• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for declarations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/CommentDiagnostic.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/EvaluatedExprVisitor.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/NonTrivialTypeVisitor.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/PartialDiagnostic.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
33 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
34 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
35 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
36 #include "clang/Sema/CXXFieldCollector.h"
37 #include "clang/Sema/DeclSpec.h"
38 #include "clang/Sema/DelayedDiagnostic.h"
39 #include "clang/Sema/Initialization.h"
40 #include "clang/Sema/Lookup.h"
41 #include "clang/Sema/ParsedTemplate.h"
42 #include "clang/Sema/Scope.h"
43 #include "clang/Sema/ScopeInfo.h"
44 #include "clang/Sema/SemaInternal.h"
45 #include "clang/Sema/Template.h"
46 #include "llvm/ADT/SmallString.h"
47 #include "llvm/ADT/Triple.h"
48 #include <algorithm>
49 #include <cstring>
50 #include <functional>
51 #include <unordered_map>
52 
53 using namespace clang;
54 using namespace sema;
55 
ConvertDeclToDeclGroup(Decl * Ptr,Decl * OwnedType)56 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
57   if (OwnedType) {
58     Decl *Group[2] = { OwnedType, Ptr };
59     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
60   }
61 
62   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
63 }
64 
65 namespace {
66 
67 class TypeNameValidatorCCC final : public CorrectionCandidateCallback {
68  public:
TypeNameValidatorCCC(bool AllowInvalid,bool WantClass=false,bool AllowTemplates=false,bool AllowNonTemplates=true)69    TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
70                         bool AllowTemplates = false,
71                         bool AllowNonTemplates = true)
72        : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
73          AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
74      WantExpressionKeywords = false;
75      WantCXXNamedCasts = false;
76      WantRemainingKeywords = false;
77   }
78 
ValidateCandidate(const TypoCorrection & candidate)79   bool ValidateCandidate(const TypoCorrection &candidate) override {
80     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
81       if (!AllowInvalidDecl && ND->isInvalidDecl())
82         return false;
83 
84       if (getAsTypeTemplateDecl(ND))
85         return AllowTemplates;
86 
87       bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
88       if (!IsType)
89         return false;
90 
91       if (AllowNonTemplates)
92         return true;
93 
94       // An injected-class-name of a class template (specialization) is valid
95       // as a template or as a non-template.
96       if (AllowTemplates) {
97         auto *RD = dyn_cast<CXXRecordDecl>(ND);
98         if (!RD || !RD->isInjectedClassName())
99           return false;
100         RD = cast<CXXRecordDecl>(RD->getDeclContext());
101         return RD->getDescribedClassTemplate() ||
102                isa<ClassTemplateSpecializationDecl>(RD);
103       }
104 
105       return false;
106     }
107 
108     return !WantClassName && candidate.isKeyword();
109   }
110 
clone()111   std::unique_ptr<CorrectionCandidateCallback> clone() override {
112     return std::make_unique<TypeNameValidatorCCC>(*this);
113   }
114 
115  private:
116   bool AllowInvalidDecl;
117   bool WantClassName;
118   bool AllowTemplates;
119   bool AllowNonTemplates;
120 };
121 
122 } // end anonymous namespace
123 
124 /// Determine whether the token kind starts a simple-type-specifier.
isSimpleTypeSpecifier(tok::TokenKind Kind) const125 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
126   switch (Kind) {
127   // FIXME: Take into account the current language when deciding whether a
128   // token kind is a valid type specifier
129   case tok::kw_short:
130   case tok::kw_long:
131   case tok::kw___int64:
132   case tok::kw___int128:
133   case tok::kw_signed:
134   case tok::kw_unsigned:
135   case tok::kw_void:
136   case tok::kw_char:
137   case tok::kw_int:
138   case tok::kw_half:
139   case tok::kw_float:
140   case tok::kw_double:
141   case tok::kw___bf16:
142   case tok::kw__Float16:
143   case tok::kw___float128:
144   case tok::kw_wchar_t:
145   case tok::kw_bool:
146   case tok::kw___underlying_type:
147   case tok::kw___auto_type:
148     return true;
149 
150   case tok::annot_typename:
151   case tok::kw_char16_t:
152   case tok::kw_char32_t:
153   case tok::kw_typeof:
154   case tok::annot_decltype:
155   case tok::kw_decltype:
156     return getLangOpts().CPlusPlus;
157 
158   case tok::kw_char8_t:
159     return getLangOpts().Char8;
160 
161   default:
162     break;
163   }
164 
165   return false;
166 }
167 
168 namespace {
169 enum class UnqualifiedTypeNameLookupResult {
170   NotFound,
171   FoundNonType,
172   FoundType
173 };
174 } // end anonymous namespace
175 
176 /// Tries to perform unqualified lookup of the type decls in bases for
177 /// dependent class.
178 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
179 /// type decl, \a FoundType if only type decls are found.
180 static UnqualifiedTypeNameLookupResult
lookupUnqualifiedTypeNameInBase(Sema & S,const IdentifierInfo & II,SourceLocation NameLoc,const CXXRecordDecl * RD)181 lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
182                                 SourceLocation NameLoc,
183                                 const CXXRecordDecl *RD) {
184   if (!RD->hasDefinition())
185     return UnqualifiedTypeNameLookupResult::NotFound;
186   // Look for type decls in base classes.
187   UnqualifiedTypeNameLookupResult FoundTypeDecl =
188       UnqualifiedTypeNameLookupResult::NotFound;
189   for (const auto &Base : RD->bases()) {
190     const CXXRecordDecl *BaseRD = nullptr;
191     if (auto *BaseTT = Base.getType()->getAs<TagType>())
192       BaseRD = BaseTT->getAsCXXRecordDecl();
193     else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
194       // Look for type decls in dependent base classes that have known primary
195       // templates.
196       if (!TST || !TST->isDependentType())
197         continue;
198       auto *TD = TST->getTemplateName().getAsTemplateDecl();
199       if (!TD)
200         continue;
201       if (auto *BasePrimaryTemplate =
202           dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
203         if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
204           BaseRD = BasePrimaryTemplate;
205         else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
206           if (const ClassTemplatePartialSpecializationDecl *PS =
207                   CTD->findPartialSpecialization(Base.getType()))
208             if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
209               BaseRD = PS;
210         }
211       }
212     }
213     if (BaseRD) {
214       for (NamedDecl *ND : BaseRD->lookup(&II)) {
215         if (!isa<TypeDecl>(ND))
216           return UnqualifiedTypeNameLookupResult::FoundNonType;
217         FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
218       }
219       if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
220         switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
221         case UnqualifiedTypeNameLookupResult::FoundNonType:
222           return UnqualifiedTypeNameLookupResult::FoundNonType;
223         case UnqualifiedTypeNameLookupResult::FoundType:
224           FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
225           break;
226         case UnqualifiedTypeNameLookupResult::NotFound:
227           break;
228         }
229       }
230     }
231   }
232 
233   return FoundTypeDecl;
234 }
235 
recoverFromTypeInKnownDependentBase(Sema & S,const IdentifierInfo & II,SourceLocation NameLoc)236 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
237                                                       const IdentifierInfo &II,
238                                                       SourceLocation NameLoc) {
239   // Lookup in the parent class template context, if any.
240   const CXXRecordDecl *RD = nullptr;
241   UnqualifiedTypeNameLookupResult FoundTypeDecl =
242       UnqualifiedTypeNameLookupResult::NotFound;
243   for (DeclContext *DC = S.CurContext;
244        DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
245        DC = DC->getParent()) {
246     // Look for type decls in dependent base classes that have known primary
247     // templates.
248     RD = dyn_cast<CXXRecordDecl>(DC);
249     if (RD && RD->getDescribedClassTemplate())
250       FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
251   }
252   if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
253     return nullptr;
254 
255   // We found some types in dependent base classes.  Recover as if the user
256   // wrote 'typename MyClass::II' instead of 'II'.  We'll fully resolve the
257   // lookup during template instantiation.
258   S.Diag(NameLoc, diag::ext_found_in_dependent_base) << &II;
259 
260   ASTContext &Context = S.Context;
261   auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
262                                           cast<Type>(Context.getRecordType(RD)));
263   QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
264 
265   CXXScopeSpec SS;
266   SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
267 
268   TypeLocBuilder Builder;
269   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
270   DepTL.setNameLoc(NameLoc);
271   DepTL.setElaboratedKeywordLoc(SourceLocation());
272   DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
273   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
274 }
275 
276 /// If the identifier refers to a type name within this scope,
277 /// return the declaration of that type.
278 ///
279 /// This routine performs ordinary name lookup of the identifier II
280 /// within the given scope, with optional C++ scope specifier SS, to
281 /// determine whether the name refers to a type. If so, returns an
282 /// opaque pointer (actually a QualType) corresponding to that
283 /// type. Otherwise, returns NULL.
getTypeName(const IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec * SS,bool isClassName,bool HasTrailingDot,ParsedType ObjectTypePtr,bool IsCtorOrDtorName,bool WantNontrivialTypeSourceInfo,bool IsClassTemplateDeductionContext,IdentifierInfo ** CorrectedII)284 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
285                              Scope *S, CXXScopeSpec *SS,
286                              bool isClassName, bool HasTrailingDot,
287                              ParsedType ObjectTypePtr,
288                              bool IsCtorOrDtorName,
289                              bool WantNontrivialTypeSourceInfo,
290                              bool IsClassTemplateDeductionContext,
291                              IdentifierInfo **CorrectedII) {
292   // FIXME: Consider allowing this outside C++1z mode as an extension.
293   bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
294                               getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
295                               !isClassName && !HasTrailingDot;
296 
297   // Determine where we will perform name lookup.
298   DeclContext *LookupCtx = nullptr;
299   if (ObjectTypePtr) {
300     QualType ObjectType = ObjectTypePtr.get();
301     if (ObjectType->isRecordType())
302       LookupCtx = computeDeclContext(ObjectType);
303   } else if (SS && SS->isNotEmpty()) {
304     LookupCtx = computeDeclContext(*SS, false);
305 
306     if (!LookupCtx) {
307       if (isDependentScopeSpecifier(*SS)) {
308         // C++ [temp.res]p3:
309         //   A qualified-id that refers to a type and in which the
310         //   nested-name-specifier depends on a template-parameter (14.6.2)
311         //   shall be prefixed by the keyword typename to indicate that the
312         //   qualified-id denotes a type, forming an
313         //   elaborated-type-specifier (7.1.5.3).
314         //
315         // We therefore do not perform any name lookup if the result would
316         // refer to a member of an unknown specialization.
317         if (!isClassName && !IsCtorOrDtorName)
318           return nullptr;
319 
320         // We know from the grammar that this name refers to a type,
321         // so build a dependent node to describe the type.
322         if (WantNontrivialTypeSourceInfo)
323           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
324 
325         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
326         QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
327                                        II, NameLoc);
328         return ParsedType::make(T);
329       }
330 
331       return nullptr;
332     }
333 
334     if (!LookupCtx->isDependentContext() &&
335         RequireCompleteDeclContext(*SS, LookupCtx))
336       return nullptr;
337   }
338 
339   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
340   // lookup for class-names.
341   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
342                                       LookupOrdinaryName;
343   LookupResult Result(*this, &II, NameLoc, Kind);
344   if (LookupCtx) {
345     // Perform "qualified" name lookup into the declaration context we
346     // computed, which is either the type of the base of a member access
347     // expression or the declaration context associated with a prior
348     // nested-name-specifier.
349     LookupQualifiedName(Result, LookupCtx);
350 
351     if (ObjectTypePtr && Result.empty()) {
352       // C++ [basic.lookup.classref]p3:
353       //   If the unqualified-id is ~type-name, the type-name is looked up
354       //   in the context of the entire postfix-expression. If the type T of
355       //   the object expression is of a class type C, the type-name is also
356       //   looked up in the scope of class C. At least one of the lookups shall
357       //   find a name that refers to (possibly cv-qualified) T.
358       LookupName(Result, S);
359     }
360   } else {
361     // Perform unqualified name lookup.
362     LookupName(Result, S);
363 
364     // For unqualified lookup in a class template in MSVC mode, look into
365     // dependent base classes where the primary class template is known.
366     if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
367       if (ParsedType TypeInBase =
368               recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
369         return TypeInBase;
370     }
371   }
372 
373   NamedDecl *IIDecl = nullptr;
374   switch (Result.getResultKind()) {
375   case LookupResult::NotFound:
376   case LookupResult::NotFoundInCurrentInstantiation:
377     if (CorrectedII) {
378       TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName,
379                                AllowDeducedTemplate);
380       TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind,
381                                               S, SS, CCC, CTK_ErrorRecovery);
382       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
383       TemplateTy Template;
384       bool MemberOfUnknownSpecialization;
385       UnqualifiedId TemplateName;
386       TemplateName.setIdentifier(NewII, NameLoc);
387       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
388       CXXScopeSpec NewSS, *NewSSPtr = SS;
389       if (SS && NNS) {
390         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
391         NewSSPtr = &NewSS;
392       }
393       if (Correction && (NNS || NewII != &II) &&
394           // Ignore a correction to a template type as the to-be-corrected
395           // identifier is not a template (typo correction for template names
396           // is handled elsewhere).
397           !(getLangOpts().CPlusPlus && NewSSPtr &&
398             isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
399                            Template, MemberOfUnknownSpecialization))) {
400         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
401                                     isClassName, HasTrailingDot, ObjectTypePtr,
402                                     IsCtorOrDtorName,
403                                     WantNontrivialTypeSourceInfo,
404                                     IsClassTemplateDeductionContext);
405         if (Ty) {
406           diagnoseTypo(Correction,
407                        PDiag(diag::err_unknown_type_or_class_name_suggest)
408                          << Result.getLookupName() << isClassName);
409           if (SS && NNS)
410             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
411           *CorrectedII = NewII;
412           return Ty;
413         }
414       }
415     }
416     // If typo correction failed or was not performed, fall through
417     LLVM_FALLTHROUGH;
418   case LookupResult::FoundOverloaded:
419   case LookupResult::FoundUnresolvedValue:
420     Result.suppressDiagnostics();
421     return nullptr;
422 
423   case LookupResult::Ambiguous:
424     // Recover from type-hiding ambiguities by hiding the type.  We'll
425     // do the lookup again when looking for an object, and we can
426     // diagnose the error then.  If we don't do this, then the error
427     // about hiding the type will be immediately followed by an error
428     // that only makes sense if the identifier was treated like a type.
429     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
430       Result.suppressDiagnostics();
431       return nullptr;
432     }
433 
434     // Look to see if we have a type anywhere in the list of results.
435     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
436          Res != ResEnd; ++Res) {
437       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res) ||
438           (AllowDeducedTemplate && getAsTypeTemplateDecl(*Res))) {
439         if (!IIDecl ||
440             (*Res)->getLocation().getRawEncoding() <
441               IIDecl->getLocation().getRawEncoding())
442           IIDecl = *Res;
443       }
444     }
445 
446     if (!IIDecl) {
447       // None of the entities we found is a type, so there is no way
448       // to even assume that the result is a type. In this case, don't
449       // complain about the ambiguity. The parser will either try to
450       // perform this lookup again (e.g., as an object name), which
451       // will produce the ambiguity, or will complain that it expected
452       // a type name.
453       Result.suppressDiagnostics();
454       return nullptr;
455     }
456 
457     // We found a type within the ambiguous lookup; diagnose the
458     // ambiguity and then return that type. This might be the right
459     // answer, or it might not be, but it suppresses any attempt to
460     // perform the name lookup again.
461     break;
462 
463   case LookupResult::Found:
464     IIDecl = Result.getFoundDecl();
465     break;
466   }
467 
468   assert(IIDecl && "Didn't find decl");
469 
470   QualType T;
471   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
472     // C++ [class.qual]p2: A lookup that would find the injected-class-name
473     // instead names the constructors of the class, except when naming a class.
474     // This is ill-formed when we're not actually forming a ctor or dtor name.
475     auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
476     auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
477     if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
478         FoundRD->isInjectedClassName() &&
479         declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
480       Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
481           << &II << /*Type*/1;
482 
483     DiagnoseUseOfDecl(IIDecl, NameLoc);
484 
485     T = Context.getTypeDeclType(TD);
486     MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
487   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
488     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
489     if (!HasTrailingDot)
490       T = Context.getObjCInterfaceType(IDecl);
491   } else if (AllowDeducedTemplate) {
492     if (auto *TD = getAsTypeTemplateDecl(IIDecl))
493       T = Context.getDeducedTemplateSpecializationType(TemplateName(TD),
494                                                        QualType(), false);
495   }
496 
497   if (T.isNull()) {
498     // If it's not plausibly a type, suppress diagnostics.
499     Result.suppressDiagnostics();
500     return nullptr;
501   }
502 
503   // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
504   // constructor or destructor name (in such a case, the scope specifier
505   // will be attached to the enclosing Expr or Decl node).
506   if (SS && SS->isNotEmpty() && !IsCtorOrDtorName &&
507       !isa<ObjCInterfaceDecl>(IIDecl)) {
508     if (WantNontrivialTypeSourceInfo) {
509       // Construct a type with type-source information.
510       TypeLocBuilder Builder;
511       Builder.pushTypeSpec(T).setNameLoc(NameLoc);
512 
513       T = getElaboratedType(ETK_None, *SS, T);
514       ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
515       ElabTL.setElaboratedKeywordLoc(SourceLocation());
516       ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
517       return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
518     } else {
519       T = getElaboratedType(ETK_None, *SS, T);
520     }
521   }
522 
523   return ParsedType::make(T);
524 }
525 
526 // Builds a fake NNS for the given decl context.
527 static NestedNameSpecifier *
synthesizeCurrentNestedNameSpecifier(ASTContext & Context,DeclContext * DC)528 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
529   for (;; DC = DC->getLookupParent()) {
530     DC = DC->getPrimaryContext();
531     auto *ND = dyn_cast<NamespaceDecl>(DC);
532     if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
533       return NestedNameSpecifier::Create(Context, nullptr, ND);
534     else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
535       return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
536                                          RD->getTypeForDecl());
537     else if (isa<TranslationUnitDecl>(DC))
538       return NestedNameSpecifier::GlobalSpecifier(Context);
539   }
540   llvm_unreachable("something isn't in TU scope?");
541 }
542 
543 /// Find the parent class with dependent bases of the innermost enclosing method
544 /// context. Do not look for enclosing CXXRecordDecls directly, or we will end
545 /// up allowing unqualified dependent type names at class-level, which MSVC
546 /// correctly rejects.
547 static const CXXRecordDecl *
findRecordWithDependentBasesOfEnclosingMethod(const DeclContext * DC)548 findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
549   for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
550     DC = DC->getPrimaryContext();
551     if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
552       if (MD->getParent()->hasAnyDependentBases())
553         return MD->getParent();
554   }
555   return nullptr;
556 }
557 
ActOnMSVCUnknownTypeName(const IdentifierInfo & II,SourceLocation NameLoc,bool IsTemplateTypeArg)558 ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
559                                           SourceLocation NameLoc,
560                                           bool IsTemplateTypeArg) {
561   assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode");
562 
563   NestedNameSpecifier *NNS = nullptr;
564   if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
565     // If we weren't able to parse a default template argument, delay lookup
566     // until instantiation time by making a non-dependent DependentTypeName. We
567     // pretend we saw a NestedNameSpecifier referring to the current scope, and
568     // lookup is retried.
569     // FIXME: This hurts our diagnostic quality, since we get errors like "no
570     // type named 'Foo' in 'current_namespace'" when the user didn't write any
571     // name specifiers.
572     NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
573     Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
574   } else if (const CXXRecordDecl *RD =
575                  findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
576     // Build a DependentNameType that will perform lookup into RD at
577     // instantiation time.
578     NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
579                                       RD->getTypeForDecl());
580 
581     // Diagnose that this identifier was undeclared, and retry the lookup during
582     // template instantiation.
583     Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
584                                                                       << RD;
585   } else {
586     // This is not a situation that we should recover from.
587     return ParsedType();
588   }
589 
590   QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
591 
592   // Build type location information.  We synthesized the qualifier, so we have
593   // to build a fake NestedNameSpecifierLoc.
594   NestedNameSpecifierLocBuilder NNSLocBuilder;
595   NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
596   NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
597 
598   TypeLocBuilder Builder;
599   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
600   DepTL.setNameLoc(NameLoc);
601   DepTL.setElaboratedKeywordLoc(SourceLocation());
602   DepTL.setQualifierLoc(QualifierLoc);
603   return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
604 }
605 
606 /// isTagName() - This method is called *for error recovery purposes only*
607 /// to determine if the specified name is a valid tag name ("struct foo").  If
608 /// so, this returns the TST for the tag corresponding to it (TST_enum,
609 /// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
610 /// cases in C where the user forgot to specify the tag.
isTagName(IdentifierInfo & II,Scope * S)611 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
612   // Do a tag name lookup in this scope.
613   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
614   LookupName(R, S, false);
615   R.suppressDiagnostics();
616   if (R.getResultKind() == LookupResult::Found)
617     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
618       switch (TD->getTagKind()) {
619       case TTK_Struct: return DeclSpec::TST_struct;
620       case TTK_Interface: return DeclSpec::TST_interface;
621       case TTK_Union:  return DeclSpec::TST_union;
622       case TTK_Class:  return DeclSpec::TST_class;
623       case TTK_Enum:   return DeclSpec::TST_enum;
624       }
625     }
626 
627   return DeclSpec::TST_unspecified;
628 }
629 
630 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
631 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
632 /// then downgrade the missing typename error to a warning.
633 /// This is needed for MSVC compatibility; Example:
634 /// @code
635 /// template<class T> class A {
636 /// public:
637 ///   typedef int TYPE;
638 /// };
639 /// template<class T> class B : public A<T> {
640 /// public:
641 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
642 /// };
643 /// @endcode
isMicrosoftMissingTypename(const CXXScopeSpec * SS,Scope * S)644 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
645   if (CurContext->isRecord()) {
646     if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
647       return true;
648 
649     const Type *Ty = SS->getScopeRep()->getAsType();
650 
651     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
652     for (const auto &Base : RD->bases())
653       if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
654         return true;
655     return S->isFunctionPrototypeScope();
656   }
657   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
658 }
659 
DiagnoseUnknownTypeName(IdentifierInfo * & II,SourceLocation IILoc,Scope * S,CXXScopeSpec * SS,ParsedType & SuggestedType,bool IsTemplateName)660 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
661                                    SourceLocation IILoc,
662                                    Scope *S,
663                                    CXXScopeSpec *SS,
664                                    ParsedType &SuggestedType,
665                                    bool IsTemplateName) {
666   // Don't report typename errors for editor placeholders.
667   if (II->isEditorPlaceholder())
668     return;
669   // We don't have anything to suggest (yet).
670   SuggestedType = nullptr;
671 
672   // There may have been a typo in the name of the type. Look up typo
673   // results, in case we have something that we can suggest.
674   TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false,
675                            /*AllowTemplates=*/IsTemplateName,
676                            /*AllowNonTemplates=*/!IsTemplateName);
677   if (TypoCorrection Corrected =
678           CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
679                       CCC, CTK_ErrorRecovery)) {
680     // FIXME: Support error recovery for the template-name case.
681     bool CanRecover = !IsTemplateName;
682     if (Corrected.isKeyword()) {
683       // We corrected to a keyword.
684       diagnoseTypo(Corrected,
685                    PDiag(IsTemplateName ? diag::err_no_template_suggest
686                                         : diag::err_unknown_typename_suggest)
687                        << II);
688       II = Corrected.getCorrectionAsIdentifierInfo();
689     } else {
690       // We found a similarly-named type or interface; suggest that.
691       if (!SS || !SS->isSet()) {
692         diagnoseTypo(Corrected,
693                      PDiag(IsTemplateName ? diag::err_no_template_suggest
694                                           : diag::err_unknown_typename_suggest)
695                          << II, CanRecover);
696       } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
697         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
698         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
699                                 II->getName().equals(CorrectedStr);
700         diagnoseTypo(Corrected,
701                      PDiag(IsTemplateName
702                                ? diag::err_no_member_template_suggest
703                                : diag::err_unknown_nested_typename_suggest)
704                          << II << DC << DroppedSpecifier << SS->getRange(),
705                      CanRecover);
706       } else {
707         llvm_unreachable("could not have corrected a typo here");
708       }
709 
710       if (!CanRecover)
711         return;
712 
713       CXXScopeSpec tmpSS;
714       if (Corrected.getCorrectionSpecifier())
715         tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
716                           SourceRange(IILoc));
717       // FIXME: Support class template argument deduction here.
718       SuggestedType =
719           getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
720                       tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
721                       /*IsCtorOrDtorName=*/false,
722                       /*WantNontrivialTypeSourceInfo=*/true);
723     }
724     return;
725   }
726 
727   if (getLangOpts().CPlusPlus && !IsTemplateName) {
728     // See if II is a class template that the user forgot to pass arguments to.
729     UnqualifiedId Name;
730     Name.setIdentifier(II, IILoc);
731     CXXScopeSpec EmptySS;
732     TemplateTy TemplateResult;
733     bool MemberOfUnknownSpecialization;
734     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
735                        Name, nullptr, true, TemplateResult,
736                        MemberOfUnknownSpecialization) == TNK_Type_template) {
737       diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc);
738       return;
739     }
740   }
741 
742   // FIXME: Should we move the logic that tries to recover from a missing tag
743   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
744 
745   if (!SS || (!SS->isSet() && !SS->isInvalid()))
746     Diag(IILoc, IsTemplateName ? diag::err_no_template
747                                : diag::err_unknown_typename)
748         << II;
749   else if (DeclContext *DC = computeDeclContext(*SS, false))
750     Diag(IILoc, IsTemplateName ? diag::err_no_member_template
751                                : diag::err_typename_nested_not_found)
752         << II << DC << SS->getRange();
753   else if (SS->isValid() && SS->getScopeRep()->containsErrors()) {
754     SuggestedType =
755         ActOnTypenameType(S, SourceLocation(), *SS, *II, IILoc).get();
756   } else if (isDependentScopeSpecifier(*SS)) {
757     unsigned DiagID = diag::err_typename_missing;
758     if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
759       DiagID = diag::ext_typename_missing;
760 
761     Diag(SS->getRange().getBegin(), DiagID)
762       << SS->getScopeRep() << II->getName()
763       << SourceRange(SS->getRange().getBegin(), IILoc)
764       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
765     SuggestedType = ActOnTypenameType(S, SourceLocation(),
766                                       *SS, *II, IILoc).get();
767   } else {
768     assert(SS && SS->isInvalid() &&
769            "Invalid scope specifier has already been diagnosed");
770   }
771 }
772 
773 /// Determine whether the given result set contains either a type name
774 /// or
isResultTypeOrTemplate(LookupResult & R,const Token & NextToken)775 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
776   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
777                        NextToken.is(tok::less);
778 
779   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
780     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
781       return true;
782 
783     if (CheckTemplate && isa<TemplateDecl>(*I))
784       return true;
785   }
786 
787   return false;
788 }
789 
isTagTypeWithMissingTag(Sema & SemaRef,LookupResult & Result,Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc)790 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
791                                     Scope *S, CXXScopeSpec &SS,
792                                     IdentifierInfo *&Name,
793                                     SourceLocation NameLoc) {
794   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
795   SemaRef.LookupParsedName(R, S, &SS);
796   if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
797     StringRef FixItTagName;
798     switch (Tag->getTagKind()) {
799       case TTK_Class:
800         FixItTagName = "class ";
801         break;
802 
803       case TTK_Enum:
804         FixItTagName = "enum ";
805         break;
806 
807       case TTK_Struct:
808         FixItTagName = "struct ";
809         break;
810 
811       case TTK_Interface:
812         FixItTagName = "__interface ";
813         break;
814 
815       case TTK_Union:
816         FixItTagName = "union ";
817         break;
818     }
819 
820     StringRef TagName = FixItTagName.drop_back();
821     SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
822       << Name << TagName << SemaRef.getLangOpts().CPlusPlus
823       << FixItHint::CreateInsertion(NameLoc, FixItTagName);
824 
825     for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
826          I != IEnd; ++I)
827       SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
828         << Name << TagName;
829 
830     // Replace lookup results with just the tag decl.
831     Result.clear(Sema::LookupTagName);
832     SemaRef.LookupParsedName(Result, S, &SS);
833     return true;
834   }
835 
836   return false;
837 }
838 
839 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
buildNestedType(Sema & S,CXXScopeSpec & SS,QualType T,SourceLocation NameLoc)840 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
841                                   QualType T, SourceLocation NameLoc) {
842   ASTContext &Context = S.Context;
843 
844   TypeLocBuilder Builder;
845   Builder.pushTypeSpec(T).setNameLoc(NameLoc);
846 
847   T = S.getElaboratedType(ETK_None, SS, T);
848   ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
849   ElabTL.setElaboratedKeywordLoc(SourceLocation());
850   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
851   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
852 }
853 
ClassifyName(Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc,const Token & NextToken,CorrectionCandidateCallback * CCC)854 Sema::NameClassification Sema::ClassifyName(Scope *S, CXXScopeSpec &SS,
855                                             IdentifierInfo *&Name,
856                                             SourceLocation NameLoc,
857                                             const Token &NextToken,
858                                             CorrectionCandidateCallback *CCC) {
859   DeclarationNameInfo NameInfo(Name, NameLoc);
860   ObjCMethodDecl *CurMethod = getCurMethodDecl();
861 
862   assert(NextToken.isNot(tok::coloncolon) &&
863          "parse nested name specifiers before calling ClassifyName");
864   if (getLangOpts().CPlusPlus && SS.isSet() &&
865       isCurrentClassName(*Name, S, &SS)) {
866     // Per [class.qual]p2, this names the constructors of SS, not the
867     // injected-class-name. We don't have a classification for that.
868     // There's not much point caching this result, since the parser
869     // will reject it later.
870     return NameClassification::Unknown();
871   }
872 
873   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
874   LookupParsedName(Result, S, &SS, !CurMethod);
875 
876   if (SS.isInvalid())
877     return NameClassification::Error();
878 
879   // For unqualified lookup in a class template in MSVC mode, look into
880   // dependent base classes where the primary class template is known.
881   if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
882     if (ParsedType TypeInBase =
883             recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
884       return TypeInBase;
885   }
886 
887   // Perform lookup for Objective-C instance variables (including automatically
888   // synthesized instance variables), if we're in an Objective-C method.
889   // FIXME: This lookup really, really needs to be folded in to the normal
890   // unqualified lookup mechanism.
891   if (SS.isEmpty() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
892     DeclResult Ivar = LookupIvarInObjCMethod(Result, S, Name);
893     if (Ivar.isInvalid())
894       return NameClassification::Error();
895     if (Ivar.isUsable())
896       return NameClassification::NonType(cast<NamedDecl>(Ivar.get()));
897 
898     // We defer builtin creation until after ivar lookup inside ObjC methods.
899     if (Result.empty())
900       LookupBuiltin(Result);
901   }
902 
903   bool SecondTry = false;
904   bool IsFilteredTemplateName = false;
905 
906 Corrected:
907   switch (Result.getResultKind()) {
908   case LookupResult::NotFound:
909     // If an unqualified-id is followed by a '(', then we have a function
910     // call.
911     if (SS.isEmpty() && NextToken.is(tok::l_paren)) {
912       // In C++, this is an ADL-only call.
913       // FIXME: Reference?
914       if (getLangOpts().CPlusPlus)
915         return NameClassification::UndeclaredNonType();
916 
917       // C90 6.3.2.2:
918       //   If the expression that precedes the parenthesized argument list in a
919       //   function call consists solely of an identifier, and if no
920       //   declaration is visible for this identifier, the identifier is
921       //   implicitly declared exactly as if, in the innermost block containing
922       //   the function call, the declaration
923       //
924       //     extern int identifier ();
925       //
926       //   appeared.
927       //
928       // We also allow this in C99 as an extension.
929       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S))
930         return NameClassification::NonType(D);
931     }
932 
933     if (getLangOpts().CPlusPlus20 && SS.isEmpty() && NextToken.is(tok::less)) {
934       // In C++20 onwards, this could be an ADL-only call to a function
935       // template, and we're required to assume that this is a template name.
936       //
937       // FIXME: Find a way to still do typo correction in this case.
938       TemplateName Template =
939           Context.getAssumedTemplateName(NameInfo.getName());
940       return NameClassification::UndeclaredTemplate(Template);
941     }
942 
943     // In C, we first see whether there is a tag type by the same name, in
944     // which case it's likely that the user just forgot to write "enum",
945     // "struct", or "union".
946     if (!getLangOpts().CPlusPlus && !SecondTry &&
947         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
948       break;
949     }
950 
951     // Perform typo correction to determine if there is another name that is
952     // close to this name.
953     if (!SecondTry && CCC) {
954       SecondTry = true;
955       if (TypoCorrection Corrected =
956               CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S,
957                           &SS, *CCC, CTK_ErrorRecovery)) {
958         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
959         unsigned QualifiedDiag = diag::err_no_member_suggest;
960 
961         NamedDecl *FirstDecl = Corrected.getFoundDecl();
962         NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
963         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
964             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
965           UnqualifiedDiag = diag::err_no_template_suggest;
966           QualifiedDiag = diag::err_no_member_template_suggest;
967         } else if (UnderlyingFirstDecl &&
968                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
969                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
970                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
971           UnqualifiedDiag = diag::err_unknown_typename_suggest;
972           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
973         }
974 
975         if (SS.isEmpty()) {
976           diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
977         } else {// FIXME: is this even reachable? Test it.
978           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
979           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
980                                   Name->getName().equals(CorrectedStr);
981           diagnoseTypo(Corrected, PDiag(QualifiedDiag)
982                                     << Name << computeDeclContext(SS, false)
983                                     << DroppedSpecifier << SS.getRange());
984         }
985 
986         // Update the name, so that the caller has the new name.
987         Name = Corrected.getCorrectionAsIdentifierInfo();
988 
989         // Typo correction corrected to a keyword.
990         if (Corrected.isKeyword())
991           return Name;
992 
993         // Also update the LookupResult...
994         // FIXME: This should probably go away at some point
995         Result.clear();
996         Result.setLookupName(Corrected.getCorrection());
997         if (FirstDecl)
998           Result.addDecl(FirstDecl);
999 
1000         // If we found an Objective-C instance variable, let
1001         // LookupInObjCMethod build the appropriate expression to
1002         // reference the ivar.
1003         // FIXME: This is a gross hack.
1004         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
1005           DeclResult R =
1006               LookupIvarInObjCMethod(Result, S, Ivar->getIdentifier());
1007           if (R.isInvalid())
1008             return NameClassification::Error();
1009           if (R.isUsable())
1010             return NameClassification::NonType(Ivar);
1011         }
1012 
1013         goto Corrected;
1014       }
1015     }
1016 
1017     // We failed to correct; just fall through and let the parser deal with it.
1018     Result.suppressDiagnostics();
1019     return NameClassification::Unknown();
1020 
1021   case LookupResult::NotFoundInCurrentInstantiation: {
1022     // We performed name lookup into the current instantiation, and there were
1023     // dependent bases, so we treat this result the same way as any other
1024     // dependent nested-name-specifier.
1025 
1026     // C++ [temp.res]p2:
1027     //   A name used in a template declaration or definition and that is
1028     //   dependent on a template-parameter is assumed not to name a type
1029     //   unless the applicable name lookup finds a type name or the name is
1030     //   qualified by the keyword typename.
1031     //
1032     // FIXME: If the next token is '<', we might want to ask the parser to
1033     // perform some heroics to see if we actually have a
1034     // template-argument-list, which would indicate a missing 'template'
1035     // keyword here.
1036     return NameClassification::DependentNonType();
1037   }
1038 
1039   case LookupResult::Found:
1040   case LookupResult::FoundOverloaded:
1041   case LookupResult::FoundUnresolvedValue:
1042     break;
1043 
1044   case LookupResult::Ambiguous:
1045     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1046         hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true,
1047                                       /*AllowDependent=*/false)) {
1048       // C++ [temp.local]p3:
1049       //   A lookup that finds an injected-class-name (10.2) can result in an
1050       //   ambiguity in certain cases (for example, if it is found in more than
1051       //   one base class). If all of the injected-class-names that are found
1052       //   refer to specializations of the same class template, and if the name
1053       //   is followed by a template-argument-list, the reference refers to the
1054       //   class template itself and not a specialization thereof, and is not
1055       //   ambiguous.
1056       //
1057       // This filtering can make an ambiguous result into an unambiguous one,
1058       // so try again after filtering out template names.
1059       FilterAcceptableTemplateNames(Result);
1060       if (!Result.isAmbiguous()) {
1061         IsFilteredTemplateName = true;
1062         break;
1063       }
1064     }
1065 
1066     // Diagnose the ambiguity and return an error.
1067     return NameClassification::Error();
1068   }
1069 
1070   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1071       (IsFilteredTemplateName ||
1072        hasAnyAcceptableTemplateNames(
1073            Result, /*AllowFunctionTemplates=*/true,
1074            /*AllowDependent=*/false,
1075            /*AllowNonTemplateFunctions*/ SS.isEmpty() &&
1076                getLangOpts().CPlusPlus20))) {
1077     // C++ [temp.names]p3:
1078     //   After name lookup (3.4) finds that a name is a template-name or that
1079     //   an operator-function-id or a literal- operator-id refers to a set of
1080     //   overloaded functions any member of which is a function template if
1081     //   this is followed by a <, the < is always taken as the delimiter of a
1082     //   template-argument-list and never as the less-than operator.
1083     // C++2a [temp.names]p2:
1084     //   A name is also considered to refer to a template if it is an
1085     //   unqualified-id followed by a < and name lookup finds either one
1086     //   or more functions or finds nothing.
1087     if (!IsFilteredTemplateName)
1088       FilterAcceptableTemplateNames(Result);
1089 
1090     bool IsFunctionTemplate;
1091     bool IsVarTemplate;
1092     TemplateName Template;
1093     if (Result.end() - Result.begin() > 1) {
1094       IsFunctionTemplate = true;
1095       Template = Context.getOverloadedTemplateName(Result.begin(),
1096                                                    Result.end());
1097     } else if (!Result.empty()) {
1098       auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl(
1099           *Result.begin(), /*AllowFunctionTemplates=*/true,
1100           /*AllowDependent=*/false));
1101       IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
1102       IsVarTemplate = isa<VarTemplateDecl>(TD);
1103 
1104       if (SS.isNotEmpty())
1105         Template =
1106             Context.getQualifiedTemplateName(SS.getScopeRep(),
1107                                              /*TemplateKeyword=*/false, TD);
1108       else
1109         Template = TemplateName(TD);
1110     } else {
1111       // All results were non-template functions. This is a function template
1112       // name.
1113       IsFunctionTemplate = true;
1114       Template = Context.getAssumedTemplateName(NameInfo.getName());
1115     }
1116 
1117     if (IsFunctionTemplate) {
1118       // Function templates always go through overload resolution, at which
1119       // point we'll perform the various checks (e.g., accessibility) we need
1120       // to based on which function we selected.
1121       Result.suppressDiagnostics();
1122 
1123       return NameClassification::FunctionTemplate(Template);
1124     }
1125 
1126     return IsVarTemplate ? NameClassification::VarTemplate(Template)
1127                          : NameClassification::TypeTemplate(Template);
1128   }
1129 
1130   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
1131   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
1132     DiagnoseUseOfDecl(Type, NameLoc);
1133     MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
1134     QualType T = Context.getTypeDeclType(Type);
1135     if (SS.isNotEmpty())
1136       return buildNestedType(*this, SS, T, NameLoc);
1137     return ParsedType::make(T);
1138   }
1139 
1140   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
1141   if (!Class) {
1142     // FIXME: It's unfortunate that we don't have a Type node for handling this.
1143     if (ObjCCompatibleAliasDecl *Alias =
1144             dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
1145       Class = Alias->getClassInterface();
1146   }
1147 
1148   if (Class) {
1149     DiagnoseUseOfDecl(Class, NameLoc);
1150 
1151     if (NextToken.is(tok::period)) {
1152       // Interface. <something> is parsed as a property reference expression.
1153       // Just return "unknown" as a fall-through for now.
1154       Result.suppressDiagnostics();
1155       return NameClassification::Unknown();
1156     }
1157 
1158     QualType T = Context.getObjCInterfaceType(Class);
1159     return ParsedType::make(T);
1160   }
1161 
1162   if (isa<ConceptDecl>(FirstDecl))
1163     return NameClassification::Concept(
1164         TemplateName(cast<TemplateDecl>(FirstDecl)));
1165 
1166   // We can have a type template here if we're classifying a template argument.
1167   if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
1168       !isa<VarTemplateDecl>(FirstDecl))
1169     return NameClassification::TypeTemplate(
1170         TemplateName(cast<TemplateDecl>(FirstDecl)));
1171 
1172   // Check for a tag type hidden by a non-type decl in a few cases where it
1173   // seems likely a type is wanted instead of the non-type that was found.
1174   bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1175   if ((NextToken.is(tok::identifier) ||
1176        (NextIsOp &&
1177         FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1178       isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1179     TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1180     DiagnoseUseOfDecl(Type, NameLoc);
1181     QualType T = Context.getTypeDeclType(Type);
1182     if (SS.isNotEmpty())
1183       return buildNestedType(*this, SS, T, NameLoc);
1184     return ParsedType::make(T);
1185   }
1186 
1187   // If we already know which single declaration is referenced, just annotate
1188   // that declaration directly. Defer resolving even non-overloaded class
1189   // member accesses, as we need to defer certain access checks until we know
1190   // the context.
1191   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1192   if (Result.isSingleResult() && !ADL && !FirstDecl->isCXXClassMember())
1193     return NameClassification::NonType(Result.getRepresentativeDecl());
1194 
1195   // Otherwise, this is an overload set that we will need to resolve later.
1196   Result.suppressDiagnostics();
1197   return NameClassification::OverloadSet(UnresolvedLookupExpr::Create(
1198       Context, Result.getNamingClass(), SS.getWithLocInContext(Context),
1199       Result.getLookupNameInfo(), ADL, Result.isOverloadedResult(),
1200       Result.begin(), Result.end()));
1201 }
1202 
1203 ExprResult
ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo * Name,SourceLocation NameLoc)1204 Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name,
1205                                              SourceLocation NameLoc) {
1206   assert(getLangOpts().CPlusPlus && "ADL-only call in C?");
1207   CXXScopeSpec SS;
1208   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
1209   return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
1210 }
1211 
1212 ExprResult
ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,bool IsAddressOfOperand)1213 Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS,
1214                                             IdentifierInfo *Name,
1215                                             SourceLocation NameLoc,
1216                                             bool IsAddressOfOperand) {
1217   DeclarationNameInfo NameInfo(Name, NameLoc);
1218   return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
1219                                     NameInfo, IsAddressOfOperand,
1220                                     /*TemplateArgs=*/nullptr);
1221 }
1222 
ActOnNameClassifiedAsNonType(Scope * S,const CXXScopeSpec & SS,NamedDecl * Found,SourceLocation NameLoc,const Token & NextToken)1223 ExprResult Sema::ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS,
1224                                               NamedDecl *Found,
1225                                               SourceLocation NameLoc,
1226                                               const Token &NextToken) {
1227   if (getCurMethodDecl() && SS.isEmpty())
1228     if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Found->getUnderlyingDecl()))
1229       return BuildIvarRefExpr(S, NameLoc, Ivar);
1230 
1231   // Reconstruct the lookup result.
1232   LookupResult Result(*this, Found->getDeclName(), NameLoc, LookupOrdinaryName);
1233   Result.addDecl(Found);
1234   Result.resolveKind();
1235 
1236   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1237   return BuildDeclarationNameExpr(SS, Result, ADL);
1238 }
1239 
ActOnNameClassifiedAsOverloadSet(Scope * S,Expr * E)1240 ExprResult Sema::ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *E) {
1241   // For an implicit class member access, transform the result into a member
1242   // access expression if necessary.
1243   auto *ULE = cast<UnresolvedLookupExpr>(E);
1244   if ((*ULE->decls_begin())->isCXXClassMember()) {
1245     CXXScopeSpec SS;
1246     SS.Adopt(ULE->getQualifierLoc());
1247 
1248     // Reconstruct the lookup result.
1249     LookupResult Result(*this, ULE->getName(), ULE->getNameLoc(),
1250                         LookupOrdinaryName);
1251     Result.setNamingClass(ULE->getNamingClass());
1252     for (auto I = ULE->decls_begin(), E = ULE->decls_end(); I != E; ++I)
1253       Result.addDecl(*I, I.getAccess());
1254     Result.resolveKind();
1255     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1256                                            nullptr, S);
1257   }
1258 
1259   // Otherwise, this is already in the form we needed, and no further checks
1260   // are necessary.
1261   return ULE;
1262 }
1263 
1264 Sema::TemplateNameKindForDiagnostics
getTemplateNameKindForDiagnostics(TemplateName Name)1265 Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
1266   auto *TD = Name.getAsTemplateDecl();
1267   if (!TD)
1268     return TemplateNameKindForDiagnostics::DependentTemplate;
1269   if (isa<ClassTemplateDecl>(TD))
1270     return TemplateNameKindForDiagnostics::ClassTemplate;
1271   if (isa<FunctionTemplateDecl>(TD))
1272     return TemplateNameKindForDiagnostics::FunctionTemplate;
1273   if (isa<VarTemplateDecl>(TD))
1274     return TemplateNameKindForDiagnostics::VarTemplate;
1275   if (isa<TypeAliasTemplateDecl>(TD))
1276     return TemplateNameKindForDiagnostics::AliasTemplate;
1277   if (isa<TemplateTemplateParmDecl>(TD))
1278     return TemplateNameKindForDiagnostics::TemplateTemplateParam;
1279   if (isa<ConceptDecl>(TD))
1280     return TemplateNameKindForDiagnostics::Concept;
1281   return TemplateNameKindForDiagnostics::DependentTemplate;
1282 }
1283 
PushDeclContext(Scope * S,DeclContext * DC)1284 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1285   assert(DC->getLexicalParent() == CurContext &&
1286       "The next DeclContext should be lexically contained in the current one.");
1287   CurContext = DC;
1288   S->setEntity(DC);
1289 }
1290 
PopDeclContext()1291 void Sema::PopDeclContext() {
1292   assert(CurContext && "DeclContext imbalance!");
1293 
1294   CurContext = CurContext->getLexicalParent();
1295   assert(CurContext && "Popped translation unit!");
1296 }
1297 
ActOnTagStartSkippedDefinition(Scope * S,Decl * D)1298 Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1299                                                                     Decl *D) {
1300   // Unlike PushDeclContext, the context to which we return is not necessarily
1301   // the containing DC of TD, because the new context will be some pre-existing
1302   // TagDecl definition instead of a fresh one.
1303   auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1304   CurContext = cast<TagDecl>(D)->getDefinition();
1305   assert(CurContext && "skipping definition of undefined tag");
1306   // Start lookups from the parent of the current context; we don't want to look
1307   // into the pre-existing complete definition.
1308   S->setEntity(CurContext->getLookupParent());
1309   return Result;
1310 }
1311 
ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context)1312 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1313   CurContext = static_cast<decltype(CurContext)>(Context);
1314 }
1315 
1316 /// EnterDeclaratorContext - Used when we must lookup names in the context
1317 /// of a declarator's nested name specifier.
1318 ///
EnterDeclaratorContext(Scope * S,DeclContext * DC)1319 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1320   // C++0x [basic.lookup.unqual]p13:
1321   //   A name used in the definition of a static data member of class
1322   //   X (after the qualified-id of the static member) is looked up as
1323   //   if the name was used in a member function of X.
1324   // C++0x [basic.lookup.unqual]p14:
1325   //   If a variable member of a namespace is defined outside of the
1326   //   scope of its namespace then any name used in the definition of
1327   //   the variable member (after the declarator-id) is looked up as
1328   //   if the definition of the variable member occurred in its
1329   //   namespace.
1330   // Both of these imply that we should push a scope whose context
1331   // is the semantic context of the declaration.  We can't use
1332   // PushDeclContext here because that context is not necessarily
1333   // lexically contained in the current context.  Fortunately,
1334   // the containing scope should have the appropriate information.
1335 
1336   assert(!S->getEntity() && "scope already has entity");
1337 
1338 #ifndef NDEBUG
1339   Scope *Ancestor = S->getParent();
1340   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1341   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
1342 #endif
1343 
1344   CurContext = DC;
1345   S->setEntity(DC);
1346 
1347   if (S->getParent()->isTemplateParamScope()) {
1348     // Also set the corresponding entities for all immediately-enclosing
1349     // template parameter scopes.
1350     EnterTemplatedContext(S->getParent(), DC);
1351   }
1352 }
1353 
ExitDeclaratorContext(Scope * S)1354 void Sema::ExitDeclaratorContext(Scope *S) {
1355   assert(S->getEntity() == CurContext && "Context imbalance!");
1356 
1357   // Switch back to the lexical context.  The safety of this is
1358   // enforced by an assert in EnterDeclaratorContext.
1359   Scope *Ancestor = S->getParent();
1360   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1361   CurContext = Ancestor->getEntity();
1362 
1363   // We don't need to do anything with the scope, which is going to
1364   // disappear.
1365 }
1366 
EnterTemplatedContext(Scope * S,DeclContext * DC)1367 void Sema::EnterTemplatedContext(Scope *S, DeclContext *DC) {
1368   assert(S->isTemplateParamScope() &&
1369          "expected to be initializing a template parameter scope");
1370 
1371   // C++20 [temp.local]p7:
1372   //   In the definition of a member of a class template that appears outside
1373   //   of the class template definition, the name of a member of the class
1374   //   template hides the name of a template-parameter of any enclosing class
1375   //   templates (but not a template-parameter of the member if the member is a
1376   //   class or function template).
1377   // C++20 [temp.local]p9:
1378   //   In the definition of a class template or in the definition of a member
1379   //   of such a template that appears outside of the template definition, for
1380   //   each non-dependent base class (13.8.2.1), if the name of the base class
1381   //   or the name of a member of the base class is the same as the name of a
1382   //   template-parameter, the base class name or member name hides the
1383   //   template-parameter name (6.4.10).
1384   //
1385   // This means that a template parameter scope should be searched immediately
1386   // after searching the DeclContext for which it is a template parameter
1387   // scope. For example, for
1388   //   template<typename T> template<typename U> template<typename V>
1389   //     void N::A<T>::B<U>::f(...)
1390   // we search V then B<U> (and base classes) then U then A<T> (and base
1391   // classes) then T then N then ::.
1392   unsigned ScopeDepth = getTemplateDepth(S);
1393   for (; S && S->isTemplateParamScope(); S = S->getParent(), --ScopeDepth) {
1394     DeclContext *SearchDCAfterScope = DC;
1395     for (; DC; DC = DC->getLookupParent()) {
1396       if (const TemplateParameterList *TPL =
1397               cast<Decl>(DC)->getDescribedTemplateParams()) {
1398         unsigned DCDepth = TPL->getDepth() + 1;
1399         if (DCDepth > ScopeDepth)
1400           continue;
1401         if (ScopeDepth == DCDepth)
1402           SearchDCAfterScope = DC = DC->getLookupParent();
1403         break;
1404       }
1405     }
1406     S->setLookupEntity(SearchDCAfterScope);
1407   }
1408 }
1409 
ActOnReenterFunctionContext(Scope * S,Decl * D)1410 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1411   // We assume that the caller has already called
1412   // ActOnReenterTemplateScope so getTemplatedDecl() works.
1413   FunctionDecl *FD = D->getAsFunction();
1414   if (!FD)
1415     return;
1416 
1417   // Same implementation as PushDeclContext, but enters the context
1418   // from the lexical parent, rather than the top-level class.
1419   assert(CurContext == FD->getLexicalParent() &&
1420     "The next DeclContext should be lexically contained in the current one.");
1421   CurContext = FD;
1422   S->setEntity(CurContext);
1423 
1424   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1425     ParmVarDecl *Param = FD->getParamDecl(P);
1426     // If the parameter has an identifier, then add it to the scope
1427     if (Param->getIdentifier()) {
1428       S->AddDecl(Param);
1429       IdResolver.AddDecl(Param);
1430     }
1431   }
1432 }
1433 
ActOnExitFunctionContext()1434 void Sema::ActOnExitFunctionContext() {
1435   // Same implementation as PopDeclContext, but returns to the lexical parent,
1436   // rather than the top-level class.
1437   assert(CurContext && "DeclContext imbalance!");
1438   CurContext = CurContext->getLexicalParent();
1439   assert(CurContext && "Popped translation unit!");
1440 }
1441 
1442 /// Determine whether we allow overloading of the function
1443 /// PrevDecl with another declaration.
1444 ///
1445 /// This routine determines whether overloading is possible, not
1446 /// whether some new function is actually an overload. It will return
1447 /// true in C++ (where we can always provide overloads) or, as an
1448 /// extension, in C when the previous function is already an
1449 /// overloaded function declaration or has the "overloadable"
1450 /// attribute.
AllowOverloadingOfFunction(LookupResult & Previous,ASTContext & Context,const FunctionDecl * New)1451 static bool AllowOverloadingOfFunction(LookupResult &Previous,
1452                                        ASTContext &Context,
1453                                        const FunctionDecl *New) {
1454   if (Context.getLangOpts().CPlusPlus)
1455     return true;
1456 
1457   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1458     return true;
1459 
1460   return Previous.getResultKind() == LookupResult::Found &&
1461          (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() ||
1462           New->hasAttr<OverloadableAttr>());
1463 }
1464 
1465 /// Add this decl to the scope shadowed decl chains.
PushOnScopeChains(NamedDecl * D,Scope * S,bool AddToContext)1466 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1467   // Move up the scope chain until we find the nearest enclosing
1468   // non-transparent context. The declaration will be introduced into this
1469   // scope.
1470   while (S->getEntity() && S->getEntity()->isTransparentContext())
1471     S = S->getParent();
1472 
1473   // Add scoped declarations into their context, so that they can be
1474   // found later. Declarations without a context won't be inserted
1475   // into any context.
1476   if (AddToContext)
1477     CurContext->addDecl(D);
1478 
1479   // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1480   // are function-local declarations.
1481   if (getLangOpts().CPlusPlus && D->isOutOfLine() && !S->getFnParent())
1482     return;
1483 
1484   // Template instantiations should also not be pushed into scope.
1485   if (isa<FunctionDecl>(D) &&
1486       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1487     return;
1488 
1489   // If this replaces anything in the current scope,
1490   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1491                                IEnd = IdResolver.end();
1492   for (; I != IEnd; ++I) {
1493     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1494       S->RemoveDecl(*I);
1495       IdResolver.RemoveDecl(*I);
1496 
1497       // Should only need to replace one decl.
1498       break;
1499     }
1500   }
1501 
1502   S->AddDecl(D);
1503 
1504   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1505     // Implicitly-generated labels may end up getting generated in an order that
1506     // isn't strictly lexical, which breaks name lookup. Be careful to insert
1507     // the label at the appropriate place in the identifier chain.
1508     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1509       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1510       if (IDC == CurContext) {
1511         if (!S->isDeclScope(*I))
1512           continue;
1513       } else if (IDC->Encloses(CurContext))
1514         break;
1515     }
1516 
1517     IdResolver.InsertDeclAfter(I, D);
1518   } else {
1519     IdResolver.AddDecl(D);
1520   }
1521 }
1522 
isDeclInScope(NamedDecl * D,DeclContext * Ctx,Scope * S,bool AllowInlineNamespace)1523 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1524                          bool AllowInlineNamespace) {
1525   return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1526 }
1527 
getScopeForDeclContext(Scope * S,DeclContext * DC)1528 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1529   DeclContext *TargetDC = DC->getPrimaryContext();
1530   do {
1531     if (DeclContext *ScopeDC = S->getEntity())
1532       if (ScopeDC->getPrimaryContext() == TargetDC)
1533         return S;
1534   } while ((S = S->getParent()));
1535 
1536   return nullptr;
1537 }
1538 
1539 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1540                                             DeclContext*,
1541                                             ASTContext&);
1542 
1543 /// Filters out lookup results that don't fall within the given scope
1544 /// as determined by isDeclInScope.
FilterLookupForScope(LookupResult & R,DeclContext * Ctx,Scope * S,bool ConsiderLinkage,bool AllowInlineNamespace)1545 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1546                                 bool ConsiderLinkage,
1547                                 bool AllowInlineNamespace) {
1548   LookupResult::Filter F = R.makeFilter();
1549   while (F.hasNext()) {
1550     NamedDecl *D = F.next();
1551 
1552     if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1553       continue;
1554 
1555     if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1556       continue;
1557 
1558     F.erase();
1559   }
1560 
1561   F.done();
1562 }
1563 
1564 /// We've determined that \p New is a redeclaration of \p Old. Check that they
1565 /// have compatible owning modules.
CheckRedeclarationModuleOwnership(NamedDecl * New,NamedDecl * Old)1566 bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
1567   // FIXME: The Modules TS is not clear about how friend declarations are
1568   // to be treated. It's not meaningful to have different owning modules for
1569   // linkage in redeclarations of the same entity, so for now allow the
1570   // redeclaration and change the owning modules to match.
1571   if (New->getFriendObjectKind() &&
1572       Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
1573     New->setLocalOwningModule(Old->getOwningModule());
1574     makeMergedDefinitionVisible(New);
1575     return false;
1576   }
1577 
1578   Module *NewM = New->getOwningModule();
1579   Module *OldM = Old->getOwningModule();
1580 
1581   if (NewM && NewM->Kind == Module::PrivateModuleFragment)
1582     NewM = NewM->Parent;
1583   if (OldM && OldM->Kind == Module::PrivateModuleFragment)
1584     OldM = OldM->Parent;
1585 
1586   if (NewM == OldM)
1587     return false;
1588 
1589   bool NewIsModuleInterface = NewM && NewM->isModulePurview();
1590   bool OldIsModuleInterface = OldM && OldM->isModulePurview();
1591   if (NewIsModuleInterface || OldIsModuleInterface) {
1592     // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1593     //   if a declaration of D [...] appears in the purview of a module, all
1594     //   other such declarations shall appear in the purview of the same module
1595     Diag(New->getLocation(), diag::err_mismatched_owning_module)
1596       << New
1597       << NewIsModuleInterface
1598       << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
1599       << OldIsModuleInterface
1600       << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
1601     Diag(Old->getLocation(), diag::note_previous_declaration);
1602     New->setInvalidDecl();
1603     return true;
1604   }
1605 
1606   return false;
1607 }
1608 
isUsingDecl(NamedDecl * D)1609 static bool isUsingDecl(NamedDecl *D) {
1610   return isa<UsingShadowDecl>(D) ||
1611          isa<UnresolvedUsingTypenameDecl>(D) ||
1612          isa<UnresolvedUsingValueDecl>(D);
1613 }
1614 
1615 /// Removes using shadow declarations from the lookup results.
RemoveUsingDecls(LookupResult & R)1616 static void RemoveUsingDecls(LookupResult &R) {
1617   LookupResult::Filter F = R.makeFilter();
1618   while (F.hasNext())
1619     if (isUsingDecl(F.next()))
1620       F.erase();
1621 
1622   F.done();
1623 }
1624 
1625 /// Check for this common pattern:
1626 /// @code
1627 /// class S {
1628 ///   S(const S&); // DO NOT IMPLEMENT
1629 ///   void operator=(const S&); // DO NOT IMPLEMENT
1630 /// };
1631 /// @endcode
IsDisallowedCopyOrAssign(const CXXMethodDecl * D)1632 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1633   // FIXME: Should check for private access too but access is set after we get
1634   // the decl here.
1635   if (D->doesThisDeclarationHaveABody())
1636     return false;
1637 
1638   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1639     return CD->isCopyConstructor();
1640   return D->isCopyAssignmentOperator();
1641 }
1642 
1643 // We need this to handle
1644 //
1645 // typedef struct {
1646 //   void *foo() { return 0; }
1647 // } A;
1648 //
1649 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1650 // for example. If 'A', foo will have external linkage. If we have '*A',
1651 // foo will have no linkage. Since we can't know until we get to the end
1652 // of the typedef, this function finds out if D might have non-external linkage.
1653 // Callers should verify at the end of the TU if it D has external linkage or
1654 // not.
mightHaveNonExternalLinkage(const DeclaratorDecl * D)1655 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1656   const DeclContext *DC = D->getDeclContext();
1657   while (!DC->isTranslationUnit()) {
1658     if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1659       if (!RD->hasNameForLinkage())
1660         return true;
1661     }
1662     DC = DC->getParent();
1663   }
1664 
1665   return !D->isExternallyVisible();
1666 }
1667 
1668 // FIXME: This needs to be refactored; some other isInMainFile users want
1669 // these semantics.
isMainFileLoc(const Sema & S,SourceLocation Loc)1670 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1671   if (S.TUKind != TU_Complete)
1672     return false;
1673   return S.SourceMgr.isInMainFile(Loc);
1674 }
1675 
ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl * D) const1676 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1677   assert(D);
1678 
1679   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1680     return false;
1681 
1682   // Ignore all entities declared within templates, and out-of-line definitions
1683   // of members of class templates.
1684   if (D->getDeclContext()->isDependentContext() ||
1685       D->getLexicalDeclContext()->isDependentContext())
1686     return false;
1687 
1688   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1689     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1690       return false;
1691     // A non-out-of-line declaration of a member specialization was implicitly
1692     // instantiated; it's the out-of-line declaration that we're interested in.
1693     if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1694         FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
1695       return false;
1696 
1697     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1698       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1699         return false;
1700     } else {
1701       // 'static inline' functions are defined in headers; don't warn.
1702       if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1703         return false;
1704     }
1705 
1706     if (FD->doesThisDeclarationHaveABody() &&
1707         Context.DeclMustBeEmitted(FD))
1708       return false;
1709   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1710     // Constants and utility variables are defined in headers with internal
1711     // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
1712     // like "inline".)
1713     if (!isMainFileLoc(*this, VD->getLocation()))
1714       return false;
1715 
1716     if (Context.DeclMustBeEmitted(VD))
1717       return false;
1718 
1719     if (VD->isStaticDataMember() &&
1720         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1721       return false;
1722     if (VD->isStaticDataMember() &&
1723         VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1724         VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
1725       return false;
1726 
1727     if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
1728       return false;
1729   } else {
1730     return false;
1731   }
1732 
1733   // Only warn for unused decls internal to the translation unit.
1734   // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1735   // for inline functions defined in the main source file, for instance.
1736   return mightHaveNonExternalLinkage(D);
1737 }
1738 
MarkUnusedFileScopedDecl(const DeclaratorDecl * D)1739 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1740   if (!D)
1741     return;
1742 
1743   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1744     const FunctionDecl *First = FD->getFirstDecl();
1745     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1746       return; // First should already be in the vector.
1747   }
1748 
1749   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1750     const VarDecl *First = VD->getFirstDecl();
1751     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1752       return; // First should already be in the vector.
1753   }
1754 
1755   if (ShouldWarnIfUnusedFileScopedDecl(D))
1756     UnusedFileScopedDecls.push_back(D);
1757 }
1758 
ShouldDiagnoseUnusedDecl(const NamedDecl * D)1759 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1760   if (D->isInvalidDecl())
1761     return false;
1762 
1763   if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
1764     // For a decomposition declaration, warn if none of the bindings are
1765     // referenced, instead of if the variable itself is referenced (which
1766     // it is, by the bindings' expressions).
1767     for (auto *BD : DD->bindings())
1768       if (BD->isReferenced())
1769         return false;
1770   } else if (!D->getDeclName()) {
1771     return false;
1772   } else if (D->isReferenced() || D->isUsed()) {
1773     return false;
1774   }
1775 
1776   if (D->hasAttr<UnusedAttr>() || D->hasAttr<ObjCPreciseLifetimeAttr>())
1777     return false;
1778 
1779   if (isa<LabelDecl>(D))
1780     return true;
1781 
1782   // Except for labels, we only care about unused decls that are local to
1783   // functions.
1784   bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1785   if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1786     // For dependent types, the diagnostic is deferred.
1787     WithinFunction =
1788         WithinFunction || (R->isLocalClass() && !R->isDependentType());
1789   if (!WithinFunction)
1790     return false;
1791 
1792   if (isa<TypedefNameDecl>(D))
1793     return true;
1794 
1795   // White-list anything that isn't a local variable.
1796   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1797     return false;
1798 
1799   // Types of valid local variables should be complete, so this should succeed.
1800   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1801 
1802     // White-list anything with an __attribute__((unused)) type.
1803     const auto *Ty = VD->getType().getTypePtr();
1804 
1805     // Only look at the outermost level of typedef.
1806     if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1807       if (TT->getDecl()->hasAttr<UnusedAttr>())
1808         return false;
1809     }
1810 
1811     // If we failed to complete the type for some reason, or if the type is
1812     // dependent, don't diagnose the variable.
1813     if (Ty->isIncompleteType() || Ty->isDependentType())
1814       return false;
1815 
1816     // Look at the element type to ensure that the warning behaviour is
1817     // consistent for both scalars and arrays.
1818     Ty = Ty->getBaseElementTypeUnsafe();
1819 
1820     if (const TagType *TT = Ty->getAs<TagType>()) {
1821       const TagDecl *Tag = TT->getDecl();
1822       if (Tag->hasAttr<UnusedAttr>())
1823         return false;
1824 
1825       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1826         if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1827           return false;
1828 
1829         if (const Expr *Init = VD->getInit()) {
1830           if (const ExprWithCleanups *Cleanups =
1831                   dyn_cast<ExprWithCleanups>(Init))
1832             Init = Cleanups->getSubExpr();
1833           const CXXConstructExpr *Construct =
1834             dyn_cast<CXXConstructExpr>(Init);
1835           if (Construct && !Construct->isElidable()) {
1836             CXXConstructorDecl *CD = Construct->getConstructor();
1837             if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
1838                 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
1839               return false;
1840           }
1841 
1842           // Suppress the warning if we don't know how this is constructed, and
1843           // it could possibly be non-trivial constructor.
1844           if (Init->isTypeDependent())
1845             for (const CXXConstructorDecl *Ctor : RD->ctors())
1846               if (!Ctor->isTrivial())
1847                 return false;
1848         }
1849       }
1850     }
1851 
1852     // TODO: __attribute__((unused)) templates?
1853   }
1854 
1855   return true;
1856 }
1857 
GenerateFixForUnusedDecl(const NamedDecl * D,ASTContext & Ctx,FixItHint & Hint)1858 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1859                                      FixItHint &Hint) {
1860   if (isa<LabelDecl>(D)) {
1861     SourceLocation AfterColon = Lexer::findLocationAfterToken(
1862         D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(),
1863         true);
1864     if (AfterColon.isInvalid())
1865       return;
1866     Hint = FixItHint::CreateRemoval(
1867         CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon));
1868   }
1869 }
1870 
DiagnoseUnusedNestedTypedefs(const RecordDecl * D)1871 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
1872   if (D->getTypeForDecl()->isDependentType())
1873     return;
1874 
1875   for (auto *TmpD : D->decls()) {
1876     if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
1877       DiagnoseUnusedDecl(T);
1878     else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
1879       DiagnoseUnusedNestedTypedefs(R);
1880   }
1881 }
1882 
1883 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1884 /// unless they are marked attr(unused).
DiagnoseUnusedDecl(const NamedDecl * D)1885 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1886   if (!ShouldDiagnoseUnusedDecl(D))
1887     return;
1888 
1889   if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
1890     // typedefs can be referenced later on, so the diagnostics are emitted
1891     // at end-of-translation-unit.
1892     UnusedLocalTypedefNameCandidates.insert(TD);
1893     return;
1894   }
1895 
1896   FixItHint Hint;
1897   GenerateFixForUnusedDecl(D, Context, Hint);
1898 
1899   unsigned DiagID;
1900   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1901     DiagID = diag::warn_unused_exception_param;
1902   else if (isa<LabelDecl>(D))
1903     DiagID = diag::warn_unused_label;
1904   else
1905     DiagID = diag::warn_unused_variable;
1906 
1907   Diag(D->getLocation(), DiagID) << D << Hint;
1908 }
1909 
CheckPoppedLabel(LabelDecl * L,Sema & S)1910 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1911   // Verify that we have no forward references left.  If so, there was a goto
1912   // or address of a label taken, but no definition of it.  Label fwd
1913   // definitions are indicated with a null substmt which is also not a resolved
1914   // MS inline assembly label name.
1915   bool Diagnose = false;
1916   if (L->isMSAsmLabel())
1917     Diagnose = !L->isResolvedMSAsmLabel();
1918   else
1919     Diagnose = L->getStmt() == nullptr;
1920   if (Diagnose)
1921     S.Diag(L->getLocation(), diag::err_undeclared_label_use) << L;
1922 }
1923 
ActOnPopScope(SourceLocation Loc,Scope * S)1924 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1925   S->mergeNRVOIntoParent();
1926 
1927   if (S->decl_empty()) return;
1928   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1929          "Scope shouldn't contain decls!");
1930 
1931   for (auto *TmpD : S->decls()) {
1932     assert(TmpD && "This decl didn't get pushed??");
1933 
1934     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1935     NamedDecl *D = cast<NamedDecl>(TmpD);
1936 
1937     // Diagnose unused variables in this scope.
1938     if (!S->hasUnrecoverableErrorOccurred()) {
1939       DiagnoseUnusedDecl(D);
1940       if (const auto *RD = dyn_cast<RecordDecl>(D))
1941         DiagnoseUnusedNestedTypedefs(RD);
1942     }
1943 
1944     if (!D->getDeclName()) continue;
1945 
1946     // If this was a forward reference to a label, verify it was defined.
1947     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1948       CheckPoppedLabel(LD, *this);
1949 
1950     // Remove this name from our lexical scope, and warn on it if we haven't
1951     // already.
1952     IdResolver.RemoveDecl(D);
1953     auto ShadowI = ShadowingDecls.find(D);
1954     if (ShadowI != ShadowingDecls.end()) {
1955       if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
1956         Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field)
1957             << D << FD << FD->getParent();
1958         Diag(FD->getLocation(), diag::note_previous_declaration);
1959       }
1960       ShadowingDecls.erase(ShadowI);
1961     }
1962   }
1963 }
1964 
1965 /// Look for an Objective-C class in the translation unit.
1966 ///
1967 /// \param Id The name of the Objective-C class we're looking for. If
1968 /// typo-correction fixes this name, the Id will be updated
1969 /// to the fixed name.
1970 ///
1971 /// \param IdLoc The location of the name in the translation unit.
1972 ///
1973 /// \param DoTypoCorrection If true, this routine will attempt typo correction
1974 /// if there is no class with the given name.
1975 ///
1976 /// \returns The declaration of the named Objective-C class, or NULL if the
1977 /// class could not be found.
getObjCInterfaceDecl(IdentifierInfo * & Id,SourceLocation IdLoc,bool DoTypoCorrection)1978 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1979                                               SourceLocation IdLoc,
1980                                               bool DoTypoCorrection) {
1981   // The third "scope" argument is 0 since we aren't enabling lazy built-in
1982   // creation from this context.
1983   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1984 
1985   if (!IDecl && DoTypoCorrection) {
1986     // Perform typo correction at the given location, but only if we
1987     // find an Objective-C class name.
1988     DeclFilterCCC<ObjCInterfaceDecl> CCC{};
1989     if (TypoCorrection C =
1990             CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1991                         TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
1992       diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1993       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1994       Id = IDecl->getIdentifier();
1995     }
1996   }
1997   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1998   // This routine must always return a class definition, if any.
1999   if (Def && Def->getDefinition())
2000       Def = Def->getDefinition();
2001   return Def;
2002 }
2003 
2004 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
2005 /// from S, where a non-field would be declared. This routine copes
2006 /// with the difference between C and C++ scoping rules in structs and
2007 /// unions. For example, the following code is well-formed in C but
2008 /// ill-formed in C++:
2009 /// @code
2010 /// struct S6 {
2011 ///   enum { BAR } e;
2012 /// };
2013 ///
2014 /// void test_S6() {
2015 ///   struct S6 a;
2016 ///   a.e = BAR;
2017 /// }
2018 /// @endcode
2019 /// For the declaration of BAR, this routine will return a different
2020 /// scope. The scope S will be the scope of the unnamed enumeration
2021 /// within S6. In C++, this routine will return the scope associated
2022 /// with S6, because the enumeration's scope is a transparent
2023 /// context but structures can contain non-field names. In C, this
2024 /// routine will return the translation unit scope, since the
2025 /// enumeration's scope is a transparent context and structures cannot
2026 /// contain non-field names.
getNonFieldDeclScope(Scope * S)2027 Scope *Sema::getNonFieldDeclScope(Scope *S) {
2028   while (((S->getFlags() & Scope::DeclScope) == 0) ||
2029          (S->getEntity() && S->getEntity()->isTransparentContext()) ||
2030          (S->isClassScope() && !getLangOpts().CPlusPlus))
2031     S = S->getParent();
2032   return S;
2033 }
2034 
getHeaderName(Builtin::Context & BuiltinInfo,unsigned ID,ASTContext::GetBuiltinTypeError Error)2035 static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID,
2036                                ASTContext::GetBuiltinTypeError Error) {
2037   switch (Error) {
2038   case ASTContext::GE_None:
2039     return "";
2040   case ASTContext::GE_Missing_type:
2041     return BuiltinInfo.getHeaderName(ID);
2042   case ASTContext::GE_Missing_stdio:
2043     return "stdio.h";
2044   case ASTContext::GE_Missing_setjmp:
2045     return "setjmp.h";
2046   case ASTContext::GE_Missing_ucontext:
2047     return "ucontext.h";
2048   }
2049   llvm_unreachable("unhandled error kind");
2050 }
2051 
CreateBuiltin(IdentifierInfo * II,QualType Type,unsigned ID,SourceLocation Loc)2052 FunctionDecl *Sema::CreateBuiltin(IdentifierInfo *II, QualType Type,
2053                                   unsigned ID, SourceLocation Loc) {
2054   DeclContext *Parent = Context.getTranslationUnitDecl();
2055 
2056   if (getLangOpts().CPlusPlus) {
2057     LinkageSpecDecl *CLinkageDecl = LinkageSpecDecl::Create(
2058         Context, Parent, Loc, Loc, LinkageSpecDecl::lang_c, false);
2059     CLinkageDecl->setImplicit();
2060     Parent->addDecl(CLinkageDecl);
2061     Parent = CLinkageDecl;
2062   }
2063 
2064   FunctionDecl *New = FunctionDecl::Create(Context, Parent, Loc, Loc, II, Type,
2065                                            /*TInfo=*/nullptr, SC_Extern, false,
2066                                            Type->isFunctionProtoType());
2067   New->setImplicit();
2068   New->addAttr(BuiltinAttr::CreateImplicit(Context, ID));
2069 
2070   // Create Decl objects for each parameter, adding them to the
2071   // FunctionDecl.
2072   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(Type)) {
2073     SmallVector<ParmVarDecl *, 16> Params;
2074     for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2075       ParmVarDecl *parm = ParmVarDecl::Create(
2076           Context, New, SourceLocation(), SourceLocation(), nullptr,
2077           FT->getParamType(i), /*TInfo=*/nullptr, SC_None, nullptr);
2078       parm->setScopeInfo(0, i);
2079       Params.push_back(parm);
2080     }
2081     New->setParams(Params);
2082   }
2083 
2084   AddKnownFunctionAttributes(New);
2085   return New;
2086 }
2087 
2088 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
2089 /// file scope.  lazily create a decl for it. ForRedeclaration is true
2090 /// if we're creating this built-in in anticipation of redeclaring the
2091 /// built-in.
LazilyCreateBuiltin(IdentifierInfo * II,unsigned ID,Scope * S,bool ForRedeclaration,SourceLocation Loc)2092 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
2093                                      Scope *S, bool ForRedeclaration,
2094                                      SourceLocation Loc) {
2095   LookupNecessaryTypesForBuiltin(S, ID);
2096 
2097   ASTContext::GetBuiltinTypeError Error;
2098   QualType R = Context.GetBuiltinType(ID, Error);
2099   if (Error) {
2100     if (!ForRedeclaration)
2101       return nullptr;
2102 
2103     // If we have a builtin without an associated type we should not emit a
2104     // warning when we were not able to find a type for it.
2105     if (Error == ASTContext::GE_Missing_type ||
2106         Context.BuiltinInfo.allowTypeMismatch(ID))
2107       return nullptr;
2108 
2109     // If we could not find a type for setjmp it is because the jmp_buf type was
2110     // not defined prior to the setjmp declaration.
2111     if (Error == ASTContext::GE_Missing_setjmp) {
2112       Diag(Loc, diag::warn_implicit_decl_no_jmp_buf)
2113           << Context.BuiltinInfo.getName(ID);
2114       return nullptr;
2115     }
2116 
2117     // Generally, we emit a warning that the declaration requires the
2118     // appropriate header.
2119     Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
2120         << getHeaderName(Context.BuiltinInfo, ID, Error)
2121         << Context.BuiltinInfo.getName(ID);
2122     return nullptr;
2123   }
2124 
2125   if (!ForRedeclaration &&
2126       (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
2127        Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
2128     Diag(Loc, diag::ext_implicit_lib_function_decl)
2129         << Context.BuiltinInfo.getName(ID) << R;
2130     if (const char *Header = Context.BuiltinInfo.getHeaderName(ID))
2131       Diag(Loc, diag::note_include_header_or_declare)
2132           << Header << Context.BuiltinInfo.getName(ID);
2133   }
2134 
2135   if (R.isNull())
2136     return nullptr;
2137 
2138   FunctionDecl *New = CreateBuiltin(II, R, ID, Loc);
2139   RegisterLocallyScopedExternCDecl(New, S);
2140 
2141   // TUScope is the translation-unit scope to insert this function into.
2142   // FIXME: This is hideous. We need to teach PushOnScopeChains to
2143   // relate Scopes to DeclContexts, and probably eliminate CurContext
2144   // entirely, but we're not there yet.
2145   DeclContext *SavedContext = CurContext;
2146   CurContext = New->getDeclContext();
2147   PushOnScopeChains(New, TUScope);
2148   CurContext = SavedContext;
2149   return New;
2150 }
2151 
2152 /// Typedef declarations don't have linkage, but they still denote the same
2153 /// entity if their types are the same.
2154 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2155 /// isSameEntity.
filterNonConflictingPreviousTypedefDecls(Sema & S,TypedefNameDecl * Decl,LookupResult & Previous)2156 static void filterNonConflictingPreviousTypedefDecls(Sema &S,
2157                                                      TypedefNameDecl *Decl,
2158                                                      LookupResult &Previous) {
2159   // This is only interesting when modules are enabled.
2160   if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
2161     return;
2162 
2163   // Empty sets are uninteresting.
2164   if (Previous.empty())
2165     return;
2166 
2167   LookupResult::Filter Filter = Previous.makeFilter();
2168   while (Filter.hasNext()) {
2169     NamedDecl *Old = Filter.next();
2170 
2171     // Non-hidden declarations are never ignored.
2172     if (S.isVisible(Old))
2173       continue;
2174 
2175     // Declarations of the same entity are not ignored, even if they have
2176     // different linkages.
2177     if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2178       if (S.Context.hasSameType(OldTD->getUnderlyingType(),
2179                                 Decl->getUnderlyingType()))
2180         continue;
2181 
2182       // If both declarations give a tag declaration a typedef name for linkage
2183       // purposes, then they declare the same entity.
2184       if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2185           Decl->getAnonDeclWithTypedefName())
2186         continue;
2187     }
2188 
2189     Filter.erase();
2190   }
2191 
2192   Filter.done();
2193 }
2194 
isIncompatibleTypedef(TypeDecl * Old,TypedefNameDecl * New)2195 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
2196   QualType OldType;
2197   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
2198     OldType = OldTypedef->getUnderlyingType();
2199   else
2200     OldType = Context.getTypeDeclType(Old);
2201   QualType NewType = New->getUnderlyingType();
2202 
2203   if (NewType->isVariablyModifiedType()) {
2204     // Must not redefine a typedef with a variably-modified type.
2205     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2206     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
2207       << Kind << NewType;
2208     if (Old->getLocation().isValid())
2209       notePreviousDefinition(Old, New->getLocation());
2210     New->setInvalidDecl();
2211     return true;
2212   }
2213 
2214   if (OldType != NewType &&
2215       !OldType->isDependentType() &&
2216       !NewType->isDependentType() &&
2217       !Context.hasSameType(OldType, NewType)) {
2218     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2219     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
2220       << Kind << NewType << OldType;
2221     if (Old->getLocation().isValid())
2222       notePreviousDefinition(Old, New->getLocation());
2223     New->setInvalidDecl();
2224     return true;
2225   }
2226   return false;
2227 }
2228 
2229 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2230 /// same name and scope as a previous declaration 'Old'.  Figure out
2231 /// how to resolve this situation, merging decls or emitting
2232 /// diagnostics as appropriate. If there was an error, set New to be invalid.
2233 ///
MergeTypedefNameDecl(Scope * S,TypedefNameDecl * New,LookupResult & OldDecls)2234 void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
2235                                 LookupResult &OldDecls) {
2236   // If the new decl is known invalid already, don't bother doing any
2237   // merging checks.
2238   if (New->isInvalidDecl()) return;
2239 
2240   // Allow multiple definitions for ObjC built-in typedefs.
2241   // FIXME: Verify the underlying types are equivalent!
2242   if (getLangOpts().ObjC) {
2243     const IdentifierInfo *TypeID = New->getIdentifier();
2244     switch (TypeID->getLength()) {
2245     default: break;
2246     case 2:
2247       {
2248         if (!TypeID->isStr("id"))
2249           break;
2250         QualType T = New->getUnderlyingType();
2251         if (!T->isPointerType())
2252           break;
2253         if (!T->isVoidPointerType()) {
2254           QualType PT = T->castAs<PointerType>()->getPointeeType();
2255           if (!PT->isStructureType())
2256             break;
2257         }
2258         Context.setObjCIdRedefinitionType(T);
2259         // Install the built-in type for 'id', ignoring the current definition.
2260         New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
2261         return;
2262       }
2263     case 5:
2264       if (!TypeID->isStr("Class"))
2265         break;
2266       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
2267       // Install the built-in type for 'Class', ignoring the current definition.
2268       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
2269       return;
2270     case 3:
2271       if (!TypeID->isStr("SEL"))
2272         break;
2273       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
2274       // Install the built-in type for 'SEL', ignoring the current definition.
2275       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
2276       return;
2277     }
2278     // Fall through - the typedef name was not a builtin type.
2279   }
2280 
2281   // Verify the old decl was also a type.
2282   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
2283   if (!Old) {
2284     Diag(New->getLocation(), diag::err_redefinition_different_kind)
2285       << New->getDeclName();
2286 
2287     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
2288     if (OldD->getLocation().isValid())
2289       notePreviousDefinition(OldD, New->getLocation());
2290 
2291     return New->setInvalidDecl();
2292   }
2293 
2294   // If the old declaration is invalid, just give up here.
2295   if (Old->isInvalidDecl())
2296     return New->setInvalidDecl();
2297 
2298   if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2299     auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2300     auto *NewTag = New->getAnonDeclWithTypedefName();
2301     NamedDecl *Hidden = nullptr;
2302     if (OldTag && NewTag &&
2303         OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
2304         !hasVisibleDefinition(OldTag, &Hidden)) {
2305       // There is a definition of this tag, but it is not visible. Use it
2306       // instead of our tag.
2307       New->setTypeForDecl(OldTD->getTypeForDecl());
2308       if (OldTD->isModed())
2309         New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
2310                                     OldTD->getUnderlyingType());
2311       else
2312         New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
2313 
2314       // Make the old tag definition visible.
2315       makeMergedDefinitionVisible(Hidden);
2316 
2317       // If this was an unscoped enumeration, yank all of its enumerators
2318       // out of the scope.
2319       if (isa<EnumDecl>(NewTag)) {
2320         Scope *EnumScope = getNonFieldDeclScope(S);
2321         for (auto *D : NewTag->decls()) {
2322           auto *ED = cast<EnumConstantDecl>(D);
2323           assert(EnumScope->isDeclScope(ED));
2324           EnumScope->RemoveDecl(ED);
2325           IdResolver.RemoveDecl(ED);
2326           ED->getLexicalDeclContext()->removeDecl(ED);
2327         }
2328       }
2329     }
2330   }
2331 
2332   // If the typedef types are not identical, reject them in all languages and
2333   // with any extensions enabled.
2334   if (isIncompatibleTypedef(Old, New))
2335     return;
2336 
2337   // The types match.  Link up the redeclaration chain and merge attributes if
2338   // the old declaration was a typedef.
2339   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
2340     New->setPreviousDecl(Typedef);
2341     mergeDeclAttributes(New, Old);
2342   }
2343 
2344   if (getLangOpts().MicrosoftExt)
2345     return;
2346 
2347   if (getLangOpts().CPlusPlus) {
2348     // C++ [dcl.typedef]p2:
2349     //   In a given non-class scope, a typedef specifier can be used to
2350     //   redefine the name of any type declared in that scope to refer
2351     //   to the type to which it already refers.
2352     if (!isa<CXXRecordDecl>(CurContext))
2353       return;
2354 
2355     // C++0x [dcl.typedef]p4:
2356     //   In a given class scope, a typedef specifier can be used to redefine
2357     //   any class-name declared in that scope that is not also a typedef-name
2358     //   to refer to the type to which it already refers.
2359     //
2360     // This wording came in via DR424, which was a correction to the
2361     // wording in DR56, which accidentally banned code like:
2362     //
2363     //   struct S {
2364     //     typedef struct A { } A;
2365     //   };
2366     //
2367     // in the C++03 standard. We implement the C++0x semantics, which
2368     // allow the above but disallow
2369     //
2370     //   struct S {
2371     //     typedef int I;
2372     //     typedef int I;
2373     //   };
2374     //
2375     // since that was the intent of DR56.
2376     if (!isa<TypedefNameDecl>(Old))
2377       return;
2378 
2379     Diag(New->getLocation(), diag::err_redefinition)
2380       << New->getDeclName();
2381     notePreviousDefinition(Old, New->getLocation());
2382     return New->setInvalidDecl();
2383   }
2384 
2385   // Modules always permit redefinition of typedefs, as does C11.
2386   if (getLangOpts().Modules || getLangOpts().C11)
2387     return;
2388 
2389   // If we have a redefinition of a typedef in C, emit a warning.  This warning
2390   // is normally mapped to an error, but can be controlled with
2391   // -Wtypedef-redefinition.  If either the original or the redefinition is
2392   // in a system header, don't emit this for compatibility with GCC.
2393   if (getDiagnostics().getSuppressSystemWarnings() &&
2394       // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2395       (Old->isImplicit() ||
2396        Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2397        Context.getSourceManager().isInSystemHeader(New->getLocation())))
2398     return;
2399 
2400   Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2401     << New->getDeclName();
2402   notePreviousDefinition(Old, New->getLocation());
2403 }
2404 
2405 /// DeclhasAttr - returns true if decl Declaration already has the target
2406 /// attribute.
DeclHasAttr(const Decl * D,const Attr * A)2407 static bool DeclHasAttr(const Decl *D, const Attr *A) {
2408   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2409   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2410   for (const auto *i : D->attrs())
2411     if (i->getKind() == A->getKind()) {
2412       if (Ann) {
2413         if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2414           return true;
2415         continue;
2416       }
2417       // FIXME: Don't hardcode this check
2418       if (OA && isa<OwnershipAttr>(i))
2419         return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2420       return true;
2421     }
2422 
2423   return false;
2424 }
2425 
isAttributeTargetADefinition(Decl * D)2426 static bool isAttributeTargetADefinition(Decl *D) {
2427   if (VarDecl *VD = dyn_cast<VarDecl>(D))
2428     return VD->isThisDeclarationADefinition();
2429   if (TagDecl *TD = dyn_cast<TagDecl>(D))
2430     return TD->isCompleteDefinition() || TD->isBeingDefined();
2431   return true;
2432 }
2433 
2434 /// Merge alignment attributes from \p Old to \p New, taking into account the
2435 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2436 ///
2437 /// \return \c true if any attributes were added to \p New.
mergeAlignedAttrs(Sema & S,NamedDecl * New,Decl * Old)2438 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2439   // Look for alignas attributes on Old, and pick out whichever attribute
2440   // specifies the strictest alignment requirement.
2441   AlignedAttr *OldAlignasAttr = nullptr;
2442   AlignedAttr *OldStrictestAlignAttr = nullptr;
2443   unsigned OldAlign = 0;
2444   for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2445     // FIXME: We have no way of representing inherited dependent alignments
2446     // in a case like:
2447     //   template<int A, int B> struct alignas(A) X;
2448     //   template<int A, int B> struct alignas(B) X {};
2449     // For now, we just ignore any alignas attributes which are not on the
2450     // definition in such a case.
2451     if (I->isAlignmentDependent())
2452       return false;
2453 
2454     if (I->isAlignas())
2455       OldAlignasAttr = I;
2456 
2457     unsigned Align = I->getAlignment(S.Context);
2458     if (Align > OldAlign) {
2459       OldAlign = Align;
2460       OldStrictestAlignAttr = I;
2461     }
2462   }
2463 
2464   // Look for alignas attributes on New.
2465   AlignedAttr *NewAlignasAttr = nullptr;
2466   unsigned NewAlign = 0;
2467   for (auto *I : New->specific_attrs<AlignedAttr>()) {
2468     if (I->isAlignmentDependent())
2469       return false;
2470 
2471     if (I->isAlignas())
2472       NewAlignasAttr = I;
2473 
2474     unsigned Align = I->getAlignment(S.Context);
2475     if (Align > NewAlign)
2476       NewAlign = Align;
2477   }
2478 
2479   if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2480     // Both declarations have 'alignas' attributes. We require them to match.
2481     // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2482     // fall short. (If two declarations both have alignas, they must both match
2483     // every definition, and so must match each other if there is a definition.)
2484 
2485     // If either declaration only contains 'alignas(0)' specifiers, then it
2486     // specifies the natural alignment for the type.
2487     if (OldAlign == 0 || NewAlign == 0) {
2488       QualType Ty;
2489       if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2490         Ty = VD->getType();
2491       else
2492         Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2493 
2494       if (OldAlign == 0)
2495         OldAlign = S.Context.getTypeAlign(Ty);
2496       if (NewAlign == 0)
2497         NewAlign = S.Context.getTypeAlign(Ty);
2498     }
2499 
2500     if (OldAlign != NewAlign) {
2501       S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2502         << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2503         << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2504       S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2505     }
2506   }
2507 
2508   if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2509     // C++11 [dcl.align]p6:
2510     //   if any declaration of an entity has an alignment-specifier,
2511     //   every defining declaration of that entity shall specify an
2512     //   equivalent alignment.
2513     // C11 6.7.5/7:
2514     //   If the definition of an object does not have an alignment
2515     //   specifier, any other declaration of that object shall also
2516     //   have no alignment specifier.
2517     S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2518       << OldAlignasAttr;
2519     S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2520       << OldAlignasAttr;
2521   }
2522 
2523   bool AnyAdded = false;
2524 
2525   // Ensure we have an attribute representing the strictest alignment.
2526   if (OldAlign > NewAlign) {
2527     AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2528     Clone->setInherited(true);
2529     New->addAttr(Clone);
2530     AnyAdded = true;
2531   }
2532 
2533   // Ensure we have an alignas attribute if the old declaration had one.
2534   if (OldAlignasAttr && !NewAlignasAttr &&
2535       !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2536     AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2537     Clone->setInherited(true);
2538     New->addAttr(Clone);
2539     AnyAdded = true;
2540   }
2541 
2542   return AnyAdded;
2543 }
2544 
mergeDeclAttribute(Sema & S,NamedDecl * D,const InheritableAttr * Attr,Sema::AvailabilityMergeKind AMK)2545 static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2546                                const InheritableAttr *Attr,
2547                                Sema::AvailabilityMergeKind AMK) {
2548   // This function copies an attribute Attr from a previous declaration to the
2549   // new declaration D if the new declaration doesn't itself have that attribute
2550   // yet or if that attribute allows duplicates.
2551   // If you're adding a new attribute that requires logic different from
2552   // "use explicit attribute on decl if present, else use attribute from
2553   // previous decl", for example if the attribute needs to be consistent
2554   // between redeclarations, you need to call a custom merge function here.
2555   InheritableAttr *NewAttr = nullptr;
2556   if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2557     NewAttr = S.mergeAvailabilityAttr(
2558         D, *AA, AA->getPlatform(), AA->isImplicit(), AA->getIntroduced(),
2559         AA->getDeprecated(), AA->getObsoleted(), AA->getUnavailable(),
2560         AA->getMessage(), AA->getStrict(), AA->getReplacement(), AMK,
2561         AA->getPriority());
2562   else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2563     NewAttr = S.mergeVisibilityAttr(D, *VA, VA->getVisibility());
2564   else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2565     NewAttr = S.mergeTypeVisibilityAttr(D, *VA, VA->getVisibility());
2566   else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2567     NewAttr = S.mergeDLLImportAttr(D, *ImportA);
2568   else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2569     NewAttr = S.mergeDLLExportAttr(D, *ExportA);
2570   else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2571     NewAttr = S.mergeFormatAttr(D, *FA, FA->getType(), FA->getFormatIdx(),
2572                                 FA->getFirstArg());
2573   else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2574     NewAttr = S.mergeSectionAttr(D, *SA, SA->getName());
2575   else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr))
2576     NewAttr = S.mergeCodeSegAttr(D, *CSA, CSA->getName());
2577   else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2578     NewAttr = S.mergeMSInheritanceAttr(D, *IA, IA->getBestCase(),
2579                                        IA->getInheritanceModel());
2580   else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2581     NewAttr = S.mergeAlwaysInlineAttr(D, *AA,
2582                                       &S.Context.Idents.get(AA->getSpelling()));
2583   else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
2584            (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
2585             isa<CUDAGlobalAttr>(Attr))) {
2586     // CUDA target attributes are part of function signature for
2587     // overloading purposes and must not be merged.
2588     return false;
2589   } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2590     NewAttr = S.mergeMinSizeAttr(D, *MA);
2591   else if (const auto *SNA = dyn_cast<SwiftNameAttr>(Attr))
2592     NewAttr = S.mergeSwiftNameAttr(D, *SNA, SNA->getName());
2593   else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2594     NewAttr = S.mergeOptimizeNoneAttr(D, *OA);
2595   else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2596     NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA);
2597   else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr))
2598     NewAttr = S.mergeCommonAttr(D, *CommonA);
2599   else if (isa<AlignedAttr>(Attr))
2600     // AlignedAttrs are handled separately, because we need to handle all
2601     // such attributes on a declaration at the same time.
2602     NewAttr = nullptr;
2603   else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2604            (AMK == Sema::AMK_Override ||
2605             AMK == Sema::AMK_ProtocolImplementation))
2606     NewAttr = nullptr;
2607   else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
2608     NewAttr = S.mergeUuidAttr(D, *UA, UA->getGuid(), UA->getGuidDecl());
2609   else if (const auto *SLHA = dyn_cast<SpeculativeLoadHardeningAttr>(Attr))
2610     NewAttr = S.mergeSpeculativeLoadHardeningAttr(D, *SLHA);
2611   else if (const auto *SLHA = dyn_cast<NoSpeculativeLoadHardeningAttr>(Attr))
2612     NewAttr = S.mergeNoSpeculativeLoadHardeningAttr(D, *SLHA);
2613   else if (const auto *IMA = dyn_cast<WebAssemblyImportModuleAttr>(Attr))
2614     NewAttr = S.mergeImportModuleAttr(D, *IMA);
2615   else if (const auto *INA = dyn_cast<WebAssemblyImportNameAttr>(Attr))
2616     NewAttr = S.mergeImportNameAttr(D, *INA);
2617   else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
2618     NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2619 
2620   if (NewAttr) {
2621     NewAttr->setInherited(true);
2622     D->addAttr(NewAttr);
2623     if (isa<MSInheritanceAttr>(NewAttr))
2624       S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
2625     return true;
2626   }
2627 
2628   return false;
2629 }
2630 
getDefinition(const Decl * D)2631 static const NamedDecl *getDefinition(const Decl *D) {
2632   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2633     return TD->getDefinition();
2634   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2635     const VarDecl *Def = VD->getDefinition();
2636     if (Def)
2637       return Def;
2638     return VD->getActingDefinition();
2639   }
2640   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2641     const FunctionDecl *Def = nullptr;
2642     if (FD->isDefined(Def, true))
2643       return Def;
2644   }
2645   return nullptr;
2646 }
2647 
hasAttribute(const Decl * D,attr::Kind Kind)2648 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2649   for (const auto *Attribute : D->attrs())
2650     if (Attribute->getKind() == Kind)
2651       return true;
2652   return false;
2653 }
2654 
2655 /// checkNewAttributesAfterDef - If we already have a definition, check that
2656 /// there are no new attributes in this declaration.
checkNewAttributesAfterDef(Sema & S,Decl * New,const Decl * Old)2657 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2658   if (!New->hasAttrs())
2659     return;
2660 
2661   const NamedDecl *Def = getDefinition(Old);
2662   if (!Def || Def == New)
2663     return;
2664 
2665   AttrVec &NewAttributes = New->getAttrs();
2666   for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2667     const Attr *NewAttribute = NewAttributes[I];
2668 
2669     if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
2670       if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
2671         Sema::SkipBodyInfo SkipBody;
2672         S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
2673 
2674         // If we're skipping this definition, drop the "alias" attribute.
2675         if (SkipBody.ShouldSkip) {
2676           NewAttributes.erase(NewAttributes.begin() + I);
2677           --E;
2678           continue;
2679         }
2680       } else {
2681         VarDecl *VD = cast<VarDecl>(New);
2682         unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2683                                 VarDecl::TentativeDefinition
2684                             ? diag::err_alias_after_tentative
2685                             : diag::err_redefinition;
2686         S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2687         if (Diag == diag::err_redefinition)
2688           S.notePreviousDefinition(Def, VD->getLocation());
2689         else
2690           S.Diag(Def->getLocation(), diag::note_previous_definition);
2691         VD->setInvalidDecl();
2692       }
2693       ++I;
2694       continue;
2695     }
2696 
2697     if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2698       // Tentative definitions are only interesting for the alias check above.
2699       if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2700         ++I;
2701         continue;
2702       }
2703     }
2704 
2705     if (hasAttribute(Def, NewAttribute->getKind())) {
2706       ++I;
2707       continue; // regular attr merging will take care of validating this.
2708     }
2709 
2710     if (isa<C11NoReturnAttr>(NewAttribute)) {
2711       // C's _Noreturn is allowed to be added to a function after it is defined.
2712       ++I;
2713       continue;
2714     } else if (isa<UuidAttr>(NewAttribute)) {
2715       // msvc will allow a subsequent definition to add an uuid to a class
2716       ++I;
2717       continue;
2718     } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2719       if (AA->isAlignas()) {
2720         // C++11 [dcl.align]p6:
2721         //   if any declaration of an entity has an alignment-specifier,
2722         //   every defining declaration of that entity shall specify an
2723         //   equivalent alignment.
2724         // C11 6.7.5/7:
2725         //   If the definition of an object does not have an alignment
2726         //   specifier, any other declaration of that object shall also
2727         //   have no alignment specifier.
2728         S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2729           << AA;
2730         S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2731           << AA;
2732         NewAttributes.erase(NewAttributes.begin() + I);
2733         --E;
2734         continue;
2735       }
2736     } else if (isa<LoaderUninitializedAttr>(NewAttribute)) {
2737       // If there is a C definition followed by a redeclaration with this
2738       // attribute then there are two different definitions. In C++, prefer the
2739       // standard diagnostics.
2740       if (!S.getLangOpts().CPlusPlus) {
2741         S.Diag(NewAttribute->getLocation(),
2742                diag::err_loader_uninitialized_redeclaration);
2743         S.Diag(Def->getLocation(), diag::note_previous_definition);
2744         NewAttributes.erase(NewAttributes.begin() + I);
2745         --E;
2746         continue;
2747       }
2748     } else if (isa<SelectAnyAttr>(NewAttribute) &&
2749                cast<VarDecl>(New)->isInline() &&
2750                !cast<VarDecl>(New)->isInlineSpecified()) {
2751       // Don't warn about applying selectany to implicitly inline variables.
2752       // Older compilers and language modes would require the use of selectany
2753       // to make such variables inline, and it would have no effect if we
2754       // honored it.
2755       ++I;
2756       continue;
2757     } else if (isa<OMPDeclareVariantAttr>(NewAttribute)) {
2758       // We allow to add OMP[Begin]DeclareVariantAttr to be added to
2759       // declarations after defintions.
2760       ++I;
2761       continue;
2762     }
2763 
2764     S.Diag(NewAttribute->getLocation(),
2765            diag::warn_attribute_precede_definition);
2766     S.Diag(Def->getLocation(), diag::note_previous_definition);
2767     NewAttributes.erase(NewAttributes.begin() + I);
2768     --E;
2769   }
2770 }
2771 
diagnoseMissingConstinit(Sema & S,const VarDecl * InitDecl,const ConstInitAttr * CIAttr,bool AttrBeforeInit)2772 static void diagnoseMissingConstinit(Sema &S, const VarDecl *InitDecl,
2773                                      const ConstInitAttr *CIAttr,
2774                                      bool AttrBeforeInit) {
2775   SourceLocation InsertLoc = InitDecl->getInnerLocStart();
2776 
2777   // Figure out a good way to write this specifier on the old declaration.
2778   // FIXME: We should just use the spelling of CIAttr, but we don't preserve
2779   // enough of the attribute list spelling information to extract that without
2780   // heroics.
2781   std::string SuitableSpelling;
2782   if (S.getLangOpts().CPlusPlus20)
2783     SuitableSpelling = std::string(
2784         S.PP.getLastMacroWithSpelling(InsertLoc, {tok::kw_constinit}));
2785   if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
2786     SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
2787         InsertLoc, {tok::l_square, tok::l_square,
2788                     S.PP.getIdentifierInfo("clang"), tok::coloncolon,
2789                     S.PP.getIdentifierInfo("require_constant_initialization"),
2790                     tok::r_square, tok::r_square}));
2791   if (SuitableSpelling.empty())
2792     SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
2793         InsertLoc, {tok::kw___attribute, tok::l_paren, tok::r_paren,
2794                     S.PP.getIdentifierInfo("require_constant_initialization"),
2795                     tok::r_paren, tok::r_paren}));
2796   if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus20)
2797     SuitableSpelling = "constinit";
2798   if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
2799     SuitableSpelling = "[[clang::require_constant_initialization]]";
2800   if (SuitableSpelling.empty())
2801     SuitableSpelling = "__attribute__((require_constant_initialization))";
2802   SuitableSpelling += " ";
2803 
2804   if (AttrBeforeInit) {
2805     // extern constinit int a;
2806     // int a = 0; // error (missing 'constinit'), accepted as extension
2807     assert(CIAttr->isConstinit() && "should not diagnose this for attribute");
2808     S.Diag(InitDecl->getLocation(), diag::ext_constinit_missing)
2809         << InitDecl << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
2810     S.Diag(CIAttr->getLocation(), diag::note_constinit_specified_here);
2811   } else {
2812     // int a = 0;
2813     // constinit extern int a; // error (missing 'constinit')
2814     S.Diag(CIAttr->getLocation(),
2815            CIAttr->isConstinit() ? diag::err_constinit_added_too_late
2816                                  : diag::warn_require_const_init_added_too_late)
2817         << FixItHint::CreateRemoval(SourceRange(CIAttr->getLocation()));
2818     S.Diag(InitDecl->getLocation(), diag::note_constinit_missing_here)
2819         << CIAttr->isConstinit()
2820         << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
2821   }
2822 }
2823 
2824 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
mergeDeclAttributes(NamedDecl * New,Decl * Old,AvailabilityMergeKind AMK)2825 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2826                                AvailabilityMergeKind AMK) {
2827   if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2828     UsedAttr *NewAttr = OldAttr->clone(Context);
2829     NewAttr->setInherited(true);
2830     New->addAttr(NewAttr);
2831   }
2832 
2833   if (!Old->hasAttrs() && !New->hasAttrs())
2834     return;
2835 
2836   // [dcl.constinit]p1:
2837   //   If the [constinit] specifier is applied to any declaration of a
2838   //   variable, it shall be applied to the initializing declaration.
2839   const auto *OldConstInit = Old->getAttr<ConstInitAttr>();
2840   const auto *NewConstInit = New->getAttr<ConstInitAttr>();
2841   if (bool(OldConstInit) != bool(NewConstInit)) {
2842     const auto *OldVD = cast<VarDecl>(Old);
2843     auto *NewVD = cast<VarDecl>(New);
2844 
2845     // Find the initializing declaration. Note that we might not have linked
2846     // the new declaration into the redeclaration chain yet.
2847     const VarDecl *InitDecl = OldVD->getInitializingDeclaration();
2848     if (!InitDecl &&
2849         (NewVD->hasInit() || NewVD->isThisDeclarationADefinition()))
2850       InitDecl = NewVD;
2851 
2852     if (InitDecl == NewVD) {
2853       // This is the initializing declaration. If it would inherit 'constinit',
2854       // that's ill-formed. (Note that we do not apply this to the attribute
2855       // form).
2856       if (OldConstInit && OldConstInit->isConstinit())
2857         diagnoseMissingConstinit(*this, NewVD, OldConstInit,
2858                                  /*AttrBeforeInit=*/true);
2859     } else if (NewConstInit) {
2860       // This is the first time we've been told that this declaration should
2861       // have a constant initializer. If we already saw the initializing
2862       // declaration, this is too late.
2863       if (InitDecl && InitDecl != NewVD) {
2864         diagnoseMissingConstinit(*this, InitDecl, NewConstInit,
2865                                  /*AttrBeforeInit=*/false);
2866         NewVD->dropAttr<ConstInitAttr>();
2867       }
2868     }
2869   }
2870 
2871   // Attributes declared post-definition are currently ignored.
2872   checkNewAttributesAfterDef(*this, New, Old);
2873 
2874   if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
2875     if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
2876       if (!OldA->isEquivalent(NewA)) {
2877         // This redeclaration changes __asm__ label.
2878         Diag(New->getLocation(), diag::err_different_asm_label);
2879         Diag(OldA->getLocation(), diag::note_previous_declaration);
2880       }
2881     } else if (Old->isUsed()) {
2882       // This redeclaration adds an __asm__ label to a declaration that has
2883       // already been ODR-used.
2884       Diag(New->getLocation(), diag::err_late_asm_label_name)
2885         << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
2886     }
2887   }
2888 
2889   // Re-declaration cannot add abi_tag's.
2890   if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
2891     if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
2892       for (const auto &NewTag : NewAbiTagAttr->tags()) {
2893         if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(),
2894                       NewTag) == OldAbiTagAttr->tags_end()) {
2895           Diag(NewAbiTagAttr->getLocation(),
2896                diag::err_new_abi_tag_on_redeclaration)
2897               << NewTag;
2898           Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
2899         }
2900       }
2901     } else {
2902       Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
2903       Diag(Old->getLocation(), diag::note_previous_declaration);
2904     }
2905   }
2906 
2907   // This redeclaration adds a section attribute.
2908   if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
2909     if (auto *VD = dyn_cast<VarDecl>(New)) {
2910       if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
2911         Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
2912         Diag(Old->getLocation(), diag::note_previous_declaration);
2913       }
2914     }
2915   }
2916 
2917   // Redeclaration adds code-seg attribute.
2918   const auto *NewCSA = New->getAttr<CodeSegAttr>();
2919   if (NewCSA && !Old->hasAttr<CodeSegAttr>() &&
2920       !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) {
2921     Diag(New->getLocation(), diag::warn_mismatched_section)
2922          << 0 /*codeseg*/;
2923     Diag(Old->getLocation(), diag::note_previous_declaration);
2924   }
2925 
2926   if (!Old->hasAttrs())
2927     return;
2928 
2929   bool foundAny = New->hasAttrs();
2930 
2931   // Ensure that any moving of objects within the allocated map is done before
2932   // we process them.
2933   if (!foundAny) New->setAttrs(AttrVec());
2934 
2935   for (auto *I : Old->specific_attrs<InheritableAttr>()) {
2936     // Ignore deprecated/unavailable/availability attributes if requested.
2937     AvailabilityMergeKind LocalAMK = AMK_None;
2938     if (isa<DeprecatedAttr>(I) ||
2939         isa<UnavailableAttr>(I) ||
2940         isa<AvailabilityAttr>(I)) {
2941       switch (AMK) {
2942       case AMK_None:
2943         continue;
2944 
2945       case AMK_Redeclaration:
2946       case AMK_Override:
2947       case AMK_ProtocolImplementation:
2948         LocalAMK = AMK;
2949         break;
2950       }
2951     }
2952 
2953     // Already handled.
2954     if (isa<UsedAttr>(I))
2955       continue;
2956 
2957     if (mergeDeclAttribute(*this, New, I, LocalAMK))
2958       foundAny = true;
2959   }
2960 
2961   if (mergeAlignedAttrs(*this, New, Old))
2962     foundAny = true;
2963 
2964   if (!foundAny) New->dropAttrs();
2965 }
2966 
2967 /// mergeParamDeclAttributes - Copy attributes from the old parameter
2968 /// to the new one.
mergeParamDeclAttributes(ParmVarDecl * newDecl,const ParmVarDecl * oldDecl,Sema & S)2969 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2970                                      const ParmVarDecl *oldDecl,
2971                                      Sema &S) {
2972   // C++11 [dcl.attr.depend]p2:
2973   //   The first declaration of a function shall specify the
2974   //   carries_dependency attribute for its declarator-id if any declaration
2975   //   of the function specifies the carries_dependency attribute.
2976   const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
2977   if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2978     S.Diag(CDA->getLocation(),
2979            diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2980     // Find the first declaration of the parameter.
2981     // FIXME: Should we build redeclaration chains for function parameters?
2982     const FunctionDecl *FirstFD =
2983       cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2984     const ParmVarDecl *FirstVD =
2985       FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2986     S.Diag(FirstVD->getLocation(),
2987            diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2988   }
2989 
2990   if (!oldDecl->hasAttrs())
2991     return;
2992 
2993   bool foundAny = newDecl->hasAttrs();
2994 
2995   // Ensure that any moving of objects within the allocated map is
2996   // done before we process them.
2997   if (!foundAny) newDecl->setAttrs(AttrVec());
2998 
2999   for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
3000     if (!DeclHasAttr(newDecl, I)) {
3001       InheritableAttr *newAttr =
3002         cast<InheritableParamAttr>(I->clone(S.Context));
3003       newAttr->setInherited(true);
3004       newDecl->addAttr(newAttr);
3005       foundAny = true;
3006     }
3007   }
3008 
3009   if (!foundAny) newDecl->dropAttrs();
3010 }
3011 
mergeParamDeclTypes(ParmVarDecl * NewParam,const ParmVarDecl * OldParam,Sema & S)3012 static void mergeParamDeclTypes(ParmVarDecl *NewParam,
3013                                 const ParmVarDecl *OldParam,
3014                                 Sema &S) {
3015   if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
3016     if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
3017       if (*Oldnullability != *Newnullability) {
3018         S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
3019           << DiagNullabilityKind(
3020                *Newnullability,
3021                ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3022                 != 0))
3023           << DiagNullabilityKind(
3024                *Oldnullability,
3025                ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3026                 != 0));
3027         S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
3028       }
3029     } else {
3030       QualType NewT = NewParam->getType();
3031       NewT = S.Context.getAttributedType(
3032                          AttributedType::getNullabilityAttrKind(*Oldnullability),
3033                          NewT, NewT);
3034       NewParam->setType(NewT);
3035     }
3036   }
3037 }
3038 
3039 namespace {
3040 
3041 /// Used in MergeFunctionDecl to keep track of function parameters in
3042 /// C.
3043 struct GNUCompatibleParamWarning {
3044   ParmVarDecl *OldParm;
3045   ParmVarDecl *NewParm;
3046   QualType PromotedType;
3047 };
3048 
3049 } // end anonymous namespace
3050 
3051 // Determine whether the previous declaration was a definition, implicit
3052 // declaration, or a declaration.
3053 template <typename T>
3054 static std::pair<diag::kind, SourceLocation>
getNoteDiagForInvalidRedeclaration(const T * Old,const T * New)3055 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
3056   diag::kind PrevDiag;
3057   SourceLocation OldLocation = Old->getLocation();
3058   if (Old->isThisDeclarationADefinition())
3059     PrevDiag = diag::note_previous_definition;
3060   else if (Old->isImplicit()) {
3061     PrevDiag = diag::note_previous_implicit_declaration;
3062     if (OldLocation.isInvalid())
3063       OldLocation = New->getLocation();
3064   } else
3065     PrevDiag = diag::note_previous_declaration;
3066   return std::make_pair(PrevDiag, OldLocation);
3067 }
3068 
3069 /// canRedefineFunction - checks if a function can be redefined. Currently,
3070 /// only extern inline functions can be redefined, and even then only in
3071 /// GNU89 mode.
canRedefineFunction(const FunctionDecl * FD,const LangOptions & LangOpts)3072 static bool canRedefineFunction(const FunctionDecl *FD,
3073                                 const LangOptions& LangOpts) {
3074   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
3075           !LangOpts.CPlusPlus &&
3076           FD->isInlineSpecified() &&
3077           FD->getStorageClass() == SC_Extern);
3078 }
3079 
getCallingConvAttributedType(QualType T) const3080 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
3081   const AttributedType *AT = T->getAs<AttributedType>();
3082   while (AT && !AT->isCallingConv())
3083     AT = AT->getModifiedType()->getAs<AttributedType>();
3084   return AT;
3085 }
3086 
3087 template <typename T>
haveIncompatibleLanguageLinkages(const T * Old,const T * New)3088 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
3089   const DeclContext *DC = Old->getDeclContext();
3090   if (DC->isRecord())
3091     return false;
3092 
3093   LanguageLinkage OldLinkage = Old->getLanguageLinkage();
3094   if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
3095     return true;
3096   if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
3097     return true;
3098   return false;
3099 }
3100 
isExternC(T * D)3101 template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
isExternC(VarTemplateDecl *)3102 static bool isExternC(VarTemplateDecl *) { return false; }
3103 
3104 /// Check whether a redeclaration of an entity introduced by a
3105 /// using-declaration is valid, given that we know it's not an overload
3106 /// (nor a hidden tag declaration).
3107 template<typename ExpectedDecl>
checkUsingShadowRedecl(Sema & S,UsingShadowDecl * OldS,ExpectedDecl * New)3108 static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
3109                                    ExpectedDecl *New) {
3110   // C++11 [basic.scope.declarative]p4:
3111   //   Given a set of declarations in a single declarative region, each of
3112   //   which specifies the same unqualified name,
3113   //   -- they shall all refer to the same entity, or all refer to functions
3114   //      and function templates; or
3115   //   -- exactly one declaration shall declare a class name or enumeration
3116   //      name that is not a typedef name and the other declarations shall all
3117   //      refer to the same variable or enumerator, or all refer to functions
3118   //      and function templates; in this case the class name or enumeration
3119   //      name is hidden (3.3.10).
3120 
3121   // C++11 [namespace.udecl]p14:
3122   //   If a function declaration in namespace scope or block scope has the
3123   //   same name and the same parameter-type-list as a function introduced
3124   //   by a using-declaration, and the declarations do not declare the same
3125   //   function, the program is ill-formed.
3126 
3127   auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
3128   if (Old &&
3129       !Old->getDeclContext()->getRedeclContext()->Equals(
3130           New->getDeclContext()->getRedeclContext()) &&
3131       !(isExternC(Old) && isExternC(New)))
3132     Old = nullptr;
3133 
3134   if (!Old) {
3135     S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
3136     S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
3137     S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
3138     return true;
3139   }
3140   return false;
3141 }
3142 
hasIdenticalPassObjectSizeAttrs(const FunctionDecl * A,const FunctionDecl * B)3143 static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
3144                                             const FunctionDecl *B) {
3145   assert(A->getNumParams() == B->getNumParams());
3146 
3147   auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
3148     const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
3149     const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
3150     if (AttrA == AttrB)
3151       return true;
3152     return AttrA && AttrB && AttrA->getType() == AttrB->getType() &&
3153            AttrA->isDynamic() == AttrB->isDynamic();
3154   };
3155 
3156   return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
3157 }
3158 
3159 /// If necessary, adjust the semantic declaration context for a qualified
3160 /// declaration to name the correct inline namespace within the qualifier.
adjustDeclContextForDeclaratorDecl(DeclaratorDecl * NewD,DeclaratorDecl * OldD)3161 static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
3162                                                DeclaratorDecl *OldD) {
3163   // The only case where we need to update the DeclContext is when
3164   // redeclaration lookup for a qualified name finds a declaration
3165   // in an inline namespace within the context named by the qualifier:
3166   //
3167   //   inline namespace N { int f(); }
3168   //   int ::f(); // Sema DC needs adjusting from :: to N::.
3169   //
3170   // For unqualified declarations, the semantic context *can* change
3171   // along the redeclaration chain (for local extern declarations,
3172   // extern "C" declarations, and friend declarations in particular).
3173   if (!NewD->getQualifier())
3174     return;
3175 
3176   // NewD is probably already in the right context.
3177   auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
3178   auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
3179   if (NamedDC->Equals(SemaDC))
3180     return;
3181 
3182   assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||
3183           NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&
3184          "unexpected context for redeclaration");
3185 
3186   auto *LexDC = NewD->getLexicalDeclContext();
3187   auto FixSemaDC = [=](NamedDecl *D) {
3188     if (!D)
3189       return;
3190     D->setDeclContext(SemaDC);
3191     D->setLexicalDeclContext(LexDC);
3192   };
3193 
3194   FixSemaDC(NewD);
3195   if (auto *FD = dyn_cast<FunctionDecl>(NewD))
3196     FixSemaDC(FD->getDescribedFunctionTemplate());
3197   else if (auto *VD = dyn_cast<VarDecl>(NewD))
3198     FixSemaDC(VD->getDescribedVarTemplate());
3199 }
3200 
3201 /// MergeFunctionDecl - We just parsed a function 'New' from
3202 /// declarator D which has the same name and scope as a previous
3203 /// declaration 'Old'.  Figure out how to resolve this situation,
3204 /// merging decls or emitting diagnostics as appropriate.
3205 ///
3206 /// In C++, New and Old must be declarations that are not
3207 /// overloaded. Use IsOverload to determine whether New and Old are
3208 /// overloaded, and to select the Old declaration that New should be
3209 /// merged with.
3210 ///
3211 /// Returns true if there was an error, false otherwise.
MergeFunctionDecl(FunctionDecl * New,NamedDecl * & OldD,Scope * S,bool MergeTypeWithOld)3212 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
3213                              Scope *S, bool MergeTypeWithOld) {
3214   // Verify the old decl was also a function.
3215   FunctionDecl *Old = OldD->getAsFunction();
3216   if (!Old) {
3217     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
3218       if (New->getFriendObjectKind()) {
3219         Diag(New->getLocation(), diag::err_using_decl_friend);
3220         Diag(Shadow->getTargetDecl()->getLocation(),
3221              diag::note_using_decl_target);
3222         Diag(Shadow->getUsingDecl()->getLocation(),
3223              diag::note_using_decl) << 0;
3224         return true;
3225       }
3226 
3227       // Check whether the two declarations might declare the same function.
3228       if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
3229         return true;
3230       OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
3231     } else {
3232       Diag(New->getLocation(), diag::err_redefinition_different_kind)
3233         << New->getDeclName();
3234       notePreviousDefinition(OldD, New->getLocation());
3235       return true;
3236     }
3237   }
3238 
3239   // If the old declaration is invalid, just give up here.
3240   if (Old->isInvalidDecl())
3241     return true;
3242 
3243   // Disallow redeclaration of some builtins.
3244   if (!getASTContext().canBuiltinBeRedeclared(Old)) {
3245     Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName();
3246     Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
3247         << Old << Old->getType();
3248     return true;
3249   }
3250 
3251   diag::kind PrevDiag;
3252   SourceLocation OldLocation;
3253   std::tie(PrevDiag, OldLocation) =
3254       getNoteDiagForInvalidRedeclaration(Old, New);
3255 
3256   // Don't complain about this if we're in GNU89 mode and the old function
3257   // is an extern inline function.
3258   // Don't complain about specializations. They are not supposed to have
3259   // storage classes.
3260   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
3261       New->getStorageClass() == SC_Static &&
3262       Old->hasExternalFormalLinkage() &&
3263       !New->getTemplateSpecializationInfo() &&
3264       !canRedefineFunction(Old, getLangOpts())) {
3265     if (getLangOpts().MicrosoftExt) {
3266       Diag(New->getLocation(), diag::ext_static_non_static) << New;
3267       Diag(OldLocation, PrevDiag);
3268     } else {
3269       Diag(New->getLocation(), diag::err_static_non_static) << New;
3270       Diag(OldLocation, PrevDiag);
3271       return true;
3272     }
3273   }
3274 
3275   if (New->hasAttr<InternalLinkageAttr>() &&
3276       !Old->hasAttr<InternalLinkageAttr>()) {
3277     Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3278         << New->getDeclName();
3279     notePreviousDefinition(Old, New->getLocation());
3280     New->dropAttr<InternalLinkageAttr>();
3281   }
3282 
3283   if (CheckRedeclarationModuleOwnership(New, Old))
3284     return true;
3285 
3286   if (!getLangOpts().CPlusPlus) {
3287     bool OldOvl = Old->hasAttr<OverloadableAttr>();
3288     if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
3289       Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
3290         << New << OldOvl;
3291 
3292       // Try our best to find a decl that actually has the overloadable
3293       // attribute for the note. In most cases (e.g. programs with only one
3294       // broken declaration/definition), this won't matter.
3295       //
3296       // FIXME: We could do this if we juggled some extra state in
3297       // OverloadableAttr, rather than just removing it.
3298       const Decl *DiagOld = Old;
3299       if (OldOvl) {
3300         auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
3301           const auto *A = D->getAttr<OverloadableAttr>();
3302           return A && !A->isImplicit();
3303         });
3304         // If we've implicitly added *all* of the overloadable attrs to this
3305         // chain, emitting a "previous redecl" note is pointless.
3306         DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
3307       }
3308 
3309       if (DiagOld)
3310         Diag(DiagOld->getLocation(),
3311              diag::note_attribute_overloadable_prev_overload)
3312           << OldOvl;
3313 
3314       if (OldOvl)
3315         New->addAttr(OverloadableAttr::CreateImplicit(Context));
3316       else
3317         New->dropAttr<OverloadableAttr>();
3318     }
3319   }
3320 
3321   // If a function is first declared with a calling convention, but is later
3322   // declared or defined without one, all following decls assume the calling
3323   // convention of the first.
3324   //
3325   // It's OK if a function is first declared without a calling convention,
3326   // but is later declared or defined with the default calling convention.
3327   //
3328   // To test if either decl has an explicit calling convention, we look for
3329   // AttributedType sugar nodes on the type as written.  If they are missing or
3330   // were canonicalized away, we assume the calling convention was implicit.
3331   //
3332   // Note also that we DO NOT return at this point, because we still have
3333   // other tests to run.
3334   QualType OldQType = Context.getCanonicalType(Old->getType());
3335   QualType NewQType = Context.getCanonicalType(New->getType());
3336   const FunctionType *OldType = cast<FunctionType>(OldQType);
3337   const FunctionType *NewType = cast<FunctionType>(NewQType);
3338   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
3339   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
3340   bool RequiresAdjustment = false;
3341 
3342   if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
3343     FunctionDecl *First = Old->getFirstDecl();
3344     const FunctionType *FT =
3345         First->getType().getCanonicalType()->castAs<FunctionType>();
3346     FunctionType::ExtInfo FI = FT->getExtInfo();
3347     bool NewCCExplicit = getCallingConvAttributedType(New->getType());
3348     if (!NewCCExplicit) {
3349       // Inherit the CC from the previous declaration if it was specified
3350       // there but not here.
3351       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3352       RequiresAdjustment = true;
3353     } else if (Old->getBuiltinID()) {
3354       // Builtin attribute isn't propagated to the new one yet at this point,
3355       // so we check if the old one is a builtin.
3356 
3357       // Calling Conventions on a Builtin aren't really useful and setting a
3358       // default calling convention and cdecl'ing some builtin redeclarations is
3359       // common, so warn and ignore the calling convention on the redeclaration.
3360       Diag(New->getLocation(), diag::warn_cconv_unsupported)
3361           << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3362           << (int)CallingConventionIgnoredReason::BuiltinFunction;
3363       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3364       RequiresAdjustment = true;
3365     } else {
3366       // Calling conventions aren't compatible, so complain.
3367       bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
3368       Diag(New->getLocation(), diag::err_cconv_change)
3369         << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3370         << !FirstCCExplicit
3371         << (!FirstCCExplicit ? "" :
3372             FunctionType::getNameForCallConv(FI.getCC()));
3373 
3374       // Put the note on the first decl, since it is the one that matters.
3375       Diag(First->getLocation(), diag::note_previous_declaration);
3376       return true;
3377     }
3378   }
3379 
3380   // FIXME: diagnose the other way around?
3381   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
3382     NewTypeInfo = NewTypeInfo.withNoReturn(true);
3383     RequiresAdjustment = true;
3384   }
3385 
3386   // Merge regparm attribute.
3387   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
3388       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
3389     if (NewTypeInfo.getHasRegParm()) {
3390       Diag(New->getLocation(), diag::err_regparm_mismatch)
3391         << NewType->getRegParmType()
3392         << OldType->getRegParmType();
3393       Diag(OldLocation, diag::note_previous_declaration);
3394       return true;
3395     }
3396 
3397     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
3398     RequiresAdjustment = true;
3399   }
3400 
3401   // Merge ns_returns_retained attribute.
3402   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
3403     if (NewTypeInfo.getProducesResult()) {
3404       Diag(New->getLocation(), diag::err_function_attribute_mismatch)
3405           << "'ns_returns_retained'";
3406       Diag(OldLocation, diag::note_previous_declaration);
3407       return true;
3408     }
3409 
3410     NewTypeInfo = NewTypeInfo.withProducesResult(true);
3411     RequiresAdjustment = true;
3412   }
3413 
3414   if (OldTypeInfo.getNoCallerSavedRegs() !=
3415       NewTypeInfo.getNoCallerSavedRegs()) {
3416     if (NewTypeInfo.getNoCallerSavedRegs()) {
3417       AnyX86NoCallerSavedRegistersAttr *Attr =
3418         New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
3419       Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
3420       Diag(OldLocation, diag::note_previous_declaration);
3421       return true;
3422     }
3423 
3424     NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
3425     RequiresAdjustment = true;
3426   }
3427 
3428   if (RequiresAdjustment) {
3429     const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
3430     AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
3431     New->setType(QualType(AdjustedType, 0));
3432     NewQType = Context.getCanonicalType(New->getType());
3433   }
3434 
3435   // If this redeclaration makes the function inline, we may need to add it to
3436   // UndefinedButUsed.
3437   if (!Old->isInlined() && New->isInlined() &&
3438       !New->hasAttr<GNUInlineAttr>() &&
3439       !getLangOpts().GNUInline &&
3440       Old->isUsed(false) &&
3441       !Old->isDefined() && !New->isThisDeclarationADefinition())
3442     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3443                                            SourceLocation()));
3444 
3445   // If this redeclaration makes it newly gnu_inline, we don't want to warn
3446   // about it.
3447   if (New->hasAttr<GNUInlineAttr>() &&
3448       Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
3449     UndefinedButUsed.erase(Old->getCanonicalDecl());
3450   }
3451 
3452   // If pass_object_size params don't match up perfectly, this isn't a valid
3453   // redeclaration.
3454   if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
3455       !hasIdenticalPassObjectSizeAttrs(Old, New)) {
3456     Diag(New->getLocation(), diag::err_different_pass_object_size_params)
3457         << New->getDeclName();
3458     Diag(OldLocation, PrevDiag) << Old << Old->getType();
3459     return true;
3460   }
3461 
3462   if (getLangOpts().CPlusPlus) {
3463     // C++1z [over.load]p2
3464     //   Certain function declarations cannot be overloaded:
3465     //     -- Function declarations that differ only in the return type,
3466     //        the exception specification, or both cannot be overloaded.
3467 
3468     // Check the exception specifications match. This may recompute the type of
3469     // both Old and New if it resolved exception specifications, so grab the
3470     // types again after this. Because this updates the type, we do this before
3471     // any of the other checks below, which may update the "de facto" NewQType
3472     // but do not necessarily update the type of New.
3473     if (CheckEquivalentExceptionSpec(Old, New))
3474       return true;
3475     OldQType = Context.getCanonicalType(Old->getType());
3476     NewQType = Context.getCanonicalType(New->getType());
3477 
3478     // Go back to the type source info to compare the declared return types,
3479     // per C++1y [dcl.type.auto]p13:
3480     //   Redeclarations or specializations of a function or function template
3481     //   with a declared return type that uses a placeholder type shall also
3482     //   use that placeholder, not a deduced type.
3483     QualType OldDeclaredReturnType = Old->getDeclaredReturnType();
3484     QualType NewDeclaredReturnType = New->getDeclaredReturnType();
3485     if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
3486         canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType,
3487                                        OldDeclaredReturnType)) {
3488       QualType ResQT;
3489       if (NewDeclaredReturnType->isObjCObjectPointerType() &&
3490           OldDeclaredReturnType->isObjCObjectPointerType())
3491         // FIXME: This does the wrong thing for a deduced return type.
3492         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
3493       if (ResQT.isNull()) {
3494         if (New->isCXXClassMember() && New->isOutOfLine())
3495           Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
3496               << New << New->getReturnTypeSourceRange();
3497         else
3498           Diag(New->getLocation(), diag::err_ovl_diff_return_type)
3499               << New->getReturnTypeSourceRange();
3500         Diag(OldLocation, PrevDiag) << Old << Old->getType()
3501                                     << Old->getReturnTypeSourceRange();
3502         return true;
3503       }
3504       else
3505         NewQType = ResQT;
3506     }
3507 
3508     QualType OldReturnType = OldType->getReturnType();
3509     QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
3510     if (OldReturnType != NewReturnType) {
3511       // If this function has a deduced return type and has already been
3512       // defined, copy the deduced value from the old declaration.
3513       AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
3514       if (OldAT && OldAT->isDeduced()) {
3515         New->setType(
3516             SubstAutoType(New->getType(),
3517                           OldAT->isDependentType() ? Context.DependentTy
3518                                                    : OldAT->getDeducedType()));
3519         NewQType = Context.getCanonicalType(
3520             SubstAutoType(NewQType,
3521                           OldAT->isDependentType() ? Context.DependentTy
3522                                                    : OldAT->getDeducedType()));
3523       }
3524     }
3525 
3526     const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
3527     CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
3528     if (OldMethod && NewMethod) {
3529       // Preserve triviality.
3530       NewMethod->setTrivial(OldMethod->isTrivial());
3531 
3532       // MSVC allows explicit template specialization at class scope:
3533       // 2 CXXMethodDecls referring to the same function will be injected.
3534       // We don't want a redeclaration error.
3535       bool IsClassScopeExplicitSpecialization =
3536                               OldMethod->isFunctionTemplateSpecialization() &&
3537                               NewMethod->isFunctionTemplateSpecialization();
3538       bool isFriend = NewMethod->getFriendObjectKind();
3539 
3540       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
3541           !IsClassScopeExplicitSpecialization) {
3542         //    -- Member function declarations with the same name and the
3543         //       same parameter types cannot be overloaded if any of them
3544         //       is a static member function declaration.
3545         if (OldMethod->isStatic() != NewMethod->isStatic()) {
3546           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
3547           Diag(OldLocation, PrevDiag) << Old << Old->getType();
3548           return true;
3549         }
3550 
3551         // C++ [class.mem]p1:
3552         //   [...] A member shall not be declared twice in the
3553         //   member-specification, except that a nested class or member
3554         //   class template can be declared and then later defined.
3555         if (!inTemplateInstantiation()) {
3556           unsigned NewDiag;
3557           if (isa<CXXConstructorDecl>(OldMethod))
3558             NewDiag = diag::err_constructor_redeclared;
3559           else if (isa<CXXDestructorDecl>(NewMethod))
3560             NewDiag = diag::err_destructor_redeclared;
3561           else if (isa<CXXConversionDecl>(NewMethod))
3562             NewDiag = diag::err_conv_function_redeclared;
3563           else
3564             NewDiag = diag::err_member_redeclared;
3565 
3566           Diag(New->getLocation(), NewDiag);
3567         } else {
3568           Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
3569             << New << New->getType();
3570         }
3571         Diag(OldLocation, PrevDiag) << Old << Old->getType();
3572         return true;
3573 
3574       // Complain if this is an explicit declaration of a special
3575       // member that was initially declared implicitly.
3576       //
3577       // As an exception, it's okay to befriend such methods in order
3578       // to permit the implicit constructor/destructor/operator calls.
3579       } else if (OldMethod->isImplicit()) {
3580         if (isFriend) {
3581           NewMethod->setImplicit();
3582         } else {
3583           Diag(NewMethod->getLocation(),
3584                diag::err_definition_of_implicitly_declared_member)
3585             << New << getSpecialMember(OldMethod);
3586           return true;
3587         }
3588       } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
3589         Diag(NewMethod->getLocation(),
3590              diag::err_definition_of_explicitly_defaulted_member)
3591           << getSpecialMember(OldMethod);
3592         return true;
3593       }
3594     }
3595 
3596     // C++11 [dcl.attr.noreturn]p1:
3597     //   The first declaration of a function shall specify the noreturn
3598     //   attribute if any declaration of that function specifies the noreturn
3599     //   attribute.
3600     const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
3601     if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
3602       Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
3603       Diag(Old->getFirstDecl()->getLocation(),
3604            diag::note_noreturn_missing_first_decl);
3605     }
3606 
3607     // C++11 [dcl.attr.depend]p2:
3608     //   The first declaration of a function shall specify the
3609     //   carries_dependency attribute for its declarator-id if any declaration
3610     //   of the function specifies the carries_dependency attribute.
3611     const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
3612     if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
3613       Diag(CDA->getLocation(),
3614            diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
3615       Diag(Old->getFirstDecl()->getLocation(),
3616            diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
3617     }
3618 
3619     // (C++98 8.3.5p3):
3620     //   All declarations for a function shall agree exactly in both the
3621     //   return type and the parameter-type-list.
3622     // We also want to respect all the extended bits except noreturn.
3623 
3624     // noreturn should now match unless the old type info didn't have it.
3625     QualType OldQTypeForComparison = OldQType;
3626     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
3627       auto *OldType = OldQType->castAs<FunctionProtoType>();
3628       const FunctionType *OldTypeForComparison
3629         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
3630       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
3631       assert(OldQTypeForComparison.isCanonical());
3632     }
3633 
3634     if (haveIncompatibleLanguageLinkages(Old, New)) {
3635       // As a special case, retain the language linkage from previous
3636       // declarations of a friend function as an extension.
3637       //
3638       // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
3639       // and is useful because there's otherwise no way to specify language
3640       // linkage within class scope.
3641       //
3642       // Check cautiously as the friend object kind isn't yet complete.
3643       if (New->getFriendObjectKind() != Decl::FOK_None) {
3644         Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
3645         Diag(OldLocation, PrevDiag);
3646       } else {
3647         Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3648         Diag(OldLocation, PrevDiag);
3649         return true;
3650       }
3651     }
3652 
3653     // If the function types are compatible, merge the declarations. Ignore the
3654     // exception specifier because it was already checked above in
3655     // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics
3656     // about incompatible types under -fms-compatibility.
3657     if (Context.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison,
3658                                                          NewQType))
3659       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3660 
3661     // If the types are imprecise (due to dependent constructs in friends or
3662     // local extern declarations), it's OK if they differ. We'll check again
3663     // during instantiation.
3664     if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType))
3665       return false;
3666 
3667     // Fall through for conflicting redeclarations and redefinitions.
3668   }
3669 
3670   // C: Function types need to be compatible, not identical. This handles
3671   // duplicate function decls like "void f(int); void f(enum X);" properly.
3672   if (!getLangOpts().CPlusPlus &&
3673       Context.typesAreCompatible(OldQType, NewQType)) {
3674     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
3675     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
3676     const FunctionProtoType *OldProto = nullptr;
3677     if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
3678         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
3679       // The old declaration provided a function prototype, but the
3680       // new declaration does not. Merge in the prototype.
3681       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
3682       SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
3683       NewQType =
3684           Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
3685                                   OldProto->getExtProtoInfo());
3686       New->setType(NewQType);
3687       New->setHasInheritedPrototype();
3688 
3689       // Synthesize parameters with the same types.
3690       SmallVector<ParmVarDecl*, 16> Params;
3691       for (const auto &ParamType : OldProto->param_types()) {
3692         ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
3693                                                  SourceLocation(), nullptr,
3694                                                  ParamType, /*TInfo=*/nullptr,
3695                                                  SC_None, nullptr);
3696         Param->setScopeInfo(0, Params.size());
3697         Param->setImplicit();
3698         Params.push_back(Param);
3699       }
3700 
3701       New->setParams(Params);
3702     }
3703 
3704     return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3705   }
3706 
3707   // Check if the function types are compatible when pointer size address
3708   // spaces are ignored.
3709   if (Context.hasSameFunctionTypeIgnoringPtrSizes(OldQType, NewQType))
3710     return false;
3711 
3712   // GNU C permits a K&R definition to follow a prototype declaration
3713   // if the declared types of the parameters in the K&R definition
3714   // match the types in the prototype declaration, even when the
3715   // promoted types of the parameters from the K&R definition differ
3716   // from the types in the prototype. GCC then keeps the types from
3717   // the prototype.
3718   //
3719   // If a variadic prototype is followed by a non-variadic K&R definition,
3720   // the K&R definition becomes variadic.  This is sort of an edge case, but
3721   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
3722   // C99 6.9.1p8.
3723   if (!getLangOpts().CPlusPlus &&
3724       Old->hasPrototype() && !New->hasPrototype() &&
3725       New->getType()->getAs<FunctionProtoType>() &&
3726       Old->getNumParams() == New->getNumParams()) {
3727     SmallVector<QualType, 16> ArgTypes;
3728     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
3729     const FunctionProtoType *OldProto
3730       = Old->getType()->getAs<FunctionProtoType>();
3731     const FunctionProtoType *NewProto
3732       = New->getType()->getAs<FunctionProtoType>();
3733 
3734     // Determine whether this is the GNU C extension.
3735     QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
3736                                                NewProto->getReturnType());
3737     bool LooseCompatible = !MergedReturn.isNull();
3738     for (unsigned Idx = 0, End = Old->getNumParams();
3739          LooseCompatible && Idx != End; ++Idx) {
3740       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
3741       ParmVarDecl *NewParm = New->getParamDecl(Idx);
3742       if (Context.typesAreCompatible(OldParm->getType(),
3743                                      NewProto->getParamType(Idx))) {
3744         ArgTypes.push_back(NewParm->getType());
3745       } else if (Context.typesAreCompatible(OldParm->getType(),
3746                                             NewParm->getType(),
3747                                             /*CompareUnqualified=*/true)) {
3748         GNUCompatibleParamWarning Warn = { OldParm, NewParm,
3749                                            NewProto->getParamType(Idx) };
3750         Warnings.push_back(Warn);
3751         ArgTypes.push_back(NewParm->getType());
3752       } else
3753         LooseCompatible = false;
3754     }
3755 
3756     if (LooseCompatible) {
3757       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
3758         Diag(Warnings[Warn].NewParm->getLocation(),
3759              diag::ext_param_promoted_not_compatible_with_prototype)
3760           << Warnings[Warn].PromotedType
3761           << Warnings[Warn].OldParm->getType();
3762         if (Warnings[Warn].OldParm->getLocation().isValid())
3763           Diag(Warnings[Warn].OldParm->getLocation(),
3764                diag::note_previous_declaration);
3765       }
3766 
3767       if (MergeTypeWithOld)
3768         New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
3769                                              OldProto->getExtProtoInfo()));
3770       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3771     }
3772 
3773     // Fall through to diagnose conflicting types.
3774   }
3775 
3776   // A function that has already been declared has been redeclared or
3777   // defined with a different type; show an appropriate diagnostic.
3778 
3779   // If the previous declaration was an implicitly-generated builtin
3780   // declaration, then at the very least we should use a specialized note.
3781   unsigned BuiltinID;
3782   if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
3783     // If it's actually a library-defined builtin function like 'malloc'
3784     // or 'printf', just warn about the incompatible redeclaration.
3785     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3786       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
3787       Diag(OldLocation, diag::note_previous_builtin_declaration)
3788         << Old << Old->getType();
3789       return false;
3790     }
3791 
3792     PrevDiag = diag::note_previous_builtin_declaration;
3793   }
3794 
3795   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
3796   Diag(OldLocation, PrevDiag) << Old << Old->getType();
3797   return true;
3798 }
3799 
3800 /// Completes the merge of two function declarations that are
3801 /// known to be compatible.
3802 ///
3803 /// This routine handles the merging of attributes and other
3804 /// properties of function declarations from the old declaration to
3805 /// the new declaration, once we know that New is in fact a
3806 /// redeclaration of Old.
3807 ///
3808 /// \returns false
MergeCompatibleFunctionDecls(FunctionDecl * New,FunctionDecl * Old,Scope * S,bool MergeTypeWithOld)3809 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3810                                         Scope *S, bool MergeTypeWithOld) {
3811   // Merge the attributes
3812   mergeDeclAttributes(New, Old);
3813 
3814   // Merge "pure" flag.
3815   if (Old->isPure())
3816     New->setPure();
3817 
3818   // Merge "used" flag.
3819   if (Old->getMostRecentDecl()->isUsed(false))
3820     New->setIsUsed();
3821 
3822   // Merge attributes from the parameters.  These can mismatch with K&R
3823   // declarations.
3824   if (New->getNumParams() == Old->getNumParams())
3825       for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
3826         ParmVarDecl *NewParam = New->getParamDecl(i);
3827         ParmVarDecl *OldParam = Old->getParamDecl(i);
3828         mergeParamDeclAttributes(NewParam, OldParam, *this);
3829         mergeParamDeclTypes(NewParam, OldParam, *this);
3830       }
3831 
3832   if (getLangOpts().CPlusPlus)
3833     return MergeCXXFunctionDecl(New, Old, S);
3834 
3835   // Merge the function types so the we get the composite types for the return
3836   // and argument types. Per C11 6.2.7/4, only update the type if the old decl
3837   // was visible.
3838   QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
3839   if (!Merged.isNull() && MergeTypeWithOld)
3840     New->setType(Merged);
3841 
3842   return false;
3843 }
3844 
mergeObjCMethodDecls(ObjCMethodDecl * newMethod,ObjCMethodDecl * oldMethod)3845 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
3846                                 ObjCMethodDecl *oldMethod) {
3847   // Merge the attributes, including deprecated/unavailable
3848   AvailabilityMergeKind MergeKind =
3849     isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
3850       ? AMK_ProtocolImplementation
3851       : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
3852                                                        : AMK_Override;
3853 
3854   mergeDeclAttributes(newMethod, oldMethod, MergeKind);
3855 
3856   // Merge attributes from the parameters.
3857   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
3858                                        oe = oldMethod->param_end();
3859   for (ObjCMethodDecl::param_iterator
3860          ni = newMethod->param_begin(), ne = newMethod->param_end();
3861        ni != ne && oi != oe; ++ni, ++oi)
3862     mergeParamDeclAttributes(*ni, *oi, *this);
3863 
3864   CheckObjCMethodOverride(newMethod, oldMethod);
3865 }
3866 
diagnoseVarDeclTypeMismatch(Sema & S,VarDecl * New,VarDecl * Old)3867 static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
3868   assert(!S.Context.hasSameType(New->getType(), Old->getType()));
3869 
3870   S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
3871          ? diag::err_redefinition_different_type
3872          : diag::err_redeclaration_different_type)
3873     << New->getDeclName() << New->getType() << Old->getType();
3874 
3875   diag::kind PrevDiag;
3876   SourceLocation OldLocation;
3877   std::tie(PrevDiag, OldLocation)
3878     = getNoteDiagForInvalidRedeclaration(Old, New);
3879   S.Diag(OldLocation, PrevDiag);
3880   New->setInvalidDecl();
3881 }
3882 
3883 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
3884 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
3885 /// emitting diagnostics as appropriate.
3886 ///
3887 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
3888 /// to here in AddInitializerToDecl. We can't check them before the initializer
3889 /// is attached.
MergeVarDeclTypes(VarDecl * New,VarDecl * Old,bool MergeTypeWithOld)3890 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
3891                              bool MergeTypeWithOld) {
3892   if (New->isInvalidDecl() || Old->isInvalidDecl())
3893     return;
3894 
3895   QualType MergedT;
3896   if (getLangOpts().CPlusPlus) {
3897     if (New->getType()->isUndeducedType()) {
3898       // We don't know what the new type is until the initializer is attached.
3899       return;
3900     } else if (Context.hasSameType(New->getType(), Old->getType())) {
3901       // These could still be something that needs exception specs checked.
3902       return MergeVarDeclExceptionSpecs(New, Old);
3903     }
3904     // C++ [basic.link]p10:
3905     //   [...] the types specified by all declarations referring to a given
3906     //   object or function shall be identical, except that declarations for an
3907     //   array object can specify array types that differ by the presence or
3908     //   absence of a major array bound (8.3.4).
3909     else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
3910       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3911       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3912 
3913       // We are merging a variable declaration New into Old. If it has an array
3914       // bound, and that bound differs from Old's bound, we should diagnose the
3915       // mismatch.
3916       if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
3917         for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
3918              PrevVD = PrevVD->getPreviousDecl()) {
3919           QualType PrevVDTy = PrevVD->getType();
3920           if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
3921             continue;
3922 
3923           if (!Context.hasSameType(New->getType(), PrevVDTy))
3924             return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
3925         }
3926       }
3927 
3928       if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
3929         if (Context.hasSameType(OldArray->getElementType(),
3930                                 NewArray->getElementType()))
3931           MergedT = New->getType();
3932       }
3933       // FIXME: Check visibility. New is hidden but has a complete type. If New
3934       // has no array bound, it should not inherit one from Old, if Old is not
3935       // visible.
3936       else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
3937         if (Context.hasSameType(OldArray->getElementType(),
3938                                 NewArray->getElementType()))
3939           MergedT = Old->getType();
3940       }
3941     }
3942     else if (New->getType()->isObjCObjectPointerType() &&
3943                Old->getType()->isObjCObjectPointerType()) {
3944       MergedT = Context.mergeObjCGCQualifiers(New->getType(),
3945                                               Old->getType());
3946     }
3947   } else {
3948     // C 6.2.7p2:
3949     //   All declarations that refer to the same object or function shall have
3950     //   compatible type.
3951     MergedT = Context.mergeTypes(New->getType(), Old->getType());
3952   }
3953   if (MergedT.isNull()) {
3954     // It's OK if we couldn't merge types if either type is dependent, for a
3955     // block-scope variable. In other cases (static data members of class
3956     // templates, variable templates, ...), we require the types to be
3957     // equivalent.
3958     // FIXME: The C++ standard doesn't say anything about this.
3959     if ((New->getType()->isDependentType() ||
3960          Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
3961       // If the old type was dependent, we can't merge with it, so the new type
3962       // becomes dependent for now. We'll reproduce the original type when we
3963       // instantiate the TypeSourceInfo for the variable.
3964       if (!New->getType()->isDependentType() && MergeTypeWithOld)
3965         New->setType(Context.DependentTy);
3966       return;
3967     }
3968     return diagnoseVarDeclTypeMismatch(*this, New, Old);
3969   }
3970 
3971   // Don't actually update the type on the new declaration if the old
3972   // declaration was an extern declaration in a different scope.
3973   if (MergeTypeWithOld)
3974     New->setType(MergedT);
3975 }
3976 
mergeTypeWithPrevious(Sema & S,VarDecl * NewVD,VarDecl * OldVD,LookupResult & Previous)3977 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
3978                                   LookupResult &Previous) {
3979   // C11 6.2.7p4:
3980   //   For an identifier with internal or external linkage declared
3981   //   in a scope in which a prior declaration of that identifier is
3982   //   visible, if the prior declaration specifies internal or
3983   //   external linkage, the type of the identifier at the later
3984   //   declaration becomes the composite type.
3985   //
3986   // If the variable isn't visible, we do not merge with its type.
3987   if (Previous.isShadowed())
3988     return false;
3989 
3990   if (S.getLangOpts().CPlusPlus) {
3991     // C++11 [dcl.array]p3:
3992     //   If there is a preceding declaration of the entity in the same
3993     //   scope in which the bound was specified, an omitted array bound
3994     //   is taken to be the same as in that earlier declaration.
3995     return NewVD->isPreviousDeclInSameBlockScope() ||
3996            (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
3997             !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
3998   } else {
3999     // If the old declaration was function-local, don't merge with its
4000     // type unless we're in the same function.
4001     return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
4002            OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
4003   }
4004 }
4005 
4006 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
4007 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
4008 /// situation, merging decls or emitting diagnostics as appropriate.
4009 ///
4010 /// Tentative definition rules (C99 6.9.2p2) are checked by
4011 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
4012 /// definitions here, since the initializer hasn't been attached.
4013 ///
MergeVarDecl(VarDecl * New,LookupResult & Previous)4014 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
4015   // If the new decl is already invalid, don't do any other checking.
4016   if (New->isInvalidDecl())
4017     return;
4018 
4019   if (!shouldLinkPossiblyHiddenDecl(Previous, New))
4020     return;
4021 
4022   VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
4023 
4024   // Verify the old decl was also a variable or variable template.
4025   VarDecl *Old = nullptr;
4026   VarTemplateDecl *OldTemplate = nullptr;
4027   if (Previous.isSingleResult()) {
4028     if (NewTemplate) {
4029       OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
4030       Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
4031 
4032       if (auto *Shadow =
4033               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4034         if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
4035           return New->setInvalidDecl();
4036     } else {
4037       Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
4038 
4039       if (auto *Shadow =
4040               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4041         if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
4042           return New->setInvalidDecl();
4043     }
4044   }
4045   if (!Old) {
4046     Diag(New->getLocation(), diag::err_redefinition_different_kind)
4047         << New->getDeclName();
4048     notePreviousDefinition(Previous.getRepresentativeDecl(),
4049                            New->getLocation());
4050     return New->setInvalidDecl();
4051   }
4052 
4053   // Ensure the template parameters are compatible.
4054   if (NewTemplate &&
4055       !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
4056                                       OldTemplate->getTemplateParameters(),
4057                                       /*Complain=*/true, TPL_TemplateMatch))
4058     return New->setInvalidDecl();
4059 
4060   // C++ [class.mem]p1:
4061   //   A member shall not be declared twice in the member-specification [...]
4062   //
4063   // Here, we need only consider static data members.
4064   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
4065     Diag(New->getLocation(), diag::err_duplicate_member)
4066       << New->getIdentifier();
4067     Diag(Old->getLocation(), diag::note_previous_declaration);
4068     New->setInvalidDecl();
4069   }
4070 
4071   mergeDeclAttributes(New, Old);
4072   // Warn if an already-declared variable is made a weak_import in a subsequent
4073   // declaration
4074   if (New->hasAttr<WeakImportAttr>() &&
4075       Old->getStorageClass() == SC_None &&
4076       !Old->hasAttr<WeakImportAttr>()) {
4077     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
4078     notePreviousDefinition(Old, New->getLocation());
4079     // Remove weak_import attribute on new declaration.
4080     New->dropAttr<WeakImportAttr>();
4081   }
4082 
4083   if (New->hasAttr<InternalLinkageAttr>() &&
4084       !Old->hasAttr<InternalLinkageAttr>()) {
4085     Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
4086         << New->getDeclName();
4087     notePreviousDefinition(Old, New->getLocation());
4088     New->dropAttr<InternalLinkageAttr>();
4089   }
4090 
4091   // Merge the types.
4092   VarDecl *MostRecent = Old->getMostRecentDecl();
4093   if (MostRecent != Old) {
4094     MergeVarDeclTypes(New, MostRecent,
4095                       mergeTypeWithPrevious(*this, New, MostRecent, Previous));
4096     if (New->isInvalidDecl())
4097       return;
4098   }
4099 
4100   MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
4101   if (New->isInvalidDecl())
4102     return;
4103 
4104   diag::kind PrevDiag;
4105   SourceLocation OldLocation;
4106   std::tie(PrevDiag, OldLocation) =
4107       getNoteDiagForInvalidRedeclaration(Old, New);
4108 
4109   // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
4110   if (New->getStorageClass() == SC_Static &&
4111       !New->isStaticDataMember() &&
4112       Old->hasExternalFormalLinkage()) {
4113     if (getLangOpts().MicrosoftExt) {
4114       Diag(New->getLocation(), diag::ext_static_non_static)
4115           << New->getDeclName();
4116       Diag(OldLocation, PrevDiag);
4117     } else {
4118       Diag(New->getLocation(), diag::err_static_non_static)
4119           << New->getDeclName();
4120       Diag(OldLocation, PrevDiag);
4121       return New->setInvalidDecl();
4122     }
4123   }
4124   // C99 6.2.2p4:
4125   //   For an identifier declared with the storage-class specifier
4126   //   extern in a scope in which a prior declaration of that
4127   //   identifier is visible,23) if the prior declaration specifies
4128   //   internal or external linkage, the linkage of the identifier at
4129   //   the later declaration is the same as the linkage specified at
4130   //   the prior declaration. If no prior declaration is visible, or
4131   //   if the prior declaration specifies no linkage, then the
4132   //   identifier has external linkage.
4133   if (New->hasExternalStorage() && Old->hasLinkage())
4134     /* Okay */;
4135   else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
4136            !New->isStaticDataMember() &&
4137            Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
4138     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
4139     Diag(OldLocation, PrevDiag);
4140     return New->setInvalidDecl();
4141   }
4142 
4143   // Check if extern is followed by non-extern and vice-versa.
4144   if (New->hasExternalStorage() &&
4145       !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
4146     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
4147     Diag(OldLocation, PrevDiag);
4148     return New->setInvalidDecl();
4149   }
4150   if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
4151       !New->hasExternalStorage()) {
4152     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
4153     Diag(OldLocation, PrevDiag);
4154     return New->setInvalidDecl();
4155   }
4156 
4157   if (CheckRedeclarationModuleOwnership(New, Old))
4158     return;
4159 
4160   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
4161 
4162   // FIXME: The test for external storage here seems wrong? We still
4163   // need to check for mismatches.
4164   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
4165       // Don't complain about out-of-line definitions of static members.
4166       !(Old->getLexicalDeclContext()->isRecord() &&
4167         !New->getLexicalDeclContext()->isRecord())) {
4168     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
4169     Diag(OldLocation, PrevDiag);
4170     return New->setInvalidDecl();
4171   }
4172 
4173   if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
4174     if (VarDecl *Def = Old->getDefinition()) {
4175       // C++1z [dcl.fcn.spec]p4:
4176       //   If the definition of a variable appears in a translation unit before
4177       //   its first declaration as inline, the program is ill-formed.
4178       Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
4179       Diag(Def->getLocation(), diag::note_previous_definition);
4180     }
4181   }
4182 
4183   // If this redeclaration makes the variable inline, we may need to add it to
4184   // UndefinedButUsed.
4185   if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
4186       !Old->getDefinition() && !New->isThisDeclarationADefinition())
4187     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
4188                                            SourceLocation()));
4189 
4190   if (New->getTLSKind() != Old->getTLSKind()) {
4191     if (!Old->getTLSKind()) {
4192       Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
4193       Diag(OldLocation, PrevDiag);
4194     } else if (!New->getTLSKind()) {
4195       Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
4196       Diag(OldLocation, PrevDiag);
4197     } else {
4198       // Do not allow redeclaration to change the variable between requiring
4199       // static and dynamic initialization.
4200       // FIXME: GCC allows this, but uses the TLS keyword on the first
4201       // declaration to determine the kind. Do we need to be compatible here?
4202       Diag(New->getLocation(), diag::err_thread_thread_different_kind)
4203         << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
4204       Diag(OldLocation, PrevDiag);
4205     }
4206   }
4207 
4208   // C++ doesn't have tentative definitions, so go right ahead and check here.
4209   if (getLangOpts().CPlusPlus &&
4210       New->isThisDeclarationADefinition() == VarDecl::Definition) {
4211     if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
4212         Old->getCanonicalDecl()->isConstexpr()) {
4213       // This definition won't be a definition any more once it's been merged.
4214       Diag(New->getLocation(),
4215            diag::warn_deprecated_redundant_constexpr_static_def);
4216     } else if (VarDecl *Def = Old->getDefinition()) {
4217       if (checkVarDeclRedefinition(Def, New))
4218         return;
4219     }
4220   }
4221 
4222   if (haveIncompatibleLanguageLinkages(Old, New)) {
4223     Diag(New->getLocation(), diag::err_different_language_linkage) << New;
4224     Diag(OldLocation, PrevDiag);
4225     New->setInvalidDecl();
4226     return;
4227   }
4228 
4229   // Merge "used" flag.
4230   if (Old->getMostRecentDecl()->isUsed(false))
4231     New->setIsUsed();
4232 
4233   // Keep a chain of previous declarations.
4234   New->setPreviousDecl(Old);
4235   if (NewTemplate)
4236     NewTemplate->setPreviousDecl(OldTemplate);
4237   adjustDeclContextForDeclaratorDecl(New, Old);
4238 
4239   // Inherit access appropriately.
4240   New->setAccess(Old->getAccess());
4241   if (NewTemplate)
4242     NewTemplate->setAccess(New->getAccess());
4243 
4244   if (Old->isInline())
4245     New->setImplicitlyInline();
4246 }
4247 
notePreviousDefinition(const NamedDecl * Old,SourceLocation New)4248 void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
4249   SourceManager &SrcMgr = getSourceManager();
4250   auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
4251   auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
4252   auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
4253   auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first);
4254   auto &HSI = PP.getHeaderSearchInfo();
4255   StringRef HdrFilename =
4256       SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
4257 
4258   auto noteFromModuleOrInclude = [&](Module *Mod,
4259                                      SourceLocation IncLoc) -> bool {
4260     // Redefinition errors with modules are common with non modular mapped
4261     // headers, example: a non-modular header H in module A that also gets
4262     // included directly in a TU. Pointing twice to the same header/definition
4263     // is confusing, try to get better diagnostics when modules is on.
4264     if (IncLoc.isValid()) {
4265       if (Mod) {
4266         Diag(IncLoc, diag::note_redefinition_modules_same_file)
4267             << HdrFilename.str() << Mod->getFullModuleName();
4268         if (!Mod->DefinitionLoc.isInvalid())
4269           Diag(Mod->DefinitionLoc, diag::note_defined_here)
4270               << Mod->getFullModuleName();
4271       } else {
4272         Diag(IncLoc, diag::note_redefinition_include_same_file)
4273             << HdrFilename.str();
4274       }
4275       return true;
4276     }
4277 
4278     return false;
4279   };
4280 
4281   // Is it the same file and same offset? Provide more information on why
4282   // this leads to a redefinition error.
4283   if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
4284     SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
4285     SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
4286     bool EmittedDiag =
4287         noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
4288     EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
4289 
4290     // If the header has no guards, emit a note suggesting one.
4291     if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld))
4292       Diag(Old->getLocation(), diag::note_use_ifdef_guards);
4293 
4294     if (EmittedDiag)
4295       return;
4296   }
4297 
4298   // Redefinition coming from different files or couldn't do better above.
4299   if (Old->getLocation().isValid())
4300     Diag(Old->getLocation(), diag::note_previous_definition);
4301 }
4302 
4303 /// We've just determined that \p Old and \p New both appear to be definitions
4304 /// of the same variable. Either diagnose or fix the problem.
checkVarDeclRedefinition(VarDecl * Old,VarDecl * New)4305 bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
4306   if (!hasVisibleDefinition(Old) &&
4307       (New->getFormalLinkage() == InternalLinkage ||
4308        New->isInline() ||
4309        New->getDescribedVarTemplate() ||
4310        New->getNumTemplateParameterLists() ||
4311        New->getDeclContext()->isDependentContext())) {
4312     // The previous definition is hidden, and multiple definitions are
4313     // permitted (in separate TUs). Demote this to a declaration.
4314     New->demoteThisDefinitionToDeclaration();
4315 
4316     // Make the canonical definition visible.
4317     if (auto *OldTD = Old->getDescribedVarTemplate())
4318       makeMergedDefinitionVisible(OldTD);
4319     makeMergedDefinitionVisible(Old);
4320     return false;
4321   } else {
4322     Diag(New->getLocation(), diag::err_redefinition) << New;
4323     notePreviousDefinition(Old, New->getLocation());
4324     New->setInvalidDecl();
4325     return true;
4326   }
4327 }
4328 
4329 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4330 /// no declarator (e.g. "struct foo;") is parsed.
4331 Decl *
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS,RecordDecl * & AnonRecord)4332 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4333                                  RecordDecl *&AnonRecord) {
4334   return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false,
4335                                     AnonRecord);
4336 }
4337 
4338 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4339 // disambiguate entities defined in different scopes.
4340 // While the VS2015 ABI fixes potential miscompiles, it is also breaks
4341 // compatibility.
4342 // We will pick our mangling number depending on which version of MSVC is being
4343 // targeted.
getMSManglingNumber(const LangOptions & LO,Scope * S)4344 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
4345   return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
4346              ? S->getMSCurManglingNumber()
4347              : S->getMSLastManglingNumber();
4348 }
4349 
handleTagNumbering(const TagDecl * Tag,Scope * TagScope)4350 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
4351   if (!Context.getLangOpts().CPlusPlus)
4352     return;
4353 
4354   if (isa<CXXRecordDecl>(Tag->getParent())) {
4355     // If this tag is the direct child of a class, number it if
4356     // it is anonymous.
4357     if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
4358       return;
4359     MangleNumberingContext &MCtx =
4360         Context.getManglingNumberContext(Tag->getParent());
4361     Context.setManglingNumber(
4362         Tag, MCtx.getManglingNumber(
4363                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4364     return;
4365   }
4366 
4367   // If this tag isn't a direct child of a class, number it if it is local.
4368   MangleNumberingContext *MCtx;
4369   Decl *ManglingContextDecl;
4370   std::tie(MCtx, ManglingContextDecl) =
4371       getCurrentMangleNumberContext(Tag->getDeclContext());
4372   if (MCtx) {
4373     Context.setManglingNumber(
4374         Tag, MCtx->getManglingNumber(
4375                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4376   }
4377 }
4378 
4379 namespace {
4380 struct NonCLikeKind {
4381   enum {
4382     None,
4383     BaseClass,
4384     DefaultMemberInit,
4385     Lambda,
4386     Friend,
4387     OtherMember,
4388     Invalid,
4389   } Kind = None;
4390   SourceRange Range;
4391 
operator bool__anone17936840811::NonCLikeKind4392   explicit operator bool() { return Kind != None; }
4393 };
4394 }
4395 
4396 /// Determine whether a class is C-like, according to the rules of C++
4397 /// [dcl.typedef] for anonymous classes with typedef names for linkage.
getNonCLikeKindForAnonymousStruct(const CXXRecordDecl * RD)4398 static NonCLikeKind getNonCLikeKindForAnonymousStruct(const CXXRecordDecl *RD) {
4399   if (RD->isInvalidDecl())
4400     return {NonCLikeKind::Invalid, {}};
4401 
4402   // C++ [dcl.typedef]p9: [P1766R1]
4403   //   An unnamed class with a typedef name for linkage purposes shall not
4404   //
4405   //    -- have any base classes
4406   if (RD->getNumBases())
4407     return {NonCLikeKind::BaseClass,
4408             SourceRange(RD->bases_begin()->getBeginLoc(),
4409                         RD->bases_end()[-1].getEndLoc())};
4410   bool Invalid = false;
4411   for (Decl *D : RD->decls()) {
4412     // Don't complain about things we already diagnosed.
4413     if (D->isInvalidDecl()) {
4414       Invalid = true;
4415       continue;
4416     }
4417 
4418     //  -- have any [...] default member initializers
4419     if (auto *FD = dyn_cast<FieldDecl>(D)) {
4420       if (FD->hasInClassInitializer()) {
4421         auto *Init = FD->getInClassInitializer();
4422         return {NonCLikeKind::DefaultMemberInit,
4423                 Init ? Init->getSourceRange() : D->getSourceRange()};
4424       }
4425       continue;
4426     }
4427 
4428     // FIXME: We don't allow friend declarations. This violates the wording of
4429     // P1766, but not the intent.
4430     if (isa<FriendDecl>(D))
4431       return {NonCLikeKind::Friend, D->getSourceRange()};
4432 
4433     //  -- declare any members other than non-static data members, member
4434     //     enumerations, or member classes,
4435     if (isa<StaticAssertDecl>(D) || isa<IndirectFieldDecl>(D) ||
4436         isa<EnumDecl>(D))
4437       continue;
4438     auto *MemberRD = dyn_cast<CXXRecordDecl>(D);
4439     if (!MemberRD) {
4440       if (D->isImplicit())
4441         continue;
4442       return {NonCLikeKind::OtherMember, D->getSourceRange()};
4443     }
4444 
4445     //  -- contain a lambda-expression,
4446     if (MemberRD->isLambda())
4447       return {NonCLikeKind::Lambda, MemberRD->getSourceRange()};
4448 
4449     //  and all member classes shall also satisfy these requirements
4450     //  (recursively).
4451     if (MemberRD->isThisDeclarationADefinition()) {
4452       if (auto Kind = getNonCLikeKindForAnonymousStruct(MemberRD))
4453         return Kind;
4454     }
4455   }
4456 
4457   return {Invalid ? NonCLikeKind::Invalid : NonCLikeKind::None, {}};
4458 }
4459 
setTagNameForLinkagePurposes(TagDecl * TagFromDeclSpec,TypedefNameDecl * NewTD)4460 void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
4461                                         TypedefNameDecl *NewTD) {
4462   if (TagFromDeclSpec->isInvalidDecl())
4463     return;
4464 
4465   // Do nothing if the tag already has a name for linkage purposes.
4466   if (TagFromDeclSpec->hasNameForLinkage())
4467     return;
4468 
4469   // A well-formed anonymous tag must always be a TUK_Definition.
4470   assert(TagFromDeclSpec->isThisDeclarationADefinition());
4471 
4472   // The type must match the tag exactly;  no qualifiers allowed.
4473   if (!Context.hasSameType(NewTD->getUnderlyingType(),
4474                            Context.getTagDeclType(TagFromDeclSpec))) {
4475     if (getLangOpts().CPlusPlus)
4476       Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
4477     return;
4478   }
4479 
4480   // C++ [dcl.typedef]p9: [P1766R1, applied as DR]
4481   //   An unnamed class with a typedef name for linkage purposes shall [be
4482   //   C-like].
4483   //
4484   // FIXME: Also diagnose if we've already computed the linkage. That ideally
4485   // shouldn't happen, but there are constructs that the language rule doesn't
4486   // disallow for which we can't reasonably avoid computing linkage early.
4487   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TagFromDeclSpec);
4488   NonCLikeKind NonCLike = RD ? getNonCLikeKindForAnonymousStruct(RD)
4489                              : NonCLikeKind();
4490   bool ChangesLinkage = TagFromDeclSpec->hasLinkageBeenComputed();
4491   if (NonCLike || ChangesLinkage) {
4492     if (NonCLike.Kind == NonCLikeKind::Invalid)
4493       return;
4494 
4495     unsigned DiagID = diag::ext_non_c_like_anon_struct_in_typedef;
4496     if (ChangesLinkage) {
4497       // If the linkage changes, we can't accept this as an extension.
4498       if (NonCLike.Kind == NonCLikeKind::None)
4499         DiagID = diag::err_typedef_changes_linkage;
4500       else
4501         DiagID = diag::err_non_c_like_anon_struct_in_typedef;
4502     }
4503 
4504     SourceLocation FixitLoc =
4505         getLocForEndOfToken(TagFromDeclSpec->getInnerLocStart());
4506     llvm::SmallString<40> TextToInsert;
4507     TextToInsert += ' ';
4508     TextToInsert += NewTD->getIdentifier()->getName();
4509 
4510     Diag(FixitLoc, DiagID)
4511       << isa<TypeAliasDecl>(NewTD)
4512       << FixItHint::CreateInsertion(FixitLoc, TextToInsert);
4513     if (NonCLike.Kind != NonCLikeKind::None) {
4514       Diag(NonCLike.Range.getBegin(), diag::note_non_c_like_anon_struct)
4515         << NonCLike.Kind - 1 << NonCLike.Range;
4516     }
4517     Diag(NewTD->getLocation(), diag::note_typedef_for_linkage_here)
4518       << NewTD << isa<TypeAliasDecl>(NewTD);
4519 
4520     if (ChangesLinkage)
4521       return;
4522   }
4523 
4524   // Otherwise, set this as the anon-decl typedef for the tag.
4525   TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
4526 }
4527 
GetDiagnosticTypeSpecifierID(DeclSpec::TST T)4528 static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
4529   switch (T) {
4530   case DeclSpec::TST_class:
4531     return 0;
4532   case DeclSpec::TST_struct:
4533     return 1;
4534   case DeclSpec::TST_interface:
4535     return 2;
4536   case DeclSpec::TST_union:
4537     return 3;
4538   case DeclSpec::TST_enum:
4539     return 4;
4540   default:
4541     llvm_unreachable("unexpected type specifier");
4542   }
4543 }
4544 
4545 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4546 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
4547 /// parameters to cope with template friend declarations.
4548 Decl *
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS,MultiTemplateParamsArg TemplateParams,bool IsExplicitInstantiation,RecordDecl * & AnonRecord)4549 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4550                                  MultiTemplateParamsArg TemplateParams,
4551                                  bool IsExplicitInstantiation,
4552                                  RecordDecl *&AnonRecord) {
4553   Decl *TagD = nullptr;
4554   TagDecl *Tag = nullptr;
4555   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
4556       DS.getTypeSpecType() == DeclSpec::TST_struct ||
4557       DS.getTypeSpecType() == DeclSpec::TST_interface ||
4558       DS.getTypeSpecType() == DeclSpec::TST_union ||
4559       DS.getTypeSpecType() == DeclSpec::TST_enum) {
4560     TagD = DS.getRepAsDecl();
4561 
4562     if (!TagD) // We probably had an error
4563       return nullptr;
4564 
4565     // Note that the above type specs guarantee that the
4566     // type rep is a Decl, whereas in many of the others
4567     // it's a Type.
4568     if (isa<TagDecl>(TagD))
4569       Tag = cast<TagDecl>(TagD);
4570     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
4571       Tag = CTD->getTemplatedDecl();
4572   }
4573 
4574   if (Tag) {
4575     handleTagNumbering(Tag, S);
4576     Tag->setFreeStanding();
4577     if (Tag->isInvalidDecl())
4578       return Tag;
4579   }
4580 
4581   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
4582     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
4583     // or incomplete types shall not be restrict-qualified."
4584     if (TypeQuals & DeclSpec::TQ_restrict)
4585       Diag(DS.getRestrictSpecLoc(),
4586            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
4587            << DS.getSourceRange();
4588   }
4589 
4590   if (DS.isInlineSpecified())
4591     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4592         << getLangOpts().CPlusPlus17;
4593 
4594   if (DS.hasConstexprSpecifier()) {
4595     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
4596     // and definitions of functions and variables.
4597     // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to
4598     // the declaration of a function or function template
4599     if (Tag)
4600       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
4601           << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType())
4602           << static_cast<int>(DS.getConstexprSpecifier());
4603     else
4604       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind)
4605           << static_cast<int>(DS.getConstexprSpecifier());
4606     // Don't emit warnings after this error.
4607     return TagD;
4608   }
4609 
4610   DiagnoseFunctionSpecifiers(DS);
4611 
4612   if (DS.isFriendSpecified()) {
4613     // If we're dealing with a decl but not a TagDecl, assume that
4614     // whatever routines created it handled the friendship aspect.
4615     if (TagD && !Tag)
4616       return nullptr;
4617     return ActOnFriendTypeDecl(S, DS, TemplateParams);
4618   }
4619 
4620   const CXXScopeSpec &SS = DS.getTypeSpecScope();
4621   bool IsExplicitSpecialization =
4622     !TemplateParams.empty() && TemplateParams.back()->size() == 0;
4623   if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
4624       !IsExplicitInstantiation && !IsExplicitSpecialization &&
4625       !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
4626     // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
4627     // nested-name-specifier unless it is an explicit instantiation
4628     // or an explicit specialization.
4629     //
4630     // FIXME: We allow class template partial specializations here too, per the
4631     // obvious intent of DR1819.
4632     //
4633     // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
4634     Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
4635         << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
4636     return nullptr;
4637   }
4638 
4639   // Track whether this decl-specifier declares anything.
4640   bool DeclaresAnything = true;
4641 
4642   // Handle anonymous struct definitions.
4643   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
4644     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
4645         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
4646       if (getLangOpts().CPlusPlus ||
4647           Record->getDeclContext()->isRecord()) {
4648         // If CurContext is a DeclContext that can contain statements,
4649         // RecursiveASTVisitor won't visit the decls that
4650         // BuildAnonymousStructOrUnion() will put into CurContext.
4651         // Also store them here so that they can be part of the
4652         // DeclStmt that gets created in this case.
4653         // FIXME: Also return the IndirectFieldDecls created by
4654         // BuildAnonymousStructOr union, for the same reason?
4655         if (CurContext->isFunctionOrMethod())
4656           AnonRecord = Record;
4657         return BuildAnonymousStructOrUnion(S, DS, AS, Record,
4658                                            Context.getPrintingPolicy());
4659       }
4660 
4661       DeclaresAnything = false;
4662     }
4663   }
4664 
4665   // C11 6.7.2.1p2:
4666   //   A struct-declaration that does not declare an anonymous structure or
4667   //   anonymous union shall contain a struct-declarator-list.
4668   //
4669   // This rule also existed in C89 and C99; the grammar for struct-declaration
4670   // did not permit a struct-declaration without a struct-declarator-list.
4671   if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
4672       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
4673     // Check for Microsoft C extension: anonymous struct/union member.
4674     // Handle 2 kinds of anonymous struct/union:
4675     //   struct STRUCT;
4676     //   union UNION;
4677     // and
4678     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
4679     //   UNION_TYPE;   <- where UNION_TYPE is a typedef union.
4680     if ((Tag && Tag->getDeclName()) ||
4681         DS.getTypeSpecType() == DeclSpec::TST_typename) {
4682       RecordDecl *Record = nullptr;
4683       if (Tag)
4684         Record = dyn_cast<RecordDecl>(Tag);
4685       else if (const RecordType *RT =
4686                    DS.getRepAsType().get()->getAsStructureType())
4687         Record = RT->getDecl();
4688       else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
4689         Record = UT->getDecl();
4690 
4691       if (Record && getLangOpts().MicrosoftExt) {
4692         Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record)
4693             << Record->isUnion() << DS.getSourceRange();
4694         return BuildMicrosoftCAnonymousStruct(S, DS, Record);
4695       }
4696 
4697       DeclaresAnything = false;
4698     }
4699   }
4700 
4701   // Skip all the checks below if we have a type error.
4702   if (DS.getTypeSpecType() == DeclSpec::TST_error ||
4703       (TagD && TagD->isInvalidDecl()))
4704     return TagD;
4705 
4706   if (getLangOpts().CPlusPlus &&
4707       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
4708     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
4709       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
4710           !Enum->getIdentifier() && !Enum->isInvalidDecl())
4711         DeclaresAnything = false;
4712 
4713   if (!DS.isMissingDeclaratorOk()) {
4714     // Customize diagnostic for a typedef missing a name.
4715     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
4716       Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name)
4717           << DS.getSourceRange();
4718     else
4719       DeclaresAnything = false;
4720   }
4721 
4722   if (DS.isModulePrivateSpecified() &&
4723       Tag && Tag->getDeclContext()->isFunctionOrMethod())
4724     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
4725       << Tag->getTagKind()
4726       << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
4727 
4728   ActOnDocumentableDecl(TagD);
4729 
4730   // C 6.7/2:
4731   //   A declaration [...] shall declare at least a declarator [...], a tag,
4732   //   or the members of an enumeration.
4733   // C++ [dcl.dcl]p3:
4734   //   [If there are no declarators], and except for the declaration of an
4735   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
4736   //   names into the program, or shall redeclare a name introduced by a
4737   //   previous declaration.
4738   if (!DeclaresAnything) {
4739     // In C, we allow this as a (popular) extension / bug. Don't bother
4740     // producing further diagnostics for redundant qualifiers after this.
4741     Diag(DS.getBeginLoc(), (IsExplicitInstantiation || !TemplateParams.empty())
4742                                ? diag::err_no_declarators
4743                                : diag::ext_no_declarators)
4744         << DS.getSourceRange();
4745     return TagD;
4746   }
4747 
4748   // C++ [dcl.stc]p1:
4749   //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
4750   //   init-declarator-list of the declaration shall not be empty.
4751   // C++ [dcl.fct.spec]p1:
4752   //   If a cv-qualifier appears in a decl-specifier-seq, the
4753   //   init-declarator-list of the declaration shall not be empty.
4754   //
4755   // Spurious qualifiers here appear to be valid in C.
4756   unsigned DiagID = diag::warn_standalone_specifier;
4757   if (getLangOpts().CPlusPlus)
4758     DiagID = diag::ext_standalone_specifier;
4759 
4760   // Note that a linkage-specification sets a storage class, but
4761   // 'extern "C" struct foo;' is actually valid and not theoretically
4762   // useless.
4763   if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4764     if (SCS == DeclSpec::SCS_mutable)
4765       // Since mutable is not a viable storage class specifier in C, there is
4766       // no reason to treat it as an extension. Instead, diagnose as an error.
4767       Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
4768     else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
4769       Diag(DS.getStorageClassSpecLoc(), DiagID)
4770         << DeclSpec::getSpecifierName(SCS);
4771   }
4772 
4773   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
4774     Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
4775       << DeclSpec::getSpecifierName(TSCS);
4776   if (DS.getTypeQualifiers()) {
4777     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4778       Diag(DS.getConstSpecLoc(), DiagID) << "const";
4779     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4780       Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
4781     // Restrict is covered above.
4782     if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4783       Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
4784     if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4785       Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
4786   }
4787 
4788   // Warn about ignored type attributes, for example:
4789   // __attribute__((aligned)) struct A;
4790   // Attributes should be placed after tag to apply to type declaration.
4791   if (!DS.getAttributes().empty()) {
4792     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
4793     if (TypeSpecType == DeclSpec::TST_class ||
4794         TypeSpecType == DeclSpec::TST_struct ||
4795         TypeSpecType == DeclSpec::TST_interface ||
4796         TypeSpecType == DeclSpec::TST_union ||
4797         TypeSpecType == DeclSpec::TST_enum) {
4798       for (const ParsedAttr &AL : DS.getAttributes())
4799         Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored)
4800             << AL << GetDiagnosticTypeSpecifierID(TypeSpecType);
4801     }
4802   }
4803 
4804   return TagD;
4805 }
4806 
4807 /// We are trying to inject an anonymous member into the given scope;
4808 /// check if there's an existing declaration that can't be overloaded.
4809 ///
4810 /// \return true if this is a forbidden redeclaration
CheckAnonMemberRedeclaration(Sema & SemaRef,Scope * S,DeclContext * Owner,DeclarationName Name,SourceLocation NameLoc,bool IsUnion)4811 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
4812                                          Scope *S,
4813                                          DeclContext *Owner,
4814                                          DeclarationName Name,
4815                                          SourceLocation NameLoc,
4816                                          bool IsUnion) {
4817   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
4818                  Sema::ForVisibleRedeclaration);
4819   if (!SemaRef.LookupName(R, S)) return false;
4820 
4821   // Pick a representative declaration.
4822   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
4823   assert(PrevDecl && "Expected a non-null Decl");
4824 
4825   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
4826     return false;
4827 
4828   SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
4829     << IsUnion << Name;
4830   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4831 
4832   return true;
4833 }
4834 
4835 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
4836 /// anonymous struct or union AnonRecord into the owning context Owner
4837 /// and scope S. This routine will be invoked just after we realize
4838 /// that an unnamed union or struct is actually an anonymous union or
4839 /// struct, e.g.,
4840 ///
4841 /// @code
4842 /// union {
4843 ///   int i;
4844 ///   float f;
4845 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
4846 ///    // f into the surrounding scope.x
4847 /// @endcode
4848 ///
4849 /// This routine is recursive, injecting the names of nested anonymous
4850 /// structs/unions into the owning context and scope as well.
4851 static bool
InjectAnonymousStructOrUnionMembers(Sema & SemaRef,Scope * S,DeclContext * Owner,RecordDecl * AnonRecord,AccessSpecifier AS,SmallVectorImpl<NamedDecl * > & Chaining)4852 InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
4853                                     RecordDecl *AnonRecord, AccessSpecifier AS,
4854                                     SmallVectorImpl<NamedDecl *> &Chaining) {
4855   bool Invalid = false;
4856 
4857   // Look every FieldDecl and IndirectFieldDecl with a name.
4858   for (auto *D : AnonRecord->decls()) {
4859     if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
4860         cast<NamedDecl>(D)->getDeclName()) {
4861       ValueDecl *VD = cast<ValueDecl>(D);
4862       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
4863                                        VD->getLocation(),
4864                                        AnonRecord->isUnion())) {
4865         // C++ [class.union]p2:
4866         //   The names of the members of an anonymous union shall be
4867         //   distinct from the names of any other entity in the
4868         //   scope in which the anonymous union is declared.
4869         Invalid = true;
4870       } else {
4871         // C++ [class.union]p2:
4872         //   For the purpose of name lookup, after the anonymous union
4873         //   definition, the members of the anonymous union are
4874         //   considered to have been defined in the scope in which the
4875         //   anonymous union is declared.
4876         unsigned OldChainingSize = Chaining.size();
4877         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
4878           Chaining.append(IF->chain_begin(), IF->chain_end());
4879         else
4880           Chaining.push_back(VD);
4881 
4882         assert(Chaining.size() >= 2);
4883         NamedDecl **NamedChain =
4884           new (SemaRef.Context)NamedDecl*[Chaining.size()];
4885         for (unsigned i = 0; i < Chaining.size(); i++)
4886           NamedChain[i] = Chaining[i];
4887 
4888         IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
4889             SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
4890             VD->getType(), {NamedChain, Chaining.size()});
4891 
4892         for (const auto *Attr : VD->attrs())
4893           IndirectField->addAttr(Attr->clone(SemaRef.Context));
4894 
4895         IndirectField->setAccess(AS);
4896         IndirectField->setImplicit();
4897         SemaRef.PushOnScopeChains(IndirectField, S);
4898 
4899         // That includes picking up the appropriate access specifier.
4900         if (AS != AS_none) IndirectField->setAccess(AS);
4901 
4902         Chaining.resize(OldChainingSize);
4903       }
4904     }
4905   }
4906 
4907   return Invalid;
4908 }
4909 
4910 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
4911 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
4912 /// illegal input values are mapped to SC_None.
4913 static StorageClass
StorageClassSpecToVarDeclStorageClass(const DeclSpec & DS)4914 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
4915   DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
4916   assert(StorageClassSpec != DeclSpec::SCS_typedef &&
4917          "Parser allowed 'typedef' as storage class VarDecl.");
4918   switch (StorageClassSpec) {
4919   case DeclSpec::SCS_unspecified:    return SC_None;
4920   case DeclSpec::SCS_extern:
4921     if (DS.isExternInLinkageSpec())
4922       return SC_None;
4923     return SC_Extern;
4924   case DeclSpec::SCS_static:         return SC_Static;
4925   case DeclSpec::SCS_auto:           return SC_Auto;
4926   case DeclSpec::SCS_register:       return SC_Register;
4927   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4928     // Illegal SCSs map to None: error reporting is up to the caller.
4929   case DeclSpec::SCS_mutable:        // Fall through.
4930   case DeclSpec::SCS_typedef:        return SC_None;
4931   }
4932   llvm_unreachable("unknown storage class specifier");
4933 }
4934 
findDefaultInitializer(const CXXRecordDecl * Record)4935 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
4936   assert(Record->hasInClassInitializer());
4937 
4938   for (const auto *I : Record->decls()) {
4939     const auto *FD = dyn_cast<FieldDecl>(I);
4940     if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
4941       FD = IFD->getAnonField();
4942     if (FD && FD->hasInClassInitializer())
4943       return FD->getLocation();
4944   }
4945 
4946   llvm_unreachable("couldn't find in-class initializer");
4947 }
4948 
checkDuplicateDefaultInit(Sema & S,CXXRecordDecl * Parent,SourceLocation DefaultInitLoc)4949 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4950                                       SourceLocation DefaultInitLoc) {
4951   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4952     return;
4953 
4954   S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
4955   S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
4956 }
4957 
checkDuplicateDefaultInit(Sema & S,CXXRecordDecl * Parent,CXXRecordDecl * AnonUnion)4958 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4959                                       CXXRecordDecl *AnonUnion) {
4960   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4961     return;
4962 
4963   checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
4964 }
4965 
4966 /// BuildAnonymousStructOrUnion - Handle the declaration of an
4967 /// anonymous structure or union. Anonymous unions are a C++ feature
4968 /// (C++ [class.union]) and a C11 feature; anonymous structures
4969 /// are a C11 feature and GNU C++ extension.
BuildAnonymousStructOrUnion(Scope * S,DeclSpec & DS,AccessSpecifier AS,RecordDecl * Record,const PrintingPolicy & Policy)4970 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
4971                                         AccessSpecifier AS,
4972                                         RecordDecl *Record,
4973                                         const PrintingPolicy &Policy) {
4974   DeclContext *Owner = Record->getDeclContext();
4975 
4976   // Diagnose whether this anonymous struct/union is an extension.
4977   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
4978     Diag(Record->getLocation(), diag::ext_anonymous_union);
4979   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
4980     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
4981   else if (!Record->isUnion() && !getLangOpts().C11)
4982     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
4983 
4984   // C and C++ require different kinds of checks for anonymous
4985   // structs/unions.
4986   bool Invalid = false;
4987   if (getLangOpts().CPlusPlus) {
4988     const char *PrevSpec = nullptr;
4989     if (Record->isUnion()) {
4990       // C++ [class.union]p6:
4991       // C++17 [class.union.anon]p2:
4992       //   Anonymous unions declared in a named namespace or in the
4993       //   global namespace shall be declared static.
4994       unsigned DiagID;
4995       DeclContext *OwnerScope = Owner->getRedeclContext();
4996       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
4997           (OwnerScope->isTranslationUnit() ||
4998            (OwnerScope->isNamespace() &&
4999             !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) {
5000         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
5001           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
5002 
5003         // Recover by adding 'static'.
5004         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
5005                                PrevSpec, DiagID, Policy);
5006       }
5007       // C++ [class.union]p6:
5008       //   A storage class is not allowed in a declaration of an
5009       //   anonymous union in a class scope.
5010       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
5011                isa<RecordDecl>(Owner)) {
5012         Diag(DS.getStorageClassSpecLoc(),
5013              diag::err_anonymous_union_with_storage_spec)
5014           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5015 
5016         // Recover by removing the storage specifier.
5017         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
5018                                SourceLocation(),
5019                                PrevSpec, DiagID, Context.getPrintingPolicy());
5020       }
5021     }
5022 
5023     // Ignore const/volatile/restrict qualifiers.
5024     if (DS.getTypeQualifiers()) {
5025       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5026         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
5027           << Record->isUnion() << "const"
5028           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
5029       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5030         Diag(DS.getVolatileSpecLoc(),
5031              diag::ext_anonymous_struct_union_qualified)
5032           << Record->isUnion() << "volatile"
5033           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
5034       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
5035         Diag(DS.getRestrictSpecLoc(),
5036              diag::ext_anonymous_struct_union_qualified)
5037           << Record->isUnion() << "restrict"
5038           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
5039       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5040         Diag(DS.getAtomicSpecLoc(),
5041              diag::ext_anonymous_struct_union_qualified)
5042           << Record->isUnion() << "_Atomic"
5043           << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
5044       if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
5045         Diag(DS.getUnalignedSpecLoc(),
5046              diag::ext_anonymous_struct_union_qualified)
5047           << Record->isUnion() << "__unaligned"
5048           << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
5049 
5050       DS.ClearTypeQualifiers();
5051     }
5052 
5053     // C++ [class.union]p2:
5054     //   The member-specification of an anonymous union shall only
5055     //   define non-static data members. [Note: nested types and
5056     //   functions cannot be declared within an anonymous union. ]
5057     for (auto *Mem : Record->decls()) {
5058       // Ignore invalid declarations; we already diagnosed them.
5059       if (Mem->isInvalidDecl())
5060         continue;
5061 
5062       if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
5063         // C++ [class.union]p3:
5064         //   An anonymous union shall not have private or protected
5065         //   members (clause 11).
5066         assert(FD->getAccess() != AS_none);
5067         if (FD->getAccess() != AS_public) {
5068           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
5069             << Record->isUnion() << (FD->getAccess() == AS_protected);
5070           Invalid = true;
5071         }
5072 
5073         // C++ [class.union]p1
5074         //   An object of a class with a non-trivial constructor, a non-trivial
5075         //   copy constructor, a non-trivial destructor, or a non-trivial copy
5076         //   assignment operator cannot be a member of a union, nor can an
5077         //   array of such objects.
5078         if (CheckNontrivialField(FD))
5079           Invalid = true;
5080       } else if (Mem->isImplicit()) {
5081         // Any implicit members are fine.
5082       } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
5083         // This is a type that showed up in an
5084         // elaborated-type-specifier inside the anonymous struct or
5085         // union, but which actually declares a type outside of the
5086         // anonymous struct or union. It's okay.
5087       } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
5088         if (!MemRecord->isAnonymousStructOrUnion() &&
5089             MemRecord->getDeclName()) {
5090           // Visual C++ allows type definition in anonymous struct or union.
5091           if (getLangOpts().MicrosoftExt)
5092             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
5093               << Record->isUnion();
5094           else {
5095             // This is a nested type declaration.
5096             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
5097               << Record->isUnion();
5098             Invalid = true;
5099           }
5100         } else {
5101           // This is an anonymous type definition within another anonymous type.
5102           // This is a popular extension, provided by Plan9, MSVC and GCC, but
5103           // not part of standard C++.
5104           Diag(MemRecord->getLocation(),
5105                diag::ext_anonymous_record_with_anonymous_type)
5106             << Record->isUnion();
5107         }
5108       } else if (isa<AccessSpecDecl>(Mem)) {
5109         // Any access specifier is fine.
5110       } else if (isa<StaticAssertDecl>(Mem)) {
5111         // In C++1z, static_assert declarations are also fine.
5112       } else {
5113         // We have something that isn't a non-static data
5114         // member. Complain about it.
5115         unsigned DK = diag::err_anonymous_record_bad_member;
5116         if (isa<TypeDecl>(Mem))
5117           DK = diag::err_anonymous_record_with_type;
5118         else if (isa<FunctionDecl>(Mem))
5119           DK = diag::err_anonymous_record_with_function;
5120         else if (isa<VarDecl>(Mem))
5121           DK = diag::err_anonymous_record_with_static;
5122 
5123         // Visual C++ allows type definition in anonymous struct or union.
5124         if (getLangOpts().MicrosoftExt &&
5125             DK == diag::err_anonymous_record_with_type)
5126           Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
5127             << Record->isUnion();
5128         else {
5129           Diag(Mem->getLocation(), DK) << Record->isUnion();
5130           Invalid = true;
5131         }
5132       }
5133     }
5134 
5135     // C++11 [class.union]p8 (DR1460):
5136     //   At most one variant member of a union may have a
5137     //   brace-or-equal-initializer.
5138     if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
5139         Owner->isRecord())
5140       checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
5141                                 cast<CXXRecordDecl>(Record));
5142   }
5143 
5144   if (!Record->isUnion() && !Owner->isRecord()) {
5145     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
5146       << getLangOpts().CPlusPlus;
5147     Invalid = true;
5148   }
5149 
5150   // C++ [dcl.dcl]p3:
5151   //   [If there are no declarators], and except for the declaration of an
5152   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
5153   //   names into the program
5154   // C++ [class.mem]p2:
5155   //   each such member-declaration shall either declare at least one member
5156   //   name of the class or declare at least one unnamed bit-field
5157   //
5158   // For C this is an error even for a named struct, and is diagnosed elsewhere.
5159   if (getLangOpts().CPlusPlus && Record->field_empty())
5160     Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
5161 
5162   // Mock up a declarator.
5163   Declarator Dc(DS, DeclaratorContext::Member);
5164   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
5165   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
5166 
5167   // Create a declaration for this anonymous struct/union.
5168   NamedDecl *Anon = nullptr;
5169   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
5170     Anon = FieldDecl::Create(
5171         Context, OwningClass, DS.getBeginLoc(), Record->getLocation(),
5172         /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo,
5173         /*BitWidth=*/nullptr, /*Mutable=*/false,
5174         /*InitStyle=*/ICIS_NoInit);
5175     Anon->setAccess(AS);
5176     ProcessDeclAttributes(S, Anon, Dc);
5177 
5178     if (getLangOpts().CPlusPlus)
5179       FieldCollector->Add(cast<FieldDecl>(Anon));
5180   } else {
5181     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
5182     StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
5183     if (SCSpec == DeclSpec::SCS_mutable) {
5184       // mutable can only appear on non-static class members, so it's always
5185       // an error here
5186       Diag(Record->getLocation(), diag::err_mutable_nonmember);
5187       Invalid = true;
5188       SC = SC_None;
5189     }
5190 
5191     assert(DS.getAttributes().empty() && "No attribute expected");
5192     Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(),
5193                            Record->getLocation(), /*IdentifierInfo=*/nullptr,
5194                            Context.getTypeDeclType(Record), TInfo, SC);
5195 
5196     // Default-initialize the implicit variable. This initialization will be
5197     // trivial in almost all cases, except if a union member has an in-class
5198     // initializer:
5199     //   union { int n = 0; };
5200     ActOnUninitializedDecl(Anon);
5201   }
5202   Anon->setImplicit();
5203 
5204   // Mark this as an anonymous struct/union type.
5205   Record->setAnonymousStructOrUnion(true);
5206 
5207   // Add the anonymous struct/union object to the current
5208   // context. We'll be referencing this object when we refer to one of
5209   // its members.
5210   Owner->addDecl(Anon);
5211 
5212   // Inject the members of the anonymous struct/union into the owning
5213   // context and into the identifier resolver chain for name lookup
5214   // purposes.
5215   SmallVector<NamedDecl*, 2> Chain;
5216   Chain.push_back(Anon);
5217 
5218   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain))
5219     Invalid = true;
5220 
5221   if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
5222     if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
5223       MangleNumberingContext *MCtx;
5224       Decl *ManglingContextDecl;
5225       std::tie(MCtx, ManglingContextDecl) =
5226           getCurrentMangleNumberContext(NewVD->getDeclContext());
5227       if (MCtx) {
5228         Context.setManglingNumber(
5229             NewVD, MCtx->getManglingNumber(
5230                        NewVD, getMSManglingNumber(getLangOpts(), S)));
5231         Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
5232       }
5233     }
5234   }
5235 
5236   if (Invalid)
5237     Anon->setInvalidDecl();
5238 
5239   return Anon;
5240 }
5241 
5242 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
5243 /// Microsoft C anonymous structure.
5244 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
5245 /// Example:
5246 ///
5247 /// struct A { int a; };
5248 /// struct B { struct A; int b; };
5249 ///
5250 /// void foo() {
5251 ///   B var;
5252 ///   var.a = 3;
5253 /// }
5254 ///
BuildMicrosoftCAnonymousStruct(Scope * S,DeclSpec & DS,RecordDecl * Record)5255 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
5256                                            RecordDecl *Record) {
5257   assert(Record && "expected a record!");
5258 
5259   // Mock up a declarator.
5260   Declarator Dc(DS, DeclaratorContext::TypeName);
5261   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
5262   assert(TInfo && "couldn't build declarator info for anonymous struct");
5263 
5264   auto *ParentDecl = cast<RecordDecl>(CurContext);
5265   QualType RecTy = Context.getTypeDeclType(Record);
5266 
5267   // Create a declaration for this anonymous struct.
5268   NamedDecl *Anon =
5269       FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(),
5270                         /*IdentifierInfo=*/nullptr, RecTy, TInfo,
5271                         /*BitWidth=*/nullptr, /*Mutable=*/false,
5272                         /*InitStyle=*/ICIS_NoInit);
5273   Anon->setImplicit();
5274 
5275   // Add the anonymous struct object to the current context.
5276   CurContext->addDecl(Anon);
5277 
5278   // Inject the members of the anonymous struct into the current
5279   // context and into the identifier resolver chain for name lookup
5280   // purposes.
5281   SmallVector<NamedDecl*, 2> Chain;
5282   Chain.push_back(Anon);
5283 
5284   RecordDecl *RecordDef = Record->getDefinition();
5285   if (RequireCompleteSizedType(Anon->getLocation(), RecTy,
5286                                diag::err_field_incomplete_or_sizeless) ||
5287       InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
5288                                           AS_none, Chain)) {
5289     Anon->setInvalidDecl();
5290     ParentDecl->setInvalidDecl();
5291   }
5292 
5293   return Anon;
5294 }
5295 
5296 /// GetNameForDeclarator - Determine the full declaration name for the
5297 /// given Declarator.
GetNameForDeclarator(Declarator & D)5298 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
5299   return GetNameFromUnqualifiedId(D.getName());
5300 }
5301 
5302 /// Retrieves the declaration name from a parsed unqualified-id.
5303 DeclarationNameInfo
GetNameFromUnqualifiedId(const UnqualifiedId & Name)5304 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
5305   DeclarationNameInfo NameInfo;
5306   NameInfo.setLoc(Name.StartLocation);
5307 
5308   switch (Name.getKind()) {
5309 
5310   case UnqualifiedIdKind::IK_ImplicitSelfParam:
5311   case UnqualifiedIdKind::IK_Identifier:
5312     NameInfo.setName(Name.Identifier);
5313     return NameInfo;
5314 
5315   case UnqualifiedIdKind::IK_DeductionGuideName: {
5316     // C++ [temp.deduct.guide]p3:
5317     //   The simple-template-id shall name a class template specialization.
5318     //   The template-name shall be the same identifier as the template-name
5319     //   of the simple-template-id.
5320     // These together intend to imply that the template-name shall name a
5321     // class template.
5322     // FIXME: template<typename T> struct X {};
5323     //        template<typename T> using Y = X<T>;
5324     //        Y(int) -> Y<int>;
5325     //   satisfies these rules but does not name a class template.
5326     TemplateName TN = Name.TemplateName.get().get();
5327     auto *Template = TN.getAsTemplateDecl();
5328     if (!Template || !isa<ClassTemplateDecl>(Template)) {
5329       Diag(Name.StartLocation,
5330            diag::err_deduction_guide_name_not_class_template)
5331         << (int)getTemplateNameKindForDiagnostics(TN) << TN;
5332       if (Template)
5333         Diag(Template->getLocation(), diag::note_template_decl_here);
5334       return DeclarationNameInfo();
5335     }
5336 
5337     NameInfo.setName(
5338         Context.DeclarationNames.getCXXDeductionGuideName(Template));
5339     return NameInfo;
5340   }
5341 
5342   case UnqualifiedIdKind::IK_OperatorFunctionId:
5343     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
5344                                            Name.OperatorFunctionId.Operator));
5345     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
5346       = Name.OperatorFunctionId.SymbolLocations[0];
5347     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
5348       = Name.EndLocation.getRawEncoding();
5349     return NameInfo;
5350 
5351   case UnqualifiedIdKind::IK_LiteralOperatorId:
5352     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
5353                                                            Name.Identifier));
5354     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
5355     return NameInfo;
5356 
5357   case UnqualifiedIdKind::IK_ConversionFunctionId: {
5358     TypeSourceInfo *TInfo;
5359     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
5360     if (Ty.isNull())
5361       return DeclarationNameInfo();
5362     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
5363                                                Context.getCanonicalType(Ty)));
5364     NameInfo.setNamedTypeInfo(TInfo);
5365     return NameInfo;
5366   }
5367 
5368   case UnqualifiedIdKind::IK_ConstructorName: {
5369     TypeSourceInfo *TInfo;
5370     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
5371     if (Ty.isNull())
5372       return DeclarationNameInfo();
5373     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5374                                               Context.getCanonicalType(Ty)));
5375     NameInfo.setNamedTypeInfo(TInfo);
5376     return NameInfo;
5377   }
5378 
5379   case UnqualifiedIdKind::IK_ConstructorTemplateId: {
5380     // In well-formed code, we can only have a constructor
5381     // template-id that refers to the current context, so go there
5382     // to find the actual type being constructed.
5383     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
5384     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
5385       return DeclarationNameInfo();
5386 
5387     // Determine the type of the class being constructed.
5388     QualType CurClassType = Context.getTypeDeclType(CurClass);
5389 
5390     // FIXME: Check two things: that the template-id names the same type as
5391     // CurClassType, and that the template-id does not occur when the name
5392     // was qualified.
5393 
5394     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5395                                     Context.getCanonicalType(CurClassType)));
5396     // FIXME: should we retrieve TypeSourceInfo?
5397     NameInfo.setNamedTypeInfo(nullptr);
5398     return NameInfo;
5399   }
5400 
5401   case UnqualifiedIdKind::IK_DestructorName: {
5402     TypeSourceInfo *TInfo;
5403     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
5404     if (Ty.isNull())
5405       return DeclarationNameInfo();
5406     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
5407                                               Context.getCanonicalType(Ty)));
5408     NameInfo.setNamedTypeInfo(TInfo);
5409     return NameInfo;
5410   }
5411 
5412   case UnqualifiedIdKind::IK_TemplateId: {
5413     TemplateName TName = Name.TemplateId->Template.get();
5414     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
5415     return Context.getNameForTemplate(TName, TNameLoc);
5416   }
5417 
5418   } // switch (Name.getKind())
5419 
5420   llvm_unreachable("Unknown name kind");
5421 }
5422 
getCoreType(QualType Ty)5423 static QualType getCoreType(QualType Ty) {
5424   do {
5425     if (Ty->isPointerType() || Ty->isReferenceType())
5426       Ty = Ty->getPointeeType();
5427     else if (Ty->isArrayType())
5428       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
5429     else
5430       return Ty.withoutLocalFastQualifiers();
5431   } while (true);
5432 }
5433 
5434 /// hasSimilarParameters - Determine whether the C++ functions Declaration
5435 /// and Definition have "nearly" matching parameters. This heuristic is
5436 /// used to improve diagnostics in the case where an out-of-line function
5437 /// definition doesn't match any declaration within the class or namespace.
5438 /// Also sets Params to the list of indices to the parameters that differ
5439 /// between the declaration and the definition. If hasSimilarParameters
5440 /// returns true and Params is empty, then all of the parameters match.
hasSimilarParameters(ASTContext & Context,FunctionDecl * Declaration,FunctionDecl * Definition,SmallVectorImpl<unsigned> & Params)5441 static bool hasSimilarParameters(ASTContext &Context,
5442                                      FunctionDecl *Declaration,
5443                                      FunctionDecl *Definition,
5444                                      SmallVectorImpl<unsigned> &Params) {
5445   Params.clear();
5446   if (Declaration->param_size() != Definition->param_size())
5447     return false;
5448   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
5449     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
5450     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
5451 
5452     // The parameter types are identical
5453     if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy))
5454       continue;
5455 
5456     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
5457     QualType DefParamBaseTy = getCoreType(DefParamTy);
5458     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
5459     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
5460 
5461     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
5462         (DeclTyName && DeclTyName == DefTyName))
5463       Params.push_back(Idx);
5464     else  // The two parameters aren't even close
5465       return false;
5466   }
5467 
5468   return true;
5469 }
5470 
5471 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
5472 /// declarator needs to be rebuilt in the current instantiation.
5473 /// Any bits of declarator which appear before the name are valid for
5474 /// consideration here.  That's specifically the type in the decl spec
5475 /// and the base type in any member-pointer chunks.
RebuildDeclaratorInCurrentInstantiation(Sema & S,Declarator & D,DeclarationName Name)5476 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
5477                                                     DeclarationName Name) {
5478   // The types we specifically need to rebuild are:
5479   //   - typenames, typeofs, and decltypes
5480   //   - types which will become injected class names
5481   // Of course, we also need to rebuild any type referencing such a
5482   // type.  It's safest to just say "dependent", but we call out a
5483   // few cases here.
5484 
5485   DeclSpec &DS = D.getMutableDeclSpec();
5486   switch (DS.getTypeSpecType()) {
5487   case DeclSpec::TST_typename:
5488   case DeclSpec::TST_typeofType:
5489   case DeclSpec::TST_underlyingType:
5490   case DeclSpec::TST_atomic: {
5491     // Grab the type from the parser.
5492     TypeSourceInfo *TSI = nullptr;
5493     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
5494     if (T.isNull() || !T->isDependentType()) break;
5495 
5496     // Make sure there's a type source info.  This isn't really much
5497     // of a waste; most dependent types should have type source info
5498     // attached already.
5499     if (!TSI)
5500       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
5501 
5502     // Rebuild the type in the current instantiation.
5503     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
5504     if (!TSI) return true;
5505 
5506     // Store the new type back in the decl spec.
5507     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
5508     DS.UpdateTypeRep(LocType);
5509     break;
5510   }
5511 
5512   case DeclSpec::TST_decltype:
5513   case DeclSpec::TST_typeofExpr: {
5514     Expr *E = DS.getRepAsExpr();
5515     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
5516     if (Result.isInvalid()) return true;
5517     DS.UpdateExprRep(Result.get());
5518     break;
5519   }
5520 
5521   default:
5522     // Nothing to do for these decl specs.
5523     break;
5524   }
5525 
5526   // It doesn't matter what order we do this in.
5527   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
5528     DeclaratorChunk &Chunk = D.getTypeObject(I);
5529 
5530     // The only type information in the declarator which can come
5531     // before the declaration name is the base type of a member
5532     // pointer.
5533     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
5534       continue;
5535 
5536     // Rebuild the scope specifier in-place.
5537     CXXScopeSpec &SS = Chunk.Mem.Scope();
5538     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
5539       return true;
5540   }
5541 
5542   return false;
5543 }
5544 
ActOnDeclarator(Scope * S,Declarator & D)5545 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
5546   D.setFunctionDefinitionKind(FunctionDefinitionKind::Declaration);
5547   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
5548 
5549   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
5550       Dcl && Dcl->getDeclContext()->isFileContext())
5551     Dcl->setTopLevelDeclInObjCContainer();
5552 
5553   if (getLangOpts().OpenCL)
5554     setCurrentOpenCLExtensionForDecl(Dcl);
5555 
5556   return Dcl;
5557 }
5558 
5559 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
5560 ///   If T is the name of a class, then each of the following shall have a
5561 ///   name different from T:
5562 ///     - every static data member of class T;
5563 ///     - every member function of class T
5564 ///     - every member of class T that is itself a type;
5565 /// \returns true if the declaration name violates these rules.
DiagnoseClassNameShadow(DeclContext * DC,DeclarationNameInfo NameInfo)5566 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
5567                                    DeclarationNameInfo NameInfo) {
5568   DeclarationName Name = NameInfo.getName();
5569 
5570   CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
5571   while (Record && Record->isAnonymousStructOrUnion())
5572     Record = dyn_cast<CXXRecordDecl>(Record->getParent());
5573   if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
5574     Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
5575     return true;
5576   }
5577 
5578   return false;
5579 }
5580 
5581 /// Diagnose a declaration whose declarator-id has the given
5582 /// nested-name-specifier.
5583 ///
5584 /// \param SS The nested-name-specifier of the declarator-id.
5585 ///
5586 /// \param DC The declaration context to which the nested-name-specifier
5587 /// resolves.
5588 ///
5589 /// \param Name The name of the entity being declared.
5590 ///
5591 /// \param Loc The location of the name of the entity being declared.
5592 ///
5593 /// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
5594 /// we're declaring an explicit / partial specialization / instantiation.
5595 ///
5596 /// \returns true if we cannot safely recover from this error, false otherwise.
diagnoseQualifiedDeclaration(CXXScopeSpec & SS,DeclContext * DC,DeclarationName Name,SourceLocation Loc,bool IsTemplateId)5597 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
5598                                         DeclarationName Name,
5599                                         SourceLocation Loc, bool IsTemplateId) {
5600   DeclContext *Cur = CurContext;
5601   while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
5602     Cur = Cur->getParent();
5603 
5604   // If the user provided a superfluous scope specifier that refers back to the
5605   // class in which the entity is already declared, diagnose and ignore it.
5606   //
5607   // class X {
5608   //   void X::f();
5609   // };
5610   //
5611   // Note, it was once ill-formed to give redundant qualification in all
5612   // contexts, but that rule was removed by DR482.
5613   if (Cur->Equals(DC)) {
5614     if (Cur->isRecord()) {
5615       Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
5616                                       : diag::err_member_extra_qualification)
5617         << Name << FixItHint::CreateRemoval(SS.getRange());
5618       SS.clear();
5619     } else {
5620       Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
5621     }
5622     return false;
5623   }
5624 
5625   // Check whether the qualifying scope encloses the scope of the original
5626   // declaration. For a template-id, we perform the checks in
5627   // CheckTemplateSpecializationScope.
5628   if (!Cur->Encloses(DC) && !IsTemplateId) {
5629     if (Cur->isRecord())
5630       Diag(Loc, diag::err_member_qualification)
5631         << Name << SS.getRange();
5632     else if (isa<TranslationUnitDecl>(DC))
5633       Diag(Loc, diag::err_invalid_declarator_global_scope)
5634         << Name << SS.getRange();
5635     else if (isa<FunctionDecl>(Cur))
5636       Diag(Loc, diag::err_invalid_declarator_in_function)
5637         << Name << SS.getRange();
5638     else if (isa<BlockDecl>(Cur))
5639       Diag(Loc, diag::err_invalid_declarator_in_block)
5640         << Name << SS.getRange();
5641     else
5642       Diag(Loc, diag::err_invalid_declarator_scope)
5643       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
5644 
5645     return true;
5646   }
5647 
5648   if (Cur->isRecord()) {
5649     // Cannot qualify members within a class.
5650     Diag(Loc, diag::err_member_qualification)
5651       << Name << SS.getRange();
5652     SS.clear();
5653 
5654     // C++ constructors and destructors with incorrect scopes can break
5655     // our AST invariants by having the wrong underlying types. If
5656     // that's the case, then drop this declaration entirely.
5657     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
5658          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
5659         !Context.hasSameType(Name.getCXXNameType(),
5660                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
5661       return true;
5662 
5663     return false;
5664   }
5665 
5666   // C++11 [dcl.meaning]p1:
5667   //   [...] "The nested-name-specifier of the qualified declarator-id shall
5668   //   not begin with a decltype-specifer"
5669   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
5670   while (SpecLoc.getPrefix())
5671     SpecLoc = SpecLoc.getPrefix();
5672   if (dyn_cast_or_null<DecltypeType>(
5673         SpecLoc.getNestedNameSpecifier()->getAsType()))
5674     Diag(Loc, diag::err_decltype_in_declarator)
5675       << SpecLoc.getTypeLoc().getSourceRange();
5676 
5677   return false;
5678 }
5679 
HandleDeclarator(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParamLists)5680 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
5681                                   MultiTemplateParamsArg TemplateParamLists) {
5682   // TODO: consider using NameInfo for diagnostic.
5683   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5684   DeclarationName Name = NameInfo.getName();
5685 
5686   // All of these full declarators require an identifier.  If it doesn't have
5687   // one, the ParsedFreeStandingDeclSpec action should be used.
5688   if (D.isDecompositionDeclarator()) {
5689     return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
5690   } else if (!Name) {
5691     if (!D.isInvalidType())  // Reject this if we think it is valid.
5692       Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident)
5693           << D.getDeclSpec().getSourceRange() << D.getSourceRange();
5694     return nullptr;
5695   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
5696     return nullptr;
5697 
5698   // The scope passed in may not be a decl scope.  Zip up the scope tree until
5699   // we find one that is.
5700   while ((S->getFlags() & Scope::DeclScope) == 0 ||
5701          (S->getFlags() & Scope::TemplateParamScope) != 0)
5702     S = S->getParent();
5703 
5704   DeclContext *DC = CurContext;
5705   if (D.getCXXScopeSpec().isInvalid())
5706     D.setInvalidType();
5707   else if (D.getCXXScopeSpec().isSet()) {
5708     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
5709                                         UPPC_DeclarationQualifier))
5710       return nullptr;
5711 
5712     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
5713     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
5714     if (!DC || isa<EnumDecl>(DC)) {
5715       // If we could not compute the declaration context, it's because the
5716       // declaration context is dependent but does not refer to a class,
5717       // class template, or class template partial specialization. Complain
5718       // and return early, to avoid the coming semantic disaster.
5719       Diag(D.getIdentifierLoc(),
5720            diag::err_template_qualified_declarator_no_match)
5721         << D.getCXXScopeSpec().getScopeRep()
5722         << D.getCXXScopeSpec().getRange();
5723       return nullptr;
5724     }
5725     bool IsDependentContext = DC->isDependentContext();
5726 
5727     if (!IsDependentContext &&
5728         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
5729       return nullptr;
5730 
5731     // If a class is incomplete, do not parse entities inside it.
5732     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
5733       Diag(D.getIdentifierLoc(),
5734            diag::err_member_def_undefined_record)
5735         << Name << DC << D.getCXXScopeSpec().getRange();
5736       return nullptr;
5737     }
5738     if (!D.getDeclSpec().isFriendSpecified()) {
5739       if (diagnoseQualifiedDeclaration(
5740               D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
5741               D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) {
5742         if (DC->isRecord())
5743           return nullptr;
5744 
5745         D.setInvalidType();
5746       }
5747     }
5748 
5749     // Check whether we need to rebuild the type of the given
5750     // declaration in the current instantiation.
5751     if (EnteringContext && IsDependentContext &&
5752         TemplateParamLists.size() != 0) {
5753       ContextRAII SavedContext(*this, DC);
5754       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
5755         D.setInvalidType();
5756     }
5757   }
5758 
5759   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5760   QualType R = TInfo->getType();
5761 
5762   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
5763                                       UPPC_DeclarationType))
5764     D.setInvalidType();
5765 
5766   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5767                         forRedeclarationInCurContext());
5768 
5769   // See if this is a redefinition of a variable in the same scope.
5770   if (!D.getCXXScopeSpec().isSet()) {
5771     bool IsLinkageLookup = false;
5772     bool CreateBuiltins = false;
5773 
5774     // If the declaration we're planning to build will be a function
5775     // or object with linkage, then look for another declaration with
5776     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
5777     //
5778     // If the declaration we're planning to build will be declared with
5779     // external linkage in the translation unit, create any builtin with
5780     // the same name.
5781     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
5782       /* Do nothing*/;
5783     else if (CurContext->isFunctionOrMethod() &&
5784              (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
5785               R->isFunctionType())) {
5786       IsLinkageLookup = true;
5787       CreateBuiltins =
5788           CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
5789     } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
5790                D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
5791       CreateBuiltins = true;
5792 
5793     if (IsLinkageLookup) {
5794       Previous.clear(LookupRedeclarationWithLinkage);
5795       Previous.setRedeclarationKind(ForExternalRedeclaration);
5796     }
5797 
5798     LookupName(Previous, S, CreateBuiltins);
5799   } else { // Something like "int foo::x;"
5800     LookupQualifiedName(Previous, DC);
5801 
5802     // C++ [dcl.meaning]p1:
5803     //   When the declarator-id is qualified, the declaration shall refer to a
5804     //  previously declared member of the class or namespace to which the
5805     //  qualifier refers (or, in the case of a namespace, of an element of the
5806     //  inline namespace set of that namespace (7.3.1)) or to a specialization
5807     //  thereof; [...]
5808     //
5809     // Note that we already checked the context above, and that we do not have
5810     // enough information to make sure that Previous contains the declaration
5811     // we want to match. For example, given:
5812     //
5813     //   class X {
5814     //     void f();
5815     //     void f(float);
5816     //   };
5817     //
5818     //   void X::f(int) { } // ill-formed
5819     //
5820     // In this case, Previous will point to the overload set
5821     // containing the two f's declared in X, but neither of them
5822     // matches.
5823 
5824     // C++ [dcl.meaning]p1:
5825     //   [...] the member shall not merely have been introduced by a
5826     //   using-declaration in the scope of the class or namespace nominated by
5827     //   the nested-name-specifier of the declarator-id.
5828     RemoveUsingDecls(Previous);
5829   }
5830 
5831   if (Previous.isSingleResult() &&
5832       Previous.getFoundDecl()->isTemplateParameter()) {
5833     // Maybe we will complain about the shadowed template parameter.
5834     if (!D.isInvalidType())
5835       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
5836                                       Previous.getFoundDecl());
5837 
5838     // Just pretend that we didn't see the previous declaration.
5839     Previous.clear();
5840   }
5841 
5842   if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
5843     // Forget that the previous declaration is the injected-class-name.
5844     Previous.clear();
5845 
5846   // In C++, the previous declaration we find might be a tag type
5847   // (class or enum). In this case, the new declaration will hide the
5848   // tag type. Note that this applies to functions, function templates, and
5849   // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
5850   if (Previous.isSingleTagDecl() &&
5851       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5852       (TemplateParamLists.size() == 0 || R->isFunctionType()))
5853     Previous.clear();
5854 
5855   // Check that there are no default arguments other than in the parameters
5856   // of a function declaration (C++ only).
5857   if (getLangOpts().CPlusPlus)
5858     CheckExtraCXXDefaultArguments(D);
5859 
5860   NamedDecl *New;
5861 
5862   bool AddToScope = true;
5863   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5864     if (TemplateParamLists.size()) {
5865       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
5866       return nullptr;
5867     }
5868 
5869     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
5870   } else if (R->isFunctionType()) {
5871     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
5872                                   TemplateParamLists,
5873                                   AddToScope);
5874   } else {
5875     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
5876                                   AddToScope);
5877   }
5878 
5879   if (!New)
5880     return nullptr;
5881 
5882   // If this has an identifier and is not a function template specialization,
5883   // add it to the scope stack.
5884   if (New->getDeclName() && AddToScope)
5885     PushOnScopeChains(New, S);
5886 
5887   if (isInOpenMPDeclareTargetContext())
5888     checkDeclIsAllowedInOpenMPTarget(nullptr, New);
5889 
5890   return New;
5891 }
5892 
5893 /// Helper method to turn variable array types into constant array
5894 /// types in certain situations which would otherwise be errors (for
5895 /// GCC compatibility).
TryToFixInvalidVariablyModifiedType(QualType T,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)5896 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
5897                                                     ASTContext &Context,
5898                                                     bool &SizeIsNegative,
5899                                                     llvm::APSInt &Oversized) {
5900   // This method tries to turn a variable array into a constant
5901   // array even when the size isn't an ICE.  This is necessary
5902   // for compatibility with code that depends on gcc's buggy
5903   // constant expression folding, like struct {char x[(int)(char*)2];}
5904   SizeIsNegative = false;
5905   Oversized = 0;
5906 
5907   if (T->isDependentType())
5908     return QualType();
5909 
5910   QualifierCollector Qs;
5911   const Type *Ty = Qs.strip(T);
5912 
5913   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
5914     QualType Pointee = PTy->getPointeeType();
5915     QualType FixedType =
5916         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
5917                                             Oversized);
5918     if (FixedType.isNull()) return FixedType;
5919     FixedType = Context.getPointerType(FixedType);
5920     return Qs.apply(Context, FixedType);
5921   }
5922   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
5923     QualType Inner = PTy->getInnerType();
5924     QualType FixedType =
5925         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
5926                                             Oversized);
5927     if (FixedType.isNull()) return FixedType;
5928     FixedType = Context.getParenType(FixedType);
5929     return Qs.apply(Context, FixedType);
5930   }
5931 
5932   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
5933   if (!VLATy)
5934     return QualType();
5935 
5936   QualType ElemTy = VLATy->getElementType();
5937   if (ElemTy->isVariablyModifiedType()) {
5938     ElemTy = TryToFixInvalidVariablyModifiedType(ElemTy, Context,
5939                                                  SizeIsNegative, Oversized);
5940     if (ElemTy.isNull())
5941       return QualType();
5942   }
5943 
5944   Expr::EvalResult Result;
5945   if (!VLATy->getSizeExpr() ||
5946       !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context))
5947     return QualType();
5948 
5949   llvm::APSInt Res = Result.Val.getInt();
5950 
5951   // Check whether the array size is negative.
5952   if (Res.isSigned() && Res.isNegative()) {
5953     SizeIsNegative = true;
5954     return QualType();
5955   }
5956 
5957   // Check whether the array is too large to be addressed.
5958   unsigned ActiveSizeBits =
5959       (!ElemTy->isDependentType() && !ElemTy->isVariablyModifiedType() &&
5960        !ElemTy->isIncompleteType() && !ElemTy->isUndeducedType())
5961           ? ConstantArrayType::getNumAddressingBits(Context, ElemTy, Res)
5962           : Res.getActiveBits();
5963   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
5964     Oversized = Res;
5965     return QualType();
5966   }
5967 
5968   return Context.getConstantArrayType(ElemTy, Res, VLATy->getSizeExpr(),
5969                                       ArrayType::Normal, 0);
5970 }
5971 
5972 static void
FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL,TypeLoc DstTL)5973 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
5974   SrcTL = SrcTL.getUnqualifiedLoc();
5975   DstTL = DstTL.getUnqualifiedLoc();
5976   if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
5977     PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
5978     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
5979                                       DstPTL.getPointeeLoc());
5980     DstPTL.setStarLoc(SrcPTL.getStarLoc());
5981     return;
5982   }
5983   if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
5984     ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
5985     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
5986                                       DstPTL.getInnerLoc());
5987     DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
5988     DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
5989     return;
5990   }
5991   ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
5992   ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
5993   TypeLoc SrcElemTL = SrcATL.getElementLoc();
5994   TypeLoc DstElemTL = DstATL.getElementLoc();
5995   if (VariableArrayTypeLoc SrcElemATL =
5996           SrcElemTL.getAs<VariableArrayTypeLoc>()) {
5997     ConstantArrayTypeLoc DstElemATL = DstElemTL.castAs<ConstantArrayTypeLoc>();
5998     FixInvalidVariablyModifiedTypeLoc(SrcElemATL, DstElemATL);
5999   } else {
6000     DstElemTL.initializeFullCopy(SrcElemTL);
6001   }
6002   DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
6003   DstATL.setSizeExpr(SrcATL.getSizeExpr());
6004   DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
6005 }
6006 
6007 /// Helper method to turn variable array types into constant array
6008 /// types in certain situations which would otherwise be errors (for
6009 /// GCC compatibility).
6010 static TypeSourceInfo*
TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo * TInfo,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)6011 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
6012                                               ASTContext &Context,
6013                                               bool &SizeIsNegative,
6014                                               llvm::APSInt &Oversized) {
6015   QualType FixedTy
6016     = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
6017                                           SizeIsNegative, Oversized);
6018   if (FixedTy.isNull())
6019     return nullptr;
6020   TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
6021   FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
6022                                     FixedTInfo->getTypeLoc());
6023   return FixedTInfo;
6024 }
6025 
6026 /// Attempt to fold a variable-sized type to a constant-sized type, returning
6027 /// true if we were successful.
tryToFixVariablyModifiedVarType(Sema & S,TypeSourceInfo * & TInfo,QualType & T,SourceLocation Loc,unsigned FailedFoldDiagID)6028 static bool tryToFixVariablyModifiedVarType(Sema &S, TypeSourceInfo *&TInfo,
6029                                             QualType &T, SourceLocation Loc,
6030                                             unsigned FailedFoldDiagID) {
6031   bool SizeIsNegative;
6032   llvm::APSInt Oversized;
6033   TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
6034       TInfo, S.Context, SizeIsNegative, Oversized);
6035   if (FixedTInfo) {
6036     S.Diag(Loc, diag::ext_vla_folded_to_constant);
6037     TInfo = FixedTInfo;
6038     T = FixedTInfo->getType();
6039     return true;
6040   }
6041 
6042   if (SizeIsNegative)
6043     S.Diag(Loc, diag::err_typecheck_negative_array_size);
6044   else if (Oversized.getBoolValue())
6045     S.Diag(Loc, diag::err_array_too_large) << Oversized.toString(10);
6046   else if (FailedFoldDiagID)
6047     S.Diag(Loc, FailedFoldDiagID);
6048   return false;
6049 }
6050 
6051 /// Register the given locally-scoped extern "C" declaration so
6052 /// that it can be found later for redeclarations. We include any extern "C"
6053 /// declaration that is not visible in the translation unit here, not just
6054 /// function-scope declarations.
6055 void
RegisterLocallyScopedExternCDecl(NamedDecl * ND,Scope * S)6056 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
6057   if (!getLangOpts().CPlusPlus &&
6058       ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
6059     // Don't need to track declarations in the TU in C.
6060     return;
6061 
6062   // Note that we have a locally-scoped external with this name.
6063   Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
6064 }
6065 
findLocallyScopedExternCDecl(DeclarationName Name)6066 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
6067   // FIXME: We can have multiple results via __attribute__((overloadable)).
6068   auto Result = Context.getExternCContextDecl()->lookup(Name);
6069   return Result.empty() ? nullptr : *Result.begin();
6070 }
6071 
6072 /// Diagnose function specifiers on a declaration of an identifier that
6073 /// does not identify a function.
DiagnoseFunctionSpecifiers(const DeclSpec & DS)6074 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
6075   // FIXME: We should probably indicate the identifier in question to avoid
6076   // confusion for constructs like "virtual int a(), b;"
6077   if (DS.isVirtualSpecified())
6078     Diag(DS.getVirtualSpecLoc(),
6079          diag::err_virtual_non_function);
6080 
6081   if (DS.hasExplicitSpecifier())
6082     Diag(DS.getExplicitSpecLoc(),
6083          diag::err_explicit_non_function);
6084 
6085   if (DS.isNoreturnSpecified())
6086     Diag(DS.getNoreturnSpecLoc(),
6087          diag::err_noreturn_non_function);
6088 }
6089 
6090 NamedDecl*
ActOnTypedefDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous)6091 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
6092                              TypeSourceInfo *TInfo, LookupResult &Previous) {
6093   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
6094   if (D.getCXXScopeSpec().isSet()) {
6095     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
6096       << D.getCXXScopeSpec().getRange();
6097     D.setInvalidType();
6098     // Pretend we didn't see the scope specifier.
6099     DC = CurContext;
6100     Previous.clear();
6101   }
6102 
6103   DiagnoseFunctionSpecifiers(D.getDeclSpec());
6104 
6105   if (D.getDeclSpec().isInlineSpecified())
6106     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
6107         << getLangOpts().CPlusPlus17;
6108   if (D.getDeclSpec().hasConstexprSpecifier())
6109     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6110         << 1 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
6111 
6112   if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) {
6113     if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName)
6114       Diag(D.getName().StartLocation,
6115            diag::err_deduction_guide_invalid_specifier)
6116           << "typedef";
6117     else
6118       Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
6119           << D.getName().getSourceRange();
6120     return nullptr;
6121   }
6122 
6123   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
6124   if (!NewTD) return nullptr;
6125 
6126   // Handle attributes prior to checking for duplicates in MergeVarDecl
6127   ProcessDeclAttributes(S, NewTD, D);
6128 
6129   CheckTypedefForVariablyModifiedType(S, NewTD);
6130 
6131   bool Redeclaration = D.isRedeclaration();
6132   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
6133   D.setRedeclaration(Redeclaration);
6134   return ND;
6135 }
6136 
6137 void
CheckTypedefForVariablyModifiedType(Scope * S,TypedefNameDecl * NewTD)6138 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
6139   // C99 6.7.7p2: If a typedef name specifies a variably modified type
6140   // then it shall have block scope.
6141   // Note that variably modified types must be fixed before merging the decl so
6142   // that redeclarations will match.
6143   TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
6144   QualType T = TInfo->getType();
6145   if (T->isVariablyModifiedType()) {
6146     setFunctionHasBranchProtectedScope();
6147 
6148     if (S->getFnParent() == nullptr) {
6149       bool SizeIsNegative;
6150       llvm::APSInt Oversized;
6151       TypeSourceInfo *FixedTInfo =
6152         TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
6153                                                       SizeIsNegative,
6154                                                       Oversized);
6155       if (FixedTInfo) {
6156         Diag(NewTD->getLocation(), diag::ext_vla_folded_to_constant);
6157         NewTD->setTypeSourceInfo(FixedTInfo);
6158       } else {
6159         if (SizeIsNegative)
6160           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
6161         else if (T->isVariableArrayType())
6162           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
6163         else if (Oversized.getBoolValue())
6164           Diag(NewTD->getLocation(), diag::err_array_too_large)
6165             << Oversized.toString(10);
6166         else
6167           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
6168         NewTD->setInvalidDecl();
6169       }
6170     }
6171   }
6172 }
6173 
6174 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
6175 /// declares a typedef-name, either using the 'typedef' type specifier or via
6176 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
6177 NamedDecl*
ActOnTypedefNameDecl(Scope * S,DeclContext * DC,TypedefNameDecl * NewTD,LookupResult & Previous,bool & Redeclaration)6178 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
6179                            LookupResult &Previous, bool &Redeclaration) {
6180 
6181   // Find the shadowed declaration before filtering for scope.
6182   NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
6183 
6184   // Merge the decl with the existing one if appropriate. If the decl is
6185   // in an outer scope, it isn't the same thing.
6186   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
6187                        /*AllowInlineNamespace*/false);
6188   filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
6189   if (!Previous.empty()) {
6190     Redeclaration = true;
6191     MergeTypedefNameDecl(S, NewTD, Previous);
6192   } else {
6193     inferGslPointerAttribute(NewTD);
6194   }
6195 
6196   if (ShadowedDecl && !Redeclaration)
6197     CheckShadow(NewTD, ShadowedDecl, Previous);
6198 
6199   // If this is the C FILE type, notify the AST context.
6200   if (IdentifierInfo *II = NewTD->getIdentifier())
6201     if (!NewTD->isInvalidDecl() &&
6202         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6203       if (II->isStr("FILE"))
6204         Context.setFILEDecl(NewTD);
6205       else if (II->isStr("jmp_buf"))
6206         Context.setjmp_bufDecl(NewTD);
6207       else if (II->isStr("sigjmp_buf"))
6208         Context.setsigjmp_bufDecl(NewTD);
6209       else if (II->isStr("ucontext_t"))
6210         Context.setucontext_tDecl(NewTD);
6211     }
6212 
6213   return NewTD;
6214 }
6215 
6216 /// Determines whether the given declaration is an out-of-scope
6217 /// previous declaration.
6218 ///
6219 /// This routine should be invoked when name lookup has found a
6220 /// previous declaration (PrevDecl) that is not in the scope where a
6221 /// new declaration by the same name is being introduced. If the new
6222 /// declaration occurs in a local scope, previous declarations with
6223 /// linkage may still be considered previous declarations (C99
6224 /// 6.2.2p4-5, C++ [basic.link]p6).
6225 ///
6226 /// \param PrevDecl the previous declaration found by name
6227 /// lookup
6228 ///
6229 /// \param DC the context in which the new declaration is being
6230 /// declared.
6231 ///
6232 /// \returns true if PrevDecl is an out-of-scope previous declaration
6233 /// for a new delcaration with the same name.
6234 static bool
isOutOfScopePreviousDeclaration(NamedDecl * PrevDecl,DeclContext * DC,ASTContext & Context)6235 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
6236                                 ASTContext &Context) {
6237   if (!PrevDecl)
6238     return false;
6239 
6240   if (!PrevDecl->hasLinkage())
6241     return false;
6242 
6243   if (Context.getLangOpts().CPlusPlus) {
6244     // C++ [basic.link]p6:
6245     //   If there is a visible declaration of an entity with linkage
6246     //   having the same name and type, ignoring entities declared
6247     //   outside the innermost enclosing namespace scope, the block
6248     //   scope declaration declares that same entity and receives the
6249     //   linkage of the previous declaration.
6250     DeclContext *OuterContext = DC->getRedeclContext();
6251     if (!OuterContext->isFunctionOrMethod())
6252       // This rule only applies to block-scope declarations.
6253       return false;
6254 
6255     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
6256     if (PrevOuterContext->isRecord())
6257       // We found a member function: ignore it.
6258       return false;
6259 
6260     // Find the innermost enclosing namespace for the new and
6261     // previous declarations.
6262     OuterContext = OuterContext->getEnclosingNamespaceContext();
6263     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
6264 
6265     // The previous declaration is in a different namespace, so it
6266     // isn't the same function.
6267     if (!OuterContext->Equals(PrevOuterContext))
6268       return false;
6269   }
6270 
6271   return true;
6272 }
6273 
SetNestedNameSpecifier(Sema & S,DeclaratorDecl * DD,Declarator & D)6274 static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) {
6275   CXXScopeSpec &SS = D.getCXXScopeSpec();
6276   if (!SS.isSet()) return;
6277   DD->setQualifierInfo(SS.getWithLocInContext(S.Context));
6278 }
6279 
inferObjCARCLifetime(ValueDecl * decl)6280 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
6281   QualType type = decl->getType();
6282   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
6283   if (lifetime == Qualifiers::OCL_Autoreleasing) {
6284     // Various kinds of declaration aren't allowed to be __autoreleasing.
6285     unsigned kind = -1U;
6286     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6287       if (var->hasAttr<BlocksAttr>())
6288         kind = 0; // __block
6289       else if (!var->hasLocalStorage())
6290         kind = 1; // global
6291     } else if (isa<ObjCIvarDecl>(decl)) {
6292       kind = 3; // ivar
6293     } else if (isa<FieldDecl>(decl)) {
6294       kind = 2; // field
6295     }
6296 
6297     if (kind != -1U) {
6298       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
6299         << kind;
6300     }
6301   } else if (lifetime == Qualifiers::OCL_None) {
6302     // Try to infer lifetime.
6303     if (!type->isObjCLifetimeType())
6304       return false;
6305 
6306     lifetime = type->getObjCARCImplicitLifetime();
6307     type = Context.getLifetimeQualifiedType(type, lifetime);
6308     decl->setType(type);
6309   }
6310 
6311   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6312     // Thread-local variables cannot have lifetime.
6313     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
6314         var->getTLSKind()) {
6315       Diag(var->getLocation(), diag::err_arc_thread_ownership)
6316         << var->getType();
6317       return true;
6318     }
6319   }
6320 
6321   return false;
6322 }
6323 
deduceOpenCLAddressSpace(ValueDecl * Decl)6324 void Sema::deduceOpenCLAddressSpace(ValueDecl *Decl) {
6325   if (Decl->getType().hasAddressSpace())
6326     return;
6327   if (Decl->getType()->isDependentType())
6328     return;
6329   if (VarDecl *Var = dyn_cast<VarDecl>(Decl)) {
6330     QualType Type = Var->getType();
6331     if (Type->isSamplerT() || Type->isVoidType())
6332       return;
6333     LangAS ImplAS = LangAS::opencl_private;
6334     if ((getLangOpts().OpenCLCPlusPlus || getLangOpts().OpenCLVersion >= 200) &&
6335         Var->hasGlobalStorage())
6336       ImplAS = LangAS::opencl_global;
6337     // If the original type from a decayed type is an array type and that array
6338     // type has no address space yet, deduce it now.
6339     if (auto DT = dyn_cast<DecayedType>(Type)) {
6340       auto OrigTy = DT->getOriginalType();
6341       if (!OrigTy.hasAddressSpace() && OrigTy->isArrayType()) {
6342         // Add the address space to the original array type and then propagate
6343         // that to the element type through `getAsArrayType`.
6344         OrigTy = Context.getAddrSpaceQualType(OrigTy, ImplAS);
6345         OrigTy = QualType(Context.getAsArrayType(OrigTy), 0);
6346         // Re-generate the decayed type.
6347         Type = Context.getDecayedType(OrigTy);
6348       }
6349     }
6350     Type = Context.getAddrSpaceQualType(Type, ImplAS);
6351     // Apply any qualifiers (including address space) from the array type to
6352     // the element type. This implements C99 6.7.3p8: "If the specification of
6353     // an array type includes any type qualifiers, the element type is so
6354     // qualified, not the array type."
6355     if (Type->isArrayType())
6356       Type = QualType(Context.getAsArrayType(Type), 0);
6357     Decl->setType(Type);
6358   }
6359 }
6360 
checkAttributesAfterMerging(Sema & S,NamedDecl & ND)6361 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
6362   // Ensure that an auto decl is deduced otherwise the checks below might cache
6363   // the wrong linkage.
6364   assert(S.ParsingInitForAutoVars.count(&ND) == 0);
6365 
6366   // 'weak' only applies to declarations with external linkage.
6367   if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
6368     if (!ND.isExternallyVisible()) {
6369       S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
6370       ND.dropAttr<WeakAttr>();
6371     }
6372   }
6373   if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
6374     if (ND.isExternallyVisible()) {
6375       S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
6376       ND.dropAttr<WeakRefAttr>();
6377       ND.dropAttr<AliasAttr>();
6378     }
6379   }
6380 
6381   if (auto *VD = dyn_cast<VarDecl>(&ND)) {
6382     if (VD->hasInit()) {
6383       if (const auto *Attr = VD->getAttr<AliasAttr>()) {
6384         assert(VD->isThisDeclarationADefinition() &&
6385                !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
6386         S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
6387         VD->dropAttr<AliasAttr>();
6388       }
6389     }
6390   }
6391 
6392   // 'selectany' only applies to externally visible variable declarations.
6393   // It does not apply to functions.
6394   if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
6395     if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
6396       S.Diag(Attr->getLocation(),
6397              diag::err_attribute_selectany_non_extern_data);
6398       ND.dropAttr<SelectAnyAttr>();
6399     }
6400   }
6401 
6402   if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
6403     auto *VD = dyn_cast<VarDecl>(&ND);
6404     bool IsAnonymousNS = false;
6405     bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6406     if (VD) {
6407       const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext());
6408       while (NS && !IsAnonymousNS) {
6409         IsAnonymousNS = NS->isAnonymousNamespace();
6410         NS = dyn_cast<NamespaceDecl>(NS->getParent());
6411       }
6412     }
6413     // dll attributes require external linkage. Static locals may have external
6414     // linkage but still cannot be explicitly imported or exported.
6415     // In Microsoft mode, a variable defined in anonymous namespace must have
6416     // external linkage in order to be exported.
6417     bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft;
6418     if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) ||
6419         (!AnonNSInMicrosoftMode &&
6420          (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) {
6421       S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
6422         << &ND << Attr;
6423       ND.setInvalidDecl();
6424     }
6425   }
6426 
6427   // Virtual functions cannot be marked as 'notail'.
6428   if (auto *Attr = ND.getAttr<NotTailCalledAttr>())
6429     if (auto *MD = dyn_cast<CXXMethodDecl>(&ND))
6430       if (MD->isVirtual()) {
6431         S.Diag(ND.getLocation(),
6432                diag::err_invalid_attribute_on_virtual_function)
6433             << Attr;
6434         ND.dropAttr<NotTailCalledAttr>();
6435       }
6436 
6437   // Check the attributes on the function type, if any.
6438   if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) {
6439     // Don't declare this variable in the second operand of the for-statement;
6440     // GCC miscompiles that by ending its lifetime before evaluating the
6441     // third operand. See gcc.gnu.org/PR86769.
6442     AttributedTypeLoc ATL;
6443     for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc();
6444          (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6445          TL = ATL.getModifiedLoc()) {
6446       // The [[lifetimebound]] attribute can be applied to the implicit object
6447       // parameter of a non-static member function (other than a ctor or dtor)
6448       // by applying it to the function type.
6449       if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) {
6450         const auto *MD = dyn_cast<CXXMethodDecl>(FD);
6451         if (!MD || MD->isStatic()) {
6452           S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param)
6453               << !MD << A->getRange();
6454         } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) {
6455           S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor)
6456               << isa<CXXDestructorDecl>(MD) << A->getRange();
6457         }
6458       }
6459     }
6460   }
6461 }
6462 
checkDLLAttributeRedeclaration(Sema & S,NamedDecl * OldDecl,NamedDecl * NewDecl,bool IsSpecialization,bool IsDefinition)6463 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
6464                                            NamedDecl *NewDecl,
6465                                            bool IsSpecialization,
6466                                            bool IsDefinition) {
6467   if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
6468     return;
6469 
6470   bool IsTemplate = false;
6471   if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
6472     OldDecl = OldTD->getTemplatedDecl();
6473     IsTemplate = true;
6474     if (!IsSpecialization)
6475       IsDefinition = false;
6476   }
6477   if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
6478     NewDecl = NewTD->getTemplatedDecl();
6479     IsTemplate = true;
6480   }
6481 
6482   if (!OldDecl || !NewDecl)
6483     return;
6484 
6485   const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
6486   const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
6487   const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
6488   const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
6489 
6490   // dllimport and dllexport are inheritable attributes so we have to exclude
6491   // inherited attribute instances.
6492   bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
6493                     (NewExportAttr && !NewExportAttr->isInherited());
6494 
6495   // A redeclaration is not allowed to add a dllimport or dllexport attribute,
6496   // the only exception being explicit specializations.
6497   // Implicitly generated declarations are also excluded for now because there
6498   // is no other way to switch these to use dllimport or dllexport.
6499   bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
6500 
6501   if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
6502     // Allow with a warning for free functions and global variables.
6503     bool JustWarn = false;
6504     if (!OldDecl->isCXXClassMember()) {
6505       auto *VD = dyn_cast<VarDecl>(OldDecl);
6506       if (VD && !VD->getDescribedVarTemplate())
6507         JustWarn = true;
6508       auto *FD = dyn_cast<FunctionDecl>(OldDecl);
6509       if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
6510         JustWarn = true;
6511     }
6512 
6513     // We cannot change a declaration that's been used because IR has already
6514     // been emitted. Dllimported functions will still work though (modulo
6515     // address equality) as they can use the thunk.
6516     if (OldDecl->isUsed())
6517       if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
6518         JustWarn = false;
6519 
6520     unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
6521                                : diag::err_attribute_dll_redeclaration;
6522     S.Diag(NewDecl->getLocation(), DiagID)
6523         << NewDecl
6524         << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
6525     S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6526     if (!JustWarn) {
6527       NewDecl->setInvalidDecl();
6528       return;
6529     }
6530   }
6531 
6532   // A redeclaration is not allowed to drop a dllimport attribute, the only
6533   // exceptions being inline function definitions (except for function
6534   // templates), local extern declarations, qualified friend declarations or
6535   // special MSVC extension: in the last case, the declaration is treated as if
6536   // it were marked dllexport.
6537   bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
6538   bool IsMicrosoftABI  = S.Context.getTargetInfo().shouldDLLImportComdatSymbols();
6539   if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
6540     // Ignore static data because out-of-line definitions are diagnosed
6541     // separately.
6542     IsStaticDataMember = VD->isStaticDataMember();
6543     IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
6544                    VarDecl::DeclarationOnly;
6545   } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
6546     IsInline = FD->isInlined();
6547     IsQualifiedFriend = FD->getQualifier() &&
6548                         FD->getFriendObjectKind() == Decl::FOK_Declared;
6549   }
6550 
6551   if (OldImportAttr && !HasNewAttr &&
6552       (!IsInline || (IsMicrosoftABI && IsTemplate)) && !IsStaticDataMember &&
6553       !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
6554     if (IsMicrosoftABI && IsDefinition) {
6555       S.Diag(NewDecl->getLocation(),
6556              diag::warn_redeclaration_without_import_attribute)
6557           << NewDecl;
6558       S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6559       NewDecl->dropAttr<DLLImportAttr>();
6560       NewDecl->addAttr(
6561           DLLExportAttr::CreateImplicit(S.Context, NewImportAttr->getRange()));
6562     } else {
6563       S.Diag(NewDecl->getLocation(),
6564              diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6565           << NewDecl << OldImportAttr;
6566       S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6567       S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
6568       OldDecl->dropAttr<DLLImportAttr>();
6569       NewDecl->dropAttr<DLLImportAttr>();
6570     }
6571   } else if (IsInline && OldImportAttr && !IsMicrosoftABI) {
6572     // In MinGW, seeing a function declared inline drops the dllimport
6573     // attribute.
6574     OldDecl->dropAttr<DLLImportAttr>();
6575     NewDecl->dropAttr<DLLImportAttr>();
6576     S.Diag(NewDecl->getLocation(),
6577            diag::warn_dllimport_dropped_from_inline_function)
6578         << NewDecl << OldImportAttr;
6579   }
6580 
6581   // A specialization of a class template member function is processed here
6582   // since it's a redeclaration. If the parent class is dllexport, the
6583   // specialization inherits that attribute. This doesn't happen automatically
6584   // since the parent class isn't instantiated until later.
6585   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) {
6586     if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization &&
6587         !NewImportAttr && !NewExportAttr) {
6588       if (const DLLExportAttr *ParentExportAttr =
6589               MD->getParent()->getAttr<DLLExportAttr>()) {
6590         DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context);
6591         NewAttr->setInherited(true);
6592         NewDecl->addAttr(NewAttr);
6593       }
6594     }
6595   }
6596 }
6597 
6598 /// Given that we are within the definition of the given function,
6599 /// will that definition behave like C99's 'inline', where the
6600 /// definition is discarded except for optimization purposes?
isFunctionDefinitionDiscarded(Sema & S,FunctionDecl * FD)6601 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
6602   // Try to avoid calling GetGVALinkageForFunction.
6603 
6604   // All cases of this require the 'inline' keyword.
6605   if (!FD->isInlined()) return false;
6606 
6607   // This is only possible in C++ with the gnu_inline attribute.
6608   if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
6609     return false;
6610 
6611   // Okay, go ahead and call the relatively-more-expensive function.
6612   return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
6613 }
6614 
6615 /// Determine whether a variable is extern "C" prior to attaching
6616 /// an initializer. We can't just call isExternC() here, because that
6617 /// will also compute and cache whether the declaration is externally
6618 /// visible, which might change when we attach the initializer.
6619 ///
6620 /// This can only be used if the declaration is known to not be a
6621 /// redeclaration of an internal linkage declaration.
6622 ///
6623 /// For instance:
6624 ///
6625 ///   auto x = []{};
6626 ///
6627 /// Attaching the initializer here makes this declaration not externally
6628 /// visible, because its type has internal linkage.
6629 ///
6630 /// FIXME: This is a hack.
6631 template<typename T>
isIncompleteDeclExternC(Sema & S,const T * D)6632 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
6633   if (S.getLangOpts().CPlusPlus) {
6634     // In C++, the overloadable attribute negates the effects of extern "C".
6635     if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
6636       return false;
6637 
6638     // So do CUDA's host/device attributes.
6639     if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
6640                                  D->template hasAttr<CUDAHostAttr>()))
6641       return false;
6642   }
6643   return D->isExternC();
6644 }
6645 
shouldConsiderLinkage(const VarDecl * VD)6646 static bool shouldConsiderLinkage(const VarDecl *VD) {
6647   const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
6648   if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) ||
6649       isa<OMPDeclareMapperDecl>(DC))
6650     return VD->hasExternalStorage();
6651   if (DC->isFileContext())
6652     return true;
6653   if (DC->isRecord())
6654     return false;
6655   if (isa<RequiresExprBodyDecl>(DC))
6656     return false;
6657   llvm_unreachable("Unexpected context");
6658 }
6659 
shouldConsiderLinkage(const FunctionDecl * FD)6660 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
6661   const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
6662   if (DC->isFileContext() || DC->isFunctionOrMethod() ||
6663       isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC))
6664     return true;
6665   if (DC->isRecord())
6666     return false;
6667   llvm_unreachable("Unexpected context");
6668 }
6669 
hasParsedAttr(Scope * S,const Declarator & PD,ParsedAttr::Kind Kind)6670 static bool hasParsedAttr(Scope *S, const Declarator &PD,
6671                           ParsedAttr::Kind Kind) {
6672   // Check decl attributes on the DeclSpec.
6673   if (PD.getDeclSpec().getAttributes().hasAttribute(Kind))
6674     return true;
6675 
6676   // Walk the declarator structure, checking decl attributes that were in a type
6677   // position to the decl itself.
6678   for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
6679     if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind))
6680       return true;
6681   }
6682 
6683   // Finally, check attributes on the decl itself.
6684   return PD.getAttributes().hasAttribute(Kind);
6685 }
6686 
6687 /// Adjust the \c DeclContext for a function or variable that might be a
6688 /// function-local external declaration.
adjustContextForLocalExternDecl(DeclContext * & DC)6689 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
6690   if (!DC->isFunctionOrMethod())
6691     return false;
6692 
6693   // If this is a local extern function or variable declared within a function
6694   // template, don't add it into the enclosing namespace scope until it is
6695   // instantiated; it might have a dependent type right now.
6696   if (DC->isDependentContext())
6697     return true;
6698 
6699   // C++11 [basic.link]p7:
6700   //   When a block scope declaration of an entity with linkage is not found to
6701   //   refer to some other declaration, then that entity is a member of the
6702   //   innermost enclosing namespace.
6703   //
6704   // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
6705   // semantically-enclosing namespace, not a lexically-enclosing one.
6706   while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
6707     DC = DC->getParent();
6708   return true;
6709 }
6710 
6711 /// Returns true if given declaration has external C language linkage.
isDeclExternC(const Decl * D)6712 static bool isDeclExternC(const Decl *D) {
6713   if (const auto *FD = dyn_cast<FunctionDecl>(D))
6714     return FD->isExternC();
6715   if (const auto *VD = dyn_cast<VarDecl>(D))
6716     return VD->isExternC();
6717 
6718   llvm_unreachable("Unknown type of decl!");
6719 }
6720 /// Returns true if there hasn't been any invalid type diagnosed.
diagnoseOpenCLTypes(Scope * S,Sema & Se,Declarator & D,DeclContext * DC,QualType R)6721 static bool diagnoseOpenCLTypes(Scope *S, Sema &Se, Declarator &D,
6722                                 DeclContext *DC, QualType R) {
6723   // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
6724   // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
6725   // argument.
6726   if (R->isImageType() || R->isPipeType()) {
6727     Se.Diag(D.getIdentifierLoc(),
6728             diag::err_opencl_type_can_only_be_used_as_function_parameter)
6729         << R;
6730     D.setInvalidType();
6731     return false;
6732   }
6733 
6734   // OpenCL v1.2 s6.9.r:
6735   // The event type cannot be used to declare a program scope variable.
6736   // OpenCL v2.0 s6.9.q:
6737   // The clk_event_t and reserve_id_t types cannot be declared in program
6738   // scope.
6739   if (NULL == S->getParent()) {
6740     if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) {
6741       Se.Diag(D.getIdentifierLoc(),
6742               diag::err_invalid_type_for_program_scope_var)
6743           << R;
6744       D.setInvalidType();
6745       return false;
6746     }
6747   }
6748 
6749   // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
6750   QualType NR = R;
6751   while (NR->isPointerType()) {
6752     if (NR->isFunctionPointerType()) {
6753       Se.Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer);
6754       D.setInvalidType();
6755       return false;
6756     }
6757     NR = NR->getPointeeType();
6758   }
6759 
6760   if (!Se.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
6761     // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
6762     // half array type (unless the cl_khr_fp16 extension is enabled).
6763     if (Se.Context.getBaseElementType(R)->isHalfType()) {
6764       Se.Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
6765       D.setInvalidType();
6766       return false;
6767     }
6768   }
6769 
6770   // OpenCL v1.2 s6.9.r:
6771   // The event type cannot be used with the __local, __constant and __global
6772   // address space qualifiers.
6773   if (R->isEventT()) {
6774     if (R.getAddressSpace() != LangAS::opencl_private) {
6775       Se.Diag(D.getBeginLoc(), diag::err_event_t_addr_space_qual);
6776       D.setInvalidType();
6777       return false;
6778     }
6779   }
6780 
6781   // C++ for OpenCL does not allow the thread_local storage qualifier.
6782   // OpenCL C does not support thread_local either, and
6783   // also reject all other thread storage class specifiers.
6784   DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec();
6785   if (TSC != TSCS_unspecified) {
6786     bool IsCXX = Se.getLangOpts().OpenCLCPlusPlus;
6787     Se.Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6788             diag::err_opencl_unknown_type_specifier)
6789         << IsCXX << Se.getLangOpts().getOpenCLVersionTuple().getAsString()
6790         << DeclSpec::getSpecifierName(TSC) << 1;
6791     D.setInvalidType();
6792     return false;
6793   }
6794 
6795   if (R->isSamplerT()) {
6796     // OpenCL v1.2 s6.9.b p4:
6797     // The sampler type cannot be used with the __local and __global address
6798     // space qualifiers.
6799     if (R.getAddressSpace() == LangAS::opencl_local ||
6800         R.getAddressSpace() == LangAS::opencl_global) {
6801       Se.Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
6802       D.setInvalidType();
6803     }
6804 
6805     // OpenCL v1.2 s6.12.14.1:
6806     // A global sampler must be declared with either the constant address
6807     // space qualifier or with the const qualifier.
6808     if (DC->isTranslationUnit() &&
6809         !(R.getAddressSpace() == LangAS::opencl_constant ||
6810           R.isConstQualified())) {
6811       Se.Diag(D.getIdentifierLoc(), diag::err_opencl_nonconst_global_sampler);
6812       D.setInvalidType();
6813     }
6814     if (D.isInvalidType())
6815       return false;
6816   }
6817   return true;
6818 }
6819 
ActOnVariableDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists,bool & AddToScope,ArrayRef<BindingDecl * > Bindings)6820 NamedDecl *Sema::ActOnVariableDeclarator(
6821     Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
6822     LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
6823     bool &AddToScope, ArrayRef<BindingDecl *> Bindings) {
6824   QualType R = TInfo->getType();
6825   DeclarationName Name = GetNameForDeclarator(D).getName();
6826 
6827   IdentifierInfo *II = Name.getAsIdentifierInfo();
6828 
6829   if (D.isDecompositionDeclarator()) {
6830     // Take the name of the first declarator as our name for diagnostic
6831     // purposes.
6832     auto &Decomp = D.getDecompositionDeclarator();
6833     if (!Decomp.bindings().empty()) {
6834       II = Decomp.bindings()[0].Name;
6835       Name = II;
6836     }
6837   } else if (!II) {
6838     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name;
6839     return nullptr;
6840   }
6841 
6842 
6843   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
6844   StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
6845 
6846   // dllimport globals without explicit storage class are treated as extern. We
6847   // have to change the storage class this early to get the right DeclContext.
6848   if (SC == SC_None && !DC->isRecord() &&
6849       hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) &&
6850       !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport))
6851     SC = SC_Extern;
6852 
6853   DeclContext *OriginalDC = DC;
6854   bool IsLocalExternDecl = SC == SC_Extern &&
6855                            adjustContextForLocalExternDecl(DC);
6856 
6857   if (SCSpec == DeclSpec::SCS_mutable) {
6858     // mutable can only appear on non-static class members, so it's always
6859     // an error here
6860     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
6861     D.setInvalidType();
6862     SC = SC_None;
6863   }
6864 
6865   if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
6866       !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
6867                               D.getDeclSpec().getStorageClassSpecLoc())) {
6868     // In C++11, the 'register' storage class specifier is deprecated.
6869     // Suppress the warning in system macros, it's used in macros in some
6870     // popular C system headers, such as in glibc's htonl() macro.
6871     Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6872          getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
6873                                    : diag::warn_deprecated_register)
6874       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6875   }
6876 
6877   DiagnoseFunctionSpecifiers(D.getDeclSpec());
6878 
6879   if (!DC->isRecord() && S->getFnParent() == nullptr) {
6880     // C99 6.9p2: The storage-class specifiers auto and register shall not
6881     // appear in the declaration specifiers in an external declaration.
6882     // Global Register+Asm is a GNU extension we support.
6883     if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
6884       Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
6885       D.setInvalidType();
6886     }
6887   }
6888 
6889   // If this variable has a variable-modified type and an initializer, try to
6890   // fold to a constant-sized type. This is otherwise invalid.
6891   if (D.hasInitializer() && R->isVariablyModifiedType())
6892     tryToFixVariablyModifiedVarType(*this, TInfo, R, D.getIdentifierLoc(),
6893                                     /*DiagID=*/0);
6894 
6895   bool IsMemberSpecialization = false;
6896   bool IsVariableTemplateSpecialization = false;
6897   bool IsPartialSpecialization = false;
6898   bool IsVariableTemplate = false;
6899   VarDecl *NewVD = nullptr;
6900   VarTemplateDecl *NewTemplate = nullptr;
6901   TemplateParameterList *TemplateParams = nullptr;
6902   if (!getLangOpts().CPlusPlus) {
6903     NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(),
6904                             II, R, TInfo, SC);
6905 
6906     if (R->getContainedDeducedType())
6907       ParsingInitForAutoVars.insert(NewVD);
6908 
6909     if (D.isInvalidType())
6910       NewVD->setInvalidDecl();
6911 
6912     if (NewVD->getType().hasNonTrivialToPrimitiveDestructCUnion() &&
6913         NewVD->hasLocalStorage())
6914       checkNonTrivialCUnion(NewVD->getType(), NewVD->getLocation(),
6915                             NTCUC_AutoVar, NTCUK_Destruct);
6916   } else {
6917     bool Invalid = false;
6918 
6919     if (DC->isRecord() && !CurContext->isRecord()) {
6920       // This is an out-of-line definition of a static data member.
6921       switch (SC) {
6922       case SC_None:
6923         break;
6924       case SC_Static:
6925         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6926              diag::err_static_out_of_line)
6927           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6928         break;
6929       case SC_Auto:
6930       case SC_Register:
6931       case SC_Extern:
6932         // [dcl.stc] p2: The auto or register specifiers shall be applied only
6933         // to names of variables declared in a block or to function parameters.
6934         // [dcl.stc] p6: The extern specifier cannot be used in the declaration
6935         // of class members
6936 
6937         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6938              diag::err_storage_class_for_static_member)
6939           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6940         break;
6941       case SC_PrivateExtern:
6942         llvm_unreachable("C storage class in c++!");
6943       }
6944     }
6945 
6946     if (SC == SC_Static && CurContext->isRecord()) {
6947       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
6948         // Walk up the enclosing DeclContexts to check for any that are
6949         // incompatible with static data members.
6950         const DeclContext *FunctionOrMethod = nullptr;
6951         const CXXRecordDecl *AnonStruct = nullptr;
6952         for (DeclContext *Ctxt = DC; Ctxt; Ctxt = Ctxt->getParent()) {
6953           if (Ctxt->isFunctionOrMethod()) {
6954             FunctionOrMethod = Ctxt;
6955             break;
6956           }
6957           const CXXRecordDecl *ParentDecl = dyn_cast<CXXRecordDecl>(Ctxt);
6958           if (ParentDecl && !ParentDecl->getDeclName()) {
6959             AnonStruct = ParentDecl;
6960             break;
6961           }
6962         }
6963         if (FunctionOrMethod) {
6964           // C++ [class.static.data]p5: A local class shall not have static data
6965           // members.
6966           Diag(D.getIdentifierLoc(),
6967                diag::err_static_data_member_not_allowed_in_local_class)
6968             << Name << RD->getDeclName() << RD->getTagKind();
6969         } else if (AnonStruct) {
6970           // C++ [class.static.data]p4: Unnamed classes and classes contained
6971           // directly or indirectly within unnamed classes shall not contain
6972           // static data members.
6973           Diag(D.getIdentifierLoc(),
6974                diag::err_static_data_member_not_allowed_in_anon_struct)
6975             << Name << AnonStruct->getTagKind();
6976           Invalid = true;
6977         } else if (RD->isUnion()) {
6978           // C++98 [class.union]p1: If a union contains a static data member,
6979           // the program is ill-formed. C++11 drops this restriction.
6980           Diag(D.getIdentifierLoc(),
6981                getLangOpts().CPlusPlus11
6982                  ? diag::warn_cxx98_compat_static_data_member_in_union
6983                  : diag::ext_static_data_member_in_union) << Name;
6984         }
6985       }
6986     }
6987 
6988     // Match up the template parameter lists with the scope specifier, then
6989     // determine whether we have a template or a template specialization.
6990     bool InvalidScope = false;
6991     TemplateParams = MatchTemplateParametersToScopeSpecifier(
6992         D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
6993         D.getCXXScopeSpec(),
6994         D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
6995             ? D.getName().TemplateId
6996             : nullptr,
6997         TemplateParamLists,
6998         /*never a friend*/ false, IsMemberSpecialization, InvalidScope);
6999     Invalid |= InvalidScope;
7000 
7001     if (TemplateParams) {
7002       if (!TemplateParams->size() &&
7003           D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
7004         // There is an extraneous 'template<>' for this variable. Complain
7005         // about it, but allow the declaration of the variable.
7006         Diag(TemplateParams->getTemplateLoc(),
7007              diag::err_template_variable_noparams)
7008           << II
7009           << SourceRange(TemplateParams->getTemplateLoc(),
7010                          TemplateParams->getRAngleLoc());
7011         TemplateParams = nullptr;
7012       } else {
7013         // Check that we can declare a template here.
7014         if (CheckTemplateDeclScope(S, TemplateParams))
7015           return nullptr;
7016 
7017         if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
7018           // This is an explicit specialization or a partial specialization.
7019           IsVariableTemplateSpecialization = true;
7020           IsPartialSpecialization = TemplateParams->size() > 0;
7021         } else { // if (TemplateParams->size() > 0)
7022           // This is a template declaration.
7023           IsVariableTemplate = true;
7024 
7025           // Only C++1y supports variable templates (N3651).
7026           Diag(D.getIdentifierLoc(),
7027                getLangOpts().CPlusPlus14
7028                    ? diag::warn_cxx11_compat_variable_template
7029                    : diag::ext_variable_template);
7030         }
7031       }
7032     } else {
7033       // Check that we can declare a member specialization here.
7034       if (!TemplateParamLists.empty() && IsMemberSpecialization &&
7035           CheckTemplateDeclScope(S, TemplateParamLists.back()))
7036         return nullptr;
7037       assert((Invalid ||
7038               D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) &&
7039              "should have a 'template<>' for this decl");
7040     }
7041 
7042     if (IsVariableTemplateSpecialization) {
7043       SourceLocation TemplateKWLoc =
7044           TemplateParamLists.size() > 0
7045               ? TemplateParamLists[0]->getTemplateLoc()
7046               : SourceLocation();
7047       DeclResult Res = ActOnVarTemplateSpecialization(
7048           S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
7049           IsPartialSpecialization);
7050       if (Res.isInvalid())
7051         return nullptr;
7052       NewVD = cast<VarDecl>(Res.get());
7053       AddToScope = false;
7054     } else if (D.isDecompositionDeclarator()) {
7055       NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(),
7056                                         D.getIdentifierLoc(), R, TInfo, SC,
7057                                         Bindings);
7058     } else
7059       NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(),
7060                               D.getIdentifierLoc(), II, R, TInfo, SC);
7061 
7062     // If this is supposed to be a variable template, create it as such.
7063     if (IsVariableTemplate) {
7064       NewTemplate =
7065           VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
7066                                   TemplateParams, NewVD);
7067       NewVD->setDescribedVarTemplate(NewTemplate);
7068     }
7069 
7070     // If this decl has an auto type in need of deduction, make a note of the
7071     // Decl so we can diagnose uses of it in its own initializer.
7072     if (R->getContainedDeducedType())
7073       ParsingInitForAutoVars.insert(NewVD);
7074 
7075     if (D.isInvalidType() || Invalid) {
7076       NewVD->setInvalidDecl();
7077       if (NewTemplate)
7078         NewTemplate->setInvalidDecl();
7079     }
7080 
7081     SetNestedNameSpecifier(*this, NewVD, D);
7082 
7083     // If we have any template parameter lists that don't directly belong to
7084     // the variable (matching the scope specifier), store them.
7085     unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
7086     if (TemplateParamLists.size() > VDTemplateParamLists)
7087       NewVD->setTemplateParameterListsInfo(
7088           Context, TemplateParamLists.drop_back(VDTemplateParamLists));
7089   }
7090 
7091   if (D.getDeclSpec().isInlineSpecified()) {
7092     if (!getLangOpts().CPlusPlus) {
7093       Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
7094           << 0;
7095     } else if (CurContext->isFunctionOrMethod()) {
7096       // 'inline' is not allowed on block scope variable declaration.
7097       Diag(D.getDeclSpec().getInlineSpecLoc(),
7098            diag::err_inline_declaration_block_scope) << Name
7099         << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7100     } else {
7101       Diag(D.getDeclSpec().getInlineSpecLoc(),
7102            getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable
7103                                      : diag::ext_inline_variable);
7104       NewVD->setInlineSpecified();
7105     }
7106   }
7107 
7108   // Set the lexical context. If the declarator has a C++ scope specifier, the
7109   // lexical context will be different from the semantic context.
7110   NewVD->setLexicalDeclContext(CurContext);
7111   if (NewTemplate)
7112     NewTemplate->setLexicalDeclContext(CurContext);
7113 
7114   if (IsLocalExternDecl) {
7115     if (D.isDecompositionDeclarator())
7116       for (auto *B : Bindings)
7117         B->setLocalExternDecl();
7118     else
7119       NewVD->setLocalExternDecl();
7120   }
7121 
7122   bool EmitTLSUnsupportedError = false;
7123   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
7124     // C++11 [dcl.stc]p4:
7125     //   When thread_local is applied to a variable of block scope the
7126     //   storage-class-specifier static is implied if it does not appear
7127     //   explicitly.
7128     // Core issue: 'static' is not implied if the variable is declared
7129     //   'extern'.
7130     if (NewVD->hasLocalStorage() &&
7131         (SCSpec != DeclSpec::SCS_unspecified ||
7132          TSCS != DeclSpec::TSCS_thread_local ||
7133          !DC->isFunctionOrMethod()))
7134       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7135            diag::err_thread_non_global)
7136         << DeclSpec::getSpecifierName(TSCS);
7137     else if (!Context.getTargetInfo().isTLSSupported()) {
7138       if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice ||
7139           getLangOpts().SYCLIsDevice) {
7140         // Postpone error emission until we've collected attributes required to
7141         // figure out whether it's a host or device variable and whether the
7142         // error should be ignored.
7143         EmitTLSUnsupportedError = true;
7144         // We still need to mark the variable as TLS so it shows up in AST with
7145         // proper storage class for other tools to use even if we're not going
7146         // to emit any code for it.
7147         NewVD->setTSCSpec(TSCS);
7148       } else
7149         Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7150              diag::err_thread_unsupported);
7151     } else
7152       NewVD->setTSCSpec(TSCS);
7153   }
7154 
7155   switch (D.getDeclSpec().getConstexprSpecifier()) {
7156   case ConstexprSpecKind::Unspecified:
7157     break;
7158 
7159   case ConstexprSpecKind::Consteval:
7160     Diag(D.getDeclSpec().getConstexprSpecLoc(),
7161          diag::err_constexpr_wrong_decl_kind)
7162         << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
7163     LLVM_FALLTHROUGH;
7164 
7165   case ConstexprSpecKind::Constexpr:
7166     NewVD->setConstexpr(true);
7167     MaybeAddCUDAConstantAttr(NewVD);
7168     // C++1z [dcl.spec.constexpr]p1:
7169     //   A static data member declared with the constexpr specifier is
7170     //   implicitly an inline variable.
7171     if (NewVD->isStaticDataMember() &&
7172         (getLangOpts().CPlusPlus17 ||
7173          Context.getTargetInfo().getCXXABI().isMicrosoft()))
7174       NewVD->setImplicitlyInline();
7175     break;
7176 
7177   case ConstexprSpecKind::Constinit:
7178     if (!NewVD->hasGlobalStorage())
7179       Diag(D.getDeclSpec().getConstexprSpecLoc(),
7180            diag::err_constinit_local_variable);
7181     else
7182       NewVD->addAttr(ConstInitAttr::Create(
7183           Context, D.getDeclSpec().getConstexprSpecLoc(),
7184           AttributeCommonInfo::AS_Keyword, ConstInitAttr::Keyword_constinit));
7185     break;
7186   }
7187 
7188   // C99 6.7.4p3
7189   //   An inline definition of a function with external linkage shall
7190   //   not contain a definition of a modifiable object with static or
7191   //   thread storage duration...
7192   // We only apply this when the function is required to be defined
7193   // elsewhere, i.e. when the function is not 'extern inline'.  Note
7194   // that a local variable with thread storage duration still has to
7195   // be marked 'static'.  Also note that it's possible to get these
7196   // semantics in C++ using __attribute__((gnu_inline)).
7197   if (SC == SC_Static && S->getFnParent() != nullptr &&
7198       !NewVD->getType().isConstQualified()) {
7199     FunctionDecl *CurFD = getCurFunctionDecl();
7200     if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
7201       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7202            diag::warn_static_local_in_extern_inline);
7203       MaybeSuggestAddingStaticToDecl(CurFD);
7204     }
7205   }
7206 
7207   if (D.getDeclSpec().isModulePrivateSpecified()) {
7208     if (IsVariableTemplateSpecialization)
7209       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7210           << (IsPartialSpecialization ? 1 : 0)
7211           << FixItHint::CreateRemoval(
7212                  D.getDeclSpec().getModulePrivateSpecLoc());
7213     else if (IsMemberSpecialization)
7214       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7215         << 2
7216         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7217     else if (NewVD->hasLocalStorage())
7218       Diag(NewVD->getLocation(), diag::err_module_private_local)
7219           << 0 << NewVD
7220           << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7221           << FixItHint::CreateRemoval(
7222                  D.getDeclSpec().getModulePrivateSpecLoc());
7223     else {
7224       NewVD->setModulePrivate();
7225       if (NewTemplate)
7226         NewTemplate->setModulePrivate();
7227       for (auto *B : Bindings)
7228         B->setModulePrivate();
7229     }
7230   }
7231 
7232   if (getLangOpts().OpenCL) {
7233 
7234     deduceOpenCLAddressSpace(NewVD);
7235 
7236     diagnoseOpenCLTypes(S, *this, D, DC, NewVD->getType());
7237   }
7238 
7239   // Handle attributes prior to checking for duplicates in MergeVarDecl
7240   ProcessDeclAttributes(S, NewVD, D);
7241 
7242   if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice ||
7243       getLangOpts().SYCLIsDevice) {
7244     if (EmitTLSUnsupportedError &&
7245         ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) ||
7246          (getLangOpts().OpenMPIsDevice &&
7247           OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD))))
7248       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7249            diag::err_thread_unsupported);
7250 
7251     if (EmitTLSUnsupportedError &&
7252         (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)))
7253       targetDiag(D.getIdentifierLoc(), diag::err_thread_unsupported);
7254     // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
7255     // storage [duration]."
7256     if (SC == SC_None && S->getFnParent() != nullptr &&
7257         (NewVD->hasAttr<CUDASharedAttr>() ||
7258          NewVD->hasAttr<CUDAConstantAttr>())) {
7259       NewVD->setStorageClass(SC_Static);
7260     }
7261   }
7262 
7263   // Ensure that dllimport globals without explicit storage class are treated as
7264   // extern. The storage class is set above using parsed attributes. Now we can
7265   // check the VarDecl itself.
7266   assert(!NewVD->hasAttr<DLLImportAttr>() ||
7267          NewVD->getAttr<DLLImportAttr>()->isInherited() ||
7268          NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
7269 
7270   // In auto-retain/release, infer strong retension for variables of
7271   // retainable type.
7272   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
7273     NewVD->setInvalidDecl();
7274 
7275   // Handle GNU asm-label extension (encoded as an attribute).
7276   if (Expr *E = (Expr*)D.getAsmLabel()) {
7277     // The parser guarantees this is a string.
7278     StringLiteral *SE = cast<StringLiteral>(E);
7279     StringRef Label = SE->getString();
7280     if (S->getFnParent() != nullptr) {
7281       switch (SC) {
7282       case SC_None:
7283       case SC_Auto:
7284         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
7285         break;
7286       case SC_Register:
7287         // Local Named register
7288         if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
7289             DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
7290           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
7291         break;
7292       case SC_Static:
7293       case SC_Extern:
7294       case SC_PrivateExtern:
7295         break;
7296       }
7297     } else if (SC == SC_Register) {
7298       // Global Named register
7299       if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
7300         const auto &TI = Context.getTargetInfo();
7301         bool HasSizeMismatch;
7302 
7303         if (!TI.isValidGCCRegisterName(Label))
7304           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
7305         else if (!TI.validateGlobalRegisterVariable(Label,
7306                                                     Context.getTypeSize(R),
7307                                                     HasSizeMismatch))
7308           Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
7309         else if (HasSizeMismatch)
7310           Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
7311       }
7312 
7313       if (!R->isIntegralType(Context) && !R->isPointerType()) {
7314         Diag(D.getBeginLoc(), diag::err_asm_bad_register_type);
7315         NewVD->setInvalidDecl(true);
7316       }
7317     }
7318 
7319     NewVD->addAttr(AsmLabelAttr::Create(Context, Label,
7320                                         /*IsLiteralLabel=*/true,
7321                                         SE->getStrTokenLoc(0)));
7322   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
7323     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
7324       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
7325     if (I != ExtnameUndeclaredIdentifiers.end()) {
7326       if (isDeclExternC(NewVD)) {
7327         NewVD->addAttr(I->second);
7328         ExtnameUndeclaredIdentifiers.erase(I);
7329       } else
7330         Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
7331             << /*Variable*/1 << NewVD;
7332     }
7333   }
7334 
7335   // Find the shadowed declaration before filtering for scope.
7336   NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
7337                                 ? getShadowedDeclaration(NewVD, Previous)
7338                                 : nullptr;
7339 
7340   // Don't consider existing declarations that are in a different
7341   // scope and are out-of-semantic-context declarations (if the new
7342   // declaration has linkage).
7343   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
7344                        D.getCXXScopeSpec().isNotEmpty() ||
7345                        IsMemberSpecialization ||
7346                        IsVariableTemplateSpecialization);
7347 
7348   // Check whether the previous declaration is in the same block scope. This
7349   // affects whether we merge types with it, per C++11 [dcl.array]p3.
7350   if (getLangOpts().CPlusPlus &&
7351       NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
7352     NewVD->setPreviousDeclInSameBlockScope(
7353         Previous.isSingleResult() && !Previous.isShadowed() &&
7354         isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
7355 
7356   if (!getLangOpts().CPlusPlus) {
7357     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
7358   } else {
7359     // If this is an explicit specialization of a static data member, check it.
7360     if (IsMemberSpecialization && !NewVD->isInvalidDecl() &&
7361         CheckMemberSpecialization(NewVD, Previous))
7362       NewVD->setInvalidDecl();
7363 
7364     // Merge the decl with the existing one if appropriate.
7365     if (!Previous.empty()) {
7366       if (Previous.isSingleResult() &&
7367           isa<FieldDecl>(Previous.getFoundDecl()) &&
7368           D.getCXXScopeSpec().isSet()) {
7369         // The user tried to define a non-static data member
7370         // out-of-line (C++ [dcl.meaning]p1).
7371         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
7372           << D.getCXXScopeSpec().getRange();
7373         Previous.clear();
7374         NewVD->setInvalidDecl();
7375       }
7376     } else if (D.getCXXScopeSpec().isSet()) {
7377       // No previous declaration in the qualifying scope.
7378       Diag(D.getIdentifierLoc(), diag::err_no_member)
7379         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
7380         << D.getCXXScopeSpec().getRange();
7381       NewVD->setInvalidDecl();
7382     }
7383 
7384     if (!IsVariableTemplateSpecialization)
7385       D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
7386 
7387     if (NewTemplate) {
7388       VarTemplateDecl *PrevVarTemplate =
7389           NewVD->getPreviousDecl()
7390               ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
7391               : nullptr;
7392 
7393       // Check the template parameter list of this declaration, possibly
7394       // merging in the template parameter list from the previous variable
7395       // template declaration.
7396       if (CheckTemplateParameterList(
7397               TemplateParams,
7398               PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
7399                               : nullptr,
7400               (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
7401                DC->isDependentContext())
7402                   ? TPC_ClassTemplateMember
7403                   : TPC_VarTemplate))
7404         NewVD->setInvalidDecl();
7405 
7406       // If we are providing an explicit specialization of a static variable
7407       // template, make a note of that.
7408       if (PrevVarTemplate &&
7409           PrevVarTemplate->getInstantiatedFromMemberTemplate())
7410         PrevVarTemplate->setMemberSpecialization();
7411     }
7412   }
7413 
7414   // Diagnose shadowed variables iff this isn't a redeclaration.
7415   if (ShadowedDecl && !D.isRedeclaration())
7416     CheckShadow(NewVD, ShadowedDecl, Previous);
7417 
7418   ProcessPragmaWeak(S, NewVD);
7419 
7420   // If this is the first declaration of an extern C variable, update
7421   // the map of such variables.
7422   if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
7423       isIncompleteDeclExternC(*this, NewVD))
7424     RegisterLocallyScopedExternCDecl(NewVD, S);
7425 
7426   if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
7427     MangleNumberingContext *MCtx;
7428     Decl *ManglingContextDecl;
7429     std::tie(MCtx, ManglingContextDecl) =
7430         getCurrentMangleNumberContext(NewVD->getDeclContext());
7431     if (MCtx) {
7432       Context.setManglingNumber(
7433           NewVD, MCtx->getManglingNumber(
7434                      NewVD, getMSManglingNumber(getLangOpts(), S)));
7435       Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
7436     }
7437   }
7438 
7439   // Special handling of variable named 'main'.
7440   if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") &&
7441       NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7442       !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
7443 
7444     // C++ [basic.start.main]p3
7445     // A program that declares a variable main at global scope is ill-formed.
7446     if (getLangOpts().CPlusPlus)
7447       Diag(D.getBeginLoc(), diag::err_main_global_variable);
7448 
7449     // In C, and external-linkage variable named main results in undefined
7450     // behavior.
7451     else if (NewVD->hasExternalFormalLinkage())
7452       Diag(D.getBeginLoc(), diag::warn_main_redefined);
7453   }
7454 
7455   if (D.isRedeclaration() && !Previous.empty()) {
7456     NamedDecl *Prev = Previous.getRepresentativeDecl();
7457     checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization,
7458                                    D.isFunctionDefinition());
7459   }
7460 
7461   if (NewTemplate) {
7462     if (NewVD->isInvalidDecl())
7463       NewTemplate->setInvalidDecl();
7464     ActOnDocumentableDecl(NewTemplate);
7465     return NewTemplate;
7466   }
7467 
7468   if (IsMemberSpecialization && !NewVD->isInvalidDecl())
7469     CompleteMemberSpecialization(NewVD, Previous);
7470 
7471   return NewVD;
7472 }
7473 
7474 /// Enum describing the %select options in diag::warn_decl_shadow.
7475 enum ShadowedDeclKind {
7476   SDK_Local,
7477   SDK_Global,
7478   SDK_StaticMember,
7479   SDK_Field,
7480   SDK_Typedef,
7481   SDK_Using
7482 };
7483 
7484 /// Determine what kind of declaration we're shadowing.
computeShadowedDeclKind(const NamedDecl * ShadowedDecl,const DeclContext * OldDC)7485 static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl,
7486                                                 const DeclContext *OldDC) {
7487   if (isa<TypeAliasDecl>(ShadowedDecl))
7488     return SDK_Using;
7489   else if (isa<TypedefDecl>(ShadowedDecl))
7490     return SDK_Typedef;
7491   else if (isa<RecordDecl>(OldDC))
7492     return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;
7493 
7494   return OldDC->isFileContext() ? SDK_Global : SDK_Local;
7495 }
7496 
7497 /// Return the location of the capture if the given lambda captures the given
7498 /// variable \p VD, or an invalid source location otherwise.
getCaptureLocation(const LambdaScopeInfo * LSI,const VarDecl * VD)7499 static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI,
7500                                          const VarDecl *VD) {
7501   for (const Capture &Capture : LSI->Captures) {
7502     if (Capture.isVariableCapture() && Capture.getVariable() == VD)
7503       return Capture.getLocation();
7504   }
7505   return SourceLocation();
7506 }
7507 
shouldWarnIfShadowedDecl(const DiagnosticsEngine & Diags,const LookupResult & R)7508 static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags,
7509                                      const LookupResult &R) {
7510   // Only diagnose if we're shadowing an unambiguous field or variable.
7511   if (R.getResultKind() != LookupResult::Found)
7512     return false;
7513 
7514   // Return false if warning is ignored.
7515   return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc());
7516 }
7517 
7518 /// Return the declaration shadowed by the given variable \p D, or null
7519 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
getShadowedDeclaration(const VarDecl * D,const LookupResult & R)7520 NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D,
7521                                         const LookupResult &R) {
7522   if (!shouldWarnIfShadowedDecl(Diags, R))
7523     return nullptr;
7524 
7525   // Don't diagnose declarations at file scope.
7526   if (D->hasGlobalStorage())
7527     return nullptr;
7528 
7529   NamedDecl *ShadowedDecl = R.getFoundDecl();
7530   return isa<VarDecl>(ShadowedDecl) || isa<FieldDecl>(ShadowedDecl)
7531              ? ShadowedDecl
7532              : nullptr;
7533 }
7534 
7535 /// Return the declaration shadowed by the given typedef \p D, or null
7536 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
getShadowedDeclaration(const TypedefNameDecl * D,const LookupResult & R)7537 NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D,
7538                                         const LookupResult &R) {
7539   // Don't warn if typedef declaration is part of a class
7540   if (D->getDeclContext()->isRecord())
7541     return nullptr;
7542 
7543   if (!shouldWarnIfShadowedDecl(Diags, R))
7544     return nullptr;
7545 
7546   NamedDecl *ShadowedDecl = R.getFoundDecl();
7547   return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr;
7548 }
7549 
7550 /// Diagnose variable or built-in function shadowing.  Implements
7551 /// -Wshadow.
7552 ///
7553 /// This method is called whenever a VarDecl is added to a "useful"
7554 /// scope.
7555 ///
7556 /// \param ShadowedDecl the declaration that is shadowed by the given variable
7557 /// \param R the lookup of the name
7558 ///
CheckShadow(NamedDecl * D,NamedDecl * ShadowedDecl,const LookupResult & R)7559 void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
7560                        const LookupResult &R) {
7561   DeclContext *NewDC = D->getDeclContext();
7562 
7563   if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
7564     // Fields are not shadowed by variables in C++ static methods.
7565     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
7566       if (MD->isStatic())
7567         return;
7568 
7569     // Fields shadowed by constructor parameters are a special case. Usually
7570     // the constructor initializes the field with the parameter.
7571     if (isa<CXXConstructorDecl>(NewDC))
7572       if (const auto PVD = dyn_cast<ParmVarDecl>(D)) {
7573         // Remember that this was shadowed so we can either warn about its
7574         // modification or its existence depending on warning settings.
7575         ShadowingDecls.insert({PVD->getCanonicalDecl(), FD});
7576         return;
7577       }
7578   }
7579 
7580   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
7581     if (shadowedVar->isExternC()) {
7582       // For shadowing external vars, make sure that we point to the global
7583       // declaration, not a locally scoped extern declaration.
7584       for (auto I : shadowedVar->redecls())
7585         if (I->isFileVarDecl()) {
7586           ShadowedDecl = I;
7587           break;
7588         }
7589     }
7590 
7591   DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext();
7592 
7593   unsigned WarningDiag = diag::warn_decl_shadow;
7594   SourceLocation CaptureLoc;
7595   if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC &&
7596       isa<CXXMethodDecl>(NewDC)) {
7597     if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) {
7598       if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) {
7599         if (RD->getLambdaCaptureDefault() == LCD_None) {
7600           // Try to avoid warnings for lambdas with an explicit capture list.
7601           const auto *LSI = cast<LambdaScopeInfo>(getCurFunction());
7602           // Warn only when the lambda captures the shadowed decl explicitly.
7603           CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl));
7604           if (CaptureLoc.isInvalid())
7605             WarningDiag = diag::warn_decl_shadow_uncaptured_local;
7606         } else {
7607           // Remember that this was shadowed so we can avoid the warning if the
7608           // shadowed decl isn't captured and the warning settings allow it.
7609           cast<LambdaScopeInfo>(getCurFunction())
7610               ->ShadowingDecls.push_back(
7611                   {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)});
7612           return;
7613         }
7614       }
7615 
7616       if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) {
7617         // A variable can't shadow a local variable in an enclosing scope, if
7618         // they are separated by a non-capturing declaration context.
7619         for (DeclContext *ParentDC = NewDC;
7620              ParentDC && !ParentDC->Equals(OldDC);
7621              ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) {
7622           // Only block literals, captured statements, and lambda expressions
7623           // can capture; other scopes don't.
7624           if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) &&
7625               !isLambdaCallOperator(ParentDC)) {
7626             return;
7627           }
7628         }
7629       }
7630     }
7631   }
7632 
7633   // Only warn about certain kinds of shadowing for class members.
7634   if (NewDC && NewDC->isRecord()) {
7635     // In particular, don't warn about shadowing non-class members.
7636     if (!OldDC->isRecord())
7637       return;
7638 
7639     // TODO: should we warn about static data members shadowing
7640     // static data members from base classes?
7641 
7642     // TODO: don't diagnose for inaccessible shadowed members.
7643     // This is hard to do perfectly because we might friend the
7644     // shadowing context, but that's just a false negative.
7645   }
7646 
7647 
7648   DeclarationName Name = R.getLookupName();
7649 
7650   // Emit warning and note.
7651   if (getSourceManager().isInSystemMacro(R.getNameLoc()))
7652     return;
7653   ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
7654   Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC;
7655   if (!CaptureLoc.isInvalid())
7656     Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7657         << Name << /*explicitly*/ 1;
7658   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7659 }
7660 
7661 /// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
7662 /// when these variables are captured by the lambda.
DiagnoseShadowingLambdaDecls(const LambdaScopeInfo * LSI)7663 void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) {
7664   for (const auto &Shadow : LSI->ShadowingDecls) {
7665     const VarDecl *ShadowedDecl = Shadow.ShadowedDecl;
7666     // Try to avoid the warning when the shadowed decl isn't captured.
7667     SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl);
7668     const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7669     Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid()
7670                                        ? diag::warn_decl_shadow_uncaptured_local
7671                                        : diag::warn_decl_shadow)
7672         << Shadow.VD->getDeclName()
7673         << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
7674     if (!CaptureLoc.isInvalid())
7675       Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7676           << Shadow.VD->getDeclName() << /*explicitly*/ 0;
7677     Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7678   }
7679 }
7680 
7681 /// Check -Wshadow without the advantage of a previous lookup.
CheckShadow(Scope * S,VarDecl * D)7682 void Sema::CheckShadow(Scope *S, VarDecl *D) {
7683   if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
7684     return;
7685 
7686   LookupResult R(*this, D->getDeclName(), D->getLocation(),
7687                  Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
7688   LookupName(R, S);
7689   if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R))
7690     CheckShadow(D, ShadowedDecl, R);
7691 }
7692 
7693 /// Check if 'E', which is an expression that is about to be modified, refers
7694 /// to a constructor parameter that shadows a field.
CheckShadowingDeclModification(Expr * E,SourceLocation Loc)7695 void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) {
7696   // Quickly ignore expressions that can't be shadowing ctor parameters.
7697   if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
7698     return;
7699   E = E->IgnoreParenImpCasts();
7700   auto *DRE = dyn_cast<DeclRefExpr>(E);
7701   if (!DRE)
7702     return;
7703   const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
7704   auto I = ShadowingDecls.find(D);
7705   if (I == ShadowingDecls.end())
7706     return;
7707   const NamedDecl *ShadowedDecl = I->second;
7708   const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7709   Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
7710   Diag(D->getLocation(), diag::note_var_declared_here) << D;
7711   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7712 
7713   // Avoid issuing multiple warnings about the same decl.
7714   ShadowingDecls.erase(I);
7715 }
7716 
7717 /// Check for conflict between this global or extern "C" declaration and
7718 /// previous global or extern "C" declarations. This is only used in C++.
7719 template<typename T>
checkGlobalOrExternCConflict(Sema & S,const T * ND,bool IsGlobal,LookupResult & Previous)7720 static bool checkGlobalOrExternCConflict(
7721     Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
7722   assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
7723   NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
7724 
7725   if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
7726     // The common case: this global doesn't conflict with any extern "C"
7727     // declaration.
7728     return false;
7729   }
7730 
7731   if (Prev) {
7732     if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
7733       // Both the old and new declarations have C language linkage. This is a
7734       // redeclaration.
7735       Previous.clear();
7736       Previous.addDecl(Prev);
7737       return true;
7738     }
7739 
7740     // This is a global, non-extern "C" declaration, and there is a previous
7741     // non-global extern "C" declaration. Diagnose if this is a variable
7742     // declaration.
7743     if (!isa<VarDecl>(ND))
7744       return false;
7745   } else {
7746     // The declaration is extern "C". Check for any declaration in the
7747     // translation unit which might conflict.
7748     if (IsGlobal) {
7749       // We have already performed the lookup into the translation unit.
7750       IsGlobal = false;
7751       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7752            I != E; ++I) {
7753         if (isa<VarDecl>(*I)) {
7754           Prev = *I;
7755           break;
7756         }
7757       }
7758     } else {
7759       DeclContext::lookup_result R =
7760           S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
7761       for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
7762            I != E; ++I) {
7763         if (isa<VarDecl>(*I)) {
7764           Prev = *I;
7765           break;
7766         }
7767         // FIXME: If we have any other entity with this name in global scope,
7768         // the declaration is ill-formed, but that is a defect: it breaks the
7769         // 'stat' hack, for instance. Only variables can have mangled name
7770         // clashes with extern "C" declarations, so only they deserve a
7771         // diagnostic.
7772       }
7773     }
7774 
7775     if (!Prev)
7776       return false;
7777   }
7778 
7779   // Use the first declaration's location to ensure we point at something which
7780   // is lexically inside an extern "C" linkage-spec.
7781   assert(Prev && "should have found a previous declaration to diagnose");
7782   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
7783     Prev = FD->getFirstDecl();
7784   else
7785     Prev = cast<VarDecl>(Prev)->getFirstDecl();
7786 
7787   S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
7788     << IsGlobal << ND;
7789   S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
7790     << IsGlobal;
7791   return false;
7792 }
7793 
7794 /// Apply special rules for handling extern "C" declarations. Returns \c true
7795 /// if we have found that this is a redeclaration of some prior entity.
7796 ///
7797 /// Per C++ [dcl.link]p6:
7798 ///   Two declarations [for a function or variable] with C language linkage
7799 ///   with the same name that appear in different scopes refer to the same
7800 ///   [entity]. An entity with C language linkage shall not be declared with
7801 ///   the same name as an entity in global scope.
7802 template<typename T>
checkForConflictWithNonVisibleExternC(Sema & S,const T * ND,LookupResult & Previous)7803 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
7804                                                   LookupResult &Previous) {
7805   if (!S.getLangOpts().CPlusPlus) {
7806     // In C, when declaring a global variable, look for a corresponding 'extern'
7807     // variable declared in function scope. We don't need this in C++, because
7808     // we find local extern decls in the surrounding file-scope DeclContext.
7809     if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7810       if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
7811         Previous.clear();
7812         Previous.addDecl(Prev);
7813         return true;
7814       }
7815     }
7816     return false;
7817   }
7818 
7819   // A declaration in the translation unit can conflict with an extern "C"
7820   // declaration.
7821   if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
7822     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
7823 
7824   // An extern "C" declaration can conflict with a declaration in the
7825   // translation unit or can be a redeclaration of an extern "C" declaration
7826   // in another scope.
7827   if (isIncompleteDeclExternC(S,ND))
7828     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
7829 
7830   // Neither global nor extern "C": nothing to do.
7831   return false;
7832 }
7833 
CheckVariableDeclarationType(VarDecl * NewVD)7834 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
7835   // If the decl is already known invalid, don't check it.
7836   if (NewVD->isInvalidDecl())
7837     return;
7838 
7839   QualType T = NewVD->getType();
7840 
7841   // Defer checking an 'auto' type until its initializer is attached.
7842   if (T->isUndeducedType())
7843     return;
7844 
7845   if (NewVD->hasAttrs())
7846     CheckAlignasUnderalignment(NewVD);
7847 
7848   if (T->isObjCObjectType()) {
7849     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
7850       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
7851     T = Context.getObjCObjectPointerType(T);
7852     NewVD->setType(T);
7853   }
7854 
7855   // Emit an error if an address space was applied to decl with local storage.
7856   // This includes arrays of objects with address space qualifiers, but not
7857   // automatic variables that point to other address spaces.
7858   // ISO/IEC TR 18037 S5.1.2
7859   if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() &&
7860       T.getAddressSpace() != LangAS::Default) {
7861     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0;
7862     NewVD->setInvalidDecl();
7863     return;
7864   }
7865 
7866   // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
7867   // scope.
7868   if (getLangOpts().OpenCLVersion == 120 &&
7869       !getOpenCLOptions().isEnabled("cl_clang_storage_class_specifiers") &&
7870       NewVD->isStaticLocal()) {
7871     Diag(NewVD->getLocation(), diag::err_static_function_scope);
7872     NewVD->setInvalidDecl();
7873     return;
7874   }
7875 
7876   if (getLangOpts().OpenCL) {
7877     // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
7878     if (NewVD->hasAttr<BlocksAttr>()) {
7879       Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
7880       return;
7881     }
7882 
7883     if (T->isBlockPointerType()) {
7884       // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
7885       // can't use 'extern' storage class.
7886       if (!T.isConstQualified()) {
7887         Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
7888             << 0 /*const*/;
7889         NewVD->setInvalidDecl();
7890         return;
7891       }
7892       if (NewVD->hasExternalStorage()) {
7893         Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
7894         NewVD->setInvalidDecl();
7895         return;
7896       }
7897     }
7898     // OpenCL C v1.2 s6.5 - All program scope variables must be declared in the
7899     // __constant address space.
7900     // OpenCL C v2.0 s6.5.1 - Variables defined at program scope and static
7901     // variables inside a function can also be declared in the global
7902     // address space.
7903     // C++ for OpenCL inherits rule from OpenCL C v2.0.
7904     // FIXME: Adding local AS in C++ for OpenCL might make sense.
7905     if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
7906         NewVD->hasExternalStorage()) {
7907       if (!T->isSamplerT() &&
7908           !T->isDependentType() &&
7909           !(T.getAddressSpace() == LangAS::opencl_constant ||
7910             (T.getAddressSpace() == LangAS::opencl_global &&
7911              (getLangOpts().OpenCLVersion == 200 ||
7912               getLangOpts().OpenCLCPlusPlus)))) {
7913         int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
7914         if (getLangOpts().OpenCLVersion == 200 || getLangOpts().OpenCLCPlusPlus)
7915           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7916               << Scope << "global or constant";
7917         else
7918           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7919               << Scope << "constant";
7920         NewVD->setInvalidDecl();
7921         return;
7922       }
7923     } else {
7924       if (T.getAddressSpace() == LangAS::opencl_global) {
7925         Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7926             << 1 /*is any function*/ << "global";
7927         NewVD->setInvalidDecl();
7928         return;
7929       }
7930       if (T.getAddressSpace() == LangAS::opencl_constant ||
7931           T.getAddressSpace() == LangAS::opencl_local) {
7932         FunctionDecl *FD = getCurFunctionDecl();
7933         // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
7934         // in functions.
7935         if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
7936           if (T.getAddressSpace() == LangAS::opencl_constant)
7937             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7938                 << 0 /*non-kernel only*/ << "constant";
7939           else
7940             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7941                 << 0 /*non-kernel only*/ << "local";
7942           NewVD->setInvalidDecl();
7943           return;
7944         }
7945         // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
7946         // in the outermost scope of a kernel function.
7947         if (FD && FD->hasAttr<OpenCLKernelAttr>()) {
7948           if (!getCurScope()->isFunctionScope()) {
7949             if (T.getAddressSpace() == LangAS::opencl_constant)
7950               Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7951                   << "constant";
7952             else
7953               Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7954                   << "local";
7955             NewVD->setInvalidDecl();
7956             return;
7957           }
7958         }
7959       } else if (T.getAddressSpace() != LangAS::opencl_private &&
7960                  // If we are parsing a template we didn't deduce an addr
7961                  // space yet.
7962                  T.getAddressSpace() != LangAS::Default) {
7963         // Do not allow other address spaces on automatic variable.
7964         Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1;
7965         NewVD->setInvalidDecl();
7966         return;
7967       }
7968     }
7969   }
7970 
7971   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
7972       && !NewVD->hasAttr<BlocksAttr>()) {
7973     if (getLangOpts().getGC() != LangOptions::NonGC)
7974       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
7975     else {
7976       assert(!getLangOpts().ObjCAutoRefCount);
7977       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
7978     }
7979   }
7980 
7981   bool isVM = T->isVariablyModifiedType();
7982   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
7983       NewVD->hasAttr<BlocksAttr>())
7984     setFunctionHasBranchProtectedScope();
7985 
7986   if ((isVM && NewVD->hasLinkage()) ||
7987       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
7988     bool SizeIsNegative;
7989     llvm::APSInt Oversized;
7990     TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
7991         NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized);
7992     QualType FixedT;
7993     if (FixedTInfo &&  T == NewVD->getTypeSourceInfo()->getType())
7994       FixedT = FixedTInfo->getType();
7995     else if (FixedTInfo) {
7996       // Type and type-as-written are canonically different. We need to fix up
7997       // both types separately.
7998       FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
7999                                                    Oversized);
8000     }
8001     if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) {
8002       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
8003       // FIXME: This won't give the correct result for
8004       // int a[10][n];
8005       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
8006 
8007       if (NewVD->isFileVarDecl())
8008         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
8009         << SizeRange;
8010       else if (NewVD->isStaticLocal())
8011         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
8012         << SizeRange;
8013       else
8014         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
8015         << SizeRange;
8016       NewVD->setInvalidDecl();
8017       return;
8018     }
8019 
8020     if (!FixedTInfo) {
8021       if (NewVD->isFileVarDecl())
8022         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
8023       else
8024         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
8025       NewVD->setInvalidDecl();
8026       return;
8027     }
8028 
8029     Diag(NewVD->getLocation(), diag::ext_vla_folded_to_constant);
8030     NewVD->setType(FixedT);
8031     NewVD->setTypeSourceInfo(FixedTInfo);
8032   }
8033 
8034   if (T->isVoidType()) {
8035     // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
8036     //                    of objects and functions.
8037     if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
8038       Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
8039         << T;
8040       NewVD->setInvalidDecl();
8041       return;
8042     }
8043   }
8044 
8045   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
8046     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
8047     NewVD->setInvalidDecl();
8048     return;
8049   }
8050 
8051   if (!NewVD->hasLocalStorage() && T->isSizelessType()) {
8052     Diag(NewVD->getLocation(), diag::err_sizeless_nonlocal) << T;
8053     NewVD->setInvalidDecl();
8054     return;
8055   }
8056 
8057   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
8058     Diag(NewVD->getLocation(), diag::err_block_on_vm);
8059     NewVD->setInvalidDecl();
8060     return;
8061   }
8062 
8063   if (NewVD->isConstexpr() && !T->isDependentType() &&
8064       RequireLiteralType(NewVD->getLocation(), T,
8065                          diag::err_constexpr_var_non_literal)) {
8066     NewVD->setInvalidDecl();
8067     return;
8068   }
8069 
8070   // PPC MMA non-pointer types are not allowed as non-local variable types.
8071   if (Context.getTargetInfo().getTriple().isPPC64() &&
8072       !NewVD->isLocalVarDecl() &&
8073       CheckPPCMMAType(T, NewVD->getLocation())) {
8074     NewVD->setInvalidDecl();
8075     return;
8076   }
8077 }
8078 
8079 /// Perform semantic checking on a newly-created variable
8080 /// declaration.
8081 ///
8082 /// This routine performs all of the type-checking required for a
8083 /// variable declaration once it has been built. It is used both to
8084 /// check variables after they have been parsed and their declarators
8085 /// have been translated into a declaration, and to check variables
8086 /// that have been instantiated from a template.
8087 ///
8088 /// Sets NewVD->isInvalidDecl() if an error was encountered.
8089 ///
8090 /// Returns true if the variable declaration is a redeclaration.
CheckVariableDeclaration(VarDecl * NewVD,LookupResult & Previous)8091 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
8092   CheckVariableDeclarationType(NewVD);
8093 
8094   // If the decl is already known invalid, don't check it.
8095   if (NewVD->isInvalidDecl())
8096     return false;
8097 
8098   // If we did not find anything by this name, look for a non-visible
8099   // extern "C" declaration with the same name.
8100   if (Previous.empty() &&
8101       checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
8102     Previous.setShadowed();
8103 
8104   if (!Previous.empty()) {
8105     MergeVarDecl(NewVD, Previous);
8106     return true;
8107   }
8108   return false;
8109 }
8110 
8111 /// AddOverriddenMethods - See if a method overrides any in the base classes,
8112 /// and if so, check that it's a valid override and remember it.
AddOverriddenMethods(CXXRecordDecl * DC,CXXMethodDecl * MD)8113 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
8114   llvm::SmallPtrSet<const CXXMethodDecl*, 4> Overridden;
8115 
8116   // Look for methods in base classes that this method might override.
8117   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
8118                      /*DetectVirtual=*/false);
8119   auto VisitBase = [&] (const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
8120     CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
8121     DeclarationName Name = MD->getDeclName();
8122 
8123     if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8124       // We really want to find the base class destructor here.
8125       QualType T = Context.getTypeDeclType(BaseRecord);
8126       CanQualType CT = Context.getCanonicalType(T);
8127       Name = Context.DeclarationNames.getCXXDestructorName(CT);
8128     }
8129 
8130     for (NamedDecl *BaseND : BaseRecord->lookup(Name)) {
8131       CXXMethodDecl *BaseMD =
8132           dyn_cast<CXXMethodDecl>(BaseND->getCanonicalDecl());
8133       if (!BaseMD || !BaseMD->isVirtual() ||
8134           IsOverload(MD, BaseMD, /*UseMemberUsingDeclRules=*/false,
8135                      /*ConsiderCudaAttrs=*/true,
8136                      // C++2a [class.virtual]p2 does not consider requires
8137                      // clauses when overriding.
8138                      /*ConsiderRequiresClauses=*/false))
8139         continue;
8140 
8141       if (Overridden.insert(BaseMD).second) {
8142         MD->addOverriddenMethod(BaseMD);
8143         CheckOverridingFunctionReturnType(MD, BaseMD);
8144         CheckOverridingFunctionAttributes(MD, BaseMD);
8145         CheckOverridingFunctionExceptionSpec(MD, BaseMD);
8146         CheckIfOverriddenFunctionIsMarkedFinal(MD, BaseMD);
8147       }
8148 
8149       // A method can only override one function from each base class. We
8150       // don't track indirectly overridden methods from bases of bases.
8151       return true;
8152     }
8153 
8154     return false;
8155   };
8156 
8157   DC->lookupInBases(VisitBase, Paths);
8158   return !Overridden.empty();
8159 }
8160 
8161 namespace {
8162   // Struct for holding all of the extra arguments needed by
8163   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
8164   struct ActOnFDArgs {
8165     Scope *S;
8166     Declarator &D;
8167     MultiTemplateParamsArg TemplateParamLists;
8168     bool AddToScope;
8169   };
8170 } // end anonymous namespace
8171 
8172 namespace {
8173 
8174 // Callback to only accept typo corrections that have a non-zero edit distance.
8175 // Also only accept corrections that have the same parent decl.
8176 class DifferentNameValidatorCCC final : public CorrectionCandidateCallback {
8177  public:
DifferentNameValidatorCCC(ASTContext & Context,FunctionDecl * TypoFD,CXXRecordDecl * Parent)8178   DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
8179                             CXXRecordDecl *Parent)
8180       : Context(Context), OriginalFD(TypoFD),
8181         ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
8182 
ValidateCandidate(const TypoCorrection & candidate)8183   bool ValidateCandidate(const TypoCorrection &candidate) override {
8184     if (candidate.getEditDistance() == 0)
8185       return false;
8186 
8187     SmallVector<unsigned, 1> MismatchedParams;
8188     for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
8189                                           CDeclEnd = candidate.end();
8190          CDecl != CDeclEnd; ++CDecl) {
8191       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
8192 
8193       if (FD && !FD->hasBody() &&
8194           hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
8195         if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
8196           CXXRecordDecl *Parent = MD->getParent();
8197           if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
8198             return true;
8199         } else if (!ExpectedParent) {
8200           return true;
8201         }
8202       }
8203     }
8204 
8205     return false;
8206   }
8207 
clone()8208   std::unique_ptr<CorrectionCandidateCallback> clone() override {
8209     return std::make_unique<DifferentNameValidatorCCC>(*this);
8210   }
8211 
8212  private:
8213   ASTContext &Context;
8214   FunctionDecl *OriginalFD;
8215   CXXRecordDecl *ExpectedParent;
8216 };
8217 
8218 } // end anonymous namespace
8219 
MarkTypoCorrectedFunctionDefinition(const NamedDecl * F)8220 void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) {
8221   TypoCorrectedFunctionDefinitions.insert(F);
8222 }
8223 
8224 /// Generate diagnostics for an invalid function redeclaration.
8225 ///
8226 /// This routine handles generating the diagnostic messages for an invalid
8227 /// function redeclaration, including finding possible similar declarations
8228 /// or performing typo correction if there are no previous declarations with
8229 /// the same name.
8230 ///
8231 /// Returns a NamedDecl iff typo correction was performed and substituting in
8232 /// the new declaration name does not cause new errors.
DiagnoseInvalidRedeclaration(Sema & SemaRef,LookupResult & Previous,FunctionDecl * NewFD,ActOnFDArgs & ExtraArgs,bool IsLocalFriend,Scope * S)8233 static NamedDecl *DiagnoseInvalidRedeclaration(
8234     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
8235     ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
8236   DeclarationName Name = NewFD->getDeclName();
8237   DeclContext *NewDC = NewFD->getDeclContext();
8238   SmallVector<unsigned, 1> MismatchedParams;
8239   SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
8240   TypoCorrection Correction;
8241   bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
8242   unsigned DiagMsg =
8243     IsLocalFriend ? diag::err_no_matching_local_friend :
8244     NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match :
8245     diag::err_member_decl_does_not_match;
8246   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
8247                     IsLocalFriend ? Sema::LookupLocalFriendName
8248                                   : Sema::LookupOrdinaryName,
8249                     Sema::ForVisibleRedeclaration);
8250 
8251   NewFD->setInvalidDecl();
8252   if (IsLocalFriend)
8253     SemaRef.LookupName(Prev, S);
8254   else
8255     SemaRef.LookupQualifiedName(Prev, NewDC);
8256   assert(!Prev.isAmbiguous() &&
8257          "Cannot have an ambiguity in previous-declaration lookup");
8258   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
8259   DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD,
8260                                 MD ? MD->getParent() : nullptr);
8261   if (!Prev.empty()) {
8262     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
8263          Func != FuncEnd; ++Func) {
8264       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
8265       if (FD &&
8266           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
8267         // Add 1 to the index so that 0 can mean the mismatch didn't
8268         // involve a parameter
8269         unsigned ParamNum =
8270             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
8271         NearMatches.push_back(std::make_pair(FD, ParamNum));
8272       }
8273     }
8274   // If the qualified name lookup yielded nothing, try typo correction
8275   } else if ((Correction = SemaRef.CorrectTypo(
8276                   Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
8277                   &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery,
8278                   IsLocalFriend ? nullptr : NewDC))) {
8279     // Set up everything for the call to ActOnFunctionDeclarator
8280     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
8281                               ExtraArgs.D.getIdentifierLoc());
8282     Previous.clear();
8283     Previous.setLookupName(Correction.getCorrection());
8284     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
8285                                     CDeclEnd = Correction.end();
8286          CDecl != CDeclEnd; ++CDecl) {
8287       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
8288       if (FD && !FD->hasBody() &&
8289           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
8290         Previous.addDecl(FD);
8291       }
8292     }
8293     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
8294 
8295     NamedDecl *Result;
8296     // Retry building the function declaration with the new previous
8297     // declarations, and with errors suppressed.
8298     {
8299       // Trap errors.
8300       Sema::SFINAETrap Trap(SemaRef);
8301 
8302       // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
8303       // pieces need to verify the typo-corrected C++ declaration and hopefully
8304       // eliminate the need for the parameter pack ExtraArgs.
8305       Result = SemaRef.ActOnFunctionDeclarator(
8306           ExtraArgs.S, ExtraArgs.D,
8307           Correction.getCorrectionDecl()->getDeclContext(),
8308           NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
8309           ExtraArgs.AddToScope);
8310 
8311       if (Trap.hasErrorOccurred())
8312         Result = nullptr;
8313     }
8314 
8315     if (Result) {
8316       // Determine which correction we picked.
8317       Decl *Canonical = Result->getCanonicalDecl();
8318       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8319            I != E; ++I)
8320         if ((*I)->getCanonicalDecl() == Canonical)
8321           Correction.setCorrectionDecl(*I);
8322 
8323       // Let Sema know about the correction.
8324       SemaRef.MarkTypoCorrectedFunctionDefinition(Result);
8325       SemaRef.diagnoseTypo(
8326           Correction,
8327           SemaRef.PDiag(IsLocalFriend
8328                           ? diag::err_no_matching_local_friend_suggest
8329                           : diag::err_member_decl_does_not_match_suggest)
8330             << Name << NewDC << IsDefinition);
8331       return Result;
8332     }
8333 
8334     // Pretend the typo correction never occurred
8335     ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
8336                               ExtraArgs.D.getIdentifierLoc());
8337     ExtraArgs.D.setRedeclaration(wasRedeclaration);
8338     Previous.clear();
8339     Previous.setLookupName(Name);
8340   }
8341 
8342   SemaRef.Diag(NewFD->getLocation(), DiagMsg)
8343       << Name << NewDC << IsDefinition << NewFD->getLocation();
8344 
8345   bool NewFDisConst = false;
8346   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
8347     NewFDisConst = NewMD->isConst();
8348 
8349   for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
8350        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
8351        NearMatch != NearMatchEnd; ++NearMatch) {
8352     FunctionDecl *FD = NearMatch->first;
8353     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
8354     bool FDisConst = MD && MD->isConst();
8355     bool IsMember = MD || !IsLocalFriend;
8356 
8357     // FIXME: These notes are poorly worded for the local friend case.
8358     if (unsigned Idx = NearMatch->second) {
8359       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
8360       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
8361       if (Loc.isInvalid()) Loc = FD->getLocation();
8362       SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
8363                                  : diag::note_local_decl_close_param_match)
8364         << Idx << FDParam->getType()
8365         << NewFD->getParamDecl(Idx - 1)->getType();
8366     } else if (FDisConst != NewFDisConst) {
8367       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
8368           << NewFDisConst << FD->getSourceRange().getEnd();
8369     } else
8370       SemaRef.Diag(FD->getLocation(),
8371                    IsMember ? diag::note_member_def_close_match
8372                             : diag::note_local_decl_close_match);
8373   }
8374   return nullptr;
8375 }
8376 
getFunctionStorageClass(Sema & SemaRef,Declarator & D)8377 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
8378   switch (D.getDeclSpec().getStorageClassSpec()) {
8379   default: llvm_unreachable("Unknown storage class!");
8380   case DeclSpec::SCS_auto:
8381   case DeclSpec::SCS_register:
8382   case DeclSpec::SCS_mutable:
8383     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8384                  diag::err_typecheck_sclass_func);
8385     D.getMutableDeclSpec().ClearStorageClassSpecs();
8386     D.setInvalidType();
8387     break;
8388   case DeclSpec::SCS_unspecified: break;
8389   case DeclSpec::SCS_extern:
8390     if (D.getDeclSpec().isExternInLinkageSpec())
8391       return SC_None;
8392     return SC_Extern;
8393   case DeclSpec::SCS_static: {
8394     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
8395       // C99 6.7.1p5:
8396       //   The declaration of an identifier for a function that has
8397       //   block scope shall have no explicit storage-class specifier
8398       //   other than extern
8399       // See also (C++ [dcl.stc]p4).
8400       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8401                    diag::err_static_block_func);
8402       break;
8403     } else
8404       return SC_Static;
8405   }
8406   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
8407   }
8408 
8409   // No explicit storage class has already been returned
8410   return SC_None;
8411 }
8412 
CreateNewFunctionDecl(Sema & SemaRef,Declarator & D,DeclContext * DC,QualType & R,TypeSourceInfo * TInfo,StorageClass SC,bool & IsVirtualOkay)8413 static FunctionDecl *CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
8414                                            DeclContext *DC, QualType &R,
8415                                            TypeSourceInfo *TInfo,
8416                                            StorageClass SC,
8417                                            bool &IsVirtualOkay) {
8418   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
8419   DeclarationName Name = NameInfo.getName();
8420 
8421   FunctionDecl *NewFD = nullptr;
8422   bool isInline = D.getDeclSpec().isInlineSpecified();
8423 
8424   if (!SemaRef.getLangOpts().CPlusPlus) {
8425     // Determine whether the function was written with a
8426     // prototype. This true when:
8427     //   - there is a prototype in the declarator, or
8428     //   - the type R of the function is some kind of typedef or other non-
8429     //     attributed reference to a type name (which eventually refers to a
8430     //     function type).
8431     bool HasPrototype =
8432       (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
8433       (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType());
8434 
8435     NewFD = FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
8436                                  R, TInfo, SC, isInline, HasPrototype,
8437                                  ConstexprSpecKind::Unspecified,
8438                                  /*TrailingRequiresClause=*/nullptr);
8439     if (D.isInvalidType())
8440       NewFD->setInvalidDecl();
8441 
8442     return NewFD;
8443   }
8444 
8445   ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier();
8446 
8447   ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
8448   if (ConstexprKind == ConstexprSpecKind::Constinit) {
8449     SemaRef.Diag(D.getDeclSpec().getConstexprSpecLoc(),
8450                  diag::err_constexpr_wrong_decl_kind)
8451         << static_cast<int>(ConstexprKind);
8452     ConstexprKind = ConstexprSpecKind::Unspecified;
8453     D.getMutableDeclSpec().ClearConstexprSpec();
8454   }
8455   Expr *TrailingRequiresClause = D.getTrailingRequiresClause();
8456 
8457   // Check that the return type is not an abstract class type.
8458   // For record types, this is done by the AbstractClassUsageDiagnoser once
8459   // the class has been completely parsed.
8460   if (!DC->isRecord() &&
8461       SemaRef.RequireNonAbstractType(
8462           D.getIdentifierLoc(), R->castAs<FunctionType>()->getReturnType(),
8463           diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
8464     D.setInvalidType();
8465 
8466   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
8467     // This is a C++ constructor declaration.
8468     assert(DC->isRecord() &&
8469            "Constructors can only be declared in a member context");
8470 
8471     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
8472     return CXXConstructorDecl::Create(
8473         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8474         TInfo, ExplicitSpecifier, isInline,
8475         /*isImplicitlyDeclared=*/false, ConstexprKind, InheritedConstructor(),
8476         TrailingRequiresClause);
8477 
8478   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8479     // This is a C++ destructor declaration.
8480     if (DC->isRecord()) {
8481       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
8482       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
8483       CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
8484           SemaRef.Context, Record, D.getBeginLoc(), NameInfo, R, TInfo,
8485           isInline, /*isImplicitlyDeclared=*/false, ConstexprKind,
8486           TrailingRequiresClause);
8487 
8488       // If the destructor needs an implicit exception specification, set it
8489       // now. FIXME: It'd be nice to be able to create the right type to start
8490       // with, but the type needs to reference the destructor declaration.
8491       if (SemaRef.getLangOpts().CPlusPlus11)
8492         SemaRef.AdjustDestructorExceptionSpec(NewDD);
8493 
8494       IsVirtualOkay = true;
8495       return NewDD;
8496 
8497     } else {
8498       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
8499       D.setInvalidType();
8500 
8501       // Create a FunctionDecl to satisfy the function definition parsing
8502       // code path.
8503       return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
8504                                   D.getIdentifierLoc(), Name, R, TInfo, SC,
8505                                   isInline,
8506                                   /*hasPrototype=*/true, ConstexprKind,
8507                                   TrailingRequiresClause);
8508     }
8509 
8510   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
8511     if (!DC->isRecord()) {
8512       SemaRef.Diag(D.getIdentifierLoc(),
8513            diag::err_conv_function_not_member);
8514       return nullptr;
8515     }
8516 
8517     SemaRef.CheckConversionDeclarator(D, R, SC);
8518     if (D.isInvalidType())
8519       return nullptr;
8520 
8521     IsVirtualOkay = true;
8522     return CXXConversionDecl::Create(
8523         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8524         TInfo, isInline, ExplicitSpecifier, ConstexprKind, SourceLocation(),
8525         TrailingRequiresClause);
8526 
8527   } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
8528     if (TrailingRequiresClause)
8529       SemaRef.Diag(TrailingRequiresClause->getBeginLoc(),
8530                    diag::err_trailing_requires_clause_on_deduction_guide)
8531           << TrailingRequiresClause->getSourceRange();
8532     SemaRef.CheckDeductionGuideDeclarator(D, R, SC);
8533 
8534     return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
8535                                          ExplicitSpecifier, NameInfo, R, TInfo,
8536                                          D.getEndLoc());
8537   } else if (DC->isRecord()) {
8538     // If the name of the function is the same as the name of the record,
8539     // then this must be an invalid constructor that has a return type.
8540     // (The parser checks for a return type and makes the declarator a
8541     // constructor if it has no return type).
8542     if (Name.getAsIdentifierInfo() &&
8543         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
8544       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
8545         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
8546         << SourceRange(D.getIdentifierLoc());
8547       return nullptr;
8548     }
8549 
8550     // This is a C++ method declaration.
8551     CXXMethodDecl *Ret = CXXMethodDecl::Create(
8552         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8553         TInfo, SC, isInline, ConstexprKind, SourceLocation(),
8554         TrailingRequiresClause);
8555     IsVirtualOkay = !Ret->isStatic();
8556     return Ret;
8557   } else {
8558     bool isFriend =
8559         SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
8560     if (!isFriend && SemaRef.CurContext->isRecord())
8561       return nullptr;
8562 
8563     // Determine whether the function was written with a
8564     // prototype. This true when:
8565     //   - we're in C++ (where every function has a prototype),
8566     return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
8567                                 R, TInfo, SC, isInline, true /*HasPrototype*/,
8568                                 ConstexprKind, TrailingRequiresClause);
8569   }
8570 }
8571 
8572 enum OpenCLParamType {
8573   ValidKernelParam,
8574   PtrPtrKernelParam,
8575   PtrKernelParam,
8576   InvalidAddrSpacePtrKernelParam,
8577   InvalidKernelParam,
8578   RecordKernelParam
8579 };
8580 
isOpenCLSizeDependentType(ASTContext & C,QualType Ty)8581 static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) {
8582   // Size dependent types are just typedefs to normal integer types
8583   // (e.g. unsigned long), so we cannot distinguish them from other typedefs to
8584   // integers other than by their names.
8585   StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};
8586 
8587   // Remove typedefs one by one until we reach a typedef
8588   // for a size dependent type.
8589   QualType DesugaredTy = Ty;
8590   do {
8591     ArrayRef<StringRef> Names(SizeTypeNames);
8592     auto Match = llvm::find(Names, DesugaredTy.getUnqualifiedType().getAsString());
8593     if (Names.end() != Match)
8594       return true;
8595 
8596     Ty = DesugaredTy;
8597     DesugaredTy = Ty.getSingleStepDesugaredType(C);
8598   } while (DesugaredTy != Ty);
8599 
8600   return false;
8601 }
8602 
getOpenCLKernelParameterType(Sema & S,QualType PT)8603 static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) {
8604   if (PT->isPointerType()) {
8605     QualType PointeeType = PT->getPointeeType();
8606     if (PointeeType.getAddressSpace() == LangAS::opencl_generic ||
8607         PointeeType.getAddressSpace() == LangAS::opencl_private ||
8608         PointeeType.getAddressSpace() == LangAS::Default)
8609       return InvalidAddrSpacePtrKernelParam;
8610 
8611     if (PointeeType->isPointerType()) {
8612       // This is a pointer to pointer parameter.
8613       // Recursively check inner type.
8614       OpenCLParamType ParamKind = getOpenCLKernelParameterType(S, PointeeType);
8615       if (ParamKind == InvalidAddrSpacePtrKernelParam ||
8616           ParamKind == InvalidKernelParam)
8617         return ParamKind;
8618 
8619       return PtrPtrKernelParam;
8620     }
8621     return PtrKernelParam;
8622   }
8623 
8624   // OpenCL v1.2 s6.9.k:
8625   // Arguments to kernel functions in a program cannot be declared with the
8626   // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8627   // uintptr_t or a struct and/or union that contain fields declared to be one
8628   // of these built-in scalar types.
8629   if (isOpenCLSizeDependentType(S.getASTContext(), PT))
8630     return InvalidKernelParam;
8631 
8632   if (PT->isImageType())
8633     return PtrKernelParam;
8634 
8635   if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT())
8636     return InvalidKernelParam;
8637 
8638   // OpenCL extension spec v1.2 s9.5:
8639   // This extension adds support for half scalar and vector types as built-in
8640   // types that can be used for arithmetic operations, conversions etc.
8641   if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16") && PT->isHalfType())
8642     return InvalidKernelParam;
8643 
8644   if (PT->isRecordType())
8645     return RecordKernelParam;
8646 
8647   // Look into an array argument to check if it has a forbidden type.
8648   if (PT->isArrayType()) {
8649     const Type *UnderlyingTy = PT->getPointeeOrArrayElementType();
8650     // Call ourself to check an underlying type of an array. Since the
8651     // getPointeeOrArrayElementType returns an innermost type which is not an
8652     // array, this recursive call only happens once.
8653     return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0));
8654   }
8655 
8656   return ValidKernelParam;
8657 }
8658 
checkIsValidOpenCLKernelParameter(Sema & S,Declarator & D,ParmVarDecl * Param,llvm::SmallPtrSetImpl<const Type * > & ValidTypes)8659 static void checkIsValidOpenCLKernelParameter(
8660   Sema &S,
8661   Declarator &D,
8662   ParmVarDecl *Param,
8663   llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
8664   QualType PT = Param->getType();
8665 
8666   // Cache the valid types we encounter to avoid rechecking structs that are
8667   // used again
8668   if (ValidTypes.count(PT.getTypePtr()))
8669     return;
8670 
8671   switch (getOpenCLKernelParameterType(S, PT)) {
8672   case PtrPtrKernelParam:
8673     // OpenCL v3.0 s6.11.a:
8674     // A kernel function argument cannot be declared as a pointer to a pointer
8675     // type. [...] This restriction only applies to OpenCL C 1.2 or below.
8676     if (S.getLangOpts().OpenCLVersion < 120 &&
8677         !S.getLangOpts().OpenCLCPlusPlus) {
8678       S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
8679       D.setInvalidType();
8680       return;
8681     }
8682 
8683     ValidTypes.insert(PT.getTypePtr());
8684     return;
8685 
8686   case InvalidAddrSpacePtrKernelParam:
8687     // OpenCL v1.0 s6.5:
8688     // __kernel function arguments declared to be a pointer of a type can point
8689     // to one of the following address spaces only : __global, __local or
8690     // __constant.
8691     S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space);
8692     D.setInvalidType();
8693     return;
8694 
8695     // OpenCL v1.2 s6.9.k:
8696     // Arguments to kernel functions in a program cannot be declared with the
8697     // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8698     // uintptr_t or a struct and/or union that contain fields declared to be
8699     // one of these built-in scalar types.
8700 
8701   case InvalidKernelParam:
8702     // OpenCL v1.2 s6.8 n:
8703     // A kernel function argument cannot be declared
8704     // of event_t type.
8705     // Do not diagnose half type since it is diagnosed as invalid argument
8706     // type for any function elsewhere.
8707     if (!PT->isHalfType()) {
8708       S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8709 
8710       // Explain what typedefs are involved.
8711       const TypedefType *Typedef = nullptr;
8712       while ((Typedef = PT->getAs<TypedefType>())) {
8713         SourceLocation Loc = Typedef->getDecl()->getLocation();
8714         // SourceLocation may be invalid for a built-in type.
8715         if (Loc.isValid())
8716           S.Diag(Loc, diag::note_entity_declared_at) << PT;
8717         PT = Typedef->desugar();
8718       }
8719     }
8720 
8721     D.setInvalidType();
8722     return;
8723 
8724   case PtrKernelParam:
8725   case ValidKernelParam:
8726     ValidTypes.insert(PT.getTypePtr());
8727     return;
8728 
8729   case RecordKernelParam:
8730     break;
8731   }
8732 
8733   // Track nested structs we will inspect
8734   SmallVector<const Decl *, 4> VisitStack;
8735 
8736   // Track where we are in the nested structs. Items will migrate from
8737   // VisitStack to HistoryStack as we do the DFS for bad field.
8738   SmallVector<const FieldDecl *, 4> HistoryStack;
8739   HistoryStack.push_back(nullptr);
8740 
8741   // At this point we already handled everything except of a RecordType or
8742   // an ArrayType of a RecordType.
8743   assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type.");
8744   const RecordType *RecTy =
8745       PT->getPointeeOrArrayElementType()->getAs<RecordType>();
8746   const RecordDecl *OrigRecDecl = RecTy->getDecl();
8747 
8748   VisitStack.push_back(RecTy->getDecl());
8749   assert(VisitStack.back() && "First decl null?");
8750 
8751   do {
8752     const Decl *Next = VisitStack.pop_back_val();
8753     if (!Next) {
8754       assert(!HistoryStack.empty());
8755       // Found a marker, we have gone up a level
8756       if (const FieldDecl *Hist = HistoryStack.pop_back_val())
8757         ValidTypes.insert(Hist->getType().getTypePtr());
8758 
8759       continue;
8760     }
8761 
8762     // Adds everything except the original parameter declaration (which is not a
8763     // field itself) to the history stack.
8764     const RecordDecl *RD;
8765     if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
8766       HistoryStack.push_back(Field);
8767 
8768       QualType FieldTy = Field->getType();
8769       // Other field types (known to be valid or invalid) are handled while we
8770       // walk around RecordDecl::fields().
8771       assert((FieldTy->isArrayType() || FieldTy->isRecordType()) &&
8772              "Unexpected type.");
8773       const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType();
8774 
8775       RD = FieldRecTy->castAs<RecordType>()->getDecl();
8776     } else {
8777       RD = cast<RecordDecl>(Next);
8778     }
8779 
8780     // Add a null marker so we know when we've gone back up a level
8781     VisitStack.push_back(nullptr);
8782 
8783     for (const auto *FD : RD->fields()) {
8784       QualType QT = FD->getType();
8785 
8786       if (ValidTypes.count(QT.getTypePtr()))
8787         continue;
8788 
8789       OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT);
8790       if (ParamType == ValidKernelParam)
8791         continue;
8792 
8793       if (ParamType == RecordKernelParam) {
8794         VisitStack.push_back(FD);
8795         continue;
8796       }
8797 
8798       // OpenCL v1.2 s6.9.p:
8799       // Arguments to kernel functions that are declared to be a struct or union
8800       // do not allow OpenCL objects to be passed as elements of the struct or
8801       // union.
8802       if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
8803           ParamType == InvalidAddrSpacePtrKernelParam) {
8804         S.Diag(Param->getLocation(),
8805                diag::err_record_with_pointers_kernel_param)
8806           << PT->isUnionType()
8807           << PT;
8808       } else {
8809         S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8810       }
8811 
8812       S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type)
8813           << OrigRecDecl->getDeclName();
8814 
8815       // We have an error, now let's go back up through history and show where
8816       // the offending field came from
8817       for (ArrayRef<const FieldDecl *>::const_iterator
8818                I = HistoryStack.begin() + 1,
8819                E = HistoryStack.end();
8820            I != E; ++I) {
8821         const FieldDecl *OuterField = *I;
8822         S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
8823           << OuterField->getType();
8824       }
8825 
8826       S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
8827         << QT->isPointerType()
8828         << QT;
8829       D.setInvalidType();
8830       return;
8831     }
8832   } while (!VisitStack.empty());
8833 }
8834 
8835 /// Find the DeclContext in which a tag is implicitly declared if we see an
8836 /// elaborated type specifier in the specified context, and lookup finds
8837 /// nothing.
getTagInjectionContext(DeclContext * DC)8838 static DeclContext *getTagInjectionContext(DeclContext *DC) {
8839   while (!DC->isFileContext() && !DC->isFunctionOrMethod())
8840     DC = DC->getParent();
8841   return DC;
8842 }
8843 
8844 /// Find the Scope in which a tag is implicitly declared if we see an
8845 /// elaborated type specifier in the specified context, and lookup finds
8846 /// nothing.
getTagInjectionScope(Scope * S,const LangOptions & LangOpts)8847 static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
8848   while (S->isClassScope() ||
8849          (LangOpts.CPlusPlus &&
8850           S->isFunctionPrototypeScope()) ||
8851          ((S->getFlags() & Scope::DeclScope) == 0) ||
8852          (S->getEntity() && S->getEntity()->isTransparentContext()))
8853     S = S->getParent();
8854   return S;
8855 }
8856 
8857 NamedDecl*
ActOnFunctionDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamListsRef,bool & AddToScope)8858 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
8859                               TypeSourceInfo *TInfo, LookupResult &Previous,
8860                               MultiTemplateParamsArg TemplateParamListsRef,
8861                               bool &AddToScope) {
8862   QualType R = TInfo->getType();
8863 
8864   assert(R->isFunctionType());
8865   if (R.getCanonicalType()->castAs<FunctionType>()->getCmseNSCallAttr())
8866     Diag(D.getIdentifierLoc(), diag::err_function_decl_cmse_ns_call);
8867 
8868   SmallVector<TemplateParameterList *, 4> TemplateParamLists;
8869   for (TemplateParameterList *TPL : TemplateParamListsRef)
8870     TemplateParamLists.push_back(TPL);
8871   if (TemplateParameterList *Invented = D.getInventedTemplateParameterList()) {
8872     if (!TemplateParamLists.empty() &&
8873         Invented->getDepth() == TemplateParamLists.back()->getDepth())
8874       TemplateParamLists.back() = Invented;
8875     else
8876       TemplateParamLists.push_back(Invented);
8877   }
8878 
8879   // TODO: consider using NameInfo for diagnostic.
8880   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8881   DeclarationName Name = NameInfo.getName();
8882   StorageClass SC = getFunctionStorageClass(*this, D);
8883 
8884   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
8885     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
8886          diag::err_invalid_thread)
8887       << DeclSpec::getSpecifierName(TSCS);
8888 
8889   if (D.isFirstDeclarationOfMember())
8890     adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(),
8891                            D.getIdentifierLoc());
8892 
8893   bool isFriend = false;
8894   FunctionTemplateDecl *FunctionTemplate = nullptr;
8895   bool isMemberSpecialization = false;
8896   bool isFunctionTemplateSpecialization = false;
8897 
8898   bool isDependentClassScopeExplicitSpecialization = false;
8899   bool HasExplicitTemplateArgs = false;
8900   TemplateArgumentListInfo TemplateArgs;
8901 
8902   bool isVirtualOkay = false;
8903 
8904   DeclContext *OriginalDC = DC;
8905   bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
8906 
8907   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
8908                                               isVirtualOkay);
8909   if (!NewFD) return nullptr;
8910 
8911   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
8912     NewFD->setTopLevelDeclInObjCContainer();
8913 
8914   // Set the lexical context. If this is a function-scope declaration, or has a
8915   // C++ scope specifier, or is the object of a friend declaration, the lexical
8916   // context will be different from the semantic context.
8917   NewFD->setLexicalDeclContext(CurContext);
8918 
8919   if (IsLocalExternDecl)
8920     NewFD->setLocalExternDecl();
8921 
8922   if (getLangOpts().CPlusPlus) {
8923     bool isInline = D.getDeclSpec().isInlineSpecified();
8924     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
8925     bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier();
8926     isFriend = D.getDeclSpec().isFriendSpecified();
8927     if (isFriend && !isInline && D.isFunctionDefinition()) {
8928       // C++ [class.friend]p5
8929       //   A function can be defined in a friend declaration of a
8930       //   class . . . . Such a function is implicitly inline.
8931       NewFD->setImplicitlyInline();
8932     }
8933 
8934     // If this is a method defined in an __interface, and is not a constructor
8935     // or an overloaded operator, then set the pure flag (isVirtual will already
8936     // return true).
8937     if (const CXXRecordDecl *Parent =
8938           dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
8939       if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
8940         NewFD->setPure(true);
8941 
8942       // C++ [class.union]p2
8943       //   A union can have member functions, but not virtual functions.
8944       if (isVirtual && Parent->isUnion())
8945         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
8946     }
8947 
8948     SetNestedNameSpecifier(*this, NewFD, D);
8949     isMemberSpecialization = false;
8950     isFunctionTemplateSpecialization = false;
8951     if (D.isInvalidType())
8952       NewFD->setInvalidDecl();
8953 
8954     // Match up the template parameter lists with the scope specifier, then
8955     // determine whether we have a template or a template specialization.
8956     bool Invalid = false;
8957     TemplateParameterList *TemplateParams =
8958         MatchTemplateParametersToScopeSpecifier(
8959             D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
8960             D.getCXXScopeSpec(),
8961             D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
8962                 ? D.getName().TemplateId
8963                 : nullptr,
8964             TemplateParamLists, isFriend, isMemberSpecialization,
8965             Invalid);
8966     if (TemplateParams) {
8967       // Check that we can declare a template here.
8968       if (CheckTemplateDeclScope(S, TemplateParams))
8969         NewFD->setInvalidDecl();
8970 
8971       if (TemplateParams->size() > 0) {
8972         // This is a function template
8973 
8974         // A destructor cannot be a template.
8975         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8976           Diag(NewFD->getLocation(), diag::err_destructor_template);
8977           NewFD->setInvalidDecl();
8978         }
8979 
8980         // If we're adding a template to a dependent context, we may need to
8981         // rebuilding some of the types used within the template parameter list,
8982         // now that we know what the current instantiation is.
8983         if (DC->isDependentContext()) {
8984           ContextRAII SavedContext(*this, DC);
8985           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
8986             Invalid = true;
8987         }
8988 
8989         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
8990                                                         NewFD->getLocation(),
8991                                                         Name, TemplateParams,
8992                                                         NewFD);
8993         FunctionTemplate->setLexicalDeclContext(CurContext);
8994         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
8995 
8996         // For source fidelity, store the other template param lists.
8997         if (TemplateParamLists.size() > 1) {
8998           NewFD->setTemplateParameterListsInfo(Context,
8999               ArrayRef<TemplateParameterList *>(TemplateParamLists)
9000                   .drop_back(1));
9001         }
9002       } else {
9003         // This is a function template specialization.
9004         isFunctionTemplateSpecialization = true;
9005         // For source fidelity, store all the template param lists.
9006         if (TemplateParamLists.size() > 0)
9007           NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
9008 
9009         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
9010         if (isFriend) {
9011           // We want to remove the "template<>", found here.
9012           SourceRange RemoveRange = TemplateParams->getSourceRange();
9013 
9014           // If we remove the template<> and the name is not a
9015           // template-id, we're actually silently creating a problem:
9016           // the friend declaration will refer to an untemplated decl,
9017           // and clearly the user wants a template specialization.  So
9018           // we need to insert '<>' after the name.
9019           SourceLocation InsertLoc;
9020           if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
9021             InsertLoc = D.getName().getSourceRange().getEnd();
9022             InsertLoc = getLocForEndOfToken(InsertLoc);
9023           }
9024 
9025           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
9026             << Name << RemoveRange
9027             << FixItHint::CreateRemoval(RemoveRange)
9028             << FixItHint::CreateInsertion(InsertLoc, "<>");
9029         }
9030       }
9031     } else {
9032       // Check that we can declare a template here.
9033       if (!TemplateParamLists.empty() && isMemberSpecialization &&
9034           CheckTemplateDeclScope(S, TemplateParamLists.back()))
9035         NewFD->setInvalidDecl();
9036 
9037       // All template param lists were matched against the scope specifier:
9038       // this is NOT (an explicit specialization of) a template.
9039       if (TemplateParamLists.size() > 0)
9040         // For source fidelity, store all the template param lists.
9041         NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
9042     }
9043 
9044     if (Invalid) {
9045       NewFD->setInvalidDecl();
9046       if (FunctionTemplate)
9047         FunctionTemplate->setInvalidDecl();
9048     }
9049 
9050     // C++ [dcl.fct.spec]p5:
9051     //   The virtual specifier shall only be used in declarations of
9052     //   nonstatic class member functions that appear within a
9053     //   member-specification of a class declaration; see 10.3.
9054     //
9055     if (isVirtual && !NewFD->isInvalidDecl()) {
9056       if (!isVirtualOkay) {
9057         Diag(D.getDeclSpec().getVirtualSpecLoc(),
9058              diag::err_virtual_non_function);
9059       } else if (!CurContext->isRecord()) {
9060         // 'virtual' was specified outside of the class.
9061         Diag(D.getDeclSpec().getVirtualSpecLoc(),
9062              diag::err_virtual_out_of_class)
9063           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
9064       } else if (NewFD->getDescribedFunctionTemplate()) {
9065         // C++ [temp.mem]p3:
9066         //  A member function template shall not be virtual.
9067         Diag(D.getDeclSpec().getVirtualSpecLoc(),
9068              diag::err_virtual_member_function_template)
9069           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
9070       } else {
9071         // Okay: Add virtual to the method.
9072         NewFD->setVirtualAsWritten(true);
9073       }
9074 
9075       if (getLangOpts().CPlusPlus14 &&
9076           NewFD->getReturnType()->isUndeducedType())
9077         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
9078     }
9079 
9080     if (getLangOpts().CPlusPlus14 &&
9081         (NewFD->isDependentContext() ||
9082          (isFriend && CurContext->isDependentContext())) &&
9083         NewFD->getReturnType()->isUndeducedType()) {
9084       // If the function template is referenced directly (for instance, as a
9085       // member of the current instantiation), pretend it has a dependent type.
9086       // This is not really justified by the standard, but is the only sane
9087       // thing to do.
9088       // FIXME: For a friend function, we have not marked the function as being
9089       // a friend yet, so 'isDependentContext' on the FD doesn't work.
9090       const FunctionProtoType *FPT =
9091           NewFD->getType()->castAs<FunctionProtoType>();
9092       QualType Result =
9093           SubstAutoType(FPT->getReturnType(), Context.DependentTy);
9094       NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
9095                                              FPT->getExtProtoInfo()));
9096     }
9097 
9098     // C++ [dcl.fct.spec]p3:
9099     //  The inline specifier shall not appear on a block scope function
9100     //  declaration.
9101     if (isInline && !NewFD->isInvalidDecl()) {
9102       if (CurContext->isFunctionOrMethod()) {
9103         // 'inline' is not allowed on block scope function declaration.
9104         Diag(D.getDeclSpec().getInlineSpecLoc(),
9105              diag::err_inline_declaration_block_scope) << Name
9106           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
9107       }
9108     }
9109 
9110     // C++ [dcl.fct.spec]p6:
9111     //  The explicit specifier shall be used only in the declaration of a
9112     //  constructor or conversion function within its class definition;
9113     //  see 12.3.1 and 12.3.2.
9114     if (hasExplicit && !NewFD->isInvalidDecl() &&
9115         !isa<CXXDeductionGuideDecl>(NewFD)) {
9116       if (!CurContext->isRecord()) {
9117         // 'explicit' was specified outside of the class.
9118         Diag(D.getDeclSpec().getExplicitSpecLoc(),
9119              diag::err_explicit_out_of_class)
9120             << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
9121       } else if (!isa<CXXConstructorDecl>(NewFD) &&
9122                  !isa<CXXConversionDecl>(NewFD)) {
9123         // 'explicit' was specified on a function that wasn't a constructor
9124         // or conversion function.
9125         Diag(D.getDeclSpec().getExplicitSpecLoc(),
9126              diag::err_explicit_non_ctor_or_conv_function)
9127             << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
9128       }
9129     }
9130 
9131     ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
9132     if (ConstexprKind != ConstexprSpecKind::Unspecified) {
9133       // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
9134       // are implicitly inline.
9135       NewFD->setImplicitlyInline();
9136 
9137       // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
9138       // be either constructors or to return a literal type. Therefore,
9139       // destructors cannot be declared constexpr.
9140       if (isa<CXXDestructorDecl>(NewFD) &&
9141           (!getLangOpts().CPlusPlus20 ||
9142            ConstexprKind == ConstexprSpecKind::Consteval)) {
9143         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor)
9144             << static_cast<int>(ConstexprKind);
9145         NewFD->setConstexprKind(getLangOpts().CPlusPlus20
9146                                     ? ConstexprSpecKind::Unspecified
9147                                     : ConstexprSpecKind::Constexpr);
9148       }
9149       // C++20 [dcl.constexpr]p2: An allocation function, or a
9150       // deallocation function shall not be declared with the consteval
9151       // specifier.
9152       if (ConstexprKind == ConstexprSpecKind::Consteval &&
9153           (NewFD->getOverloadedOperator() == OO_New ||
9154            NewFD->getOverloadedOperator() == OO_Array_New ||
9155            NewFD->getOverloadedOperator() == OO_Delete ||
9156            NewFD->getOverloadedOperator() == OO_Array_Delete)) {
9157         Diag(D.getDeclSpec().getConstexprSpecLoc(),
9158              diag::err_invalid_consteval_decl_kind)
9159             << NewFD;
9160         NewFD->setConstexprKind(ConstexprSpecKind::Constexpr);
9161       }
9162     }
9163 
9164     // If __module_private__ was specified, mark the function accordingly.
9165     if (D.getDeclSpec().isModulePrivateSpecified()) {
9166       if (isFunctionTemplateSpecialization) {
9167         SourceLocation ModulePrivateLoc
9168           = D.getDeclSpec().getModulePrivateSpecLoc();
9169         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
9170           << 0
9171           << FixItHint::CreateRemoval(ModulePrivateLoc);
9172       } else {
9173         NewFD->setModulePrivate();
9174         if (FunctionTemplate)
9175           FunctionTemplate->setModulePrivate();
9176       }
9177     }
9178 
9179     if (isFriend) {
9180       if (FunctionTemplate) {
9181         FunctionTemplate->setObjectOfFriendDecl();
9182         FunctionTemplate->setAccess(AS_public);
9183       }
9184       NewFD->setObjectOfFriendDecl();
9185       NewFD->setAccess(AS_public);
9186     }
9187 
9188     // If a function is defined as defaulted or deleted, mark it as such now.
9189     // We'll do the relevant checks on defaulted / deleted functions later.
9190     switch (D.getFunctionDefinitionKind()) {
9191     case FunctionDefinitionKind::Declaration:
9192     case FunctionDefinitionKind::Definition:
9193       break;
9194 
9195     case FunctionDefinitionKind::Defaulted:
9196       NewFD->setDefaulted();
9197       break;
9198 
9199     case FunctionDefinitionKind::Deleted:
9200       NewFD->setDeletedAsWritten();
9201       break;
9202     }
9203 
9204     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
9205         D.isFunctionDefinition()) {
9206       // C++ [class.mfct]p2:
9207       //   A member function may be defined (8.4) in its class definition, in
9208       //   which case it is an inline member function (7.1.2)
9209       NewFD->setImplicitlyInline();
9210     }
9211 
9212     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
9213         !CurContext->isRecord()) {
9214       // C++ [class.static]p1:
9215       //   A data or function member of a class may be declared static
9216       //   in a class definition, in which case it is a static member of
9217       //   the class.
9218 
9219       // Complain about the 'static' specifier if it's on an out-of-line
9220       // member function definition.
9221 
9222       // MSVC permits the use of a 'static' storage specifier on an out-of-line
9223       // member function template declaration and class member template
9224       // declaration (MSVC versions before 2015), warn about this.
9225       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
9226            ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
9227              cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) ||
9228            (getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate()))
9229            ? diag::ext_static_out_of_line : diag::err_static_out_of_line)
9230         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
9231     }
9232 
9233     // C++11 [except.spec]p15:
9234     //   A deallocation function with no exception-specification is treated
9235     //   as if it were specified with noexcept(true).
9236     const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
9237     if ((Name.getCXXOverloadedOperator() == OO_Delete ||
9238          Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
9239         getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
9240       NewFD->setType(Context.getFunctionType(
9241           FPT->getReturnType(), FPT->getParamTypes(),
9242           FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
9243   }
9244 
9245   // Filter out previous declarations that don't match the scope.
9246   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
9247                        D.getCXXScopeSpec().isNotEmpty() ||
9248                        isMemberSpecialization ||
9249                        isFunctionTemplateSpecialization);
9250 
9251   // Handle GNU asm-label extension (encoded as an attribute).
9252   if (Expr *E = (Expr*) D.getAsmLabel()) {
9253     // The parser guarantees this is a string.
9254     StringLiteral *SE = cast<StringLiteral>(E);
9255     NewFD->addAttr(AsmLabelAttr::Create(Context, SE->getString(),
9256                                         /*IsLiteralLabel=*/true,
9257                                         SE->getStrTokenLoc(0)));
9258   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
9259     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
9260       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
9261     if (I != ExtnameUndeclaredIdentifiers.end()) {
9262       if (isDeclExternC(NewFD)) {
9263         NewFD->addAttr(I->second);
9264         ExtnameUndeclaredIdentifiers.erase(I);
9265       } else
9266         Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
9267             << /*Variable*/0 << NewFD;
9268     }
9269   }
9270 
9271   // Copy the parameter declarations from the declarator D to the function
9272   // declaration NewFD, if they are available.  First scavenge them into Params.
9273   SmallVector<ParmVarDecl*, 16> Params;
9274   unsigned FTIIdx;
9275   if (D.isFunctionDeclarator(FTIIdx)) {
9276     DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun;
9277 
9278     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
9279     // function that takes no arguments, not a function that takes a
9280     // single void argument.
9281     // We let through "const void" here because Sema::GetTypeForDeclarator
9282     // already checks for that case.
9283     if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
9284       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
9285         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
9286         assert(Param->getDeclContext() != NewFD && "Was set before ?");
9287         Param->setDeclContext(NewFD);
9288         Params.push_back(Param);
9289 
9290         if (Param->isInvalidDecl())
9291           NewFD->setInvalidDecl();
9292       }
9293     }
9294 
9295     if (!getLangOpts().CPlusPlus) {
9296       // In C, find all the tag declarations from the prototype and move them
9297       // into the function DeclContext. Remove them from the surrounding tag
9298       // injection context of the function, which is typically but not always
9299       // the TU.
9300       DeclContext *PrototypeTagContext =
9301           getTagInjectionContext(NewFD->getLexicalDeclContext());
9302       for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) {
9303         auto *TD = dyn_cast<TagDecl>(NonParmDecl);
9304 
9305         // We don't want to reparent enumerators. Look at their parent enum
9306         // instead.
9307         if (!TD) {
9308           if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl))
9309             TD = cast<EnumDecl>(ECD->getDeclContext());
9310         }
9311         if (!TD)
9312           continue;
9313         DeclContext *TagDC = TD->getLexicalDeclContext();
9314         if (!TagDC->containsDecl(TD))
9315           continue;
9316         TagDC->removeDecl(TD);
9317         TD->setDeclContext(NewFD);
9318         NewFD->addDecl(TD);
9319 
9320         // Preserve the lexical DeclContext if it is not the surrounding tag
9321         // injection context of the FD. In this example, the semantic context of
9322         // E will be f and the lexical context will be S, while both the
9323         // semantic and lexical contexts of S will be f:
9324         //   void f(struct S { enum E { a } f; } s);
9325         if (TagDC != PrototypeTagContext)
9326           TD->setLexicalDeclContext(TagDC);
9327       }
9328     }
9329   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
9330     // When we're declaring a function with a typedef, typeof, etc as in the
9331     // following example, we'll need to synthesize (unnamed)
9332     // parameters for use in the declaration.
9333     //
9334     // @code
9335     // typedef void fn(int);
9336     // fn f;
9337     // @endcode
9338 
9339     // Synthesize a parameter for each argument type.
9340     for (const auto &AI : FT->param_types()) {
9341       ParmVarDecl *Param =
9342           BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
9343       Param->setScopeInfo(0, Params.size());
9344       Params.push_back(Param);
9345     }
9346   } else {
9347     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
9348            "Should not need args for typedef of non-prototype fn");
9349   }
9350 
9351   // Finally, we know we have the right number of parameters, install them.
9352   NewFD->setParams(Params);
9353 
9354   if (D.getDeclSpec().isNoreturnSpecified())
9355     NewFD->addAttr(C11NoReturnAttr::Create(Context,
9356                                            D.getDeclSpec().getNoreturnSpecLoc(),
9357                                            AttributeCommonInfo::AS_Keyword));
9358 
9359   // Functions returning a variably modified type violate C99 6.7.5.2p2
9360   // because all functions have linkage.
9361   if (!NewFD->isInvalidDecl() &&
9362       NewFD->getReturnType()->isVariablyModifiedType()) {
9363     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
9364     NewFD->setInvalidDecl();
9365   }
9366 
9367   // Apply an implicit SectionAttr if '#pragma clang section text' is active
9368   if (PragmaClangTextSection.Valid && D.isFunctionDefinition() &&
9369       !NewFD->hasAttr<SectionAttr>())
9370     NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(
9371         Context, PragmaClangTextSection.SectionName,
9372         PragmaClangTextSection.PragmaLocation, AttributeCommonInfo::AS_Pragma));
9373 
9374   // Apply an implicit SectionAttr if #pragma code_seg is active.
9375   if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
9376       !NewFD->hasAttr<SectionAttr>()) {
9377     NewFD->addAttr(SectionAttr::CreateImplicit(
9378         Context, CodeSegStack.CurrentValue->getString(),
9379         CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma,
9380         SectionAttr::Declspec_allocate));
9381     if (UnifySection(CodeSegStack.CurrentValue->getString(),
9382                      ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
9383                          ASTContext::PSF_Read,
9384                      NewFD))
9385       NewFD->dropAttr<SectionAttr>();
9386   }
9387 
9388   // Apply an implicit CodeSegAttr from class declspec or
9389   // apply an implicit SectionAttr from #pragma code_seg if active.
9390   if (!NewFD->hasAttr<CodeSegAttr>()) {
9391     if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD,
9392                                                                  D.isFunctionDefinition())) {
9393       NewFD->addAttr(SAttr);
9394     }
9395   }
9396 
9397   // Handle attributes.
9398   ProcessDeclAttributes(S, NewFD, D);
9399 
9400   if (getLangOpts().OpenCL) {
9401     // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
9402     // type declaration will generate a compilation error.
9403     LangAS AddressSpace = NewFD->getReturnType().getAddressSpace();
9404     if (AddressSpace != LangAS::Default) {
9405       Diag(NewFD->getLocation(),
9406            diag::err_opencl_return_value_with_address_space);
9407       NewFD->setInvalidDecl();
9408     }
9409   }
9410 
9411   if (!getLangOpts().CPlusPlus) {
9412     // Perform semantic checking on the function declaration.
9413     if (!NewFD->isInvalidDecl() && NewFD->isMain())
9414       CheckMain(NewFD, D.getDeclSpec());
9415 
9416     if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
9417       CheckMSVCRTEntryPoint(NewFD);
9418 
9419     if (!NewFD->isInvalidDecl())
9420       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
9421                                                   isMemberSpecialization));
9422     else if (!Previous.empty())
9423       // Recover gracefully from an invalid redeclaration.
9424       D.setRedeclaration(true);
9425     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
9426             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
9427            "previous declaration set still overloaded");
9428 
9429     // Diagnose no-prototype function declarations with calling conventions that
9430     // don't support variadic calls. Only do this in C and do it after merging
9431     // possibly prototyped redeclarations.
9432     const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
9433     if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
9434       CallingConv CC = FT->getExtInfo().getCC();
9435       if (!supportsVariadicCall(CC)) {
9436         // Windows system headers sometimes accidentally use stdcall without
9437         // (void) parameters, so we relax this to a warning.
9438         int DiagID =
9439             CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
9440         Diag(NewFD->getLocation(), DiagID)
9441             << FunctionType::getNameForCallConv(CC);
9442       }
9443     }
9444 
9445    if (NewFD->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() ||
9446        NewFD->getReturnType().hasNonTrivialToPrimitiveCopyCUnion())
9447      checkNonTrivialCUnion(NewFD->getReturnType(),
9448                            NewFD->getReturnTypeSourceRange().getBegin(),
9449                            NTCUC_FunctionReturn, NTCUK_Destruct|NTCUK_Copy);
9450   } else {
9451     // C++11 [replacement.functions]p3:
9452     //  The program's definitions shall not be specified as inline.
9453     //
9454     // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
9455     //
9456     // Suppress the diagnostic if the function is __attribute__((used)), since
9457     // that forces an external definition to be emitted.
9458     if (D.getDeclSpec().isInlineSpecified() &&
9459         NewFD->isReplaceableGlobalAllocationFunction() &&
9460         !NewFD->hasAttr<UsedAttr>())
9461       Diag(D.getDeclSpec().getInlineSpecLoc(),
9462            diag::ext_operator_new_delete_declared_inline)
9463         << NewFD->getDeclName();
9464 
9465     // If the declarator is a template-id, translate the parser's template
9466     // argument list into our AST format.
9467     if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
9468       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
9469       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
9470       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
9471       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
9472                                          TemplateId->NumArgs);
9473       translateTemplateArguments(TemplateArgsPtr,
9474                                  TemplateArgs);
9475 
9476       HasExplicitTemplateArgs = true;
9477 
9478       if (NewFD->isInvalidDecl()) {
9479         HasExplicitTemplateArgs = false;
9480       } else if (FunctionTemplate) {
9481         // Function template with explicit template arguments.
9482         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
9483           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
9484 
9485         HasExplicitTemplateArgs = false;
9486       } else {
9487         assert((isFunctionTemplateSpecialization ||
9488                 D.getDeclSpec().isFriendSpecified()) &&
9489                "should have a 'template<>' for this decl");
9490         // "friend void foo<>(int);" is an implicit specialization decl.
9491         isFunctionTemplateSpecialization = true;
9492       }
9493     } else if (isFriend && isFunctionTemplateSpecialization) {
9494       // This combination is only possible in a recovery case;  the user
9495       // wrote something like:
9496       //   template <> friend void foo(int);
9497       // which we're recovering from as if the user had written:
9498       //   friend void foo<>(int);
9499       // Go ahead and fake up a template id.
9500       HasExplicitTemplateArgs = true;
9501       TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
9502       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
9503     }
9504 
9505     // We do not add HD attributes to specializations here because
9506     // they may have different constexpr-ness compared to their
9507     // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
9508     // may end up with different effective targets. Instead, a
9509     // specialization inherits its target attributes from its template
9510     // in the CheckFunctionTemplateSpecialization() call below.
9511     if (getLangOpts().CUDA && !isFunctionTemplateSpecialization)
9512       maybeAddCUDAHostDeviceAttrs(NewFD, Previous);
9513 
9514     // If it's a friend (and only if it's a friend), it's possible
9515     // that either the specialized function type or the specialized
9516     // template is dependent, and therefore matching will fail.  In
9517     // this case, don't check the specialization yet.
9518     bool InstantiationDependent = false;
9519     if (isFunctionTemplateSpecialization && isFriend &&
9520         (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
9521          TemplateSpecializationType::anyDependentTemplateArguments(
9522             TemplateArgs,
9523             InstantiationDependent))) {
9524       assert(HasExplicitTemplateArgs &&
9525              "friend function specialization without template args");
9526       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
9527                                                        Previous))
9528         NewFD->setInvalidDecl();
9529     } else if (isFunctionTemplateSpecialization) {
9530       if (CurContext->isDependentContext() && CurContext->isRecord()
9531           && !isFriend) {
9532         isDependentClassScopeExplicitSpecialization = true;
9533       } else if (!NewFD->isInvalidDecl() &&
9534                  CheckFunctionTemplateSpecialization(
9535                      NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr),
9536                      Previous))
9537         NewFD->setInvalidDecl();
9538 
9539       // C++ [dcl.stc]p1:
9540       //   A storage-class-specifier shall not be specified in an explicit
9541       //   specialization (14.7.3)
9542       FunctionTemplateSpecializationInfo *Info =
9543           NewFD->getTemplateSpecializationInfo();
9544       if (Info && SC != SC_None) {
9545         if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
9546           Diag(NewFD->getLocation(),
9547                diag::err_explicit_specialization_inconsistent_storage_class)
9548             << SC
9549             << FixItHint::CreateRemoval(
9550                                       D.getDeclSpec().getStorageClassSpecLoc());
9551 
9552         else
9553           Diag(NewFD->getLocation(),
9554                diag::ext_explicit_specialization_storage_class)
9555             << FixItHint::CreateRemoval(
9556                                       D.getDeclSpec().getStorageClassSpecLoc());
9557       }
9558     } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) {
9559       if (CheckMemberSpecialization(NewFD, Previous))
9560           NewFD->setInvalidDecl();
9561     }
9562 
9563     // Perform semantic checking on the function declaration.
9564     if (!isDependentClassScopeExplicitSpecialization) {
9565       if (!NewFD->isInvalidDecl() && NewFD->isMain())
9566         CheckMain(NewFD, D.getDeclSpec());
9567 
9568       if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
9569         CheckMSVCRTEntryPoint(NewFD);
9570 
9571       if (!NewFD->isInvalidDecl())
9572         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
9573                                                     isMemberSpecialization));
9574       else if (!Previous.empty())
9575         // Recover gracefully from an invalid redeclaration.
9576         D.setRedeclaration(true);
9577     }
9578 
9579     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
9580             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
9581            "previous declaration set still overloaded");
9582 
9583     NamedDecl *PrincipalDecl = (FunctionTemplate
9584                                 ? cast<NamedDecl>(FunctionTemplate)
9585                                 : NewFD);
9586 
9587     if (isFriend && NewFD->getPreviousDecl()) {
9588       AccessSpecifier Access = AS_public;
9589       if (!NewFD->isInvalidDecl())
9590         Access = NewFD->getPreviousDecl()->getAccess();
9591 
9592       NewFD->setAccess(Access);
9593       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
9594     }
9595 
9596     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
9597         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
9598       PrincipalDecl->setNonMemberOperator();
9599 
9600     // If we have a function template, check the template parameter
9601     // list. This will check and merge default template arguments.
9602     if (FunctionTemplate) {
9603       FunctionTemplateDecl *PrevTemplate =
9604                                      FunctionTemplate->getPreviousDecl();
9605       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
9606                        PrevTemplate ? PrevTemplate->getTemplateParameters()
9607                                     : nullptr,
9608                             D.getDeclSpec().isFriendSpecified()
9609                               ? (D.isFunctionDefinition()
9610                                    ? TPC_FriendFunctionTemplateDefinition
9611                                    : TPC_FriendFunctionTemplate)
9612                               : (D.getCXXScopeSpec().isSet() &&
9613                                  DC && DC->isRecord() &&
9614                                  DC->isDependentContext())
9615                                   ? TPC_ClassTemplateMember
9616                                   : TPC_FunctionTemplate);
9617     }
9618 
9619     if (NewFD->isInvalidDecl()) {
9620       // Ignore all the rest of this.
9621     } else if (!D.isRedeclaration()) {
9622       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
9623                                        AddToScope };
9624       // Fake up an access specifier if it's supposed to be a class member.
9625       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
9626         NewFD->setAccess(AS_public);
9627 
9628       // Qualified decls generally require a previous declaration.
9629       if (D.getCXXScopeSpec().isSet()) {
9630         // ...with the major exception of templated-scope or
9631         // dependent-scope friend declarations.
9632 
9633         // TODO: we currently also suppress this check in dependent
9634         // contexts because (1) the parameter depth will be off when
9635         // matching friend templates and (2) we might actually be
9636         // selecting a friend based on a dependent factor.  But there
9637         // are situations where these conditions don't apply and we
9638         // can actually do this check immediately.
9639         //
9640         // Unless the scope is dependent, it's always an error if qualified
9641         // redeclaration lookup found nothing at all. Diagnose that now;
9642         // nothing will diagnose that error later.
9643         if (isFriend &&
9644             (D.getCXXScopeSpec().getScopeRep()->isDependent() ||
9645              (!Previous.empty() && CurContext->isDependentContext()))) {
9646           // ignore these
9647         } else {
9648           // The user tried to provide an out-of-line definition for a
9649           // function that is a member of a class or namespace, but there
9650           // was no such member function declared (C++ [class.mfct]p2,
9651           // C++ [namespace.memdef]p2). For example:
9652           //
9653           // class X {
9654           //   void f() const;
9655           // };
9656           //
9657           // void X::f() { } // ill-formed
9658           //
9659           // Complain about this problem, and attempt to suggest close
9660           // matches (e.g., those that differ only in cv-qualifiers and
9661           // whether the parameter types are references).
9662 
9663           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9664                   *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
9665             AddToScope = ExtraArgs.AddToScope;
9666             return Result;
9667           }
9668         }
9669 
9670         // Unqualified local friend declarations are required to resolve
9671         // to something.
9672       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
9673         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9674                 *this, Previous, NewFD, ExtraArgs, true, S)) {
9675           AddToScope = ExtraArgs.AddToScope;
9676           return Result;
9677         }
9678       }
9679     } else if (!D.isFunctionDefinition() &&
9680                isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
9681                !isFriend && !isFunctionTemplateSpecialization &&
9682                !isMemberSpecialization) {
9683       // An out-of-line member function declaration must also be a
9684       // definition (C++ [class.mfct]p2).
9685       // Note that this is not the case for explicit specializations of
9686       // function templates or member functions of class templates, per
9687       // C++ [temp.expl.spec]p2. We also allow these declarations as an
9688       // extension for compatibility with old SWIG code which likes to
9689       // generate them.
9690       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
9691         << D.getCXXScopeSpec().getRange();
9692     }
9693   }
9694 
9695   // If this is the first declaration of a library builtin function, add
9696   // attributes as appropriate.
9697   if (!D.isRedeclaration() &&
9698       NewFD->getDeclContext()->getRedeclContext()->isFileContext()) {
9699     if (IdentifierInfo *II = Previous.getLookupName().getAsIdentifierInfo()) {
9700       if (unsigned BuiltinID = II->getBuiltinID()) {
9701         if (NewFD->getLanguageLinkage() == CLanguageLinkage) {
9702           // Validate the type matches unless this builtin is specified as
9703           // matching regardless of its declared type.
9704           if (Context.BuiltinInfo.allowTypeMismatch(BuiltinID)) {
9705             NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
9706           } else {
9707             ASTContext::GetBuiltinTypeError Error;
9708             LookupNecessaryTypesForBuiltin(S, BuiltinID);
9709             QualType BuiltinType = Context.GetBuiltinType(BuiltinID, Error);
9710 
9711             if (!Error && !BuiltinType.isNull() &&
9712                 Context.hasSameFunctionTypeIgnoringExceptionSpec(
9713                     NewFD->getType(), BuiltinType))
9714               NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
9715           }
9716         } else if (BuiltinID == Builtin::BI__GetExceptionInfo &&
9717                    Context.getTargetInfo().getCXXABI().isMicrosoft()) {
9718           // FIXME: We should consider this a builtin only in the std namespace.
9719           NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
9720         }
9721       }
9722     }
9723   }
9724 
9725   ProcessPragmaWeak(S, NewFD);
9726   checkAttributesAfterMerging(*this, *NewFD);
9727 
9728   AddKnownFunctionAttributes(NewFD);
9729 
9730   if (NewFD->hasAttr<OverloadableAttr>() &&
9731       !NewFD->getType()->getAs<FunctionProtoType>()) {
9732     Diag(NewFD->getLocation(),
9733          diag::err_attribute_overloadable_no_prototype)
9734       << NewFD;
9735 
9736     // Turn this into a variadic function with no parameters.
9737     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
9738     FunctionProtoType::ExtProtoInfo EPI(
9739         Context.getDefaultCallingConvention(true, false));
9740     EPI.Variadic = true;
9741     EPI.ExtInfo = FT->getExtInfo();
9742 
9743     QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
9744     NewFD->setType(R);
9745   }
9746 
9747   // If there's a #pragma GCC visibility in scope, and this isn't a class
9748   // member, set the visibility of this function.
9749   if (!DC->isRecord() && NewFD->isExternallyVisible())
9750     AddPushedVisibilityAttribute(NewFD);
9751 
9752   // If there's a #pragma clang arc_cf_code_audited in scope, consider
9753   // marking the function.
9754   AddCFAuditedAttribute(NewFD);
9755 
9756   // If this is a function definition, check if we have to apply optnone due to
9757   // a pragma.
9758   if(D.isFunctionDefinition())
9759     AddRangeBasedOptnone(NewFD);
9760 
9761   // If this is the first declaration of an extern C variable, update
9762   // the map of such variables.
9763   if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
9764       isIncompleteDeclExternC(*this, NewFD))
9765     RegisterLocallyScopedExternCDecl(NewFD, S);
9766 
9767   // Set this FunctionDecl's range up to the right paren.
9768   NewFD->setRangeEnd(D.getSourceRange().getEnd());
9769 
9770   if (D.isRedeclaration() && !Previous.empty()) {
9771     NamedDecl *Prev = Previous.getRepresentativeDecl();
9772     checkDLLAttributeRedeclaration(*this, Prev, NewFD,
9773                                    isMemberSpecialization ||
9774                                        isFunctionTemplateSpecialization,
9775                                    D.isFunctionDefinition());
9776   }
9777 
9778   if (getLangOpts().CUDA) {
9779     IdentifierInfo *II = NewFD->getIdentifier();
9780     if (II && II->isStr(getCudaConfigureFuncName()) &&
9781         !NewFD->isInvalidDecl() &&
9782         NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
9783       if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
9784         Diag(NewFD->getLocation(), diag::err_config_scalar_return)
9785             << getCudaConfigureFuncName();
9786       Context.setcudaConfigureCallDecl(NewFD);
9787     }
9788 
9789     // Variadic functions, other than a *declaration* of printf, are not allowed
9790     // in device-side CUDA code, unless someone passed
9791     // -fcuda-allow-variadic-functions.
9792     if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
9793         (NewFD->hasAttr<CUDADeviceAttr>() ||
9794          NewFD->hasAttr<CUDAGlobalAttr>()) &&
9795         !(II && II->isStr("printf") && NewFD->isExternC() &&
9796           !D.isFunctionDefinition())) {
9797       Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
9798     }
9799   }
9800 
9801   MarkUnusedFileScopedDecl(NewFD);
9802 
9803 
9804 
9805   if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) {
9806     // OpenCL v1.2 s6.8 static is invalid for kernel functions.
9807     if ((getLangOpts().OpenCLVersion >= 120)
9808         && (SC == SC_Static)) {
9809       Diag(D.getIdentifierLoc(), diag::err_static_kernel);
9810       D.setInvalidType();
9811     }
9812 
9813     // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
9814     if (!NewFD->getReturnType()->isVoidType()) {
9815       SourceRange RTRange = NewFD->getReturnTypeSourceRange();
9816       Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
9817           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
9818                                 : FixItHint());
9819       D.setInvalidType();
9820     }
9821 
9822     llvm::SmallPtrSet<const Type *, 16> ValidTypes;
9823     for (auto Param : NewFD->parameters())
9824       checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
9825 
9826     if (getLangOpts().OpenCLCPlusPlus) {
9827       if (DC->isRecord()) {
9828         Diag(D.getIdentifierLoc(), diag::err_method_kernel);
9829         D.setInvalidType();
9830       }
9831       if (FunctionTemplate) {
9832         Diag(D.getIdentifierLoc(), diag::err_template_kernel);
9833         D.setInvalidType();
9834       }
9835     }
9836   }
9837 
9838   if (getLangOpts().CPlusPlus) {
9839     if (FunctionTemplate) {
9840       if (NewFD->isInvalidDecl())
9841         FunctionTemplate->setInvalidDecl();
9842       return FunctionTemplate;
9843     }
9844 
9845     if (isMemberSpecialization && !NewFD->isInvalidDecl())
9846       CompleteMemberSpecialization(NewFD, Previous);
9847   }
9848 
9849   for (const ParmVarDecl *Param : NewFD->parameters()) {
9850     QualType PT = Param->getType();
9851 
9852     // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
9853     // types.
9854     if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) {
9855       if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
9856         QualType ElemTy = PipeTy->getElementType();
9857           if (ElemTy->isReferenceType() || ElemTy->isPointerType()) {
9858             Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type );
9859             D.setInvalidType();
9860           }
9861       }
9862     }
9863   }
9864 
9865   // Here we have an function template explicit specialization at class scope.
9866   // The actual specialization will be postponed to template instatiation
9867   // time via the ClassScopeFunctionSpecializationDecl node.
9868   if (isDependentClassScopeExplicitSpecialization) {
9869     ClassScopeFunctionSpecializationDecl *NewSpec =
9870                          ClassScopeFunctionSpecializationDecl::Create(
9871                                 Context, CurContext, NewFD->getLocation(),
9872                                 cast<CXXMethodDecl>(NewFD),
9873                                 HasExplicitTemplateArgs, TemplateArgs);
9874     CurContext->addDecl(NewSpec);
9875     AddToScope = false;
9876   }
9877 
9878   // Diagnose availability attributes. Availability cannot be used on functions
9879   // that are run during load/unload.
9880   if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) {
9881     if (NewFD->hasAttr<ConstructorAttr>()) {
9882       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9883           << 1;
9884       NewFD->dropAttr<AvailabilityAttr>();
9885     }
9886     if (NewFD->hasAttr<DestructorAttr>()) {
9887       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9888           << 2;
9889       NewFD->dropAttr<AvailabilityAttr>();
9890     }
9891   }
9892 
9893   // Diagnose no_builtin attribute on function declaration that are not a
9894   // definition.
9895   // FIXME: We should really be doing this in
9896   // SemaDeclAttr.cpp::handleNoBuiltinAttr, unfortunately we only have access to
9897   // the FunctionDecl and at this point of the code
9898   // FunctionDecl::isThisDeclarationADefinition() which always returns `false`
9899   // because Sema::ActOnStartOfFunctionDef has not been called yet.
9900   if (const auto *NBA = NewFD->getAttr<NoBuiltinAttr>())
9901     switch (D.getFunctionDefinitionKind()) {
9902     case FunctionDefinitionKind::Defaulted:
9903     case FunctionDefinitionKind::Deleted:
9904       Diag(NBA->getLocation(),
9905            diag::err_attribute_no_builtin_on_defaulted_deleted_function)
9906           << NBA->getSpelling();
9907       break;
9908     case FunctionDefinitionKind::Declaration:
9909       Diag(NBA->getLocation(), diag::err_attribute_no_builtin_on_non_definition)
9910           << NBA->getSpelling();
9911       break;
9912     case FunctionDefinitionKind::Definition:
9913       break;
9914     }
9915 
9916   return NewFD;
9917 }
9918 
9919 /// Return a CodeSegAttr from a containing class.  The Microsoft docs say
9920 /// when __declspec(code_seg) "is applied to a class, all member functions of
9921 /// the class and nested classes -- this includes compiler-generated special
9922 /// member functions -- are put in the specified segment."
9923 /// The actual behavior is a little more complicated. The Microsoft compiler
9924 /// won't check outer classes if there is an active value from #pragma code_seg.
9925 /// The CodeSeg is always applied from the direct parent but only from outer
9926 /// classes when the #pragma code_seg stack is empty. See:
9927 /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
9928 /// available since MS has removed the page.
getImplicitCodeSegAttrFromClass(Sema & S,const FunctionDecl * FD)9929 static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) {
9930   const auto *Method = dyn_cast<CXXMethodDecl>(FD);
9931   if (!Method)
9932     return nullptr;
9933   const CXXRecordDecl *Parent = Method->getParent();
9934   if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
9935     Attr *NewAttr = SAttr->clone(S.getASTContext());
9936     NewAttr->setImplicit(true);
9937     return NewAttr;
9938   }
9939 
9940   // The Microsoft compiler won't check outer classes for the CodeSeg
9941   // when the #pragma code_seg stack is active.
9942   if (S.CodeSegStack.CurrentValue)
9943    return nullptr;
9944 
9945   while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) {
9946     if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
9947       Attr *NewAttr = SAttr->clone(S.getASTContext());
9948       NewAttr->setImplicit(true);
9949       return NewAttr;
9950     }
9951   }
9952   return nullptr;
9953 }
9954 
9955 /// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
9956 /// containing class. Otherwise it will return implicit SectionAttr if the
9957 /// function is a definition and there is an active value on CodeSegStack
9958 /// (from the current #pragma code-seg value).
9959 ///
9960 /// \param FD Function being declared.
9961 /// \param IsDefinition Whether it is a definition or just a declarartion.
9962 /// \returns A CodeSegAttr or SectionAttr to apply to the function or
9963 ///          nullptr if no attribute should be added.
getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl * FD,bool IsDefinition)9964 Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
9965                                                        bool IsDefinition) {
9966   if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD))
9967     return A;
9968   if (!FD->hasAttr<SectionAttr>() && IsDefinition &&
9969       CodeSegStack.CurrentValue)
9970     return SectionAttr::CreateImplicit(
9971         getASTContext(), CodeSegStack.CurrentValue->getString(),
9972         CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma,
9973         SectionAttr::Declspec_allocate);
9974   return nullptr;
9975 }
9976 
9977 /// Determines if we can perform a correct type check for \p D as a
9978 /// redeclaration of \p PrevDecl. If not, we can generally still perform a
9979 /// best-effort check.
9980 ///
9981 /// \param NewD The new declaration.
9982 /// \param OldD The old declaration.
9983 /// \param NewT The portion of the type of the new declaration to check.
9984 /// \param OldT The portion of the type of the old declaration to check.
canFullyTypeCheckRedeclaration(ValueDecl * NewD,ValueDecl * OldD,QualType NewT,QualType OldT)9985 bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
9986                                           QualType NewT, QualType OldT) {
9987   if (!NewD->getLexicalDeclContext()->isDependentContext())
9988     return true;
9989 
9990   // For dependently-typed local extern declarations and friends, we can't
9991   // perform a correct type check in general until instantiation:
9992   //
9993   //   int f();
9994   //   template<typename T> void g() { T f(); }
9995   //
9996   // (valid if g() is only instantiated with T = int).
9997   if (NewT->isDependentType() &&
9998       (NewD->isLocalExternDecl() || NewD->getFriendObjectKind()))
9999     return false;
10000 
10001   // Similarly, if the previous declaration was a dependent local extern
10002   // declaration, we don't really know its type yet.
10003   if (OldT->isDependentType() && OldD->isLocalExternDecl())
10004     return false;
10005 
10006   return true;
10007 }
10008 
10009 /// Checks if the new declaration declared in dependent context must be
10010 /// put in the same redeclaration chain as the specified declaration.
10011 ///
10012 /// \param D Declaration that is checked.
10013 /// \param PrevDecl Previous declaration found with proper lookup method for the
10014 ///                 same declaration name.
10015 /// \returns True if D must be added to the redeclaration chain which PrevDecl
10016 ///          belongs to.
10017 ///
shouldLinkDependentDeclWithPrevious(Decl * D,Decl * PrevDecl)10018 bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) {
10019   if (!D->getLexicalDeclContext()->isDependentContext())
10020     return true;
10021 
10022   // Don't chain dependent friend function definitions until instantiation, to
10023   // permit cases like
10024   //
10025   //   void func();
10026   //   template<typename T> class C1 { friend void func() {} };
10027   //   template<typename T> class C2 { friend void func() {} };
10028   //
10029   // ... which is valid if only one of C1 and C2 is ever instantiated.
10030   //
10031   // FIXME: This need only apply to function definitions. For now, we proxy
10032   // this by checking for a file-scope function. We do not want this to apply
10033   // to friend declarations nominating member functions, because that gets in
10034   // the way of access checks.
10035   if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext())
10036     return false;
10037 
10038   auto *VD = dyn_cast<ValueDecl>(D);
10039   auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl);
10040   return !VD || !PrevVD ||
10041          canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(),
10042                                         PrevVD->getType());
10043 }
10044 
10045 /// Check the target attribute of the function for MultiVersion
10046 /// validity.
10047 ///
10048 /// Returns true if there was an error, false otherwise.
CheckMultiVersionValue(Sema & S,const FunctionDecl * FD)10049 static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) {
10050   const auto *TA = FD->getAttr<TargetAttr>();
10051   assert(TA && "MultiVersion Candidate requires a target attribute");
10052   ParsedTargetAttr ParseInfo = TA->parse();
10053   const TargetInfo &TargetInfo = S.Context.getTargetInfo();
10054   enum ErrType { Feature = 0, Architecture = 1 };
10055 
10056   if (!ParseInfo.Architecture.empty() &&
10057       !TargetInfo.validateCpuIs(ParseInfo.Architecture)) {
10058     S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
10059         << Architecture << ParseInfo.Architecture;
10060     return true;
10061   }
10062 
10063   for (const auto &Feat : ParseInfo.Features) {
10064     auto BareFeat = StringRef{Feat}.substr(1);
10065     if (Feat[0] == '-') {
10066       S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
10067           << Feature << ("no-" + BareFeat).str();
10068       return true;
10069     }
10070 
10071     if (!TargetInfo.validateCpuSupports(BareFeat) ||
10072         !TargetInfo.isValidFeatureName(BareFeat)) {
10073       S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
10074           << Feature << BareFeat;
10075       return true;
10076     }
10077   }
10078   return false;
10079 }
10080 
10081 // Provide a white-list of attributes that are allowed to be combined with
10082 // multiversion functions.
AttrCompatibleWithMultiVersion(attr::Kind Kind,MultiVersionKind MVType)10083 static bool AttrCompatibleWithMultiVersion(attr::Kind Kind,
10084                                            MultiVersionKind MVType) {
10085   // Note: this list/diagnosis must match the list in
10086   // checkMultiversionAttributesAllSame.
10087   switch (Kind) {
10088   default:
10089     return false;
10090   case attr::Used:
10091     return MVType == MultiVersionKind::Target;
10092   case attr::NonNull:
10093   case attr::NoThrow:
10094     return true;
10095   }
10096 }
10097 
checkNonMultiVersionCompatAttributes(Sema & S,const FunctionDecl * FD,const FunctionDecl * CausedFD,MultiVersionKind MVType)10098 static bool checkNonMultiVersionCompatAttributes(Sema &S,
10099                                                  const FunctionDecl *FD,
10100                                                  const FunctionDecl *CausedFD,
10101                                                  MultiVersionKind MVType) {
10102   bool IsCPUSpecificCPUDispatchMVType =
10103       MVType == MultiVersionKind::CPUDispatch ||
10104       MVType == MultiVersionKind::CPUSpecific;
10105   const auto Diagnose = [FD, CausedFD, IsCPUSpecificCPUDispatchMVType](
10106                             Sema &S, const Attr *A) {
10107     S.Diag(FD->getLocation(), diag::err_multiversion_disallowed_other_attr)
10108         << IsCPUSpecificCPUDispatchMVType << A;
10109     if (CausedFD)
10110       S.Diag(CausedFD->getLocation(), diag::note_multiversioning_caused_here);
10111     return true;
10112   };
10113 
10114   for (const Attr *A : FD->attrs()) {
10115     switch (A->getKind()) {
10116     case attr::CPUDispatch:
10117     case attr::CPUSpecific:
10118       if (MVType != MultiVersionKind::CPUDispatch &&
10119           MVType != MultiVersionKind::CPUSpecific)
10120         return Diagnose(S, A);
10121       break;
10122     case attr::Target:
10123       if (MVType != MultiVersionKind::Target)
10124         return Diagnose(S, A);
10125       break;
10126     default:
10127       if (!AttrCompatibleWithMultiVersion(A->getKind(), MVType))
10128         return Diagnose(S, A);
10129       break;
10130     }
10131   }
10132   return false;
10133 }
10134 
areMultiversionVariantFunctionsCompatible(const FunctionDecl * OldFD,const FunctionDecl * NewFD,const PartialDiagnostic & NoProtoDiagID,const PartialDiagnosticAt & NoteCausedDiagIDAt,const PartialDiagnosticAt & NoSupportDiagIDAt,const PartialDiagnosticAt & DiffDiagIDAt,bool TemplatesSupported,bool ConstexprSupported,bool CLinkageMayDiffer)10135 bool Sema::areMultiversionVariantFunctionsCompatible(
10136     const FunctionDecl *OldFD, const FunctionDecl *NewFD,
10137     const PartialDiagnostic &NoProtoDiagID,
10138     const PartialDiagnosticAt &NoteCausedDiagIDAt,
10139     const PartialDiagnosticAt &NoSupportDiagIDAt,
10140     const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported,
10141     bool ConstexprSupported, bool CLinkageMayDiffer) {
10142   enum DoesntSupport {
10143     FuncTemplates = 0,
10144     VirtFuncs = 1,
10145     DeducedReturn = 2,
10146     Constructors = 3,
10147     Destructors = 4,
10148     DeletedFuncs = 5,
10149     DefaultedFuncs = 6,
10150     ConstexprFuncs = 7,
10151     ConstevalFuncs = 8,
10152   };
10153   enum Different {
10154     CallingConv = 0,
10155     ReturnType = 1,
10156     ConstexprSpec = 2,
10157     InlineSpec = 3,
10158     StorageClass = 4,
10159     Linkage = 5,
10160   };
10161 
10162   if (NoProtoDiagID.getDiagID() != 0 && OldFD &&
10163       !OldFD->getType()->getAs<FunctionProtoType>()) {
10164     Diag(OldFD->getLocation(), NoProtoDiagID);
10165     Diag(NoteCausedDiagIDAt.first, NoteCausedDiagIDAt.second);
10166     return true;
10167   }
10168 
10169   if (NoProtoDiagID.getDiagID() != 0 &&
10170       !NewFD->getType()->getAs<FunctionProtoType>())
10171     return Diag(NewFD->getLocation(), NoProtoDiagID);
10172 
10173   if (!TemplatesSupported &&
10174       NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
10175     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10176            << FuncTemplates;
10177 
10178   if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) {
10179     if (NewCXXFD->isVirtual())
10180       return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10181              << VirtFuncs;
10182 
10183     if (isa<CXXConstructorDecl>(NewCXXFD))
10184       return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10185              << Constructors;
10186 
10187     if (isa<CXXDestructorDecl>(NewCXXFD))
10188       return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10189              << Destructors;
10190   }
10191 
10192   if (NewFD->isDeleted())
10193     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10194            << DeletedFuncs;
10195 
10196   if (NewFD->isDefaulted())
10197     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10198            << DefaultedFuncs;
10199 
10200   if (!ConstexprSupported && NewFD->isConstexpr())
10201     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10202            << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs);
10203 
10204   QualType NewQType = Context.getCanonicalType(NewFD->getType());
10205   const auto *NewType = cast<FunctionType>(NewQType);
10206   QualType NewReturnType = NewType->getReturnType();
10207 
10208   if (NewReturnType->isUndeducedType())
10209     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10210            << DeducedReturn;
10211 
10212   // Ensure the return type is identical.
10213   if (OldFD) {
10214     QualType OldQType = Context.getCanonicalType(OldFD->getType());
10215     const auto *OldType = cast<FunctionType>(OldQType);
10216     FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
10217     FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
10218 
10219     if (OldTypeInfo.getCC() != NewTypeInfo.getCC())
10220       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << CallingConv;
10221 
10222     QualType OldReturnType = OldType->getReturnType();
10223 
10224     if (OldReturnType != NewReturnType)
10225       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ReturnType;
10226 
10227     if (OldFD->getConstexprKind() != NewFD->getConstexprKind())
10228       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ConstexprSpec;
10229 
10230     if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified())
10231       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << InlineSpec;
10232 
10233     if (OldFD->getStorageClass() != NewFD->getStorageClass())
10234       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << StorageClass;
10235 
10236     if (!CLinkageMayDiffer && OldFD->isExternC() != NewFD->isExternC())
10237       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << Linkage;
10238 
10239     if (CheckEquivalentExceptionSpec(
10240             OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(),
10241             NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation()))
10242       return true;
10243   }
10244   return false;
10245 }
10246 
CheckMultiVersionAdditionalRules(Sema & S,const FunctionDecl * OldFD,const FunctionDecl * NewFD,bool CausesMV,MultiVersionKind MVType)10247 static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD,
10248                                              const FunctionDecl *NewFD,
10249                                              bool CausesMV,
10250                                              MultiVersionKind MVType) {
10251   if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
10252     S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
10253     if (OldFD)
10254       S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10255     return true;
10256   }
10257 
10258   bool IsCPUSpecificCPUDispatchMVType =
10259       MVType == MultiVersionKind::CPUDispatch ||
10260       MVType == MultiVersionKind::CPUSpecific;
10261 
10262   if (CausesMV && OldFD &&
10263       checkNonMultiVersionCompatAttributes(S, OldFD, NewFD, MVType))
10264     return true;
10265 
10266   if (checkNonMultiVersionCompatAttributes(S, NewFD, nullptr, MVType))
10267     return true;
10268 
10269   // Only allow transition to MultiVersion if it hasn't been used.
10270   if (OldFD && CausesMV && OldFD->isUsed(false))
10271     return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
10272 
10273   return S.areMultiversionVariantFunctionsCompatible(
10274       OldFD, NewFD, S.PDiag(diag::err_multiversion_noproto),
10275       PartialDiagnosticAt(NewFD->getLocation(),
10276                           S.PDiag(diag::note_multiversioning_caused_here)),
10277       PartialDiagnosticAt(NewFD->getLocation(),
10278                           S.PDiag(diag::err_multiversion_doesnt_support)
10279                               << IsCPUSpecificCPUDispatchMVType),
10280       PartialDiagnosticAt(NewFD->getLocation(),
10281                           S.PDiag(diag::err_multiversion_diff)),
10282       /*TemplatesSupported=*/false,
10283       /*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVType,
10284       /*CLinkageMayDiffer=*/false);
10285 }
10286 
10287 /// Check the validity of a multiversion function declaration that is the
10288 /// first of its kind. Also sets the multiversion'ness' of the function itself.
10289 ///
10290 /// This sets NewFD->isInvalidDecl() to true if there was an error.
10291 ///
10292 /// Returns true if there was an error, false otherwise.
CheckMultiVersionFirstFunction(Sema & S,FunctionDecl * FD,MultiVersionKind MVType,const TargetAttr * TA)10293 static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD,
10294                                            MultiVersionKind MVType,
10295                                            const TargetAttr *TA) {
10296   assert(MVType != MultiVersionKind::None &&
10297          "Function lacks multiversion attribute");
10298 
10299   // Target only causes MV if it is default, otherwise this is a normal
10300   // function.
10301   if (MVType == MultiVersionKind::Target && !TA->isDefaultVersion())
10302     return false;
10303 
10304   if (MVType == MultiVersionKind::Target && CheckMultiVersionValue(S, FD)) {
10305     FD->setInvalidDecl();
10306     return true;
10307   }
10308 
10309   if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVType)) {
10310     FD->setInvalidDecl();
10311     return true;
10312   }
10313 
10314   FD->setIsMultiVersion();
10315   return false;
10316 }
10317 
PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl * FD)10318 static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) {
10319   for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) {
10320     if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None)
10321       return true;
10322   }
10323 
10324   return false;
10325 }
10326 
CheckTargetCausesMultiVersioning(Sema & S,FunctionDecl * OldFD,FunctionDecl * NewFD,const TargetAttr * NewTA,bool & Redeclaration,NamedDecl * & OldDecl,bool & MergeTypeWithPrevious,LookupResult & Previous)10327 static bool CheckTargetCausesMultiVersioning(
10328     Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA,
10329     bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
10330     LookupResult &Previous) {
10331   const auto *OldTA = OldFD->getAttr<TargetAttr>();
10332   ParsedTargetAttr NewParsed = NewTA->parse();
10333   // Sort order doesn't matter, it just needs to be consistent.
10334   llvm::sort(NewParsed.Features);
10335 
10336   // If the old decl is NOT MultiVersioned yet, and we don't cause that
10337   // to change, this is a simple redeclaration.
10338   if (!NewTA->isDefaultVersion() &&
10339       (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr()))
10340     return false;
10341 
10342   // Otherwise, this decl causes MultiVersioning.
10343   if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
10344     S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
10345     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10346     NewFD->setInvalidDecl();
10347     return true;
10348   }
10349 
10350   if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true,
10351                                        MultiVersionKind::Target)) {
10352     NewFD->setInvalidDecl();
10353     return true;
10354   }
10355 
10356   if (CheckMultiVersionValue(S, NewFD)) {
10357     NewFD->setInvalidDecl();
10358     return true;
10359   }
10360 
10361   // If this is 'default', permit the forward declaration.
10362   if (!OldFD->isMultiVersion() && !OldTA && NewTA->isDefaultVersion()) {
10363     Redeclaration = true;
10364     OldDecl = OldFD;
10365     OldFD->setIsMultiVersion();
10366     NewFD->setIsMultiVersion();
10367     return false;
10368   }
10369 
10370   if (CheckMultiVersionValue(S, OldFD)) {
10371     S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
10372     NewFD->setInvalidDecl();
10373     return true;
10374   }
10375 
10376   ParsedTargetAttr OldParsed = OldTA->parse(std::less<std::string>());
10377 
10378   if (OldParsed == NewParsed) {
10379     S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
10380     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10381     NewFD->setInvalidDecl();
10382     return true;
10383   }
10384 
10385   for (const auto *FD : OldFD->redecls()) {
10386     const auto *CurTA = FD->getAttr<TargetAttr>();
10387     // We allow forward declarations before ANY multiversioning attributes, but
10388     // nothing after the fact.
10389     if (PreviousDeclsHaveMultiVersionAttribute(FD) &&
10390         (!CurTA || CurTA->isInherited())) {
10391       S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl)
10392           << 0;
10393       S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
10394       NewFD->setInvalidDecl();
10395       return true;
10396     }
10397   }
10398 
10399   OldFD->setIsMultiVersion();
10400   NewFD->setIsMultiVersion();
10401   Redeclaration = false;
10402   MergeTypeWithPrevious = false;
10403   OldDecl = nullptr;
10404   Previous.clear();
10405   return false;
10406 }
10407 
10408 /// Check the validity of a new function declaration being added to an existing
10409 /// multiversioned declaration collection.
CheckMultiVersionAdditionalDecl(Sema & S,FunctionDecl * OldFD,FunctionDecl * NewFD,MultiVersionKind NewMVType,const TargetAttr * NewTA,const CPUDispatchAttr * NewCPUDisp,const CPUSpecificAttr * NewCPUSpec,bool & Redeclaration,NamedDecl * & OldDecl,bool & MergeTypeWithPrevious,LookupResult & Previous)10410 static bool CheckMultiVersionAdditionalDecl(
10411     Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD,
10412     MultiVersionKind NewMVType, const TargetAttr *NewTA,
10413     const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec,
10414     bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
10415     LookupResult &Previous) {
10416 
10417   MultiVersionKind OldMVType = OldFD->getMultiVersionKind();
10418   // Disallow mixing of multiversioning types.
10419   if ((OldMVType == MultiVersionKind::Target &&
10420        NewMVType != MultiVersionKind::Target) ||
10421       (NewMVType == MultiVersionKind::Target &&
10422        OldMVType != MultiVersionKind::Target)) {
10423     S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
10424     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10425     NewFD->setInvalidDecl();
10426     return true;
10427   }
10428 
10429   ParsedTargetAttr NewParsed;
10430   if (NewTA) {
10431     NewParsed = NewTA->parse();
10432     llvm::sort(NewParsed.Features);
10433   }
10434 
10435   bool UseMemberUsingDeclRules =
10436       S.CurContext->isRecord() && !NewFD->getFriendObjectKind();
10437 
10438   // Next, check ALL non-overloads to see if this is a redeclaration of a
10439   // previous member of the MultiVersion set.
10440   for (NamedDecl *ND : Previous) {
10441     FunctionDecl *CurFD = ND->getAsFunction();
10442     if (!CurFD)
10443       continue;
10444     if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules))
10445       continue;
10446 
10447     if (NewMVType == MultiVersionKind::Target) {
10448       const auto *CurTA = CurFD->getAttr<TargetAttr>();
10449       if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) {
10450         NewFD->setIsMultiVersion();
10451         Redeclaration = true;
10452         OldDecl = ND;
10453         return false;
10454       }
10455 
10456       ParsedTargetAttr CurParsed = CurTA->parse(std::less<std::string>());
10457       if (CurParsed == NewParsed) {
10458         S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
10459         S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10460         NewFD->setInvalidDecl();
10461         return true;
10462       }
10463     } else {
10464       const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>();
10465       const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>();
10466       // Handle CPUDispatch/CPUSpecific versions.
10467       // Only 1 CPUDispatch function is allowed, this will make it go through
10468       // the redeclaration errors.
10469       if (NewMVType == MultiVersionKind::CPUDispatch &&
10470           CurFD->hasAttr<CPUDispatchAttr>()) {
10471         if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() &&
10472             std::equal(
10473                 CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(),
10474                 NewCPUDisp->cpus_begin(),
10475                 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
10476                   return Cur->getName() == New->getName();
10477                 })) {
10478           NewFD->setIsMultiVersion();
10479           Redeclaration = true;
10480           OldDecl = ND;
10481           return false;
10482         }
10483 
10484         // If the declarations don't match, this is an error condition.
10485         S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch);
10486         S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10487         NewFD->setInvalidDecl();
10488         return true;
10489       }
10490       if (NewMVType == MultiVersionKind::CPUSpecific && CurCPUSpec) {
10491 
10492         if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() &&
10493             std::equal(
10494                 CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(),
10495                 NewCPUSpec->cpus_begin(),
10496                 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
10497                   return Cur->getName() == New->getName();
10498                 })) {
10499           NewFD->setIsMultiVersion();
10500           Redeclaration = true;
10501           OldDecl = ND;
10502           return false;
10503         }
10504 
10505         // Only 1 version of CPUSpecific is allowed for each CPU.
10506         for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) {
10507           for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) {
10508             if (CurII == NewII) {
10509               S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs)
10510                   << NewII;
10511               S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10512               NewFD->setInvalidDecl();
10513               return true;
10514             }
10515           }
10516         }
10517       }
10518       // If the two decls aren't the same MVType, there is no possible error
10519       // condition.
10520     }
10521   }
10522 
10523   // Else, this is simply a non-redecl case.  Checking the 'value' is only
10524   // necessary in the Target case, since The CPUSpecific/Dispatch cases are
10525   // handled in the attribute adding step.
10526   if (NewMVType == MultiVersionKind::Target &&
10527       CheckMultiVersionValue(S, NewFD)) {
10528     NewFD->setInvalidDecl();
10529     return true;
10530   }
10531 
10532   if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD,
10533                                        !OldFD->isMultiVersion(), NewMVType)) {
10534     NewFD->setInvalidDecl();
10535     return true;
10536   }
10537 
10538   // Permit forward declarations in the case where these two are compatible.
10539   if (!OldFD->isMultiVersion()) {
10540     OldFD->setIsMultiVersion();
10541     NewFD->setIsMultiVersion();
10542     Redeclaration = true;
10543     OldDecl = OldFD;
10544     return false;
10545   }
10546 
10547   NewFD->setIsMultiVersion();
10548   Redeclaration = false;
10549   MergeTypeWithPrevious = false;
10550   OldDecl = nullptr;
10551   Previous.clear();
10552   return false;
10553 }
10554 
10555 
10556 /// Check the validity of a mulitversion function declaration.
10557 /// Also sets the multiversion'ness' of the function itself.
10558 ///
10559 /// This sets NewFD->isInvalidDecl() to true if there was an error.
10560 ///
10561 /// Returns true if there was an error, false otherwise.
CheckMultiVersionFunction(Sema & S,FunctionDecl * NewFD,bool & Redeclaration,NamedDecl * & OldDecl,bool & MergeTypeWithPrevious,LookupResult & Previous)10562 static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD,
10563                                       bool &Redeclaration, NamedDecl *&OldDecl,
10564                                       bool &MergeTypeWithPrevious,
10565                                       LookupResult &Previous) {
10566   const auto *NewTA = NewFD->getAttr<TargetAttr>();
10567   const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>();
10568   const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>();
10569 
10570   // Mixing Multiversioning types is prohibited.
10571   if ((NewTA && NewCPUDisp) || (NewTA && NewCPUSpec) ||
10572       (NewCPUDisp && NewCPUSpec)) {
10573     S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
10574     NewFD->setInvalidDecl();
10575     return true;
10576   }
10577 
10578   MultiVersionKind  MVType = NewFD->getMultiVersionKind();
10579 
10580   // Main isn't allowed to become a multiversion function, however it IS
10581   // permitted to have 'main' be marked with the 'target' optimization hint.
10582   if (NewFD->isMain()) {
10583     if ((MVType == MultiVersionKind::Target && NewTA->isDefaultVersion()) ||
10584         MVType == MultiVersionKind::CPUDispatch ||
10585         MVType == MultiVersionKind::CPUSpecific) {
10586       S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main);
10587       NewFD->setInvalidDecl();
10588       return true;
10589     }
10590     return false;
10591   }
10592 
10593   if (!OldDecl || !OldDecl->getAsFunction() ||
10594       OldDecl->getDeclContext()->getRedeclContext() !=
10595           NewFD->getDeclContext()->getRedeclContext()) {
10596     // If there's no previous declaration, AND this isn't attempting to cause
10597     // multiversioning, this isn't an error condition.
10598     if (MVType == MultiVersionKind::None)
10599       return false;
10600     return CheckMultiVersionFirstFunction(S, NewFD, MVType, NewTA);
10601   }
10602 
10603   FunctionDecl *OldFD = OldDecl->getAsFunction();
10604 
10605   if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::None)
10606     return false;
10607 
10608   if (OldFD->isMultiVersion() && MVType == MultiVersionKind::None) {
10609     S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl)
10610         << (OldFD->getMultiVersionKind() != MultiVersionKind::Target);
10611     NewFD->setInvalidDecl();
10612     return true;
10613   }
10614 
10615   // Handle the target potentially causes multiversioning case.
10616   if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::Target)
10617     return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA,
10618                                             Redeclaration, OldDecl,
10619                                             MergeTypeWithPrevious, Previous);
10620 
10621   // At this point, we have a multiversion function decl (in OldFD) AND an
10622   // appropriate attribute in the current function decl.  Resolve that these are
10623   // still compatible with previous declarations.
10624   return CheckMultiVersionAdditionalDecl(
10625       S, OldFD, NewFD, MVType, NewTA, NewCPUDisp, NewCPUSpec, Redeclaration,
10626       OldDecl, MergeTypeWithPrevious, Previous);
10627 }
10628 
10629 /// Perform semantic checking of a new function declaration.
10630 ///
10631 /// Performs semantic analysis of the new function declaration
10632 /// NewFD. This routine performs all semantic checking that does not
10633 /// require the actual declarator involved in the declaration, and is
10634 /// used both for the declaration of functions as they are parsed
10635 /// (called via ActOnDeclarator) and for the declaration of functions
10636 /// that have been instantiated via C++ template instantiation (called
10637 /// via InstantiateDecl).
10638 ///
10639 /// \param IsMemberSpecialization whether this new function declaration is
10640 /// a member specialization (that replaces any definition provided by the
10641 /// previous declaration).
10642 ///
10643 /// This sets NewFD->isInvalidDecl() to true if there was an error.
10644 ///
10645 /// \returns true if the function declaration is a redeclaration.
CheckFunctionDeclaration(Scope * S,FunctionDecl * NewFD,LookupResult & Previous,bool IsMemberSpecialization)10646 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
10647                                     LookupResult &Previous,
10648                                     bool IsMemberSpecialization) {
10649   assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
10650          "Variably modified return types are not handled here");
10651 
10652   // Determine whether the type of this function should be merged with
10653   // a previous visible declaration. This never happens for functions in C++,
10654   // and always happens in C if the previous declaration was visible.
10655   bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
10656                                !Previous.isShadowed();
10657 
10658   bool Redeclaration = false;
10659   NamedDecl *OldDecl = nullptr;
10660   bool MayNeedOverloadableChecks = false;
10661 
10662   // Merge or overload the declaration with an existing declaration of
10663   // the same name, if appropriate.
10664   if (!Previous.empty()) {
10665     // Determine whether NewFD is an overload of PrevDecl or
10666     // a declaration that requires merging. If it's an overload,
10667     // there's no more work to do here; we'll just add the new
10668     // function to the scope.
10669     if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) {
10670       NamedDecl *Candidate = Previous.getRepresentativeDecl();
10671       if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
10672         Redeclaration = true;
10673         OldDecl = Candidate;
10674       }
10675     } else {
10676       MayNeedOverloadableChecks = true;
10677       switch (CheckOverload(S, NewFD, Previous, OldDecl,
10678                             /*NewIsUsingDecl*/ false)) {
10679       case Ovl_Match:
10680         Redeclaration = true;
10681         break;
10682 
10683       case Ovl_NonFunction:
10684         Redeclaration = true;
10685         break;
10686 
10687       case Ovl_Overload:
10688         Redeclaration = false;
10689         break;
10690       }
10691     }
10692   }
10693 
10694   // Check for a previous extern "C" declaration with this name.
10695   if (!Redeclaration &&
10696       checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
10697     if (!Previous.empty()) {
10698       // This is an extern "C" declaration with the same name as a previous
10699       // declaration, and thus redeclares that entity...
10700       Redeclaration = true;
10701       OldDecl = Previous.getFoundDecl();
10702       MergeTypeWithPrevious = false;
10703 
10704       // ... except in the presence of __attribute__((overloadable)).
10705       if (OldDecl->hasAttr<OverloadableAttr>() ||
10706           NewFD->hasAttr<OverloadableAttr>()) {
10707         if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
10708           MayNeedOverloadableChecks = true;
10709           Redeclaration = false;
10710           OldDecl = nullptr;
10711         }
10712       }
10713     }
10714   }
10715 
10716   if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl,
10717                                 MergeTypeWithPrevious, Previous))
10718     return Redeclaration;
10719 
10720   // PPC MMA non-pointer types are not allowed as function return types.
10721   if (Context.getTargetInfo().getTriple().isPPC64() &&
10722       CheckPPCMMAType(NewFD->getReturnType(), NewFD->getLocation())) {
10723     NewFD->setInvalidDecl();
10724   }
10725 
10726   // C++11 [dcl.constexpr]p8:
10727   //   A constexpr specifier for a non-static member function that is not
10728   //   a constructor declares that member function to be const.
10729   //
10730   // This needs to be delayed until we know whether this is an out-of-line
10731   // definition of a static member function.
10732   //
10733   // This rule is not present in C++1y, so we produce a backwards
10734   // compatibility warning whenever it happens in C++11.
10735   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
10736   if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
10737       !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
10738       !isa<CXXDestructorDecl>(MD) && !MD->getMethodQualifiers().hasConst()) {
10739     CXXMethodDecl *OldMD = nullptr;
10740     if (OldDecl)
10741       OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
10742     if (!OldMD || !OldMD->isStatic()) {
10743       const FunctionProtoType *FPT =
10744         MD->getType()->castAs<FunctionProtoType>();
10745       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10746       EPI.TypeQuals.addConst();
10747       MD->setType(Context.getFunctionType(FPT->getReturnType(),
10748                                           FPT->getParamTypes(), EPI));
10749 
10750       // Warn that we did this, if we're not performing template instantiation.
10751       // In that case, we'll have warned already when the template was defined.
10752       if (!inTemplateInstantiation()) {
10753         SourceLocation AddConstLoc;
10754         if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
10755                 .IgnoreParens().getAs<FunctionTypeLoc>())
10756           AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
10757 
10758         Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
10759           << FixItHint::CreateInsertion(AddConstLoc, " const");
10760       }
10761     }
10762   }
10763 
10764   if (Redeclaration) {
10765     // NewFD and OldDecl represent declarations that need to be
10766     // merged.
10767     if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
10768       NewFD->setInvalidDecl();
10769       return Redeclaration;
10770     }
10771 
10772     Previous.clear();
10773     Previous.addDecl(OldDecl);
10774 
10775     if (FunctionTemplateDecl *OldTemplateDecl =
10776             dyn_cast<FunctionTemplateDecl>(OldDecl)) {
10777       auto *OldFD = OldTemplateDecl->getTemplatedDecl();
10778       FunctionTemplateDecl *NewTemplateDecl
10779         = NewFD->getDescribedFunctionTemplate();
10780       assert(NewTemplateDecl && "Template/non-template mismatch");
10781 
10782       // The call to MergeFunctionDecl above may have created some state in
10783       // NewTemplateDecl that needs to be merged with OldTemplateDecl before we
10784       // can add it as a redeclaration.
10785       NewTemplateDecl->mergePrevDecl(OldTemplateDecl);
10786 
10787       NewFD->setPreviousDeclaration(OldFD);
10788       adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
10789       if (NewFD->isCXXClassMember()) {
10790         NewFD->setAccess(OldTemplateDecl->getAccess());
10791         NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
10792       }
10793 
10794       // If this is an explicit specialization of a member that is a function
10795       // template, mark it as a member specialization.
10796       if (IsMemberSpecialization &&
10797           NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
10798         NewTemplateDecl->setMemberSpecialization();
10799         assert(OldTemplateDecl->isMemberSpecialization());
10800         // Explicit specializations of a member template do not inherit deleted
10801         // status from the parent member template that they are specializing.
10802         if (OldFD->isDeleted()) {
10803           // FIXME: This assert will not hold in the presence of modules.
10804           assert(OldFD->getCanonicalDecl() == OldFD);
10805           // FIXME: We need an update record for this AST mutation.
10806           OldFD->setDeletedAsWritten(false);
10807         }
10808       }
10809 
10810     } else {
10811       if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) {
10812         auto *OldFD = cast<FunctionDecl>(OldDecl);
10813         // This needs to happen first so that 'inline' propagates.
10814         NewFD->setPreviousDeclaration(OldFD);
10815         adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
10816         if (NewFD->isCXXClassMember())
10817           NewFD->setAccess(OldFD->getAccess());
10818       }
10819     }
10820   } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks &&
10821              !NewFD->getAttr<OverloadableAttr>()) {
10822     assert((Previous.empty() ||
10823             llvm::any_of(Previous,
10824                          [](const NamedDecl *ND) {
10825                            return ND->hasAttr<OverloadableAttr>();
10826                          })) &&
10827            "Non-redecls shouldn't happen without overloadable present");
10828 
10829     auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) {
10830       const auto *FD = dyn_cast<FunctionDecl>(ND);
10831       return FD && !FD->hasAttr<OverloadableAttr>();
10832     });
10833 
10834     if (OtherUnmarkedIter != Previous.end()) {
10835       Diag(NewFD->getLocation(),
10836            diag::err_attribute_overloadable_multiple_unmarked_overloads);
10837       Diag((*OtherUnmarkedIter)->getLocation(),
10838            diag::note_attribute_overloadable_prev_overload)
10839           << false;
10840 
10841       NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
10842     }
10843   }
10844 
10845   // Semantic checking for this function declaration (in isolation).
10846 
10847   if (getLangOpts().CPlusPlus) {
10848     // C++-specific checks.
10849     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
10850       CheckConstructor(Constructor);
10851     } else if (CXXDestructorDecl *Destructor =
10852                 dyn_cast<CXXDestructorDecl>(NewFD)) {
10853       CXXRecordDecl *Record = Destructor->getParent();
10854       QualType ClassType = Context.getTypeDeclType(Record);
10855 
10856       // FIXME: Shouldn't we be able to perform this check even when the class
10857       // type is dependent? Both gcc and edg can handle that.
10858       if (!ClassType->isDependentType()) {
10859         DeclarationName Name
10860           = Context.DeclarationNames.getCXXDestructorName(
10861                                         Context.getCanonicalType(ClassType));
10862         if (NewFD->getDeclName() != Name) {
10863           Diag(NewFD->getLocation(), diag::err_destructor_name);
10864           NewFD->setInvalidDecl();
10865           return Redeclaration;
10866         }
10867       }
10868     } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) {
10869       if (auto *TD = Guide->getDescribedFunctionTemplate())
10870         CheckDeductionGuideTemplate(TD);
10871 
10872       // A deduction guide is not on the list of entities that can be
10873       // explicitly specialized.
10874       if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
10875         Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized)
10876             << /*explicit specialization*/ 1;
10877     }
10878 
10879     // Find any virtual functions that this function overrides.
10880     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
10881       if (!Method->isFunctionTemplateSpecialization() &&
10882           !Method->getDescribedFunctionTemplate() &&
10883           Method->isCanonicalDecl()) {
10884         AddOverriddenMethods(Method->getParent(), Method);
10885       }
10886       if (Method->isVirtual() && NewFD->getTrailingRequiresClause())
10887         // C++2a [class.virtual]p6
10888         // A virtual method shall not have a requires-clause.
10889         Diag(NewFD->getTrailingRequiresClause()->getBeginLoc(),
10890              diag::err_constrained_virtual_method);
10891 
10892       if (Method->isStatic())
10893         checkThisInStaticMemberFunctionType(Method);
10894     }
10895 
10896     if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD))
10897       ActOnConversionDeclarator(Conversion);
10898 
10899     // Extra checking for C++ overloaded operators (C++ [over.oper]).
10900     if (NewFD->isOverloadedOperator() &&
10901         CheckOverloadedOperatorDeclaration(NewFD)) {
10902       NewFD->setInvalidDecl();
10903       return Redeclaration;
10904     }
10905 
10906     // Extra checking for C++0x literal operators (C++0x [over.literal]).
10907     if (NewFD->getLiteralIdentifier() &&
10908         CheckLiteralOperatorDeclaration(NewFD)) {
10909       NewFD->setInvalidDecl();
10910       return Redeclaration;
10911     }
10912 
10913     // In C++, check default arguments now that we have merged decls. Unless
10914     // the lexical context is the class, because in this case this is done
10915     // during delayed parsing anyway.
10916     if (!CurContext->isRecord())
10917       CheckCXXDefaultArguments(NewFD);
10918 
10919     // If this function declares a builtin function, check the type of this
10920     // declaration against the expected type for the builtin.
10921     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
10922       ASTContext::GetBuiltinTypeError Error;
10923       LookupNecessaryTypesForBuiltin(S, BuiltinID);
10924       QualType T = Context.GetBuiltinType(BuiltinID, Error);
10925       // If the type of the builtin differs only in its exception
10926       // specification, that's OK.
10927       // FIXME: If the types do differ in this way, it would be better to
10928       // retain the 'noexcept' form of the type.
10929       if (!T.isNull() &&
10930           !Context.hasSameFunctionTypeIgnoringExceptionSpec(T,
10931                                                             NewFD->getType()))
10932         // The type of this function differs from the type of the builtin,
10933         // so forget about the builtin entirely.
10934         Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents);
10935     }
10936 
10937     // If this function is declared as being extern "C", then check to see if
10938     // the function returns a UDT (class, struct, or union type) that is not C
10939     // compatible, and if it does, warn the user.
10940     // But, issue any diagnostic on the first declaration only.
10941     if (Previous.empty() && NewFD->isExternC()) {
10942       QualType R = NewFD->getReturnType();
10943       if (R->isIncompleteType() && !R->isVoidType())
10944         Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
10945             << NewFD << R;
10946       else if (!R.isPODType(Context) && !R->isVoidType() &&
10947                !R->isObjCObjectPointerType())
10948         Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
10949     }
10950 
10951     // C++1z [dcl.fct]p6:
10952     //   [...] whether the function has a non-throwing exception-specification
10953     //   [is] part of the function type
10954     //
10955     // This results in an ABI break between C++14 and C++17 for functions whose
10956     // declared type includes an exception-specification in a parameter or
10957     // return type. (Exception specifications on the function itself are OK in
10958     // most cases, and exception specifications are not permitted in most other
10959     // contexts where they could make it into a mangling.)
10960     if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) {
10961       auto HasNoexcept = [&](QualType T) -> bool {
10962         // Strip off declarator chunks that could be between us and a function
10963         // type. We don't need to look far, exception specifications are very
10964         // restricted prior to C++17.
10965         if (auto *RT = T->getAs<ReferenceType>())
10966           T = RT->getPointeeType();
10967         else if (T->isAnyPointerType())
10968           T = T->getPointeeType();
10969         else if (auto *MPT = T->getAs<MemberPointerType>())
10970           T = MPT->getPointeeType();
10971         if (auto *FPT = T->getAs<FunctionProtoType>())
10972           if (FPT->isNothrow())
10973             return true;
10974         return false;
10975       };
10976 
10977       auto *FPT = NewFD->getType()->castAs<FunctionProtoType>();
10978       bool AnyNoexcept = HasNoexcept(FPT->getReturnType());
10979       for (QualType T : FPT->param_types())
10980         AnyNoexcept |= HasNoexcept(T);
10981       if (AnyNoexcept)
10982         Diag(NewFD->getLocation(),
10983              diag::warn_cxx17_compat_exception_spec_in_signature)
10984             << NewFD;
10985     }
10986 
10987     if (!Redeclaration && LangOpts.CUDA)
10988       checkCUDATargetOverload(NewFD, Previous);
10989   }
10990   return Redeclaration;
10991 }
10992 
CheckMain(FunctionDecl * FD,const DeclSpec & DS)10993 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
10994   // C++11 [basic.start.main]p3:
10995   //   A program that [...] declares main to be inline, static or
10996   //   constexpr is ill-formed.
10997   // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
10998   //   appear in a declaration of main.
10999   // static main is not an error under C99, but we should warn about it.
11000   // We accept _Noreturn main as an extension.
11001   if (FD->getStorageClass() == SC_Static)
11002     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
11003          ? diag::err_static_main : diag::warn_static_main)
11004       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
11005   if (FD->isInlineSpecified())
11006     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
11007       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
11008   if (DS.isNoreturnSpecified()) {
11009     SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
11010     SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
11011     Diag(NoreturnLoc, diag::ext_noreturn_main);
11012     Diag(NoreturnLoc, diag::note_main_remove_noreturn)
11013       << FixItHint::CreateRemoval(NoreturnRange);
11014   }
11015   if (FD->isConstexpr()) {
11016     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
11017         << FD->isConsteval()
11018         << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
11019     FD->setConstexprKind(ConstexprSpecKind::Unspecified);
11020   }
11021 
11022   if (getLangOpts().OpenCL) {
11023     Diag(FD->getLocation(), diag::err_opencl_no_main)
11024         << FD->hasAttr<OpenCLKernelAttr>();
11025     FD->setInvalidDecl();
11026     return;
11027   }
11028 
11029   QualType T = FD->getType();
11030   assert(T->isFunctionType() && "function decl is not of function type");
11031   const FunctionType* FT = T->castAs<FunctionType>();
11032 
11033   // Set default calling convention for main()
11034   if (FT->getCallConv() != CC_C) {
11035     FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C));
11036     FD->setType(QualType(FT, 0));
11037     T = Context.getCanonicalType(FD->getType());
11038   }
11039 
11040   if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
11041     // In C with GNU extensions we allow main() to have non-integer return
11042     // type, but we should warn about the extension, and we disable the
11043     // implicit-return-zero rule.
11044 
11045     // GCC in C mode accepts qualified 'int'.
11046     if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
11047       FD->setHasImplicitReturnZero(true);
11048     else {
11049       Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
11050       SourceRange RTRange = FD->getReturnTypeSourceRange();
11051       if (RTRange.isValid())
11052         Diag(RTRange.getBegin(), diag::note_main_change_return_type)
11053             << FixItHint::CreateReplacement(RTRange, "int");
11054     }
11055   } else {
11056     // In C and C++, main magically returns 0 if you fall off the end;
11057     // set the flag which tells us that.
11058     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
11059 
11060     // All the standards say that main() should return 'int'.
11061     if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
11062       FD->setHasImplicitReturnZero(true);
11063     else {
11064       // Otherwise, this is just a flat-out error.
11065       SourceRange RTRange = FD->getReturnTypeSourceRange();
11066       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
11067           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
11068                                 : FixItHint());
11069       FD->setInvalidDecl(true);
11070     }
11071   }
11072 
11073   // Treat protoless main() as nullary.
11074   if (isa<FunctionNoProtoType>(FT)) return;
11075 
11076   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
11077   unsigned nparams = FTP->getNumParams();
11078   assert(FD->getNumParams() == nparams);
11079 
11080   bool HasExtraParameters = (nparams > 3);
11081 
11082   if (FTP->isVariadic()) {
11083     Diag(FD->getLocation(), diag::ext_variadic_main);
11084     // FIXME: if we had information about the location of the ellipsis, we
11085     // could add a FixIt hint to remove it as a parameter.
11086   }
11087 
11088   // Darwin passes an undocumented fourth argument of type char**.  If
11089   // other platforms start sprouting these, the logic below will start
11090   // getting shifty.
11091   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
11092     HasExtraParameters = false;
11093 
11094   if (HasExtraParameters) {
11095     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
11096     FD->setInvalidDecl(true);
11097     nparams = 3;
11098   }
11099 
11100   // FIXME: a lot of the following diagnostics would be improved
11101   // if we had some location information about types.
11102 
11103   QualType CharPP =
11104     Context.getPointerType(Context.getPointerType(Context.CharTy));
11105   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
11106 
11107   for (unsigned i = 0; i < nparams; ++i) {
11108     QualType AT = FTP->getParamType(i);
11109 
11110     bool mismatch = true;
11111 
11112     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
11113       mismatch = false;
11114     else if (Expected[i] == CharPP) {
11115       // As an extension, the following forms are okay:
11116       //   char const **
11117       //   char const * const *
11118       //   char * const *
11119 
11120       QualifierCollector qs;
11121       const PointerType* PT;
11122       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
11123           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
11124           Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
11125                               Context.CharTy)) {
11126         qs.removeConst();
11127         mismatch = !qs.empty();
11128       }
11129     }
11130 
11131     if (mismatch) {
11132       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
11133       // TODO: suggest replacing given type with expected type
11134       FD->setInvalidDecl(true);
11135     }
11136   }
11137 
11138   if (nparams == 1 && !FD->isInvalidDecl()) {
11139     Diag(FD->getLocation(), diag::warn_main_one_arg);
11140   }
11141 
11142   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
11143     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
11144     FD->setInvalidDecl();
11145   }
11146 }
11147 
CheckMSVCRTEntryPoint(FunctionDecl * FD)11148 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
11149   QualType T = FD->getType();
11150   assert(T->isFunctionType() && "function decl is not of function type");
11151   const FunctionType *FT = T->castAs<FunctionType>();
11152 
11153   // Set an implicit return of 'zero' if the function can return some integral,
11154   // enumeration, pointer or nullptr type.
11155   if (FT->getReturnType()->isIntegralOrEnumerationType() ||
11156       FT->getReturnType()->isAnyPointerType() ||
11157       FT->getReturnType()->isNullPtrType())
11158     // DllMain is exempt because a return value of zero means it failed.
11159     if (FD->getName() != "DllMain")
11160       FD->setHasImplicitReturnZero(true);
11161 
11162   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
11163     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
11164     FD->setInvalidDecl();
11165   }
11166 }
11167 
CheckForConstantInitializer(Expr * Init,QualType DclT)11168 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
11169   // FIXME: Need strict checking.  In C89, we need to check for
11170   // any assignment, increment, decrement, function-calls, or
11171   // commas outside of a sizeof.  In C99, it's the same list,
11172   // except that the aforementioned are allowed in unevaluated
11173   // expressions.  Everything else falls under the
11174   // "may accept other forms of constant expressions" exception.
11175   //
11176   // Regular C++ code will not end up here (exceptions: language extensions,
11177   // OpenCL C++ etc), so the constant expression rules there don't matter.
11178   if (Init->isValueDependent()) {
11179     assert(Init->containsErrors() &&
11180            "Dependent code should only occur in error-recovery path.");
11181     return true;
11182   }
11183   const Expr *Culprit;
11184   if (Init->isConstantInitializer(Context, false, &Culprit))
11185     return false;
11186   Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
11187     << Culprit->getSourceRange();
11188   return true;
11189 }
11190 
11191 namespace {
11192   // Visits an initialization expression to see if OrigDecl is evaluated in
11193   // its own initialization and throws a warning if it does.
11194   class SelfReferenceChecker
11195       : public EvaluatedExprVisitor<SelfReferenceChecker> {
11196     Sema &S;
11197     Decl *OrigDecl;
11198     bool isRecordType;
11199     bool isPODType;
11200     bool isReferenceType;
11201 
11202     bool isInitList;
11203     llvm::SmallVector<unsigned, 4> InitFieldIndex;
11204 
11205   public:
11206     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
11207 
SelfReferenceChecker(Sema & S,Decl * OrigDecl)11208     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
11209                                                     S(S), OrigDecl(OrigDecl) {
11210       isPODType = false;
11211       isRecordType = false;
11212       isReferenceType = false;
11213       isInitList = false;
11214       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
11215         isPODType = VD->getType().isPODType(S.Context);
11216         isRecordType = VD->getType()->isRecordType();
11217         isReferenceType = VD->getType()->isReferenceType();
11218       }
11219     }
11220 
11221     // For most expressions, just call the visitor.  For initializer lists,
11222     // track the index of the field being initialized since fields are
11223     // initialized in order allowing use of previously initialized fields.
CheckExpr(Expr * E)11224     void CheckExpr(Expr *E) {
11225       InitListExpr *InitList = dyn_cast<InitListExpr>(E);
11226       if (!InitList) {
11227         Visit(E);
11228         return;
11229       }
11230 
11231       // Track and increment the index here.
11232       isInitList = true;
11233       InitFieldIndex.push_back(0);
11234       for (auto Child : InitList->children()) {
11235         CheckExpr(cast<Expr>(Child));
11236         ++InitFieldIndex.back();
11237       }
11238       InitFieldIndex.pop_back();
11239     }
11240 
11241     // Returns true if MemberExpr is checked and no further checking is needed.
11242     // Returns false if additional checking is required.
CheckInitListMemberExpr(MemberExpr * E,bool CheckReference)11243     bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
11244       llvm::SmallVector<FieldDecl*, 4> Fields;
11245       Expr *Base = E;
11246       bool ReferenceField = false;
11247 
11248       // Get the field members used.
11249       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11250         FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
11251         if (!FD)
11252           return false;
11253         Fields.push_back(FD);
11254         if (FD->getType()->isReferenceType())
11255           ReferenceField = true;
11256         Base = ME->getBase()->IgnoreParenImpCasts();
11257       }
11258 
11259       // Keep checking only if the base Decl is the same.
11260       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
11261       if (!DRE || DRE->getDecl() != OrigDecl)
11262         return false;
11263 
11264       // A reference field can be bound to an unininitialized field.
11265       if (CheckReference && !ReferenceField)
11266         return true;
11267 
11268       // Convert FieldDecls to their index number.
11269       llvm::SmallVector<unsigned, 4> UsedFieldIndex;
11270       for (const FieldDecl *I : llvm::reverse(Fields))
11271         UsedFieldIndex.push_back(I->getFieldIndex());
11272 
11273       // See if a warning is needed by checking the first difference in index
11274       // numbers.  If field being used has index less than the field being
11275       // initialized, then the use is safe.
11276       for (auto UsedIter = UsedFieldIndex.begin(),
11277                 UsedEnd = UsedFieldIndex.end(),
11278                 OrigIter = InitFieldIndex.begin(),
11279                 OrigEnd = InitFieldIndex.end();
11280            UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
11281         if (*UsedIter < *OrigIter)
11282           return true;
11283         if (*UsedIter > *OrigIter)
11284           break;
11285       }
11286 
11287       // TODO: Add a different warning which will print the field names.
11288       HandleDeclRefExpr(DRE);
11289       return true;
11290     }
11291 
11292     // For most expressions, the cast is directly above the DeclRefExpr.
11293     // For conditional operators, the cast can be outside the conditional
11294     // operator if both expressions are DeclRefExpr's.
HandleValue(Expr * E)11295     void HandleValue(Expr *E) {
11296       E = E->IgnoreParens();
11297       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
11298         HandleDeclRefExpr(DRE);
11299         return;
11300       }
11301 
11302       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
11303         Visit(CO->getCond());
11304         HandleValue(CO->getTrueExpr());
11305         HandleValue(CO->getFalseExpr());
11306         return;
11307       }
11308 
11309       if (BinaryConditionalOperator *BCO =
11310               dyn_cast<BinaryConditionalOperator>(E)) {
11311         Visit(BCO->getCond());
11312         HandleValue(BCO->getFalseExpr());
11313         return;
11314       }
11315 
11316       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
11317         HandleValue(OVE->getSourceExpr());
11318         return;
11319       }
11320 
11321       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
11322         if (BO->getOpcode() == BO_Comma) {
11323           Visit(BO->getLHS());
11324           HandleValue(BO->getRHS());
11325           return;
11326         }
11327       }
11328 
11329       if (isa<MemberExpr>(E)) {
11330         if (isInitList) {
11331           if (CheckInitListMemberExpr(cast<MemberExpr>(E),
11332                                       false /*CheckReference*/))
11333             return;
11334         }
11335 
11336         Expr *Base = E->IgnoreParenImpCasts();
11337         while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11338           // Check for static member variables and don't warn on them.
11339           if (!isa<FieldDecl>(ME->getMemberDecl()))
11340             return;
11341           Base = ME->getBase()->IgnoreParenImpCasts();
11342         }
11343         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
11344           HandleDeclRefExpr(DRE);
11345         return;
11346       }
11347 
11348       Visit(E);
11349     }
11350 
11351     // Reference types not handled in HandleValue are handled here since all
11352     // uses of references are bad, not just r-value uses.
VisitDeclRefExpr(DeclRefExpr * E)11353     void VisitDeclRefExpr(DeclRefExpr *E) {
11354       if (isReferenceType)
11355         HandleDeclRefExpr(E);
11356     }
11357 
VisitImplicitCastExpr(ImplicitCastExpr * E)11358     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
11359       if (E->getCastKind() == CK_LValueToRValue) {
11360         HandleValue(E->getSubExpr());
11361         return;
11362       }
11363 
11364       Inherited::VisitImplicitCastExpr(E);
11365     }
11366 
VisitMemberExpr(MemberExpr * E)11367     void VisitMemberExpr(MemberExpr *E) {
11368       if (isInitList) {
11369         if (CheckInitListMemberExpr(E, true /*CheckReference*/))
11370           return;
11371       }
11372 
11373       // Don't warn on arrays since they can be treated as pointers.
11374       if (E->getType()->canDecayToPointerType()) return;
11375 
11376       // Warn when a non-static method call is followed by non-static member
11377       // field accesses, which is followed by a DeclRefExpr.
11378       CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
11379       bool Warn = (MD && !MD->isStatic());
11380       Expr *Base = E->getBase()->IgnoreParenImpCasts();
11381       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11382         if (!isa<FieldDecl>(ME->getMemberDecl()))
11383           Warn = false;
11384         Base = ME->getBase()->IgnoreParenImpCasts();
11385       }
11386 
11387       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
11388         if (Warn)
11389           HandleDeclRefExpr(DRE);
11390         return;
11391       }
11392 
11393       // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
11394       // Visit that expression.
11395       Visit(Base);
11396     }
11397 
VisitCXXOperatorCallExpr(CXXOperatorCallExpr * E)11398     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
11399       Expr *Callee = E->getCallee();
11400 
11401       if (isa<UnresolvedLookupExpr>(Callee))
11402         return Inherited::VisitCXXOperatorCallExpr(E);
11403 
11404       Visit(Callee);
11405       for (auto Arg: E->arguments())
11406         HandleValue(Arg->IgnoreParenImpCasts());
11407     }
11408 
VisitUnaryOperator(UnaryOperator * E)11409     void VisitUnaryOperator(UnaryOperator *E) {
11410       // For POD record types, addresses of its own members are well-defined.
11411       if (E->getOpcode() == UO_AddrOf && isRecordType &&
11412           isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
11413         if (!isPODType)
11414           HandleValue(E->getSubExpr());
11415         return;
11416       }
11417 
11418       if (E->isIncrementDecrementOp()) {
11419         HandleValue(E->getSubExpr());
11420         return;
11421       }
11422 
11423       Inherited::VisitUnaryOperator(E);
11424     }
11425 
VisitObjCMessageExpr(ObjCMessageExpr * E)11426     void VisitObjCMessageExpr(ObjCMessageExpr *E) {}
11427 
VisitCXXConstructExpr(CXXConstructExpr * E)11428     void VisitCXXConstructExpr(CXXConstructExpr *E) {
11429       if (E->getConstructor()->isCopyConstructor()) {
11430         Expr *ArgExpr = E->getArg(0);
11431         if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
11432           if (ILE->getNumInits() == 1)
11433             ArgExpr = ILE->getInit(0);
11434         if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
11435           if (ICE->getCastKind() == CK_NoOp)
11436             ArgExpr = ICE->getSubExpr();
11437         HandleValue(ArgExpr);
11438         return;
11439       }
11440       Inherited::VisitCXXConstructExpr(E);
11441     }
11442 
VisitCallExpr(CallExpr * E)11443     void VisitCallExpr(CallExpr *E) {
11444       // Treat std::move as a use.
11445       if (E->isCallToStdMove()) {
11446         HandleValue(E->getArg(0));
11447         return;
11448       }
11449 
11450       Inherited::VisitCallExpr(E);
11451     }
11452 
VisitBinaryOperator(BinaryOperator * E)11453     void VisitBinaryOperator(BinaryOperator *E) {
11454       if (E->isCompoundAssignmentOp()) {
11455         HandleValue(E->getLHS());
11456         Visit(E->getRHS());
11457         return;
11458       }
11459 
11460       Inherited::VisitBinaryOperator(E);
11461     }
11462 
11463     // A custom visitor for BinaryConditionalOperator is needed because the
11464     // regular visitor would check the condition and true expression separately
11465     // but both point to the same place giving duplicate diagnostics.
VisitBinaryConditionalOperator(BinaryConditionalOperator * E)11466     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
11467       Visit(E->getCond());
11468       Visit(E->getFalseExpr());
11469     }
11470 
HandleDeclRefExpr(DeclRefExpr * DRE)11471     void HandleDeclRefExpr(DeclRefExpr *DRE) {
11472       Decl* ReferenceDecl = DRE->getDecl();
11473       if (OrigDecl != ReferenceDecl) return;
11474       unsigned diag;
11475       if (isReferenceType) {
11476         diag = diag::warn_uninit_self_reference_in_reference_init;
11477       } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
11478         diag = diag::warn_static_self_reference_in_init;
11479       } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
11480                  isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
11481                  DRE->getDecl()->getType()->isRecordType()) {
11482         diag = diag::warn_uninit_self_reference_in_init;
11483       } else {
11484         // Local variables will be handled by the CFG analysis.
11485         return;
11486       }
11487 
11488       S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE,
11489                             S.PDiag(diag)
11490                                 << DRE->getDecl() << OrigDecl->getLocation()
11491                                 << DRE->getSourceRange());
11492     }
11493   };
11494 
11495   /// CheckSelfReference - Warns if OrigDecl is used in expression E.
CheckSelfReference(Sema & S,Decl * OrigDecl,Expr * E,bool DirectInit)11496   static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
11497                                  bool DirectInit) {
11498     // Parameters arguments are occassionially constructed with itself,
11499     // for instance, in recursive functions.  Skip them.
11500     if (isa<ParmVarDecl>(OrigDecl))
11501       return;
11502 
11503     E = E->IgnoreParens();
11504 
11505     // Skip checking T a = a where T is not a record or reference type.
11506     // Doing so is a way to silence uninitialized warnings.
11507     if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
11508       if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
11509         if (ICE->getCastKind() == CK_LValueToRValue)
11510           if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
11511             if (DRE->getDecl() == OrigDecl)
11512               return;
11513 
11514     SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
11515   }
11516 } // end anonymous namespace
11517 
11518 namespace {
11519   // Simple wrapper to add the name of a variable or (if no variable is
11520   // available) a DeclarationName into a diagnostic.
11521   struct VarDeclOrName {
11522     VarDecl *VDecl;
11523     DeclarationName Name;
11524 
11525     friend const Sema::SemaDiagnosticBuilder &
operator <<(const Sema::SemaDiagnosticBuilder & Diag,VarDeclOrName VN)11526     operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) {
11527       return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name;
11528     }
11529   };
11530 } // end anonymous namespace
11531 
deduceVarTypeFromInitializer(VarDecl * VDecl,DeclarationName Name,QualType Type,TypeSourceInfo * TSI,SourceRange Range,bool DirectInit,Expr * Init)11532 QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
11533                                             DeclarationName Name, QualType Type,
11534                                             TypeSourceInfo *TSI,
11535                                             SourceRange Range, bool DirectInit,
11536                                             Expr *Init) {
11537   bool IsInitCapture = !VDecl;
11538   assert((!VDecl || !VDecl->isInitCapture()) &&
11539          "init captures are expected to be deduced prior to initialization");
11540 
11541   VarDeclOrName VN{VDecl, Name};
11542 
11543   DeducedType *Deduced = Type->getContainedDeducedType();
11544   assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type");
11545 
11546   // C++11 [dcl.spec.auto]p3
11547   if (!Init) {
11548     assert(VDecl && "no init for init capture deduction?");
11549 
11550     // Except for class argument deduction, and then for an initializing
11551     // declaration only, i.e. no static at class scope or extern.
11552     if (!isa<DeducedTemplateSpecializationType>(Deduced) ||
11553         VDecl->hasExternalStorage() ||
11554         VDecl->isStaticDataMember()) {
11555       Diag(VDecl->getLocation(), diag::err_auto_var_requires_init)
11556         << VDecl->getDeclName() << Type;
11557       return QualType();
11558     }
11559   }
11560 
11561   ArrayRef<Expr*> DeduceInits;
11562   if (Init)
11563     DeduceInits = Init;
11564 
11565   if (DirectInit) {
11566     if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init))
11567       DeduceInits = PL->exprs();
11568   }
11569 
11570   if (isa<DeducedTemplateSpecializationType>(Deduced)) {
11571     assert(VDecl && "non-auto type for init capture deduction?");
11572     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
11573     InitializationKind Kind = InitializationKind::CreateForInit(
11574         VDecl->getLocation(), DirectInit, Init);
11575     // FIXME: Initialization should not be taking a mutable list of inits.
11576     SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end());
11577     return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind,
11578                                                        InitsCopy);
11579   }
11580 
11581   if (DirectInit) {
11582     if (auto *IL = dyn_cast<InitListExpr>(Init))
11583       DeduceInits = IL->inits();
11584   }
11585 
11586   // Deduction only works if we have exactly one source expression.
11587   if (DeduceInits.empty()) {
11588     // It isn't possible to write this directly, but it is possible to
11589     // end up in this situation with "auto x(some_pack...);"
11590     Diag(Init->getBeginLoc(), IsInitCapture
11591                                   ? diag::err_init_capture_no_expression
11592                                   : diag::err_auto_var_init_no_expression)
11593         << VN << Type << Range;
11594     return QualType();
11595   }
11596 
11597   if (DeduceInits.size() > 1) {
11598     Diag(DeduceInits[1]->getBeginLoc(),
11599          IsInitCapture ? diag::err_init_capture_multiple_expressions
11600                        : diag::err_auto_var_init_multiple_expressions)
11601         << VN << Type << Range;
11602     return QualType();
11603   }
11604 
11605   Expr *DeduceInit = DeduceInits[0];
11606   if (DirectInit && isa<InitListExpr>(DeduceInit)) {
11607     Diag(Init->getBeginLoc(), IsInitCapture
11608                                   ? diag::err_init_capture_paren_braces
11609                                   : diag::err_auto_var_init_paren_braces)
11610         << isa<InitListExpr>(Init) << VN << Type << Range;
11611     return QualType();
11612   }
11613 
11614   // Expressions default to 'id' when we're in a debugger.
11615   bool DefaultedAnyToId = false;
11616   if (getLangOpts().DebuggerCastResultToId &&
11617       Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
11618     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
11619     if (Result.isInvalid()) {
11620       return QualType();
11621     }
11622     Init = Result.get();
11623     DefaultedAnyToId = true;
11624   }
11625 
11626   // C++ [dcl.decomp]p1:
11627   //   If the assignment-expression [...] has array type A and no ref-qualifier
11628   //   is present, e has type cv A
11629   if (VDecl && isa<DecompositionDecl>(VDecl) &&
11630       Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) &&
11631       DeduceInit->getType()->isConstantArrayType())
11632     return Context.getQualifiedType(DeduceInit->getType(),
11633                                     Type.getQualifiers());
11634 
11635   QualType DeducedType;
11636   if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
11637     if (!IsInitCapture)
11638       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
11639     else if (isa<InitListExpr>(Init))
11640       Diag(Range.getBegin(),
11641            diag::err_init_capture_deduction_failure_from_init_list)
11642           << VN
11643           << (DeduceInit->getType().isNull() ? TSI->getType()
11644                                              : DeduceInit->getType())
11645           << DeduceInit->getSourceRange();
11646     else
11647       Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
11648           << VN << TSI->getType()
11649           << (DeduceInit->getType().isNull() ? TSI->getType()
11650                                              : DeduceInit->getType())
11651           << DeduceInit->getSourceRange();
11652   }
11653 
11654   // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
11655   // 'id' instead of a specific object type prevents most of our usual
11656   // checks.
11657   // We only want to warn outside of template instantiations, though:
11658   // inside a template, the 'id' could have come from a parameter.
11659   if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture &&
11660       !DeducedType.isNull() && DeducedType->isObjCIdType()) {
11661     SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
11662     Diag(Loc, diag::warn_auto_var_is_id) << VN << Range;
11663   }
11664 
11665   return DeducedType;
11666 }
11667 
DeduceVariableDeclarationType(VarDecl * VDecl,bool DirectInit,Expr * Init)11668 bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
11669                                          Expr *Init) {
11670   assert(!Init || !Init->containsErrors());
11671   QualType DeducedType = deduceVarTypeFromInitializer(
11672       VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(),
11673       VDecl->getSourceRange(), DirectInit, Init);
11674   if (DeducedType.isNull()) {
11675     VDecl->setInvalidDecl();
11676     return true;
11677   }
11678 
11679   VDecl->setType(DeducedType);
11680   assert(VDecl->isLinkageValid());
11681 
11682   // In ARC, infer lifetime.
11683   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
11684     VDecl->setInvalidDecl();
11685 
11686   if (getLangOpts().OpenCL)
11687     deduceOpenCLAddressSpace(VDecl);
11688 
11689   // If this is a redeclaration, check that the type we just deduced matches
11690   // the previously declared type.
11691   if (VarDecl *Old = VDecl->getPreviousDecl()) {
11692     // We never need to merge the type, because we cannot form an incomplete
11693     // array of auto, nor deduce such a type.
11694     MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
11695   }
11696 
11697   // Check the deduced type is valid for a variable declaration.
11698   CheckVariableDeclarationType(VDecl);
11699   return VDecl->isInvalidDecl();
11700 }
11701 
checkNonTrivialCUnionInInitializer(const Expr * Init,SourceLocation Loc)11702 void Sema::checkNonTrivialCUnionInInitializer(const Expr *Init,
11703                                               SourceLocation Loc) {
11704   if (auto *EWC = dyn_cast<ExprWithCleanups>(Init))
11705     Init = EWC->getSubExpr();
11706 
11707   if (auto *CE = dyn_cast<ConstantExpr>(Init))
11708     Init = CE->getSubExpr();
11709 
11710   QualType InitType = Init->getType();
11711   assert((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
11712           InitType.hasNonTrivialToPrimitiveCopyCUnion()) &&
11713          "shouldn't be called if type doesn't have a non-trivial C struct");
11714   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
11715     for (auto I : ILE->inits()) {
11716       if (!I->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() &&
11717           !I->getType().hasNonTrivialToPrimitiveCopyCUnion())
11718         continue;
11719       SourceLocation SL = I->getExprLoc();
11720       checkNonTrivialCUnionInInitializer(I, SL.isValid() ? SL : Loc);
11721     }
11722     return;
11723   }
11724 
11725   if (isa<ImplicitValueInitExpr>(Init)) {
11726     if (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
11727       checkNonTrivialCUnion(InitType, Loc, NTCUC_DefaultInitializedObject,
11728                             NTCUK_Init);
11729   } else {
11730     // Assume all other explicit initializers involving copying some existing
11731     // object.
11732     // TODO: ignore any explicit initializers where we can guarantee
11733     // copy-elision.
11734     if (InitType.hasNonTrivialToPrimitiveCopyCUnion())
11735       checkNonTrivialCUnion(InitType, Loc, NTCUC_CopyInit, NTCUK_Copy);
11736   }
11737 }
11738 
11739 namespace {
11740 
shouldIgnoreForRecordTriviality(const FieldDecl * FD)11741 bool shouldIgnoreForRecordTriviality(const FieldDecl *FD) {
11742   // Ignore unavailable fields. A field can be marked as unavailable explicitly
11743   // in the source code or implicitly by the compiler if it is in a union
11744   // defined in a system header and has non-trivial ObjC ownership
11745   // qualifications. We don't want those fields to participate in determining
11746   // whether the containing union is non-trivial.
11747   return FD->hasAttr<UnavailableAttr>();
11748 }
11749 
11750 struct DiagNonTrivalCUnionDefaultInitializeVisitor
11751     : DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
11752                                     void> {
11753   using Super =
11754       DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
11755                                     void>;
11756 
DiagNonTrivalCUnionDefaultInitializeVisitor__anone17936841511::DiagNonTrivalCUnionDefaultInitializeVisitor11757   DiagNonTrivalCUnionDefaultInitializeVisitor(
11758       QualType OrigTy, SourceLocation OrigLoc,
11759       Sema::NonTrivialCUnionContext UseContext, Sema &S)
11760       : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
11761 
visitWithKind__anone17936841511::DiagNonTrivalCUnionDefaultInitializeVisitor11762   void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType QT,
11763                      const FieldDecl *FD, bool InNonTrivialUnion) {
11764     if (const auto *AT = S.Context.getAsArrayType(QT))
11765       return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
11766                                      InNonTrivialUnion);
11767     return Super::visitWithKind(PDIK, QT, FD, InNonTrivialUnion);
11768   }
11769 
visitARCStrong__anone17936841511::DiagNonTrivalCUnionDefaultInitializeVisitor11770   void visitARCStrong(QualType QT, const FieldDecl *FD,
11771                       bool InNonTrivialUnion) {
11772     if (InNonTrivialUnion)
11773       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11774           << 1 << 0 << QT << FD->getName();
11775   }
11776 
visitARCWeak__anone17936841511::DiagNonTrivalCUnionDefaultInitializeVisitor11777   void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11778     if (InNonTrivialUnion)
11779       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11780           << 1 << 0 << QT << FD->getName();
11781   }
11782 
visitStruct__anone17936841511::DiagNonTrivalCUnionDefaultInitializeVisitor11783   void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11784     const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
11785     if (RD->isUnion()) {
11786       if (OrigLoc.isValid()) {
11787         bool IsUnion = false;
11788         if (auto *OrigRD = OrigTy->getAsRecordDecl())
11789           IsUnion = OrigRD->isUnion();
11790         S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
11791             << 0 << OrigTy << IsUnion << UseContext;
11792         // Reset OrigLoc so that this diagnostic is emitted only once.
11793         OrigLoc = SourceLocation();
11794       }
11795       InNonTrivialUnion = true;
11796     }
11797 
11798     if (InNonTrivialUnion)
11799       S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
11800           << 0 << 0 << QT.getUnqualifiedType() << "";
11801 
11802     for (const FieldDecl *FD : RD->fields())
11803       if (!shouldIgnoreForRecordTriviality(FD))
11804         asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
11805   }
11806 
visitTrivial__anone17936841511::DiagNonTrivalCUnionDefaultInitializeVisitor11807   void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
11808 
11809   // The non-trivial C union type or the struct/union type that contains a
11810   // non-trivial C union.
11811   QualType OrigTy;
11812   SourceLocation OrigLoc;
11813   Sema::NonTrivialCUnionContext UseContext;
11814   Sema &S;
11815 };
11816 
11817 struct DiagNonTrivalCUnionDestructedTypeVisitor
11818     : DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void> {
11819   using Super =
11820       DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void>;
11821 
DiagNonTrivalCUnionDestructedTypeVisitor__anone17936841511::DiagNonTrivalCUnionDestructedTypeVisitor11822   DiagNonTrivalCUnionDestructedTypeVisitor(
11823       QualType OrigTy, SourceLocation OrigLoc,
11824       Sema::NonTrivialCUnionContext UseContext, Sema &S)
11825       : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
11826 
visitWithKind__anone17936841511::DiagNonTrivalCUnionDestructedTypeVisitor11827   void visitWithKind(QualType::DestructionKind DK, QualType QT,
11828                      const FieldDecl *FD, bool InNonTrivialUnion) {
11829     if (const auto *AT = S.Context.getAsArrayType(QT))
11830       return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
11831                                      InNonTrivialUnion);
11832     return Super::visitWithKind(DK, QT, FD, InNonTrivialUnion);
11833   }
11834 
visitARCStrong__anone17936841511::DiagNonTrivalCUnionDestructedTypeVisitor11835   void visitARCStrong(QualType QT, const FieldDecl *FD,
11836                       bool InNonTrivialUnion) {
11837     if (InNonTrivialUnion)
11838       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11839           << 1 << 1 << QT << FD->getName();
11840   }
11841 
visitARCWeak__anone17936841511::DiagNonTrivalCUnionDestructedTypeVisitor11842   void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11843     if (InNonTrivialUnion)
11844       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11845           << 1 << 1 << QT << FD->getName();
11846   }
11847 
visitStruct__anone17936841511::DiagNonTrivalCUnionDestructedTypeVisitor11848   void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11849     const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
11850     if (RD->isUnion()) {
11851       if (OrigLoc.isValid()) {
11852         bool IsUnion = false;
11853         if (auto *OrigRD = OrigTy->getAsRecordDecl())
11854           IsUnion = OrigRD->isUnion();
11855         S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
11856             << 1 << OrigTy << IsUnion << UseContext;
11857         // Reset OrigLoc so that this diagnostic is emitted only once.
11858         OrigLoc = SourceLocation();
11859       }
11860       InNonTrivialUnion = true;
11861     }
11862 
11863     if (InNonTrivialUnion)
11864       S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
11865           << 0 << 1 << QT.getUnqualifiedType() << "";
11866 
11867     for (const FieldDecl *FD : RD->fields())
11868       if (!shouldIgnoreForRecordTriviality(FD))
11869         asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
11870   }
11871 
visitTrivial__anone17936841511::DiagNonTrivalCUnionDestructedTypeVisitor11872   void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
visitCXXDestructor__anone17936841511::DiagNonTrivalCUnionDestructedTypeVisitor11873   void visitCXXDestructor(QualType QT, const FieldDecl *FD,
11874                           bool InNonTrivialUnion) {}
11875 
11876   // The non-trivial C union type or the struct/union type that contains a
11877   // non-trivial C union.
11878   QualType OrigTy;
11879   SourceLocation OrigLoc;
11880   Sema::NonTrivialCUnionContext UseContext;
11881   Sema &S;
11882 };
11883 
11884 struct DiagNonTrivalCUnionCopyVisitor
11885     : CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void> {
11886   using Super = CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void>;
11887 
DiagNonTrivalCUnionCopyVisitor__anone17936841511::DiagNonTrivalCUnionCopyVisitor11888   DiagNonTrivalCUnionCopyVisitor(QualType OrigTy, SourceLocation OrigLoc,
11889                                  Sema::NonTrivialCUnionContext UseContext,
11890                                  Sema &S)
11891       : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
11892 
visitWithKind__anone17936841511::DiagNonTrivalCUnionCopyVisitor11893   void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT,
11894                      const FieldDecl *FD, bool InNonTrivialUnion) {
11895     if (const auto *AT = S.Context.getAsArrayType(QT))
11896       return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
11897                                      InNonTrivialUnion);
11898     return Super::visitWithKind(PCK, QT, FD, InNonTrivialUnion);
11899   }
11900 
visitARCStrong__anone17936841511::DiagNonTrivalCUnionCopyVisitor11901   void visitARCStrong(QualType QT, const FieldDecl *FD,
11902                       bool InNonTrivialUnion) {
11903     if (InNonTrivialUnion)
11904       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11905           << 1 << 2 << QT << FD->getName();
11906   }
11907 
visitARCWeak__anone17936841511::DiagNonTrivalCUnionCopyVisitor11908   void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11909     if (InNonTrivialUnion)
11910       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11911           << 1 << 2 << QT << FD->getName();
11912   }
11913 
visitStruct__anone17936841511::DiagNonTrivalCUnionCopyVisitor11914   void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11915     const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
11916     if (RD->isUnion()) {
11917       if (OrigLoc.isValid()) {
11918         bool IsUnion = false;
11919         if (auto *OrigRD = OrigTy->getAsRecordDecl())
11920           IsUnion = OrigRD->isUnion();
11921         S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
11922             << 2 << OrigTy << IsUnion << UseContext;
11923         // Reset OrigLoc so that this diagnostic is emitted only once.
11924         OrigLoc = SourceLocation();
11925       }
11926       InNonTrivialUnion = true;
11927     }
11928 
11929     if (InNonTrivialUnion)
11930       S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
11931           << 0 << 2 << QT.getUnqualifiedType() << "";
11932 
11933     for (const FieldDecl *FD : RD->fields())
11934       if (!shouldIgnoreForRecordTriviality(FD))
11935         asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
11936   }
11937 
preVisit__anone17936841511::DiagNonTrivalCUnionCopyVisitor11938   void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT,
11939                 const FieldDecl *FD, bool InNonTrivialUnion) {}
visitTrivial__anone17936841511::DiagNonTrivalCUnionCopyVisitor11940   void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
visitVolatileTrivial__anone17936841511::DiagNonTrivalCUnionCopyVisitor11941   void visitVolatileTrivial(QualType QT, const FieldDecl *FD,
11942                             bool InNonTrivialUnion) {}
11943 
11944   // The non-trivial C union type or the struct/union type that contains a
11945   // non-trivial C union.
11946   QualType OrigTy;
11947   SourceLocation OrigLoc;
11948   Sema::NonTrivialCUnionContext UseContext;
11949   Sema &S;
11950 };
11951 
11952 } // namespace
11953 
checkNonTrivialCUnion(QualType QT,SourceLocation Loc,NonTrivialCUnionContext UseContext,unsigned NonTrivialKind)11954 void Sema::checkNonTrivialCUnion(QualType QT, SourceLocation Loc,
11955                                  NonTrivialCUnionContext UseContext,
11956                                  unsigned NonTrivialKind) {
11957   assert((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
11958           QT.hasNonTrivialToPrimitiveDestructCUnion() ||
11959           QT.hasNonTrivialToPrimitiveCopyCUnion()) &&
11960          "shouldn't be called if type doesn't have a non-trivial C union");
11961 
11962   if ((NonTrivialKind & NTCUK_Init) &&
11963       QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
11964     DiagNonTrivalCUnionDefaultInitializeVisitor(QT, Loc, UseContext, *this)
11965         .visit(QT, nullptr, false);
11966   if ((NonTrivialKind & NTCUK_Destruct) &&
11967       QT.hasNonTrivialToPrimitiveDestructCUnion())
11968     DiagNonTrivalCUnionDestructedTypeVisitor(QT, Loc, UseContext, *this)
11969         .visit(QT, nullptr, false);
11970   if ((NonTrivialKind & NTCUK_Copy) && QT.hasNonTrivialToPrimitiveCopyCUnion())
11971     DiagNonTrivalCUnionCopyVisitor(QT, Loc, UseContext, *this)
11972         .visit(QT, nullptr, false);
11973 }
11974 
11975 /// AddInitializerToDecl - Adds the initializer Init to the
11976 /// declaration dcl. If DirectInit is true, this is C++ direct
11977 /// initialization rather than copy initialization.
AddInitializerToDecl(Decl * RealDecl,Expr * Init,bool DirectInit)11978 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
11979   // If there is no declaration, there was an error parsing it.  Just ignore
11980   // the initializer.
11981   if (!RealDecl || RealDecl->isInvalidDecl()) {
11982     CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
11983     return;
11984   }
11985 
11986   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
11987     // Pure-specifiers are handled in ActOnPureSpecifier.
11988     Diag(Method->getLocation(), diag::err_member_function_initialization)
11989       << Method->getDeclName() << Init->getSourceRange();
11990     Method->setInvalidDecl();
11991     return;
11992   }
11993 
11994   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
11995   if (!VDecl) {
11996     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
11997     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
11998     RealDecl->setInvalidDecl();
11999     return;
12000   }
12001 
12002   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
12003   if (VDecl->getType()->isUndeducedType()) {
12004     // Attempt typo correction early so that the type of the init expression can
12005     // be deduced based on the chosen correction if the original init contains a
12006     // TypoExpr.
12007     ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
12008     if (!Res.isUsable()) {
12009       // There are unresolved typos in Init, just drop them.
12010       // FIXME: improve the recovery strategy to preserve the Init.
12011       RealDecl->setInvalidDecl();
12012       return;
12013     }
12014     if (Res.get()->containsErrors()) {
12015       // Invalidate the decl as we don't know the type for recovery-expr yet.
12016       RealDecl->setInvalidDecl();
12017       VDecl->setInit(Res.get());
12018       return;
12019     }
12020     Init = Res.get();
12021 
12022     if (DeduceVariableDeclarationType(VDecl, DirectInit, Init))
12023       return;
12024   }
12025 
12026   // dllimport cannot be used on variable definitions.
12027   if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
12028     Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
12029     VDecl->setInvalidDecl();
12030     return;
12031   }
12032 
12033   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
12034     // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
12035     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
12036     VDecl->setInvalidDecl();
12037     return;
12038   }
12039 
12040   if (!VDecl->getType()->isDependentType()) {
12041     // A definition must end up with a complete type, which means it must be
12042     // complete with the restriction that an array type might be completed by
12043     // the initializer; note that later code assumes this restriction.
12044     QualType BaseDeclType = VDecl->getType();
12045     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
12046       BaseDeclType = Array->getElementType();
12047     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
12048                             diag::err_typecheck_decl_incomplete_type)) {
12049       RealDecl->setInvalidDecl();
12050       return;
12051     }
12052 
12053     // The variable can not have an abstract class type.
12054     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
12055                                diag::err_abstract_type_in_decl,
12056                                AbstractVariableType))
12057       VDecl->setInvalidDecl();
12058   }
12059 
12060   // If adding the initializer will turn this declaration into a definition,
12061   // and we already have a definition for this variable, diagnose or otherwise
12062   // handle the situation.
12063   VarDecl *Def;
12064   if ((Def = VDecl->getDefinition()) && Def != VDecl &&
12065       (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) &&
12066       !VDecl->isThisDeclarationADemotedDefinition() &&
12067       checkVarDeclRedefinition(Def, VDecl))
12068     return;
12069 
12070   if (getLangOpts().CPlusPlus) {
12071     // C++ [class.static.data]p4
12072     //   If a static data member is of const integral or const
12073     //   enumeration type, its declaration in the class definition can
12074     //   specify a constant-initializer which shall be an integral
12075     //   constant expression (5.19). In that case, the member can appear
12076     //   in integral constant expressions. The member shall still be
12077     //   defined in a namespace scope if it is used in the program and the
12078     //   namespace scope definition shall not contain an initializer.
12079     //
12080     // We already performed a redefinition check above, but for static
12081     // data members we also need to check whether there was an in-class
12082     // declaration with an initializer.
12083     if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
12084       Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
12085           << VDecl->getDeclName();
12086       Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
12087            diag::note_previous_initializer)
12088           << 0;
12089       return;
12090     }
12091 
12092     if (VDecl->hasLocalStorage())
12093       setFunctionHasBranchProtectedScope();
12094 
12095     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
12096       VDecl->setInvalidDecl();
12097       return;
12098     }
12099   }
12100 
12101   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
12102   // a kernel function cannot be initialized."
12103   if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
12104     Diag(VDecl->getLocation(), diag::err_local_cant_init);
12105     VDecl->setInvalidDecl();
12106     return;
12107   }
12108 
12109   // The LoaderUninitialized attribute acts as a definition (of undef).
12110   if (VDecl->hasAttr<LoaderUninitializedAttr>()) {
12111     Diag(VDecl->getLocation(), diag::err_loader_uninitialized_cant_init);
12112     VDecl->setInvalidDecl();
12113     return;
12114   }
12115 
12116   // Get the decls type and save a reference for later, since
12117   // CheckInitializerTypes may change it.
12118   QualType DclT = VDecl->getType(), SavT = DclT;
12119 
12120   // Expressions default to 'id' when we're in a debugger
12121   // and we are assigning it to a variable of Objective-C pointer type.
12122   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
12123       Init->getType() == Context.UnknownAnyTy) {
12124     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
12125     if (Result.isInvalid()) {
12126       VDecl->setInvalidDecl();
12127       return;
12128     }
12129     Init = Result.get();
12130   }
12131 
12132   // Perform the initialization.
12133   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
12134   if (!VDecl->isInvalidDecl()) {
12135     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
12136     InitializationKind Kind = InitializationKind::CreateForInit(
12137         VDecl->getLocation(), DirectInit, Init);
12138 
12139     MultiExprArg Args = Init;
12140     if (CXXDirectInit)
12141       Args = MultiExprArg(CXXDirectInit->getExprs(),
12142                           CXXDirectInit->getNumExprs());
12143 
12144     // Try to correct any TypoExprs in the initialization arguments.
12145     for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
12146       ExprResult Res = CorrectDelayedTyposInExpr(
12147           Args[Idx], VDecl, /*RecoverUncorrectedTypos=*/true,
12148           [this, Entity, Kind](Expr *E) {
12149             InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
12150             return Init.Failed() ? ExprError() : E;
12151           });
12152       if (Res.isInvalid()) {
12153         VDecl->setInvalidDecl();
12154       } else if (Res.get() != Args[Idx]) {
12155         Args[Idx] = Res.get();
12156       }
12157     }
12158     if (VDecl->isInvalidDecl())
12159       return;
12160 
12161     InitializationSequence InitSeq(*this, Entity, Kind, Args,
12162                                    /*TopLevelOfInitList=*/false,
12163                                    /*TreatUnavailableAsInvalid=*/false);
12164     ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
12165     if (Result.isInvalid()) {
12166       // If the provied initializer fails to initialize the var decl,
12167       // we attach a recovery expr for better recovery.
12168       auto RecoveryExpr =
12169           CreateRecoveryExpr(Init->getBeginLoc(), Init->getEndLoc(), Args);
12170       if (RecoveryExpr.get())
12171         VDecl->setInit(RecoveryExpr.get());
12172       return;
12173     }
12174 
12175     Init = Result.getAs<Expr>();
12176   }
12177 
12178   // Check for self-references within variable initializers.
12179   // Variables declared within a function/method body (except for references)
12180   // are handled by a dataflow analysis.
12181   // This is undefined behavior in C++, but valid in C.
12182   if (getLangOpts().CPlusPlus) {
12183     if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
12184         VDecl->getType()->isReferenceType()) {
12185       CheckSelfReference(*this, RealDecl, Init, DirectInit);
12186     }
12187   }
12188 
12189   // If the type changed, it means we had an incomplete type that was
12190   // completed by the initializer. For example:
12191   //   int ary[] = { 1, 3, 5 };
12192   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
12193   if (!VDecl->isInvalidDecl() && (DclT != SavT))
12194     VDecl->setType(DclT);
12195 
12196   if (!VDecl->isInvalidDecl()) {
12197     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
12198 
12199     if (VDecl->hasAttr<BlocksAttr>())
12200       checkRetainCycles(VDecl, Init);
12201 
12202     // It is safe to assign a weak reference into a strong variable.
12203     // Although this code can still have problems:
12204     //   id x = self.weakProp;
12205     //   id y = self.weakProp;
12206     // we do not warn to warn spuriously when 'x' and 'y' are on separate
12207     // paths through the function. This should be revisited if
12208     // -Wrepeated-use-of-weak is made flow-sensitive.
12209     if (FunctionScopeInfo *FSI = getCurFunction())
12210       if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
12211            VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) &&
12212           !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
12213                            Init->getBeginLoc()))
12214         FSI->markSafeWeakUse(Init);
12215   }
12216 
12217   // The initialization is usually a full-expression.
12218   //
12219   // FIXME: If this is a braced initialization of an aggregate, it is not
12220   // an expression, and each individual field initializer is a separate
12221   // full-expression. For instance, in:
12222   //
12223   //   struct Temp { ~Temp(); };
12224   //   struct S { S(Temp); };
12225   //   struct T { S a, b; } t = { Temp(), Temp() }
12226   //
12227   // we should destroy the first Temp before constructing the second.
12228   ExprResult Result =
12229       ActOnFinishFullExpr(Init, VDecl->getLocation(),
12230                           /*DiscardedValue*/ false, VDecl->isConstexpr());
12231   if (Result.isInvalid()) {
12232     VDecl->setInvalidDecl();
12233     return;
12234   }
12235   Init = Result.get();
12236 
12237   // Attach the initializer to the decl.
12238   VDecl->setInit(Init);
12239 
12240   if (VDecl->isLocalVarDecl()) {
12241     // Don't check the initializer if the declaration is malformed.
12242     if (VDecl->isInvalidDecl()) {
12243       // do nothing
12244 
12245     // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
12246     // This is true even in C++ for OpenCL.
12247     } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) {
12248       CheckForConstantInitializer(Init, DclT);
12249 
12250     // Otherwise, C++ does not restrict the initializer.
12251     } else if (getLangOpts().CPlusPlus) {
12252       // do nothing
12253 
12254     // C99 6.7.8p4: All the expressions in an initializer for an object that has
12255     // static storage duration shall be constant expressions or string literals.
12256     } else if (VDecl->getStorageClass() == SC_Static) {
12257       CheckForConstantInitializer(Init, DclT);
12258 
12259     // C89 is stricter than C99 for aggregate initializers.
12260     // C89 6.5.7p3: All the expressions [...] in an initializer list
12261     // for an object that has aggregate or union type shall be
12262     // constant expressions.
12263     } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
12264                isa<InitListExpr>(Init)) {
12265       const Expr *Culprit;
12266       if (!Init->isConstantInitializer(Context, false, &Culprit)) {
12267         Diag(Culprit->getExprLoc(),
12268              diag::ext_aggregate_init_not_constant)
12269           << Culprit->getSourceRange();
12270       }
12271     }
12272 
12273     if (auto *E = dyn_cast<ExprWithCleanups>(Init))
12274       if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens()))
12275         if (VDecl->hasLocalStorage())
12276           BE->getBlockDecl()->setCanAvoidCopyToHeap();
12277   } else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
12278              VDecl->getLexicalDeclContext()->isRecord()) {
12279     // This is an in-class initialization for a static data member, e.g.,
12280     //
12281     // struct S {
12282     //   static const int value = 17;
12283     // };
12284 
12285     // C++ [class.mem]p4:
12286     //   A member-declarator can contain a constant-initializer only
12287     //   if it declares a static member (9.4) of const integral or
12288     //   const enumeration type, see 9.4.2.
12289     //
12290     // C++11 [class.static.data]p3:
12291     //   If a non-volatile non-inline const static data member is of integral
12292     //   or enumeration type, its declaration in the class definition can
12293     //   specify a brace-or-equal-initializer in which every initializer-clause
12294     //   that is an assignment-expression is a constant expression. A static
12295     //   data member of literal type can be declared in the class definition
12296     //   with the constexpr specifier; if so, its declaration shall specify a
12297     //   brace-or-equal-initializer in which every initializer-clause that is
12298     //   an assignment-expression is a constant expression.
12299 
12300     // Do nothing on dependent types.
12301     if (DclT->isDependentType()) {
12302 
12303     // Allow any 'static constexpr' members, whether or not they are of literal
12304     // type. We separately check that every constexpr variable is of literal
12305     // type.
12306     } else if (VDecl->isConstexpr()) {
12307 
12308     // Require constness.
12309     } else if (!DclT.isConstQualified()) {
12310       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
12311         << Init->getSourceRange();
12312       VDecl->setInvalidDecl();
12313 
12314     // We allow integer constant expressions in all cases.
12315     } else if (DclT->isIntegralOrEnumerationType()) {
12316       // Check whether the expression is a constant expression.
12317       SourceLocation Loc;
12318       if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
12319         // In C++11, a non-constexpr const static data member with an
12320         // in-class initializer cannot be volatile.
12321         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
12322       else if (Init->isValueDependent())
12323         ; // Nothing to check.
12324       else if (Init->isIntegerConstantExpr(Context, &Loc))
12325         ; // Ok, it's an ICE!
12326       else if (Init->getType()->isScopedEnumeralType() &&
12327                Init->isCXX11ConstantExpr(Context))
12328         ; // Ok, it is a scoped-enum constant expression.
12329       else if (Init->isEvaluatable(Context)) {
12330         // If we can constant fold the initializer through heroics, accept it,
12331         // but report this as a use of an extension for -pedantic.
12332         Diag(Loc, diag::ext_in_class_initializer_non_constant)
12333           << Init->getSourceRange();
12334       } else {
12335         // Otherwise, this is some crazy unknown case.  Report the issue at the
12336         // location provided by the isIntegerConstantExpr failed check.
12337         Diag(Loc, diag::err_in_class_initializer_non_constant)
12338           << Init->getSourceRange();
12339         VDecl->setInvalidDecl();
12340       }
12341 
12342     // We allow foldable floating-point constants as an extension.
12343     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
12344       // In C++98, this is a GNU extension. In C++11, it is not, but we support
12345       // it anyway and provide a fixit to add the 'constexpr'.
12346       if (getLangOpts().CPlusPlus11) {
12347         Diag(VDecl->getLocation(),
12348              diag::ext_in_class_initializer_float_type_cxx11)
12349             << DclT << Init->getSourceRange();
12350         Diag(VDecl->getBeginLoc(),
12351              diag::note_in_class_initializer_float_type_cxx11)
12352             << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
12353       } else {
12354         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
12355           << DclT << Init->getSourceRange();
12356 
12357         if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
12358           Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
12359             << Init->getSourceRange();
12360           VDecl->setInvalidDecl();
12361         }
12362       }
12363 
12364     // Suggest adding 'constexpr' in C++11 for literal types.
12365     } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
12366       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
12367           << DclT << Init->getSourceRange()
12368           << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
12369       VDecl->setConstexpr(true);
12370 
12371     } else {
12372       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
12373         << DclT << Init->getSourceRange();
12374       VDecl->setInvalidDecl();
12375     }
12376   } else if (VDecl->isFileVarDecl()) {
12377     // In C, extern is typically used to avoid tentative definitions when
12378     // declaring variables in headers, but adding an intializer makes it a
12379     // definition. This is somewhat confusing, so GCC and Clang both warn on it.
12380     // In C++, extern is often used to give implictly static const variables
12381     // external linkage, so don't warn in that case. If selectany is present,
12382     // this might be header code intended for C and C++ inclusion, so apply the
12383     // C++ rules.
12384     if (VDecl->getStorageClass() == SC_Extern &&
12385         ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) ||
12386          !Context.getBaseElementType(VDecl->getType()).isConstQualified()) &&
12387         !(getLangOpts().CPlusPlus && VDecl->isExternC()) &&
12388         !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
12389       Diag(VDecl->getLocation(), diag::warn_extern_init);
12390 
12391     // In Microsoft C++ mode, a const variable defined in namespace scope has
12392     // external linkage by default if the variable is declared with
12393     // __declspec(dllexport).
12394     if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
12395         getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() &&
12396         VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition())
12397       VDecl->setStorageClass(SC_Extern);
12398 
12399     // C99 6.7.8p4. All file scoped initializers need to be constant.
12400     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
12401       CheckForConstantInitializer(Init, DclT);
12402   }
12403 
12404   QualType InitType = Init->getType();
12405   if (!InitType.isNull() &&
12406       (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
12407        InitType.hasNonTrivialToPrimitiveCopyCUnion()))
12408     checkNonTrivialCUnionInInitializer(Init, Init->getExprLoc());
12409 
12410   // We will represent direct-initialization similarly to copy-initialization:
12411   //    int x(1);  -as-> int x = 1;
12412   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
12413   //
12414   // Clients that want to distinguish between the two forms, can check for
12415   // direct initializer using VarDecl::getInitStyle().
12416   // A major benefit is that clients that don't particularly care about which
12417   // exactly form was it (like the CodeGen) can handle both cases without
12418   // special case code.
12419 
12420   // C++ 8.5p11:
12421   // The form of initialization (using parentheses or '=') is generally
12422   // insignificant, but does matter when the entity being initialized has a
12423   // class type.
12424   if (CXXDirectInit) {
12425     assert(DirectInit && "Call-style initializer must be direct init.");
12426     VDecl->setInitStyle(VarDecl::CallInit);
12427   } else if (DirectInit) {
12428     // This must be list-initialization. No other way is direct-initialization.
12429     VDecl->setInitStyle(VarDecl::ListInit);
12430   }
12431 
12432   if (LangOpts.OpenMP && VDecl->isFileVarDecl())
12433     DeclsToCheckForDeferredDiags.push_back(VDecl);
12434   CheckCompleteVariableDeclaration(VDecl);
12435 }
12436 
12437 /// ActOnInitializerError - Given that there was an error parsing an
12438 /// initializer for the given declaration, try to return to some form
12439 /// of sanity.
ActOnInitializerError(Decl * D)12440 void Sema::ActOnInitializerError(Decl *D) {
12441   // Our main concern here is re-establishing invariants like "a
12442   // variable's type is either dependent or complete".
12443   if (!D || D->isInvalidDecl()) return;
12444 
12445   VarDecl *VD = dyn_cast<VarDecl>(D);
12446   if (!VD) return;
12447 
12448   // Bindings are not usable if we can't make sense of the initializer.
12449   if (auto *DD = dyn_cast<DecompositionDecl>(D))
12450     for (auto *BD : DD->bindings())
12451       BD->setInvalidDecl();
12452 
12453   // Auto types are meaningless if we can't make sense of the initializer.
12454   if (VD->getType()->isUndeducedType()) {
12455     D->setInvalidDecl();
12456     return;
12457   }
12458 
12459   QualType Ty = VD->getType();
12460   if (Ty->isDependentType()) return;
12461 
12462   // Require a complete type.
12463   if (RequireCompleteType(VD->getLocation(),
12464                           Context.getBaseElementType(Ty),
12465                           diag::err_typecheck_decl_incomplete_type)) {
12466     VD->setInvalidDecl();
12467     return;
12468   }
12469 
12470   // Require a non-abstract type.
12471   if (RequireNonAbstractType(VD->getLocation(), Ty,
12472                              diag::err_abstract_type_in_decl,
12473                              AbstractVariableType)) {
12474     VD->setInvalidDecl();
12475     return;
12476   }
12477 
12478   // Don't bother complaining about constructors or destructors,
12479   // though.
12480 }
12481 
ActOnUninitializedDecl(Decl * RealDecl)12482 void Sema::ActOnUninitializedDecl(Decl *RealDecl) {
12483   // If there is no declaration, there was an error parsing it. Just ignore it.
12484   if (!RealDecl)
12485     return;
12486 
12487   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
12488     QualType Type = Var->getType();
12489 
12490     // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
12491     if (isa<DecompositionDecl>(RealDecl)) {
12492       Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var;
12493       Var->setInvalidDecl();
12494       return;
12495     }
12496 
12497     if (Type->isUndeducedType() &&
12498         DeduceVariableDeclarationType(Var, false, nullptr))
12499       return;
12500 
12501     // C++11 [class.static.data]p3: A static data member can be declared with
12502     // the constexpr specifier; if so, its declaration shall specify
12503     // a brace-or-equal-initializer.
12504     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
12505     // the definition of a variable [...] or the declaration of a static data
12506     // member.
12507     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() &&
12508         !Var->isThisDeclarationADemotedDefinition()) {
12509       if (Var->isStaticDataMember()) {
12510         // C++1z removes the relevant rule; the in-class declaration is always
12511         // a definition there.
12512         if (!getLangOpts().CPlusPlus17 &&
12513             !Context.getTargetInfo().getCXXABI().isMicrosoft()) {
12514           Diag(Var->getLocation(),
12515                diag::err_constexpr_static_mem_var_requires_init)
12516               << Var;
12517           Var->setInvalidDecl();
12518           return;
12519         }
12520       } else {
12521         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
12522         Var->setInvalidDecl();
12523         return;
12524       }
12525     }
12526 
12527     // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
12528     // be initialized.
12529     if (!Var->isInvalidDecl() &&
12530         Var->getType().getAddressSpace() == LangAS::opencl_constant &&
12531         Var->getStorageClass() != SC_Extern && !Var->getInit()) {
12532       Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
12533       Var->setInvalidDecl();
12534       return;
12535     }
12536 
12537     if (!Var->isInvalidDecl() && RealDecl->hasAttr<LoaderUninitializedAttr>()) {
12538       if (Var->getStorageClass() == SC_Extern) {
12539         Diag(Var->getLocation(), diag::err_loader_uninitialized_extern_decl)
12540             << Var;
12541         Var->setInvalidDecl();
12542         return;
12543       }
12544       if (RequireCompleteType(Var->getLocation(), Var->getType(),
12545                               diag::err_typecheck_decl_incomplete_type)) {
12546         Var->setInvalidDecl();
12547         return;
12548       }
12549       if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) {
12550         if (!RD->hasTrivialDefaultConstructor()) {
12551           Diag(Var->getLocation(), diag::err_loader_uninitialized_trivial_ctor);
12552           Var->setInvalidDecl();
12553           return;
12554         }
12555       }
12556     }
12557 
12558     VarDecl::DefinitionKind DefKind = Var->isThisDeclarationADefinition();
12559     if (!Var->isInvalidDecl() && DefKind != VarDecl::DeclarationOnly &&
12560         Var->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion())
12561       checkNonTrivialCUnion(Var->getType(), Var->getLocation(),
12562                             NTCUC_DefaultInitializedObject, NTCUK_Init);
12563 
12564 
12565     switch (DefKind) {
12566     case VarDecl::Definition:
12567       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
12568         break;
12569 
12570       // We have an out-of-line definition of a static data member
12571       // that has an in-class initializer, so we type-check this like
12572       // a declaration.
12573       //
12574       LLVM_FALLTHROUGH;
12575 
12576     case VarDecl::DeclarationOnly:
12577       // It's only a declaration.
12578 
12579       // Block scope. C99 6.7p7: If an identifier for an object is
12580       // declared with no linkage (C99 6.2.2p6), the type for the
12581       // object shall be complete.
12582       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
12583           !Var->hasLinkage() && !Var->isInvalidDecl() &&
12584           RequireCompleteType(Var->getLocation(), Type,
12585                               diag::err_typecheck_decl_incomplete_type))
12586         Var->setInvalidDecl();
12587 
12588       // Make sure that the type is not abstract.
12589       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
12590           RequireNonAbstractType(Var->getLocation(), Type,
12591                                  diag::err_abstract_type_in_decl,
12592                                  AbstractVariableType))
12593         Var->setInvalidDecl();
12594       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
12595           Var->getStorageClass() == SC_PrivateExtern) {
12596         Diag(Var->getLocation(), diag::warn_private_extern);
12597         Diag(Var->getLocation(), diag::note_private_extern);
12598       }
12599 
12600       if (Context.getTargetInfo().allowDebugInfoForExternalVar() &&
12601           !Var->isInvalidDecl() && !getLangOpts().CPlusPlus)
12602         ExternalDeclarations.push_back(Var);
12603 
12604       return;
12605 
12606     case VarDecl::TentativeDefinition:
12607       // File scope. C99 6.9.2p2: A declaration of an identifier for an
12608       // object that has file scope without an initializer, and without a
12609       // storage-class specifier or with the storage-class specifier "static",
12610       // constitutes a tentative definition. Note: A tentative definition with
12611       // external linkage is valid (C99 6.2.2p5).
12612       if (!Var->isInvalidDecl()) {
12613         if (const IncompleteArrayType *ArrayT
12614                                     = Context.getAsIncompleteArrayType(Type)) {
12615           if (RequireCompleteSizedType(
12616                   Var->getLocation(), ArrayT->getElementType(),
12617                   diag::err_array_incomplete_or_sizeless_type))
12618             Var->setInvalidDecl();
12619         } else if (Var->getStorageClass() == SC_Static) {
12620           // C99 6.9.2p3: If the declaration of an identifier for an object is
12621           // a tentative definition and has internal linkage (C99 6.2.2p3), the
12622           // declared type shall not be an incomplete type.
12623           // NOTE: code such as the following
12624           //     static struct s;
12625           //     struct s { int a; };
12626           // is accepted by gcc. Hence here we issue a warning instead of
12627           // an error and we do not invalidate the static declaration.
12628           // NOTE: to avoid multiple warnings, only check the first declaration.
12629           if (Var->isFirstDecl())
12630             RequireCompleteType(Var->getLocation(), Type,
12631                                 diag::ext_typecheck_decl_incomplete_type);
12632         }
12633       }
12634 
12635       // Record the tentative definition; we're done.
12636       if (!Var->isInvalidDecl())
12637         TentativeDefinitions.push_back(Var);
12638       return;
12639     }
12640 
12641     // Provide a specific diagnostic for uninitialized variable
12642     // definitions with incomplete array type.
12643     if (Type->isIncompleteArrayType()) {
12644       Diag(Var->getLocation(),
12645            diag::err_typecheck_incomplete_array_needs_initializer);
12646       Var->setInvalidDecl();
12647       return;
12648     }
12649 
12650     // Provide a specific diagnostic for uninitialized variable
12651     // definitions with reference type.
12652     if (Type->isReferenceType()) {
12653       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
12654           << Var << SourceRange(Var->getLocation(), Var->getLocation());
12655       Var->setInvalidDecl();
12656       return;
12657     }
12658 
12659     // Do not attempt to type-check the default initializer for a
12660     // variable with dependent type.
12661     if (Type->isDependentType())
12662       return;
12663 
12664     if (Var->isInvalidDecl())
12665       return;
12666 
12667     if (!Var->hasAttr<AliasAttr>()) {
12668       if (RequireCompleteType(Var->getLocation(),
12669                               Context.getBaseElementType(Type),
12670                               diag::err_typecheck_decl_incomplete_type)) {
12671         Var->setInvalidDecl();
12672         return;
12673       }
12674     } else {
12675       return;
12676     }
12677 
12678     // The variable can not have an abstract class type.
12679     if (RequireNonAbstractType(Var->getLocation(), Type,
12680                                diag::err_abstract_type_in_decl,
12681                                AbstractVariableType)) {
12682       Var->setInvalidDecl();
12683       return;
12684     }
12685 
12686     // Check for jumps past the implicit initializer.  C++0x
12687     // clarifies that this applies to a "variable with automatic
12688     // storage duration", not a "local variable".
12689     // C++11 [stmt.dcl]p3
12690     //   A program that jumps from a point where a variable with automatic
12691     //   storage duration is not in scope to a point where it is in scope is
12692     //   ill-formed unless the variable has scalar type, class type with a
12693     //   trivial default constructor and a trivial destructor, a cv-qualified
12694     //   version of one of these types, or an array of one of the preceding
12695     //   types and is declared without an initializer.
12696     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
12697       if (const RecordType *Record
12698             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
12699         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
12700         // Mark the function (if we're in one) for further checking even if the
12701         // looser rules of C++11 do not require such checks, so that we can
12702         // diagnose incompatibilities with C++98.
12703         if (!CXXRecord->isPOD())
12704           setFunctionHasBranchProtectedScope();
12705       }
12706     }
12707     // In OpenCL, we can't initialize objects in the __local address space,
12708     // even implicitly, so don't synthesize an implicit initializer.
12709     if (getLangOpts().OpenCL &&
12710         Var->getType().getAddressSpace() == LangAS::opencl_local)
12711       return;
12712     // C++03 [dcl.init]p9:
12713     //   If no initializer is specified for an object, and the
12714     //   object is of (possibly cv-qualified) non-POD class type (or
12715     //   array thereof), the object shall be default-initialized; if
12716     //   the object is of const-qualified type, the underlying class
12717     //   type shall have a user-declared default
12718     //   constructor. Otherwise, if no initializer is specified for
12719     //   a non- static object, the object and its subobjects, if
12720     //   any, have an indeterminate initial value); if the object
12721     //   or any of its subobjects are of const-qualified type, the
12722     //   program is ill-formed.
12723     // C++0x [dcl.init]p11:
12724     //   If no initializer is specified for an object, the object is
12725     //   default-initialized; [...].
12726     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
12727     InitializationKind Kind
12728       = InitializationKind::CreateDefault(Var->getLocation());
12729 
12730     InitializationSequence InitSeq(*this, Entity, Kind, None);
12731     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
12732 
12733     if (Init.get()) {
12734       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
12735       // This is important for template substitution.
12736       Var->setInitStyle(VarDecl::CallInit);
12737     } else if (Init.isInvalid()) {
12738       // If default-init fails, attach a recovery-expr initializer to track
12739       // that initialization was attempted and failed.
12740       auto RecoveryExpr =
12741           CreateRecoveryExpr(Var->getLocation(), Var->getLocation(), {});
12742       if (RecoveryExpr.get())
12743         Var->setInit(RecoveryExpr.get());
12744     }
12745 
12746     CheckCompleteVariableDeclaration(Var);
12747   }
12748 }
12749 
ActOnCXXForRangeDecl(Decl * D)12750 void Sema::ActOnCXXForRangeDecl(Decl *D) {
12751   // If there is no declaration, there was an error parsing it. Ignore it.
12752   if (!D)
12753     return;
12754 
12755   VarDecl *VD = dyn_cast<VarDecl>(D);
12756   if (!VD) {
12757     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
12758     D->setInvalidDecl();
12759     return;
12760   }
12761 
12762   VD->setCXXForRangeDecl(true);
12763 
12764   // for-range-declaration cannot be given a storage class specifier.
12765   int Error = -1;
12766   switch (VD->getStorageClass()) {
12767   case SC_None:
12768     break;
12769   case SC_Extern:
12770     Error = 0;
12771     break;
12772   case SC_Static:
12773     Error = 1;
12774     break;
12775   case SC_PrivateExtern:
12776     Error = 2;
12777     break;
12778   case SC_Auto:
12779     Error = 3;
12780     break;
12781   case SC_Register:
12782     Error = 4;
12783     break;
12784   }
12785 
12786   // for-range-declaration cannot be given a storage class specifier con't.
12787   switch (VD->getTSCSpec()) {
12788   case TSCS_thread_local:
12789     Error = 6;
12790     break;
12791   case TSCS___thread:
12792   case TSCS__Thread_local:
12793   case TSCS_unspecified:
12794     break;
12795   }
12796 
12797   if (Error != -1) {
12798     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
12799         << VD << Error;
12800     D->setInvalidDecl();
12801   }
12802 }
12803 
12804 StmtResult
ActOnCXXForRangeIdentifier(Scope * S,SourceLocation IdentLoc,IdentifierInfo * Ident,ParsedAttributes & Attrs,SourceLocation AttrEnd)12805 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
12806                                  IdentifierInfo *Ident,
12807                                  ParsedAttributes &Attrs,
12808                                  SourceLocation AttrEnd) {
12809   // C++1y [stmt.iter]p1:
12810   //   A range-based for statement of the form
12811   //      for ( for-range-identifier : for-range-initializer ) statement
12812   //   is equivalent to
12813   //      for ( auto&& for-range-identifier : for-range-initializer ) statement
12814   DeclSpec DS(Attrs.getPool().getFactory());
12815 
12816   const char *PrevSpec;
12817   unsigned DiagID;
12818   DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
12819                      getPrintingPolicy());
12820 
12821   Declarator D(DS, DeclaratorContext::ForInit);
12822   D.SetIdentifier(Ident, IdentLoc);
12823   D.takeAttributes(Attrs, AttrEnd);
12824 
12825   D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false),
12826                 IdentLoc);
12827   Decl *Var = ActOnDeclarator(S, D);
12828   cast<VarDecl>(Var)->setCXXForRangeDecl(true);
12829   FinalizeDeclaration(Var);
12830   return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
12831                        AttrEnd.isValid() ? AttrEnd : IdentLoc);
12832 }
12833 
CheckCompleteVariableDeclaration(VarDecl * var)12834 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
12835   if (var->isInvalidDecl()) return;
12836 
12837   if (getLangOpts().OpenCL) {
12838     // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
12839     // initialiser
12840     if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
12841         !var->hasInit()) {
12842       Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
12843           << 1 /*Init*/;
12844       var->setInvalidDecl();
12845       return;
12846     }
12847   }
12848 
12849   // In Objective-C, don't allow jumps past the implicit initialization of a
12850   // local retaining variable.
12851   if (getLangOpts().ObjC &&
12852       var->hasLocalStorage()) {
12853     switch (var->getType().getObjCLifetime()) {
12854     case Qualifiers::OCL_None:
12855     case Qualifiers::OCL_ExplicitNone:
12856     case Qualifiers::OCL_Autoreleasing:
12857       break;
12858 
12859     case Qualifiers::OCL_Weak:
12860     case Qualifiers::OCL_Strong:
12861       setFunctionHasBranchProtectedScope();
12862       break;
12863     }
12864   }
12865 
12866   if (var->hasLocalStorage() &&
12867       var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
12868     setFunctionHasBranchProtectedScope();
12869 
12870   // Warn about externally-visible variables being defined without a
12871   // prior declaration.  We only want to do this for global
12872   // declarations, but we also specifically need to avoid doing it for
12873   // class members because the linkage of an anonymous class can
12874   // change if it's later given a typedef name.
12875   if (var->isThisDeclarationADefinition() &&
12876       var->getDeclContext()->getRedeclContext()->isFileContext() &&
12877       var->isExternallyVisible() && var->hasLinkage() &&
12878       !var->isInline() && !var->getDescribedVarTemplate() &&
12879       !isa<VarTemplatePartialSpecializationDecl>(var) &&
12880       !isTemplateInstantiation(var->getTemplateSpecializationKind()) &&
12881       !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
12882                                   var->getLocation())) {
12883     // Find a previous declaration that's not a definition.
12884     VarDecl *prev = var->getPreviousDecl();
12885     while (prev && prev->isThisDeclarationADefinition())
12886       prev = prev->getPreviousDecl();
12887 
12888     if (!prev) {
12889       Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
12890       Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
12891           << /* variable */ 0;
12892     }
12893   }
12894 
12895   // Cache the result of checking for constant initialization.
12896   Optional<bool> CacheHasConstInit;
12897   const Expr *CacheCulprit = nullptr;
12898   auto checkConstInit = [&]() mutable {
12899     if (!CacheHasConstInit)
12900       CacheHasConstInit = var->getInit()->isConstantInitializer(
12901             Context, var->getType()->isReferenceType(), &CacheCulprit);
12902     return *CacheHasConstInit;
12903   };
12904 
12905   if (var->getTLSKind() == VarDecl::TLS_Static) {
12906     if (var->getType().isDestructedType()) {
12907       // GNU C++98 edits for __thread, [basic.start.term]p3:
12908       //   The type of an object with thread storage duration shall not
12909       //   have a non-trivial destructor.
12910       Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
12911       if (getLangOpts().CPlusPlus11)
12912         Diag(var->getLocation(), diag::note_use_thread_local);
12913     } else if (getLangOpts().CPlusPlus && var->hasInit()) {
12914       if (!checkConstInit()) {
12915         // GNU C++98 edits for __thread, [basic.start.init]p4:
12916         //   An object of thread storage duration shall not require dynamic
12917         //   initialization.
12918         // FIXME: Need strict checking here.
12919         Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init)
12920           << CacheCulprit->getSourceRange();
12921         if (getLangOpts().CPlusPlus11)
12922           Diag(var->getLocation(), diag::note_use_thread_local);
12923       }
12924     }
12925   }
12926 
12927   // Apply section attributes and pragmas to global variables.
12928   bool GlobalStorage = var->hasGlobalStorage();
12929   if (GlobalStorage && var->isThisDeclarationADefinition() &&
12930       !inTemplateInstantiation()) {
12931     PragmaStack<StringLiteral *> *Stack = nullptr;
12932     int SectionFlags = ASTContext::PSF_Read;
12933     if (var->getType().isConstQualified())
12934       Stack = &ConstSegStack;
12935     else if (!var->getInit()) {
12936       Stack = &BSSSegStack;
12937       SectionFlags |= ASTContext::PSF_Write;
12938     } else {
12939       Stack = &DataSegStack;
12940       SectionFlags |= ASTContext::PSF_Write;
12941     }
12942     if (const SectionAttr *SA = var->getAttr<SectionAttr>()) {
12943       if (SA->getSyntax() == AttributeCommonInfo::AS_Declspec)
12944         SectionFlags |= ASTContext::PSF_Implicit;
12945       UnifySection(SA->getName(), SectionFlags, var);
12946     } else if (Stack->CurrentValue) {
12947       SectionFlags |= ASTContext::PSF_Implicit;
12948       auto SectionName = Stack->CurrentValue->getString();
12949       var->addAttr(SectionAttr::CreateImplicit(
12950           Context, SectionName, Stack->CurrentPragmaLocation,
12951           AttributeCommonInfo::AS_Pragma, SectionAttr::Declspec_allocate));
12952       if (UnifySection(SectionName, SectionFlags, var))
12953         var->dropAttr<SectionAttr>();
12954     }
12955 
12956     // Apply the init_seg attribute if this has an initializer.  If the
12957     // initializer turns out to not be dynamic, we'll end up ignoring this
12958     // attribute.
12959     if (CurInitSeg && var->getInit())
12960       var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
12961                                                CurInitSegLoc,
12962                                                AttributeCommonInfo::AS_Pragma));
12963   }
12964 
12965   if (!var->getType()->isStructureType() && var->hasInit() &&
12966       isa<InitListExpr>(var->getInit())) {
12967     const auto *ILE = cast<InitListExpr>(var->getInit());
12968     unsigned NumInits = ILE->getNumInits();
12969     if (NumInits > 2)
12970       for (unsigned I = 0; I < NumInits; ++I) {
12971         const auto *Init = ILE->getInit(I);
12972         if (!Init)
12973           break;
12974         const auto *SL = dyn_cast<StringLiteral>(Init->IgnoreImpCasts());
12975         if (!SL)
12976           break;
12977 
12978         unsigned NumConcat = SL->getNumConcatenated();
12979         // Diagnose missing comma in string array initialization.
12980         // Do not warn when all the elements in the initializer are concatenated
12981         // together. Do not warn for macros too.
12982         if (NumConcat == 2 && !SL->getBeginLoc().isMacroID()) {
12983           bool OnlyOneMissingComma = true;
12984           for (unsigned J = I + 1; J < NumInits; ++J) {
12985             const auto *Init = ILE->getInit(J);
12986             if (!Init)
12987               break;
12988             const auto *SLJ = dyn_cast<StringLiteral>(Init->IgnoreImpCasts());
12989             if (!SLJ || SLJ->getNumConcatenated() > 1) {
12990               OnlyOneMissingComma = false;
12991               break;
12992             }
12993           }
12994 
12995           if (OnlyOneMissingComma) {
12996             SmallVector<FixItHint, 1> Hints;
12997             for (unsigned i = 0; i < NumConcat - 1; ++i)
12998               Hints.push_back(FixItHint::CreateInsertion(
12999                   PP.getLocForEndOfToken(SL->getStrTokenLoc(i)), ","));
13000 
13001             Diag(SL->getStrTokenLoc(1),
13002                  diag::warn_concatenated_literal_array_init)
13003                 << Hints;
13004             Diag(SL->getBeginLoc(),
13005                  diag::note_concatenated_string_literal_silence);
13006           }
13007           // In any case, stop now.
13008           break;
13009         }
13010       }
13011   }
13012 
13013   // All the following checks are C++ only.
13014   if (!getLangOpts().CPlusPlus) {
13015     // If this variable must be emitted, add it as an initializer for the
13016     // current module.
13017     if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
13018       Context.addModuleInitializer(ModuleScopes.back().Module, var);
13019     return;
13020   }
13021 
13022   QualType type = var->getType();
13023 
13024   if (var->hasAttr<BlocksAttr>())
13025     getCurFunction()->addByrefBlockVar(var);
13026 
13027   Expr *Init = var->getInit();
13028   bool IsGlobal = GlobalStorage && !var->isStaticLocal();
13029   QualType baseType = Context.getBaseElementType(type);
13030 
13031   // Check whether the initializer is sufficiently constant.
13032   if (!type->isDependentType() && Init && !Init->isValueDependent() &&
13033       (GlobalStorage || var->isConstexpr() ||
13034        var->mightBeUsableInConstantExpressions(Context))) {
13035     // If this variable might have a constant initializer or might be usable in
13036     // constant expressions, check whether or not it actually is now.  We can't
13037     // do this lazily, because the result might depend on things that change
13038     // later, such as which constexpr functions happen to be defined.
13039     SmallVector<PartialDiagnosticAt, 8> Notes;
13040     bool HasConstInit;
13041     if (!getLangOpts().CPlusPlus11) {
13042       // Prior to C++11, in contexts where a constant initializer is required,
13043       // the set of valid constant initializers is described by syntactic rules
13044       // in [expr.const]p2-6.
13045       // FIXME: Stricter checking for these rules would be useful for constinit /
13046       // -Wglobal-constructors.
13047       HasConstInit = checkConstInit();
13048 
13049       // Compute and cache the constant value, and remember that we have a
13050       // constant initializer.
13051       if (HasConstInit) {
13052         (void)var->checkForConstantInitialization(Notes);
13053         Notes.clear();
13054       } else if (CacheCulprit) {
13055         Notes.emplace_back(CacheCulprit->getExprLoc(),
13056                            PDiag(diag::note_invalid_subexpr_in_const_expr));
13057         Notes.back().second << CacheCulprit->getSourceRange();
13058       }
13059     } else {
13060       // Evaluate the initializer to see if it's a constant initializer.
13061       HasConstInit = var->checkForConstantInitialization(Notes);
13062     }
13063 
13064     if (HasConstInit) {
13065       // FIXME: Consider replacing the initializer with a ConstantExpr.
13066     } else if (var->isConstexpr()) {
13067       SourceLocation DiagLoc = var->getLocation();
13068       // If the note doesn't add any useful information other than a source
13069       // location, fold it into the primary diagnostic.
13070       if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
13071                                    diag::note_invalid_subexpr_in_const_expr) {
13072         DiagLoc = Notes[0].first;
13073         Notes.clear();
13074       }
13075       Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
13076           << var << Init->getSourceRange();
13077       for (unsigned I = 0, N = Notes.size(); I != N; ++I)
13078         Diag(Notes[I].first, Notes[I].second);
13079     } else if (GlobalStorage && var->hasAttr<ConstInitAttr>()) {
13080       auto *Attr = var->getAttr<ConstInitAttr>();
13081       Diag(var->getLocation(), diag::err_require_constant_init_failed)
13082           << Init->getSourceRange();
13083       Diag(Attr->getLocation(), diag::note_declared_required_constant_init_here)
13084           << Attr->getRange() << Attr->isConstinit();
13085       for (auto &it : Notes)
13086         Diag(it.first, it.second);
13087     } else if (IsGlobal &&
13088                !getDiagnostics().isIgnored(diag::warn_global_constructor,
13089                                            var->getLocation())) {
13090       // Warn about globals which don't have a constant initializer.  Don't
13091       // warn about globals with a non-trivial destructor because we already
13092       // warned about them.
13093       CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
13094       if (!(RD && !RD->hasTrivialDestructor())) {
13095         // checkConstInit() here permits trivial default initialization even in
13096         // C++11 onwards, where such an initializer is not a constant initializer
13097         // but nonetheless doesn't require a global constructor.
13098         if (!checkConstInit())
13099           Diag(var->getLocation(), diag::warn_global_constructor)
13100               << Init->getSourceRange();
13101       }
13102     }
13103   }
13104 
13105   // Require the destructor.
13106   if (!type->isDependentType())
13107     if (const RecordType *recordType = baseType->getAs<RecordType>())
13108       FinalizeVarWithDestructor(var, recordType);
13109 
13110   // If this variable must be emitted, add it as an initializer for the current
13111   // module.
13112   if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
13113     Context.addModuleInitializer(ModuleScopes.back().Module, var);
13114 
13115   // Build the bindings if this is a structured binding declaration.
13116   if (auto *DD = dyn_cast<DecompositionDecl>(var))
13117     CheckCompleteDecompositionDeclaration(DD);
13118 }
13119 
13120 /// Determines if a variable's alignment is dependent.
hasDependentAlignment(VarDecl * VD)13121 static bool hasDependentAlignment(VarDecl *VD) {
13122   if (VD->getType()->isDependentType())
13123     return true;
13124   for (auto *I : VD->specific_attrs<AlignedAttr>())
13125     if (I->isAlignmentDependent())
13126       return true;
13127   return false;
13128 }
13129 
13130 /// Check if VD needs to be dllexport/dllimport due to being in a
13131 /// dllexport/import function.
CheckStaticLocalForDllExport(VarDecl * VD)13132 void Sema::CheckStaticLocalForDllExport(VarDecl *VD) {
13133   assert(VD->isStaticLocal());
13134 
13135   auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
13136 
13137   // Find outermost function when VD is in lambda function.
13138   while (FD && !getDLLAttr(FD) &&
13139          !FD->hasAttr<DLLExportStaticLocalAttr>() &&
13140          !FD->hasAttr<DLLImportStaticLocalAttr>()) {
13141     FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod());
13142   }
13143 
13144   if (!FD)
13145     return;
13146 
13147   // Static locals inherit dll attributes from their function.
13148   if (Attr *A = getDLLAttr(FD)) {
13149     auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
13150     NewAttr->setInherited(true);
13151     VD->addAttr(NewAttr);
13152   } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) {
13153     auto *NewAttr = DLLExportAttr::CreateImplicit(getASTContext(), *A);
13154     NewAttr->setInherited(true);
13155     VD->addAttr(NewAttr);
13156 
13157     // Export this function to enforce exporting this static variable even
13158     // if it is not used in this compilation unit.
13159     if (!FD->hasAttr<DLLExportAttr>())
13160       FD->addAttr(NewAttr);
13161 
13162   } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) {
13163     auto *NewAttr = DLLImportAttr::CreateImplicit(getASTContext(), *A);
13164     NewAttr->setInherited(true);
13165     VD->addAttr(NewAttr);
13166   }
13167 }
13168 
13169 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
13170 /// any semantic actions necessary after any initializer has been attached.
FinalizeDeclaration(Decl * ThisDecl)13171 void Sema::FinalizeDeclaration(Decl *ThisDecl) {
13172   // Note that we are no longer parsing the initializer for this declaration.
13173   ParsingInitForAutoVars.erase(ThisDecl);
13174 
13175   VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
13176   if (!VD)
13177     return;
13178 
13179   // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
13180   if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() &&
13181       !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) {
13182     if (PragmaClangBSSSection.Valid)
13183       VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(
13184           Context, PragmaClangBSSSection.SectionName,
13185           PragmaClangBSSSection.PragmaLocation,
13186           AttributeCommonInfo::AS_Pragma));
13187     if (PragmaClangDataSection.Valid)
13188       VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(
13189           Context, PragmaClangDataSection.SectionName,
13190           PragmaClangDataSection.PragmaLocation,
13191           AttributeCommonInfo::AS_Pragma));
13192     if (PragmaClangRodataSection.Valid)
13193       VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(
13194           Context, PragmaClangRodataSection.SectionName,
13195           PragmaClangRodataSection.PragmaLocation,
13196           AttributeCommonInfo::AS_Pragma));
13197     if (PragmaClangRelroSection.Valid)
13198       VD->addAttr(PragmaClangRelroSectionAttr::CreateImplicit(
13199           Context, PragmaClangRelroSection.SectionName,
13200           PragmaClangRelroSection.PragmaLocation,
13201           AttributeCommonInfo::AS_Pragma));
13202   }
13203 
13204   if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) {
13205     for (auto *BD : DD->bindings()) {
13206       FinalizeDeclaration(BD);
13207     }
13208   }
13209 
13210   checkAttributesAfterMerging(*this, *VD);
13211 
13212   // Perform TLS alignment check here after attributes attached to the variable
13213   // which may affect the alignment have been processed. Only perform the check
13214   // if the target has a maximum TLS alignment (zero means no constraints).
13215   if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
13216     // Protect the check so that it's not performed on dependent types and
13217     // dependent alignments (we can't determine the alignment in that case).
13218     if (VD->getTLSKind() && !hasDependentAlignment(VD) &&
13219         !VD->isInvalidDecl()) {
13220       CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
13221       if (Context.getDeclAlign(VD) > MaxAlignChars) {
13222         Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
13223           << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
13224           << (unsigned)MaxAlignChars.getQuantity();
13225       }
13226     }
13227   }
13228 
13229   if (VD->isStaticLocal())
13230     CheckStaticLocalForDllExport(VD);
13231 
13232   // Perform check for initializers of device-side global variables.
13233   // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
13234   // 7.5). We must also apply the same checks to all __shared__
13235   // variables whether they are local or not. CUDA also allows
13236   // constant initializers for __constant__ and __device__ variables.
13237   if (getLangOpts().CUDA)
13238     checkAllowedCUDAInitializer(VD);
13239 
13240   // Grab the dllimport or dllexport attribute off of the VarDecl.
13241   const InheritableAttr *DLLAttr = getDLLAttr(VD);
13242 
13243   // Imported static data members cannot be defined out-of-line.
13244   if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
13245     if (VD->isStaticDataMember() && VD->isOutOfLine() &&
13246         VD->isThisDeclarationADefinition()) {
13247       // We allow definitions of dllimport class template static data members
13248       // with a warning.
13249       CXXRecordDecl *Context =
13250         cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
13251       bool IsClassTemplateMember =
13252           isa<ClassTemplatePartialSpecializationDecl>(Context) ||
13253           Context->getDescribedClassTemplate();
13254 
13255       Diag(VD->getLocation(),
13256            IsClassTemplateMember
13257                ? diag::warn_attribute_dllimport_static_field_definition
13258                : diag::err_attribute_dllimport_static_field_definition);
13259       Diag(IA->getLocation(), diag::note_attribute);
13260       if (!IsClassTemplateMember)
13261         VD->setInvalidDecl();
13262     }
13263   }
13264 
13265   // dllimport/dllexport variables cannot be thread local, their TLS index
13266   // isn't exported with the variable.
13267   if (DLLAttr && VD->getTLSKind()) {
13268     auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
13269     if (F && getDLLAttr(F)) {
13270       assert(VD->isStaticLocal());
13271       // But if this is a static local in a dlimport/dllexport function, the
13272       // function will never be inlined, which means the var would never be
13273       // imported, so having it marked import/export is safe.
13274     } else {
13275       Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
13276                                                                     << DLLAttr;
13277       VD->setInvalidDecl();
13278     }
13279   }
13280 
13281   if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
13282     if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
13283       Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
13284       VD->dropAttr<UsedAttr>();
13285     }
13286   }
13287 
13288   const DeclContext *DC = VD->getDeclContext();
13289   // If there's a #pragma GCC visibility in scope, and this isn't a class
13290   // member, set the visibility of this variable.
13291   if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
13292     AddPushedVisibilityAttribute(VD);
13293 
13294   // FIXME: Warn on unused var template partial specializations.
13295   if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD))
13296     MarkUnusedFileScopedDecl(VD);
13297 
13298   // Now we have parsed the initializer and can update the table of magic
13299   // tag values.
13300   if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
13301       !VD->getType()->isIntegralOrEnumerationType())
13302     return;
13303 
13304   for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
13305     const Expr *MagicValueExpr = VD->getInit();
13306     if (!MagicValueExpr) {
13307       continue;
13308     }
13309     Optional<llvm::APSInt> MagicValueInt;
13310     if (!(MagicValueInt = MagicValueExpr->getIntegerConstantExpr(Context))) {
13311       Diag(I->getRange().getBegin(),
13312            diag::err_type_tag_for_datatype_not_ice)
13313         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
13314       continue;
13315     }
13316     if (MagicValueInt->getActiveBits() > 64) {
13317       Diag(I->getRange().getBegin(),
13318            diag::err_type_tag_for_datatype_too_large)
13319         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
13320       continue;
13321     }
13322     uint64_t MagicValue = MagicValueInt->getZExtValue();
13323     RegisterTypeTagForDatatype(I->getArgumentKind(),
13324                                MagicValue,
13325                                I->getMatchingCType(),
13326                                I->getLayoutCompatible(),
13327                                I->getMustBeNull());
13328   }
13329 }
13330 
hasDeducedAuto(DeclaratorDecl * DD)13331 static bool hasDeducedAuto(DeclaratorDecl *DD) {
13332   auto *VD = dyn_cast<VarDecl>(DD);
13333   return VD && !VD->getType()->hasAutoForTrailingReturnType();
13334 }
13335 
FinalizeDeclaratorGroup(Scope * S,const DeclSpec & DS,ArrayRef<Decl * > Group)13336 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
13337                                                    ArrayRef<Decl *> Group) {
13338   SmallVector<Decl*, 8> Decls;
13339 
13340   if (DS.isTypeSpecOwned())
13341     Decls.push_back(DS.getRepAsDecl());
13342 
13343   DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
13344   DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr;
13345   bool DiagnosedMultipleDecomps = false;
13346   DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr;
13347   bool DiagnosedNonDeducedAuto = false;
13348 
13349   for (unsigned i = 0, e = Group.size(); i != e; ++i) {
13350     if (Decl *D = Group[i]) {
13351       // For declarators, there are some additional syntactic-ish checks we need
13352       // to perform.
13353       if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
13354         if (!FirstDeclaratorInGroup)
13355           FirstDeclaratorInGroup = DD;
13356         if (!FirstDecompDeclaratorInGroup)
13357           FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D);
13358         if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() &&
13359             !hasDeducedAuto(DD))
13360           FirstNonDeducedAutoInGroup = DD;
13361 
13362         if (FirstDeclaratorInGroup != DD) {
13363           // A decomposition declaration cannot be combined with any other
13364           // declaration in the same group.
13365           if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) {
13366             Diag(FirstDecompDeclaratorInGroup->getLocation(),
13367                  diag::err_decomp_decl_not_alone)
13368                 << FirstDeclaratorInGroup->getSourceRange()
13369                 << DD->getSourceRange();
13370             DiagnosedMultipleDecomps = true;
13371           }
13372 
13373           // A declarator that uses 'auto' in any way other than to declare a
13374           // variable with a deduced type cannot be combined with any other
13375           // declarator in the same group.
13376           if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) {
13377             Diag(FirstNonDeducedAutoInGroup->getLocation(),
13378                  diag::err_auto_non_deduced_not_alone)
13379                 << FirstNonDeducedAutoInGroup->getType()
13380                        ->hasAutoForTrailingReturnType()
13381                 << FirstDeclaratorInGroup->getSourceRange()
13382                 << DD->getSourceRange();
13383             DiagnosedNonDeducedAuto = true;
13384           }
13385         }
13386       }
13387 
13388       Decls.push_back(D);
13389     }
13390   }
13391 
13392   if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
13393     if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
13394       handleTagNumbering(Tag, S);
13395       if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
13396           getLangOpts().CPlusPlus)
13397         Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
13398     }
13399   }
13400 
13401   return BuildDeclaratorGroup(Decls);
13402 }
13403 
13404 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
13405 /// group, performing any necessary semantic checking.
13406 Sema::DeclGroupPtrTy
BuildDeclaratorGroup(MutableArrayRef<Decl * > Group)13407 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) {
13408   // C++14 [dcl.spec.auto]p7: (DR1347)
13409   //   If the type that replaces the placeholder type is not the same in each
13410   //   deduction, the program is ill-formed.
13411   if (Group.size() > 1) {
13412     QualType Deduced;
13413     VarDecl *DeducedDecl = nullptr;
13414     for (unsigned i = 0, e = Group.size(); i != e; ++i) {
13415       VarDecl *D = dyn_cast<VarDecl>(Group[i]);
13416       if (!D || D->isInvalidDecl())
13417         break;
13418       DeducedType *DT = D->getType()->getContainedDeducedType();
13419       if (!DT || DT->getDeducedType().isNull())
13420         continue;
13421       if (Deduced.isNull()) {
13422         Deduced = DT->getDeducedType();
13423         DeducedDecl = D;
13424       } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) {
13425         auto *AT = dyn_cast<AutoType>(DT);
13426         auto Dia = Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
13427                         diag::err_auto_different_deductions)
13428                    << (AT ? (unsigned)AT->getKeyword() : 3) << Deduced
13429                    << DeducedDecl->getDeclName() << DT->getDeducedType()
13430                    << D->getDeclName();
13431         if (DeducedDecl->hasInit())
13432           Dia << DeducedDecl->getInit()->getSourceRange();
13433         if (D->getInit())
13434           Dia << D->getInit()->getSourceRange();
13435         D->setInvalidDecl();
13436         break;
13437       }
13438     }
13439   }
13440 
13441   ActOnDocumentableDecls(Group);
13442 
13443   return DeclGroupPtrTy::make(
13444       DeclGroupRef::Create(Context, Group.data(), Group.size()));
13445 }
13446 
ActOnDocumentableDecl(Decl * D)13447 void Sema::ActOnDocumentableDecl(Decl *D) {
13448   ActOnDocumentableDecls(D);
13449 }
13450 
ActOnDocumentableDecls(ArrayRef<Decl * > Group)13451 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
13452   // Don't parse the comment if Doxygen diagnostics are ignored.
13453   if (Group.empty() || !Group[0])
13454     return;
13455 
13456   if (Diags.isIgnored(diag::warn_doc_param_not_found,
13457                       Group[0]->getLocation()) &&
13458       Diags.isIgnored(diag::warn_unknown_comment_command_name,
13459                       Group[0]->getLocation()))
13460     return;
13461 
13462   if (Group.size() >= 2) {
13463     // This is a decl group.  Normally it will contain only declarations
13464     // produced from declarator list.  But in case we have any definitions or
13465     // additional declaration references:
13466     //   'typedef struct S {} S;'
13467     //   'typedef struct S *S;'
13468     //   'struct S *pS;'
13469     // FinalizeDeclaratorGroup adds these as separate declarations.
13470     Decl *MaybeTagDecl = Group[0];
13471     if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
13472       Group = Group.slice(1);
13473     }
13474   }
13475 
13476   // FIMXE: We assume every Decl in the group is in the same file.
13477   // This is false when preprocessor constructs the group from decls in
13478   // different files (e. g. macros or #include).
13479   Context.attachCommentsToJustParsedDecls(Group, &getPreprocessor());
13480 }
13481 
13482 /// Common checks for a parameter-declaration that should apply to both function
13483 /// parameters and non-type template parameters.
CheckFunctionOrTemplateParamDeclarator(Scope * S,Declarator & D)13484 void Sema::CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D) {
13485   // Check that there are no default arguments inside the type of this
13486   // parameter.
13487   if (getLangOpts().CPlusPlus)
13488     CheckExtraCXXDefaultArguments(D);
13489 
13490   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
13491   if (D.getCXXScopeSpec().isSet()) {
13492     Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
13493       << D.getCXXScopeSpec().getRange();
13494   }
13495 
13496   // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a
13497   // simple identifier except [...irrelevant cases...].
13498   switch (D.getName().getKind()) {
13499   case UnqualifiedIdKind::IK_Identifier:
13500     break;
13501 
13502   case UnqualifiedIdKind::IK_OperatorFunctionId:
13503   case UnqualifiedIdKind::IK_ConversionFunctionId:
13504   case UnqualifiedIdKind::IK_LiteralOperatorId:
13505   case UnqualifiedIdKind::IK_ConstructorName:
13506   case UnqualifiedIdKind::IK_DestructorName:
13507   case UnqualifiedIdKind::IK_ImplicitSelfParam:
13508   case UnqualifiedIdKind::IK_DeductionGuideName:
13509     Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
13510       << GetNameForDeclarator(D).getName();
13511     break;
13512 
13513   case UnqualifiedIdKind::IK_TemplateId:
13514   case UnqualifiedIdKind::IK_ConstructorTemplateId:
13515     // GetNameForDeclarator would not produce a useful name in this case.
13516     Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id);
13517     break;
13518   }
13519 }
13520 
13521 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
13522 /// to introduce parameters into function prototype scope.
ActOnParamDeclarator(Scope * S,Declarator & D)13523 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
13524   const DeclSpec &DS = D.getDeclSpec();
13525 
13526   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
13527 
13528   // C++03 [dcl.stc]p2 also permits 'auto'.
13529   StorageClass SC = SC_None;
13530   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
13531     SC = SC_Register;
13532     // In C++11, the 'register' storage class specifier is deprecated.
13533     // In C++17, it is not allowed, but we tolerate it as an extension.
13534     if (getLangOpts().CPlusPlus11) {
13535       Diag(DS.getStorageClassSpecLoc(),
13536            getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
13537                                      : diag::warn_deprecated_register)
13538         << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
13539     }
13540   } else if (getLangOpts().CPlusPlus &&
13541              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
13542     SC = SC_Auto;
13543   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
13544     Diag(DS.getStorageClassSpecLoc(),
13545          diag::err_invalid_storage_class_in_func_decl);
13546     D.getMutableDeclSpec().ClearStorageClassSpecs();
13547   }
13548 
13549   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
13550     Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
13551       << DeclSpec::getSpecifierName(TSCS);
13552   if (DS.isInlineSpecified())
13553     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
13554         << getLangOpts().CPlusPlus17;
13555   if (DS.hasConstexprSpecifier())
13556     Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
13557         << 0 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
13558 
13559   DiagnoseFunctionSpecifiers(DS);
13560 
13561   CheckFunctionOrTemplateParamDeclarator(S, D);
13562 
13563   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
13564   QualType parmDeclType = TInfo->getType();
13565 
13566   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
13567   IdentifierInfo *II = D.getIdentifier();
13568   if (II) {
13569     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
13570                    ForVisibleRedeclaration);
13571     LookupName(R, S);
13572     if (R.isSingleResult()) {
13573       NamedDecl *PrevDecl = R.getFoundDecl();
13574       if (PrevDecl->isTemplateParameter()) {
13575         // Maybe we will complain about the shadowed template parameter.
13576         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
13577         // Just pretend that we didn't see the previous declaration.
13578         PrevDecl = nullptr;
13579       } else if (S->isDeclScope(PrevDecl)) {
13580         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
13581         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
13582 
13583         // Recover by removing the name
13584         II = nullptr;
13585         D.SetIdentifier(nullptr, D.getIdentifierLoc());
13586         D.setInvalidType(true);
13587       }
13588     }
13589   }
13590 
13591   // Temporarily put parameter variables in the translation unit, not
13592   // the enclosing context.  This prevents them from accidentally
13593   // looking like class members in C++.
13594   ParmVarDecl *New =
13595       CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(),
13596                      D.getIdentifierLoc(), II, parmDeclType, TInfo, SC);
13597 
13598   if (D.isInvalidType())
13599     New->setInvalidDecl();
13600 
13601   assert(S->isFunctionPrototypeScope());
13602   assert(S->getFunctionPrototypeDepth() >= 1);
13603   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
13604                     S->getNextFunctionPrototypeIndex());
13605 
13606   // Add the parameter declaration into this scope.
13607   S->AddDecl(New);
13608   if (II)
13609     IdResolver.AddDecl(New);
13610 
13611   ProcessDeclAttributes(S, New, D);
13612 
13613   if (D.getDeclSpec().isModulePrivateSpecified())
13614     Diag(New->getLocation(), diag::err_module_private_local)
13615         << 1 << New << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
13616         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
13617 
13618   if (New->hasAttr<BlocksAttr>()) {
13619     Diag(New->getLocation(), diag::err_block_on_nonlocal);
13620   }
13621 
13622   if (getLangOpts().OpenCL)
13623     deduceOpenCLAddressSpace(New);
13624 
13625   return New;
13626 }
13627 
13628 /// Synthesizes a variable for a parameter arising from a
13629 /// typedef.
BuildParmVarDeclForTypedef(DeclContext * DC,SourceLocation Loc,QualType T)13630 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
13631                                               SourceLocation Loc,
13632                                               QualType T) {
13633   /* FIXME: setting StartLoc == Loc.
13634      Would it be worth to modify callers so as to provide proper source
13635      location for the unnamed parameters, embedding the parameter's type? */
13636   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
13637                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
13638                                            SC_None, nullptr);
13639   Param->setImplicit();
13640   return Param;
13641 }
13642 
DiagnoseUnusedParameters(ArrayRef<ParmVarDecl * > Parameters)13643 void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) {
13644   // Don't diagnose unused-parameter errors in template instantiations; we
13645   // will already have done so in the template itself.
13646   if (inTemplateInstantiation())
13647     return;
13648 
13649   for (const ParmVarDecl *Parameter : Parameters) {
13650     if (!Parameter->isReferenced() && Parameter->getDeclName() &&
13651         !Parameter->hasAttr<UnusedAttr>()) {
13652       Diag(Parameter->getLocation(), diag::warn_unused_parameter)
13653         << Parameter->getDeclName();
13654     }
13655   }
13656 }
13657 
DiagnoseSizeOfParametersAndReturnValue(ArrayRef<ParmVarDecl * > Parameters,QualType ReturnTy,NamedDecl * D)13658 void Sema::DiagnoseSizeOfParametersAndReturnValue(
13659     ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
13660   if (LangOpts.NumLargeByValueCopy == 0) // No check.
13661     return;
13662 
13663   // Warn if the return value is pass-by-value and larger than the specified
13664   // threshold.
13665   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
13666     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
13667     if (Size > LangOpts.NumLargeByValueCopy)
13668       Diag(D->getLocation(), diag::warn_return_value_size) << D << Size;
13669   }
13670 
13671   // Warn if any parameter is pass-by-value and larger than the specified
13672   // threshold.
13673   for (const ParmVarDecl *Parameter : Parameters) {
13674     QualType T = Parameter->getType();
13675     if (T->isDependentType() || !T.isPODType(Context))
13676       continue;
13677     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
13678     if (Size > LangOpts.NumLargeByValueCopy)
13679       Diag(Parameter->getLocation(), diag::warn_parameter_size)
13680           << Parameter << Size;
13681   }
13682 }
13683 
CheckParameter(DeclContext * DC,SourceLocation StartLoc,SourceLocation NameLoc,IdentifierInfo * Name,QualType T,TypeSourceInfo * TSInfo,StorageClass SC)13684 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
13685                                   SourceLocation NameLoc, IdentifierInfo *Name,
13686                                   QualType T, TypeSourceInfo *TSInfo,
13687                                   StorageClass SC) {
13688   // In ARC, infer a lifetime qualifier for appropriate parameter types.
13689   if (getLangOpts().ObjCAutoRefCount &&
13690       T.getObjCLifetime() == Qualifiers::OCL_None &&
13691       T->isObjCLifetimeType()) {
13692 
13693     Qualifiers::ObjCLifetime lifetime;
13694 
13695     // Special cases for arrays:
13696     //   - if it's const, use __unsafe_unretained
13697     //   - otherwise, it's an error
13698     if (T->isArrayType()) {
13699       if (!T.isConstQualified()) {
13700         if (DelayedDiagnostics.shouldDelayDiagnostics())
13701           DelayedDiagnostics.add(
13702               sema::DelayedDiagnostic::makeForbiddenType(
13703               NameLoc, diag::err_arc_array_param_no_ownership, T, false));
13704         else
13705           Diag(NameLoc, diag::err_arc_array_param_no_ownership)
13706               << TSInfo->getTypeLoc().getSourceRange();
13707       }
13708       lifetime = Qualifiers::OCL_ExplicitNone;
13709     } else {
13710       lifetime = T->getObjCARCImplicitLifetime();
13711     }
13712     T = Context.getLifetimeQualifiedType(T, lifetime);
13713   }
13714 
13715   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
13716                                          Context.getAdjustedParameterType(T),
13717                                          TSInfo, SC, nullptr);
13718 
13719   // Make a note if we created a new pack in the scope of a lambda, so that
13720   // we know that references to that pack must also be expanded within the
13721   // lambda scope.
13722   if (New->isParameterPack())
13723     if (auto *LSI = getEnclosingLambda())
13724       LSI->LocalPacks.push_back(New);
13725 
13726   if (New->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
13727       New->getType().hasNonTrivialToPrimitiveCopyCUnion())
13728     checkNonTrivialCUnion(New->getType(), New->getLocation(),
13729                           NTCUC_FunctionParam, NTCUK_Destruct|NTCUK_Copy);
13730 
13731   // Parameters can not be abstract class types.
13732   // For record types, this is done by the AbstractClassUsageDiagnoser once
13733   // the class has been completely parsed.
13734   if (!CurContext->isRecord() &&
13735       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
13736                              AbstractParamType))
13737     New->setInvalidDecl();
13738 
13739   // Parameter declarators cannot be interface types. All ObjC objects are
13740   // passed by reference.
13741   if (T->isObjCObjectType()) {
13742     SourceLocation TypeEndLoc =
13743         getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc());
13744     Diag(NameLoc,
13745          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
13746       << FixItHint::CreateInsertion(TypeEndLoc, "*");
13747     T = Context.getObjCObjectPointerType(T);
13748     New->setType(T);
13749   }
13750 
13751   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
13752   // duration shall not be qualified by an address-space qualifier."
13753   // Since all parameters have automatic store duration, they can not have
13754   // an address space.
13755   if (T.getAddressSpace() != LangAS::Default &&
13756       // OpenCL allows function arguments declared to be an array of a type
13757       // to be qualified with an address space.
13758       !(getLangOpts().OpenCL &&
13759         (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) {
13760     Diag(NameLoc, diag::err_arg_with_address_space);
13761     New->setInvalidDecl();
13762   }
13763 
13764   // PPC MMA non-pointer types are not allowed as function argument types.
13765   if (Context.getTargetInfo().getTriple().isPPC64() &&
13766       CheckPPCMMAType(New->getOriginalType(), New->getLocation())) {
13767     New->setInvalidDecl();
13768   }
13769 
13770   return New;
13771 }
13772 
ActOnFinishKNRParamDeclarations(Scope * S,Declarator & D,SourceLocation LocAfterDecls)13773 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
13774                                            SourceLocation LocAfterDecls) {
13775   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
13776 
13777   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
13778   // for a K&R function.
13779   if (!FTI.hasPrototype) {
13780     for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
13781       --i;
13782       if (FTI.Params[i].Param == nullptr) {
13783         SmallString<256> Code;
13784         llvm::raw_svector_ostream(Code)
13785             << "  int " << FTI.Params[i].Ident->getName() << ";\n";
13786         Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
13787             << FTI.Params[i].Ident
13788             << FixItHint::CreateInsertion(LocAfterDecls, Code);
13789 
13790         // Implicitly declare the argument as type 'int' for lack of a better
13791         // type.
13792         AttributeFactory attrs;
13793         DeclSpec DS(attrs);
13794         const char* PrevSpec; // unused
13795         unsigned DiagID; // unused
13796         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
13797                            DiagID, Context.getPrintingPolicy());
13798         // Use the identifier location for the type source range.
13799         DS.SetRangeStart(FTI.Params[i].IdentLoc);
13800         DS.SetRangeEnd(FTI.Params[i].IdentLoc);
13801         Declarator ParamD(DS, DeclaratorContext::KNRTypeList);
13802         ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
13803         FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
13804       }
13805     }
13806   }
13807 }
13808 
13809 Decl *
ActOnStartOfFunctionDef(Scope * FnBodyScope,Declarator & D,MultiTemplateParamsArg TemplateParameterLists,SkipBodyInfo * SkipBody)13810 Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
13811                               MultiTemplateParamsArg TemplateParameterLists,
13812                               SkipBodyInfo *SkipBody) {
13813   assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
13814   assert(D.isFunctionDeclarator() && "Not a function declarator!");
13815   Scope *ParentScope = FnBodyScope->getParent();
13816 
13817   // Check if we are in an `omp begin/end declare variant` scope. If we are, and
13818   // we define a non-templated function definition, we will create a declaration
13819   // instead (=BaseFD), and emit the definition with a mangled name afterwards.
13820   // The base function declaration will have the equivalent of an `omp declare
13821   // variant` annotation which specifies the mangled definition as a
13822   // specialization function under the OpenMP context defined as part of the
13823   // `omp begin declare variant`.
13824   SmallVector<FunctionDecl *, 4> Bases;
13825   if (LangOpts.OpenMP && isInOpenMPDeclareVariantScope())
13826     ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
13827         ParentScope, D, TemplateParameterLists, Bases);
13828 
13829   D.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
13830   Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
13831   Decl *Dcl = ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody);
13832 
13833   if (!Bases.empty())
13834     ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl, Bases);
13835 
13836   return Dcl;
13837 }
13838 
ActOnFinishInlineFunctionDef(FunctionDecl * D)13839 void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) {
13840   Consumer.HandleInlineFunctionDefinition(D);
13841 }
13842 
13843 static bool
ShouldWarnAboutMissingPrototype(const FunctionDecl * FD,const FunctionDecl * & PossiblePrototype)13844 ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
13845                                 const FunctionDecl *&PossiblePrototype) {
13846   // Don't warn about invalid declarations.
13847   if (FD->isInvalidDecl())
13848     return false;
13849 
13850   // Or declarations that aren't global.
13851   if (!FD->isGlobal())
13852     return false;
13853 
13854   // Don't warn about C++ member functions.
13855   if (isa<CXXMethodDecl>(FD))
13856     return false;
13857 
13858   // Don't warn about 'main'.
13859   if (isa<TranslationUnitDecl>(FD->getDeclContext()->getRedeclContext()))
13860     if (IdentifierInfo *II = FD->getIdentifier())
13861       if (II->isStr("main"))
13862         return false;
13863 
13864   // Don't warn about inline functions.
13865   if (FD->isInlined())
13866     return false;
13867 
13868   // Don't warn about function templates.
13869   if (FD->getDescribedFunctionTemplate())
13870     return false;
13871 
13872   // Don't warn about function template specializations.
13873   if (FD->isFunctionTemplateSpecialization())
13874     return false;
13875 
13876   // Don't warn for OpenCL kernels.
13877   if (FD->hasAttr<OpenCLKernelAttr>())
13878     return false;
13879 
13880   // Don't warn on explicitly deleted functions.
13881   if (FD->isDeleted())
13882     return false;
13883 
13884   for (const FunctionDecl *Prev = FD->getPreviousDecl();
13885        Prev; Prev = Prev->getPreviousDecl()) {
13886     // Ignore any declarations that occur in function or method
13887     // scope, because they aren't visible from the header.
13888     if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
13889       continue;
13890 
13891     PossiblePrototype = Prev;
13892     return Prev->getType()->isFunctionNoProtoType();
13893   }
13894 
13895   return true;
13896 }
13897 
13898 void
CheckForFunctionRedefinition(FunctionDecl * FD,const FunctionDecl * EffectiveDefinition,SkipBodyInfo * SkipBody)13899 Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
13900                                    const FunctionDecl *EffectiveDefinition,
13901                                    SkipBodyInfo *SkipBody) {
13902   const FunctionDecl *Definition = EffectiveDefinition;
13903   if (!Definition &&
13904       !FD->isDefined(Definition, /*CheckForPendingFriendDefinition*/ true))
13905     return;
13906 
13907   if (Definition->getFriendObjectKind() != Decl::FOK_None) {
13908     if (FunctionDecl *OrigDef = Definition->getInstantiatedFromMemberFunction()) {
13909       if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) {
13910         // A merged copy of the same function, instantiated as a member of
13911         // the same class, is OK.
13912         if (declaresSameEntity(OrigFD, OrigDef) &&
13913             declaresSameEntity(cast<Decl>(Definition->getLexicalDeclContext()),
13914                                cast<Decl>(FD->getLexicalDeclContext())))
13915           return;
13916       }
13917     }
13918   }
13919 
13920   if (canRedefineFunction(Definition, getLangOpts()))
13921     return;
13922 
13923   // Don't emit an error when this is redefinition of a typo-corrected
13924   // definition.
13925   if (TypoCorrectedFunctionDefinitions.count(Definition))
13926     return;
13927 
13928   // If we don't have a visible definition of the function, and it's inline or
13929   // a template, skip the new definition.
13930   if (SkipBody && !hasVisibleDefinition(Definition) &&
13931       (Definition->getFormalLinkage() == InternalLinkage ||
13932        Definition->isInlined() ||
13933        Definition->getDescribedFunctionTemplate() ||
13934        Definition->getNumTemplateParameterLists())) {
13935     SkipBody->ShouldSkip = true;
13936     SkipBody->Previous = const_cast<FunctionDecl*>(Definition);
13937     if (auto *TD = Definition->getDescribedFunctionTemplate())
13938       makeMergedDefinitionVisible(TD);
13939     makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition));
13940     return;
13941   }
13942 
13943   if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
13944       Definition->getStorageClass() == SC_Extern)
13945     Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
13946         << FD << getLangOpts().CPlusPlus;
13947   else
13948     Diag(FD->getLocation(), diag::err_redefinition) << FD;
13949 
13950   Diag(Definition->getLocation(), diag::note_previous_definition);
13951   FD->setInvalidDecl();
13952 }
13953 
RebuildLambdaScopeInfo(CXXMethodDecl * CallOperator,Sema & S)13954 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
13955                                    Sema &S) {
13956   CXXRecordDecl *const LambdaClass = CallOperator->getParent();
13957 
13958   LambdaScopeInfo *LSI = S.PushLambdaScope();
13959   LSI->CallOperator = CallOperator;
13960   LSI->Lambda = LambdaClass;
13961   LSI->ReturnType = CallOperator->getReturnType();
13962   const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
13963 
13964   if (LCD == LCD_None)
13965     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
13966   else if (LCD == LCD_ByCopy)
13967     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
13968   else if (LCD == LCD_ByRef)
13969     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
13970   DeclarationNameInfo DNI = CallOperator->getNameInfo();
13971 
13972   LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
13973   LSI->Mutable = !CallOperator->isConst();
13974 
13975   // Add the captures to the LSI so they can be noted as already
13976   // captured within tryCaptureVar.
13977   auto I = LambdaClass->field_begin();
13978   for (const auto &C : LambdaClass->captures()) {
13979     if (C.capturesVariable()) {
13980       VarDecl *VD = C.getCapturedVar();
13981       if (VD->isInitCapture())
13982         S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
13983       const bool ByRef = C.getCaptureKind() == LCK_ByRef;
13984       LSI->addCapture(VD, /*IsBlock*/false, ByRef,
13985           /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
13986           /*EllipsisLoc*/C.isPackExpansion()
13987                          ? C.getEllipsisLoc() : SourceLocation(),
13988           I->getType(), /*Invalid*/false);
13989 
13990     } else if (C.capturesThis()) {
13991       LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(),
13992                           C.getCaptureKind() == LCK_StarThis);
13993     } else {
13994       LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(),
13995                              I->getType());
13996     }
13997     ++I;
13998   }
13999 }
14000 
ActOnStartOfFunctionDef(Scope * FnBodyScope,Decl * D,SkipBodyInfo * SkipBody)14001 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
14002                                     SkipBodyInfo *SkipBody) {
14003   if (!D) {
14004     // Parsing the function declaration failed in some way. Push on a fake scope
14005     // anyway so we can try to parse the function body.
14006     PushFunctionScope();
14007     PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
14008     return D;
14009   }
14010 
14011   FunctionDecl *FD = nullptr;
14012 
14013   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
14014     FD = FunTmpl->getTemplatedDecl();
14015   else
14016     FD = cast<FunctionDecl>(D);
14017 
14018   // Do not push if it is a lambda because one is already pushed when building
14019   // the lambda in ActOnStartOfLambdaDefinition().
14020   if (!isLambdaCallOperator(FD))
14021     PushExpressionEvaluationContext(
14022         FD->isConsteval() ? ExpressionEvaluationContext::ConstantEvaluated
14023                           : ExprEvalContexts.back().Context);
14024 
14025   // Check for defining attributes before the check for redefinition.
14026   if (const auto *Attr = FD->getAttr<AliasAttr>()) {
14027     Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0;
14028     FD->dropAttr<AliasAttr>();
14029     FD->setInvalidDecl();
14030   }
14031   if (const auto *Attr = FD->getAttr<IFuncAttr>()) {
14032     Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1;
14033     FD->dropAttr<IFuncAttr>();
14034     FD->setInvalidDecl();
14035   }
14036 
14037   if (auto *Ctor = dyn_cast<CXXConstructorDecl>(FD)) {
14038     if (Ctor->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
14039         Ctor->isDefaultConstructor() &&
14040         Context.getTargetInfo().getCXXABI().isMicrosoft()) {
14041       // If this is an MS ABI dllexport default constructor, instantiate any
14042       // default arguments.
14043       InstantiateDefaultCtorDefaultArgs(Ctor);
14044     }
14045   }
14046 
14047   // See if this is a redefinition. If 'will have body' (or similar) is already
14048   // set, then these checks were already performed when it was set.
14049   if (!FD->willHaveBody() && !FD->isLateTemplateParsed() &&
14050       !FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
14051     CheckForFunctionRedefinition(FD, nullptr, SkipBody);
14052 
14053     // If we're skipping the body, we're done. Don't enter the scope.
14054     if (SkipBody && SkipBody->ShouldSkip)
14055       return D;
14056   }
14057 
14058   // Mark this function as "will have a body eventually".  This lets users to
14059   // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
14060   // this function.
14061   FD->setWillHaveBody();
14062 
14063   // If we are instantiating a generic lambda call operator, push
14064   // a LambdaScopeInfo onto the function stack.  But use the information
14065   // that's already been calculated (ActOnLambdaExpr) to prime the current
14066   // LambdaScopeInfo.
14067   // When the template operator is being specialized, the LambdaScopeInfo,
14068   // has to be properly restored so that tryCaptureVariable doesn't try
14069   // and capture any new variables. In addition when calculating potential
14070   // captures during transformation of nested lambdas, it is necessary to
14071   // have the LSI properly restored.
14072   if (isGenericLambdaCallOperatorSpecialization(FD)) {
14073     assert(inTemplateInstantiation() &&
14074            "There should be an active template instantiation on the stack "
14075            "when instantiating a generic lambda!");
14076     RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
14077   } else {
14078     // Enter a new function scope
14079     PushFunctionScope();
14080   }
14081 
14082   // Builtin functions cannot be defined.
14083   if (unsigned BuiltinID = FD->getBuiltinID()) {
14084     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
14085         !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
14086       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
14087       FD->setInvalidDecl();
14088     }
14089   }
14090 
14091   // The return type of a function definition must be complete
14092   // (C99 6.9.1p3, C++ [dcl.fct]p6).
14093   QualType ResultType = FD->getReturnType();
14094   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
14095       !FD->isInvalidDecl() &&
14096       RequireCompleteType(FD->getLocation(), ResultType,
14097                           diag::err_func_def_incomplete_result))
14098     FD->setInvalidDecl();
14099 
14100   if (FnBodyScope)
14101     PushDeclContext(FnBodyScope, FD);
14102 
14103   // Check the validity of our function parameters
14104   CheckParmsForFunctionDef(FD->parameters(),
14105                            /*CheckParameterNames=*/true);
14106 
14107   // Add non-parameter declarations already in the function to the current
14108   // scope.
14109   if (FnBodyScope) {
14110     for (Decl *NPD : FD->decls()) {
14111       auto *NonParmDecl = dyn_cast<NamedDecl>(NPD);
14112       if (!NonParmDecl)
14113         continue;
14114       assert(!isa<ParmVarDecl>(NonParmDecl) &&
14115              "parameters should not be in newly created FD yet");
14116 
14117       // If the decl has a name, make it accessible in the current scope.
14118       if (NonParmDecl->getDeclName())
14119         PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false);
14120 
14121       // Similarly, dive into enums and fish their constants out, making them
14122       // accessible in this scope.
14123       if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) {
14124         for (auto *EI : ED->enumerators())
14125           PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
14126       }
14127     }
14128   }
14129 
14130   // Introduce our parameters into the function scope
14131   for (auto Param : FD->parameters()) {
14132     Param->setOwningFunction(FD);
14133 
14134     // If this has an identifier, add it to the scope stack.
14135     if (Param->getIdentifier() && FnBodyScope) {
14136       CheckShadow(FnBodyScope, Param);
14137 
14138       PushOnScopeChains(Param, FnBodyScope);
14139     }
14140   }
14141 
14142   // Ensure that the function's exception specification is instantiated.
14143   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
14144     ResolveExceptionSpec(D->getLocation(), FPT);
14145 
14146   // dllimport cannot be applied to non-inline function definitions.
14147   if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
14148       !FD->isTemplateInstantiation()) {
14149     assert(!FD->hasAttr<DLLExportAttr>());
14150     Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
14151     FD->setInvalidDecl();
14152     return D;
14153   }
14154   // We want to attach documentation to original Decl (which might be
14155   // a function template).
14156   ActOnDocumentableDecl(D);
14157   if (getCurLexicalContext()->isObjCContainer() &&
14158       getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
14159       getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
14160     Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
14161 
14162   return D;
14163 }
14164 
14165 /// Given the set of return statements within a function body,
14166 /// compute the variables that are subject to the named return value
14167 /// optimization.
14168 ///
14169 /// Each of the variables that is subject to the named return value
14170 /// optimization will be marked as NRVO variables in the AST, and any
14171 /// return statement that has a marked NRVO variable as its NRVO candidate can
14172 /// use the named return value optimization.
14173 ///
14174 /// This function applies a very simplistic algorithm for NRVO: if every return
14175 /// statement in the scope of a variable has the same NRVO candidate, that
14176 /// candidate is an NRVO variable.
computeNRVO(Stmt * Body,FunctionScopeInfo * Scope)14177 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
14178   ReturnStmt **Returns = Scope->Returns.data();
14179 
14180   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
14181     if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
14182       if (!NRVOCandidate->isNRVOVariable())
14183         Returns[I]->setNRVOCandidate(nullptr);
14184     }
14185   }
14186 }
14187 
canDelayFunctionBody(const Declarator & D)14188 bool Sema::canDelayFunctionBody(const Declarator &D) {
14189   // We can't delay parsing the body of a constexpr function template (yet).
14190   if (D.getDeclSpec().hasConstexprSpecifier())
14191     return false;
14192 
14193   // We can't delay parsing the body of a function template with a deduced
14194   // return type (yet).
14195   if (D.getDeclSpec().hasAutoTypeSpec()) {
14196     // If the placeholder introduces a non-deduced trailing return type,
14197     // we can still delay parsing it.
14198     if (D.getNumTypeObjects()) {
14199       const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
14200       if (Outer.Kind == DeclaratorChunk::Function &&
14201           Outer.Fun.hasTrailingReturnType()) {
14202         QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
14203         return Ty.isNull() || !Ty->isUndeducedType();
14204       }
14205     }
14206     return false;
14207   }
14208 
14209   return true;
14210 }
14211 
canSkipFunctionBody(Decl * D)14212 bool Sema::canSkipFunctionBody(Decl *D) {
14213   // We cannot skip the body of a function (or function template) which is
14214   // constexpr, since we may need to evaluate its body in order to parse the
14215   // rest of the file.
14216   // We cannot skip the body of a function with an undeduced return type,
14217   // because any callers of that function need to know the type.
14218   if (const FunctionDecl *FD = D->getAsFunction()) {
14219     if (FD->isConstexpr())
14220       return false;
14221     // We can't simply call Type::isUndeducedType here, because inside template
14222     // auto can be deduced to a dependent type, which is not considered
14223     // "undeduced".
14224     if (FD->getReturnType()->getContainedDeducedType())
14225       return false;
14226   }
14227   return Consumer.shouldSkipFunctionBody(D);
14228 }
14229 
ActOnSkippedFunctionBody(Decl * Decl)14230 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
14231   if (!Decl)
14232     return nullptr;
14233   if (FunctionDecl *FD = Decl->getAsFunction())
14234     FD->setHasSkippedBody();
14235   else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
14236     MD->setHasSkippedBody();
14237   return Decl;
14238 }
14239 
ActOnFinishFunctionBody(Decl * D,Stmt * BodyArg)14240 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
14241   return ActOnFinishFunctionBody(D, BodyArg, false);
14242 }
14243 
14244 /// RAII object that pops an ExpressionEvaluationContext when exiting a function
14245 /// body.
14246 class ExitFunctionBodyRAII {
14247 public:
ExitFunctionBodyRAII(Sema & S,bool IsLambda)14248   ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {}
~ExitFunctionBodyRAII()14249   ~ExitFunctionBodyRAII() {
14250     if (!IsLambda)
14251       S.PopExpressionEvaluationContext();
14252   }
14253 
14254 private:
14255   Sema &S;
14256   bool IsLambda = false;
14257 };
14258 
diagnoseImplicitlyRetainedSelf(Sema & S)14259 static void diagnoseImplicitlyRetainedSelf(Sema &S) {
14260   llvm::DenseMap<const BlockDecl *, bool> EscapeInfo;
14261 
14262   auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) {
14263     if (EscapeInfo.count(BD))
14264       return EscapeInfo[BD];
14265 
14266     bool R = false;
14267     const BlockDecl *CurBD = BD;
14268 
14269     do {
14270       R = !CurBD->doesNotEscape();
14271       if (R)
14272         break;
14273       CurBD = CurBD->getParent()->getInnermostBlockDecl();
14274     } while (CurBD);
14275 
14276     return EscapeInfo[BD] = R;
14277   };
14278 
14279   // If the location where 'self' is implicitly retained is inside a escaping
14280   // block, emit a diagnostic.
14281   for (const std::pair<SourceLocation, const BlockDecl *> &P :
14282        S.ImplicitlyRetainedSelfLocs)
14283     if (IsOrNestedInEscapingBlock(P.second))
14284       S.Diag(P.first, diag::warn_implicitly_retains_self)
14285           << FixItHint::CreateInsertion(P.first, "self->");
14286 }
14287 
ActOnFinishFunctionBody(Decl * dcl,Stmt * Body,bool IsInstantiation)14288 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
14289                                     bool IsInstantiation) {
14290   FunctionScopeInfo *FSI = getCurFunction();
14291   FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
14292 
14293   if (FSI->UsesFPIntrin && !FD->hasAttr<StrictFPAttr>())
14294     FD->addAttr(StrictFPAttr::CreateImplicit(Context));
14295 
14296   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
14297   sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
14298 
14299   if (getLangOpts().Coroutines && FSI->isCoroutine())
14300     CheckCompletedCoroutineBody(FD, Body);
14301 
14302   // Do not call PopExpressionEvaluationContext() if it is a lambda because one
14303   // is already popped when finishing the lambda in BuildLambdaExpr(). This is
14304   // meant to pop the context added in ActOnStartOfFunctionDef().
14305   ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD));
14306 
14307   if (FD) {
14308     FD->setBody(Body);
14309     FD->setWillHaveBody(false);
14310 
14311     if (getLangOpts().CPlusPlus14) {
14312       if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
14313           FD->getReturnType()->isUndeducedType()) {
14314         // If the function has a deduced result type but contains no 'return'
14315         // statements, the result type as written must be exactly 'auto', and
14316         // the deduced result type is 'void'.
14317         if (!FD->getReturnType()->getAs<AutoType>()) {
14318           Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
14319               << FD->getReturnType();
14320           FD->setInvalidDecl();
14321         } else {
14322           // Substitute 'void' for the 'auto' in the type.
14323           TypeLoc ResultType = getReturnTypeLoc(FD);
14324           Context.adjustDeducedFunctionResultType(
14325               FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
14326         }
14327       }
14328     } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
14329       // In C++11, we don't use 'auto' deduction rules for lambda call
14330       // operators because we don't support return type deduction.
14331       auto *LSI = getCurLambda();
14332       if (LSI->HasImplicitReturnType) {
14333         deduceClosureReturnType(*LSI);
14334 
14335         // C++11 [expr.prim.lambda]p4:
14336         //   [...] if there are no return statements in the compound-statement
14337         //   [the deduced type is] the type void
14338         QualType RetType =
14339             LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
14340 
14341         // Update the return type to the deduced type.
14342         const auto *Proto = FD->getType()->castAs<FunctionProtoType>();
14343         FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
14344                                             Proto->getExtProtoInfo()));
14345       }
14346     }
14347 
14348     // If the function implicitly returns zero (like 'main') or is naked,
14349     // don't complain about missing return statements.
14350     if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
14351       WP.disableCheckFallThrough();
14352 
14353     // MSVC permits the use of pure specifier (=0) on function definition,
14354     // defined at class scope, warn about this non-standard construct.
14355     if (getLangOpts().MicrosoftExt && FD->isPure() && !FD->isOutOfLine())
14356       Diag(FD->getLocation(), diag::ext_pure_function_definition);
14357 
14358     if (!FD->isInvalidDecl()) {
14359       // Don't diagnose unused parameters of defaulted or deleted functions.
14360       if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody())
14361         DiagnoseUnusedParameters(FD->parameters());
14362       DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
14363                                              FD->getReturnType(), FD);
14364 
14365       // If this is a structor, we need a vtable.
14366       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
14367         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
14368       else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
14369         MarkVTableUsed(FD->getLocation(), Destructor->getParent());
14370 
14371       // Try to apply the named return value optimization. We have to check
14372       // if we can do this here because lambdas keep return statements around
14373       // to deduce an implicit return type.
14374       if (FD->getReturnType()->isRecordType() &&
14375           (!getLangOpts().CPlusPlus || !FD->isDependentContext()))
14376         computeNRVO(Body, FSI);
14377     }
14378 
14379     // GNU warning -Wmissing-prototypes:
14380     //   Warn if a global function is defined without a previous
14381     //   prototype declaration. This warning is issued even if the
14382     //   definition itself provides a prototype. The aim is to detect
14383     //   global functions that fail to be declared in header files.
14384     const FunctionDecl *PossiblePrototype = nullptr;
14385     if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) {
14386       Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
14387 
14388       if (PossiblePrototype) {
14389         // We found a declaration that is not a prototype,
14390         // but that could be a zero-parameter prototype
14391         if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) {
14392           TypeLoc TL = TI->getTypeLoc();
14393           if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
14394             Diag(PossiblePrototype->getLocation(),
14395                  diag::note_declaration_not_a_prototype)
14396                 << (FD->getNumParams() != 0)
14397                 << (FD->getNumParams() == 0
14398                         ? FixItHint::CreateInsertion(FTL.getRParenLoc(), "void")
14399                         : FixItHint{});
14400         }
14401       } else {
14402         // Returns true if the token beginning at this Loc is `const`.
14403         auto isLocAtConst = [&](SourceLocation Loc, const SourceManager &SM,
14404                                 const LangOptions &LangOpts) {
14405           std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
14406           if (LocInfo.first.isInvalid())
14407             return false;
14408 
14409           bool Invalid = false;
14410           StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
14411           if (Invalid)
14412             return false;
14413 
14414           if (LocInfo.second > Buffer.size())
14415             return false;
14416 
14417           const char *LexStart = Buffer.data() + LocInfo.second;
14418           StringRef StartTok(LexStart, Buffer.size() - LocInfo.second);
14419 
14420           return StartTok.consume_front("const") &&
14421                  (StartTok.empty() || isWhitespace(StartTok[0]) ||
14422                   StartTok.startswith("/*") || StartTok.startswith("//"));
14423         };
14424 
14425         auto findBeginLoc = [&]() {
14426           // If the return type has `const` qualifier, we want to insert
14427           // `static` before `const` (and not before the typename).
14428           if ((FD->getReturnType()->isAnyPointerType() &&
14429                FD->getReturnType()->getPointeeType().isConstQualified()) ||
14430               FD->getReturnType().isConstQualified()) {
14431             // But only do this if we can determine where the `const` is.
14432 
14433             if (isLocAtConst(FD->getBeginLoc(), getSourceManager(),
14434                              getLangOpts()))
14435 
14436               return FD->getBeginLoc();
14437           }
14438           return FD->getTypeSpecStartLoc();
14439         };
14440         Diag(FD->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
14441             << /* function */ 1
14442             << (FD->getStorageClass() == SC_None
14443                     ? FixItHint::CreateInsertion(findBeginLoc(), "static ")
14444                     : FixItHint{});
14445       }
14446 
14447       // GNU warning -Wstrict-prototypes
14448       //   Warn if K&R function is defined without a previous declaration.
14449       //   This warning is issued only if the definition itself does not provide
14450       //   a prototype. Only K&R definitions do not provide a prototype.
14451       if (!FD->hasWrittenPrototype()) {
14452         TypeSourceInfo *TI = FD->getTypeSourceInfo();
14453         TypeLoc TL = TI->getTypeLoc();
14454         FunctionTypeLoc FTL = TL.getAsAdjusted<FunctionTypeLoc>();
14455         Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2;
14456       }
14457     }
14458 
14459     // Warn on CPUDispatch with an actual body.
14460     if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body)
14461       if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body))
14462         if (!CmpndBody->body_empty())
14463           Diag(CmpndBody->body_front()->getBeginLoc(),
14464                diag::warn_dispatch_body_ignored);
14465 
14466     if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
14467       const CXXMethodDecl *KeyFunction;
14468       if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
14469           MD->isVirtual() &&
14470           (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
14471           MD == KeyFunction->getCanonicalDecl()) {
14472         // Update the key-function state if necessary for this ABI.
14473         if (FD->isInlined() &&
14474             !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
14475           Context.setNonKeyFunction(MD);
14476 
14477           // If the newly-chosen key function is already defined, then we
14478           // need to mark the vtable as used retroactively.
14479           KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
14480           const FunctionDecl *Definition;
14481           if (KeyFunction && KeyFunction->isDefined(Definition))
14482             MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
14483         } else {
14484           // We just defined they key function; mark the vtable as used.
14485           MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
14486         }
14487       }
14488     }
14489 
14490     assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
14491            "Function parsing confused");
14492   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
14493     assert(MD == getCurMethodDecl() && "Method parsing confused");
14494     MD->setBody(Body);
14495     if (!MD->isInvalidDecl()) {
14496       DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
14497                                              MD->getReturnType(), MD);
14498 
14499       if (Body)
14500         computeNRVO(Body, FSI);
14501     }
14502     if (FSI->ObjCShouldCallSuper) {
14503       Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call)
14504           << MD->getSelector().getAsString();
14505       FSI->ObjCShouldCallSuper = false;
14506     }
14507     if (FSI->ObjCWarnForNoDesignatedInitChain) {
14508       const ObjCMethodDecl *InitMethod = nullptr;
14509       bool isDesignated =
14510           MD->isDesignatedInitializerForTheInterface(&InitMethod);
14511       assert(isDesignated && InitMethod);
14512       (void)isDesignated;
14513 
14514       auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
14515         auto IFace = MD->getClassInterface();
14516         if (!IFace)
14517           return false;
14518         auto SuperD = IFace->getSuperClass();
14519         if (!SuperD)
14520           return false;
14521         return SuperD->getIdentifier() ==
14522             NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
14523       };
14524       // Don't issue this warning for unavailable inits or direct subclasses
14525       // of NSObject.
14526       if (!MD->isUnavailable() && !superIsNSObject(MD)) {
14527         Diag(MD->getLocation(),
14528              diag::warn_objc_designated_init_missing_super_call);
14529         Diag(InitMethod->getLocation(),
14530              diag::note_objc_designated_init_marked_here);
14531       }
14532       FSI->ObjCWarnForNoDesignatedInitChain = false;
14533     }
14534     if (FSI->ObjCWarnForNoInitDelegation) {
14535       // Don't issue this warning for unavaialable inits.
14536       if (!MD->isUnavailable())
14537         Diag(MD->getLocation(),
14538              diag::warn_objc_secondary_init_missing_init_call);
14539       FSI->ObjCWarnForNoInitDelegation = false;
14540     }
14541 
14542     diagnoseImplicitlyRetainedSelf(*this);
14543   } else {
14544     // Parsing the function declaration failed in some way. Pop the fake scope
14545     // we pushed on.
14546     PopFunctionScopeInfo(ActivePolicy, dcl);
14547     return nullptr;
14548   }
14549 
14550   if (Body && FSI->HasPotentialAvailabilityViolations)
14551     DiagnoseUnguardedAvailabilityViolations(dcl);
14552 
14553   assert(!FSI->ObjCShouldCallSuper &&
14554          "This should only be set for ObjC methods, which should have been "
14555          "handled in the block above.");
14556 
14557   // Verify and clean out per-function state.
14558   if (Body && (!FD || !FD->isDefaulted())) {
14559     // C++ constructors that have function-try-blocks can't have return
14560     // statements in the handlers of that block. (C++ [except.handle]p14)
14561     // Verify this.
14562     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
14563       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
14564 
14565     // Verify that gotos and switch cases don't jump into scopes illegally.
14566     if (FSI->NeedsScopeChecking() &&
14567         !PP.isCodeCompletionEnabled())
14568       DiagnoseInvalidJumps(Body);
14569 
14570     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
14571       if (!Destructor->getParent()->isDependentType())
14572         CheckDestructor(Destructor);
14573 
14574       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
14575                                              Destructor->getParent());
14576     }
14577 
14578     // If any errors have occurred, clear out any temporaries that may have
14579     // been leftover. This ensures that these temporaries won't be picked up for
14580     // deletion in some later function.
14581     if (hasUncompilableErrorOccurred() ||
14582         getDiagnostics().getSuppressAllDiagnostics()) {
14583       DiscardCleanupsInEvaluationContext();
14584     }
14585     if (!hasUncompilableErrorOccurred() &&
14586         !isa<FunctionTemplateDecl>(dcl)) {
14587       // Since the body is valid, issue any analysis-based warnings that are
14588       // enabled.
14589       ActivePolicy = &WP;
14590     }
14591 
14592     if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
14593         !CheckConstexprFunctionDefinition(FD, CheckConstexprKind::Diagnose))
14594       FD->setInvalidDecl();
14595 
14596     if (FD && FD->hasAttr<NakedAttr>()) {
14597       for (const Stmt *S : Body->children()) {
14598         // Allow local register variables without initializer as they don't
14599         // require prologue.
14600         bool RegisterVariables = false;
14601         if (auto *DS = dyn_cast<DeclStmt>(S)) {
14602           for (const auto *Decl : DS->decls()) {
14603             if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
14604               RegisterVariables =
14605                   Var->hasAttr<AsmLabelAttr>() && !Var->hasInit();
14606               if (!RegisterVariables)
14607                 break;
14608             }
14609           }
14610         }
14611         if (RegisterVariables)
14612           continue;
14613         if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
14614           Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function);
14615           Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
14616           FD->setInvalidDecl();
14617           break;
14618         }
14619       }
14620     }
14621 
14622     assert(ExprCleanupObjects.size() ==
14623                ExprEvalContexts.back().NumCleanupObjects &&
14624            "Leftover temporaries in function");
14625     assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function");
14626     assert(MaybeODRUseExprs.empty() &&
14627            "Leftover expressions for odr-use checking");
14628   }
14629 
14630   if (!IsInstantiation)
14631     PopDeclContext();
14632 
14633   PopFunctionScopeInfo(ActivePolicy, dcl);
14634   // If any errors have occurred, clear out any temporaries that may have
14635   // been leftover. This ensures that these temporaries won't be picked up for
14636   // deletion in some later function.
14637   if (hasUncompilableErrorOccurred()) {
14638     DiscardCleanupsInEvaluationContext();
14639   }
14640 
14641   if (FD && (LangOpts.OpenMP || LangOpts.CUDA || LangOpts.SYCLIsDevice)) {
14642     auto ES = getEmissionStatus(FD);
14643     if (ES == Sema::FunctionEmissionStatus::Emitted ||
14644         ES == Sema::FunctionEmissionStatus::Unknown)
14645       DeclsToCheckForDeferredDiags.push_back(FD);
14646   }
14647 
14648   return dcl;
14649 }
14650 
14651 /// When we finish delayed parsing of an attribute, we must attach it to the
14652 /// relevant Decl.
ActOnFinishDelayedAttribute(Scope * S,Decl * D,ParsedAttributes & Attrs)14653 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
14654                                        ParsedAttributes &Attrs) {
14655   // Always attach attributes to the underlying decl.
14656   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
14657     D = TD->getTemplatedDecl();
14658   ProcessDeclAttributeList(S, D, Attrs);
14659 
14660   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
14661     if (Method->isStatic())
14662       checkThisInStaticMemberFunctionAttributes(Method);
14663 }
14664 
14665 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
14666 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
ImplicitlyDefineFunction(SourceLocation Loc,IdentifierInfo & II,Scope * S)14667 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
14668                                           IdentifierInfo &II, Scope *S) {
14669   // Find the scope in which the identifier is injected and the corresponding
14670   // DeclContext.
14671   // FIXME: C89 does not say what happens if there is no enclosing block scope.
14672   // In that case, we inject the declaration into the translation unit scope
14673   // instead.
14674   Scope *BlockScope = S;
14675   while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent())
14676     BlockScope = BlockScope->getParent();
14677 
14678   Scope *ContextScope = BlockScope;
14679   while (!ContextScope->getEntity())
14680     ContextScope = ContextScope->getParent();
14681   ContextRAII SavedContext(*this, ContextScope->getEntity());
14682 
14683   // Before we produce a declaration for an implicitly defined
14684   // function, see whether there was a locally-scoped declaration of
14685   // this name as a function or variable. If so, use that
14686   // (non-visible) declaration, and complain about it.
14687   NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II);
14688   if (ExternCPrev) {
14689     // We still need to inject the function into the enclosing block scope so
14690     // that later (non-call) uses can see it.
14691     PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false);
14692 
14693     // C89 footnote 38:
14694     //   If in fact it is not defined as having type "function returning int",
14695     //   the behavior is undefined.
14696     if (!isa<FunctionDecl>(ExternCPrev) ||
14697         !Context.typesAreCompatible(
14698             cast<FunctionDecl>(ExternCPrev)->getType(),
14699             Context.getFunctionNoProtoType(Context.IntTy))) {
14700       Diag(Loc, diag::ext_use_out_of_scope_declaration)
14701           << ExternCPrev << !getLangOpts().C99;
14702       Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
14703       return ExternCPrev;
14704     }
14705   }
14706 
14707   // Extension in C99.  Legal in C90, but warn about it.
14708   unsigned diag_id;
14709   if (II.getName().startswith("__builtin_"))
14710     diag_id = diag::warn_builtin_unknown;
14711   // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
14712   else if (getLangOpts().OpenCL)
14713     diag_id = diag::err_opencl_implicit_function_decl;
14714   else if (getLangOpts().C99)
14715     diag_id = diag::ext_implicit_function_decl;
14716   else
14717     diag_id = diag::warn_implicit_function_decl;
14718   Diag(Loc, diag_id) << &II;
14719 
14720   // If we found a prior declaration of this function, don't bother building
14721   // another one. We've already pushed that one into scope, so there's nothing
14722   // more to do.
14723   if (ExternCPrev)
14724     return ExternCPrev;
14725 
14726   // Because typo correction is expensive, only do it if the implicit
14727   // function declaration is going to be treated as an error.
14728   if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
14729     TypoCorrection Corrected;
14730     DeclFilterCCC<FunctionDecl> CCC{};
14731     if (S && (Corrected =
14732                   CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName,
14733                               S, nullptr, CCC, CTK_NonError)))
14734       diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
14735                    /*ErrorRecovery*/false);
14736   }
14737 
14738   // Set a Declarator for the implicit definition: int foo();
14739   const char *Dummy;
14740   AttributeFactory attrFactory;
14741   DeclSpec DS(attrFactory);
14742   unsigned DiagID;
14743   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
14744                                   Context.getPrintingPolicy());
14745   (void)Error; // Silence warning.
14746   assert(!Error && "Error setting up implicit decl!");
14747   SourceLocation NoLoc;
14748   Declarator D(DS, DeclaratorContext::Block);
14749   D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
14750                                              /*IsAmbiguous=*/false,
14751                                              /*LParenLoc=*/NoLoc,
14752                                              /*Params=*/nullptr,
14753                                              /*NumParams=*/0,
14754                                              /*EllipsisLoc=*/NoLoc,
14755                                              /*RParenLoc=*/NoLoc,
14756                                              /*RefQualifierIsLvalueRef=*/true,
14757                                              /*RefQualifierLoc=*/NoLoc,
14758                                              /*MutableLoc=*/NoLoc, EST_None,
14759                                              /*ESpecRange=*/SourceRange(),
14760                                              /*Exceptions=*/nullptr,
14761                                              /*ExceptionRanges=*/nullptr,
14762                                              /*NumExceptions=*/0,
14763                                              /*NoexceptExpr=*/nullptr,
14764                                              /*ExceptionSpecTokens=*/nullptr,
14765                                              /*DeclsInPrototype=*/None, Loc,
14766                                              Loc, D),
14767                 std::move(DS.getAttributes()), SourceLocation());
14768   D.SetIdentifier(&II, Loc);
14769 
14770   // Insert this function into the enclosing block scope.
14771   FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D));
14772   FD->setImplicit();
14773 
14774   AddKnownFunctionAttributes(FD);
14775 
14776   return FD;
14777 }
14778 
14779 /// If this function is a C++ replaceable global allocation function
14780 /// (C++2a [basic.stc.dynamic.allocation], C++2a [new.delete]),
14781 /// adds any function attributes that we know a priori based on the standard.
14782 ///
14783 /// We need to check for duplicate attributes both here and where user-written
14784 /// attributes are applied to declarations.
AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FunctionDecl * FD)14785 void Sema::AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(
14786     FunctionDecl *FD) {
14787   if (FD->isInvalidDecl())
14788     return;
14789 
14790   if (FD->getDeclName().getCXXOverloadedOperator() != OO_New &&
14791       FD->getDeclName().getCXXOverloadedOperator() != OO_Array_New)
14792     return;
14793 
14794   Optional<unsigned> AlignmentParam;
14795   bool IsNothrow = false;
14796   if (!FD->isReplaceableGlobalAllocationFunction(&AlignmentParam, &IsNothrow))
14797     return;
14798 
14799   // C++2a [basic.stc.dynamic.allocation]p4:
14800   //   An allocation function that has a non-throwing exception specification
14801   //   indicates failure by returning a null pointer value. Any other allocation
14802   //   function never returns a null pointer value and indicates failure only by
14803   //   throwing an exception [...]
14804   if (!IsNothrow && !FD->hasAttr<ReturnsNonNullAttr>())
14805     FD->addAttr(ReturnsNonNullAttr::CreateImplicit(Context, FD->getLocation()));
14806 
14807   // C++2a [basic.stc.dynamic.allocation]p2:
14808   //   An allocation function attempts to allocate the requested amount of
14809   //   storage. [...] If the request succeeds, the value returned by a
14810   //   replaceable allocation function is a [...] pointer value p0 different
14811   //   from any previously returned value p1 [...]
14812   //
14813   // However, this particular information is being added in codegen,
14814   // because there is an opt-out switch for it (-fno-assume-sane-operator-new)
14815 
14816   // C++2a [basic.stc.dynamic.allocation]p2:
14817   //   An allocation function attempts to allocate the requested amount of
14818   //   storage. If it is successful, it returns the address of the start of a
14819   //   block of storage whose length in bytes is at least as large as the
14820   //   requested size.
14821   if (!FD->hasAttr<AllocSizeAttr>()) {
14822     FD->addAttr(AllocSizeAttr::CreateImplicit(
14823         Context, /*ElemSizeParam=*/ParamIdx(1, FD),
14824         /*NumElemsParam=*/ParamIdx(), FD->getLocation()));
14825   }
14826 
14827   // C++2a [basic.stc.dynamic.allocation]p3:
14828   //   For an allocation function [...], the pointer returned on a successful
14829   //   call shall represent the address of storage that is aligned as follows:
14830   //   (3.1) If the allocation function takes an argument of type
14831   //         std​::​align_­val_­t, the storage will have the alignment
14832   //         specified by the value of this argument.
14833   if (AlignmentParam.hasValue() && !FD->hasAttr<AllocAlignAttr>()) {
14834     FD->addAttr(AllocAlignAttr::CreateImplicit(
14835         Context, ParamIdx(AlignmentParam.getValue(), FD), FD->getLocation()));
14836   }
14837 
14838   // FIXME:
14839   // C++2a [basic.stc.dynamic.allocation]p3:
14840   //   For an allocation function [...], the pointer returned on a successful
14841   //   call shall represent the address of storage that is aligned as follows:
14842   //   (3.2) Otherwise, if the allocation function is named operator new[],
14843   //         the storage is aligned for any object that does not have
14844   //         new-extended alignment ([basic.align]) and is no larger than the
14845   //         requested size.
14846   //   (3.3) Otherwise, the storage is aligned for any object that does not
14847   //         have new-extended alignment and is of the requested size.
14848 }
14849 
14850 /// Adds any function attributes that we know a priori based on
14851 /// the declaration of this function.
14852 ///
14853 /// These attributes can apply both to implicitly-declared builtins
14854 /// (like __builtin___printf_chk) or to library-declared functions
14855 /// like NSLog or printf.
14856 ///
14857 /// We need to check for duplicate attributes both here and where user-written
14858 /// attributes are applied to declarations.
AddKnownFunctionAttributes(FunctionDecl * FD)14859 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
14860   if (FD->isInvalidDecl())
14861     return;
14862 
14863   // If this is a built-in function, map its builtin attributes to
14864   // actual attributes.
14865   if (unsigned BuiltinID = FD->getBuiltinID()) {
14866     // Handle printf-formatting attributes.
14867     unsigned FormatIdx;
14868     bool HasVAListArg;
14869     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
14870       if (!FD->hasAttr<FormatAttr>()) {
14871         const char *fmt = "printf";
14872         unsigned int NumParams = FD->getNumParams();
14873         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
14874             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
14875           fmt = "NSString";
14876         FD->addAttr(FormatAttr::CreateImplicit(Context,
14877                                                &Context.Idents.get(fmt),
14878                                                FormatIdx+1,
14879                                                HasVAListArg ? 0 : FormatIdx+2,
14880                                                FD->getLocation()));
14881       }
14882     }
14883     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
14884                                              HasVAListArg)) {
14885      if (!FD->hasAttr<FormatAttr>())
14886        FD->addAttr(FormatAttr::CreateImplicit(Context,
14887                                               &Context.Idents.get("scanf"),
14888                                               FormatIdx+1,
14889                                               HasVAListArg ? 0 : FormatIdx+2,
14890                                               FD->getLocation()));
14891     }
14892 
14893     // Handle automatically recognized callbacks.
14894     SmallVector<int, 4> Encoding;
14895     if (!FD->hasAttr<CallbackAttr>() &&
14896         Context.BuiltinInfo.performsCallback(BuiltinID, Encoding))
14897       FD->addAttr(CallbackAttr::CreateImplicit(
14898           Context, Encoding.data(), Encoding.size(), FD->getLocation()));
14899 
14900     // Mark const if we don't care about errno and that is the only thing
14901     // preventing the function from being const. This allows IRgen to use LLVM
14902     // intrinsics for such functions.
14903     if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() &&
14904         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID))
14905       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
14906 
14907     // We make "fma" on some platforms const because we know it does not set
14908     // errno in those environments even though it could set errno based on the
14909     // C standard.
14910     const llvm::Triple &Trip = Context.getTargetInfo().getTriple();
14911     if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) &&
14912         !FD->hasAttr<ConstAttr>()) {
14913       switch (BuiltinID) {
14914       case Builtin::BI__builtin_fma:
14915       case Builtin::BI__builtin_fmaf:
14916       case Builtin::BI__builtin_fmal:
14917       case Builtin::BIfma:
14918       case Builtin::BIfmaf:
14919       case Builtin::BIfmal:
14920         FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
14921         break;
14922       default:
14923         break;
14924       }
14925     }
14926 
14927     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
14928         !FD->hasAttr<ReturnsTwiceAttr>())
14929       FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
14930                                          FD->getLocation()));
14931     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
14932       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
14933     if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
14934       FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
14935     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
14936       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
14937     if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
14938         !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
14939       // Add the appropriate attribute, depending on the CUDA compilation mode
14940       // and which target the builtin belongs to. For example, during host
14941       // compilation, aux builtins are __device__, while the rest are __host__.
14942       if (getLangOpts().CUDAIsDevice !=
14943           Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
14944         FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
14945       else
14946         FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
14947     }
14948   }
14949 
14950   AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FD);
14951 
14952   // If C++ exceptions are enabled but we are told extern "C" functions cannot
14953   // throw, add an implicit nothrow attribute to any extern "C" function we come
14954   // across.
14955   if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
14956       FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
14957     const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
14958     if (!FPT || FPT->getExceptionSpecType() == EST_None)
14959       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
14960   }
14961 
14962   IdentifierInfo *Name = FD->getIdentifier();
14963   if (!Name)
14964     return;
14965   if ((!getLangOpts().CPlusPlus &&
14966        FD->getDeclContext()->isTranslationUnit()) ||
14967       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
14968        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
14969        LinkageSpecDecl::lang_c)) {
14970     // Okay: this could be a libc/libm/Objective-C function we know
14971     // about.
14972   } else
14973     return;
14974 
14975   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
14976     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
14977     // target-specific builtins, perhaps?
14978     if (!FD->hasAttr<FormatAttr>())
14979       FD->addAttr(FormatAttr::CreateImplicit(Context,
14980                                              &Context.Idents.get("printf"), 2,
14981                                              Name->isStr("vasprintf") ? 0 : 3,
14982                                              FD->getLocation()));
14983   }
14984 
14985   if (Name->isStr("__CFStringMakeConstantString")) {
14986     // We already have a __builtin___CFStringMakeConstantString,
14987     // but builds that use -fno-constant-cfstrings don't go through that.
14988     if (!FD->hasAttr<FormatArgAttr>())
14989       FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD),
14990                                                 FD->getLocation()));
14991   }
14992 }
14993 
ParseTypedefDecl(Scope * S,Declarator & D,QualType T,TypeSourceInfo * TInfo)14994 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
14995                                     TypeSourceInfo *TInfo) {
14996   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
14997   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
14998 
14999   if (!TInfo) {
15000     assert(D.isInvalidType() && "no declarator info for valid type");
15001     TInfo = Context.getTrivialTypeSourceInfo(T);
15002   }
15003 
15004   // Scope manipulation handled by caller.
15005   TypedefDecl *NewTD =
15006       TypedefDecl::Create(Context, CurContext, D.getBeginLoc(),
15007                           D.getIdentifierLoc(), D.getIdentifier(), TInfo);
15008 
15009   // Bail out immediately if we have an invalid declaration.
15010   if (D.isInvalidType()) {
15011     NewTD->setInvalidDecl();
15012     return NewTD;
15013   }
15014 
15015   if (D.getDeclSpec().isModulePrivateSpecified()) {
15016     if (CurContext->isFunctionOrMethod())
15017       Diag(NewTD->getLocation(), diag::err_module_private_local)
15018           << 2 << NewTD
15019           << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
15020           << FixItHint::CreateRemoval(
15021                  D.getDeclSpec().getModulePrivateSpecLoc());
15022     else
15023       NewTD->setModulePrivate();
15024   }
15025 
15026   // C++ [dcl.typedef]p8:
15027   //   If the typedef declaration defines an unnamed class (or
15028   //   enum), the first typedef-name declared by the declaration
15029   //   to be that class type (or enum type) is used to denote the
15030   //   class type (or enum type) for linkage purposes only.
15031   // We need to check whether the type was declared in the declaration.
15032   switch (D.getDeclSpec().getTypeSpecType()) {
15033   case TST_enum:
15034   case TST_struct:
15035   case TST_interface:
15036   case TST_union:
15037   case TST_class: {
15038     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
15039     setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
15040     break;
15041   }
15042 
15043   default:
15044     break;
15045   }
15046 
15047   return NewTD;
15048 }
15049 
15050 /// Check that this is a valid underlying type for an enum declaration.
CheckEnumUnderlyingType(TypeSourceInfo * TI)15051 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
15052   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
15053   QualType T = TI->getType();
15054 
15055   if (T->isDependentType())
15056     return false;
15057 
15058   // This doesn't use 'isIntegralType' despite the error message mentioning
15059   // integral type because isIntegralType would also allow enum types in C.
15060   if (const BuiltinType *BT = T->getAs<BuiltinType>())
15061     if (BT->isInteger())
15062       return false;
15063 
15064   if (T->isExtIntType())
15065     return false;
15066 
15067   return Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
15068 }
15069 
15070 /// Check whether this is a valid redeclaration of a previous enumeration.
15071 /// \return true if the redeclaration was invalid.
CheckEnumRedeclaration(SourceLocation EnumLoc,bool IsScoped,QualType EnumUnderlyingTy,bool IsFixed,const EnumDecl * Prev)15072 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
15073                                   QualType EnumUnderlyingTy, bool IsFixed,
15074                                   const EnumDecl *Prev) {
15075   if (IsScoped != Prev->isScoped()) {
15076     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
15077       << Prev->isScoped();
15078     Diag(Prev->getLocation(), diag::note_previous_declaration);
15079     return true;
15080   }
15081 
15082   if (IsFixed && Prev->isFixed()) {
15083     if (!EnumUnderlyingTy->isDependentType() &&
15084         !Prev->getIntegerType()->isDependentType() &&
15085         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
15086                                         Prev->getIntegerType())) {
15087       // TODO: Highlight the underlying type of the redeclaration.
15088       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
15089         << EnumUnderlyingTy << Prev->getIntegerType();
15090       Diag(Prev->getLocation(), diag::note_previous_declaration)
15091           << Prev->getIntegerTypeRange();
15092       return true;
15093     }
15094   } else if (IsFixed != Prev->isFixed()) {
15095     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
15096       << Prev->isFixed();
15097     Diag(Prev->getLocation(), diag::note_previous_declaration);
15098     return true;
15099   }
15100 
15101   return false;
15102 }
15103 
15104 /// Get diagnostic %select index for tag kind for
15105 /// redeclaration diagnostic message.
15106 /// WARNING: Indexes apply to particular diagnostics only!
15107 ///
15108 /// \returns diagnostic %select index.
getRedeclDiagFromTagKind(TagTypeKind Tag)15109 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
15110   switch (Tag) {
15111   case TTK_Struct: return 0;
15112   case TTK_Interface: return 1;
15113   case TTK_Class:  return 2;
15114   default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
15115   }
15116 }
15117 
15118 /// Determine if tag kind is a class-key compatible with
15119 /// class for redeclaration (class, struct, or __interface).
15120 ///
15121 /// \returns true iff the tag kind is compatible.
isClassCompatTagKind(TagTypeKind Tag)15122 static bool isClassCompatTagKind(TagTypeKind Tag)
15123 {
15124   return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
15125 }
15126 
getNonTagTypeDeclKind(const Decl * PrevDecl,TagTypeKind TTK)15127 Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl,
15128                                              TagTypeKind TTK) {
15129   if (isa<TypedefDecl>(PrevDecl))
15130     return NTK_Typedef;
15131   else if (isa<TypeAliasDecl>(PrevDecl))
15132     return NTK_TypeAlias;
15133   else if (isa<ClassTemplateDecl>(PrevDecl))
15134     return NTK_Template;
15135   else if (isa<TypeAliasTemplateDecl>(PrevDecl))
15136     return NTK_TypeAliasTemplate;
15137   else if (isa<TemplateTemplateParmDecl>(PrevDecl))
15138     return NTK_TemplateTemplateArgument;
15139   switch (TTK) {
15140   case TTK_Struct:
15141   case TTK_Interface:
15142   case TTK_Class:
15143     return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct;
15144   case TTK_Union:
15145     return NTK_NonUnion;
15146   case TTK_Enum:
15147     return NTK_NonEnum;
15148   }
15149   llvm_unreachable("invalid TTK");
15150 }
15151 
15152 /// Determine whether a tag with a given kind is acceptable
15153 /// as a redeclaration of the given tag declaration.
15154 ///
15155 /// \returns true if the new tag kind is acceptable, false otherwise.
isAcceptableTagRedeclaration(const TagDecl * Previous,TagTypeKind NewTag,bool isDefinition,SourceLocation NewTagLoc,const IdentifierInfo * Name)15156 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
15157                                         TagTypeKind NewTag, bool isDefinition,
15158                                         SourceLocation NewTagLoc,
15159                                         const IdentifierInfo *Name) {
15160   // C++ [dcl.type.elab]p3:
15161   //   The class-key or enum keyword present in the
15162   //   elaborated-type-specifier shall agree in kind with the
15163   //   declaration to which the name in the elaborated-type-specifier
15164   //   refers. This rule also applies to the form of
15165   //   elaborated-type-specifier that declares a class-name or
15166   //   friend class since it can be construed as referring to the
15167   //   definition of the class. Thus, in any
15168   //   elaborated-type-specifier, the enum keyword shall be used to
15169   //   refer to an enumeration (7.2), the union class-key shall be
15170   //   used to refer to a union (clause 9), and either the class or
15171   //   struct class-key shall be used to refer to a class (clause 9)
15172   //   declared using the class or struct class-key.
15173   TagTypeKind OldTag = Previous->getTagKind();
15174   if (OldTag != NewTag &&
15175       !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)))
15176     return false;
15177 
15178   // Tags are compatible, but we might still want to warn on mismatched tags.
15179   // Non-class tags can't be mismatched at this point.
15180   if (!isClassCompatTagKind(NewTag))
15181     return true;
15182 
15183   // Declarations for which -Wmismatched-tags is disabled are entirely ignored
15184   // by our warning analysis. We don't want to warn about mismatches with (eg)
15185   // declarations in system headers that are designed to be specialized, but if
15186   // a user asks us to warn, we should warn if their code contains mismatched
15187   // declarations.
15188   auto IsIgnoredLoc = [&](SourceLocation Loc) {
15189     return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch,
15190                                       Loc);
15191   };
15192   if (IsIgnoredLoc(NewTagLoc))
15193     return true;
15194 
15195   auto IsIgnored = [&](const TagDecl *Tag) {
15196     return IsIgnoredLoc(Tag->getLocation());
15197   };
15198   while (IsIgnored(Previous)) {
15199     Previous = Previous->getPreviousDecl();
15200     if (!Previous)
15201       return true;
15202     OldTag = Previous->getTagKind();
15203   }
15204 
15205   bool isTemplate = false;
15206   if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
15207     isTemplate = Record->getDescribedClassTemplate();
15208 
15209   if (inTemplateInstantiation()) {
15210     if (OldTag != NewTag) {
15211       // In a template instantiation, do not offer fix-its for tag mismatches
15212       // since they usually mess up the template instead of fixing the problem.
15213       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
15214         << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
15215         << getRedeclDiagFromTagKind(OldTag);
15216       // FIXME: Note previous location?
15217     }
15218     return true;
15219   }
15220 
15221   if (isDefinition) {
15222     // On definitions, check all previous tags and issue a fix-it for each
15223     // one that doesn't match the current tag.
15224     if (Previous->getDefinition()) {
15225       // Don't suggest fix-its for redefinitions.
15226       return true;
15227     }
15228 
15229     bool previousMismatch = false;
15230     for (const TagDecl *I : Previous->redecls()) {
15231       if (I->getTagKind() != NewTag) {
15232         // Ignore previous declarations for which the warning was disabled.
15233         if (IsIgnored(I))
15234           continue;
15235 
15236         if (!previousMismatch) {
15237           previousMismatch = true;
15238           Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
15239             << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
15240             << getRedeclDiagFromTagKind(I->getTagKind());
15241         }
15242         Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
15243           << getRedeclDiagFromTagKind(NewTag)
15244           << FixItHint::CreateReplacement(I->getInnerLocStart(),
15245                TypeWithKeyword::getTagTypeKindName(NewTag));
15246       }
15247     }
15248     return true;
15249   }
15250 
15251   // Identify the prevailing tag kind: this is the kind of the definition (if
15252   // there is a non-ignored definition), or otherwise the kind of the prior
15253   // (non-ignored) declaration.
15254   const TagDecl *PrevDef = Previous->getDefinition();
15255   if (PrevDef && IsIgnored(PrevDef))
15256     PrevDef = nullptr;
15257   const TagDecl *Redecl = PrevDef ? PrevDef : Previous;
15258   if (Redecl->getTagKind() != NewTag) {
15259     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
15260       << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
15261       << getRedeclDiagFromTagKind(OldTag);
15262     Diag(Redecl->getLocation(), diag::note_previous_use);
15263 
15264     // If there is a previous definition, suggest a fix-it.
15265     if (PrevDef) {
15266       Diag(NewTagLoc, diag::note_struct_class_suggestion)
15267         << getRedeclDiagFromTagKind(Redecl->getTagKind())
15268         << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
15269              TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
15270     }
15271   }
15272 
15273   return true;
15274 }
15275 
15276 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
15277 /// from an outer enclosing namespace or file scope inside a friend declaration.
15278 /// This should provide the commented out code in the following snippet:
15279 ///   namespace N {
15280 ///     struct X;
15281 ///     namespace M {
15282 ///       struct Y { friend struct /*N::*/ X; };
15283 ///     }
15284 ///   }
createFriendTagNNSFixIt(Sema & SemaRef,NamedDecl * ND,Scope * S,SourceLocation NameLoc)15285 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
15286                                          SourceLocation NameLoc) {
15287   // While the decl is in a namespace, do repeated lookup of that name and see
15288   // if we get the same namespace back.  If we do not, continue until
15289   // translation unit scope, at which point we have a fully qualified NNS.
15290   SmallVector<IdentifierInfo *, 4> Namespaces;
15291   DeclContext *DC = ND->getDeclContext()->getRedeclContext();
15292   for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
15293     // This tag should be declared in a namespace, which can only be enclosed by
15294     // other namespaces.  Bail if there's an anonymous namespace in the chain.
15295     NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
15296     if (!Namespace || Namespace->isAnonymousNamespace())
15297       return FixItHint();
15298     IdentifierInfo *II = Namespace->getIdentifier();
15299     Namespaces.push_back(II);
15300     NamedDecl *Lookup = SemaRef.LookupSingleName(
15301         S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
15302     if (Lookup == Namespace)
15303       break;
15304   }
15305 
15306   // Once we have all the namespaces, reverse them to go outermost first, and
15307   // build an NNS.
15308   SmallString<64> Insertion;
15309   llvm::raw_svector_ostream OS(Insertion);
15310   if (DC->isTranslationUnit())
15311     OS << "::";
15312   std::reverse(Namespaces.begin(), Namespaces.end());
15313   for (auto *II : Namespaces)
15314     OS << II->getName() << "::";
15315   return FixItHint::CreateInsertion(NameLoc, Insertion);
15316 }
15317 
15318 /// Determine whether a tag originally declared in context \p OldDC can
15319 /// be redeclared with an unqualified name in \p NewDC (assuming name lookup
15320 /// found a declaration in \p OldDC as a previous decl, perhaps through a
15321 /// using-declaration).
isAcceptableTagRedeclContext(Sema & S,DeclContext * OldDC,DeclContext * NewDC)15322 static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
15323                                          DeclContext *NewDC) {
15324   OldDC = OldDC->getRedeclContext();
15325   NewDC = NewDC->getRedeclContext();
15326 
15327   if (OldDC->Equals(NewDC))
15328     return true;
15329 
15330   // In MSVC mode, we allow a redeclaration if the contexts are related (either
15331   // encloses the other).
15332   if (S.getLangOpts().MSVCCompat &&
15333       (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
15334     return true;
15335 
15336   return false;
15337 }
15338 
15339 /// This is invoked when we see 'struct foo' or 'struct {'.  In the
15340 /// former case, Name will be non-null.  In the later case, Name will be null.
15341 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
15342 /// reference/declaration/definition of a tag.
15343 ///
15344 /// \param IsTypeSpecifier \c true if this is a type-specifier (or
15345 /// trailing-type-specifier) other than one in an alias-declaration.
15346 ///
15347 /// \param SkipBody If non-null, will be set to indicate if the caller should
15348 /// skip the definition of this tag and treat it as if it were a declaration.
ActOnTag(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,const ParsedAttributesView & Attrs,AccessSpecifier AS,SourceLocation ModulePrivateLoc,MultiTemplateParamsArg TemplateParameterLists,bool & OwnedDecl,bool & IsDependent,SourceLocation ScopedEnumKWLoc,bool ScopedEnumUsesClassTag,TypeResult UnderlyingType,bool IsTypeSpecifier,bool IsTemplateParamOrArg,SkipBodyInfo * SkipBody)15349 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
15350                      SourceLocation KWLoc, CXXScopeSpec &SS,
15351                      IdentifierInfo *Name, SourceLocation NameLoc,
15352                      const ParsedAttributesView &Attrs, AccessSpecifier AS,
15353                      SourceLocation ModulePrivateLoc,
15354                      MultiTemplateParamsArg TemplateParameterLists,
15355                      bool &OwnedDecl, bool &IsDependent,
15356                      SourceLocation ScopedEnumKWLoc,
15357                      bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
15358                      bool IsTypeSpecifier, bool IsTemplateParamOrArg,
15359                      SkipBodyInfo *SkipBody) {
15360   // If this is not a definition, it must have a name.
15361   IdentifierInfo *OrigName = Name;
15362   assert((Name != nullptr || TUK == TUK_Definition) &&
15363          "Nameless record must be a definition!");
15364   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
15365 
15366   OwnedDecl = false;
15367   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
15368   bool ScopedEnum = ScopedEnumKWLoc.isValid();
15369 
15370   // FIXME: Check member specializations more carefully.
15371   bool isMemberSpecialization = false;
15372   bool Invalid = false;
15373 
15374   // We only need to do this matching if we have template parameters
15375   // or a scope specifier, which also conveniently avoids this work
15376   // for non-C++ cases.
15377   if (TemplateParameterLists.size() > 0 ||
15378       (SS.isNotEmpty() && TUK != TUK_Reference)) {
15379     if (TemplateParameterList *TemplateParams =
15380             MatchTemplateParametersToScopeSpecifier(
15381                 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
15382                 TUK == TUK_Friend, isMemberSpecialization, Invalid)) {
15383       if (Kind == TTK_Enum) {
15384         Diag(KWLoc, diag::err_enum_template);
15385         return nullptr;
15386       }
15387 
15388       if (TemplateParams->size() > 0) {
15389         // This is a declaration or definition of a class template (which may
15390         // be a member of another template).
15391 
15392         if (Invalid)
15393           return nullptr;
15394 
15395         OwnedDecl = false;
15396         DeclResult Result = CheckClassTemplate(
15397             S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams,
15398             AS, ModulePrivateLoc,
15399             /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1,
15400             TemplateParameterLists.data(), SkipBody);
15401         return Result.get();
15402       } else {
15403         // The "template<>" header is extraneous.
15404         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
15405           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
15406         isMemberSpecialization = true;
15407       }
15408     }
15409 
15410     if (!TemplateParameterLists.empty() && isMemberSpecialization &&
15411         CheckTemplateDeclScope(S, TemplateParameterLists.back()))
15412       return nullptr;
15413   }
15414 
15415   // Figure out the underlying type if this a enum declaration. We need to do
15416   // this early, because it's needed to detect if this is an incompatible
15417   // redeclaration.
15418   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
15419   bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum;
15420 
15421   if (Kind == TTK_Enum) {
15422     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) {
15423       // No underlying type explicitly specified, or we failed to parse the
15424       // type, default to int.
15425       EnumUnderlying = Context.IntTy.getTypePtr();
15426     } else if (UnderlyingType.get()) {
15427       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
15428       // integral type; any cv-qualification is ignored.
15429       TypeSourceInfo *TI = nullptr;
15430       GetTypeFromParser(UnderlyingType.get(), &TI);
15431       EnumUnderlying = TI;
15432 
15433       if (CheckEnumUnderlyingType(TI))
15434         // Recover by falling back to int.
15435         EnumUnderlying = Context.IntTy.getTypePtr();
15436 
15437       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
15438                                           UPPC_FixedUnderlyingType))
15439         EnumUnderlying = Context.IntTy.getTypePtr();
15440 
15441     } else if (Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) {
15442       // For MSVC ABI compatibility, unfixed enums must use an underlying type
15443       // of 'int'. However, if this is an unfixed forward declaration, don't set
15444       // the underlying type unless the user enables -fms-compatibility. This
15445       // makes unfixed forward declared enums incomplete and is more conforming.
15446       if (TUK == TUK_Definition || getLangOpts().MSVCCompat)
15447         EnumUnderlying = Context.IntTy.getTypePtr();
15448     }
15449   }
15450 
15451   DeclContext *SearchDC = CurContext;
15452   DeclContext *DC = CurContext;
15453   bool isStdBadAlloc = false;
15454   bool isStdAlignValT = false;
15455 
15456   RedeclarationKind Redecl = forRedeclarationInCurContext();
15457   if (TUK == TUK_Friend || TUK == TUK_Reference)
15458     Redecl = NotForRedeclaration;
15459 
15460   /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
15461   /// implemented asks for structural equivalence checking, the returned decl
15462   /// here is passed back to the parser, allowing the tag body to be parsed.
15463   auto createTagFromNewDecl = [&]() -> TagDecl * {
15464     assert(!getLangOpts().CPlusPlus && "not meant for C++ usage");
15465     // If there is an identifier, use the location of the identifier as the
15466     // location of the decl, otherwise use the location of the struct/union
15467     // keyword.
15468     SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
15469     TagDecl *New = nullptr;
15470 
15471     if (Kind == TTK_Enum) {
15472       New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr,
15473                              ScopedEnum, ScopedEnumUsesClassTag, IsFixed);
15474       // If this is an undefined enum, bail.
15475       if (TUK != TUK_Definition && !Invalid)
15476         return nullptr;
15477       if (EnumUnderlying) {
15478         EnumDecl *ED = cast<EnumDecl>(New);
15479         if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>())
15480           ED->setIntegerTypeSourceInfo(TI);
15481         else
15482           ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
15483         ED->setPromotionType(ED->getIntegerType());
15484       }
15485     } else { // struct/union
15486       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
15487                                nullptr);
15488     }
15489 
15490     if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
15491       // Add alignment attributes if necessary; these attributes are checked
15492       // when the ASTContext lays out the structure.
15493       //
15494       // It is important for implementing the correct semantics that this
15495       // happen here (in ActOnTag). The #pragma pack stack is
15496       // maintained as a result of parser callbacks which can occur at
15497       // many points during the parsing of a struct declaration (because
15498       // the #pragma tokens are effectively skipped over during the
15499       // parsing of the struct).
15500       if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
15501         AddAlignmentAttributesForRecord(RD);
15502         AddMsStructLayoutForRecord(RD);
15503       }
15504     }
15505     New->setLexicalDeclContext(CurContext);
15506     return New;
15507   };
15508 
15509   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
15510   if (Name && SS.isNotEmpty()) {
15511     // We have a nested-name tag ('struct foo::bar').
15512 
15513     // Check for invalid 'foo::'.
15514     if (SS.isInvalid()) {
15515       Name = nullptr;
15516       goto CreateNewDecl;
15517     }
15518 
15519     // If this is a friend or a reference to a class in a dependent
15520     // context, don't try to make a decl for it.
15521     if (TUK == TUK_Friend || TUK == TUK_Reference) {
15522       DC = computeDeclContext(SS, false);
15523       if (!DC) {
15524         IsDependent = true;
15525         return nullptr;
15526       }
15527     } else {
15528       DC = computeDeclContext(SS, true);
15529       if (!DC) {
15530         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
15531           << SS.getRange();
15532         return nullptr;
15533       }
15534     }
15535 
15536     if (RequireCompleteDeclContext(SS, DC))
15537       return nullptr;
15538 
15539     SearchDC = DC;
15540     // Look-up name inside 'foo::'.
15541     LookupQualifiedName(Previous, DC);
15542 
15543     if (Previous.isAmbiguous())
15544       return nullptr;
15545 
15546     if (Previous.empty()) {
15547       // Name lookup did not find anything. However, if the
15548       // nested-name-specifier refers to the current instantiation,
15549       // and that current instantiation has any dependent base
15550       // classes, we might find something at instantiation time: treat
15551       // this as a dependent elaborated-type-specifier.
15552       // But this only makes any sense for reference-like lookups.
15553       if (Previous.wasNotFoundInCurrentInstantiation() &&
15554           (TUK == TUK_Reference || TUK == TUK_Friend)) {
15555         IsDependent = true;
15556         return nullptr;
15557       }
15558 
15559       // A tag 'foo::bar' must already exist.
15560       Diag(NameLoc, diag::err_not_tag_in_scope)
15561         << Kind << Name << DC << SS.getRange();
15562       Name = nullptr;
15563       Invalid = true;
15564       goto CreateNewDecl;
15565     }
15566   } else if (Name) {
15567     // C++14 [class.mem]p14:
15568     //   If T is the name of a class, then each of the following shall have a
15569     //   name different from T:
15570     //    -- every member of class T that is itself a type
15571     if (TUK != TUK_Reference && TUK != TUK_Friend &&
15572         DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
15573       return nullptr;
15574 
15575     // If this is a named struct, check to see if there was a previous forward
15576     // declaration or definition.
15577     // FIXME: We're looking into outer scopes here, even when we
15578     // shouldn't be. Doing so can result in ambiguities that we
15579     // shouldn't be diagnosing.
15580     LookupName(Previous, S);
15581 
15582     // When declaring or defining a tag, ignore ambiguities introduced
15583     // by types using'ed into this scope.
15584     if (Previous.isAmbiguous() &&
15585         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
15586       LookupResult::Filter F = Previous.makeFilter();
15587       while (F.hasNext()) {
15588         NamedDecl *ND = F.next();
15589         if (!ND->getDeclContext()->getRedeclContext()->Equals(
15590                 SearchDC->getRedeclContext()))
15591           F.erase();
15592       }
15593       F.done();
15594     }
15595 
15596     // C++11 [namespace.memdef]p3:
15597     //   If the name in a friend declaration is neither qualified nor
15598     //   a template-id and the declaration is a function or an
15599     //   elaborated-type-specifier, the lookup to determine whether
15600     //   the entity has been previously declared shall not consider
15601     //   any scopes outside the innermost enclosing namespace.
15602     //
15603     // MSVC doesn't implement the above rule for types, so a friend tag
15604     // declaration may be a redeclaration of a type declared in an enclosing
15605     // scope.  They do implement this rule for friend functions.
15606     //
15607     // Does it matter that this should be by scope instead of by
15608     // semantic context?
15609     if (!Previous.empty() && TUK == TUK_Friend) {
15610       DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
15611       LookupResult::Filter F = Previous.makeFilter();
15612       bool FriendSawTagOutsideEnclosingNamespace = false;
15613       while (F.hasNext()) {
15614         NamedDecl *ND = F.next();
15615         DeclContext *DC = ND->getDeclContext()->getRedeclContext();
15616         if (DC->isFileContext() &&
15617             !EnclosingNS->Encloses(ND->getDeclContext())) {
15618           if (getLangOpts().MSVCCompat)
15619             FriendSawTagOutsideEnclosingNamespace = true;
15620           else
15621             F.erase();
15622         }
15623       }
15624       F.done();
15625 
15626       // Diagnose this MSVC extension in the easy case where lookup would have
15627       // unambiguously found something outside the enclosing namespace.
15628       if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
15629         NamedDecl *ND = Previous.getFoundDecl();
15630         Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
15631             << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
15632       }
15633     }
15634 
15635     // Note:  there used to be some attempt at recovery here.
15636     if (Previous.isAmbiguous())
15637       return nullptr;
15638 
15639     if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
15640       // FIXME: This makes sure that we ignore the contexts associated
15641       // with C structs, unions, and enums when looking for a matching
15642       // tag declaration or definition. See the similar lookup tweak
15643       // in Sema::LookupName; is there a better way to deal with this?
15644       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
15645         SearchDC = SearchDC->getParent();
15646     }
15647   }
15648 
15649   if (Previous.isSingleResult() &&
15650       Previous.getFoundDecl()->isTemplateParameter()) {
15651     // Maybe we will complain about the shadowed template parameter.
15652     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
15653     // Just pretend that we didn't see the previous declaration.
15654     Previous.clear();
15655   }
15656 
15657   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
15658       DC->Equals(getStdNamespace())) {
15659     if (Name->isStr("bad_alloc")) {
15660       // This is a declaration of or a reference to "std::bad_alloc".
15661       isStdBadAlloc = true;
15662 
15663       // If std::bad_alloc has been implicitly declared (but made invisible to
15664       // name lookup), fill in this implicit declaration as the previous
15665       // declaration, so that the declarations get chained appropriately.
15666       if (Previous.empty() && StdBadAlloc)
15667         Previous.addDecl(getStdBadAlloc());
15668     } else if (Name->isStr("align_val_t")) {
15669       isStdAlignValT = true;
15670       if (Previous.empty() && StdAlignValT)
15671         Previous.addDecl(getStdAlignValT());
15672     }
15673   }
15674 
15675   // If we didn't find a previous declaration, and this is a reference
15676   // (or friend reference), move to the correct scope.  In C++, we
15677   // also need to do a redeclaration lookup there, just in case
15678   // there's a shadow friend decl.
15679   if (Name && Previous.empty() &&
15680       (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) {
15681     if (Invalid) goto CreateNewDecl;
15682     assert(SS.isEmpty());
15683 
15684     if (TUK == TUK_Reference || IsTemplateParamOrArg) {
15685       // C++ [basic.scope.pdecl]p5:
15686       //   -- for an elaborated-type-specifier of the form
15687       //
15688       //          class-key identifier
15689       //
15690       //      if the elaborated-type-specifier is used in the
15691       //      decl-specifier-seq or parameter-declaration-clause of a
15692       //      function defined in namespace scope, the identifier is
15693       //      declared as a class-name in the namespace that contains
15694       //      the declaration; otherwise, except as a friend
15695       //      declaration, the identifier is declared in the smallest
15696       //      non-class, non-function-prototype scope that contains the
15697       //      declaration.
15698       //
15699       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
15700       // C structs and unions.
15701       //
15702       // It is an error in C++ to declare (rather than define) an enum
15703       // type, including via an elaborated type specifier.  We'll
15704       // diagnose that later; for now, declare the enum in the same
15705       // scope as we would have picked for any other tag type.
15706       //
15707       // GNU C also supports this behavior as part of its incomplete
15708       // enum types extension, while GNU C++ does not.
15709       //
15710       // Find the context where we'll be declaring the tag.
15711       // FIXME: We would like to maintain the current DeclContext as the
15712       // lexical context,
15713       SearchDC = getTagInjectionContext(SearchDC);
15714 
15715       // Find the scope where we'll be declaring the tag.
15716       S = getTagInjectionScope(S, getLangOpts());
15717     } else {
15718       assert(TUK == TUK_Friend);
15719       // C++ [namespace.memdef]p3:
15720       //   If a friend declaration in a non-local class first declares a
15721       //   class or function, the friend class or function is a member of
15722       //   the innermost enclosing namespace.
15723       SearchDC = SearchDC->getEnclosingNamespaceContext();
15724     }
15725 
15726     // In C++, we need to do a redeclaration lookup to properly
15727     // diagnose some problems.
15728     // FIXME: redeclaration lookup is also used (with and without C++) to find a
15729     // hidden declaration so that we don't get ambiguity errors when using a
15730     // type declared by an elaborated-type-specifier.  In C that is not correct
15731     // and we should instead merge compatible types found by lookup.
15732     if (getLangOpts().CPlusPlus) {
15733       // FIXME: This can perform qualified lookups into function contexts,
15734       // which are meaningless.
15735       Previous.setRedeclarationKind(forRedeclarationInCurContext());
15736       LookupQualifiedName(Previous, SearchDC);
15737     } else {
15738       Previous.setRedeclarationKind(forRedeclarationInCurContext());
15739       LookupName(Previous, S);
15740     }
15741   }
15742 
15743   // If we have a known previous declaration to use, then use it.
15744   if (Previous.empty() && SkipBody && SkipBody->Previous)
15745     Previous.addDecl(SkipBody->Previous);
15746 
15747   if (!Previous.empty()) {
15748     NamedDecl *PrevDecl = Previous.getFoundDecl();
15749     NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
15750 
15751     // It's okay to have a tag decl in the same scope as a typedef
15752     // which hides a tag decl in the same scope.  Finding this
15753     // insanity with a redeclaration lookup can only actually happen
15754     // in C++.
15755     //
15756     // This is also okay for elaborated-type-specifiers, which is
15757     // technically forbidden by the current standard but which is
15758     // okay according to the likely resolution of an open issue;
15759     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
15760     if (getLangOpts().CPlusPlus) {
15761       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
15762         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
15763           TagDecl *Tag = TT->getDecl();
15764           if (Tag->getDeclName() == Name &&
15765               Tag->getDeclContext()->getRedeclContext()
15766                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
15767             PrevDecl = Tag;
15768             Previous.clear();
15769             Previous.addDecl(Tag);
15770             Previous.resolveKind();
15771           }
15772         }
15773       }
15774     }
15775 
15776     // If this is a redeclaration of a using shadow declaration, it must
15777     // declare a tag in the same context. In MSVC mode, we allow a
15778     // redefinition if either context is within the other.
15779     if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
15780       auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
15781       if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
15782           isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) &&
15783           !(OldTag && isAcceptableTagRedeclContext(
15784                           *this, OldTag->getDeclContext(), SearchDC))) {
15785         Diag(KWLoc, diag::err_using_decl_conflict_reverse);
15786         Diag(Shadow->getTargetDecl()->getLocation(),
15787              diag::note_using_decl_target);
15788         Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl)
15789             << 0;
15790         // Recover by ignoring the old declaration.
15791         Previous.clear();
15792         goto CreateNewDecl;
15793       }
15794     }
15795 
15796     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
15797       // If this is a use of a previous tag, or if the tag is already declared
15798       // in the same scope (so that the definition/declaration completes or
15799       // rementions the tag), reuse the decl.
15800       if (TUK == TUK_Reference || TUK == TUK_Friend ||
15801           isDeclInScope(DirectPrevDecl, SearchDC, S,
15802                         SS.isNotEmpty() || isMemberSpecialization)) {
15803         // Make sure that this wasn't declared as an enum and now used as a
15804         // struct or something similar.
15805         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
15806                                           TUK == TUK_Definition, KWLoc,
15807                                           Name)) {
15808           bool SafeToContinue
15809             = (PrevTagDecl->getTagKind() != TTK_Enum &&
15810                Kind != TTK_Enum);
15811           if (SafeToContinue)
15812             Diag(KWLoc, diag::err_use_with_wrong_tag)
15813               << Name
15814               << FixItHint::CreateReplacement(SourceRange(KWLoc),
15815                                               PrevTagDecl->getKindName());
15816           else
15817             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
15818           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
15819 
15820           if (SafeToContinue)
15821             Kind = PrevTagDecl->getTagKind();
15822           else {
15823             // Recover by making this an anonymous redefinition.
15824             Name = nullptr;
15825             Previous.clear();
15826             Invalid = true;
15827           }
15828         }
15829 
15830         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
15831           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
15832           if (TUK == TUK_Reference || TUK == TUK_Friend)
15833             return PrevTagDecl;
15834 
15835           QualType EnumUnderlyingTy;
15836           if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
15837             EnumUnderlyingTy = TI->getType().getUnqualifiedType();
15838           else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
15839             EnumUnderlyingTy = QualType(T, 0);
15840 
15841           // All conflicts with previous declarations are recovered by
15842           // returning the previous declaration, unless this is a definition,
15843           // in which case we want the caller to bail out.
15844           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
15845                                      ScopedEnum, EnumUnderlyingTy,
15846                                      IsFixed, PrevEnum))
15847             return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
15848         }
15849 
15850         // C++11 [class.mem]p1:
15851         //   A member shall not be declared twice in the member-specification,
15852         //   except that a nested class or member class template can be declared
15853         //   and then later defined.
15854         if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
15855             S->isDeclScope(PrevDecl)) {
15856           Diag(NameLoc, diag::ext_member_redeclared);
15857           Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
15858         }
15859 
15860         if (!Invalid) {
15861           // If this is a use, just return the declaration we found, unless
15862           // we have attributes.
15863           if (TUK == TUK_Reference || TUK == TUK_Friend) {
15864             if (!Attrs.empty()) {
15865               // FIXME: Diagnose these attributes. For now, we create a new
15866               // declaration to hold them.
15867             } else if (TUK == TUK_Reference &&
15868                        (PrevTagDecl->getFriendObjectKind() ==
15869                             Decl::FOK_Undeclared ||
15870                         PrevDecl->getOwningModule() != getCurrentModule()) &&
15871                        SS.isEmpty()) {
15872               // This declaration is a reference to an existing entity, but
15873               // has different visibility from that entity: it either makes
15874               // a friend visible or it makes a type visible in a new module.
15875               // In either case, create a new declaration. We only do this if
15876               // the declaration would have meant the same thing if no prior
15877               // declaration were found, that is, if it was found in the same
15878               // scope where we would have injected a declaration.
15879               if (!getTagInjectionContext(CurContext)->getRedeclContext()
15880                        ->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
15881                 return PrevTagDecl;
15882               // This is in the injected scope, create a new declaration in
15883               // that scope.
15884               S = getTagInjectionScope(S, getLangOpts());
15885             } else {
15886               return PrevTagDecl;
15887             }
15888           }
15889 
15890           // Diagnose attempts to redefine a tag.
15891           if (TUK == TUK_Definition) {
15892             if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
15893               // If we're defining a specialization and the previous definition
15894               // is from an implicit instantiation, don't emit an error
15895               // here; we'll catch this in the general case below.
15896               bool IsExplicitSpecializationAfterInstantiation = false;
15897               if (isMemberSpecialization) {
15898                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
15899                   IsExplicitSpecializationAfterInstantiation =
15900                     RD->getTemplateSpecializationKind() !=
15901                     TSK_ExplicitSpecialization;
15902                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
15903                   IsExplicitSpecializationAfterInstantiation =
15904                     ED->getTemplateSpecializationKind() !=
15905                     TSK_ExplicitSpecialization;
15906               }
15907 
15908               // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
15909               // not keep more that one definition around (merge them). However,
15910               // ensure the decl passes the structural compatibility check in
15911               // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
15912               NamedDecl *Hidden = nullptr;
15913               if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
15914                 // There is a definition of this tag, but it is not visible. We
15915                 // explicitly make use of C++'s one definition rule here, and
15916                 // assume that this definition is identical to the hidden one
15917                 // we already have. Make the existing definition visible and
15918                 // use it in place of this one.
15919                 if (!getLangOpts().CPlusPlus) {
15920                   // Postpone making the old definition visible until after we
15921                   // complete parsing the new one and do the structural
15922                   // comparison.
15923                   SkipBody->CheckSameAsPrevious = true;
15924                   SkipBody->New = createTagFromNewDecl();
15925                   SkipBody->Previous = Def;
15926                   return Def;
15927                 } else {
15928                   SkipBody->ShouldSkip = true;
15929                   SkipBody->Previous = Def;
15930                   makeMergedDefinitionVisible(Hidden);
15931                   // Carry on and handle it like a normal definition. We'll
15932                   // skip starting the definitiion later.
15933                 }
15934               } else if (!IsExplicitSpecializationAfterInstantiation) {
15935                 // A redeclaration in function prototype scope in C isn't
15936                 // visible elsewhere, so merely issue a warning.
15937                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
15938                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
15939                 else
15940                   Diag(NameLoc, diag::err_redefinition) << Name;
15941                 notePreviousDefinition(Def,
15942                                        NameLoc.isValid() ? NameLoc : KWLoc);
15943                 // If this is a redefinition, recover by making this
15944                 // struct be anonymous, which will make any later
15945                 // references get the previous definition.
15946                 Name = nullptr;
15947                 Previous.clear();
15948                 Invalid = true;
15949               }
15950             } else {
15951               // If the type is currently being defined, complain
15952               // about a nested redefinition.
15953               auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
15954               if (TD->isBeingDefined()) {
15955                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
15956                 Diag(PrevTagDecl->getLocation(),
15957                      diag::note_previous_definition);
15958                 Name = nullptr;
15959                 Previous.clear();
15960                 Invalid = true;
15961               }
15962             }
15963 
15964             // Okay, this is definition of a previously declared or referenced
15965             // tag. We're going to create a new Decl for it.
15966           }
15967 
15968           // Okay, we're going to make a redeclaration.  If this is some kind
15969           // of reference, make sure we build the redeclaration in the same DC
15970           // as the original, and ignore the current access specifier.
15971           if (TUK == TUK_Friend || TUK == TUK_Reference) {
15972             SearchDC = PrevTagDecl->getDeclContext();
15973             AS = AS_none;
15974           }
15975         }
15976         // If we get here we have (another) forward declaration or we
15977         // have a definition.  Just create a new decl.
15978 
15979       } else {
15980         // If we get here, this is a definition of a new tag type in a nested
15981         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
15982         // new decl/type.  We set PrevDecl to NULL so that the entities
15983         // have distinct types.
15984         Previous.clear();
15985       }
15986       // If we get here, we're going to create a new Decl. If PrevDecl
15987       // is non-NULL, it's a definition of the tag declared by
15988       // PrevDecl. If it's NULL, we have a new definition.
15989 
15990     // Otherwise, PrevDecl is not a tag, but was found with tag
15991     // lookup.  This is only actually possible in C++, where a few
15992     // things like templates still live in the tag namespace.
15993     } else {
15994       // Use a better diagnostic if an elaborated-type-specifier
15995       // found the wrong kind of type on the first
15996       // (non-redeclaration) lookup.
15997       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
15998           !Previous.isForRedeclaration()) {
15999         NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
16000         Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK
16001                                                        << Kind;
16002         Diag(PrevDecl->getLocation(), diag::note_declared_at);
16003         Invalid = true;
16004 
16005       // Otherwise, only diagnose if the declaration is in scope.
16006       } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
16007                                 SS.isNotEmpty() || isMemberSpecialization)) {
16008         // do nothing
16009 
16010       // Diagnose implicit declarations introduced by elaborated types.
16011       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
16012         NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
16013         Diag(NameLoc, diag::err_tag_reference_conflict) << NTK;
16014         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
16015         Invalid = true;
16016 
16017       // Otherwise it's a declaration.  Call out a particularly common
16018       // case here.
16019       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
16020         unsigned Kind = 0;
16021         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
16022         Diag(NameLoc, diag::err_tag_definition_of_typedef)
16023           << Name << Kind << TND->getUnderlyingType();
16024         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
16025         Invalid = true;
16026 
16027       // Otherwise, diagnose.
16028       } else {
16029         // The tag name clashes with something else in the target scope,
16030         // issue an error and recover by making this tag be anonymous.
16031         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
16032         notePreviousDefinition(PrevDecl, NameLoc);
16033         Name = nullptr;
16034         Invalid = true;
16035       }
16036 
16037       // The existing declaration isn't relevant to us; we're in a
16038       // new scope, so clear out the previous declaration.
16039       Previous.clear();
16040     }
16041   }
16042 
16043 CreateNewDecl:
16044 
16045   TagDecl *PrevDecl = nullptr;
16046   if (Previous.isSingleResult())
16047     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
16048 
16049   // If there is an identifier, use the location of the identifier as the
16050   // location of the decl, otherwise use the location of the struct/union
16051   // keyword.
16052   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
16053 
16054   // Otherwise, create a new declaration. If there is a previous
16055   // declaration of the same entity, the two will be linked via
16056   // PrevDecl.
16057   TagDecl *New;
16058 
16059   if (Kind == TTK_Enum) {
16060     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
16061     // enum X { A, B, C } D;    D should chain to X.
16062     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
16063                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
16064                            ScopedEnumUsesClassTag, IsFixed);
16065 
16066     if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit()))
16067       StdAlignValT = cast<EnumDecl>(New);
16068 
16069     // If this is an undefined enum, warn.
16070     if (TUK != TUK_Definition && !Invalid) {
16071       TagDecl *Def;
16072       if (IsFixed && cast<EnumDecl>(New)->isFixed()) {
16073         // C++0x: 7.2p2: opaque-enum-declaration.
16074         // Conflicts are diagnosed above. Do nothing.
16075       }
16076       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
16077         Diag(Loc, diag::ext_forward_ref_enum_def)
16078           << New;
16079         Diag(Def->getLocation(), diag::note_previous_definition);
16080       } else {
16081         unsigned DiagID = diag::ext_forward_ref_enum;
16082         if (getLangOpts().MSVCCompat)
16083           DiagID = diag::ext_ms_forward_ref_enum;
16084         else if (getLangOpts().CPlusPlus)
16085           DiagID = diag::err_forward_ref_enum;
16086         Diag(Loc, DiagID);
16087       }
16088     }
16089 
16090     if (EnumUnderlying) {
16091       EnumDecl *ED = cast<EnumDecl>(New);
16092       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
16093         ED->setIntegerTypeSourceInfo(TI);
16094       else
16095         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
16096       ED->setPromotionType(ED->getIntegerType());
16097       assert(ED->isComplete() && "enum with type should be complete");
16098     }
16099   } else {
16100     // struct/union/class
16101 
16102     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
16103     // struct X { int A; } D;    D should chain to X.
16104     if (getLangOpts().CPlusPlus) {
16105       // FIXME: Look for a way to use RecordDecl for simple structs.
16106       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
16107                                   cast_or_null<CXXRecordDecl>(PrevDecl));
16108 
16109       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
16110         StdBadAlloc = cast<CXXRecordDecl>(New);
16111     } else
16112       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
16113                                cast_or_null<RecordDecl>(PrevDecl));
16114   }
16115 
16116   // C++11 [dcl.type]p3:
16117   //   A type-specifier-seq shall not define a class or enumeration [...].
16118   if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) &&
16119       TUK == TUK_Definition) {
16120     Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
16121       << Context.getTagDeclType(New);
16122     Invalid = true;
16123   }
16124 
16125   if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition &&
16126       DC->getDeclKind() == Decl::Enum) {
16127     Diag(New->getLocation(), diag::err_type_defined_in_enum)
16128       << Context.getTagDeclType(New);
16129     Invalid = true;
16130   }
16131 
16132   // Maybe add qualifier info.
16133   if (SS.isNotEmpty()) {
16134     if (SS.isSet()) {
16135       // If this is either a declaration or a definition, check the
16136       // nested-name-specifier against the current context.
16137       if ((TUK == TUK_Definition || TUK == TUK_Declaration) &&
16138           diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc,
16139                                        isMemberSpecialization))
16140         Invalid = true;
16141 
16142       New->setQualifierInfo(SS.getWithLocInContext(Context));
16143       if (TemplateParameterLists.size() > 0) {
16144         New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
16145       }
16146     }
16147     else
16148       Invalid = true;
16149   }
16150 
16151   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
16152     // Add alignment attributes if necessary; these attributes are checked when
16153     // the ASTContext lays out the structure.
16154     //
16155     // It is important for implementing the correct semantics that this
16156     // happen here (in ActOnTag). The #pragma pack stack is
16157     // maintained as a result of parser callbacks which can occur at
16158     // many points during the parsing of a struct declaration (because
16159     // the #pragma tokens are effectively skipped over during the
16160     // parsing of the struct).
16161     if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
16162       AddAlignmentAttributesForRecord(RD);
16163       AddMsStructLayoutForRecord(RD);
16164     }
16165   }
16166 
16167   if (ModulePrivateLoc.isValid()) {
16168     if (isMemberSpecialization)
16169       Diag(New->getLocation(), diag::err_module_private_specialization)
16170         << 2
16171         << FixItHint::CreateRemoval(ModulePrivateLoc);
16172     // __module_private__ does not apply to local classes. However, we only
16173     // diagnose this as an error when the declaration specifiers are
16174     // freestanding. Here, we just ignore the __module_private__.
16175     else if (!SearchDC->isFunctionOrMethod())
16176       New->setModulePrivate();
16177   }
16178 
16179   // If this is a specialization of a member class (of a class template),
16180   // check the specialization.
16181   if (isMemberSpecialization && CheckMemberSpecialization(New, Previous))
16182     Invalid = true;
16183 
16184   // If we're declaring or defining a tag in function prototype scope in C,
16185   // note that this type can only be used within the function and add it to
16186   // the list of decls to inject into the function definition scope.
16187   if ((Name || Kind == TTK_Enum) &&
16188       getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
16189     if (getLangOpts().CPlusPlus) {
16190       // C++ [dcl.fct]p6:
16191       //   Types shall not be defined in return or parameter types.
16192       if (TUK == TUK_Definition && !IsTypeSpecifier) {
16193         Diag(Loc, diag::err_type_defined_in_param_type)
16194             << Name;
16195         Invalid = true;
16196       }
16197     } else if (!PrevDecl) {
16198       Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
16199     }
16200   }
16201 
16202   if (Invalid)
16203     New->setInvalidDecl();
16204 
16205   // Set the lexical context. If the tag has a C++ scope specifier, the
16206   // lexical context will be different from the semantic context.
16207   New->setLexicalDeclContext(CurContext);
16208 
16209   // Mark this as a friend decl if applicable.
16210   // In Microsoft mode, a friend declaration also acts as a forward
16211   // declaration so we always pass true to setObjectOfFriendDecl to make
16212   // the tag name visible.
16213   if (TUK == TUK_Friend)
16214     New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
16215 
16216   // Set the access specifier.
16217   if (!Invalid && SearchDC->isRecord())
16218     SetMemberAccessSpecifier(New, PrevDecl, AS);
16219 
16220   if (PrevDecl)
16221     CheckRedeclarationModuleOwnership(New, PrevDecl);
16222 
16223   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
16224     New->startDefinition();
16225 
16226   ProcessDeclAttributeList(S, New, Attrs);
16227   AddPragmaAttributes(S, New);
16228 
16229   // If this has an identifier, add it to the scope stack.
16230   if (TUK == TUK_Friend) {
16231     // We might be replacing an existing declaration in the lookup tables;
16232     // if so, borrow its access specifier.
16233     if (PrevDecl)
16234       New->setAccess(PrevDecl->getAccess());
16235 
16236     DeclContext *DC = New->getDeclContext()->getRedeclContext();
16237     DC->makeDeclVisibleInContext(New);
16238     if (Name) // can be null along some error paths
16239       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
16240         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
16241   } else if (Name) {
16242     S = getNonFieldDeclScope(S);
16243     PushOnScopeChains(New, S, true);
16244   } else {
16245     CurContext->addDecl(New);
16246   }
16247 
16248   // If this is the C FILE type, notify the AST context.
16249   if (IdentifierInfo *II = New->getIdentifier())
16250     if (!New->isInvalidDecl() &&
16251         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
16252         II->isStr("FILE"))
16253       Context.setFILEDecl(New);
16254 
16255   if (PrevDecl)
16256     mergeDeclAttributes(New, PrevDecl);
16257 
16258   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(New))
16259     inferGslOwnerPointerAttribute(CXXRD);
16260 
16261   // If there's a #pragma GCC visibility in scope, set the visibility of this
16262   // record.
16263   AddPushedVisibilityAttribute(New);
16264 
16265   if (isMemberSpecialization && !New->isInvalidDecl())
16266     CompleteMemberSpecialization(New, Previous);
16267 
16268   OwnedDecl = true;
16269   // In C++, don't return an invalid declaration. We can't recover well from
16270   // the cases where we make the type anonymous.
16271   if (Invalid && getLangOpts().CPlusPlus) {
16272     if (New->isBeingDefined())
16273       if (auto RD = dyn_cast<RecordDecl>(New))
16274         RD->completeDefinition();
16275     return nullptr;
16276   } else if (SkipBody && SkipBody->ShouldSkip) {
16277     return SkipBody->Previous;
16278   } else {
16279     return New;
16280   }
16281 }
16282 
ActOnTagStartDefinition(Scope * S,Decl * TagD)16283 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
16284   AdjustDeclIfTemplate(TagD);
16285   TagDecl *Tag = cast<TagDecl>(TagD);
16286 
16287   // Enter the tag context.
16288   PushDeclContext(S, Tag);
16289 
16290   ActOnDocumentableDecl(TagD);
16291 
16292   // If there's a #pragma GCC visibility in scope, set the visibility of this
16293   // record.
16294   AddPushedVisibilityAttribute(Tag);
16295 }
16296 
ActOnDuplicateDefinition(DeclSpec & DS,Decl * Prev,SkipBodyInfo & SkipBody)16297 bool Sema::ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev,
16298                                     SkipBodyInfo &SkipBody) {
16299   if (!hasStructuralCompatLayout(Prev, SkipBody.New))
16300     return false;
16301 
16302   // Make the previous decl visible.
16303   makeMergedDefinitionVisible(SkipBody.Previous);
16304   return true;
16305 }
16306 
ActOnObjCContainerStartDefinition(Decl * IDecl)16307 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
16308   assert(isa<ObjCContainerDecl>(IDecl) &&
16309          "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
16310   DeclContext *OCD = cast<DeclContext>(IDecl);
16311   assert(OCD->getLexicalParent() == CurContext &&
16312       "The next DeclContext should be lexically contained in the current one.");
16313   CurContext = OCD;
16314   return IDecl;
16315 }
16316 
ActOnStartCXXMemberDeclarations(Scope * S,Decl * TagD,SourceLocation FinalLoc,bool IsFinalSpelledSealed,SourceLocation LBraceLoc)16317 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
16318                                            SourceLocation FinalLoc,
16319                                            bool IsFinalSpelledSealed,
16320                                            SourceLocation LBraceLoc) {
16321   AdjustDeclIfTemplate(TagD);
16322   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
16323 
16324   FieldCollector->StartClass();
16325 
16326   if (!Record->getIdentifier())
16327     return;
16328 
16329   if (FinalLoc.isValid())
16330     Record->addAttr(FinalAttr::Create(
16331         Context, FinalLoc, AttributeCommonInfo::AS_Keyword,
16332         static_cast<FinalAttr::Spelling>(IsFinalSpelledSealed)));
16333 
16334   // C++ [class]p2:
16335   //   [...] The class-name is also inserted into the scope of the
16336   //   class itself; this is known as the injected-class-name. For
16337   //   purposes of access checking, the injected-class-name is treated
16338   //   as if it were a public member name.
16339   CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create(
16340       Context, Record->getTagKind(), CurContext, Record->getBeginLoc(),
16341       Record->getLocation(), Record->getIdentifier(),
16342       /*PrevDecl=*/nullptr,
16343       /*DelayTypeCreation=*/true);
16344   Context.getTypeDeclType(InjectedClassName, Record);
16345   InjectedClassName->setImplicit();
16346   InjectedClassName->setAccess(AS_public);
16347   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
16348       InjectedClassName->setDescribedClassTemplate(Template);
16349   PushOnScopeChains(InjectedClassName, S);
16350   assert(InjectedClassName->isInjectedClassName() &&
16351          "Broken injected-class-name");
16352 }
16353 
ActOnTagFinishDefinition(Scope * S,Decl * TagD,SourceRange BraceRange)16354 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
16355                                     SourceRange BraceRange) {
16356   AdjustDeclIfTemplate(TagD);
16357   TagDecl *Tag = cast<TagDecl>(TagD);
16358   Tag->setBraceRange(BraceRange);
16359 
16360   // Make sure we "complete" the definition even it is invalid.
16361   if (Tag->isBeingDefined()) {
16362     assert(Tag->isInvalidDecl() && "We should already have completed it");
16363     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
16364       RD->completeDefinition();
16365   }
16366 
16367   if (isa<CXXRecordDecl>(Tag)) {
16368     FieldCollector->FinishClass();
16369   }
16370 
16371   // Exit this scope of this tag's definition.
16372   PopDeclContext();
16373 
16374   if (getCurLexicalContext()->isObjCContainer() &&
16375       Tag->getDeclContext()->isFileContext())
16376     Tag->setTopLevelDeclInObjCContainer();
16377 
16378   // Notify the consumer that we've defined a tag.
16379   if (!Tag->isInvalidDecl())
16380     Consumer.HandleTagDeclDefinition(Tag);
16381 }
16382 
ActOnObjCContainerFinishDefinition()16383 void Sema::ActOnObjCContainerFinishDefinition() {
16384   // Exit this scope of this interface definition.
16385   PopDeclContext();
16386 }
16387 
ActOnObjCTemporaryExitContainerContext(DeclContext * DC)16388 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
16389   assert(DC == CurContext && "Mismatch of container contexts");
16390   OriginalLexicalContext = DC;
16391   ActOnObjCContainerFinishDefinition();
16392 }
16393 
ActOnObjCReenterContainerContext(DeclContext * DC)16394 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
16395   ActOnObjCContainerStartDefinition(cast<Decl>(DC));
16396   OriginalLexicalContext = nullptr;
16397 }
16398 
ActOnTagDefinitionError(Scope * S,Decl * TagD)16399 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
16400   AdjustDeclIfTemplate(TagD);
16401   TagDecl *Tag = cast<TagDecl>(TagD);
16402   Tag->setInvalidDecl();
16403 
16404   // Make sure we "complete" the definition even it is invalid.
16405   if (Tag->isBeingDefined()) {
16406     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
16407       RD->completeDefinition();
16408   }
16409 
16410   // We're undoing ActOnTagStartDefinition here, not
16411   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
16412   // the FieldCollector.
16413 
16414   PopDeclContext();
16415 }
16416 
16417 // Note that FieldName may be null for anonymous bitfields.
VerifyBitField(SourceLocation FieldLoc,IdentifierInfo * FieldName,QualType FieldTy,bool IsMsStruct,Expr * BitWidth,bool * ZeroWidth)16418 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
16419                                 IdentifierInfo *FieldName,
16420                                 QualType FieldTy, bool IsMsStruct,
16421                                 Expr *BitWidth, bool *ZeroWidth) {
16422   assert(BitWidth);
16423   if (BitWidth->containsErrors())
16424     return ExprError();
16425 
16426   // Default to true; that shouldn't confuse checks for emptiness
16427   if (ZeroWidth)
16428     *ZeroWidth = true;
16429 
16430   // C99 6.7.2.1p4 - verify the field type.
16431   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
16432   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
16433     // Handle incomplete and sizeless types with a specific error.
16434     if (RequireCompleteSizedType(FieldLoc, FieldTy,
16435                                  diag::err_field_incomplete_or_sizeless))
16436       return ExprError();
16437     if (FieldName)
16438       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
16439         << FieldName << FieldTy << BitWidth->getSourceRange();
16440     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
16441       << FieldTy << BitWidth->getSourceRange();
16442   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
16443                                              UPPC_BitFieldWidth))
16444     return ExprError();
16445 
16446   // If the bit-width is type- or value-dependent, don't try to check
16447   // it now.
16448   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
16449     return BitWidth;
16450 
16451   llvm::APSInt Value;
16452   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value, AllowFold);
16453   if (ICE.isInvalid())
16454     return ICE;
16455   BitWidth = ICE.get();
16456 
16457   if (Value != 0 && ZeroWidth)
16458     *ZeroWidth = false;
16459 
16460   // Zero-width bitfield is ok for anonymous field.
16461   if (Value == 0 && FieldName)
16462     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
16463 
16464   if (Value.isSigned() && Value.isNegative()) {
16465     if (FieldName)
16466       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
16467                << FieldName << Value.toString(10);
16468     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
16469       << Value.toString(10);
16470   }
16471 
16472   // The size of the bit-field must not exceed our maximum permitted object
16473   // size.
16474   if (Value.getActiveBits() > ConstantArrayType::getMaxSizeBits(Context)) {
16475     return Diag(FieldLoc, diag::err_bitfield_too_wide)
16476            << !FieldName << FieldName << Value.toString(10);
16477   }
16478 
16479   if (!FieldTy->isDependentType()) {
16480     uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
16481     uint64_t TypeWidth = Context.getIntWidth(FieldTy);
16482     bool BitfieldIsOverwide = Value.ugt(TypeWidth);
16483 
16484     // Over-wide bitfields are an error in C or when using the MSVC bitfield
16485     // ABI.
16486     bool CStdConstraintViolation =
16487         BitfieldIsOverwide && !getLangOpts().CPlusPlus;
16488     bool MSBitfieldViolation =
16489         Value.ugt(TypeStorageSize) &&
16490         (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
16491     if (CStdConstraintViolation || MSBitfieldViolation) {
16492       unsigned DiagWidth =
16493           CStdConstraintViolation ? TypeWidth : TypeStorageSize;
16494       if (FieldName)
16495         return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
16496                << FieldName << Value.toString(10)
16497                << !CStdConstraintViolation << DiagWidth;
16498 
16499       return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width)
16500              << Value.toString(10) << !CStdConstraintViolation
16501              << DiagWidth;
16502     }
16503 
16504     // Warn on types where the user might conceivably expect to get all
16505     // specified bits as value bits: that's all integral types other than
16506     // 'bool'.
16507     if (BitfieldIsOverwide && !FieldTy->isBooleanType() && FieldName) {
16508       Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
16509           << FieldName << Value.toString(10)
16510           << (unsigned)TypeWidth;
16511     }
16512   }
16513 
16514   return BitWidth;
16515 }
16516 
16517 /// ActOnField - Each field of a C struct/union is passed into this in order
16518 /// to create a FieldDecl object for it.
ActOnField(Scope * S,Decl * TagD,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth)16519 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
16520                        Declarator &D, Expr *BitfieldWidth) {
16521   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
16522                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
16523                                /*InitStyle=*/ICIS_NoInit, AS_public);
16524   return Res;
16525 }
16526 
16527 /// HandleField - Analyze a field of a C struct or a C++ data member.
16528 ///
HandleField(Scope * S,RecordDecl * Record,SourceLocation DeclStart,Declarator & D,Expr * BitWidth,InClassInitStyle InitStyle,AccessSpecifier AS)16529 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
16530                              SourceLocation DeclStart,
16531                              Declarator &D, Expr *BitWidth,
16532                              InClassInitStyle InitStyle,
16533                              AccessSpecifier AS) {
16534   if (D.isDecompositionDeclarator()) {
16535     const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
16536     Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
16537       << Decomp.getSourceRange();
16538     return nullptr;
16539   }
16540 
16541   IdentifierInfo *II = D.getIdentifier();
16542   SourceLocation Loc = DeclStart;
16543   if (II) Loc = D.getIdentifierLoc();
16544 
16545   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16546   QualType T = TInfo->getType();
16547   if (getLangOpts().CPlusPlus) {
16548     CheckExtraCXXDefaultArguments(D);
16549 
16550     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
16551                                         UPPC_DataMemberType)) {
16552       D.setInvalidType();
16553       T = Context.IntTy;
16554       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
16555     }
16556   }
16557 
16558   DiagnoseFunctionSpecifiers(D.getDeclSpec());
16559 
16560   if (D.getDeclSpec().isInlineSpecified())
16561     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
16562         << getLangOpts().CPlusPlus17;
16563   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
16564     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
16565          diag::err_invalid_thread)
16566       << DeclSpec::getSpecifierName(TSCS);
16567 
16568   // Check to see if this name was declared as a member previously
16569   NamedDecl *PrevDecl = nullptr;
16570   LookupResult Previous(*this, II, Loc, LookupMemberName,
16571                         ForVisibleRedeclaration);
16572   LookupName(Previous, S);
16573   switch (Previous.getResultKind()) {
16574     case LookupResult::Found:
16575     case LookupResult::FoundUnresolvedValue:
16576       PrevDecl = Previous.getAsSingle<NamedDecl>();
16577       break;
16578 
16579     case LookupResult::FoundOverloaded:
16580       PrevDecl = Previous.getRepresentativeDecl();
16581       break;
16582 
16583     case LookupResult::NotFound:
16584     case LookupResult::NotFoundInCurrentInstantiation:
16585     case LookupResult::Ambiguous:
16586       break;
16587   }
16588   Previous.suppressDiagnostics();
16589 
16590   if (PrevDecl && PrevDecl->isTemplateParameter()) {
16591     // Maybe we will complain about the shadowed template parameter.
16592     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
16593     // Just pretend that we didn't see the previous declaration.
16594     PrevDecl = nullptr;
16595   }
16596 
16597   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
16598     PrevDecl = nullptr;
16599 
16600   bool Mutable
16601     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
16602   SourceLocation TSSL = D.getBeginLoc();
16603   FieldDecl *NewFD
16604     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
16605                      TSSL, AS, PrevDecl, &D);
16606 
16607   if (NewFD->isInvalidDecl())
16608     Record->setInvalidDecl();
16609 
16610   if (D.getDeclSpec().isModulePrivateSpecified())
16611     NewFD->setModulePrivate();
16612 
16613   if (NewFD->isInvalidDecl() && PrevDecl) {
16614     // Don't introduce NewFD into scope; there's already something
16615     // with the same name in the same scope.
16616   } else if (II) {
16617     PushOnScopeChains(NewFD, S);
16618   } else
16619     Record->addDecl(NewFD);
16620 
16621   return NewFD;
16622 }
16623 
16624 /// Build a new FieldDecl and check its well-formedness.
16625 ///
16626 /// This routine builds a new FieldDecl given the fields name, type,
16627 /// record, etc. \p PrevDecl should refer to any previous declaration
16628 /// with the same name and in the same scope as the field to be
16629 /// created.
16630 ///
16631 /// \returns a new FieldDecl.
16632 ///
16633 /// \todo The Declarator argument is a hack. It will be removed once
CheckFieldDecl(DeclarationName Name,QualType T,TypeSourceInfo * TInfo,RecordDecl * Record,SourceLocation Loc,bool Mutable,Expr * BitWidth,InClassInitStyle InitStyle,SourceLocation TSSL,AccessSpecifier AS,NamedDecl * PrevDecl,Declarator * D)16634 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
16635                                 TypeSourceInfo *TInfo,
16636                                 RecordDecl *Record, SourceLocation Loc,
16637                                 bool Mutable, Expr *BitWidth,
16638                                 InClassInitStyle InitStyle,
16639                                 SourceLocation TSSL,
16640                                 AccessSpecifier AS, NamedDecl *PrevDecl,
16641                                 Declarator *D) {
16642   IdentifierInfo *II = Name.getAsIdentifierInfo();
16643   bool InvalidDecl = false;
16644   if (D) InvalidDecl = D->isInvalidType();
16645 
16646   // If we receive a broken type, recover by assuming 'int' and
16647   // marking this declaration as invalid.
16648   if (T.isNull() || T->containsErrors()) {
16649     InvalidDecl = true;
16650     T = Context.IntTy;
16651   }
16652 
16653   QualType EltTy = Context.getBaseElementType(T);
16654   if (!EltTy->isDependentType() && !EltTy->containsErrors()) {
16655     if (RequireCompleteSizedType(Loc, EltTy,
16656                                  diag::err_field_incomplete_or_sizeless)) {
16657       // Fields of incomplete type force their record to be invalid.
16658       Record->setInvalidDecl();
16659       InvalidDecl = true;
16660     } else {
16661       NamedDecl *Def;
16662       EltTy->isIncompleteType(&Def);
16663       if (Def && Def->isInvalidDecl()) {
16664         Record->setInvalidDecl();
16665         InvalidDecl = true;
16666       }
16667     }
16668   }
16669 
16670   // TR 18037 does not allow fields to be declared with address space
16671   if (T.hasAddressSpace() || T->isDependentAddressSpaceType() ||
16672       T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
16673     Diag(Loc, diag::err_field_with_address_space);
16674     Record->setInvalidDecl();
16675     InvalidDecl = true;
16676   }
16677 
16678   if (LangOpts.OpenCL) {
16679     // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
16680     // used as structure or union field: image, sampler, event or block types.
16681     if (T->isEventT() || T->isImageType() || T->isSamplerT() ||
16682         T->isBlockPointerType()) {
16683       Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
16684       Record->setInvalidDecl();
16685       InvalidDecl = true;
16686     }
16687     // OpenCL v1.2 s6.9.c: bitfields are not supported.
16688     if (BitWidth) {
16689       Diag(Loc, diag::err_opencl_bitfields);
16690       InvalidDecl = true;
16691     }
16692   }
16693 
16694   // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
16695   if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth &&
16696       T.hasQualifiers()) {
16697     InvalidDecl = true;
16698     Diag(Loc, diag::err_anon_bitfield_qualifiers);
16699   }
16700 
16701   // C99 6.7.2.1p8: A member of a structure or union may have any type other
16702   // than a variably modified type.
16703   if (!InvalidDecl && T->isVariablyModifiedType()) {
16704     if (!tryToFixVariablyModifiedVarType(
16705             *this, TInfo, T, Loc, diag::err_typecheck_field_variable_size))
16706       InvalidDecl = true;
16707   }
16708 
16709   // Fields can not have abstract class types
16710   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
16711                                              diag::err_abstract_type_in_decl,
16712                                              AbstractFieldType))
16713     InvalidDecl = true;
16714 
16715   bool ZeroWidth = false;
16716   if (InvalidDecl)
16717     BitWidth = nullptr;
16718   // If this is declared as a bit-field, check the bit-field.
16719   if (BitWidth) {
16720     BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
16721                               &ZeroWidth).get();
16722     if (!BitWidth) {
16723       InvalidDecl = true;
16724       BitWidth = nullptr;
16725       ZeroWidth = false;
16726     }
16727   }
16728 
16729   // Check that 'mutable' is consistent with the type of the declaration.
16730   if (!InvalidDecl && Mutable) {
16731     unsigned DiagID = 0;
16732     if (T->isReferenceType())
16733       DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
16734                                         : diag::err_mutable_reference;
16735     else if (T.isConstQualified())
16736       DiagID = diag::err_mutable_const;
16737 
16738     if (DiagID) {
16739       SourceLocation ErrLoc = Loc;
16740       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
16741         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
16742       Diag(ErrLoc, DiagID);
16743       if (DiagID != diag::ext_mutable_reference) {
16744         Mutable = false;
16745         InvalidDecl = true;
16746       }
16747     }
16748   }
16749 
16750   // C++11 [class.union]p8 (DR1460):
16751   //   At most one variant member of a union may have a
16752   //   brace-or-equal-initializer.
16753   if (InitStyle != ICIS_NoInit)
16754     checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
16755 
16756   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
16757                                        BitWidth, Mutable, InitStyle);
16758   if (InvalidDecl)
16759     NewFD->setInvalidDecl();
16760 
16761   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
16762     Diag(Loc, diag::err_duplicate_member) << II;
16763     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
16764     NewFD->setInvalidDecl();
16765   }
16766 
16767   if (!InvalidDecl && getLangOpts().CPlusPlus) {
16768     if (Record->isUnion()) {
16769       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
16770         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
16771         if (RDecl->getDefinition()) {
16772           // C++ [class.union]p1: An object of a class with a non-trivial
16773           // constructor, a non-trivial copy constructor, a non-trivial
16774           // destructor, or a non-trivial copy assignment operator
16775           // cannot be a member of a union, nor can an array of such
16776           // objects.
16777           if (CheckNontrivialField(NewFD))
16778             NewFD->setInvalidDecl();
16779         }
16780       }
16781 
16782       // C++ [class.union]p1: If a union contains a member of reference type,
16783       // the program is ill-formed, except when compiling with MSVC extensions
16784       // enabled.
16785       if (EltTy->isReferenceType()) {
16786         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
16787                                     diag::ext_union_member_of_reference_type :
16788                                     diag::err_union_member_of_reference_type)
16789           << NewFD->getDeclName() << EltTy;
16790         if (!getLangOpts().MicrosoftExt)
16791           NewFD->setInvalidDecl();
16792       }
16793     }
16794   }
16795 
16796   // FIXME: We need to pass in the attributes given an AST
16797   // representation, not a parser representation.
16798   if (D) {
16799     // FIXME: The current scope is almost... but not entirely... correct here.
16800     ProcessDeclAttributes(getCurScope(), NewFD, *D);
16801 
16802     if (NewFD->hasAttrs())
16803       CheckAlignasUnderalignment(NewFD);
16804   }
16805 
16806   // In auto-retain/release, infer strong retension for fields of
16807   // retainable type.
16808   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
16809     NewFD->setInvalidDecl();
16810 
16811   if (T.isObjCGCWeak())
16812     Diag(Loc, diag::warn_attribute_weak_on_field);
16813 
16814   // PPC MMA non-pointer types are not allowed as field types.
16815   if (Context.getTargetInfo().getTriple().isPPC64() &&
16816       CheckPPCMMAType(T, NewFD->getLocation()))
16817     NewFD->setInvalidDecl();
16818 
16819   NewFD->setAccess(AS);
16820   return NewFD;
16821 }
16822 
CheckNontrivialField(FieldDecl * FD)16823 bool Sema::CheckNontrivialField(FieldDecl *FD) {
16824   assert(FD);
16825   assert(getLangOpts().CPlusPlus && "valid check only for C++");
16826 
16827   if (FD->isInvalidDecl() || FD->getType()->isDependentType())
16828     return false;
16829 
16830   QualType EltTy = Context.getBaseElementType(FD->getType());
16831   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
16832     CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
16833     if (RDecl->getDefinition()) {
16834       // We check for copy constructors before constructors
16835       // because otherwise we'll never get complaints about
16836       // copy constructors.
16837 
16838       CXXSpecialMember member = CXXInvalid;
16839       // We're required to check for any non-trivial constructors. Since the
16840       // implicit default constructor is suppressed if there are any
16841       // user-declared constructors, we just need to check that there is a
16842       // trivial default constructor and a trivial copy constructor. (We don't
16843       // worry about move constructors here, since this is a C++98 check.)
16844       if (RDecl->hasNonTrivialCopyConstructor())
16845         member = CXXCopyConstructor;
16846       else if (!RDecl->hasTrivialDefaultConstructor())
16847         member = CXXDefaultConstructor;
16848       else if (RDecl->hasNonTrivialCopyAssignment())
16849         member = CXXCopyAssignment;
16850       else if (RDecl->hasNonTrivialDestructor())
16851         member = CXXDestructor;
16852 
16853       if (member != CXXInvalid) {
16854         if (!getLangOpts().CPlusPlus11 &&
16855             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
16856           // Objective-C++ ARC: it is an error to have a non-trivial field of
16857           // a union. However, system headers in Objective-C programs
16858           // occasionally have Objective-C lifetime objects within unions,
16859           // and rather than cause the program to fail, we make those
16860           // members unavailable.
16861           SourceLocation Loc = FD->getLocation();
16862           if (getSourceManager().isInSystemHeader(Loc)) {
16863             if (!FD->hasAttr<UnavailableAttr>())
16864               FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
16865                             UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
16866             return false;
16867           }
16868         }
16869 
16870         Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
16871                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
16872                diag::err_illegal_union_or_anon_struct_member)
16873           << FD->getParent()->isUnion() << FD->getDeclName() << member;
16874         DiagnoseNontrivial(RDecl, member);
16875         return !getLangOpts().CPlusPlus11;
16876       }
16877     }
16878   }
16879 
16880   return false;
16881 }
16882 
16883 /// TranslateIvarVisibility - Translate visibility from a token ID to an
16884 ///  AST enum value.
16885 static ObjCIvarDecl::AccessControl
TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility)16886 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
16887   switch (ivarVisibility) {
16888   default: llvm_unreachable("Unknown visitibility kind");
16889   case tok::objc_private: return ObjCIvarDecl::Private;
16890   case tok::objc_public: return ObjCIvarDecl::Public;
16891   case tok::objc_protected: return ObjCIvarDecl::Protected;
16892   case tok::objc_package: return ObjCIvarDecl::Package;
16893   }
16894 }
16895 
16896 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
16897 /// in order to create an IvarDecl object for it.
ActOnIvar(Scope * S,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth,tok::ObjCKeywordKind Visibility)16898 Decl *Sema::ActOnIvar(Scope *S,
16899                                 SourceLocation DeclStart,
16900                                 Declarator &D, Expr *BitfieldWidth,
16901                                 tok::ObjCKeywordKind Visibility) {
16902 
16903   IdentifierInfo *II = D.getIdentifier();
16904   Expr *BitWidth = (Expr*)BitfieldWidth;
16905   SourceLocation Loc = DeclStart;
16906   if (II) Loc = D.getIdentifierLoc();
16907 
16908   // FIXME: Unnamed fields can be handled in various different ways, for
16909   // example, unnamed unions inject all members into the struct namespace!
16910 
16911   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16912   QualType T = TInfo->getType();
16913 
16914   if (BitWidth) {
16915     // 6.7.2.1p3, 6.7.2.1p4
16916     BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
16917     if (!BitWidth)
16918       D.setInvalidType();
16919   } else {
16920     // Not a bitfield.
16921 
16922     // validate II.
16923 
16924   }
16925   if (T->isReferenceType()) {
16926     Diag(Loc, diag::err_ivar_reference_type);
16927     D.setInvalidType();
16928   }
16929   // C99 6.7.2.1p8: A member of a structure or union may have any type other
16930   // than a variably modified type.
16931   else if (T->isVariablyModifiedType()) {
16932     if (!tryToFixVariablyModifiedVarType(
16933             *this, TInfo, T, Loc, diag::err_typecheck_ivar_variable_size))
16934       D.setInvalidType();
16935   }
16936 
16937   // Get the visibility (access control) for this ivar.
16938   ObjCIvarDecl::AccessControl ac =
16939     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
16940                                         : ObjCIvarDecl::None;
16941   // Must set ivar's DeclContext to its enclosing interface.
16942   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
16943   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
16944     return nullptr;
16945   ObjCContainerDecl *EnclosingContext;
16946   if (ObjCImplementationDecl *IMPDecl =
16947       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
16948     if (LangOpts.ObjCRuntime.isFragile()) {
16949     // Case of ivar declared in an implementation. Context is that of its class.
16950       EnclosingContext = IMPDecl->getClassInterface();
16951       assert(EnclosingContext && "Implementation has no class interface!");
16952     }
16953     else
16954       EnclosingContext = EnclosingDecl;
16955   } else {
16956     if (ObjCCategoryDecl *CDecl =
16957         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
16958       if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
16959         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
16960         return nullptr;
16961       }
16962     }
16963     EnclosingContext = EnclosingDecl;
16964   }
16965 
16966   // Construct the decl.
16967   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
16968                                              DeclStart, Loc, II, T,
16969                                              TInfo, ac, (Expr *)BitfieldWidth);
16970 
16971   if (II) {
16972     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
16973                                            ForVisibleRedeclaration);
16974     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
16975         && !isa<TagDecl>(PrevDecl)) {
16976       Diag(Loc, diag::err_duplicate_member) << II;
16977       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
16978       NewID->setInvalidDecl();
16979     }
16980   }
16981 
16982   // Process attributes attached to the ivar.
16983   ProcessDeclAttributes(S, NewID, D);
16984 
16985   if (D.isInvalidType())
16986     NewID->setInvalidDecl();
16987 
16988   // In ARC, infer 'retaining' for ivars of retainable type.
16989   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
16990     NewID->setInvalidDecl();
16991 
16992   if (D.getDeclSpec().isModulePrivateSpecified())
16993     NewID->setModulePrivate();
16994 
16995   if (II) {
16996     // FIXME: When interfaces are DeclContexts, we'll need to add
16997     // these to the interface.
16998     S->AddDecl(NewID);
16999     IdResolver.AddDecl(NewID);
17000   }
17001 
17002   if (LangOpts.ObjCRuntime.isNonFragile() &&
17003       !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
17004     Diag(Loc, diag::warn_ivars_in_interface);
17005 
17006   return NewID;
17007 }
17008 
17009 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
17010 /// class and class extensions. For every class \@interface and class
17011 /// extension \@interface, if the last ivar is a bitfield of any type,
17012 /// then add an implicit `char :0` ivar to the end of that interface.
ActOnLastBitfield(SourceLocation DeclLoc,SmallVectorImpl<Decl * > & AllIvarDecls)17013 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
17014                              SmallVectorImpl<Decl *> &AllIvarDecls) {
17015   if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
17016     return;
17017 
17018   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
17019   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
17020 
17021   if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context))
17022     return;
17023   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
17024   if (!ID) {
17025     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
17026       if (!CD->IsClassExtension())
17027         return;
17028     }
17029     // No need to add this to end of @implementation.
17030     else
17031       return;
17032   }
17033   // All conditions are met. Add a new bitfield to the tail end of ivars.
17034   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
17035   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
17036 
17037   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
17038                               DeclLoc, DeclLoc, nullptr,
17039                               Context.CharTy,
17040                               Context.getTrivialTypeSourceInfo(Context.CharTy,
17041                                                                DeclLoc),
17042                               ObjCIvarDecl::Private, BW,
17043                               true);
17044   AllIvarDecls.push_back(Ivar);
17045 }
17046 
ActOnFields(Scope * S,SourceLocation RecLoc,Decl * EnclosingDecl,ArrayRef<Decl * > Fields,SourceLocation LBrac,SourceLocation RBrac,const ParsedAttributesView & Attrs)17047 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
17048                        ArrayRef<Decl *> Fields, SourceLocation LBrac,
17049                        SourceLocation RBrac,
17050                        const ParsedAttributesView &Attrs) {
17051   assert(EnclosingDecl && "missing record or interface decl");
17052 
17053   // If this is an Objective-C @implementation or category and we have
17054   // new fields here we should reset the layout of the interface since
17055   // it will now change.
17056   if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
17057     ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
17058     switch (DC->getKind()) {
17059     default: break;
17060     case Decl::ObjCCategory:
17061       Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
17062       break;
17063     case Decl::ObjCImplementation:
17064       Context.
17065         ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
17066       break;
17067     }
17068   }
17069 
17070   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
17071   CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl);
17072 
17073   // Start counting up the number of named members; make sure to include
17074   // members of anonymous structs and unions in the total.
17075   unsigned NumNamedMembers = 0;
17076   if (Record) {
17077     for (const auto *I : Record->decls()) {
17078       if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
17079         if (IFD->getDeclName())
17080           ++NumNamedMembers;
17081     }
17082   }
17083 
17084   // Verify that all the fields are okay.
17085   SmallVector<FieldDecl*, 32> RecFields;
17086 
17087   for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
17088        i != end; ++i) {
17089     FieldDecl *FD = cast<FieldDecl>(*i);
17090 
17091     // Get the type for the field.
17092     const Type *FDTy = FD->getType().getTypePtr();
17093 
17094     if (!FD->isAnonymousStructOrUnion()) {
17095       // Remember all fields written by the user.
17096       RecFields.push_back(FD);
17097     }
17098 
17099     // If the field is already invalid for some reason, don't emit more
17100     // diagnostics about it.
17101     if (FD->isInvalidDecl()) {
17102       EnclosingDecl->setInvalidDecl();
17103       continue;
17104     }
17105 
17106     // C99 6.7.2.1p2:
17107     //   A structure or union shall not contain a member with
17108     //   incomplete or function type (hence, a structure shall not
17109     //   contain an instance of itself, but may contain a pointer to
17110     //   an instance of itself), except that the last member of a
17111     //   structure with more than one named member may have incomplete
17112     //   array type; such a structure (and any union containing,
17113     //   possibly recursively, a member that is such a structure)
17114     //   shall not be a member of a structure or an element of an
17115     //   array.
17116     bool IsLastField = (i + 1 == Fields.end());
17117     if (FDTy->isFunctionType()) {
17118       // Field declared as a function.
17119       Diag(FD->getLocation(), diag::err_field_declared_as_function)
17120         << FD->getDeclName();
17121       FD->setInvalidDecl();
17122       EnclosingDecl->setInvalidDecl();
17123       continue;
17124     } else if (FDTy->isIncompleteArrayType() &&
17125                (Record || isa<ObjCContainerDecl>(EnclosingDecl))) {
17126       if (Record) {
17127         // Flexible array member.
17128         // Microsoft and g++ is more permissive regarding flexible array.
17129         // It will accept flexible array in union and also
17130         // as the sole element of a struct/class.
17131         unsigned DiagID = 0;
17132         if (!Record->isUnion() && !IsLastField) {
17133           Diag(FD->getLocation(), diag::err_flexible_array_not_at_end)
17134             << FD->getDeclName() << FD->getType() << Record->getTagKind();
17135           Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration);
17136           FD->setInvalidDecl();
17137           EnclosingDecl->setInvalidDecl();
17138           continue;
17139         } else if (Record->isUnion())
17140           DiagID = getLangOpts().MicrosoftExt
17141                        ? diag::ext_flexible_array_union_ms
17142                        : getLangOpts().CPlusPlus
17143                              ? diag::ext_flexible_array_union_gnu
17144                              : diag::err_flexible_array_union;
17145         else if (NumNamedMembers < 1)
17146           DiagID = getLangOpts().MicrosoftExt
17147                        ? diag::ext_flexible_array_empty_aggregate_ms
17148                        : getLangOpts().CPlusPlus
17149                              ? diag::ext_flexible_array_empty_aggregate_gnu
17150                              : diag::err_flexible_array_empty_aggregate;
17151 
17152         if (DiagID)
17153           Diag(FD->getLocation(), DiagID) << FD->getDeclName()
17154                                           << Record->getTagKind();
17155         // While the layout of types that contain virtual bases is not specified
17156         // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
17157         // virtual bases after the derived members.  This would make a flexible
17158         // array member declared at the end of an object not adjacent to the end
17159         // of the type.
17160         if (CXXRecord && CXXRecord->getNumVBases() != 0)
17161           Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
17162               << FD->getDeclName() << Record->getTagKind();
17163         if (!getLangOpts().C99)
17164           Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
17165             << FD->getDeclName() << Record->getTagKind();
17166 
17167         // If the element type has a non-trivial destructor, we would not
17168         // implicitly destroy the elements, so disallow it for now.
17169         //
17170         // FIXME: GCC allows this. We should probably either implicitly delete
17171         // the destructor of the containing class, or just allow this.
17172         QualType BaseElem = Context.getBaseElementType(FD->getType());
17173         if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
17174           Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
17175             << FD->getDeclName() << FD->getType();
17176           FD->setInvalidDecl();
17177           EnclosingDecl->setInvalidDecl();
17178           continue;
17179         }
17180         // Okay, we have a legal flexible array member at the end of the struct.
17181         Record->setHasFlexibleArrayMember(true);
17182       } else {
17183         // In ObjCContainerDecl ivars with incomplete array type are accepted,
17184         // unless they are followed by another ivar. That check is done
17185         // elsewhere, after synthesized ivars are known.
17186       }
17187     } else if (!FDTy->isDependentType() &&
17188                RequireCompleteSizedType(
17189                    FD->getLocation(), FD->getType(),
17190                    diag::err_field_incomplete_or_sizeless)) {
17191       // Incomplete type
17192       FD->setInvalidDecl();
17193       EnclosingDecl->setInvalidDecl();
17194       continue;
17195     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
17196       if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
17197         // A type which contains a flexible array member is considered to be a
17198         // flexible array member.
17199         Record->setHasFlexibleArrayMember(true);
17200         if (!Record->isUnion()) {
17201           // If this is a struct/class and this is not the last element, reject
17202           // it.  Note that GCC supports variable sized arrays in the middle of
17203           // structures.
17204           if (!IsLastField)
17205             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
17206               << FD->getDeclName() << FD->getType();
17207           else {
17208             // We support flexible arrays at the end of structs in
17209             // other structs as an extension.
17210             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
17211               << FD->getDeclName();
17212           }
17213         }
17214       }
17215       if (isa<ObjCContainerDecl>(EnclosingDecl) &&
17216           RequireNonAbstractType(FD->getLocation(), FD->getType(),
17217                                  diag::err_abstract_type_in_decl,
17218                                  AbstractIvarType)) {
17219         // Ivars can not have abstract class types
17220         FD->setInvalidDecl();
17221       }
17222       if (Record && FDTTy->getDecl()->hasObjectMember())
17223         Record->setHasObjectMember(true);
17224       if (Record && FDTTy->getDecl()->hasVolatileMember())
17225         Record->setHasVolatileMember(true);
17226     } else if (FDTy->isObjCObjectType()) {
17227       /// A field cannot be an Objective-c object
17228       Diag(FD->getLocation(), diag::err_statically_allocated_object)
17229         << FixItHint::CreateInsertion(FD->getLocation(), "*");
17230       QualType T = Context.getObjCObjectPointerType(FD->getType());
17231       FD->setType(T);
17232     } else if (Record && Record->isUnion() &&
17233                FD->getType().hasNonTrivialObjCLifetime() &&
17234                getSourceManager().isInSystemHeader(FD->getLocation()) &&
17235                !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>() &&
17236                (FD->getType().getObjCLifetime() != Qualifiers::OCL_Strong ||
17237                 !Context.hasDirectOwnershipQualifier(FD->getType()))) {
17238       // For backward compatibility, fields of C unions declared in system
17239       // headers that have non-trivial ObjC ownership qualifications are marked
17240       // as unavailable unless the qualifier is explicit and __strong. This can
17241       // break ABI compatibility between programs compiled with ARC and MRR, but
17242       // is a better option than rejecting programs using those unions under
17243       // ARC.
17244       FD->addAttr(UnavailableAttr::CreateImplicit(
17245           Context, "", UnavailableAttr::IR_ARCFieldWithOwnership,
17246           FD->getLocation()));
17247     } else if (getLangOpts().ObjC &&
17248                getLangOpts().getGC() != LangOptions::NonGC && Record &&
17249                !Record->hasObjectMember()) {
17250       if (FD->getType()->isObjCObjectPointerType() ||
17251           FD->getType().isObjCGCStrong())
17252         Record->setHasObjectMember(true);
17253       else if (Context.getAsArrayType(FD->getType())) {
17254         QualType BaseType = Context.getBaseElementType(FD->getType());
17255         if (BaseType->isRecordType() &&
17256             BaseType->castAs<RecordType>()->getDecl()->hasObjectMember())
17257           Record->setHasObjectMember(true);
17258         else if (BaseType->isObjCObjectPointerType() ||
17259                  BaseType.isObjCGCStrong())
17260                Record->setHasObjectMember(true);
17261       }
17262     }
17263 
17264     if (Record && !getLangOpts().CPlusPlus &&
17265         !shouldIgnoreForRecordTriviality(FD)) {
17266       QualType FT = FD->getType();
17267       if (FT.isNonTrivialToPrimitiveDefaultInitialize()) {
17268         Record->setNonTrivialToPrimitiveDefaultInitialize(true);
17269         if (FT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
17270             Record->isUnion())
17271           Record->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true);
17272       }
17273       QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy();
17274       if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial) {
17275         Record->setNonTrivialToPrimitiveCopy(true);
17276         if (FT.hasNonTrivialToPrimitiveCopyCUnion() || Record->isUnion())
17277           Record->setHasNonTrivialToPrimitiveCopyCUnion(true);
17278       }
17279       if (FT.isDestructedType()) {
17280         Record->setNonTrivialToPrimitiveDestroy(true);
17281         Record->setParamDestroyedInCallee(true);
17282         if (FT.hasNonTrivialToPrimitiveDestructCUnion() || Record->isUnion())
17283           Record->setHasNonTrivialToPrimitiveDestructCUnion(true);
17284       }
17285 
17286       if (const auto *RT = FT->getAs<RecordType>()) {
17287         if (RT->getDecl()->getArgPassingRestrictions() ==
17288             RecordDecl::APK_CanNeverPassInRegs)
17289           Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
17290       } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak)
17291         Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
17292     }
17293 
17294     if (Record && FD->getType().isVolatileQualified())
17295       Record->setHasVolatileMember(true);
17296     // Keep track of the number of named members.
17297     if (FD->getIdentifier())
17298       ++NumNamedMembers;
17299   }
17300 
17301   // Okay, we successfully defined 'Record'.
17302   if (Record) {
17303     bool Completed = false;
17304     if (CXXRecord) {
17305       if (!CXXRecord->isInvalidDecl()) {
17306         // Set access bits correctly on the directly-declared conversions.
17307         for (CXXRecordDecl::conversion_iterator
17308                I = CXXRecord->conversion_begin(),
17309                E = CXXRecord->conversion_end(); I != E; ++I)
17310           I.setAccess((*I)->getAccess());
17311       }
17312 
17313       // Add any implicitly-declared members to this class.
17314       AddImplicitlyDeclaredMembersToClass(CXXRecord);
17315 
17316       if (!CXXRecord->isDependentType()) {
17317         if (!CXXRecord->isInvalidDecl()) {
17318           // If we have virtual base classes, we may end up finding multiple
17319           // final overriders for a given virtual function. Check for this
17320           // problem now.
17321           if (CXXRecord->getNumVBases()) {
17322             CXXFinalOverriderMap FinalOverriders;
17323             CXXRecord->getFinalOverriders(FinalOverriders);
17324 
17325             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
17326                                              MEnd = FinalOverriders.end();
17327                  M != MEnd; ++M) {
17328               for (OverridingMethods::iterator SO = M->second.begin(),
17329                                             SOEnd = M->second.end();
17330                    SO != SOEnd; ++SO) {
17331                 assert(SO->second.size() > 0 &&
17332                        "Virtual function without overriding functions?");
17333                 if (SO->second.size() == 1)
17334                   continue;
17335 
17336                 // C++ [class.virtual]p2:
17337                 //   In a derived class, if a virtual member function of a base
17338                 //   class subobject has more than one final overrider the
17339                 //   program is ill-formed.
17340                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
17341                   << (const NamedDecl *)M->first << Record;
17342                 Diag(M->first->getLocation(),
17343                      diag::note_overridden_virtual_function);
17344                 for (OverridingMethods::overriding_iterator
17345                           OM = SO->second.begin(),
17346                        OMEnd = SO->second.end();
17347                      OM != OMEnd; ++OM)
17348                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
17349                     << (const NamedDecl *)M->first << OM->Method->getParent();
17350 
17351                 Record->setInvalidDecl();
17352               }
17353             }
17354             CXXRecord->completeDefinition(&FinalOverriders);
17355             Completed = true;
17356           }
17357         }
17358       }
17359     }
17360 
17361     if (!Completed)
17362       Record->completeDefinition();
17363 
17364     // Handle attributes before checking the layout.
17365     ProcessDeclAttributeList(S, Record, Attrs);
17366 
17367     // We may have deferred checking for a deleted destructor. Check now.
17368     if (CXXRecord) {
17369       auto *Dtor = CXXRecord->getDestructor();
17370       if (Dtor && Dtor->isImplicit() &&
17371           ShouldDeleteSpecialMember(Dtor, CXXDestructor)) {
17372         CXXRecord->setImplicitDestructorIsDeleted();
17373         SetDeclDeleted(Dtor, CXXRecord->getLocation());
17374       }
17375     }
17376 
17377     if (Record->hasAttrs()) {
17378       CheckAlignasUnderalignment(Record);
17379 
17380       if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
17381         checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
17382                                            IA->getRange(), IA->getBestCase(),
17383                                            IA->getInheritanceModel());
17384     }
17385 
17386     // Check if the structure/union declaration is a type that can have zero
17387     // size in C. For C this is a language extension, for C++ it may cause
17388     // compatibility problems.
17389     bool CheckForZeroSize;
17390     if (!getLangOpts().CPlusPlus) {
17391       CheckForZeroSize = true;
17392     } else {
17393       // For C++ filter out types that cannot be referenced in C code.
17394       CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
17395       CheckForZeroSize =
17396           CXXRecord->getLexicalDeclContext()->isExternCContext() &&
17397           !CXXRecord->isDependentType() && !inTemplateInstantiation() &&
17398           CXXRecord->isCLike();
17399     }
17400     if (CheckForZeroSize) {
17401       bool ZeroSize = true;
17402       bool IsEmpty = true;
17403       unsigned NonBitFields = 0;
17404       for (RecordDecl::field_iterator I = Record->field_begin(),
17405                                       E = Record->field_end();
17406            (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
17407         IsEmpty = false;
17408         if (I->isUnnamedBitfield()) {
17409           if (!I->isZeroLengthBitField(Context))
17410             ZeroSize = false;
17411         } else {
17412           ++NonBitFields;
17413           QualType FieldType = I->getType();
17414           if (FieldType->isIncompleteType() ||
17415               !Context.getTypeSizeInChars(FieldType).isZero())
17416             ZeroSize = false;
17417         }
17418       }
17419 
17420       // Empty structs are an extension in C (C99 6.7.2.1p7). They are
17421       // allowed in C++, but warn if its declaration is inside
17422       // extern "C" block.
17423       if (ZeroSize) {
17424         Diag(RecLoc, getLangOpts().CPlusPlus ?
17425                          diag::warn_zero_size_struct_union_in_extern_c :
17426                          diag::warn_zero_size_struct_union_compat)
17427           << IsEmpty << Record->isUnion() << (NonBitFields > 1);
17428       }
17429 
17430       // Structs without named members are extension in C (C99 6.7.2.1p7),
17431       // but are accepted by GCC.
17432       if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
17433         Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
17434                                diag::ext_no_named_members_in_struct_union)
17435           << Record->isUnion();
17436       }
17437     }
17438   } else {
17439     ObjCIvarDecl **ClsFields =
17440       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
17441     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
17442       ID->setEndOfDefinitionLoc(RBrac);
17443       // Add ivar's to class's DeclContext.
17444       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
17445         ClsFields[i]->setLexicalDeclContext(ID);
17446         ID->addDecl(ClsFields[i]);
17447       }
17448       // Must enforce the rule that ivars in the base classes may not be
17449       // duplicates.
17450       if (ID->getSuperClass())
17451         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
17452     } else if (ObjCImplementationDecl *IMPDecl =
17453                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
17454       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
17455       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
17456         // Ivar declared in @implementation never belongs to the implementation.
17457         // Only it is in implementation's lexical context.
17458         ClsFields[I]->setLexicalDeclContext(IMPDecl);
17459       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
17460       IMPDecl->setIvarLBraceLoc(LBrac);
17461       IMPDecl->setIvarRBraceLoc(RBrac);
17462     } else if (ObjCCategoryDecl *CDecl =
17463                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
17464       // case of ivars in class extension; all other cases have been
17465       // reported as errors elsewhere.
17466       // FIXME. Class extension does not have a LocEnd field.
17467       // CDecl->setLocEnd(RBrac);
17468       // Add ivar's to class extension's DeclContext.
17469       // Diagnose redeclaration of private ivars.
17470       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
17471       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
17472         if (IDecl) {
17473           if (const ObjCIvarDecl *ClsIvar =
17474               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
17475             Diag(ClsFields[i]->getLocation(),
17476                  diag::err_duplicate_ivar_declaration);
17477             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
17478             continue;
17479           }
17480           for (const auto *Ext : IDecl->known_extensions()) {
17481             if (const ObjCIvarDecl *ClsExtIvar
17482                   = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
17483               Diag(ClsFields[i]->getLocation(),
17484                    diag::err_duplicate_ivar_declaration);
17485               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
17486               continue;
17487             }
17488           }
17489         }
17490         ClsFields[i]->setLexicalDeclContext(CDecl);
17491         CDecl->addDecl(ClsFields[i]);
17492       }
17493       CDecl->setIvarLBraceLoc(LBrac);
17494       CDecl->setIvarRBraceLoc(RBrac);
17495     }
17496   }
17497 }
17498 
17499 /// Determine whether the given integral value is representable within
17500 /// the given type T.
isRepresentableIntegerValue(ASTContext & Context,llvm::APSInt & Value,QualType T)17501 static bool isRepresentableIntegerValue(ASTContext &Context,
17502                                         llvm::APSInt &Value,
17503                                         QualType T) {
17504   assert((T->isIntegralType(Context) || T->isEnumeralType()) &&
17505          "Integral type required!");
17506   unsigned BitWidth = Context.getIntWidth(T);
17507 
17508   if (Value.isUnsigned() || Value.isNonNegative()) {
17509     if (T->isSignedIntegerOrEnumerationType())
17510       --BitWidth;
17511     return Value.getActiveBits() <= BitWidth;
17512   }
17513   return Value.getMinSignedBits() <= BitWidth;
17514 }
17515 
17516 // Given an integral type, return the next larger integral type
17517 // (or a NULL type of no such type exists).
getNextLargerIntegralType(ASTContext & Context,QualType T)17518 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
17519   // FIXME: Int128/UInt128 support, which also needs to be introduced into
17520   // enum checking below.
17521   assert((T->isIntegralType(Context) ||
17522          T->isEnumeralType()) && "Integral type required!");
17523   const unsigned NumTypes = 4;
17524   QualType SignedIntegralTypes[NumTypes] = {
17525     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
17526   };
17527   QualType UnsignedIntegralTypes[NumTypes] = {
17528     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
17529     Context.UnsignedLongLongTy
17530   };
17531 
17532   unsigned BitWidth = Context.getTypeSize(T);
17533   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
17534                                                         : UnsignedIntegralTypes;
17535   for (unsigned I = 0; I != NumTypes; ++I)
17536     if (Context.getTypeSize(Types[I]) > BitWidth)
17537       return Types[I];
17538 
17539   return QualType();
17540 }
17541 
CheckEnumConstant(EnumDecl * Enum,EnumConstantDecl * LastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,Expr * Val)17542 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
17543                                           EnumConstantDecl *LastEnumConst,
17544                                           SourceLocation IdLoc,
17545                                           IdentifierInfo *Id,
17546                                           Expr *Val) {
17547   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
17548   llvm::APSInt EnumVal(IntWidth);
17549   QualType EltTy;
17550 
17551   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
17552     Val = nullptr;
17553 
17554   if (Val)
17555     Val = DefaultLvalueConversion(Val).get();
17556 
17557   if (Val) {
17558     if (Enum->isDependentType() || Val->isTypeDependent())
17559       EltTy = Context.DependentTy;
17560     else {
17561       // FIXME: We don't allow folding in C++11 mode for an enum with a fixed
17562       // underlying type, but do allow it in all other contexts.
17563       if (getLangOpts().CPlusPlus11 && Enum->isFixed()) {
17564         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
17565         // constant-expression in the enumerator-definition shall be a converted
17566         // constant expression of the underlying type.
17567         EltTy = Enum->getIntegerType();
17568         ExprResult Converted =
17569           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
17570                                            CCEK_Enumerator);
17571         if (Converted.isInvalid())
17572           Val = nullptr;
17573         else
17574           Val = Converted.get();
17575       } else if (!Val->isValueDependent() &&
17576                  !(Val =
17577                        VerifyIntegerConstantExpression(Val, &EnumVal, AllowFold)
17578                            .get())) {
17579         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
17580       } else {
17581         if (Enum->isComplete()) {
17582           EltTy = Enum->getIntegerType();
17583 
17584           // In Obj-C and Microsoft mode, require the enumeration value to be
17585           // representable in the underlying type of the enumeration. In C++11,
17586           // we perform a non-narrowing conversion as part of converted constant
17587           // expression checking.
17588           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
17589             if (Context.getTargetInfo()
17590                     .getTriple()
17591                     .isWindowsMSVCEnvironment()) {
17592               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
17593             } else {
17594               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
17595             }
17596           }
17597 
17598           // Cast to the underlying type.
17599           Val = ImpCastExprToType(Val, EltTy,
17600                                   EltTy->isBooleanType() ? CK_IntegralToBoolean
17601                                                          : CK_IntegralCast)
17602                     .get();
17603         } else if (getLangOpts().CPlusPlus) {
17604           // C++11 [dcl.enum]p5:
17605           //   If the underlying type is not fixed, the type of each enumerator
17606           //   is the type of its initializing value:
17607           //     - If an initializer is specified for an enumerator, the
17608           //       initializing value has the same type as the expression.
17609           EltTy = Val->getType();
17610         } else {
17611           // C99 6.7.2.2p2:
17612           //   The expression that defines the value of an enumeration constant
17613           //   shall be an integer constant expression that has a value
17614           //   representable as an int.
17615 
17616           // Complain if the value is not representable in an int.
17617           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
17618             Diag(IdLoc, diag::ext_enum_value_not_int)
17619               << EnumVal.toString(10) << Val->getSourceRange()
17620               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
17621           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
17622             // Force the type of the expression to 'int'.
17623             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
17624           }
17625           EltTy = Val->getType();
17626         }
17627       }
17628     }
17629   }
17630 
17631   if (!Val) {
17632     if (Enum->isDependentType())
17633       EltTy = Context.DependentTy;
17634     else if (!LastEnumConst) {
17635       // C++0x [dcl.enum]p5:
17636       //   If the underlying type is not fixed, the type of each enumerator
17637       //   is the type of its initializing value:
17638       //     - If no initializer is specified for the first enumerator, the
17639       //       initializing value has an unspecified integral type.
17640       //
17641       // GCC uses 'int' for its unspecified integral type, as does
17642       // C99 6.7.2.2p3.
17643       if (Enum->isFixed()) {
17644         EltTy = Enum->getIntegerType();
17645       }
17646       else {
17647         EltTy = Context.IntTy;
17648       }
17649     } else {
17650       // Assign the last value + 1.
17651       EnumVal = LastEnumConst->getInitVal();
17652       ++EnumVal;
17653       EltTy = LastEnumConst->getType();
17654 
17655       // Check for overflow on increment.
17656       if (EnumVal < LastEnumConst->getInitVal()) {
17657         // C++0x [dcl.enum]p5:
17658         //   If the underlying type is not fixed, the type of each enumerator
17659         //   is the type of its initializing value:
17660         //
17661         //     - Otherwise the type of the initializing value is the same as
17662         //       the type of the initializing value of the preceding enumerator
17663         //       unless the incremented value is not representable in that type,
17664         //       in which case the type is an unspecified integral type
17665         //       sufficient to contain the incremented value. If no such type
17666         //       exists, the program is ill-formed.
17667         QualType T = getNextLargerIntegralType(Context, EltTy);
17668         if (T.isNull() || Enum->isFixed()) {
17669           // There is no integral type larger enough to represent this
17670           // value. Complain, then allow the value to wrap around.
17671           EnumVal = LastEnumConst->getInitVal();
17672           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
17673           ++EnumVal;
17674           if (Enum->isFixed())
17675             // When the underlying type is fixed, this is ill-formed.
17676             Diag(IdLoc, diag::err_enumerator_wrapped)
17677               << EnumVal.toString(10)
17678               << EltTy;
17679           else
17680             Diag(IdLoc, diag::ext_enumerator_increment_too_large)
17681               << EnumVal.toString(10);
17682         } else {
17683           EltTy = T;
17684         }
17685 
17686         // Retrieve the last enumerator's value, extent that type to the
17687         // type that is supposed to be large enough to represent the incremented
17688         // value, then increment.
17689         EnumVal = LastEnumConst->getInitVal();
17690         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
17691         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
17692         ++EnumVal;
17693 
17694         // If we're not in C++, diagnose the overflow of enumerator values,
17695         // which in C99 means that the enumerator value is not representable in
17696         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
17697         // permits enumerator values that are representable in some larger
17698         // integral type.
17699         if (!getLangOpts().CPlusPlus && !T.isNull())
17700           Diag(IdLoc, diag::warn_enum_value_overflow);
17701       } else if (!getLangOpts().CPlusPlus &&
17702                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
17703         // Enforce C99 6.7.2.2p2 even when we compute the next value.
17704         Diag(IdLoc, diag::ext_enum_value_not_int)
17705           << EnumVal.toString(10) << 1;
17706       }
17707     }
17708   }
17709 
17710   if (!EltTy->isDependentType()) {
17711     // Make the enumerator value match the signedness and size of the
17712     // enumerator's type.
17713     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
17714     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
17715   }
17716 
17717   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
17718                                   Val, EnumVal);
17719 }
17720 
shouldSkipAnonEnumBody(Scope * S,IdentifierInfo * II,SourceLocation IILoc)17721 Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
17722                                                 SourceLocation IILoc) {
17723   if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
17724       !getLangOpts().CPlusPlus)
17725     return SkipBodyInfo();
17726 
17727   // We have an anonymous enum definition. Look up the first enumerator to
17728   // determine if we should merge the definition with an existing one and
17729   // skip the body.
17730   NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
17731                                          forRedeclarationInCurContext());
17732   auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
17733   if (!PrevECD)
17734     return SkipBodyInfo();
17735 
17736   EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
17737   NamedDecl *Hidden;
17738   if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
17739     SkipBodyInfo Skip;
17740     Skip.Previous = Hidden;
17741     return Skip;
17742   }
17743 
17744   return SkipBodyInfo();
17745 }
17746 
ActOnEnumConstant(Scope * S,Decl * theEnumDecl,Decl * lastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,const ParsedAttributesView & Attrs,SourceLocation EqualLoc,Expr * Val)17747 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
17748                               SourceLocation IdLoc, IdentifierInfo *Id,
17749                               const ParsedAttributesView &Attrs,
17750                               SourceLocation EqualLoc, Expr *Val) {
17751   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
17752   EnumConstantDecl *LastEnumConst =
17753     cast_or_null<EnumConstantDecl>(lastEnumConst);
17754 
17755   // The scope passed in may not be a decl scope.  Zip up the scope tree until
17756   // we find one that is.
17757   S = getNonFieldDeclScope(S);
17758 
17759   // Verify that there isn't already something declared with this name in this
17760   // scope.
17761   LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration);
17762   LookupName(R, S);
17763   NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>();
17764 
17765   if (PrevDecl && PrevDecl->isTemplateParameter()) {
17766     // Maybe we will complain about the shadowed template parameter.
17767     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
17768     // Just pretend that we didn't see the previous declaration.
17769     PrevDecl = nullptr;
17770   }
17771 
17772   // C++ [class.mem]p15:
17773   // If T is the name of a class, then each of the following shall have a name
17774   // different from T:
17775   // - every enumerator of every member of class T that is an unscoped
17776   // enumerated type
17777   if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped())
17778     DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
17779                             DeclarationNameInfo(Id, IdLoc));
17780 
17781   EnumConstantDecl *New =
17782     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
17783   if (!New)
17784     return nullptr;
17785 
17786   if (PrevDecl) {
17787     if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) {
17788       // Check for other kinds of shadowing not already handled.
17789       CheckShadow(New, PrevDecl, R);
17790     }
17791 
17792     // When in C++, we may get a TagDecl with the same name; in this case the
17793     // enum constant will 'hide' the tag.
17794     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
17795            "Received TagDecl when not in C++!");
17796     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
17797       if (isa<EnumConstantDecl>(PrevDecl))
17798         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
17799       else
17800         Diag(IdLoc, diag::err_redefinition) << Id;
17801       notePreviousDefinition(PrevDecl, IdLoc);
17802       return nullptr;
17803     }
17804   }
17805 
17806   // Process attributes.
17807   ProcessDeclAttributeList(S, New, Attrs);
17808   AddPragmaAttributes(S, New);
17809 
17810   // Register this decl in the current scope stack.
17811   New->setAccess(TheEnumDecl->getAccess());
17812   PushOnScopeChains(New, S);
17813 
17814   ActOnDocumentableDecl(New);
17815 
17816   return New;
17817 }
17818 
17819 // Returns true when the enum initial expression does not trigger the
17820 // duplicate enum warning.  A few common cases are exempted as follows:
17821 // Element2 = Element1
17822 // Element2 = Element1 + 1
17823 // Element2 = Element1 - 1
17824 // Where Element2 and Element1 are from the same enum.
ValidDuplicateEnum(EnumConstantDecl * ECD,EnumDecl * Enum)17825 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
17826   Expr *InitExpr = ECD->getInitExpr();
17827   if (!InitExpr)
17828     return true;
17829   InitExpr = InitExpr->IgnoreImpCasts();
17830 
17831   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
17832     if (!BO->isAdditiveOp())
17833       return true;
17834     IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
17835     if (!IL)
17836       return true;
17837     if (IL->getValue() != 1)
17838       return true;
17839 
17840     InitExpr = BO->getLHS();
17841   }
17842 
17843   // This checks if the elements are from the same enum.
17844   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
17845   if (!DRE)
17846     return true;
17847 
17848   EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
17849   if (!EnumConstant)
17850     return true;
17851 
17852   if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
17853       Enum)
17854     return true;
17855 
17856   return false;
17857 }
17858 
17859 // Emits a warning when an element is implicitly set a value that
17860 // a previous element has already been set to.
CheckForDuplicateEnumValues(Sema & S,ArrayRef<Decl * > Elements,EnumDecl * Enum,QualType EnumType)17861 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
17862                                         EnumDecl *Enum, QualType EnumType) {
17863   // Avoid anonymous enums
17864   if (!Enum->getIdentifier())
17865     return;
17866 
17867   // Only check for small enums.
17868   if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
17869     return;
17870 
17871   if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
17872     return;
17873 
17874   typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
17875   typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector;
17876 
17877   typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
17878 
17879   // DenseMaps cannot contain the all ones int64_t value, so use unordered_map.
17880   typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap;
17881 
17882   // Use int64_t as a key to avoid needing special handling for map keys.
17883   auto EnumConstantToKey = [](const EnumConstantDecl *D) {
17884     llvm::APSInt Val = D->getInitVal();
17885     return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue();
17886   };
17887 
17888   DuplicatesVector DupVector;
17889   ValueToVectorMap EnumMap;
17890 
17891   // Populate the EnumMap with all values represented by enum constants without
17892   // an initializer.
17893   for (auto *Element : Elements) {
17894     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element);
17895 
17896     // Null EnumConstantDecl means a previous diagnostic has been emitted for
17897     // this constant.  Skip this enum since it may be ill-formed.
17898     if (!ECD) {
17899       return;
17900     }
17901 
17902     // Constants with initalizers are handled in the next loop.
17903     if (ECD->getInitExpr())
17904       continue;
17905 
17906     // Duplicate values are handled in the next loop.
17907     EnumMap.insert({EnumConstantToKey(ECD), ECD});
17908   }
17909 
17910   if (EnumMap.size() == 0)
17911     return;
17912 
17913   // Create vectors for any values that has duplicates.
17914   for (auto *Element : Elements) {
17915     // The last loop returned if any constant was null.
17916     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element);
17917     if (!ValidDuplicateEnum(ECD, Enum))
17918       continue;
17919 
17920     auto Iter = EnumMap.find(EnumConstantToKey(ECD));
17921     if (Iter == EnumMap.end())
17922       continue;
17923 
17924     DeclOrVector& Entry = Iter->second;
17925     if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
17926       // Ensure constants are different.
17927       if (D == ECD)
17928         continue;
17929 
17930       // Create new vector and push values onto it.
17931       auto Vec = std::make_unique<ECDVector>();
17932       Vec->push_back(D);
17933       Vec->push_back(ECD);
17934 
17935       // Update entry to point to the duplicates vector.
17936       Entry = Vec.get();
17937 
17938       // Store the vector somewhere we can consult later for quick emission of
17939       // diagnostics.
17940       DupVector.emplace_back(std::move(Vec));
17941       continue;
17942     }
17943 
17944     ECDVector *Vec = Entry.get<ECDVector*>();
17945     // Make sure constants are not added more than once.
17946     if (*Vec->begin() == ECD)
17947       continue;
17948 
17949     Vec->push_back(ECD);
17950   }
17951 
17952   // Emit diagnostics.
17953   for (const auto &Vec : DupVector) {
17954     assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
17955 
17956     // Emit warning for one enum constant.
17957     auto *FirstECD = Vec->front();
17958     S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values)
17959       << FirstECD << FirstECD->getInitVal().toString(10)
17960       << FirstECD->getSourceRange();
17961 
17962     // Emit one note for each of the remaining enum constants with
17963     // the same value.
17964     for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end()))
17965       S.Diag(ECD->getLocation(), diag::note_duplicate_element)
17966         << ECD << ECD->getInitVal().toString(10)
17967         << ECD->getSourceRange();
17968   }
17969 }
17970 
IsValueInFlagEnum(const EnumDecl * ED,const llvm::APInt & Val,bool AllowMask) const17971 bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
17972                              bool AllowMask) const {
17973   assert(ED->isClosedFlag() && "looking for value in non-flag or open enum");
17974   assert(ED->isCompleteDefinition() && "expected enum definition");
17975 
17976   auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
17977   llvm::APInt &FlagBits = R.first->second;
17978 
17979   if (R.second) {
17980     for (auto *E : ED->enumerators()) {
17981       const auto &EVal = E->getInitVal();
17982       // Only single-bit enumerators introduce new flag values.
17983       if (EVal.isPowerOf2())
17984         FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal;
17985     }
17986   }
17987 
17988   // A value is in a flag enum if either its bits are a subset of the enum's
17989   // flag bits (the first condition) or we are allowing masks and the same is
17990   // true of its complement (the second condition). When masks are allowed, we
17991   // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
17992   //
17993   // While it's true that any value could be used as a mask, the assumption is
17994   // that a mask will have all of the insignificant bits set. Anything else is
17995   // likely a logic error.
17996   llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
17997   return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
17998 }
17999 
ActOnEnumBody(SourceLocation EnumLoc,SourceRange BraceRange,Decl * EnumDeclX,ArrayRef<Decl * > Elements,Scope * S,const ParsedAttributesView & Attrs)18000 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
18001                          Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S,
18002                          const ParsedAttributesView &Attrs) {
18003   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
18004   QualType EnumType = Context.getTypeDeclType(Enum);
18005 
18006   ProcessDeclAttributeList(S, Enum, Attrs);
18007 
18008   if (Enum->isDependentType()) {
18009     for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
18010       EnumConstantDecl *ECD =
18011         cast_or_null<EnumConstantDecl>(Elements[i]);
18012       if (!ECD) continue;
18013 
18014       ECD->setType(EnumType);
18015     }
18016 
18017     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
18018     return;
18019   }
18020 
18021   // TODO: If the result value doesn't fit in an int, it must be a long or long
18022   // long value.  ISO C does not support this, but GCC does as an extension,
18023   // emit a warning.
18024   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
18025   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
18026   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
18027 
18028   // Verify that all the values are okay, compute the size of the values, and
18029   // reverse the list.
18030   unsigned NumNegativeBits = 0;
18031   unsigned NumPositiveBits = 0;
18032 
18033   // Keep track of whether all elements have type int.
18034   bool AllElementsInt = true;
18035 
18036   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
18037     EnumConstantDecl *ECD =
18038       cast_or_null<EnumConstantDecl>(Elements[i]);
18039     if (!ECD) continue;  // Already issued a diagnostic.
18040 
18041     const llvm::APSInt &InitVal = ECD->getInitVal();
18042 
18043     // Keep track of the size of positive and negative values.
18044     if (InitVal.isUnsigned() || InitVal.isNonNegative())
18045       NumPositiveBits = std::max(NumPositiveBits,
18046                                  (unsigned)InitVal.getActiveBits());
18047     else
18048       NumNegativeBits = std::max(NumNegativeBits,
18049                                  (unsigned)InitVal.getMinSignedBits());
18050 
18051     // Keep track of whether every enum element has type int (very common).
18052     if (AllElementsInt)
18053       AllElementsInt = ECD->getType() == Context.IntTy;
18054   }
18055 
18056   // Figure out the type that should be used for this enum.
18057   QualType BestType;
18058   unsigned BestWidth;
18059 
18060   // C++0x N3000 [conv.prom]p3:
18061   //   An rvalue of an unscoped enumeration type whose underlying
18062   //   type is not fixed can be converted to an rvalue of the first
18063   //   of the following types that can represent all the values of
18064   //   the enumeration: int, unsigned int, long int, unsigned long
18065   //   int, long long int, or unsigned long long int.
18066   // C99 6.4.4.3p2:
18067   //   An identifier declared as an enumeration constant has type int.
18068   // The C99 rule is modified by a gcc extension
18069   QualType BestPromotionType;
18070 
18071   bool Packed = Enum->hasAttr<PackedAttr>();
18072   // -fshort-enums is the equivalent to specifying the packed attribute on all
18073   // enum definitions.
18074   if (LangOpts.ShortEnums)
18075     Packed = true;
18076 
18077   // If the enum already has a type because it is fixed or dictated by the
18078   // target, promote that type instead of analyzing the enumerators.
18079   if (Enum->isComplete()) {
18080     BestType = Enum->getIntegerType();
18081     if (BestType->isPromotableIntegerType())
18082       BestPromotionType = Context.getPromotedIntegerType(BestType);
18083     else
18084       BestPromotionType = BestType;
18085 
18086     BestWidth = Context.getIntWidth(BestType);
18087   }
18088   else if (NumNegativeBits) {
18089     // If there is a negative value, figure out the smallest integer type (of
18090     // int/long/longlong) that fits.
18091     // If it's packed, check also if it fits a char or a short.
18092     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
18093       BestType = Context.SignedCharTy;
18094       BestWidth = CharWidth;
18095     } else if (Packed && NumNegativeBits <= ShortWidth &&
18096                NumPositiveBits < ShortWidth) {
18097       BestType = Context.ShortTy;
18098       BestWidth = ShortWidth;
18099     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
18100       BestType = Context.IntTy;
18101       BestWidth = IntWidth;
18102     } else {
18103       BestWidth = Context.getTargetInfo().getLongWidth();
18104 
18105       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
18106         BestType = Context.LongTy;
18107       } else {
18108         BestWidth = Context.getTargetInfo().getLongLongWidth();
18109 
18110         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
18111           Diag(Enum->getLocation(), diag::ext_enum_too_large);
18112         BestType = Context.LongLongTy;
18113       }
18114     }
18115     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
18116   } else {
18117     // If there is no negative value, figure out the smallest type that fits
18118     // all of the enumerator values.
18119     // If it's packed, check also if it fits a char or a short.
18120     if (Packed && NumPositiveBits <= CharWidth) {
18121       BestType = Context.UnsignedCharTy;
18122       BestPromotionType = Context.IntTy;
18123       BestWidth = CharWidth;
18124     } else if (Packed && NumPositiveBits <= ShortWidth) {
18125       BestType = Context.UnsignedShortTy;
18126       BestPromotionType = Context.IntTy;
18127       BestWidth = ShortWidth;
18128     } else if (NumPositiveBits <= IntWidth) {
18129       BestType = Context.UnsignedIntTy;
18130       BestWidth = IntWidth;
18131       BestPromotionType
18132         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
18133                            ? Context.UnsignedIntTy : Context.IntTy;
18134     } else if (NumPositiveBits <=
18135                (BestWidth = Context.getTargetInfo().getLongWidth())) {
18136       BestType = Context.UnsignedLongTy;
18137       BestPromotionType
18138         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
18139                            ? Context.UnsignedLongTy : Context.LongTy;
18140     } else {
18141       BestWidth = Context.getTargetInfo().getLongLongWidth();
18142       assert(NumPositiveBits <= BestWidth &&
18143              "How could an initializer get larger than ULL?");
18144       BestType = Context.UnsignedLongLongTy;
18145       BestPromotionType
18146         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
18147                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
18148     }
18149   }
18150 
18151   // Loop over all of the enumerator constants, changing their types to match
18152   // the type of the enum if needed.
18153   for (auto *D : Elements) {
18154     auto *ECD = cast_or_null<EnumConstantDecl>(D);
18155     if (!ECD) continue;  // Already issued a diagnostic.
18156 
18157     // Standard C says the enumerators have int type, but we allow, as an
18158     // extension, the enumerators to be larger than int size.  If each
18159     // enumerator value fits in an int, type it as an int, otherwise type it the
18160     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
18161     // that X has type 'int', not 'unsigned'.
18162 
18163     // Determine whether the value fits into an int.
18164     llvm::APSInt InitVal = ECD->getInitVal();
18165 
18166     // If it fits into an integer type, force it.  Otherwise force it to match
18167     // the enum decl type.
18168     QualType NewTy;
18169     unsigned NewWidth;
18170     bool NewSign;
18171     if (!getLangOpts().CPlusPlus &&
18172         !Enum->isFixed() &&
18173         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
18174       NewTy = Context.IntTy;
18175       NewWidth = IntWidth;
18176       NewSign = true;
18177     } else if (ECD->getType() == BestType) {
18178       // Already the right type!
18179       if (getLangOpts().CPlusPlus)
18180         // C++ [dcl.enum]p4: Following the closing brace of an
18181         // enum-specifier, each enumerator has the type of its
18182         // enumeration.
18183         ECD->setType(EnumType);
18184       continue;
18185     } else {
18186       NewTy = BestType;
18187       NewWidth = BestWidth;
18188       NewSign = BestType->isSignedIntegerOrEnumerationType();
18189     }
18190 
18191     // Adjust the APSInt value.
18192     InitVal = InitVal.extOrTrunc(NewWidth);
18193     InitVal.setIsSigned(NewSign);
18194     ECD->setInitVal(InitVal);
18195 
18196     // Adjust the Expr initializer and type.
18197     if (ECD->getInitExpr() &&
18198         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
18199       ECD->setInitExpr(ImplicitCastExpr::Create(
18200           Context, NewTy, CK_IntegralCast, ECD->getInitExpr(),
18201           /*base paths*/ nullptr, VK_RValue, FPOptionsOverride()));
18202     if (getLangOpts().CPlusPlus)
18203       // C++ [dcl.enum]p4: Following the closing brace of an
18204       // enum-specifier, each enumerator has the type of its
18205       // enumeration.
18206       ECD->setType(EnumType);
18207     else
18208       ECD->setType(NewTy);
18209   }
18210 
18211   Enum->completeDefinition(BestType, BestPromotionType,
18212                            NumPositiveBits, NumNegativeBits);
18213 
18214   CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
18215 
18216   if (Enum->isClosedFlag()) {
18217     for (Decl *D : Elements) {
18218       EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
18219       if (!ECD) continue;  // Already issued a diagnostic.
18220 
18221       llvm::APSInt InitVal = ECD->getInitVal();
18222       if (InitVal != 0 && !InitVal.isPowerOf2() &&
18223           !IsValueInFlagEnum(Enum, InitVal, true))
18224         Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
18225           << ECD << Enum;
18226     }
18227   }
18228 
18229   // Now that the enum type is defined, ensure it's not been underaligned.
18230   if (Enum->hasAttrs())
18231     CheckAlignasUnderalignment(Enum);
18232 }
18233 
ActOnFileScopeAsmDecl(Expr * expr,SourceLocation StartLoc,SourceLocation EndLoc)18234 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
18235                                   SourceLocation StartLoc,
18236                                   SourceLocation EndLoc) {
18237   StringLiteral *AsmString = cast<StringLiteral>(expr);
18238 
18239   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
18240                                                    AsmString, StartLoc,
18241                                                    EndLoc);
18242   CurContext->addDecl(New);
18243   return New;
18244 }
18245 
ActOnPragmaRedefineExtname(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)18246 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
18247                                       IdentifierInfo* AliasName,
18248                                       SourceLocation PragmaLoc,
18249                                       SourceLocation NameLoc,
18250                                       SourceLocation AliasNameLoc) {
18251   NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
18252                                          LookupOrdinaryName);
18253   AttributeCommonInfo Info(AliasName, SourceRange(AliasNameLoc),
18254                            AttributeCommonInfo::AS_Pragma);
18255   AsmLabelAttr *Attr = AsmLabelAttr::CreateImplicit(
18256       Context, AliasName->getName(), /*LiteralLabel=*/true, Info);
18257 
18258   // If a declaration that:
18259   // 1) declares a function or a variable
18260   // 2) has external linkage
18261   // already exists, add a label attribute to it.
18262   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
18263     if (isDeclExternC(PrevDecl))
18264       PrevDecl->addAttr(Attr);
18265     else
18266       Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
18267           << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
18268   // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers.
18269   } else
18270     (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
18271 }
18272 
ActOnPragmaWeakID(IdentifierInfo * Name,SourceLocation PragmaLoc,SourceLocation NameLoc)18273 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
18274                              SourceLocation PragmaLoc,
18275                              SourceLocation NameLoc) {
18276   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
18277 
18278   if (PrevDecl) {
18279     PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc, AttributeCommonInfo::AS_Pragma));
18280   } else {
18281     (void)WeakUndeclaredIdentifiers.insert(
18282       std::pair<IdentifierInfo*,WeakInfo>
18283         (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
18284   }
18285 }
18286 
ActOnPragmaWeakAlias(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)18287 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
18288                                 IdentifierInfo* AliasName,
18289                                 SourceLocation PragmaLoc,
18290                                 SourceLocation NameLoc,
18291                                 SourceLocation AliasNameLoc) {
18292   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
18293                                     LookupOrdinaryName);
18294   WeakInfo W = WeakInfo(Name, NameLoc);
18295 
18296   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
18297     if (!PrevDecl->hasAttr<AliasAttr>())
18298       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
18299         DeclApplyPragmaWeak(TUScope, ND, W);
18300   } else {
18301     (void)WeakUndeclaredIdentifiers.insert(
18302       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
18303   }
18304 }
18305 
getObjCDeclContext() const18306 Decl *Sema::getObjCDeclContext() const {
18307   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
18308 }
18309 
getEmissionStatus(FunctionDecl * FD,bool Final)18310 Sema::FunctionEmissionStatus Sema::getEmissionStatus(FunctionDecl *FD,
18311                                                      bool Final) {
18312   // SYCL functions can be template, so we check if they have appropriate
18313   // attribute prior to checking if it is a template.
18314   if (LangOpts.SYCLIsDevice && FD->hasAttr<SYCLKernelAttr>())
18315     return FunctionEmissionStatus::Emitted;
18316 
18317   // Templates are emitted when they're instantiated.
18318   if (FD->isDependentContext())
18319     return FunctionEmissionStatus::TemplateDiscarded;
18320 
18321   FunctionEmissionStatus OMPES = FunctionEmissionStatus::Unknown;
18322   if (LangOpts.OpenMPIsDevice) {
18323     Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
18324         OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
18325     if (DevTy.hasValue()) {
18326       if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host)
18327         OMPES = FunctionEmissionStatus::OMPDiscarded;
18328       else if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost ||
18329                *DevTy == OMPDeclareTargetDeclAttr::DT_Any) {
18330         OMPES = FunctionEmissionStatus::Emitted;
18331       }
18332     }
18333   } else if (LangOpts.OpenMP) {
18334     // In OpenMP 4.5 all the functions are host functions.
18335     if (LangOpts.OpenMP <= 45) {
18336       OMPES = FunctionEmissionStatus::Emitted;
18337     } else {
18338       Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
18339           OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
18340       // In OpenMP 5.0 or above, DevTy may be changed later by
18341       // #pragma omp declare target to(*) device_type(*). Therefore DevTy
18342       // having no value does not imply host. The emission status will be
18343       // checked again at the end of compilation unit.
18344       if (DevTy.hasValue()) {
18345         if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost) {
18346           OMPES = FunctionEmissionStatus::OMPDiscarded;
18347         } else if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host ||
18348                    *DevTy == OMPDeclareTargetDeclAttr::DT_Any)
18349           OMPES = FunctionEmissionStatus::Emitted;
18350       } else if (Final)
18351         OMPES = FunctionEmissionStatus::Emitted;
18352     }
18353   }
18354   if (OMPES == FunctionEmissionStatus::OMPDiscarded ||
18355       (OMPES == FunctionEmissionStatus::Emitted && !LangOpts.CUDA))
18356     return OMPES;
18357 
18358   if (LangOpts.CUDA) {
18359     // When compiling for device, host functions are never emitted.  Similarly,
18360     // when compiling for host, device and global functions are never emitted.
18361     // (Technically, we do emit a host-side stub for global functions, but this
18362     // doesn't count for our purposes here.)
18363     Sema::CUDAFunctionTarget T = IdentifyCUDATarget(FD);
18364     if (LangOpts.CUDAIsDevice && T == Sema::CFT_Host)
18365       return FunctionEmissionStatus::CUDADiscarded;
18366     if (!LangOpts.CUDAIsDevice &&
18367         (T == Sema::CFT_Device || T == Sema::CFT_Global))
18368       return FunctionEmissionStatus::CUDADiscarded;
18369 
18370     // Check whether this function is externally visible -- if so, it's
18371     // known-emitted.
18372     //
18373     // We have to check the GVA linkage of the function's *definition* -- if we
18374     // only have a declaration, we don't know whether or not the function will
18375     // be emitted, because (say) the definition could include "inline".
18376     FunctionDecl *Def = FD->getDefinition();
18377 
18378     if (Def &&
18379         !isDiscardableGVALinkage(getASTContext().GetGVALinkageForFunction(Def))
18380         && (!LangOpts.OpenMP || OMPES == FunctionEmissionStatus::Emitted))
18381       return FunctionEmissionStatus::Emitted;
18382   }
18383 
18384   // Otherwise, the function is known-emitted if it's in our set of
18385   // known-emitted functions.
18386   return FunctionEmissionStatus::Unknown;
18387 }
18388 
shouldIgnoreInHostDeviceCheck(FunctionDecl * Callee)18389 bool Sema::shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee) {
18390   // Host-side references to a __global__ function refer to the stub, so the
18391   // function itself is never emitted and therefore should not be marked.
18392   // If we have host fn calls kernel fn calls host+device, the HD function
18393   // does not get instantiated on the host. We model this by omitting at the
18394   // call to the kernel from the callgraph. This ensures that, when compiling
18395   // for host, only HD functions actually called from the host get marked as
18396   // known-emitted.
18397   return LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
18398          IdentifyCUDATarget(Callee) == CFT_Global;
18399 }
18400