SmallVector<Stmt*, 8> Statements;
14405
14406 // The parameter for the "other" object, which we are move from.
14407 ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
14408 QualType OtherRefType =
14409 Other->getType()->castAs<RValueReferenceType>()->getPointeeType();
14410
14411 // Our location for everything implicitly-generated.
14412 SourceLocation Loc = MoveAssignOperator->getEndLoc().isValid()
14413 ? MoveAssignOperator->getEndLoc()
14414 : MoveAssignOperator->getLocation();
14415
14416 // Builds a reference to the "other" object.
14417 RefBuilder OtherRef(Other, OtherRefType);
14418 // Cast to rvalue.
14419 MoveCastBuilder MoveOther(OtherRef);
14420
14421 // Builds the "this" pointer.
14422 ThisBuilder This;
14423
14424 // Assign base classes.
14425 bool Invalid = false;
14426 for (auto &Base : ClassDecl->bases()) {
14427 // C++11 [class.copy]p28:
14428 // It is unspecified whether subobjects representing virtual base classes
14429 // are assigned more than once by the implicitly-defined copy assignment
14430 // operator.
14431 // FIXME: Do not assign to a vbase that will be assigned by some other base
14432 // class. For a move-assignment, this can result in the vbase being moved
14433 // multiple times.
14434
14435 // Form the assignment:
14436 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
14437 QualType BaseType = Base.getType().getUnqualifiedType();
14438 if (!BaseType->isRecordType()) {
14439 Invalid = true;
14440 continue;
14441 }
14442
14443 CXXCastPath BasePath;
14444 BasePath.push_back(&Base);
14445
14446 // Construct the "from" expression, which is an implicit cast to the
14447 // appropriately-qualified base type.
14448 CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath);
14449
14450 // Dereference "this".
14451 DerefBuilder DerefThis(This);
14452
14453 // Implicitly cast "this" to the appropriately-qualified base type.
14454 CastBuilder To(DerefThis,
14455 Context.getQualifiedType(
14456 BaseType, MoveAssignOperator->getMethodQualifiers()),
14457 VK_LValue, BasePath);
14458
14459 // Build the move.
14460 StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
14461 To, From,
14462 /*CopyingBaseSubobject=*/true,
14463 /*Copying=*/false);
14464 if (Move.isInvalid()) {
14465 MoveAssignOperator->setInvalidDecl();
14466 return;
14467 }
14468
14469 // Success! Record the move.
14470 Statements.push_back(Move.getAs<Expr>());
14471 }
14472
14473 // Assign non-static members.
14474 for (auto *Field : ClassDecl->fields()) {
14475 // FIXME: We should form some kind of AST representation for the implied
14476 // memcpy in a union copy operation.
14477 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
14478 continue;
14479
14480 if (Field->isInvalidDecl()) {
14481 Invalid = true;
14482 continue;
14483 }
14484
14485 // Check for members of reference type; we can't move those.
14486 if (Field->getType()->isReferenceType()) {
14487 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14488 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
14489 Diag(Field->getLocation(), diag::note_declared_at);
14490 Invalid = true;
14491 continue;
14492 }
14493
14494 // Check for members of const-qualified, non-class type.
14495 QualType BaseType = Context.getBaseElementType(Field->getType());
14496 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
14497 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14498 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
14499 Diag(Field->getLocation(), diag::note_declared_at);
14500 Invalid = true;
14501 continue;
14502 }
14503
14504 // Suppress assigning zero-width bitfields.
14505 if (Field->isZeroLengthBitField(Context))
14506 continue;
14507
14508 QualType FieldType = Field->getType().getNonReferenceType();
14509 if (FieldType->isIncompleteArrayType()) {
14510 assert(ClassDecl->hasFlexibleArrayMember() &&
14511 "Incomplete array type is not valid");
14512 continue;
14513 }
14514
14515 // Build references to the field in the object we're copying from and to.
14516 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
14517 LookupMemberName);
14518 MemberLookup.addDecl(Field);
14519 MemberLookup.resolveKind();
14520 MemberBuilder From(MoveOther, OtherRefType,
14521 /*IsArrow=*/false, MemberLookup);
14522 MemberBuilder To(This, getCurrentThisType(),
14523 /*IsArrow=*/true, MemberLookup);
14524
14525 assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue
14526 "Member reference with rvalue base must be rvalue except for reference "
14527 "members, which aren't allowed for move assignment.");
14528
14529 // Build the move of this field.
14530 StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
14531 To, From,
14532 /*CopyingBaseSubobject=*/false,
14533 /*Copying=*/false);
14534 if (Move.isInvalid()) {
14535 MoveAssignOperator->setInvalidDecl();
14536 return;
14537 }
14538
14539 // Success! Record the copy.
14540 Statements.push_back(Move.getAs<Stmt>());
14541 }
14542
14543 if (!Invalid) {
14544 // Add a "return *this;"
14545 ExprResult ThisObj =
14546 CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
14547
14548 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
14549 if (Return.isInvalid())
14550 Invalid = true;
14551 else
14552 Statements.push_back(Return.getAs<Stmt>());
14553 }
14554
14555 if (Invalid) {
14556 MoveAssignOperator->setInvalidDecl();
14557 return;
14558 }
14559
14560 StmtResult Body;
14561 {
14562 CompoundScopeRAII CompoundScope(*this);
14563 Body = ActOnCompoundStmt(Loc, Loc, Statements,
14564 /*isStmtExpr=*/false);
14565 assert(!Body.isInvalid() && "Compound statement creation cannot fail");
14566 }
14567 MoveAssignOperator->setBody(Body.getAs<Stmt>());
14568 MoveAssignOperator->markUsed(Context);
14569
14570 if (ASTMutationListener *L = getASTMutationListener()) {
14571 L->CompletedImplicitDefinition(MoveAssignOperator);
14572 }
14573 }
14574
DeclareImplicitCopyConstructor(CXXRecordDecl * ClassDecl)14575 CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
14576 CXXRecordDecl *ClassDecl) {
14577 // C++ [class.copy]p4:
14578 // If the class definition does not explicitly declare a copy
14579 // constructor, one is declared implicitly.
14580 assert(ClassDecl->needsImplicitCopyConstructor());
14581
14582 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
14583 if (DSM.isAlreadyBeingDeclared())
14584 return nullptr;
14585
14586 QualType ClassType = Context.getTypeDeclType(ClassDecl);
14587 QualType ArgType = ClassType;
14588 bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
14589 if (Const)
14590 ArgType = ArgType.withConst();
14591
14592 LangAS AS = getDefaultCXXMethodAddrSpace();
14593 if (AS != LangAS::Default)
14594 ArgType = Context.getAddrSpaceQualType(ArgType, AS);
14595
14596 ArgType = Context.getLValueReferenceType(ArgType);
14597
14598 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
14599 CXXCopyConstructor,
14600 Const);
14601
14602 DeclarationName Name
14603 = Context.DeclarationNames.getCXXConstructorName(
14604 Context.getCanonicalType(ClassType));
14605 SourceLocation ClassLoc = ClassDecl->getLocation();
14606 DeclarationNameInfo NameInfo(Name, ClassLoc);
14607
14608 // An implicitly-declared copy constructor is an inline public
14609 // member of its class.
14610 CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
14611 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
14612 ExplicitSpecifier(),
14613 /*isInline=*/true,
14614 /*isImplicitlyDeclared=*/true,
14615 Constexpr ? ConstexprSpecKind::Constexpr
14616 : ConstexprSpecKind::Unspecified);
14617 CopyConstructor->setAccess(AS_public);
14618 CopyConstructor->setDefaulted();
14619
14620 if (getLangOpts().CUDA) {
14621 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor,
14622 CopyConstructor,
14623 /* ConstRHS */ Const,
14624 /* Diagnose */ false);
14625 }
14626
14627 setupImplicitSpecialMemberType(CopyConstructor, Context.VoidTy, ArgType);
14628
14629 // Add the parameter to the constructor.
14630 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
14631 ClassLoc, ClassLoc,
14632 /*IdentifierInfo=*/nullptr,
14633 ArgType, /*TInfo=*/nullptr,
14634 SC_None, nullptr);
14635 CopyConstructor->setParams(FromParam);
14636
14637 CopyConstructor->setTrivial(
14638 ClassDecl->needsOverloadResolutionForCopyConstructor()
14639 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
14640 : ClassDecl->hasTrivialCopyConstructor());
14641
14642 CopyConstructor->setTrivialForCall(
14643 ClassDecl->hasAttr<TrivialABIAttr>() ||
14644 (ClassDecl->needsOverloadResolutionForCopyConstructor()
14645 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor,
14646 TAH_ConsiderTrivialABI)
14647 : ClassDecl->hasTrivialCopyConstructorForCall()));
14648
14649 // Note that we have declared this constructor.
14650 ++getASTContext().NumImplicitCopyConstructorsDeclared;
14651
14652 Scope *S = getScopeForContext(ClassDecl);
14653 CheckImplicitSpecialMemberDeclaration(S, CopyConstructor);
14654
14655 if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor)) {
14656 ClassDecl->setImplicitCopyConstructorIsDeleted();
14657 SetDeclDeleted(CopyConstructor, ClassLoc);
14658 }
14659
14660 if (S)
14661 PushOnScopeChains(CopyConstructor, S, false);
14662 ClassDecl->addDecl(CopyConstructor);
14663
14664 return CopyConstructor;
14665 }
14666
DefineImplicitCopyConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * CopyConstructor)14667 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
14668 CXXConstructorDecl *CopyConstructor) {
14669 assert((CopyConstructor->isDefaulted() &&
14670 CopyConstructor->isCopyConstructor() &&
14671 !CopyConstructor->doesThisDeclarationHaveABody() &&
14672 !CopyConstructor->isDeleted()) &&
14673 "DefineImplicitCopyConstructor - call it for implicit copy ctor");
14674 if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl())
14675 return;
14676
14677 CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
14678 assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
14679
14680 SynthesizedFunctionScope Scope(*this, CopyConstructor);
14681
14682 // The exception specification is needed because we are defining the
14683 // function.
14684 ResolveExceptionSpec(CurrentLocation,
14685 CopyConstructor->getType()->castAs<FunctionProtoType>());
14686 MarkVTableUsed(CurrentLocation, ClassDecl);
14687
14688 // Add a context note for diagnostics produced after this point.
14689 Scope.addContextNote(CurrentLocation);
14690
14691 // C++11 [class.copy]p7:
14692 // The [definition of an implicitly declared copy constructor] is
14693 // deprecated if the class has a user-declared copy assignment operator
14694 // or a user-declared destructor.
14695 if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
14696 diagnoseDeprecatedCopyOperation(*this, CopyConstructor);
14697
14698 if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false)) {
14699 CopyConstructor->setInvalidDecl();
14700 } else {
14701 SourceLocation Loc = CopyConstructor->getEndLoc().isValid()
14702 ? CopyConstructor->getEndLoc()
14703 : CopyConstructor->getLocation();
14704 Sema::CompoundScopeRAII CompoundScope(*this);
14705 CopyConstructor->setBody(
14706 ActOnCompoundStmt(Loc, Loc, None, /*isStmtExpr=*/false).getAs<Stmt>());
14707 CopyConstructor->markUsed(Context);
14708 }
14709
14710 if (ASTMutationListener *L = getASTMutationListener()) {
14711 L->CompletedImplicitDefinition(CopyConstructor);
14712 }
14713 }
14714
DeclareImplicitMoveConstructor(CXXRecordDecl * ClassDecl)14715 CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
14716 CXXRecordDecl *ClassDecl) {
14717 assert(ClassDecl->needsImplicitMoveConstructor());
14718
14719 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
14720 if (DSM.isAlreadyBeingDeclared())
14721 return nullptr;
14722
14723 QualType ClassType = Context.getTypeDeclType(ClassDecl);
14724
14725 QualType ArgType = ClassType;
14726 LangAS AS = getDefaultCXXMethodAddrSpace();
14727 if (AS != LangAS::Default)
14728 ArgType = Context.getAddrSpaceQualType(ClassType, AS);
14729 ArgType = Context.getRValueReferenceType(ArgType);
14730
14731 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
14732 CXXMoveConstructor,
14733 false);
14734
14735 DeclarationName Name
14736 = Context.DeclarationNames.getCXXConstructorName(
14737 Context.getCanonicalType(ClassType));
14738 SourceLocation ClassLoc = ClassDecl->getLocation();
14739 DeclarationNameInfo NameInfo(Name, ClassLoc);
14740
14741 // C++11 [class.copy]p11:
14742 // An implicitly-declared copy/move constructor is an inline public
14743 // member of its class.
14744 CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
14745 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
14746 ExplicitSpecifier(),
14747 /*isInline=*/true,
14748 /*isImplicitlyDeclared=*/true,
14749 Constexpr ? ConstexprSpecKind::Constexpr
14750 : ConstexprSpecKind::Unspecified);
14751 MoveConstructor->setAccess(AS_public);
14752 MoveConstructor->setDefaulted();
14753
14754 if (getLangOpts().CUDA) {
14755 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor,
14756 MoveConstructor,
14757 /* ConstRHS */ false,
14758 /* Diagnose */ false);
14759 }
14760
14761 setupImplicitSpecialMemberType(MoveConstructor, Context.VoidTy, ArgType);
14762
14763 // Add the parameter to the constructor.
14764 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
14765 ClassLoc, ClassLoc,
14766 /*IdentifierInfo=*/nullptr,
14767 ArgType, /*TInfo=*/nullptr,
14768 SC_None, nullptr);
14769 MoveConstructor->setParams(FromParam);
14770
14771 MoveConstructor->setTrivial(
14772 ClassDecl->needsOverloadResolutionForMoveConstructor()
14773 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
14774 : ClassDecl->hasTrivialMoveConstructor());
14775
14776 MoveConstructor->setTrivialForCall(
14777 ClassDecl->hasAttr<TrivialABIAttr>() ||
14778 (ClassDecl->needsOverloadResolutionForMoveConstructor()
14779 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor,
14780 TAH_ConsiderTrivialABI)
14781 : ClassDecl->hasTrivialMoveConstructorForCall()));
14782
14783 // Note that we have declared this constructor.
14784 ++getASTContext().NumImplicitMoveConstructorsDeclared;
14785
14786 Scope *S = getScopeForContext(ClassDecl);
14787 CheckImplicitSpecialMemberDeclaration(S, MoveConstructor);
14788
14789 if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
14790 ClassDecl->setImplicitMoveConstructorIsDeleted();
14791 SetDeclDeleted(MoveConstructor, ClassLoc);
14792 }
14793
14794 if (S)
14795 PushOnScopeChains(MoveConstructor, S, false);
14796 ClassDecl->addDecl(MoveConstructor);
14797
14798 return MoveConstructor;
14799 }
14800
DefineImplicitMoveConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * MoveConstructor)14801 void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
14802 CXXConstructorDecl *MoveConstructor) {
14803 assert((MoveConstructor->isDefaulted() &&
14804 MoveConstructor->isMoveConstructor() &&
14805 !MoveConstructor->doesThisDeclarationHaveABody() &&
14806 !MoveConstructor->isDeleted()) &&
14807 "DefineImplicitMoveConstructor - call it for implicit move ctor");
14808 if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl())
14809 return;
14810
14811 CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
14812 assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
14813
14814 SynthesizedFunctionScope Scope(*this, MoveConstructor);
14815
14816 // The exception specification is needed because we are defining the
14817 // function.
14818 ResolveExceptionSpec(CurrentLocation,
14819 MoveConstructor->getType()->castAs<FunctionProtoType>());
14820 MarkVTableUsed(CurrentLocation, ClassDecl);
14821
14822 // Add a context note for diagnostics produced after this point.
14823 Scope.addContextNote(CurrentLocation);
14824
14825 if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false)) {
14826 MoveConstructor->setInvalidDecl();
14827 } else {
14828 SourceLocation Loc = MoveConstructor->getEndLoc().isValid()
14829 ? MoveConstructor->getEndLoc()
14830 : MoveConstructor->getLocation();
14831 Sema::CompoundScopeRAII CompoundScope(*this);
14832 MoveConstructor->setBody(ActOnCompoundStmt(
14833 Loc, Loc, None, /*isStmtExpr=*/ false).getAs<Stmt>());
14834 MoveConstructor->markUsed(Context);
14835 }
14836
14837 if (ASTMutationListener *L = getASTMutationListener()) {
14838 L->CompletedImplicitDefinition(MoveConstructor);
14839 }
14840 }
14841
isImplicitlyDeleted(FunctionDecl * FD)14842 bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
14843 return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
14844 }
14845
DefineImplicitLambdaToFunctionPointerConversion(SourceLocation CurrentLocation,CXXConversionDecl * Conv)14846 void Sema::DefineImplicitLambdaToFunctionPointerConversion(
14847 SourceLocation CurrentLocation,
14848 CXXConversionDecl *Conv) {
14849 SynthesizedFunctionScope Scope(*this, Conv);
14850 assert(!Conv->getReturnType()->isUndeducedType());
14851
14852 QualType ConvRT = Conv->getType()->getAs<FunctionType>()->getReturnType();
14853 CallingConv CC =
14854 ConvRT->getPointeeType()->getAs<FunctionType>()->getCallConv();
14855
14856 CXXRecordDecl *Lambda = Conv->getParent();
14857 FunctionDecl *CallOp = Lambda->getLambdaCallOperator();
14858 FunctionDecl *Invoker = Lambda->getLambdaStaticInvoker(CC);
14859
14860 if (auto *TemplateArgs = Conv->getTemplateSpecializationArgs()) {
14861 CallOp = InstantiateFunctionDeclaration(
14862 CallOp->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation);
14863 if (!CallOp)
14864 return;
14865
14866 Invoker = InstantiateFunctionDeclaration(
14867 Invoker->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation);
14868 if (!Invoker)
14869 return;
14870 }
14871
14872 if (CallOp->isInvalidDecl())
14873 return;
14874
14875 // Mark the call operator referenced (and add to pending instantiations
14876 // if necessary).
14877 // For both the conversion and static-invoker template specializations
14878 // we construct their body's in this function, so no need to add them
14879 // to the PendingInstantiations.
14880 MarkFunctionReferenced(CurrentLocation, CallOp);
14881
14882 // Fill in the __invoke function with a dummy implementation. IR generation
14883 // will fill in the actual details. Update its type in case it contained
14884 // an 'auto'.
14885 Invoker->markUsed(Context);
14886 Invoker->setReferenced();
14887 Invoker->setType(Conv->getReturnType()->getPointeeType());
14888 Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation()));
14889
14890 // Construct the body of the conversion function { return __invoke; }.
14891 Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(),
14892 VK_LValue, Conv->getLocation());
14893 assert(FunctionRef && "Can't refer to __invoke function?");
14894 Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get();
14895 Conv->setBody(CompoundStmt::Create(Context, Return, Conv->getLocation(),
14896 Conv->getLocation()));
14897 Conv->markUsed(Context);
14898 Conv->setReferenced();
14899
14900 if (ASTMutationListener *L = getASTMutationListener()) {
14901 L->CompletedImplicitDefinition(Conv);
14902 L->CompletedImplicitDefinition(Invoker);
14903 }
14904 }
14905
14906
14907
DefineImplicitLambdaToBlockPointerConversion(SourceLocation CurrentLocation,CXXConversionDecl * Conv)14908 void Sema::DefineImplicitLambdaToBlockPointerConversion(
14909 SourceLocation CurrentLocation,
14910 CXXConversionDecl *Conv)
14911 {
14912 assert(!Conv->getParent()->isGenericLambda());
14913
14914 SynthesizedFunctionScope Scope(*this, Conv);
14915
14916 // Copy-initialize the lambda object as needed to capture it.
14917 Expr *This = ActOnCXXThis(CurrentLocation).get();
14918 Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get();
14919
14920 ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
14921 Conv->getLocation(),
14922 Conv, DerefThis);
14923
14924 // If we're not under ARC, make sure we still get the _Block_copy/autorelease
14925 // behavior. Note that only the general conversion function does this
14926 // (since it's unusable otherwise); in the case where we inline the
14927 // block literal, it has block literal lifetime semantics.
14928 if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
14929 BuildBlock = ImplicitCastExpr::Create(
14930 Context, BuildBlock.get()->getType(), CK_CopyAndAutoreleaseBlockObject,
14931 BuildBlock.get(), nullptr, VK_RValue, FPOptionsOverride());
14932
14933 if (BuildBlock.isInvalid()) {
14934 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
14935 Conv->setInvalidDecl();
14936 return;
14937 }
14938
14939 // Create the return statement that returns the block from the conversion
14940 // function.
14941 StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get());
14942 if (Return.isInvalid()) {
14943 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
14944 Conv->setInvalidDecl();
14945 return;
14946 }
14947
14948 // Set the body of the conversion function.
14949 Stmt *ReturnS = Return.get();
14950 Conv->setBody(CompoundStmt::Create(Context, ReturnS, Conv->getLocation(),
14951 Conv->getLocation()));
14952 Conv->markUsed(Context);
14953
14954 // We're done; notify the mutation listener, if any.
14955 if (ASTMutationListener *L = getASTMutationListener()) {
14956 L->CompletedImplicitDefinition(Conv);
14957 }
14958 }
14959
14960 /// Determine whether the given list arguments contains exactly one
14961 /// "real" (non-default) argument.
hasOneRealArgument(MultiExprArg Args)14962 static bool hasOneRealArgument(MultiExprArg Args) {
14963 switch (Args.size()) {
14964 case 0:
14965 return false;
14966
14967 default:
14968 if (!Args[1]->isDefaultArgument())
14969 return false;
14970
14971 LLVM_FALLTHROUGH;
14972 case 1:
14973 return !Args[0]->isDefaultArgument();
14974 }
14975
14976 return false;
14977 }
14978
14979 ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc,QualType DeclInitType,NamedDecl * FoundDecl,CXXConstructorDecl * Constructor,MultiExprArg ExprArgs,bool HadMultipleCandidates,bool IsListInitialization,bool IsStdInitListInitialization,bool RequiresZeroInit,unsigned ConstructKind,SourceRange ParenRange)14980 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
14981 NamedDecl *FoundDecl,
14982 CXXConstructorDecl *Constructor,
14983 MultiExprArg ExprArgs,
14984 bool HadMultipleCandidates,
14985 bool IsListInitialization,
14986 bool IsStdInitListInitialization,
14987 bool RequiresZeroInit,
14988 unsigned ConstructKind,
14989 SourceRange ParenRange) {
14990 bool Elidable = false;
14991
14992 // C++0x [class.copy]p34:
14993 // When certain criteria are met, an implementation is allowed to
14994 // omit the copy/move construction of a class object, even if the
14995 // copy/move constructor and/or destructor for the object have
14996 // side effects. [...]
14997 // - when a temporary class object that has not been bound to a
14998 // reference (12.2) would be copied/moved to a class object
14999 // with the same cv-unqualified type, the copy/move operation
15000 // can be omitted by constructing the temporary object
15001 // directly into the target of the omitted copy/move
15002 if (ConstructKind == CXXConstructExpr::CK_Complete && Constructor &&
15003 Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
15004 Expr *SubExpr = ExprArgs[0];
15005 Elidable = SubExpr->isTemporaryObject(
15006 Context, cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
15007 }
15008
15009 return BuildCXXConstructExpr(ConstructLoc, DeclInitType,
15010 FoundDecl, Constructor,
15011 Elidable, ExprArgs, HadMultipleCandidates,
15012 IsListInitialization,
15013 IsStdInitListInitialization, RequiresZeroInit,
15014 ConstructKind, ParenRange);
15015 }
15016
15017 ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc,QualType DeclInitType,NamedDecl * FoundDecl,CXXConstructorDecl * Constructor,bool Elidable,MultiExprArg ExprArgs,bool HadMultipleCandidates,bool IsListInitialization,bool IsStdInitListInitialization,bool RequiresZeroInit,unsigned ConstructKind,SourceRange ParenRange)15018 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
15019 NamedDecl *FoundDecl,
15020 CXXConstructorDecl *Constructor,
15021 bool Elidable,
15022 MultiExprArg ExprArgs,
15023 bool HadMultipleCandidates,
15024 bool IsListInitialization,
15025 bool IsStdInitListInitialization,
15026 bool RequiresZeroInit,
15027 unsigned ConstructKind,
15028 SourceRange ParenRange) {
15029 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) {
15030 Constructor = findInheritingConstructor(ConstructLoc, Constructor, Shadow);
15031 if (DiagnoseUseOfDecl(Constructor, ConstructLoc))
15032 return ExprError();
15033 }
15034
15035 return BuildCXXConstructExpr(
15036 ConstructLoc, DeclInitType, Constructor, Elidable, ExprArgs,
15037 HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization,
15038 RequiresZeroInit, ConstructKind, ParenRange);
15039 }
15040
15041 /// BuildCXXConstructExpr - Creates a complete call to a constructor,
15042 /// including handling of its default argument expressions.
15043 ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc,QualType DeclInitType,CXXConstructorDecl * Constructor,bool Elidable,MultiExprArg ExprArgs,bool HadMultipleCandidates,bool IsListInitialization,bool IsStdInitListInitialization,bool RequiresZeroInit,unsigned ConstructKind,SourceRange ParenRange)15044 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
15045 CXXConstructorDecl *Constructor,
15046 bool Elidable,
15047 MultiExprArg ExprArgs,
15048 bool HadMultipleCandidates,
15049 bool IsListInitialization,
15050 bool IsStdInitListInitialization,
15051 bool RequiresZeroInit,
15052 unsigned ConstructKind,
15053 SourceRange ParenRange) {
15054 assert(declaresSameEntity(
15055 Constructor->getParent(),
15056 DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) &&
15057 "given constructor for wrong type");
15058 MarkFunctionReferenced(ConstructLoc, Constructor);
15059 if (getLangOpts().CUDA && !CheckCUDACall(ConstructLoc, Constructor))
15060 return ExprError();
15061 if (getLangOpts().SYCLIsDevice &&
15062 !checkSYCLDeviceFunction(ConstructLoc, Constructor))
15063 return ExprError();
15064
15065 return CheckForImmediateInvocation(
15066 CXXConstructExpr::Create(
15067 Context, DeclInitType, ConstructLoc, Constructor, Elidable, ExprArgs,
15068 HadMultipleCandidates, IsListInitialization,
15069 IsStdInitListInitialization, RequiresZeroInit,
15070 static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
15071 ParenRange),
15072 Constructor);
15073 }
15074
BuildCXXDefaultInitExpr(SourceLocation Loc,FieldDecl * Field)15075 ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
15076 assert(Field->hasInClassInitializer());
15077
15078 // If we already have the in-class initializer nothing needs to be done.
15079 if (Field->getInClassInitializer())
15080 return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext);
15081
15082 // If we might have already tried and failed to instantiate, don't try again.
15083 if (Field->isInvalidDecl())
15084 return ExprError();
15085
15086 // Maybe we haven't instantiated the in-class initializer. Go check the
15087 // pattern FieldDecl to see if it has one.
15088 CXXRecordDecl *ParentRD = cast<CXXRecordDecl>(Field->getParent());
15089
15090 if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
15091 CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
15092 DeclContext::lookup_result Lookup =
15093 ClassPattern->lookup(Field->getDeclName());
15094
15095 FieldDecl *Pattern = nullptr;
15096 for (auto L : Lookup) {
15097 if (isa<FieldDecl>(L)) {
15098 Pattern = cast<FieldDecl>(L);
15099 break;
15100 }
15101 }
15102 assert(Pattern && "We must have set the Pattern!");
15103
15104 if (!Pattern->hasInClassInitializer() ||
15105 InstantiateInClassInitializer(Loc, Field, Pattern,
15106 getTemplateInstantiationArgs(Field))) {
15107 // Don't diagnose this again.
15108 Field->setInvalidDecl();
15109 return ExprError();
15110 }
15111 return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext);
15112 }
15113
15114 // DR1351:
15115 // If the brace-or-equal-initializer of a non-static data member
15116 // invokes a defaulted default constructor of its class or of an
15117 // enclosing class in a potentially evaluated subexpression, the
15118 // program is ill-formed.
15119 //
15120 // This resolution is unworkable: the exception specification of the
15121 // default constructor can be needed in an unevaluated context, in
15122 // particular, in the operand of a noexcept-expression, and we can be
15123 // unable to compute an exception specification for an enclosed class.
15124 //
15125 // Any attempt to resolve the exception specification of a defaulted default
15126 // constructor before the initializer is lexically complete will ultimately
15127 // come here at which point we can diagnose it.
15128 RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
15129 Diag(Loc, diag::err_default_member_initializer_not_yet_parsed)
15130 << OutermostClass << Field;
15131 Diag(Field->getEndLoc(),
15132 diag::note_default_member_initializer_not_yet_parsed);
15133 // Recover by marking the field invalid, unless we're in a SFINAE context.
15134 if (!isSFINAEContext())
15135 Field->setInvalidDecl();
15136 return ExprError();
15137 }
15138
FinalizeVarWithDestructor(VarDecl * VD,const RecordType * Record)15139 void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
15140 if (VD->isInvalidDecl()) return;
15141 // If initializing the variable failed, don't also diagnose problems with
15142 // the desctructor, they're likely related.
15143 if (VD->getInit() && VD->getInit()->containsErrors())
15144 return;
15145
15146 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
15147 if (ClassDecl->isInvalidDecl()) return;
15148 if (ClassDecl->hasIrrelevantDestructor()) return;
15149 if (ClassDecl->isDependentContext()) return;
15150
15151 if (VD->isNoDestroy(getASTContext()))
15152 return;
15153
15154 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
15155
15156 // If this is an array, we'll require the destructor during initialization, so
15157 // we can skip over this. We still want to emit exit-time destructor warnings
15158 // though.
15159 if (!VD->getType()->isArrayType()) {
15160 MarkFunctionReferenced(VD->getLocation(), Destructor);
15161 CheckDestructorAccess(VD->getLocation(), Destructor,
15162 PDiag(diag::err_access_dtor_var)
15163 << VD->getDeclName() << VD->getType());
15164 DiagnoseUseOfDecl(Destructor, VD->getLocation());
15165 }
15166
15167 if (Destructor->isTrivial()) return;
15168
15169 // If the destructor is constexpr, check whether the variable has constant
15170 // destruction now.
15171 if (Destructor->isConstexpr()) {
15172 bool HasConstantInit = false;
15173 if (VD->getInit() && !VD->getInit()->isValueDependent())
15174 HasConstantInit = VD->evaluateValue();
15175 SmallVector<PartialDiagnosticAt, 8> Notes;
15176 if (!VD->evaluateDestruction(Notes) && VD->isConstexpr() &&
15177 HasConstantInit) {
15178 Diag(VD->getLocation(),
15179 diag::err_constexpr_var_requires_const_destruction) << VD;
15180 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
15181 Diag(Notes[I].first, Notes[I].second);
15182 }
15183 }
15184
15185 if (!VD->hasGlobalStorage()) return;
15186
15187 // Emit warning for non-trivial dtor in global scope (a real global,
15188 // class-static, function-static).
15189 Diag(VD->getLocation(), diag::warn_exit_time_destructor);
15190
15191 // TODO: this should be re-enabled for static locals by !CXAAtExit
15192 if (!VD->isStaticLocal())
15193 Diag(VD->getLocation(), diag::warn_global_destructor);
15194 }
15195
15196 /// Given a constructor and the set of arguments provided for the
15197 /// constructor, convert the arguments and add any required default arguments
15198 /// to form a proper call to this constructor.
15199 ///
15200 /// \returns true if an error occurred, false otherwise.
15201 bool
CompleteConstructorCall(CXXConstructorDecl * Constructor,MultiExprArg ArgsPtr,SourceLocation Loc,SmallVectorImpl<Expr * > & ConvertedArgs,bool AllowExplicit,bool IsListInitialization)15202 Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
15203 MultiExprArg ArgsPtr,
15204 SourceLocation Loc,
15205 SmallVectorImpl<Expr*> &ConvertedArgs,
15206 bool AllowExplicit,
15207 bool IsListInitialization) {
15208 // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
15209 unsigned NumArgs = ArgsPtr.size();
15210 Expr **Args = ArgsPtr.data();
15211
15212 const auto *Proto = Constructor->getType()->castAs<FunctionProtoType>();
15213 unsigned NumParams = Proto->getNumParams();
15214
15215 // If too few arguments are available, we'll fill in the rest with defaults.
15216 if (NumArgs < NumParams)
15217 ConvertedArgs.reserve(NumParams);
15218 else
15219 ConvertedArgs.reserve(NumArgs);
15220
15221 VariadicCallType CallType =
15222 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
15223 SmallVector<Expr *, 8> AllArgs;
15224 bool Invalid = GatherArgumentsForCall(Loc, Constructor,
15225 Proto, 0,
15226 llvm::makeArrayRef(Args, NumArgs),
15227 AllArgs,
15228 CallType, AllowExplicit,
15229 IsListInitialization);
15230 ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
15231
15232 DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
15233
15234 CheckConstructorCall(Constructor,
15235 llvm::makeArrayRef(AllArgs.data(), AllArgs.size()),
15236 Proto, Loc);
15237
15238 return Invalid;
15239 }
15240
15241 static inline bool
CheckOperatorNewDeleteDeclarationScope(Sema & SemaRef,const FunctionDecl * FnDecl)15242 CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
15243 const FunctionDecl *FnDecl) {
15244 const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
15245 if (isa<NamespaceDecl>(DC)) {
15246 return SemaRef.Diag(FnDecl->getLocation(),
15247 diag::err_operator_new_delete_declared_in_namespace)
15248 << FnDecl->getDeclName();
15249 }
15250
15251 if (isa<TranslationUnitDecl>(DC) &&
15252 FnDecl->getStorageClass() == SC_Static) {
15253 return SemaRef.Diag(FnDecl->getLocation(),
15254 diag::err_operator_new_delete_declared_static)
15255 << FnDecl->getDeclName();
15256 }
15257
15258 return false;
15259 }
15260
15261 static QualType
RemoveAddressSpaceFromPtr(Sema & SemaRef,const PointerType * PtrTy)15262 RemoveAddressSpaceFromPtr(Sema &SemaRef, const PointerType *PtrTy) {
15263 QualType QTy = PtrTy->getPointeeType();
15264 QTy = SemaRef.Context.removeAddrSpaceQualType(QTy);
15265 return SemaRef.Context.getPointerType(QTy);
15266 }
15267
15268 static inline bool
CheckOperatorNewDeleteTypes(Sema & SemaRef,const FunctionDecl * FnDecl,CanQualType ExpectedResultType,CanQualType ExpectedFirstParamType,unsigned DependentParamTypeDiag,unsigned InvalidParamTypeDiag)15269 CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
15270 CanQualType ExpectedResultType,
15271 CanQualType ExpectedFirstParamType,
15272 unsigned DependentParamTypeDiag,
15273 unsigned InvalidParamTypeDiag) {
15274 QualType ResultType =
15275 FnDecl->getType()->castAs<FunctionType>()->getReturnType();
15276
15277 // The operator is valid on any address space for OpenCL.
15278 if (SemaRef.getLangOpts().OpenCLCPlusPlus) {
15279 if (auto *PtrTy = ResultType->getAs<PointerType>()) {
15280 ResultType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy);
15281 }
15282 }
15283
15284 // Check that the result type is what we expect.
15285 if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) {
15286 // Reject even if the type is dependent; an operator delete function is
15287 // required to have a non-dependent result type.
15288 return SemaRef.Diag(
15289 FnDecl->getLocation(),
15290 ResultType->isDependentType()
15291 ? diag::err_operator_new_delete_dependent_result_type
15292 : diag::err_operator_new_delete_invalid_result_type)
15293 << FnDecl->getDeclName() << ExpectedResultType;
15294 }
15295
15296 // A function template must have at least 2 parameters.
15297 if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
15298 return SemaRef.Diag(FnDecl->getLocation(),
15299 diag::err_operator_new_delete_template_too_few_parameters)
15300 << FnDecl->getDeclName();
15301
15302 // The function decl must have at least 1 parameter.
15303 if (FnDecl->getNumParams() == 0)
15304 return SemaRef.Diag(FnDecl->getLocation(),
15305 diag::err_operator_new_delete_too_few_parameters)
15306 << FnDecl->getDeclName();
15307
15308 QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
15309 if (SemaRef.getLangOpts().OpenCLCPlusPlus) {
15310 // The operator is valid on any address space for OpenCL.
15311 if (auto *PtrTy =
15312 FnDecl->getParamDecl(0)->getType()->getAs<PointerType>()) {
15313 FirstParamType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy);
15314 }
15315 }
15316
15317 // Check that the first parameter type is what we expect.
15318 if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
15319 ExpectedFirstParamType) {
15320 // The first parameter type is not allowed to be dependent. As a tentative
15321 // DR resolution, we allow a dependent parameter type if it is the right
15322 // type anyway, to allow destroying operator delete in class templates.
15323 return SemaRef.Diag(FnDecl->getLocation(), FirstParamType->isDependentType()
15324 ? DependentParamTypeDiag
15325 : InvalidParamTypeDiag)
15326 << FnDecl->getDeclName() << ExpectedFirstParamType;
15327 }
15328
15329 return false;
15330 }
15331
15332 static bool
CheckOperatorNewDeclaration(Sema & SemaRef,const FunctionDecl * FnDecl)15333 CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
15334 // C++ [basic.stc.dynamic.allocation]p1:
15335 // A program is ill-formed if an allocation function is declared in a
15336 // namespace scope other than global scope or declared static in global
15337 // scope.
15338 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
15339 return true;
15340
15341 CanQualType SizeTy =
15342 SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
15343
15344 // C++ [basic.stc.dynamic.allocation]p1:
15345 // The return type shall be void*. The first parameter shall have type
15346 // std::size_t.
15347 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
15348 SizeTy,
15349 diag::err_operator_new_dependent_param_type,
15350 diag::err_operator_new_param_type))
15351 return true;
15352
15353 // C++ [basic.stc.dynamic.allocation]p1:
15354 // The first parameter shall not have an associated default argument.
15355 if (FnDecl->getParamDecl(0)->hasDefaultArg())
15356 return SemaRef.Diag(FnDecl->getLocation(),
15357 diag::err_operator_new_default_arg)
15358 << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
15359
15360 return false;
15361 }
15362
15363 static bool
CheckOperatorDeleteDeclaration(Sema & SemaRef,FunctionDecl * FnDecl)15364 CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
15365 // C++ [basic.stc.dynamic.deallocation]p1:
15366 // A program is ill-formed if deallocation functions are declared in a
15367 // namespace scope other than global scope or declared static in global
15368 // scope.
15369 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
15370 return true;
15371
15372 auto *MD = dyn_cast<CXXMethodDecl>(FnDecl);
15373
15374 // C++ P0722:
15375 // Within a class C, the first parameter of a destroying operator delete
15376 // shall be of type C *. The first parameter of any other deallocation
15377 // function shall be of type void *.
15378 CanQualType ExpectedFirstParamType =
15379 MD && MD->isDestroyingOperatorDelete()
15380 ? SemaRef.Context.getCanonicalType(SemaRef.Context.getPointerType(
15381 SemaRef.Context.getRecordType(MD->getParent())))
15382 : SemaRef.Context.VoidPtrTy;
15383
15384 // C++ [basic.stc.dynamic.deallocation]p2:
15385 // Each deallocation function shall return void
15386 if (CheckOperatorNewDeleteTypes(
15387 SemaRef, FnDecl, SemaRef.Context.VoidTy, ExpectedFirstParamType,
15388 diag::err_operator_delete_dependent_param_type,
15389 diag::err_operator_delete_param_type))
15390 return true;
15391
15392 // C++ P0722:
15393 // A destroying operator delete shall be a usual deallocation function.
15394 if (MD && !MD->getParent()->isDependentContext() &&
15395 MD->isDestroyingOperatorDelete() &&
15396 !SemaRef.isUsualDeallocationFunction(MD)) {
15397 SemaRef.Diag(MD->getLocation(),
15398 diag::err_destroying_operator_delete_not_usual);
15399 return true;
15400 }
15401
15402 return false;
15403 }
15404
15405 /// CheckOverloadedOperatorDeclaration - Check whether the declaration
15406 /// of this overloaded operator is well-formed. If so, returns false;
15407 /// otherwise, emits appropriate diagnostics and returns true.
CheckOverloadedOperatorDeclaration(FunctionDecl * FnDecl)15408 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
15409 assert(FnDecl && FnDecl->isOverloadedOperator() &&
15410 "Expected an overloaded operator declaration");
15411
15412 OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
15413
15414 // C++ [over.oper]p5:
15415 // The allocation and deallocation functions, operator new,
15416 // operator new[], operator delete and operator delete[], are
15417 // described completely in 3.7.3. The attributes and restrictions
15418 // found in the rest of this subclause do not apply to them unless
15419 // explicitly stated in 3.7.3.
15420 if (Op == OO_Delete || Op == OO_Array_Delete)
15421 return CheckOperatorDeleteDeclaration(*this, FnDecl);
15422
15423 if (Op == OO_New || Op == OO_Array_New)
15424 return CheckOperatorNewDeclaration(*this, FnDecl);
15425
15426 // C++ [over.oper]p6:
15427 // An operator function shall either be a non-static member
15428 // function or be a non-member function and have at least one
15429 // parameter whose type is a class, a reference to a class, an
15430 // enumeration, or a reference to an enumeration.
15431 if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
15432 if (MethodDecl->isStatic())
15433 return Diag(FnDecl->getLocation(),
15434 diag::err_operator_overload_static) << FnDecl->getDeclName();
15435 } else {
15436 bool ClassOrEnumParam = false;
15437 for (auto Param : FnDecl->parameters()) {
15438 QualType ParamType = Param->getType().getNonReferenceType();
15439 if (ParamType->isDependentType() || ParamType->isRecordType() ||
15440 ParamType->isEnumeralType()) {
15441 ClassOrEnumParam = true;
15442 break;
15443 }
15444 }
15445
15446 if (!ClassOrEnumParam)
15447 return Diag(FnDecl->getLocation(),
15448 diag::err_operator_overload_needs_class_or_enum)
15449 << FnDecl->getDeclName();
15450 }
15451
15452 // C++ [over.oper]p8:
15453 // An operator function cannot have default arguments (8.3.6),
15454 // except where explicitly stated below.
15455 //
15456 // Only the function-call operator allows default arguments
15457 // (C++ [over.call]p1).
15458 if (Op != OO_Call) {
15459 for (auto Param : FnDecl->parameters()) {
15460 if (Param->hasDefaultArg())
15461 return Diag(Param->getLocation(),
15462 diag::err_operator_overload_default_arg)
15463 << FnDecl->getDeclName() << Param->getDefaultArgRange();
15464 }
15465 }
15466
15467 static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
15468 { false, false, false }
15469 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
15470 , { Unary, Binary, MemberOnly }
15471 #include "clang/Basic/OperatorKinds.def"
15472 };
15473
15474 bool CanBeUnaryOperator = OperatorUses[Op][0];
15475 bool CanBeBinaryOperator = OperatorUses[Op][1];
15476 bool MustBeMemberOperator = OperatorUses[Op][2];
15477
15478 // C++ [over.oper]p8:
15479 // [...] Operator functions cannot have more or fewer parameters
15480 // than the number required for the corresponding operator, as
15481 // described in the rest of this subclause.
15482 unsigned NumParams = FnDecl->getNumParams()
15483 + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
15484 if (Op != OO_Call &&
15485 ((NumParams == 1 && !CanBeUnaryOperator) ||
15486 (NumParams == 2 && !CanBeBinaryOperator) ||
15487 (NumParams < 1) || (NumParams > 2))) {
15488 // We have the wrong number of parameters.
15489 unsigned ErrorKind;
15490 if (CanBeUnaryOperator && CanBeBinaryOperator) {
15491 ErrorKind = 2; // 2 -> unary or binary.
15492 } else if (CanBeUnaryOperator) {
15493 ErrorKind = 0; // 0 -> unary
15494 } else {
15495 assert(CanBeBinaryOperator &&
15496 "All non-call overloaded operators are unary or binary!");
15497 ErrorKind = 1; // 1 -> binary
15498 }
15499
15500 return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
15501 << FnDecl->getDeclName() << NumParams << ErrorKind;
15502 }
15503
15504 // Overloaded operators other than operator() cannot be variadic.
15505 if (Op != OO_Call &&
15506 FnDecl->getType()->castAs<FunctionProtoType>()->isVariadic()) {
15507 return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
15508 << FnDecl->getDeclName();
15509 }
15510
15511 // Some operators must be non-static member functions.
15512 if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
15513 return Diag(FnDecl->getLocation(),
15514 diag::err_operator_overload_must_be_member)
15515 << FnDecl->getDeclName();
15516 }
15517
15518 // C++ [over.inc]p1:
15519 // The user-defined function called operator++ implements the
15520 // prefix and postfix ++ operator. If this function is a member
15521 // function with no parameters, or a non-member function with one
15522 // parameter of class or enumeration type, it defines the prefix
15523 // increment operator ++ for objects of that type. If the function
15524 // is a member function with one parameter (which shall be of type
15525 // int) or a non-member function with two parameters (the second
15526 // of which shall be of type int), it defines the postfix
15527 // increment operator ++ for objects of that type.
15528 if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
15529 ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
15530 QualType ParamType = LastParam->getType();
15531
15532 if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) &&
15533 !ParamType->isDependentType())
15534 return Diag(LastParam->getLocation(),
15535 diag::err_operator_overload_post_incdec_must_be_int)
15536 << LastParam->getType() << (Op == OO_MinusMinus);
15537 }
15538
15539 return false;
15540 }
15541
15542 static bool
checkLiteralOperatorTemplateParameterList(Sema & SemaRef,FunctionTemplateDecl * TpDecl)15543 checkLiteralOperatorTemplateParameterList(Sema &SemaRef,
15544 FunctionTemplateDecl *TpDecl) {
15545 TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters();
15546
15547 // Must have one or two template parameters.
15548 if (TemplateParams->size() == 1) {
15549 NonTypeTemplateParmDecl *PmDecl =
15550 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(0));
15551
15552 // The template parameter must be a char parameter pack.
15553 if (PmDecl && PmDecl->isTemplateParameterPack() &&
15554 SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy))
15555 return false;
15556
15557 // C++20 [over.literal]p5:
15558 // A string literal operator template is a literal operator template
15559 // whose template-parameter-list comprises a single non-type
15560 // template-parameter of class type.
15561 //
15562 // As a DR resolution, we also allow placeholders for deduced class
15563 // template specializations.
15564 if (SemaRef.getLangOpts().CPlusPlus20 &&
15565 !PmDecl->isTemplateParameterPack() &&
15566 (PmDecl->getType()->isRecordType() ||
15567 PmDecl->getType()->getAs<DeducedTemplateSpecializationType>()))
15568 return false;
15569 } else if (TemplateParams->size() == 2) {
15570 TemplateTypeParmDecl *PmType =
15571 dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(0));
15572 NonTypeTemplateParmDecl *PmArgs =
15573 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(1));
15574
15575 // The second template parameter must be a parameter pack with the
15576 // first template parameter as its type.
15577 if (PmType && PmArgs && !PmType->isTemplateParameterPack() &&
15578 PmArgs->isTemplateParameterPack()) {
15579 const TemplateTypeParmType *TArgs =
15580 PmArgs->getType()->getAs<TemplateTypeParmType>();
15581 if (TArgs && TArgs->getDepth() == PmType->getDepth() &&
15582 TArgs->getIndex() == PmType->getIndex()) {
15583 if (!SemaRef.inTemplateInstantiation())
15584 SemaRef.Diag(TpDecl->getLocation(),
15585 diag::ext_string_literal_operator_template);
15586 return false;
15587 }
15588 }
15589 }
15590
15591 SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(),
15592 diag::err_literal_operator_template)
15593 << TpDecl->getTemplateParameters()->getSourceRange();
15594 return true;
15595 }
15596
15597 /// CheckLiteralOperatorDeclaration - Check whether the declaration
15598 /// of this literal operator function is well-formed. If so, returns
15599 /// false; otherwise, emits appropriate diagnostics and returns true.
CheckLiteralOperatorDeclaration(FunctionDecl * FnDecl)15600 bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
15601 if (isa<CXXMethodDecl>(FnDecl)) {
15602 Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
15603 << FnDecl->getDeclName();
15604 return true;
15605 }
15606
15607 if (FnDecl->isExternC()) {
15608 Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
15609 if (const LinkageSpecDecl *LSD =
15610 FnDecl->getDeclContext()->getExternCContext())
15611 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
15612 return true;
15613 }
15614
15615 // This might be the definition of a literal operator template.
15616 FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
15617
15618 // This might be a specialization of a literal operator template.
15619 if (!TpDecl)
15620 TpDecl = FnDecl->getPrimaryTemplate();
15621
15622 // template <char...> type operator "" name() and
15623 // template <class T, T...> type operator "" name() are the only valid
15624 // template signatures, and the only valid signatures with no parameters.
15625 //
15626 // C++20 also allows template <SomeClass T> type operator "" name().
15627 if (TpDecl) {
15628 if (FnDecl->param_size() != 0) {
15629 Diag(FnDecl->getLocation(),
15630 diag::err_literal_operator_template_with_params);
15631 return true;
15632 }
15633
15634 if (checkLiteralOperatorTemplateParameterList(*this, TpDecl))
15635 return true;
15636
15637 } else if (FnDecl->param_size() == 1) {
15638 const ParmVarDecl *Param = FnDecl->getParamDecl(0);
15639
15640 QualType ParamType = Param->getType().getUnqualifiedType();
15641
15642 // Only unsigned long long int, long double, any character type, and const
15643 // char * are allowed as the only parameters.
15644 if (ParamType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
15645 ParamType->isSpecificBuiltinType(BuiltinType::LongDouble) ||
15646 Context.hasSameType(ParamType, Context.CharTy) ||
15647 Context.hasSameType(ParamType, Context.WideCharTy) ||
15648 Context.hasSameType(ParamType, Context.Char8Ty) ||
15649 Context.hasSameType(ParamType, Context.Char16Ty) ||
15650 Context.hasSameType(ParamType, Context.Char32Ty)) {
15651 } else if (const PointerType *Ptr = ParamType->getAs<PointerType>()) {
15652 QualType InnerType = Ptr->getPointeeType();
15653
15654 // Pointer parameter must be a const char *.
15655 if (!(Context.hasSameType(InnerType.getUnqualifiedType(),
15656 Context.CharTy) &&
15657 InnerType.isConstQualified() && !InnerType.isVolatileQualified())) {
15658 Diag(Param->getSourceRange().getBegin(),
15659 diag::err_literal_operator_param)
15660 << ParamType << "'const char *'" << Param->getSourceRange();
15661 return true;
15662 }
15663
15664 } else if (ParamType->isRealFloatingType()) {
15665 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param)
15666 << ParamType << Context.LongDoubleTy << Param->getSourceRange();
15667 return true;
15668
15669 } else if (ParamType->isIntegerType()) {
15670 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param)
15671 << ParamType << Context.UnsignedLongLongTy << Param->getSourceRange();
15672 return true;
15673
15674 } else {
15675 Diag(Param->getSourceRange().getBegin(),
15676 diag::err_literal_operator_invalid_param)
15677 << ParamType << Param->getSourceRange();
15678 return true;
15679 }
15680
15681 } else if (FnDecl->param_size() == 2) {
15682 FunctionDecl::param_iterator Param = FnDecl->param_begin();
15683
15684 // First, verify that the first parameter is correct.
15685
15686 QualType FirstParamType = (*Param)->getType().getUnqualifiedType();
15687
15688 // Two parameter function must have a pointer to const as a
15689 // first parameter; let's strip those qualifiers.
15690 const PointerType *PT = FirstParamType->getAs<PointerType>();
15691
15692 if (!PT) {
15693 Diag((*Param)->getSourceRange().getBegin(),
15694 diag::err_literal_operator_param)
15695 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
15696 return true;
15697 }
15698
15699 QualType PointeeType = PT->getPointeeType();
15700 // First parameter must be const
15701 if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) {
15702 Diag((*Param)->getSourceRange().getBegin(),
15703 diag::err_literal_operator_param)
15704 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
15705 return true;
15706 }
15707
15708 QualType InnerType = PointeeType.getUnqualifiedType();
15709 // Only const char *, const wchar_t*, const char8_t*, const char16_t*, and
15710 // const char32_t* are allowed as the first parameter to a two-parameter
15711 // function
15712 if (!(Context.hasSameType(InnerType, Context.CharTy) ||
15713 Context.hasSameType(InnerType, Context.WideCharTy) ||
15714 Context.hasSameType(InnerType, Context.Char8Ty) ||
15715 Context.hasSameType(InnerType, Context.Char16Ty) ||
15716 Context.hasSameType(InnerType, Context.Char32Ty))) {
15717 Diag((*Param)->getSourceRange().getBegin(),
15718 diag::err_literal_operator_param)
15719 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
15720 return true;
15721 }
15722
15723 // Move on to the second and final parameter.
15724 ++Param;
15725
15726 // The second parameter must be a std::size_t.
15727 QualType SecondParamType = (*Param)->getType().getUnqualifiedType();
15728 if (!Context.hasSameType(SecondParamType, Context.getSizeType())) {
15729 Diag((*Param)->getSourceRange().getBegin(),
15730 diag::err_literal_operator_param)
15731 << SecondParamType << Context.getSizeType()
15732 << (*Param)->getSourceRange();
15733 return true;
15734 }
15735 } else {
15736 Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count);
15737 return true;
15738 }
15739
15740 // Parameters are good.
15741
15742 // A parameter-declaration-clause containing a default argument is not
15743 // equivalent to any of the permitted forms.
15744 for (auto Param : FnDecl->parameters()) {
15745 if (Param->hasDefaultArg()) {
15746 Diag(Param->getDefaultArgRange().getBegin(),
15747 diag::err_literal_operator_default_argument)
15748 << Param->getDefaultArgRange();
15749 break;
15750 }
15751 }
15752
15753 StringRef LiteralName
15754 = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
15755 if (LiteralName[0] != '_' &&
15756 !getSourceManager().isInSystemHeader(FnDecl->getLocation())) {
15757 // C++11 [usrlit.suffix]p1:
15758 // Literal suffix identifiers that do not start with an underscore
15759 // are reserved for future standardization.
15760 Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
15761 << StringLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName);
15762 }
15763
15764 return false;
15765 }
15766
15767 /// ActOnStartLinkageSpecification - Parsed the beginning of a C++
15768 /// linkage specification, including the language and (if present)
15769 /// the '{'. ExternLoc is the location of the 'extern', Lang is the
15770 /// language string literal. LBraceLoc, if valid, provides the location of
15771 /// the '{' brace. Otherwise, this linkage specification does not
15772 /// have any braces.
ActOnStartLinkageSpecification(Scope * S,SourceLocation ExternLoc,Expr * LangStr,SourceLocation LBraceLoc)15773 Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
15774 Expr *LangStr,
15775 SourceLocation LBraceLoc) {
15776 StringLiteral *Lit = cast<StringLiteral>(LangStr);
15777 if (!Lit->isAscii()) {
15778 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii)
15779 << LangStr->getSourceRange();
15780 return nullptr;
15781 }
15782
15783 StringRef Lang = Lit->getString();
15784 LinkageSpecDecl::LanguageIDs Language;
15785 if (Lang == "C")
15786 Language = LinkageSpecDecl::lang_c;
15787 else if (Lang == "C++")
15788 Language = LinkageSpecDecl::lang_cxx;
15789 else {
15790 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown)
15791 << LangStr->getSourceRange();
15792 return nullptr;
15793 }
15794
15795 // FIXME: Add all the various semantics of linkage specifications
15796
15797 LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc,
15798 LangStr->getExprLoc(), Language,
15799 LBraceLoc.isValid());
15800 CurContext->addDecl(D);
15801 PushDeclContext(S, D);
15802 return D;
15803 }
15804
15805 /// ActOnFinishLinkageSpecification - Complete the definition of
15806 /// the C++ linkage specification LinkageSpec. If RBraceLoc is
15807 /// valid, it's the position of the closing '}' brace in a linkage
15808 /// specification that uses braces.
ActOnFinishLinkageSpecification(Scope * S,Decl * LinkageSpec,SourceLocation RBraceLoc)15809 Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
15810 Decl *LinkageSpec,
15811 SourceLocation RBraceLoc) {
15812 if (RBraceLoc.isValid()) {
15813 LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
15814 LSDecl->setRBraceLoc(RBraceLoc);
15815 }
15816 PopDeclContext();
15817 return LinkageSpec;
15818 }
15819
ActOnEmptyDeclaration(Scope * S,const ParsedAttributesView & AttrList,SourceLocation SemiLoc)15820 Decl *Sema::ActOnEmptyDeclaration(Scope *S,
15821 const ParsedAttributesView &AttrList,
15822 SourceLocation SemiLoc) {
15823 Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
15824 // Attribute declarations appertain to empty declaration so we handle
15825 // them here.
15826 ProcessDeclAttributeList(S, ED, AttrList);
15827
15828 CurContext->addDecl(ED);
15829 return ED;
15830 }
15831
15832 /// Perform semantic analysis for the variable declaration that
15833 /// occurs within a C++ catch clause, returning the newly-created
15834 /// variable.
BuildExceptionDeclaration(Scope * S,TypeSourceInfo * TInfo,SourceLocation StartLoc,SourceLocation Loc,IdentifierInfo * Name)15835 VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
15836 TypeSourceInfo *TInfo,
15837 SourceLocation StartLoc,
15838 SourceLocation Loc,
15839 IdentifierInfo *Name) {
15840 bool Invalid = false;
15841 QualType ExDeclType = TInfo->getType();
15842
15843 // Arrays and functions decay.
15844 if (ExDeclType->isArrayType())
15845 ExDeclType = Context.getArrayDecayedType(ExDeclType);
15846 else if (ExDeclType->isFunctionType())
15847 ExDeclType = Context.getPointerType(ExDeclType);
15848
15849 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
15850 // The exception-declaration shall not denote a pointer or reference to an
15851 // incomplete type, other than [cv] void*.
15852 // N2844 forbids rvalue references.
15853 if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
15854 Diag(Loc, diag::err_catch_rvalue_ref);
15855 Invalid = true;
15856 }
15857
15858 if (ExDeclType->isVariablyModifiedType()) {
15859 Diag(Loc, diag::err_catch_variably_modified) << ExDeclType;
15860 Invalid = true;
15861 }
15862
15863 QualType BaseType = ExDeclType;
15864 int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
15865 unsigned DK = diag::err_catch_incomplete;
15866 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
15867 BaseType = Ptr->getPointeeType();
15868 Mode = 1;
15869 DK = diag::err_catch_incomplete_ptr;
15870 } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
15871 // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
15872 BaseType = Ref->getPointeeType();
15873 Mode = 2;
15874 DK = diag::err_catch_incomplete_ref;
15875 }
15876 if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
15877 !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
15878 Invalid = true;
15879
15880 if (!Invalid && Mode != 1 && BaseType->isSizelessType()) {
15881 Diag(Loc, diag::err_catch_sizeless) << (Mode == 2 ? 1 : 0) << BaseType;
15882 Invalid = true;
15883 }
15884
15885 if (!Invalid && !ExDeclType->isDependentType() &&
15886 RequireNonAbstractType(Loc, ExDeclType,
15887 diag::err_abstract_type_in_decl,
15888 AbstractVariableType))
15889 Invalid = true;
15890
15891 // Only the non-fragile NeXT runtime currently supports C++ catches
15892 // of ObjC types, and no runtime supports catching ObjC types by value.
15893 if (!Invalid && getLangOpts().ObjC) {
15894 QualType T = ExDeclType;
15895 if (const ReferenceType *RT = T->getAs<ReferenceType>())
15896 T = RT->getPointeeType();
15897
15898 if (T->isObjCObjectType()) {
15899 Diag(Loc, diag::err_objc_object_catch);
15900 Invalid = true;
15901 } else if (T->isObjCObjectPointerType()) {
15902 // FIXME: should this be a test for macosx-fragile specifically?
15903 if (getLangOpts().ObjCRuntime.isFragile())
15904 Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
15905 }
15906 }
15907
15908 VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
15909 ExDeclType, TInfo, SC_None);
15910 ExDecl->setExceptionVariable(true);
15911
15912 // In ARC, infer 'retaining' for variables of retainable type.
15913 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
15914 Invalid = true;
15915
15916 if (!Invalid && !ExDeclType->isDependentType()) {
15917 if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
15918 // Insulate this from anything else we might currently be parsing.
15919 EnterExpressionEvaluationContext scope(
15920 *this, ExpressionEvaluationContext::PotentiallyEvaluated);
15921
15922 // C++ [except.handle]p16:
15923 // The object declared in an exception-declaration or, if the
15924 // exception-declaration does not specify a name, a temporary (12.2) is
15925 // copy-initialized (8.5) from the exception object. [...]
15926 // The object is destroyed when the handler exits, after the destruction
15927 // of any automatic objects initialized within the handler.
15928 //
15929 // We just pretend to initialize the object with itself, then make sure
15930 // it can be destroyed later.
15931 QualType initType = Context.getExceptionObjectType(ExDeclType);
15932
15933 InitializedEntity entity =
15934 InitializedEntity::InitializeVariable(ExDecl);
15935 InitializationKind initKind =
15936 InitializationKind::CreateCopy(Loc, SourceLocation());
15937
15938 Expr *opaqueValue =
15939 new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
15940 InitializationSequence sequence(*this, entity, initKind, opaqueValue);
15941 ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
15942 if (result.isInvalid())
15943 Invalid = true;
15944 else {
15945 // If the constructor used was non-trivial, set this as the
15946 // "initializer".
15947 CXXConstructExpr *construct = result.getAs<CXXConstructExpr>();
15948 if (!construct->getConstructor()->isTrivial()) {
15949 Expr *init = MaybeCreateExprWithCleanups(construct);
15950 ExDecl->setInit(init);
15951 }
15952
15953 // And make sure it's destructable.
15954 FinalizeVarWithDestructor(ExDecl, recordType);
15955 }
15956 }
15957 }
15958
15959 if (Invalid)
15960 ExDecl->setInvalidDecl();
15961
15962 return ExDecl;
15963 }
15964
15965 /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
15966 /// handler.
ActOnExceptionDeclarator(Scope * S,Declarator & D)15967 Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
15968 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
15969 bool Invalid = D.isInvalidType();
15970
15971 // Check for unexpanded parameter packs.
15972 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
15973 UPPC_ExceptionType)) {
15974 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
15975 D.getIdentifierLoc());
15976 Invalid = true;
15977 }
15978
15979 IdentifierInfo *II = D.getIdentifier();
15980 if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
15981 LookupOrdinaryName,
15982 ForVisibleRedeclaration)) {
15983 // The scope should be freshly made just for us. There is just no way
15984 // it contains any previous declaration, except for function parameters in
15985 // a function-try-block's catch statement.
15986 assert(!S->isDeclScope(PrevDecl));
15987 if (isDeclInScope(PrevDecl, CurContext, S)) {
15988 Diag(D.getIdentifierLoc(), diag::err_redefinition)
15989 << D.getIdentifier();
15990 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
15991 Invalid = true;
15992 } else if (PrevDecl->isTemplateParameter())
15993 // Maybe we will complain about the shadowed template parameter.
15994 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
15995 }
15996
15997 if (D.getCXXScopeSpec().isSet() && !Invalid) {
15998 Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
15999 << D.getCXXScopeSpec().getRange();
16000 Invalid = true;
16001 }
16002
16003 VarDecl *ExDecl = BuildExceptionDeclaration(
16004 S, TInfo, D.getBeginLoc(), D.getIdentifierLoc(), D.getIdentifier());
16005 if (Invalid)
16006 ExDecl->setInvalidDecl();
16007
16008 // Add the exception declaration into this scope.
16009 if (II)
16010 PushOnScopeChains(ExDecl, S);
16011 else
16012 CurContext->addDecl(ExDecl);
16013
16014 ProcessDeclAttributes(S, ExDecl, D);
16015 return ExDecl;
16016 }
16017
ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,Expr * AssertExpr,Expr * AssertMessageExpr,SourceLocation RParenLoc)16018 Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
16019 Expr *AssertExpr,
16020 Expr *AssertMessageExpr,
16021 SourceLocation RParenLoc) {
16022 StringLiteral *AssertMessage =
16023 AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr;
16024
16025 if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
16026 return nullptr;
16027
16028 return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
16029 AssertMessage, RParenLoc, false);
16030 }
16031
BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,Expr * AssertExpr,StringLiteral * AssertMessage,SourceLocation RParenLoc,bool Failed)16032 Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
16033 Expr *AssertExpr,
16034 StringLiteral *AssertMessage,
16035 SourceLocation RParenLoc,
16036 bool Failed) {
16037 assert(AssertExpr != nullptr && "Expected non-null condition");
16038 if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
16039 !Failed) {
16040 // In a static_assert-declaration, the constant-expression shall be a
16041 // constant expression that can be contextually converted to bool.
16042 ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
16043 if (Converted.isInvalid())
16044 Failed = true;
16045
16046 ExprResult FullAssertExpr =
16047 ActOnFinishFullExpr(Converted.get(), StaticAssertLoc,
16048 /*DiscardedValue*/ false,
16049 /*IsConstexpr*/ true);
16050 if (FullAssertExpr.isInvalid())
16051 Failed = true;
16052 else
16053 AssertExpr = FullAssertExpr.get();
16054
16055 llvm::APSInt Cond;
16056 if (!Failed && VerifyIntegerConstantExpression(
16057 AssertExpr, &Cond,
16058 diag::err_static_assert_expression_is_not_constant)
16059 .isInvalid())
16060 Failed = true;
16061
16062 if (!Failed && !Cond) {
16063 SmallString<256> MsgBuffer;
16064 llvm::raw_svector_ostream Msg(MsgBuffer);
16065 if (AssertMessage)
16066 AssertMessage->printPretty(Msg, nullptr, getPrintingPolicy());
16067
16068 Expr *InnerCond = nullptr;
16069 std::string InnerCondDescription;
16070 std::tie(InnerCond, InnerCondDescription) =
16071 findFailedBooleanCondition(Converted.get());
16072 if (InnerCond && isa<ConceptSpecializationExpr>(InnerCond)) {
16073 // Drill down into concept specialization expressions to see why they
16074 // weren't satisfied.
16075 Diag(StaticAssertLoc, diag::err_static_assert_failed)
16076 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange();
16077 ConstraintSatisfaction Satisfaction;
16078 if (!CheckConstraintSatisfaction(InnerCond, Satisfaction))
16079 DiagnoseUnsatisfiedConstraint(Satisfaction);
16080 } else if (InnerCond && !isa<CXXBoolLiteralExpr>(InnerCond)
16081 && !isa<IntegerLiteral>(InnerCond)) {
16082 Diag(StaticAssertLoc, diag::err_static_assert_requirement_failed)
16083 << InnerCondDescription << !AssertMessage
16084 << Msg.str() << InnerCond->getSourceRange();
16085 } else {
16086 Diag(StaticAssertLoc, diag::err_static_assert_failed)
16087 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange();
16088 }
16089 Failed = true;
16090 }
16091 } else {
16092 ExprResult FullAssertExpr = ActOnFinishFullExpr(AssertExpr, StaticAssertLoc,
16093 /*DiscardedValue*/false,
16094 /*IsConstexpr*/true);
16095 if (FullAssertExpr.isInvalid())
16096 Failed = true;
16097 else
16098 AssertExpr = FullAssertExpr.get();
16099 }
16100
16101 Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
16102 AssertExpr, AssertMessage, RParenLoc,
16103 Failed);
16104
16105 CurContext->addDecl(Decl);
16106 return Decl;
16107 }
16108
16109 /// Perform semantic analysis of the given friend type declaration.
16110 ///
16111 /// \returns A friend declaration that.
CheckFriendTypeDecl(SourceLocation LocStart,SourceLocation FriendLoc,TypeSourceInfo * TSInfo)16112 FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
16113 SourceLocation FriendLoc,
16114 TypeSourceInfo *TSInfo) {
16115 assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
16116
16117 QualType T = TSInfo->getType();
16118 SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
16119
16120 // C++03 [class.friend]p2:
16121 // An elaborated-type-specifier shall be used in a friend declaration
16122 // for a class.*
16123 //
16124 // * The class-key of the elaborated-type-specifier is required.
16125 if (!CodeSynthesisContexts.empty()) {
16126 // Do not complain about the form of friend template types during any kind
16127 // of code synthesis. For template instantiation, we will have complained
16128 // when the template was defined.
16129 } else {
16130 if (!T->isElaboratedTypeSpecifier()) {
16131 // If we evaluated the type to a record type, suggest putting
16132 // a tag in front.
16133 if (const RecordType *RT = T->getAs<RecordType>()) {
16134 RecordDecl *RD = RT->getDecl();
16135
16136 SmallString<16> InsertionText(" ");
16137 InsertionText += RD->getKindName();
16138
16139 Diag(TypeRange.getBegin(),
16140 getLangOpts().CPlusPlus11 ?
16141 diag::warn_cxx98_compat_unelaborated_friend_type :
16142 diag::ext_unelaborated_friend_type)
16143 << (unsigned) RD->getTagKind()
16144 << T
16145 << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc),
16146 InsertionText);
16147 } else {
16148 Diag(FriendLoc,
16149 getLangOpts().CPlusPlus11 ?
16150 diag::warn_cxx98_compat_nonclass_type_friend :
16151 diag::ext_nonclass_type_friend)
16152 << T
16153 << TypeRange;
16154 }
16155 } else if (T->getAs<EnumType>()) {
16156 Diag(FriendLoc,
16157 getLangOpts().CPlusPlus11 ?
16158 diag::warn_cxx98_compat_enum_friend :
16159 diag::ext_enum_friend)
16160 << T
16161 << TypeRange;
16162 }
16163
16164 // C++11 [class.friend]p3:
16165 // A friend declaration that does not declare a function shall have one
16166 // of the following forms:
16167 // friend elaborated-type-specifier ;
16168 // friend simple-type-specifier ;
16169 // friend typename-specifier ;
16170 if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
16171 Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
16172 }
16173
16174 // If the type specifier in a friend declaration designates a (possibly
16175 // cv-qualified) class type, that class is declared as a friend; otherwise,
16176 // the friend declaration is ignored.
16177 return FriendDecl::Create(Context, CurContext,
16178 TSInfo->getTypeLoc().getBeginLoc(), TSInfo,
16179 FriendLoc);
16180 }
16181
16182 /// Handle a friend tag declaration where the scope specifier was
16183 /// templated.
ActOnTemplatedFriendTag(Scope * S,SourceLocation FriendLoc,unsigned TagSpec,SourceLocation TagLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,const ParsedAttributesView & Attr,MultiTemplateParamsArg TempParamLists)16184 Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
16185 unsigned TagSpec, SourceLocation TagLoc,
16186 CXXScopeSpec &SS, IdentifierInfo *Name,
16187 SourceLocation NameLoc,
16188 const ParsedAttributesView &Attr,
16189 MultiTemplateParamsArg TempParamLists) {
16190 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
16191
16192 bool IsMemberSpecialization = false;
16193 bool Invalid = false;
16194
16195 if (TemplateParameterList *TemplateParams =
16196 MatchTemplateParametersToScopeSpecifier(
16197 TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true,
16198 IsMemberSpecialization, Invalid)) {
16199 if (TemplateParams->size() > 0) {
16200 // This is a declaration of a class template.
16201 if (Invalid)
16202 return nullptr;
16203
16204 return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name,
16205 NameLoc, Attr, TemplateParams, AS_public,
16206 /*ModulePrivateLoc=*/SourceLocation(),
16207 FriendLoc, TempParamLists.size() - 1,
16208 TempParamLists.data()).get();
16209 } else {
16210 // The "template<>" header is extraneous.
16211 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
16212 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
16213 IsMemberSpecialization = true;
16214 }
16215 }
16216
16217 if (Invalid) return nullptr;
16218
16219 bool isAllExplicitSpecializations = true;
16220 for (unsigned I = TempParamLists.size(); I-- > 0; ) {
16221 if (TempParamLists[I]->size()) {
16222 isAllExplicitSpecializations = false;
16223 break;
16224 }
16225 }
16226
16227 // FIXME: don't ignore attributes.
16228
16229 // If it's explicit specializations all the way down, just forget
16230 // about the template header and build an appropriate non-templated
16231 // friend. TODO: for source fidelity, remember the headers.
16232 if (isAllExplicitSpecializations) {
16233 if (SS.isEmpty()) {
16234 bool Owned = false;
16235 bool IsDependent = false;
16236 return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
16237 Attr, AS_public,
16238 /*ModulePrivateLoc=*/SourceLocation(),
16239 MultiTemplateParamsArg(), Owned, IsDependent,
16240 /*ScopedEnumKWLoc=*/SourceLocation(),
16241 /*ScopedEnumUsesClassTag=*/false,
16242 /*UnderlyingType=*/TypeResult(),
16243 /*IsTypeSpecifier=*/false,
16244 /*IsTemplateParamOrArg=*/false);
16245 }
16246
16247 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
16248 ElaboratedTypeKeyword Keyword
16249 = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
16250 QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
16251 *Name, NameLoc);
16252 if (T.isNull())
16253 return nullptr;
16254
16255 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
16256 if (isa<DependentNameType>(T)) {
16257 DependentNameTypeLoc TL =
16258 TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
16259 TL.setElaboratedKeywordLoc(TagLoc);
16260 TL.setQualifierLoc(QualifierLoc);
16261 TL.setNameLoc(NameLoc);
16262 } else {
16263 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
16264 TL.setElaboratedKeywordLoc(TagLoc);
16265 TL.setQualifierLoc(QualifierLoc);
16266 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
16267 }
16268
16269 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
16270 TSI, FriendLoc, TempParamLists);
16271 Friend->setAccess(AS_public);
16272 CurContext->addDecl(Friend);
16273 return Friend;
16274 }
16275
16276 assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
16277
16278
16279
16280 // Handle the case of a templated-scope friend class. e.g.
16281 // template <class T> class A<T>::B;
16282 // FIXME: we don't support these right now.
16283 Diag(NameLoc, diag::warn_template_qualified_friend_unsupported)
16284 << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext);
16285 ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
16286 QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
16287 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
16288 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
16289 TL.setElaboratedKeywordLoc(TagLoc);
16290 TL.setQualifierLoc(SS.getWithLocInContext(Context));
16291 TL.setNameLoc(NameLoc);
16292
16293 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
16294 TSI, FriendLoc, TempParamLists);
16295 Friend->setAccess(AS_public);
16296 Friend->setUnsupportedFriend(true);
16297 CurContext->addDecl(Friend);
16298 return Friend;
16299 }
16300
16301 /// Handle a friend type declaration. This works in tandem with
16302 /// ActOnTag.
16303 ///
16304 /// Notes on friend class templates:
16305 ///
16306 /// We generally treat friend class declarations as if they were
16307 /// declaring a class. So, for example, the elaborated type specifier
16308 /// in a friend declaration is required to obey the restrictions of a
16309 /// class-head (i.e. no typedefs in the scope chain), template
16310 /// parameters are required to match up with simple template-ids, &c.
16311 /// However, unlike when declaring a template specialization, it's
16312 /// okay to refer to a template specialization without an empty
16313 /// template parameter declaration, e.g.
16314 /// friend class A<T>::B<unsigned>;
16315 /// We permit this as a special case; if there are any template
16316 /// parameters present at all, require proper matching, i.e.
16317 /// template <> template \<class T> friend class A<int>::B;
ActOnFriendTypeDecl(Scope * S,const DeclSpec & DS,MultiTemplateParamsArg TempParams)16318 Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
16319 MultiTemplateParamsArg TempParams) {
16320 SourceLocation Loc = DS.getBeginLoc();
16321
16322 assert(DS.isFriendSpecified());
16323 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
16324
16325 // C++ [class.friend]p3:
16326 // A friend declaration that does not declare a function shall have one of
16327 // the following forms:
16328 // friend elaborated-type-specifier ;
16329 // friend simple-type-specifier ;
16330 // friend typename-specifier ;
16331 //
16332 // Any declaration with a type qualifier does not have that form. (It's
16333 // legal to specify a qualified type as a friend, you just can't write the
16334 // keywords.)
16335 if (DS.getTypeQualifiers()) {
16336 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
16337 Diag(DS.getConstSpecLoc(), diag::err_friend_decl_spec) << "const";
16338 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
16339 Diag(DS.getVolatileSpecLoc(), diag::err_friend_decl_spec) << "volatile";
16340 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
16341 Diag(DS.getRestrictSpecLoc(), diag::err_friend_decl_spec) << "restrict";
16342 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
16343 Diag(DS.getAtomicSpecLoc(), diag::err_friend_decl_spec) << "_Atomic";
16344 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
16345 Diag(DS.getUnalignedSpecLoc(), diag::err_friend_decl_spec) << "__unaligned";
16346 }
16347
16348 // Try to convert the decl specifier to a type. This works for
16349 // friend templates because ActOnTag never produces a ClassTemplateDecl
16350 // for a TUK_Friend.
16351 Declarator TheDeclarator(DS, DeclaratorContext::Member);
16352 TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
16353 QualType T = TSI->getType();
16354 if (TheDeclarator.isInvalidType())
16355 return nullptr;
16356
16357 if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
16358 return nullptr;
16359
16360 // This is definitely an error in C++98. It's probably meant to
16361 // be forbidden in C++0x, too, but the specification is just
16362 // poorly written.
16363 //
16364 // The problem is with declarations like the following:
16365 // template <T> friend A<T>::foo;
16366 // where deciding whether a class C is a friend or not now hinges
16367 // on whether there exists an instantiation of A that causes
16368 // 'foo' to equal C. There are restrictions on class-heads
16369 // (which we declare (by fiat) elaborated friend declarations to
16370 // be) that makes this tractable.
16371 //
16372 // FIXME: handle "template <> friend class A<T>;", which
16373 // is possibly well-formed? Who even knows?
16374 if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
16375 Diag(Loc, diag::err_tagless_friend_type_template)
16376 << DS.getSourceRange();
16377 return nullptr;
16378 }
16379
16380 // C++98 [class.friend]p1: A friend of a class is a function
16381 // or class that is not a member of the class . . .
16382 // This is fixed in DR77, which just barely didn't make the C++03
16383 // deadline. It's also a very silly restriction that seriously
16384 // affects inner classes and which nobody else seems to implement;
16385 // thus we never diagnose it, not even in -pedantic.
16386 //
16387 // But note that we could warn about it: it's always useless to
16388 // friend one of your own members (it's not, however, worthless to
16389 // friend a member of an arbitrary specialization of your template).
16390
16391 Decl *D;
16392 if (!TempParams.empty())
16393 D = FriendTemplateDecl::Create(Context, CurContext, Loc,
16394 TempParams,
16395 TSI,
16396 DS.getFriendSpecLoc());
16397 else
16398 D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
16399
16400 if (!D)
16401 return nullptr;
16402
16403 D->setAccess(AS_public);
16404 CurContext->addDecl(D);
16405
16406 return D;
16407 }
16408
ActOnFriendFunctionDecl(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParams)16409 NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
16410 MultiTemplateParamsArg TemplateParams) {
16411 const DeclSpec &DS = D.getDeclSpec();
16412
16413 assert(DS.isFriendSpecified());
16414 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
16415
16416 SourceLocation Loc = D.getIdentifierLoc();
16417 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16418
16419 // C++ [class.friend]p1
16420 // A friend of a class is a function or class....
16421 // Note that this sees through typedefs, which is intended.
16422 // It *doesn't* see through dependent types, which is correct
16423 // according to [temp.arg.type]p3:
16424 // If a declaration acquires a function type through a
16425 // type dependent on a template-parameter and this causes
16426 // a declaration that does not use the syntactic form of a
16427 // function declarator to have a function type, the program
16428 // is ill-formed.
16429 if (!TInfo->getType()->isFunctionType()) {
16430 Diag(Loc, diag::err_unexpected_friend);
16431
16432 // It might be worthwhile to try to recover by creating an
16433 // appropriate declaration.
16434 return nullptr;
16435 }
16436
16437 // C++ [namespace.memdef]p3
16438 // - If a friend declaration in a non-local class first declares a
16439 // class or function, the friend class or function is a member
16440 // of the innermost enclosing namespace.
16441 // - The name of the friend is not found by simple name lookup
16442 // until a matching declaration is provided in that namespace
16443 // scope (either before or after the class declaration granting
16444 // friendship).
16445 // - If a friend function is called, its name may be found by the
16446 // name lookup that considers functions from namespaces and
16447 // classes associated with the types of the function arguments.
16448 // - When looking for a prior declaration of a class or a function
16449 // declared as a friend, scopes outside the innermost enclosing
16450 // namespace scope are not considered.
16451
16452 CXXScopeSpec &SS = D.getCXXScopeSpec();
16453 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
16454 assert(NameInfo.getName());
16455
16456 // Check for unexpanded parameter packs.
16457 if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
16458 DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
16459 DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
16460 return nullptr;
16461
16462 // The context we found the declaration in, or in which we should
16463 // create the declaration.
16464 DeclContext *DC;
16465 Scope *DCScope = S;
16466 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
16467 ForExternalRedeclaration);
16468
16469 // There are five cases here.
16470 // - There's no scope specifier and we're in a local class. Only look
16471 // for functions declared in the immediately-enclosing block scope.
16472 // We recover from invalid scope qualifiers as if they just weren't there.
16473 FunctionDecl *FunctionContainingLocalClass = nullptr;
16474 if ((SS.isInvalid() || !SS.isSet()) &&
16475 (FunctionContainingLocalClass =
16476 cast<CXXRecordDecl>(CurContext)->isLocalClass())) {
16477 // C++11 [class.friend]p11:
16478 // If a friend declaration appears in a local class and the name
16479 // specified is an unqualified name, a prior declaration is
16480 // looked up without considering scopes that are outside the
16481 // innermost enclosing non-class scope. For a friend function
16482 // declaration, if there is no prior declaration, the program is
16483 // ill-formed.
16484
16485 // Find the innermost enclosing non-class scope. This is the block
16486 // scope containing the local class definition (or for a nested class,
16487 // the outer local class).
16488 DCScope = S->getFnParent();
16489
16490 // Look up the function name in the scope.
16491 Previous.clear(LookupLocalFriendName);
16492 LookupName(Previous, S, /*AllowBuiltinCreation*/false);
16493
16494 if (!Previous.empty()) {
16495 // All possible previous declarations must have the same context:
16496 // either they were declared at block scope or they are members of
16497 // one of the enclosing local classes.
16498 DC = Previous.getRepresentativeDecl()->getDeclContext();
16499 } else {
16500 // This is ill-formed, but provide the context that we would have
16501 // declared the function in, if we were permitted to, for error recovery.
16502 DC = FunctionContainingLocalClass;
16503 }
16504 adjustContextForLocalExternDecl(DC);
16505
16506 // C++ [class.friend]p6:
16507 // A function can be defined in a friend declaration of a class if and
16508 // only if the class is a non-local class (9.8), the function name is
16509 // unqualified, and the function has namespace scope.
16510 if (D.isFunctionDefinition()) {
16511 Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
16512 }
16513
16514 // - There's no scope specifier, in which case we just go to the
16515 // appropriate scope and look for a function or function template
16516 // there as appropriate.
16517 } else if (SS.isInvalid() || !SS.isSet()) {
16518 // C++11 [namespace.memdef]p3:
16519 // If the name in a friend declaration is neither qualified nor
16520 // a template-id and the declaration is a function or an
16521 // elaborated-type-specifier, the lookup to determine whether
16522 // the entity has been previously declared shall not consider
16523 // any scopes outside the innermost enclosing namespace.
16524 bool isTemplateId =
16525 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId;
16526
16527 // Find the appropriate context according to the above.
16528 DC = CurContext;
16529
16530 // Skip class contexts. If someone can cite chapter and verse
16531 // for this behavior, that would be nice --- it's what GCC and
16532 // EDG do, and it seems like a reasonable intent, but the spec
16533 // really only says that checks for unqualified existing
16534 // declarations should stop at the nearest enclosing namespace,
16535 // not that they should only consider the nearest enclosing
16536 // namespace.
16537 while (DC->isRecord())
16538 DC = DC->getParent();
16539
16540 DeclContext *LookupDC = DC;
16541 while (LookupDC->isTransparentContext())
16542 LookupDC = LookupDC->getParent();
16543
16544 while (true) {
16545 LookupQualifiedName(Previous, LookupDC);
16546
16547 if (!Previous.empty()) {
16548 DC = LookupDC;
16549 break;
16550 }
16551
16552 if (isTemplateId) {
16553 if (isa<TranslationUnitDecl>(LookupDC)) break;
16554 } else {
16555 if (LookupDC->isFileContext()) break;
16556 }
16557 LookupDC = LookupDC->getParent();
16558 }
16559
16560 DCScope = getScopeForDeclContext(S, DC);
16561
16562 // - There's a non-dependent scope specifier, in which case we
16563 // compute it and do a previous lookup there for a function
16564 // or function template.
16565 } else if (!SS.getScopeRep()->isDependent()) {
16566 DC = computeDeclContext(SS);
16567 if (!DC) return nullptr;
16568
16569 if (RequireCompleteDeclContext(SS, DC)) return nullptr;
16570
16571 LookupQualifiedName(Previous, DC);
16572
16573 // C++ [class.friend]p1: A friend of a class is a function or
16574 // class that is not a member of the class . . .
16575 if (DC->Equals(CurContext))
16576 Diag(DS.getFriendSpecLoc(),
16577 getLangOpts().CPlusPlus11 ?
16578 diag::warn_cxx98_compat_friend_is_member :
16579 diag::err_friend_is_member);
16580
16581 if (D.isFunctionDefinition()) {
16582 // C++ [class.friend]p6:
16583 // A function can be defined in a friend declaration of a class if and
16584 // only if the class is a non-local class (9.8), the function name is
16585 // unqualified, and the function has namespace scope.
16586 //
16587 // FIXME: We should only do this if the scope specifier names the
16588 // innermost enclosing namespace; otherwise the fixit changes the
16589 // meaning of the code.
16590 SemaDiagnosticBuilder DB
16591 = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
16592
16593 DB << SS.getScopeRep();
16594 if (DC->isFileContext())
16595 DB << FixItHint::CreateRemoval(SS.getRange());
16596 SS.clear();
16597 }
16598
16599 // - There's a scope specifier that does not match any template
16600 // parameter lists, in which case we use some arbitrary context,
16601 // create a method or method template, and wait for instantiation.
16602 // - There's a scope specifier that does match some template
16603 // parameter lists, which we don't handle right now.
16604 } else {
16605 if (D.isFunctionDefinition()) {
16606 // C++ [class.friend]p6:
16607 // A function can be defined in a friend declaration of a class if and
16608 // only if the class is a non-local class (9.8), the function name is
16609 // unqualified, and the function has namespace scope.
16610 Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
16611 << SS.getScopeRep();
16612 }
16613
16614 DC = CurContext;
16615 assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
16616 }
16617
16618 if (!DC->isRecord()) {
16619 int DiagArg = -1;
16620 switch (D.getName().getKind()) {
16621 case UnqualifiedIdKind::IK_ConstructorTemplateId:
16622 case UnqualifiedIdKind::IK_ConstructorName:
16623 DiagArg = 0;
16624 break;
16625 case UnqualifiedIdKind::IK_DestructorName:
16626 DiagArg = 1;
16627 break;
16628 case UnqualifiedIdKind::IK_ConversionFunctionId:
16629 DiagArg = 2;
16630 break;
16631 case UnqualifiedIdKind::IK_DeductionGuideName:
16632 DiagArg = 3;
16633 break;
16634 case UnqualifiedIdKind::IK_Identifier:
16635 case UnqualifiedIdKind::IK_ImplicitSelfParam:
16636 case UnqualifiedIdKind::IK_LiteralOperatorId:
16637 case UnqualifiedIdKind::IK_OperatorFunctionId:
16638 case UnqualifiedIdKind::IK_TemplateId:
16639 break;
16640 }
16641 // This implies that it has to be an operator or function.
16642 if (DiagArg >= 0) {
16643 Diag(Loc, diag::err_introducing_special_friend) << DiagArg;
16644 return nullptr;
16645 }
16646 }
16647
16648 // FIXME: This is an egregious hack to cope with cases where the scope stack
16649 // does not contain the declaration context, i.e., in an out-of-line
16650 // definition of a class.
16651 Scope FakeDCScope(S, Scope::DeclScope, Diags);
16652 if (!DCScope) {
16653 FakeDCScope.setEntity(DC);
16654 DCScope = &FakeDCScope;
16655 }
16656
16657 bool AddToScope = true;
16658 NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
16659 TemplateParams, AddToScope);
16660 if (!ND) return nullptr;
16661
16662 assert(ND->getLexicalDeclContext() == CurContext);
16663
16664 // If we performed typo correction, we might have added a scope specifier
16665 // and changed the decl context.
16666 DC = ND->getDeclContext();
16667
16668 // Add the function declaration to the appropriate lookup tables,
16669 // adjusting the redeclarations list as necessary. We don't
16670 // want to do this yet if the friending class is dependent.
16671 //
16672 // Also update the scope-based lookup if the target context's
16673 // lookup context is in lexical scope.
16674 if (!CurContext->isDependentContext()) {
16675 DC = DC->getRedeclContext();
16676 DC->makeDeclVisibleInContext(ND);
16677 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
16678 PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
16679 }
16680
16681 FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
16682 D.getIdentifierLoc(), ND,
16683 DS.getFriendSpecLoc());
16684 FrD->setAccess(AS_public);
16685 CurContext->addDecl(FrD);
16686
16687 if (ND->isInvalidDecl()) {
16688 FrD->setInvalidDecl();
16689 } else {
16690 if (DC->isRecord()) CheckFriendAccess(ND);
16691
16692 FunctionDecl *FD;
16693 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
16694 FD = FTD->getTemplatedDecl();
16695 else
16696 FD = cast<FunctionDecl>(ND);
16697
16698 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
16699 // default argument expression, that declaration shall be a definition
16700 // and shall be the only declaration of the function or function
16701 // template in the translation unit.
16702 if (functionDeclHasDefaultArgument(FD)) {
16703 // We can't look at FD->getPreviousDecl() because it may not have been set
16704 // if we're in a dependent context. If the function is known to be a
16705 // redeclaration, we will have narrowed Previous down to the right decl.
16706 if (D.isRedeclaration()) {
16707 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
16708 Diag(Previous.getRepresentativeDecl()->getLocation(),
16709 diag::note_previous_declaration);
16710 } else if (!D.isFunctionDefinition())
16711 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
16712 }
16713
16714 // Mark templated-scope function declarations as unsupported.
16715 if (FD->getNumTemplateParameterLists() && SS.isValid()) {
16716 Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported)
16717 << SS.getScopeRep() << SS.getRange()
16718 << cast<CXXRecordDecl>(CurContext);
16719 FrD->setUnsupportedFriend(true);
16720 }
16721 }
16722
16723 return ND;
16724 }
16725
SetDeclDeleted(Decl * Dcl,SourceLocation DelLoc)16726 void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
16727 AdjustDeclIfTemplate(Dcl);
16728
16729 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
16730 if (!Fn) {
16731 Diag(DelLoc, diag::err_deleted_non_function);
16732 return;
16733 }
16734
16735 // Deleted function does not have a body.
16736 Fn->setWillHaveBody(false);
16737
16738 if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
16739 // Don't consider the implicit declaration we generate for explicit
16740 // specializations. FIXME: Do not generate these implicit declarations.
16741 if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization ||
16742 Prev->getPreviousDecl()) &&
16743 !Prev->isDefined()) {
16744 Diag(DelLoc, diag::err_deleted_decl_not_first);
16745 Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(),
16746 Prev->isImplicit() ? diag::note_previous_implicit_declaration
16747 : diag::note_previous_declaration);
16748 // We can't recover from this; the declaration might have already
16749 // been used.
16750 Fn->setInvalidDecl();
16751 return;
16752 }
16753
16754 // To maintain the invariant that functions are only deleted on their first
16755 // declaration, mark the implicitly-instantiated declaration of the
16756 // explicitly-specialized function as deleted instead of marking the
16757 // instantiated redeclaration.
16758 Fn = Fn->getCanonicalDecl();
16759 }
16760
16761 // dllimport/dllexport cannot be deleted.
16762 if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) {
16763 Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr;
16764 Fn->setInvalidDecl();
16765 }
16766
16767 // C++11 [basic.start.main]p3:
16768 // A program that defines main as deleted [...] is ill-formed.
16769 if (Fn->isMain())
16770 Diag(DelLoc, diag::err_deleted_main);
16771
16772 // C++11 [dcl.fct.def.delete]p4:
16773 // A deleted function is implicitly inline.
16774 Fn->setImplicitlyInline();
16775 Fn->setDeletedAsWritten();
16776 }
16777
SetDeclDefaulted(Decl * Dcl,SourceLocation DefaultLoc)16778 void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
16779 if (!Dcl || Dcl->isInvalidDecl())
16780 return;
16781
16782 auto *FD = dyn_cast<FunctionDecl>(Dcl);
16783 if (!FD) {
16784 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(Dcl)) {
16785 if (getDefaultedFunctionKind(FTD->getTemplatedDecl()).isComparison()) {
16786 Diag(DefaultLoc, diag::err_defaulted_comparison_template);
16787 return;
16788 }
16789 }
16790
16791 Diag(DefaultLoc, diag::err_default_special_members)
16792 << getLangOpts().CPlusPlus20;
16793 return;
16794 }
16795
16796 // Reject if this can't possibly be a defaultable function.
16797 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD);
16798 if (!DefKind &&
16799 // A dependent function that doesn't locally look defaultable can
16800 // still instantiate to a defaultable function if it's a constructor
16801 // or assignment operator.
16802 (!FD->isDependentContext() ||
16803 (!isa<CXXConstructorDecl>(FD) &&
16804 FD->getDeclName().getCXXOverloadedOperator() != OO_Equal))) {
16805 Diag(DefaultLoc, diag::err_default_special_members)
16806 << getLangOpts().CPlusPlus20;
16807 return;
16808 }
16809
16810 if (DefKind.isComparison() &&
16811 !isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
16812 Diag(FD->getLocation(), diag::err_defaulted_comparison_out_of_class)
16813 << (int)DefKind.asComparison();
16814 return;
16815 }
16816
16817 // Issue compatibility warning. We already warned if the operator is
16818 // 'operator<=>' when parsing the '<=>' token.
16819 if (DefKind.isComparison() &&
16820 DefKind.asComparison() != DefaultedComparisonKind::ThreeWay) {
16821 Diag(DefaultLoc, getLangOpts().CPlusPlus20
16822 ? diag::warn_cxx17_compat_defaulted_comparison
16823 : diag::ext_defaulted_comparison);
16824 }
16825
16826 FD->setDefaulted();
16827 FD->setExplicitlyDefaulted();
16828
16829 // Defer checking functions that are defaulted in a dependent context.
16830 if (FD->isDependentContext())
16831 return;
16832
16833 // Unset that we will have a body for this function. We might not,
16834 // if it turns out to be trivial, and we don't need this marking now
16835 // that we've marked it as defaulted.
16836 FD->setWillHaveBody(false);
16837
16838 // If this definition appears within the record, do the checking when
16839 // the record is complete. This is always the case for a defaulted
16840 // comparison.
16841 if (DefKind.isComparison())
16842 return;
16843 auto *MD = cast<CXXMethodDecl>(FD);
16844
16845 const FunctionDecl *Primary = FD;
16846 if (const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
16847 // Ask the template instantiation pattern that actually had the
16848 // '= default' on it.
16849 Primary = Pattern;
16850
16851 // If the method was defaulted on its first declaration, we will have
16852 // already performed the checking in CheckCompletedCXXClass. Such a
16853 // declaration doesn't trigger an implicit definition.
16854 if (Primary->getCanonicalDecl()->isDefaulted())
16855 return;
16856
16857 // FIXME: Once we support defining comparisons out of class, check for a
16858 // defaulted comparison here.
16859 if (CheckExplicitlyDefaultedSpecialMember(MD, DefKind.asSpecialMember()))
16860 MD->setInvalidDecl();
16861 else
16862 DefineDefaultedFunction(*this, MD, DefaultLoc);
16863 }
16864
SearchForReturnInStmt(Sema & Self,Stmt * S)16865 static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
16866 for (Stmt *SubStmt : S->children()) {
16867 if (!SubStmt)
16868 continue;
16869 if (isa<ReturnStmt>(SubStmt))
16870 Self.Diag(SubStmt->getBeginLoc(),
16871 diag::err_return_in_constructor_handler);
16872 if (!isa<Expr>(SubStmt))
16873 SearchForReturnInStmt(Self, SubStmt);
16874 }
16875 }
16876
DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt * TryBlock)16877 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
16878 for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
16879 CXXCatchStmt *Handler = TryBlock->getHandler(I);
16880 SearchForReturnInStmt(*this, Handler);
16881 }
16882 }
16883
CheckOverridingFunctionAttributes(const CXXMethodDecl * New,const CXXMethodDecl * Old)16884 bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
16885 const CXXMethodDecl *Old) {
16886 const auto *NewFT = New->getType()->castAs<FunctionProtoType>();
16887 const auto *OldFT = Old->getType()->castAs<FunctionProtoType>();
16888
16889 if (OldFT->hasExtParameterInfos()) {
16890 for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I)
16891 // A parameter of the overriding method should be annotated with noescape
16892 // if the corresponding parameter of the overridden method is annotated.
16893 if (OldFT->getExtParameterInfo(I).isNoEscape() &&
16894 !NewFT->getExtParameterInfo(I).isNoEscape()) {
16895 Diag(New->getParamDecl(I)->getLocation(),
16896 diag::warn_overriding_method_missing_noescape);
16897 Diag(Old->getParamDecl(I)->getLocation(),
16898 diag::note_overridden_marked_noescape);
16899 }
16900 }
16901
16902 // Virtual overrides must have the same code_seg.
16903 const auto *OldCSA = Old->getAttr<CodeSegAttr>();
16904 const auto *NewCSA = New->getAttr<CodeSegAttr>();
16905 if ((NewCSA || OldCSA) &&
16906 (!OldCSA || !NewCSA || NewCSA->getName() != OldCSA->getName())) {
16907 Diag(New->getLocation(), diag::err_mismatched_code_seg_override);
16908 Diag(Old->getLocation(), diag::note_previous_declaration);
16909 return true;
16910 }
16911
16912 CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
16913
16914 // If the calling conventions match, everything is fine
16915 if (NewCC == OldCC)
16916 return false;
16917
16918 // If the calling conventions mismatch because the new function is static,
16919 // suppress the calling convention mismatch error; the error about static
16920 // function override (err_static_overrides_virtual from
16921 // Sema::CheckFunctionDeclaration) is more clear.
16922 if (New->getStorageClass() == SC_Static)
16923 return false;
16924
16925 Diag(New->getLocation(),
16926 diag::err_conflicting_overriding_cc_attributes)
16927 << New->getDeclName() << New->getType() << Old->getType();
16928 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
16929 return true;
16930 }
16931
CheckOverridingFunctionReturnType(const CXXMethodDecl * New,const CXXMethodDecl * Old)16932 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
16933 const CXXMethodDecl *Old) {
16934 QualType NewTy = New->getType()->castAs<FunctionType>()->getReturnType();
16935 QualType OldTy = Old->getType()->castAs<FunctionType>()->getReturnType();
16936
16937 if (Context.hasSameType(NewTy, OldTy) ||
16938 NewTy->isDependentType() || OldTy->isDependentType())
16939 return false;
16940
16941 // Check if the return types are covariant
16942 QualType NewClassTy, OldClassTy;
16943
16944 /// Both types must be pointers or references to classes.
16945 if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
16946 if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
16947 NewClassTy = NewPT->getPointeeType();
16948 OldClassTy = OldPT->getPointeeType();
16949 }
16950 } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
16951 if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
16952 if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
16953 NewClassTy = NewRT->getPointeeType();
16954 OldClassTy = OldRT->getPointeeType();
16955 }
16956 }
16957 }
16958
16959 // The return types aren't either both pointers or references to a class type.
16960 if (NewClassTy.isNull()) {
16961 Diag(New->getLocation(),
16962 diag::err_different_return_type_for_overriding_virtual_function)
16963 << New->getDeclName() << NewTy << OldTy
16964 << New->getReturnTypeSourceRange();
16965 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
16966 << Old->getReturnTypeSourceRange();
16967
16968 return true;
16969 }
16970
16971 if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
16972 // C++14 [class.virtual]p8:
16973 // If the class type in the covariant return type of D::f differs from
16974 // that of B::f, the class type in the return type of D::f shall be
16975 // complete at the point of declaration of D::f or shall be the class
16976 // type D.
16977 if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
16978 if (!RT->isBeingDefined() &&
16979 RequireCompleteType(New->getLocation(), NewClassTy,
16980 diag::err_covariant_return_incomplete,
16981 New->getDeclName()))
16982 return true;
16983 }
16984
16985 // Check if the new class derives from the old class.
16986 if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) {
16987 Diag(New->getLocation(), diag::err_covariant_return_not_derived)
16988 << New->getDeclName() << NewTy << OldTy
16989 << New->getReturnTypeSourceRange();
16990 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
16991 << Old->getReturnTypeSourceRange();
16992 return true;
16993 }
16994
16995 // Check if we the conversion from derived to base is valid.
16996 if (CheckDerivedToBaseConversion(
16997 NewClassTy, OldClassTy,
16998 diag::err_covariant_return_inaccessible_base,
16999 diag::err_covariant_return_ambiguous_derived_to_base_conv,
17000 New->getLocation(), New->getReturnTypeSourceRange(),
17001 New->getDeclName(), nullptr)) {
17002 // FIXME: this note won't trigger for delayed access control
17003 // diagnostics, and it's impossible to get an undelayed error
17004 // here from access control during the original parse because
17005 // the ParsingDeclSpec/ParsingDeclarator are still in scope.
17006 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17007 << Old->getReturnTypeSourceRange();
17008 return true;
17009 }
17010 }
17011
17012 // The qualifiers of the return types must be the same.
17013 if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
17014 Diag(New->getLocation(),
17015 diag::err_covariant_return_type_different_qualifications)
17016 << New->getDeclName() << NewTy << OldTy
17017 << New->getReturnTypeSourceRange();
17018 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17019 << Old->getReturnTypeSourceRange();
17020 return true;
17021 }
17022
17023
17024 // The new class type must have the same or less qualifiers as the old type.
17025 if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
17026 Diag(New->getLocation(),
17027 diag::err_covariant_return_type_class_type_more_qualified)
17028 << New->getDeclName() << NewTy << OldTy
17029 << New->getReturnTypeSourceRange();
17030 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17031 << Old->getReturnTypeSourceRange();
17032 return true;
17033 }
17034
17035 return false;
17036 }
17037
17038 /// Mark the given method pure.
17039 ///
17040 /// \param Method the method to be marked pure.
17041 ///
17042 /// \param InitRange the source range that covers the "0" initializer.
CheckPureMethod(CXXMethodDecl * Method,SourceRange InitRange)17043 bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
17044 SourceLocation EndLoc = InitRange.getEnd();
17045 if (EndLoc.isValid())
17046 Method->setRangeEnd(EndLoc);
17047
17048 if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
17049 Method->setPure();
17050 return false;
17051 }
17052
17053 if (!Method->isInvalidDecl())
17054 Diag(Method->getLocation(), diag::err_non_virtual_pure)
17055 << Method->getDeclName() << InitRange;
17056 return true;
17057 }
17058
ActOnPureSpecifier(Decl * D,SourceLocation ZeroLoc)17059 void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) {
17060 if (D->getFriendObjectKind())
17061 Diag(D->getLocation(), diag::err_pure_friend);
17062 else if (auto *M = dyn_cast<CXXMethodDecl>(D))
17063 CheckPureMethod(M, ZeroLoc);
17064 else
17065 Diag(D->getLocation(), diag::err_illegal_initializer);
17066 }
17067
17068 /// Determine whether the given declaration is a global variable or
17069 /// static data member.
isNonlocalVariable(const Decl * D)17070 static bool isNonlocalVariable(const Decl *D) {
17071 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D))
17072 return Var->hasGlobalStorage();
17073
17074 return false;
17075 }
17076
17077 /// Invoked when we are about to parse an initializer for the declaration
17078 /// 'Dcl'.
17079 ///
17080 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
17081 /// static data member of class X, names should be looked up in the scope of
17082 /// class X. If the declaration had a scope specifier, a scope will have
17083 /// been created and passed in for this purpose. Otherwise, S will be null.
ActOnCXXEnterDeclInitializer(Scope * S,Decl * D)17084 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
17085 // If there is no declaration, there was an error parsing it.
17086 if (!D || D->isInvalidDecl())
17087 return;
17088
17089 // We will always have a nested name specifier here, but this declaration
17090 // might not be out of line if the specifier names the current namespace:
17091 // extern int n;
17092 // int ::n = 0;
17093 if (S && D->isOutOfLine())
17094 EnterDeclaratorContext(S, D->getDeclContext());
17095
17096 // If we are parsing the initializer for a static data member, push a
17097 // new expression evaluation context that is associated with this static
17098 // data member.
17099 if (isNonlocalVariable(D))
17100 PushExpressionEvaluationContext(
17101 ExpressionEvaluationContext::PotentiallyEvaluated, D);
17102 }
17103
17104 /// Invoked after we are finished parsing an initializer for the declaration D.
ActOnCXXExitDeclInitializer(Scope * S,Decl * D)17105 void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
17106 // If there is no declaration, there was an error parsing it.
17107 if (!D || D->isInvalidDecl())
17108 return;
17109
17110 if (isNonlocalVariable(D))
17111 PopExpressionEvaluationContext();
17112
17113 if (S && D->isOutOfLine())
17114 ExitDeclaratorContext(S);
17115 }
17116
17117 /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
17118 /// C++ if/switch/while/for statement.
17119 /// e.g: "if (int x = f()) {...}"
ActOnCXXConditionDeclaration(Scope * S,Declarator & D)17120 DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
17121 // C++ 6.4p2:
17122 // The declarator shall not specify a function or an array.
17123 // The type-specifier-seq shall not contain typedef and shall not declare a
17124 // new class or enumeration.
17125 assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
17126 "Parser allowed 'typedef' as storage class of condition decl.");
17127
17128 Decl *Dcl = ActOnDeclarator(S, D);
17129 if (!Dcl)
17130 return true;
17131
17132 if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
17133 Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
17134 << D.getSourceRange();
17135 return true;
17136 }
17137
17138 return Dcl;
17139 }
17140
LoadExternalVTableUses()17141 void Sema::LoadExternalVTableUses() {
17142 if (!ExternalSource)
17143 return;
17144
17145 SmallVector<ExternalVTableUse, 4> VTables;
17146 ExternalSource->ReadUsedVTables(VTables);
17147 SmallVector<VTableUse, 4> NewUses;
17148 for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
17149 llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
17150 = VTablesUsed.find(VTables[I].Record);
17151 // Even if a definition wasn't required before, it may be required now.
17152 if (Pos != VTablesUsed.end()) {
17153 if (!Pos->second && VTables[I].DefinitionRequired)
17154 Pos->second = true;
17155 continue;
17156 }
17157
17158 VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
17159 NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
17160 }
17161
17162 VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
17163 }
17164
MarkVTableUsed(SourceLocation Loc,CXXRecordDecl * Class,bool DefinitionRequired)17165 void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
17166 bool DefinitionRequired) {
17167 // Ignore any vtable uses in unevaluated operands or for classes that do
17168 // not have a vtable.
17169 if (!Class->isDynamicClass() || Class->isDependentContext() ||
17170 CurContext->isDependentContext() || isUnevaluatedContext())
17171 return;
17172 // Do not mark as used if compiling for the device outside of the target
17173 // region.
17174 if (TUKind != TU_Prefix && LangOpts.OpenMP && LangOpts.OpenMPIsDevice &&
17175 !isInOpenMPDeclareTargetContext() &&
17176 !isInOpenMPTargetExecutionDirective()) {
17177 if (!DefinitionRequired)
17178 MarkVirtualMembersReferenced(Loc, Class);
17179 return;
17180 }
17181
17182 // Try to insert this class into the map.
17183 LoadExternalVTableUses();
17184 Class = Class->getCanonicalDecl();
17185 std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
17186 Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
17187 if (!Pos.second) {
17188 // If we already had an entry, check to see if we are promoting this vtable
17189 // to require a definition. If so, we need to reappend to the VTableUses
17190 // list, since we may have already processed the first entry.
17191 if (DefinitionRequired && !Pos.first->second) {
17192 Pos.first->second = true;
17193 } else {
17194 // Otherwise, we can early exit.
17195 return;
17196 }
17197 } else {
17198 // The Microsoft ABI requires that we perform the destructor body
17199 // checks (i.e. operator delete() lookup) when the vtable is marked used, as
17200 // the deleting destructor is emitted with the vtable, not with the
17201 // destructor definition as in the Itanium ABI.
17202 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
17203 CXXDestructorDecl *DD = Class->getDestructor();
17204 if (DD && DD->isVirtual() && !DD->isDeleted()) {
17205 if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) {
17206 // If this is an out-of-line declaration, marking it referenced will
17207 // not do anything. Manually call CheckDestructor to look up operator
17208 // delete().
17209 ContextRAII SavedContext(*this, DD);
17210 CheckDestructor(DD);
17211 } else {
17212 MarkFunctionReferenced(Loc, Class->getDestructor());
17213 }
17214 }
17215 }
17216 }
17217
17218 // Local classes need to have their virtual members marked
17219 // immediately. For all other classes, we mark their virtual members
17220 // at the end of the translation unit.
17221 if (Class->isLocalClass())
17222 MarkVirtualMembersReferenced(Loc, Class);
17223 else
17224 VTableUses.push_back(std::make_pair(Class, Loc));
17225 }
17226
DefineUsedVTables()17227 bool Sema::DefineUsedVTables() {
17228 LoadExternalVTableUses();
17229 if (VTableUses.empty())
17230 return false;
17231
17232 // Note: The VTableUses vector could grow as a result of marking
17233 // the members of a class as "used", so we check the size each
17234 // time through the loop and prefer indices (which are stable) to
17235 // iterators (which are not).
17236 bool DefinedAnything = false;
17237 for (unsigned I = 0; I != VTableUses.size(); ++I) {
17238 CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
17239 if (!Class)
17240 continue;
17241 TemplateSpecializationKind ClassTSK =
17242 Class->getTemplateSpecializationKind();
17243
17244 SourceLocation Loc = VTableUses[I].second;
17245
17246 bool DefineVTable = true;
17247
17248 // If this class has a key function, but that key function is
17249 // defined in another translation unit, we don't need to emit the
17250 // vtable even though we're using it.
17251 const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
17252 if (KeyFunction && !KeyFunction->hasBody()) {
17253 // The key function is in another translation unit.
17254 DefineVTable = false;
17255 TemplateSpecializationKind TSK =
17256 KeyFunction->getTemplateSpecializationKind();
17257 assert(TSK != TSK_ExplicitInstantiationDefinition &&
17258 TSK != TSK_ImplicitInstantiation &&
17259 "Instantiations don't have key functions");
17260 (void)TSK;
17261 } else if (!KeyFunction) {
17262 // If we have a class with no key function that is the subject
17263 // of an explicit instantiation declaration, suppress the
17264 // vtable; it will live with the explicit instantiation
17265 // definition.
17266 bool IsExplicitInstantiationDeclaration =
17267 ClassTSK == TSK_ExplicitInstantiationDeclaration;
17268 for (auto R : Class->redecls()) {
17269 TemplateSpecializationKind TSK
17270 = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind();
17271 if (TSK == TSK_ExplicitInstantiationDeclaration)
17272 IsExplicitInstantiationDeclaration = true;
17273 else if (TSK == TSK_ExplicitInstantiationDefinition) {
17274 IsExplicitInstantiationDeclaration = false;
17275 break;
17276 }
17277 }
17278
17279 if (IsExplicitInstantiationDeclaration)
17280 DefineVTable = false;
17281 }
17282
17283 // The exception specifications for all virtual members may be needed even
17284 // if we are not providing an authoritative form of the vtable in this TU.
17285 // We may choose to emit it available_externally anyway.
17286 if (!DefineVTable) {
17287 MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
17288 continue;
17289 }
17290
17291 // Mark all of the virtual members of this class as referenced, so
17292 // that we can build a vtable. Then, tell the AST consumer that a
17293 // vtable for this class is required.
17294 DefinedAnything = true;
17295 MarkVirtualMembersReferenced(Loc, Class);
17296 CXXRecordDecl *Canonical = Class->getCanonicalDecl();
17297 if (VTablesUsed[Canonical])
17298 Consumer.HandleVTable(Class);
17299
17300 // Warn if we're emitting a weak vtable. The vtable will be weak if there is
17301 // no key function or the key function is inlined. Don't warn in C++ ABIs
17302 // that lack key functions, since the user won't be able to make one.
17303 if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() &&
17304 Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation) {
17305 const FunctionDecl *KeyFunctionDef = nullptr;
17306 if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) &&
17307 KeyFunctionDef->isInlined())) {
17308 Diag(Class->getLocation(),
17309 ClassTSK == TSK_ExplicitInstantiationDefinition
17310 ? diag::warn_weak_template_vtable
17311 : diag::warn_weak_vtable)
17312 << Class;
17313 }
17314 }
17315 }
17316 VTableUses.clear();
17317
17318 return DefinedAnything;
17319 }
17320
MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,const CXXRecordDecl * RD)17321 void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
17322 const CXXRecordDecl *RD) {
17323 for (const auto *I : RD->methods())
17324 if (I->isVirtual() && !I->isPure())
17325 ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>());
17326 }
17327
MarkVirtualMembersReferenced(SourceLocation Loc,const CXXRecordDecl * RD,bool ConstexprOnly)17328 void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
17329 const CXXRecordDecl *RD,
17330 bool ConstexprOnly) {
17331 // Mark all functions which will appear in RD's vtable as used.
17332 CXXFinalOverriderMap FinalOverriders;
17333 RD->getFinalOverriders(FinalOverriders);
17334 for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
17335 E = FinalOverriders.end();
17336 I != E; ++I) {
17337 for (OverridingMethods::const_iterator OI = I->second.begin(),
17338 OE = I->second.end();
17339 OI != OE; ++OI) {
17340 assert(OI->second.size() > 0 && "no final overrider");
17341 CXXMethodDecl *Overrider = OI->second.front().Method;
17342
17343 // C++ [basic.def.odr]p2:
17344 // [...] A virtual member function is used if it is not pure. [...]
17345 if (!Overrider->isPure() && (!ConstexprOnly || Overrider->isConstexpr()))
17346 MarkFunctionReferenced(Loc, Overrider);
17347 }
17348 }
17349
17350 // Only classes that have virtual bases need a VTT.
17351 if (RD->getNumVBases() == 0)
17352 return;
17353
17354 for (const auto &I : RD->bases()) {
17355 const auto *Base =
17356 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
17357 if (Base->getNumVBases() == 0)
17358 continue;
17359 MarkVirtualMembersReferenced(Loc, Base);
17360 }
17361 }
17362
17363 /// SetIvarInitializers - This routine builds initialization ASTs for the
17364 /// Objective-C implementation whose ivars need be initialized.
SetIvarInitializers(ObjCImplementationDecl * ObjCImplementation)17365 void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
17366 if (!getLangOpts().CPlusPlus)
17367 return;
17368 if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
17369 SmallVector<ObjCIvarDecl*, 8> ivars;
17370 CollectIvarsToConstructOrDestruct(OID, ivars);
17371 if (ivars.empty())
17372 return;
17373 SmallVector<CXXCtorInitializer*, 32> AllToInit;
17374 for (unsigned i = 0; i < ivars.size(); i++) {
17375 FieldDecl *Field = ivars[i];
17376 if (Field->isInvalidDecl())
17377 continue;
17378
17379 CXXCtorInitializer *Member;
17380 InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
17381 InitializationKind InitKind =
17382 InitializationKind::CreateDefault(ObjCImplementation->getLocation());
17383
17384 InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
17385 ExprResult MemberInit =
17386 InitSeq.Perform(*this, InitEntity, InitKind, None);
17387 MemberInit = MaybeCreateExprWithCleanups(MemberInit);
17388 // Note, MemberInit could actually come back empty if no initialization
17389 // is required (e.g., because it would call a trivial default constructor)
17390 if (!MemberInit.get() || MemberInit.isInvalid())
17391 continue;
17392
17393 Member =
17394 new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
17395 SourceLocation(),
17396 MemberInit.getAs<Expr>(),
17397 SourceLocation());
17398 AllToInit.push_back(Member);
17399
17400 // Be sure that the destructor is accessible and is marked as referenced.
17401 if (const RecordType *RecordTy =
17402 Context.getBaseElementType(Field->getType())
17403 ->getAs<RecordType>()) {
17404 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
17405 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
17406 MarkFunctionReferenced(Field->getLocation(), Destructor);
17407 CheckDestructorAccess(Field->getLocation(), Destructor,
17408 PDiag(diag::err_access_dtor_ivar)
17409 << Context.getBaseElementType(Field->getType()));
17410 }
17411 }
17412 }
17413 ObjCImplementation->setIvarInitializers(Context,
17414 AllToInit.data(), AllToInit.size());
17415 }
17416 }
17417
17418 static
DelegatingCycleHelper(CXXConstructorDecl * Ctor,llvm::SmallPtrSet<CXXConstructorDecl *,4> & Valid,llvm::SmallPtrSet<CXXConstructorDecl *,4> & Invalid,llvm::SmallPtrSet<CXXConstructorDecl *,4> & Current,Sema & S)17419 void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
17420 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Valid,
17421 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Invalid,
17422 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Current,
17423 Sema &S) {
17424 if (Ctor->isInvalidDecl())
17425 return;
17426
17427 CXXConstructorDecl *Target = Ctor->getTargetConstructor();
17428
17429 // Target may not be determinable yet, for instance if this is a dependent
17430 // call in an uninstantiated template.
17431 if (Target) {
17432 const FunctionDecl *FNTarget = nullptr;
17433 (void)Target->hasBody(FNTarget);
17434 Target = const_cast<CXXConstructorDecl*>(
17435 cast_or_null<CXXConstructorDecl>(FNTarget));
17436 }
17437
17438 CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
17439 // Avoid dereferencing a null pointer here.
17440 *TCanonical = Target? Target->getCanonicalDecl() : nullptr;
17441
17442 if (!Current.insert(Canonical).second)
17443 return;
17444
17445 // We know that beyond here, we aren't chaining into a cycle.
17446 if (!Target || !Target->isDelegatingConstructor() ||
17447 Target->isInvalidDecl() || Valid.count(TCanonical)) {
17448 Valid.insert(Current.begin(), Current.end());
17449 Current.clear();
17450 // We've hit a cycle.
17451 } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
17452 Current.count(TCanonical)) {
17453 // If we haven't diagnosed this cycle yet, do so now.
17454 if (!Invalid.count(TCanonical)) {
17455 S.Diag((*Ctor->init_begin())->getSourceLocation(),
17456 diag::warn_delegating_ctor_cycle)
17457 << Ctor;
17458
17459 // Don't add a note for a function delegating directly to itself.
17460 if (TCanonical != Canonical)
17461 S.Diag(Target->getLocation(), diag::note_it_delegates_to);
17462
17463 CXXConstructorDecl *C = Target;
17464 while (C->getCanonicalDecl() != Canonical) {
17465 const FunctionDecl *FNTarget = nullptr;
17466 (void)C->getTargetConstructor()->hasBody(FNTarget);
17467 assert(FNTarget && "Ctor cycle through bodiless function");
17468
17469 C = const_cast<CXXConstructorDecl*>(
17470 cast<CXXConstructorDecl>(FNTarget));
17471 S.Diag(C->getLocation(), diag::note_which_delegates_to);
17472 }
17473 }
17474
17475 Invalid.insert(Current.begin(), Current.end());
17476 Current.clear();
17477 } else {
17478 DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
17479 }
17480 }
17481
17482
CheckDelegatingCtorCycles()17483 void Sema::CheckDelegatingCtorCycles() {
17484 llvm::SmallPtrSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
17485
17486 for (DelegatingCtorDeclsType::iterator
17487 I = DelegatingCtorDecls.begin(ExternalSource),
17488 E = DelegatingCtorDecls.end();
17489 I != E; ++I)
17490 DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
17491
17492 for (auto CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
17493 (*CI)->setInvalidDecl();
17494 }
17495
17496 namespace {
17497 /// AST visitor that finds references to the 'this' expression.
17498 class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
17499 Sema &S;
17500
17501 public:
FindCXXThisExpr(Sema & S)17502 explicit FindCXXThisExpr(Sema &S) : S(S) { }
17503
VisitCXXThisExpr(CXXThisExpr * E)17504 bool VisitCXXThisExpr(CXXThisExpr *E) {
17505 S.Diag(E->getLocation(), diag::err_this_static_member_func)
17506 << E->isImplicit();
17507 return false;
17508 }
17509 };
17510 }
17511
checkThisInStaticMemberFunctionType(CXXMethodDecl * Method)17512 bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
17513 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
17514 if (!TSInfo)
17515 return false;
17516
17517 TypeLoc TL = TSInfo->getTypeLoc();
17518 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
17519 if (!ProtoTL)
17520 return false;
17521
17522 // C++11 [expr.prim.general]p3:
17523 // [The expression this] shall not appear before the optional
17524 // cv-qualifier-seq and it shall not appear within the declaration of a
17525 // static member function (although its type and value category are defined
17526 // within a static member function as they are within a non-static member
17527 // function). [ Note: this is because declaration matching does not occur
17528 // until the complete declarator is known. - end note ]
17529 const FunctionProtoType *Proto = ProtoTL.getTypePtr();
17530 FindCXXThisExpr Finder(*this);
17531
17532 // If the return type came after the cv-qualifier-seq, check it now.
17533 if (Proto->hasTrailingReturn() &&
17534 !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc()))
17535 return true;
17536
17537 // Check the exception specification.
17538 if (checkThisInStaticMemberFunctionExceptionSpec(Method))
17539 return true;
17540
17541 // Check the trailing requires clause
17542 if (Expr *E = Method->getTrailingRequiresClause())
17543 if (!Finder.TraverseStmt(E))
17544 return true;
17545
17546 return checkThisInStaticMemberFunctionAttributes(Method);
17547 }
17548
checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl * Method)17549 bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
17550 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
17551 if (!TSInfo)
17552 return false;
17553
17554 TypeLoc TL = TSInfo->getTypeLoc();
17555 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
17556 if (!ProtoTL)
17557 return false;
17558
17559 const FunctionProtoType *Proto = ProtoTL.getTypePtr();
17560 FindCXXThisExpr Finder(*this);
17561
17562 switch (Proto->getExceptionSpecType()) {
17563 case EST_Unparsed:
17564 case EST_Uninstantiated:
17565 case EST_Unevaluated:
17566 case EST_BasicNoexcept:
17567 case EST_NoThrow:
17568 case EST_DynamicNone:
17569 case EST_MSAny:
17570 case EST_None:
17571 break;
17572
17573 case EST_DependentNoexcept:
17574 case EST_NoexceptFalse:
17575 case EST_NoexceptTrue:
17576 if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
17577 return true;
17578 LLVM_FALLTHROUGH;
17579
17580 case EST_Dynamic:
17581 for (const auto &E : Proto->exceptions()) {
17582 if (!Finder.TraverseType(E))
17583 return true;
17584 }
17585 break;
17586 }
17587
17588 return false;
17589 }
17590
checkThisInStaticMemberFunctionAttributes(CXXMethodDecl * Method)17591 bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
17592 FindCXXThisExpr Finder(*this);
17593
17594 // Check attributes.
17595 for (const auto *A : Method->attrs()) {
17596 // FIXME: This should be emitted by tblgen.
17597 Expr *Arg = nullptr;
17598 ArrayRef<Expr *> Args;
17599 if (const auto *G = dyn_cast<GuardedByAttr>(A))
17600 Arg = G->getArg();
17601 else if (const auto *G = dyn_cast<PtGuardedByAttr>(A))
17602 Arg = G->getArg();
17603 else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A))
17604 Args = llvm::makeArrayRef(AA->args_begin(), AA->args_size());
17605 else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A))
17606 Args = llvm::makeArrayRef(AB->args_begin(), AB->args_size());
17607 else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) {
17608 Arg = ETLF->getSuccessValue();
17609 Args = llvm::makeArrayRef(ETLF->args_begin(), ETLF->args_size());
17610 } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) {
17611 Arg = STLF->getSuccessValue();
17612 Args = llvm::makeArrayRef(STLF->args_begin(), STLF->args_size());
17613 } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A))
17614 Arg = LR->getArg();
17615 else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A))
17616 Args = llvm::makeArrayRef(LE->args_begin(), LE->args_size());
17617 else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A))
17618 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
17619 else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A))
17620 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
17621 else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A))
17622 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
17623 else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A))
17624 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
17625
17626 if (Arg && !Finder.TraverseStmt(Arg))
17627 return true;
17628
17629 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
17630 if (!Finder.TraverseStmt(Args[I]))
17631 return true;
17632 }
17633 }
17634
17635 return false;
17636 }
17637
checkExceptionSpecification(bool IsTopLevel,ExceptionSpecificationType EST,ArrayRef<ParsedType> DynamicExceptions,ArrayRef<SourceRange> DynamicExceptionRanges,Expr * NoexceptExpr,SmallVectorImpl<QualType> & Exceptions,FunctionProtoType::ExceptionSpecInfo & ESI)17638 void Sema::checkExceptionSpecification(
17639 bool IsTopLevel, ExceptionSpecificationType EST,
17640 ArrayRef<ParsedType> DynamicExceptions,
17641 ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr,
17642 SmallVectorImpl<QualType> &Exceptions,
17643 FunctionProtoType::ExceptionSpecInfo &ESI) {
17644 Exceptions.clear();
17645 ESI.Type = EST;
17646 if (EST == EST_Dynamic) {
17647 Exceptions.reserve(DynamicExceptions.size());
17648 for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
17649 // FIXME: Preserve type source info.
17650 QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
17651
17652 if (IsTopLevel) {
17653 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
17654 collectUnexpandedParameterPacks(ET, Unexpanded);
17655 if (!Unexpanded.empty()) {
17656 DiagnoseUnexpandedParameterPacks(
17657 DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType,
17658 Unexpanded);
17659 continue;
17660 }
17661 }
17662
17663 // Check that the type is valid for an exception spec, and
17664 // drop it if not.
17665 if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
17666 Exceptions.push_back(ET);
17667 }
17668 ESI.Exceptions = Exceptions;
17669 return;
17670 }
17671
17672 if (isComputedNoexcept(EST)) {
17673 assert((NoexceptExpr->isTypeDependent() ||
17674 NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
17675 Context.BoolTy) &&
17676 "Parser should have made sure that the expression is boolean");
17677 if (IsTopLevel && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
17678 ESI.Type = EST_BasicNoexcept;
17679 return;
17680 }
17681
17682 ESI.NoexceptExpr = NoexceptExpr;
17683 return;
17684 }
17685 }
17686
actOnDelayedExceptionSpecification(Decl * MethodD,ExceptionSpecificationType EST,SourceRange SpecificationRange,ArrayRef<ParsedType> DynamicExceptions,ArrayRef<SourceRange> DynamicExceptionRanges,Expr * NoexceptExpr)17687 void Sema::actOnDelayedExceptionSpecification(Decl *MethodD,
17688 ExceptionSpecificationType EST,
17689 SourceRange SpecificationRange,
17690 ArrayRef<ParsedType> DynamicExceptions,
17691 ArrayRef<SourceRange> DynamicExceptionRanges,
17692 Expr *NoexceptExpr) {
17693 if (!MethodD)
17694 return;
17695
17696 // Dig out the method we're referring to.
17697 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD))
17698 MethodD = FunTmpl->getTemplatedDecl();
17699
17700 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD);
17701 if (!Method)
17702 return;
17703
17704 // Check the exception specification.
17705 llvm::SmallVector<QualType, 4> Exceptions;
17706 FunctionProtoType::ExceptionSpecInfo ESI;
17707 checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions,
17708 DynamicExceptionRanges, NoexceptExpr, Exceptions,
17709 ESI);
17710
17711 // Update the exception specification on the function type.
17712 Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true);
17713
17714 if (Method->isStatic())
17715 checkThisInStaticMemberFunctionExceptionSpec(Method);
17716
17717 if (Method->isVirtual()) {
17718 // Check overrides, which we previously had to delay.
17719 for (const CXXMethodDecl *O : Method->overridden_methods())
17720 CheckOverridingFunctionExceptionSpec(Method, O);
17721 }
17722 }
17723
17724 /// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
17725 ///
HandleMSProperty(Scope * S,RecordDecl * Record,SourceLocation DeclStart,Declarator & D,Expr * BitWidth,InClassInitStyle InitStyle,AccessSpecifier AS,const ParsedAttr & MSPropertyAttr)17726 MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
17727 SourceLocation DeclStart, Declarator &D,
17728 Expr *BitWidth,
17729 InClassInitStyle InitStyle,
17730 AccessSpecifier AS,
17731 const ParsedAttr &MSPropertyAttr) {
17732 IdentifierInfo *II = D.getIdentifier();
17733 if (!II) {
17734 Diag(DeclStart, diag::err_anonymous_property);
17735 return nullptr;
17736 }
17737 SourceLocation Loc = D.getIdentifierLoc();
17738
17739 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
17740 QualType T = TInfo->getType();
17741 if (getLangOpts().CPlusPlus) {
17742 CheckExtraCXXDefaultArguments(D);
17743
17744 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
17745 UPPC_DataMemberType)) {
17746 D.setInvalidType();
17747 T = Context.IntTy;
17748 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
17749 }
17750 }
17751
17752 DiagnoseFunctionSpecifiers(D.getDeclSpec());
17753
17754 if (D.getDeclSpec().isInlineSpecified())
17755 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
17756 << getLangOpts().CPlusPlus17;
17757 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
17758 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
17759 diag::err_invalid_thread)
17760 << DeclSpec::getSpecifierName(TSCS);
17761
17762 // Check to see if this name was declared as a member previously
17763 NamedDecl *PrevDecl = nullptr;
17764 LookupResult Previous(*this, II, Loc, LookupMemberName,
17765 ForVisibleRedeclaration);
17766 LookupName(Previous, S);
17767 switch (Previous.getResultKind()) {
17768 case LookupResult::Found:
17769 case LookupResult::FoundUnresolvedValue:
17770 PrevDecl = Previous.getAsSingle<NamedDecl>();
17771 break;
17772
17773 case LookupResult::FoundOverloaded:
17774 PrevDecl = Previous.getRepresentativeDecl();
17775 break;
17776
17777 case LookupResult::NotFound:
17778 case LookupResult::NotFoundInCurrentInstantiation:
17779 case LookupResult::Ambiguous:
17780 break;
17781 }
17782
17783 if (PrevDecl && PrevDecl->isTemplateParameter()) {
17784 // Maybe we will complain about the shadowed template parameter.
17785 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
17786 // Just pretend that we didn't see the previous declaration.
17787 PrevDecl = nullptr;
17788 }
17789
17790 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
17791 PrevDecl = nullptr;
17792
17793 SourceLocation TSSL = D.getBeginLoc();
17794 MSPropertyDecl *NewPD =
17795 MSPropertyDecl::Create(Context, Record, Loc, II, T, TInfo, TSSL,
17796 MSPropertyAttr.getPropertyDataGetter(),
17797 MSPropertyAttr.getPropertyDataSetter());
17798 ProcessDeclAttributes(TUScope, NewPD, D);
17799 NewPD->setAccess(AS);
17800
17801 if (NewPD->isInvalidDecl())
17802 Record->setInvalidDecl();
17803
17804 if (D.getDeclSpec().isModulePrivateSpecified())
17805 NewPD->setModulePrivate();
17806
17807 if (NewPD->isInvalidDecl() && PrevDecl) {
17808 // Don't introduce NewFD into scope; there's already something
17809 // with the same name in the same scope.
17810 } else if (II) {
17811 PushOnScopeChains(NewPD, S);
17812 } else
17813 Record->addDecl(NewPD);
17814
17815 return NewPD;
17816 }
17817
ActOnStartFunctionDeclarationDeclarator(Declarator & Declarator,unsigned TemplateParameterDepth)17818 void Sema::ActOnStartFunctionDeclarationDeclarator(
17819 Declarator &Declarator, unsigned TemplateParameterDepth) {
17820 auto &Info = InventedParameterInfos.emplace_back();
17821 TemplateParameterList *ExplicitParams = nullptr;
17822 ArrayRef<TemplateParameterList *> ExplicitLists =
17823 Declarator.getTemplateParameterLists();
17824 if (!ExplicitLists.empty()) {
17825 bool IsMemberSpecialization, IsInvalid;
17826 ExplicitParams = MatchTemplateParametersToScopeSpecifier(
17827 Declarator.getBeginLoc(), Declarator.getIdentifierLoc(),
17828 Declarator.getCXXScopeSpec(), /*TemplateId=*/nullptr,
17829 ExplicitLists, /*IsFriend=*/false, IsMemberSpecialization, IsInvalid,
17830 /*SuppressDiagnostic=*/true);
17831 }
17832 if (ExplicitParams) {
17833 Info.AutoTemplateParameterDepth = ExplicitParams->getDepth();
17834 for (NamedDecl *Param : *ExplicitParams)
17835 Info.TemplateParams.push_back(Param);
17836 Info.NumExplicitTemplateParams = ExplicitParams->size();
17837 } else {
17838 Info.AutoTemplateParameterDepth = TemplateParameterDepth;
17839 Info.NumExplicitTemplateParams = 0;
17840 }
17841 }
17842
ActOnFinishFunctionDeclarationDeclarator(Declarator & Declarator)17843 void Sema::ActOnFinishFunctionDeclarationDeclarator(Declarator &Declarator) {
17844 auto &FSI = InventedParameterInfos.back();
17845 if (FSI.TemplateParams.size() > FSI.NumExplicitTemplateParams) {
17846 if (FSI.NumExplicitTemplateParams != 0) {
17847 TemplateParameterList *ExplicitParams =
17848 Declarator.getTemplateParameterLists().back();
17849 Declarator.setInventedTemplateParameterList(
17850 TemplateParameterList::Create(
17851 Context, ExplicitParams->getTemplateLoc(),
17852 ExplicitParams->getLAngleLoc(), FSI.TemplateParams,
17853 ExplicitParams->getRAngleLoc(),
17854 ExplicitParams->getRequiresClause()));
17855 } else {
17856 Declarator.setInventedTemplateParameterList(
17857 TemplateParameterList::Create(
17858 Context, SourceLocation(), SourceLocation(), FSI.TemplateParams,
17859 SourceLocation(), /*RequiresClause=*/nullptr));
17860 }
17861 }
17862 InventedParameterInfos.pop_back();
17863 }
17864