• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18 #define ART_COMPILER_OPTIMIZING_NODES_H_
19 
20 #include <algorithm>
21 #include <array>
22 #include <type_traits>
23 
24 #include "base/arena_allocator.h"
25 #include "base/arena_bit_vector.h"
26 #include "base/arena_containers.h"
27 #include "base/arena_object.h"
28 #include "base/array_ref.h"
29 #include "base/intrusive_forward_list.h"
30 #include "base/iteration_range.h"
31 #include "base/mutex.h"
32 #include "base/quasi_atomic.h"
33 #include "base/stl_util.h"
34 #include "base/transform_array_ref.h"
35 #include "art_method.h"
36 #include "block_namer.h"
37 #include "class_root.h"
38 #include "compilation_kind.h"
39 #include "data_type.h"
40 #include "deoptimization_kind.h"
41 #include "dex/dex_file.h"
42 #include "dex/dex_file_types.h"
43 #include "dex/invoke_type.h"
44 #include "dex/method_reference.h"
45 #include "entrypoints/quick/quick_entrypoints_enum.h"
46 #include "handle.h"
47 #include "handle_scope.h"
48 #include "intrinsics_enum.h"
49 #include "locations.h"
50 #include "mirror/class.h"
51 #include "mirror/method_type.h"
52 #include "offsets.h"
53 
54 namespace art {
55 
56 class ArenaStack;
57 class GraphChecker;
58 class HBasicBlock;
59 class HConstructorFence;
60 class HCurrentMethod;
61 class HDoubleConstant;
62 class HEnvironment;
63 class HFloatConstant;
64 class HGraphBuilder;
65 class HGraphVisitor;
66 class HInstruction;
67 class HIntConstant;
68 class HInvoke;
69 class HLongConstant;
70 class HNullConstant;
71 class HParameterValue;
72 class HPhi;
73 class HSuspendCheck;
74 class HTryBoundary;
75 class FieldInfo;
76 class LiveInterval;
77 class LocationSummary;
78 class SlowPathCode;
79 class SsaBuilder;
80 
81 namespace mirror {
82 class DexCache;
83 }  // namespace mirror
84 
85 static const int kDefaultNumberOfBlocks = 8;
86 static const int kDefaultNumberOfSuccessors = 2;
87 static const int kDefaultNumberOfPredecessors = 2;
88 static const int kDefaultNumberOfExceptionalPredecessors = 0;
89 static const int kDefaultNumberOfDominatedBlocks = 1;
90 static const int kDefaultNumberOfBackEdges = 1;
91 
92 // The maximum (meaningful) distance (31) that can be used in an integer shift/rotate operation.
93 static constexpr int32_t kMaxIntShiftDistance = 0x1f;
94 // The maximum (meaningful) distance (63) that can be used in a long shift/rotate operation.
95 static constexpr int32_t kMaxLongShiftDistance = 0x3f;
96 
97 static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
98 static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1);
99 
100 static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
101 
102 static constexpr uint32_t kNoDexPc = -1;
103 
IsSameDexFile(const DexFile & lhs,const DexFile & rhs)104 inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) {
105   // For the purposes of the compiler, the dex files must actually be the same object
106   // if we want to safely treat them as the same. This is especially important for JIT
107   // as custom class loaders can open the same underlying file (or memory) multiple
108   // times and provide different class resolution but no two class loaders should ever
109   // use the same DexFile object - doing so is an unsupported hack that can lead to
110   // all sorts of weird failures.
111   return &lhs == &rhs;
112 }
113 
114 enum IfCondition {
115   // All types.
116   kCondEQ,  // ==
117   kCondNE,  // !=
118   // Signed integers and floating-point numbers.
119   kCondLT,  // <
120   kCondLE,  // <=
121   kCondGT,  // >
122   kCondGE,  // >=
123   // Unsigned integers.
124   kCondB,   // <
125   kCondBE,  // <=
126   kCondA,   // >
127   kCondAE,  // >=
128   // First and last aliases.
129   kCondFirst = kCondEQ,
130   kCondLast = kCondAE,
131 };
132 
133 enum GraphAnalysisResult {
134   kAnalysisSkipped,
135   kAnalysisInvalidBytecode,
136   kAnalysisFailThrowCatchLoop,
137   kAnalysisFailAmbiguousArrayOp,
138   kAnalysisFailIrreducibleLoopAndStringInit,
139   kAnalysisFailPhiEquivalentInOsr,
140   kAnalysisSuccess,
141 };
142 
143 template <typename T>
MakeUnsigned(T x)144 static inline typename std::make_unsigned<T>::type MakeUnsigned(T x) {
145   return static_cast<typename std::make_unsigned<T>::type>(x);
146 }
147 
148 class HInstructionList : public ValueObject {
149  public:
HInstructionList()150   HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
151 
152   void AddInstruction(HInstruction* instruction);
153   void RemoveInstruction(HInstruction* instruction);
154 
155   // Insert `instruction` before/after an existing instruction `cursor`.
156   void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
157   void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
158 
159   // Return true if this list contains `instruction`.
160   bool Contains(HInstruction* instruction) const;
161 
162   // Return true if `instruction1` is found before `instruction2` in
163   // this instruction list and false otherwise.  Abort if none
164   // of these instructions is found.
165   bool FoundBefore(const HInstruction* instruction1,
166                    const HInstruction* instruction2) const;
167 
IsEmpty()168   bool IsEmpty() const { return first_instruction_ == nullptr; }
Clear()169   void Clear() { first_instruction_ = last_instruction_ = nullptr; }
170 
171   // Update the block of all instructions to be `block`.
172   void SetBlockOfInstructions(HBasicBlock* block) const;
173 
174   void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
175   void AddBefore(HInstruction* cursor, const HInstructionList& instruction_list);
176   void Add(const HInstructionList& instruction_list);
177 
178   // Return the number of instructions in the list. This is an expensive operation.
179   size_t CountSize() const;
180 
181  private:
182   HInstruction* first_instruction_;
183   HInstruction* last_instruction_;
184 
185   friend class HBasicBlock;
186   friend class HGraph;
187   friend class HInstruction;
188   friend class HInstructionIterator;
189   friend class HInstructionIteratorHandleChanges;
190   friend class HBackwardInstructionIterator;
191 
192   DISALLOW_COPY_AND_ASSIGN(HInstructionList);
193 };
194 
195 class ReferenceTypeInfo : ValueObject {
196  public:
197   typedef Handle<mirror::Class> TypeHandle;
198 
199   static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact);
200 
Create(TypeHandle type_handle)201   static ReferenceTypeInfo Create(TypeHandle type_handle) REQUIRES_SHARED(Locks::mutator_lock_) {
202     return Create(type_handle, type_handle->CannotBeAssignedFromOtherTypes());
203   }
204 
CreateUnchecked(TypeHandle type_handle,bool is_exact)205   static ReferenceTypeInfo CreateUnchecked(TypeHandle type_handle, bool is_exact) {
206     return ReferenceTypeInfo(type_handle, is_exact);
207   }
208 
CreateInvalid()209   static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); }
210 
IsValidHandle(TypeHandle handle)211   static bool IsValidHandle(TypeHandle handle) {
212     return handle.GetReference() != nullptr;
213   }
214 
IsValid()215   bool IsValid() const {
216     return IsValidHandle(type_handle_);
217   }
218 
IsExact()219   bool IsExact() const { return is_exact_; }
220 
IsObjectClass()221   bool IsObjectClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
222     DCHECK(IsValid());
223     return GetTypeHandle()->IsObjectClass();
224   }
225 
IsStringClass()226   bool IsStringClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
227     DCHECK(IsValid());
228     return GetTypeHandle()->IsStringClass();
229   }
230 
IsObjectArray()231   bool IsObjectArray() const REQUIRES_SHARED(Locks::mutator_lock_) {
232     DCHECK(IsValid());
233     return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass();
234   }
235 
IsInterface()236   bool IsInterface() const REQUIRES_SHARED(Locks::mutator_lock_) {
237     DCHECK(IsValid());
238     return GetTypeHandle()->IsInterface();
239   }
240 
IsArrayClass()241   bool IsArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
242     DCHECK(IsValid());
243     return GetTypeHandle()->IsArrayClass();
244   }
245 
IsPrimitiveArrayClass()246   bool IsPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
247     DCHECK(IsValid());
248     return GetTypeHandle()->IsPrimitiveArray();
249   }
250 
IsNonPrimitiveArrayClass()251   bool IsNonPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
252     DCHECK(IsValid());
253     return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray();
254   }
255 
CanArrayHold(ReferenceTypeInfo rti)256   bool CanArrayHold(ReferenceTypeInfo rti)  const REQUIRES_SHARED(Locks::mutator_lock_) {
257     DCHECK(IsValid());
258     if (!IsExact()) return false;
259     if (!IsArrayClass()) return false;
260     return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get());
261   }
262 
CanArrayHoldValuesOf(ReferenceTypeInfo rti)263   bool CanArrayHoldValuesOf(ReferenceTypeInfo rti)  const REQUIRES_SHARED(Locks::mutator_lock_) {
264     DCHECK(IsValid());
265     if (!IsExact()) return false;
266     if (!IsArrayClass()) return false;
267     if (!rti.IsArrayClass()) return false;
268     return GetTypeHandle()->GetComponentType()->IsAssignableFrom(
269         rti.GetTypeHandle()->GetComponentType());
270   }
271 
GetTypeHandle()272   Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
273 
IsSupertypeOf(ReferenceTypeInfo rti)274   bool IsSupertypeOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
275     DCHECK(IsValid());
276     DCHECK(rti.IsValid());
277     return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
278   }
279 
280   // Returns true if the type information provide the same amount of details.
281   // Note that it does not mean that the instructions have the same actual type
282   // (because the type can be the result of a merge).
IsEqual(ReferenceTypeInfo rti)283   bool IsEqual(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
284     if (!IsValid() && !rti.IsValid()) {
285       // Invalid types are equal.
286       return true;
287     }
288     if (!IsValid() || !rti.IsValid()) {
289       // One is valid, the other not.
290       return false;
291     }
292     return IsExact() == rti.IsExact()
293         && GetTypeHandle().Get() == rti.GetTypeHandle().Get();
294   }
295 
296  private:
ReferenceTypeInfo()297   ReferenceTypeInfo() : type_handle_(TypeHandle()), is_exact_(false) {}
ReferenceTypeInfo(TypeHandle type_handle,bool is_exact)298   ReferenceTypeInfo(TypeHandle type_handle, bool is_exact)
299       : type_handle_(type_handle), is_exact_(is_exact) { }
300 
301   // The class of the object.
302   TypeHandle type_handle_;
303   // Whether or not the type is exact or a superclass of the actual type.
304   // Whether or not we have any information about this type.
305   bool is_exact_;
306 };
307 
308 std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
309 
310 class HandleCache {
311  public:
HandleCache(VariableSizedHandleScope * handles)312   explicit HandleCache(VariableSizedHandleScope* handles) : handles_(handles) { }
313 
GetHandles()314   VariableSizedHandleScope* GetHandles() { return handles_; }
315 
316   template <typename T>
NewHandle(T * object)317   MutableHandle<T> NewHandle(T* object) REQUIRES_SHARED(Locks::mutator_lock_) {
318     return handles_->NewHandle(object);
319   }
320 
321   template <typename T>
NewHandle(ObjPtr<T> object)322   MutableHandle<T> NewHandle(ObjPtr<T> object) REQUIRES_SHARED(Locks::mutator_lock_) {
323     return handles_->NewHandle(object);
324   }
325 
GetObjectClassHandle()326   ReferenceTypeInfo::TypeHandle GetObjectClassHandle() {
327     return GetRootHandle(ClassRoot::kJavaLangObject, &object_class_handle_);
328   }
329 
GetClassClassHandle()330   ReferenceTypeInfo::TypeHandle GetClassClassHandle() {
331     return GetRootHandle(ClassRoot::kJavaLangClass, &class_class_handle_);
332   }
333 
GetMethodHandleClassHandle()334   ReferenceTypeInfo::TypeHandle GetMethodHandleClassHandle() {
335     return GetRootHandle(ClassRoot::kJavaLangInvokeMethodHandleImpl, &method_handle_class_handle_);
336   }
337 
GetMethodTypeClassHandle()338   ReferenceTypeInfo::TypeHandle GetMethodTypeClassHandle() {
339     return GetRootHandle(ClassRoot::kJavaLangInvokeMethodType, &method_type_class_handle_);
340   }
341 
GetStringClassHandle()342   ReferenceTypeInfo::TypeHandle GetStringClassHandle() {
343     return GetRootHandle(ClassRoot::kJavaLangString, &string_class_handle_);
344   }
345 
GetThrowableClassHandle()346   ReferenceTypeInfo::TypeHandle GetThrowableClassHandle() {
347     return GetRootHandle(ClassRoot::kJavaLangThrowable, &throwable_class_handle_);
348   }
349 
350 
351  private:
GetRootHandle(ClassRoot class_root,ReferenceTypeInfo::TypeHandle * cache)352   inline ReferenceTypeInfo::TypeHandle GetRootHandle(ClassRoot class_root,
353                                                      ReferenceTypeInfo::TypeHandle* cache) {
354     if (UNLIKELY(!ReferenceTypeInfo::IsValidHandle(*cache))) {
355       *cache = CreateRootHandle(handles_, class_root);
356     }
357     return *cache;
358   }
359 
360   static ReferenceTypeInfo::TypeHandle CreateRootHandle(VariableSizedHandleScope* handles,
361                                                         ClassRoot class_root);
362 
363   VariableSizedHandleScope* handles_;
364 
365   ReferenceTypeInfo::TypeHandle object_class_handle_;
366   ReferenceTypeInfo::TypeHandle class_class_handle_;
367   ReferenceTypeInfo::TypeHandle method_handle_class_handle_;
368   ReferenceTypeInfo::TypeHandle method_type_class_handle_;
369   ReferenceTypeInfo::TypeHandle string_class_handle_;
370   ReferenceTypeInfo::TypeHandle throwable_class_handle_;
371 };
372 
373 // Control-flow graph of a method. Contains a list of basic blocks.
374 class HGraph : public ArenaObject<kArenaAllocGraph> {
375  public:
376   HGraph(ArenaAllocator* allocator,
377          ArenaStack* arena_stack,
378          VariableSizedHandleScope* handles,
379          const DexFile& dex_file,
380          uint32_t method_idx,
381          InstructionSet instruction_set,
382          InvokeType invoke_type = kInvalidInvokeType,
383          bool dead_reference_safe = false,
384          bool debuggable = false,
385          CompilationKind compilation_kind = CompilationKind::kOptimized,
386          int start_instruction_id = 0)
allocator_(allocator)387       : allocator_(allocator),
388         arena_stack_(arena_stack),
389         handle_cache_(handles),
390         blocks_(allocator->Adapter(kArenaAllocBlockList)),
391         reverse_post_order_(allocator->Adapter(kArenaAllocReversePostOrder)),
392         linear_order_(allocator->Adapter(kArenaAllocLinearOrder)),
393         reachability_graph_(allocator, 0, 0, true, kArenaAllocReachabilityGraph),
394         entry_block_(nullptr),
395         exit_block_(nullptr),
396         maximum_number_of_out_vregs_(0),
397         number_of_vregs_(0),
398         number_of_in_vregs_(0),
399         temporaries_vreg_slots_(0),
400         has_bounds_checks_(false),
401         has_try_catch_(false),
402         has_monitor_operations_(false),
403         has_simd_(false),
404         has_loops_(false),
405         has_irreducible_loops_(false),
406         has_direct_critical_native_call_(false),
407         dead_reference_safe_(dead_reference_safe),
408         debuggable_(debuggable),
409         current_instruction_id_(start_instruction_id),
410         dex_file_(dex_file),
411         method_idx_(method_idx),
412         invoke_type_(invoke_type),
413         in_ssa_form_(false),
414         number_of_cha_guards_(0),
415         instruction_set_(instruction_set),
416         cached_null_constant_(nullptr),
417         cached_int_constants_(std::less<int32_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
418         cached_float_constants_(std::less<int32_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
419         cached_long_constants_(std::less<int64_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
420         cached_double_constants_(std::less<int64_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
421         cached_current_method_(nullptr),
422         art_method_(nullptr),
423         compilation_kind_(compilation_kind),
424         cha_single_implementation_list_(allocator->Adapter(kArenaAllocCHA)) {
425     blocks_.reserve(kDefaultNumberOfBlocks);
426   }
427 
428   std::ostream& Dump(std::ostream& os,
429                      std::optional<std::reference_wrapper<const BlockNamer>> namer = std::nullopt);
430 
GetAllocator()431   ArenaAllocator* GetAllocator() const { return allocator_; }
GetArenaStack()432   ArenaStack* GetArenaStack() const { return arena_stack_; }
433 
GetHandleCache()434   HandleCache* GetHandleCache() { return &handle_cache_; }
435 
GetBlocks()436   const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; }
437 
438   // An iterator to only blocks that are still actually in the graph (when
439   // blocks are removed they are replaced with 'nullptr' in GetBlocks to
440   // simplify block-id assignment and avoid memmoves in the block-list).
GetActiveBlocks()441   IterationRange<FilterNull<ArenaVector<HBasicBlock*>::const_iterator>> GetActiveBlocks() const {
442     return FilterOutNull(MakeIterationRange(GetBlocks()));
443   }
444 
IsInSsaForm()445   bool IsInSsaForm() const { return in_ssa_form_; }
SetInSsaForm()446   void SetInSsaForm() { in_ssa_form_ = true; }
447 
GetEntryBlock()448   HBasicBlock* GetEntryBlock() const { return entry_block_; }
GetExitBlock()449   HBasicBlock* GetExitBlock() const { return exit_block_; }
HasExitBlock()450   bool HasExitBlock() const { return exit_block_ != nullptr; }
451 
SetEntryBlock(HBasicBlock * block)452   void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
SetExitBlock(HBasicBlock * block)453   void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
454 
455   void AddBlock(HBasicBlock* block);
456 
457   void ComputeDominanceInformation();
458   void ClearDominanceInformation();
459   void ComputeReachabilityInformation();
460   void ClearReachabilityInformation();
461   void ClearLoopInformation();
462   void FindBackEdges(ArenaBitVector* visited);
463   GraphAnalysisResult BuildDominatorTree();
464   void SimplifyCFG();
465   void SimplifyCatchBlocks();
466 
467   // Analyze all natural loops in this graph. Returns a code specifying that it
468   // was successful or the reason for failure. The method will fail if a loop
469   // is a throw-catch loop, i.e. the header is a catch block.
470   GraphAnalysisResult AnalyzeLoops() const;
471 
472   // Iterate over blocks to compute try block membership. Needs reverse post
473   // order and loop information.
474   void ComputeTryBlockInformation();
475 
476   // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
477   // Returns the instruction to replace the invoke expression or null if the
478   // invoke is for a void method. Note that the caller is responsible for replacing
479   // and removing the invoke instruction.
480   HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke);
481 
482   // Update the loop and try membership of `block`, which was spawned from `reference`.
483   // In case `reference` is a back edge, `replace_if_back_edge` notifies whether `block`
484   // should be the new back edge.
485   void UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block,
486                                              HBasicBlock* reference,
487                                              bool replace_if_back_edge);
488 
489   // Need to add a couple of blocks to test if the loop body is entered and
490   // put deoptimization instructions, etc.
491   void TransformLoopHeaderForBCE(HBasicBlock* header);
492 
493   // Adds a new loop directly after the loop with the given header and exit.
494   // Returns the new preheader.
495   HBasicBlock* TransformLoopForVectorization(HBasicBlock* header,
496                                              HBasicBlock* body,
497                                              HBasicBlock* exit);
498 
499   // Removes `block` from the graph. Assumes `block` has been disconnected from
500   // other blocks and has no instructions or phis.
501   void DeleteDeadEmptyBlock(HBasicBlock* block);
502 
503   // Splits the edge between `block` and `successor` while preserving the
504   // indices in the predecessor/successor lists. If there are multiple edges
505   // between the blocks, the lowest indices are used.
506   // Returns the new block which is empty and has the same dex pc as `successor`.
507   HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor);
508 
509   void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
510   void OrderLoopHeaderPredecessors(HBasicBlock* header);
511 
512   // Transform a loop into a format with a single preheader.
513   //
514   // Each phi in the header should be split: original one in the header should only hold
515   // inputs reachable from the back edges and a single input from the preheader. The newly created
516   // phi in the preheader should collate the inputs from the original multiple incoming blocks.
517   //
518   // Loops in the graph typically have a single preheader, so this method is used to "repair" loops
519   // that no longer have this property.
520   void TransformLoopToSinglePreheaderFormat(HBasicBlock* header);
521 
522   void SimplifyLoop(HBasicBlock* header);
523 
GetNextInstructionId()524   int32_t GetNextInstructionId() {
525     CHECK_NE(current_instruction_id_, INT32_MAX);
526     return current_instruction_id_++;
527   }
528 
GetCurrentInstructionId()529   int32_t GetCurrentInstructionId() const {
530     return current_instruction_id_;
531   }
532 
SetCurrentInstructionId(int32_t id)533   void SetCurrentInstructionId(int32_t id) {
534     CHECK_GE(id, current_instruction_id_);
535     current_instruction_id_ = id;
536   }
537 
GetMaximumNumberOfOutVRegs()538   uint16_t GetMaximumNumberOfOutVRegs() const {
539     return maximum_number_of_out_vregs_;
540   }
541 
SetMaximumNumberOfOutVRegs(uint16_t new_value)542   void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
543     maximum_number_of_out_vregs_ = new_value;
544   }
545 
UpdateMaximumNumberOfOutVRegs(uint16_t other_value)546   void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) {
547     maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value);
548   }
549 
UpdateTemporariesVRegSlots(size_t slots)550   void UpdateTemporariesVRegSlots(size_t slots) {
551     temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
552   }
553 
GetTemporariesVRegSlots()554   size_t GetTemporariesVRegSlots() const {
555     DCHECK(!in_ssa_form_);
556     return temporaries_vreg_slots_;
557   }
558 
SetNumberOfVRegs(uint16_t number_of_vregs)559   void SetNumberOfVRegs(uint16_t number_of_vregs) {
560     number_of_vregs_ = number_of_vregs;
561   }
562 
GetNumberOfVRegs()563   uint16_t GetNumberOfVRegs() const {
564     return number_of_vregs_;
565   }
566 
SetNumberOfInVRegs(uint16_t value)567   void SetNumberOfInVRegs(uint16_t value) {
568     number_of_in_vregs_ = value;
569   }
570 
GetNumberOfInVRegs()571   uint16_t GetNumberOfInVRegs() const {
572     return number_of_in_vregs_;
573   }
574 
GetNumberOfLocalVRegs()575   uint16_t GetNumberOfLocalVRegs() const {
576     DCHECK(!in_ssa_form_);
577     return number_of_vregs_ - number_of_in_vregs_;
578   }
579 
GetReversePostOrder()580   const ArenaVector<HBasicBlock*>& GetReversePostOrder() const {
581     return reverse_post_order_;
582   }
583 
GetReversePostOrderSkipEntryBlock()584   ArrayRef<HBasicBlock* const> GetReversePostOrderSkipEntryBlock() const {
585     DCHECK(GetReversePostOrder()[0] == entry_block_);
586     return ArrayRef<HBasicBlock* const>(GetReversePostOrder()).SubArray(1);
587   }
588 
GetPostOrder()589   IterationRange<ArenaVector<HBasicBlock*>::const_reverse_iterator> GetPostOrder() const {
590     return ReverseRange(GetReversePostOrder());
591   }
592 
GetLinearOrder()593   const ArenaVector<HBasicBlock*>& GetLinearOrder() const {
594     return linear_order_;
595   }
596 
GetLinearPostOrder()597   IterationRange<ArenaVector<HBasicBlock*>::const_reverse_iterator> GetLinearPostOrder() const {
598     return ReverseRange(GetLinearOrder());
599   }
600 
HasBoundsChecks()601   bool HasBoundsChecks() const {
602     return has_bounds_checks_;
603   }
604 
SetHasBoundsChecks(bool value)605   void SetHasBoundsChecks(bool value) {
606     has_bounds_checks_ = value;
607   }
608 
609   // Returns true if dest is reachable from source, using either blocks or block-ids.
610   bool PathBetween(const HBasicBlock* source, const HBasicBlock* dest) const;
611   bool PathBetween(uint32_t source_id, uint32_t dest_id) const;
612 
613   // Is the code known to be robust against eliminating dead references
614   // and the effects of early finalization?
IsDeadReferenceSafe()615   bool IsDeadReferenceSafe() const { return dead_reference_safe_; }
616 
MarkDeadReferenceUnsafe()617   void MarkDeadReferenceUnsafe() { dead_reference_safe_ = false; }
618 
IsDebuggable()619   bool IsDebuggable() const { return debuggable_; }
620 
621   // Returns a constant of the given type and value. If it does not exist
622   // already, it is created and inserted into the graph. This method is only for
623   // integral types.
624   HConstant* GetConstant(DataType::Type type, int64_t value, uint32_t dex_pc = kNoDexPc);
625 
626   // TODO: This is problematic for the consistency of reference type propagation
627   // because it can be created anytime after the pass and thus it will be left
628   // with an invalid type.
629   HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc);
630 
631   HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) {
632     return CreateConstant(value, &cached_int_constants_, dex_pc);
633   }
634   HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) {
635     return CreateConstant(value, &cached_long_constants_, dex_pc);
636   }
637   HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) {
638     return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc);
639   }
640   HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) {
641     return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc);
642   }
643 
644   HCurrentMethod* GetCurrentMethod();
645 
GetDexFile()646   const DexFile& GetDexFile() const {
647     return dex_file_;
648   }
649 
GetMethodIdx()650   uint32_t GetMethodIdx() const {
651     return method_idx_;
652   }
653 
654   // Get the method name (without the signature), e.g. "<init>"
655   const char* GetMethodName() const;
656 
657   // Get the pretty method name (class + name + optionally signature).
658   std::string PrettyMethod(bool with_signature = true) const;
659 
GetInvokeType()660   InvokeType GetInvokeType() const {
661     return invoke_type_;
662   }
663 
GetInstructionSet()664   InstructionSet GetInstructionSet() const {
665     return instruction_set_;
666   }
667 
IsCompilingOsr()668   bool IsCompilingOsr() const { return compilation_kind_ == CompilationKind::kOsr; }
669 
IsCompilingBaseline()670   bool IsCompilingBaseline() const { return compilation_kind_ == CompilationKind::kBaseline; }
671 
GetCompilationKind()672   CompilationKind GetCompilationKind() const { return compilation_kind_; }
673 
GetCHASingleImplementationList()674   ArenaSet<ArtMethod*>& GetCHASingleImplementationList() {
675     return cha_single_implementation_list_;
676   }
677 
AddCHASingleImplementationDependency(ArtMethod * method)678   void AddCHASingleImplementationDependency(ArtMethod* method) {
679     cha_single_implementation_list_.insert(method);
680   }
681 
HasShouldDeoptimizeFlag()682   bool HasShouldDeoptimizeFlag() const {
683     return number_of_cha_guards_ != 0;
684   }
685 
HasTryCatch()686   bool HasTryCatch() const { return has_try_catch_; }
SetHasTryCatch(bool value)687   void SetHasTryCatch(bool value) { has_try_catch_ = value; }
688 
HasMonitorOperations()689   bool HasMonitorOperations() const { return has_monitor_operations_; }
SetHasMonitorOperations(bool value)690   void SetHasMonitorOperations(bool value) { has_monitor_operations_ = value; }
691 
HasSIMD()692   bool HasSIMD() const { return has_simd_; }
SetHasSIMD(bool value)693   void SetHasSIMD(bool value) { has_simd_ = value; }
694 
HasLoops()695   bool HasLoops() const { return has_loops_; }
SetHasLoops(bool value)696   void SetHasLoops(bool value) { has_loops_ = value; }
697 
HasIrreducibleLoops()698   bool HasIrreducibleLoops() const { return has_irreducible_loops_; }
SetHasIrreducibleLoops(bool value)699   void SetHasIrreducibleLoops(bool value) { has_irreducible_loops_ = value; }
700 
HasDirectCriticalNativeCall()701   bool HasDirectCriticalNativeCall() const { return has_direct_critical_native_call_; }
SetHasDirectCriticalNativeCall(bool value)702   void SetHasDirectCriticalNativeCall(bool value) { has_direct_critical_native_call_ = value; }
703 
GetArtMethod()704   ArtMethod* GetArtMethod() const { return art_method_; }
SetArtMethod(ArtMethod * method)705   void SetArtMethod(ArtMethod* method) { art_method_ = method; }
706 
707   // Returns an instruction with the opposite Boolean value from 'cond'.
708   // The instruction has been inserted into the graph, either as a constant, or
709   // before cursor.
710   HInstruction* InsertOppositeCondition(HInstruction* cond, HInstruction* cursor);
711 
GetInexactObjectRti()712   ReferenceTypeInfo GetInexactObjectRti() {
713     return ReferenceTypeInfo::Create(handle_cache_.GetObjectClassHandle(), /* is_exact= */ false);
714   }
715 
GetNumberOfCHAGuards()716   uint32_t GetNumberOfCHAGuards() { return number_of_cha_guards_; }
SetNumberOfCHAGuards(uint32_t num)717   void SetNumberOfCHAGuards(uint32_t num) { number_of_cha_guards_ = num; }
IncrementNumberOfCHAGuards()718   void IncrementNumberOfCHAGuards() { number_of_cha_guards_++; }
719 
720  private:
721   void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
722   void RemoveDeadBlocks(const ArenaBitVector& visited);
723 
724   template <class InstructionType, typename ValueType>
725   InstructionType* CreateConstant(ValueType value,
726                                   ArenaSafeMap<ValueType, InstructionType*>* cache,
727                                   uint32_t dex_pc = kNoDexPc) {
728     // Try to find an existing constant of the given value.
729     InstructionType* constant = nullptr;
730     auto cached_constant = cache->find(value);
731     if (cached_constant != cache->end()) {
732       constant = cached_constant->second;
733     }
734 
735     // If not found or previously deleted, create and cache a new instruction.
736     // Don't bother reviving a previously deleted instruction, for simplicity.
737     if (constant == nullptr || constant->GetBlock() == nullptr) {
738       constant = new (allocator_) InstructionType(value, dex_pc);
739       cache->Overwrite(value, constant);
740       InsertConstant(constant);
741     }
742     return constant;
743   }
744 
745   void InsertConstant(HConstant* instruction);
746 
747   // Cache a float constant into the graph. This method should only be
748   // called by the SsaBuilder when creating "equivalent" instructions.
749   void CacheFloatConstant(HFloatConstant* constant);
750 
751   // See CacheFloatConstant comment.
752   void CacheDoubleConstant(HDoubleConstant* constant);
753 
754   ArenaAllocator* const allocator_;
755   ArenaStack* const arena_stack_;
756 
757   HandleCache handle_cache_;
758 
759   // List of blocks in insertion order.
760   ArenaVector<HBasicBlock*> blocks_;
761 
762   // List of blocks to perform a reverse post order tree traversal.
763   ArenaVector<HBasicBlock*> reverse_post_order_;
764 
765   // List of blocks to perform a linear order tree traversal. Unlike the reverse
766   // post order, this order is not incrementally kept up-to-date.
767   ArenaVector<HBasicBlock*> linear_order_;
768 
769   // Reachability graph for checking connectedness between nodes. Acts as a partitioned vector where
770   // each RoundUp(blocks_.size(), BitVector::kWordBits) is the reachability of each node.
771   ArenaBitVectorArray reachability_graph_;
772 
773   HBasicBlock* entry_block_;
774   HBasicBlock* exit_block_;
775 
776   // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
777   uint16_t maximum_number_of_out_vregs_;
778 
779   // The number of virtual registers in this method. Contains the parameters.
780   uint16_t number_of_vregs_;
781 
782   // The number of virtual registers used by parameters of this method.
783   uint16_t number_of_in_vregs_;
784 
785   // Number of vreg size slots that the temporaries use (used in baseline compiler).
786   size_t temporaries_vreg_slots_;
787 
788   // Flag whether there are bounds checks in the graph. We can skip
789   // BCE if it's false. It's only best effort to keep it up to date in
790   // the presence of code elimination so there might be false positives.
791   bool has_bounds_checks_;
792 
793   // Flag whether there are try/catch blocks in the graph. We will skip
794   // try/catch-related passes if it's false. It's only best effort to keep
795   // it up to date in the presence of code elimination so there might be
796   // false positives.
797   bool has_try_catch_;
798 
799   // Flag whether there are any HMonitorOperation in the graph. If yes this will mandate
800   // DexRegisterMap to be present to allow deadlock analysis for non-debuggable code.
801   bool has_monitor_operations_;
802 
803   // Flag whether SIMD instructions appear in the graph. If true, the
804   // code generators may have to be more careful spilling the wider
805   // contents of SIMD registers.
806   bool has_simd_;
807 
808   // Flag whether there are any loops in the graph. We can skip loop
809   // optimization if it's false. It's only best effort to keep it up
810   // to date in the presence of code elimination so there might be false
811   // positives.
812   bool has_loops_;
813 
814   // Flag whether there are any irreducible loops in the graph. It's only
815   // best effort to keep it up to date in the presence of code elimination
816   // so there might be false positives.
817   bool has_irreducible_loops_;
818 
819   // Flag whether there are any direct calls to native code registered
820   // for @CriticalNative methods.
821   bool has_direct_critical_native_call_;
822 
823   // Is the code known to be robust against eliminating dead references
824   // and the effects of early finalization? If false, dead reference variables
825   // are kept if they might be visible to the garbage collector.
826   // Currently this means that the class was declared to be dead-reference-safe,
827   // the method accesses no reachability-sensitive fields or data, and the same
828   // is true for any methods that were inlined into the current one.
829   bool dead_reference_safe_;
830 
831   // Indicates whether the graph should be compiled in a way that
832   // ensures full debuggability. If false, we can apply more
833   // aggressive optimizations that may limit the level of debugging.
834   const bool debuggable_;
835 
836   // The current id to assign to a newly added instruction. See HInstruction.id_.
837   int32_t current_instruction_id_;
838 
839   // The dex file from which the method is from.
840   const DexFile& dex_file_;
841 
842   // The method index in the dex file.
843   const uint32_t method_idx_;
844 
845   // If inlined, this encodes how the callee is being invoked.
846   const InvokeType invoke_type_;
847 
848   // Whether the graph has been transformed to SSA form. Only used
849   // in debug mode to ensure we are not using properties only valid
850   // for non-SSA form (like the number of temporaries).
851   bool in_ssa_form_;
852 
853   // Number of CHA guards in the graph. Used to short-circuit the
854   // CHA guard optimization pass when there is no CHA guard left.
855   uint32_t number_of_cha_guards_;
856 
857   const InstructionSet instruction_set_;
858 
859   // Cached constants.
860   HNullConstant* cached_null_constant_;
861   ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
862   ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
863   ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
864   ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
865 
866   HCurrentMethod* cached_current_method_;
867 
868   // The ArtMethod this graph is for. Note that for AOT, it may be null,
869   // for example for methods whose declaring class could not be resolved
870   // (such as when the superclass could not be found).
871   ArtMethod* art_method_;
872 
873   // How we are compiling the graph: either optimized, osr, or baseline.
874   // For osr, we will make all loops seen as irreducible and emit special
875   // stack maps to mark compiled code entries which the interpreter can
876   // directly jump to.
877   const CompilationKind compilation_kind_;
878 
879   // List of methods that are assumed to have single implementation.
880   ArenaSet<ArtMethod*> cha_single_implementation_list_;
881 
882   friend class SsaBuilder;           // For caching constants.
883   friend class SsaLivenessAnalysis;  // For the linear order.
884   friend class HInliner;             // For the reverse post order.
885   ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
886   DISALLOW_COPY_AND_ASSIGN(HGraph);
887 };
888 
889 inline std::ostream& operator<<(std::ostream& os, HGraph& graph) {
890   return graph.Dump(os);
891 }
892 
893 class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> {
894  public:
HLoopInformation(HBasicBlock * header,HGraph * graph)895   HLoopInformation(HBasicBlock* header, HGraph* graph)
896       : header_(header),
897         suspend_check_(nullptr),
898         irreducible_(false),
899         contains_irreducible_loop_(false),
900         back_edges_(graph->GetAllocator()->Adapter(kArenaAllocLoopInfoBackEdges)),
901         // Make bit vector growable, as the number of blocks may change.
902         blocks_(graph->GetAllocator(),
903                 graph->GetBlocks().size(),
904                 true,
905                 kArenaAllocLoopInfoBackEdges) {
906     back_edges_.reserve(kDefaultNumberOfBackEdges);
907   }
908 
IsIrreducible()909   bool IsIrreducible() const { return irreducible_; }
ContainsIrreducibleLoop()910   bool ContainsIrreducibleLoop() const { return contains_irreducible_loop_; }
911 
912   void Dump(std::ostream& os);
913 
GetHeader()914   HBasicBlock* GetHeader() const {
915     return header_;
916   }
917 
SetHeader(HBasicBlock * block)918   void SetHeader(HBasicBlock* block) {
919     header_ = block;
920   }
921 
GetSuspendCheck()922   HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
SetSuspendCheck(HSuspendCheck * check)923   void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
HasSuspendCheck()924   bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
925 
AddBackEdge(HBasicBlock * back_edge)926   void AddBackEdge(HBasicBlock* back_edge) {
927     back_edges_.push_back(back_edge);
928   }
929 
RemoveBackEdge(HBasicBlock * back_edge)930   void RemoveBackEdge(HBasicBlock* back_edge) {
931     RemoveElement(back_edges_, back_edge);
932   }
933 
IsBackEdge(const HBasicBlock & block)934   bool IsBackEdge(const HBasicBlock& block) const {
935     return ContainsElement(back_edges_, &block);
936   }
937 
NumberOfBackEdges()938   size_t NumberOfBackEdges() const {
939     return back_edges_.size();
940   }
941 
942   HBasicBlock* GetPreHeader() const;
943 
GetBackEdges()944   const ArenaVector<HBasicBlock*>& GetBackEdges() const {
945     return back_edges_;
946   }
947 
948   // Returns the lifetime position of the back edge that has the
949   // greatest lifetime position.
950   size_t GetLifetimeEnd() const;
951 
ReplaceBackEdge(HBasicBlock * existing,HBasicBlock * new_back_edge)952   void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
953     ReplaceElement(back_edges_, existing, new_back_edge);
954   }
955 
956   // Finds blocks that are part of this loop.
957   void Populate();
958 
959   // Updates blocks population of the loop and all of its outer' ones recursively after the
960   // population of the inner loop is updated.
961   void PopulateInnerLoopUpwards(HLoopInformation* inner_loop);
962 
963   // Returns whether this loop information contains `block`.
964   // Note that this loop information *must* be populated before entering this function.
965   bool Contains(const HBasicBlock& block) const;
966 
967   // Returns whether this loop information is an inner loop of `other`.
968   // Note that `other` *must* be populated before entering this function.
969   bool IsIn(const HLoopInformation& other) const;
970 
971   // Returns true if instruction is not defined within this loop.
972   bool IsDefinedOutOfTheLoop(HInstruction* instruction) const;
973 
GetBlocks()974   const ArenaBitVector& GetBlocks() const { return blocks_; }
975 
976   void Add(HBasicBlock* block);
977   void Remove(HBasicBlock* block);
978 
ClearAllBlocks()979   void ClearAllBlocks() {
980     blocks_.ClearAllBits();
981   }
982 
983   bool HasBackEdgeNotDominatedByHeader() const;
984 
IsPopulated()985   bool IsPopulated() const {
986     return blocks_.GetHighestBitSet() != -1;
987   }
988 
989   bool DominatesAllBackEdges(HBasicBlock* block);
990 
991   bool HasExitEdge() const;
992 
993   // Resets back edge and blocks-in-loop data.
ResetBasicBlockData()994   void ResetBasicBlockData() {
995     back_edges_.clear();
996     ClearAllBlocks();
997   }
998 
999  private:
1000   // Internal recursive implementation of `Populate`.
1001   void PopulateRecursive(HBasicBlock* block);
1002   void PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized);
1003 
1004   HBasicBlock* header_;
1005   HSuspendCheck* suspend_check_;
1006   bool irreducible_;
1007   bool contains_irreducible_loop_;
1008   ArenaVector<HBasicBlock*> back_edges_;
1009   ArenaBitVector blocks_;
1010 
1011   DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
1012 };
1013 
1014 // Stores try/catch information for basic blocks.
1015 // Note that HGraph is constructed so that catch blocks cannot simultaneously
1016 // be try blocks.
1017 class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> {
1018  public:
1019   // Try block information constructor.
TryCatchInformation(const HTryBoundary & try_entry)1020   explicit TryCatchInformation(const HTryBoundary& try_entry)
1021       : try_entry_(&try_entry),
1022         catch_dex_file_(nullptr),
1023         catch_type_index_(dex::TypeIndex::Invalid()) {
1024     DCHECK(try_entry_ != nullptr);
1025   }
1026 
1027   // Catch block information constructor.
TryCatchInformation(dex::TypeIndex catch_type_index,const DexFile & dex_file)1028   TryCatchInformation(dex::TypeIndex catch_type_index, const DexFile& dex_file)
1029       : try_entry_(nullptr),
1030         catch_dex_file_(&dex_file),
1031         catch_type_index_(catch_type_index) {}
1032 
IsTryBlock()1033   bool IsTryBlock() const { return try_entry_ != nullptr; }
1034 
GetTryEntry()1035   const HTryBoundary& GetTryEntry() const {
1036     DCHECK(IsTryBlock());
1037     return *try_entry_;
1038   }
1039 
IsCatchBlock()1040   bool IsCatchBlock() const { return catch_dex_file_ != nullptr; }
1041 
IsValidTypeIndex()1042   bool IsValidTypeIndex() const {
1043     DCHECK(IsCatchBlock());
1044     return catch_type_index_.IsValid();
1045   }
1046 
GetCatchTypeIndex()1047   dex::TypeIndex GetCatchTypeIndex() const {
1048     DCHECK(IsCatchBlock());
1049     return catch_type_index_;
1050   }
1051 
GetCatchDexFile()1052   const DexFile& GetCatchDexFile() const {
1053     DCHECK(IsCatchBlock());
1054     return *catch_dex_file_;
1055   }
1056 
SetInvalidTypeIndex()1057   void SetInvalidTypeIndex() {
1058     catch_type_index_ = dex::TypeIndex::Invalid();
1059   }
1060 
1061  private:
1062   // One of possibly several TryBoundary instructions entering the block's try.
1063   // Only set for try blocks.
1064   const HTryBoundary* try_entry_;
1065 
1066   // Exception type information. Only set for catch blocks.
1067   const DexFile* catch_dex_file_;
1068   dex::TypeIndex catch_type_index_;
1069 };
1070 
1071 static constexpr size_t kNoLifetime = -1;
1072 static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1);
1073 
1074 // A block in a method. Contains the list of instructions represented
1075 // as a double linked list. Each block knows its predecessors and
1076 // successors.
1077 
1078 class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> {
1079  public:
1080   explicit HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
graph_(graph)1081       : graph_(graph),
1082         predecessors_(graph->GetAllocator()->Adapter(kArenaAllocPredecessors)),
1083         successors_(graph->GetAllocator()->Adapter(kArenaAllocSuccessors)),
1084         loop_information_(nullptr),
1085         dominator_(nullptr),
1086         dominated_blocks_(graph->GetAllocator()->Adapter(kArenaAllocDominated)),
1087         block_id_(kInvalidBlockId),
1088         dex_pc_(dex_pc),
1089         lifetime_start_(kNoLifetime),
1090         lifetime_end_(kNoLifetime),
1091         try_catch_information_(nullptr) {
1092     predecessors_.reserve(kDefaultNumberOfPredecessors);
1093     successors_.reserve(kDefaultNumberOfSuccessors);
1094     dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks);
1095   }
1096 
GetPredecessors()1097   const ArenaVector<HBasicBlock*>& GetPredecessors() const {
1098     return predecessors_;
1099   }
1100 
GetNumberOfPredecessors()1101   size_t GetNumberOfPredecessors() const {
1102     return GetPredecessors().size();
1103   }
1104 
GetSuccessors()1105   const ArenaVector<HBasicBlock*>& GetSuccessors() const {
1106     return successors_;
1107   }
1108 
1109   ArrayRef<HBasicBlock* const> GetNormalSuccessors() const;
1110   ArrayRef<HBasicBlock* const> GetExceptionalSuccessors() const;
1111 
1112   bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) {
1113     return ContainsElement(successors_, block, start_from);
1114   }
1115 
GetDominatedBlocks()1116   const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const {
1117     return dominated_blocks_;
1118   }
1119 
IsEntryBlock()1120   bool IsEntryBlock() const {
1121     return graph_->GetEntryBlock() == this;
1122   }
1123 
IsExitBlock()1124   bool IsExitBlock() const {
1125     return graph_->GetExitBlock() == this;
1126   }
1127 
1128   bool IsSingleGoto() const;
1129   bool IsSingleReturn() const;
1130   bool IsSingleReturnOrReturnVoidAllowingPhis() const;
1131   bool IsSingleTryBoundary() const;
1132 
1133   // Returns true if this block emits nothing but a jump.
IsSingleJump()1134   bool IsSingleJump() const {
1135     HLoopInformation* loop_info = GetLoopInformation();
1136     return (IsSingleGoto() || IsSingleTryBoundary())
1137            // Back edges generate a suspend check.
1138            && (loop_info == nullptr || !loop_info->IsBackEdge(*this));
1139   }
1140 
AddBackEdge(HBasicBlock * back_edge)1141   void AddBackEdge(HBasicBlock* back_edge) {
1142     if (loop_information_ == nullptr) {
1143       loop_information_ = new (graph_->GetAllocator()) HLoopInformation(this, graph_);
1144     }
1145     DCHECK_EQ(loop_information_->GetHeader(), this);
1146     loop_information_->AddBackEdge(back_edge);
1147   }
1148 
1149   // Registers a back edge; if the block was not a loop header before the call associates a newly
1150   // created loop info with it.
1151   //
1152   // Used in SuperblockCloner to preserve LoopInformation object instead of reseting loop
1153   // info for all blocks during back edges recalculation.
AddBackEdgeWhileUpdating(HBasicBlock * back_edge)1154   void AddBackEdgeWhileUpdating(HBasicBlock* back_edge) {
1155     if (loop_information_ == nullptr || loop_information_->GetHeader() != this) {
1156       loop_information_ = new (graph_->GetAllocator()) HLoopInformation(this, graph_);
1157     }
1158     loop_information_->AddBackEdge(back_edge);
1159   }
1160 
GetGraph()1161   HGraph* GetGraph() const { return graph_; }
SetGraph(HGraph * graph)1162   void SetGraph(HGraph* graph) { graph_ = graph; }
1163 
GetBlockId()1164   uint32_t GetBlockId() const { return block_id_; }
SetBlockId(int id)1165   void SetBlockId(int id) { block_id_ = id; }
GetDexPc()1166   uint32_t GetDexPc() const { return dex_pc_; }
1167 
GetDominator()1168   HBasicBlock* GetDominator() const { return dominator_; }
SetDominator(HBasicBlock * dominator)1169   void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
AddDominatedBlock(HBasicBlock * block)1170   void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); }
1171 
RemoveDominatedBlock(HBasicBlock * block)1172   void RemoveDominatedBlock(HBasicBlock* block) {
1173     RemoveElement(dominated_blocks_, block);
1174   }
1175 
ReplaceDominatedBlock(HBasicBlock * existing,HBasicBlock * new_block)1176   void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
1177     ReplaceElement(dominated_blocks_, existing, new_block);
1178   }
1179 
1180   void ClearDominanceInformation();
1181 
NumberOfBackEdges()1182   int NumberOfBackEdges() const {
1183     return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
1184   }
1185 
GetFirstInstruction()1186   HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
GetLastInstruction()1187   HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
GetInstructions()1188   const HInstructionList& GetInstructions() const { return instructions_; }
GetFirstPhi()1189   HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
GetLastPhi()1190   HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
GetPhis()1191   const HInstructionList& GetPhis() const { return phis_; }
1192 
1193   HInstruction* GetFirstInstructionDisregardMoves() const;
1194 
AddSuccessor(HBasicBlock * block)1195   void AddSuccessor(HBasicBlock* block) {
1196     successors_.push_back(block);
1197     block->predecessors_.push_back(this);
1198   }
1199 
ReplaceSuccessor(HBasicBlock * existing,HBasicBlock * new_block)1200   void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
1201     size_t successor_index = GetSuccessorIndexOf(existing);
1202     existing->RemovePredecessor(this);
1203     new_block->predecessors_.push_back(this);
1204     successors_[successor_index] = new_block;
1205   }
1206 
ReplacePredecessor(HBasicBlock * existing,HBasicBlock * new_block)1207   void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
1208     size_t predecessor_index = GetPredecessorIndexOf(existing);
1209     existing->RemoveSuccessor(this);
1210     new_block->successors_.push_back(this);
1211     predecessors_[predecessor_index] = new_block;
1212   }
1213 
1214   // Insert `this` between `predecessor` and `successor. This method
1215   // preserves the indices, and will update the first edge found between
1216   // `predecessor` and `successor`.
InsertBetween(HBasicBlock * predecessor,HBasicBlock * successor)1217   void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
1218     size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
1219     size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
1220     successor->predecessors_[predecessor_index] = this;
1221     predecessor->successors_[successor_index] = this;
1222     successors_.push_back(successor);
1223     predecessors_.push_back(predecessor);
1224   }
1225 
RemovePredecessor(HBasicBlock * block)1226   void RemovePredecessor(HBasicBlock* block) {
1227     predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block));
1228   }
1229 
RemoveSuccessor(HBasicBlock * block)1230   void RemoveSuccessor(HBasicBlock* block) {
1231     successors_.erase(successors_.begin() + GetSuccessorIndexOf(block));
1232   }
1233 
ClearAllPredecessors()1234   void ClearAllPredecessors() {
1235     predecessors_.clear();
1236   }
1237 
AddPredecessor(HBasicBlock * block)1238   void AddPredecessor(HBasicBlock* block) {
1239     predecessors_.push_back(block);
1240     block->successors_.push_back(this);
1241   }
1242 
SwapPredecessors()1243   void SwapPredecessors() {
1244     DCHECK_EQ(predecessors_.size(), 2u);
1245     std::swap(predecessors_[0], predecessors_[1]);
1246   }
1247 
SwapSuccessors()1248   void SwapSuccessors() {
1249     DCHECK_EQ(successors_.size(), 2u);
1250     std::swap(successors_[0], successors_[1]);
1251   }
1252 
GetPredecessorIndexOf(HBasicBlock * predecessor)1253   size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const {
1254     return IndexOfElement(predecessors_, predecessor);
1255   }
1256 
GetSuccessorIndexOf(HBasicBlock * successor)1257   size_t GetSuccessorIndexOf(HBasicBlock* successor) const {
1258     return IndexOfElement(successors_, successor);
1259   }
1260 
GetSinglePredecessor()1261   HBasicBlock* GetSinglePredecessor() const {
1262     DCHECK_EQ(GetPredecessors().size(), 1u);
1263     return GetPredecessors()[0];
1264   }
1265 
GetSingleSuccessor()1266   HBasicBlock* GetSingleSuccessor() const {
1267     DCHECK_EQ(GetSuccessors().size(), 1u);
1268     return GetSuccessors()[0];
1269   }
1270 
1271   // Returns whether the first occurrence of `predecessor` in the list of
1272   // predecessors is at index `idx`.
IsFirstIndexOfPredecessor(HBasicBlock * predecessor,size_t idx)1273   bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const {
1274     DCHECK_EQ(GetPredecessors()[idx], predecessor);
1275     return GetPredecessorIndexOf(predecessor) == idx;
1276   }
1277 
1278   // Create a new block between this block and its predecessors. The new block
1279   // is added to the graph, all predecessor edges are relinked to it and an edge
1280   // is created to `this`. Returns the new empty block. Reverse post order or
1281   // loop and try/catch information are not updated.
1282   HBasicBlock* CreateImmediateDominator();
1283 
1284   // Split the block into two blocks just before `cursor`. Returns the newly
1285   // created, latter block. Note that this method will add the block to the
1286   // graph, create a Goto at the end of the former block and will create an edge
1287   // between the blocks. It will not, however, update the reverse post order or
1288   // loop and try/catch information.
1289   HBasicBlock* SplitBefore(HInstruction* cursor);
1290 
1291   // Split the block into two blocks just before `cursor`. Returns the newly
1292   // created block. Note that this method just updates raw block information,
1293   // like predecessors, successors, dominators, and instruction list. It does not
1294   // update the graph, reverse post order, loop information, nor make sure the
1295   // blocks are consistent (for example ending with a control flow instruction).
1296   HBasicBlock* SplitBeforeForInlining(HInstruction* cursor);
1297 
1298   // Similar to `SplitBeforeForInlining` but does it after `cursor`.
1299   HBasicBlock* SplitAfterForInlining(HInstruction* cursor);
1300 
1301   // Merge `other` at the end of `this`. Successors and dominated blocks of
1302   // `other` are changed to be successors and dominated blocks of `this`. Note
1303   // that this method does not update the graph, reverse post order, loop
1304   // information, nor make sure the blocks are consistent (for example ending
1305   // with a control flow instruction).
1306   void MergeWithInlined(HBasicBlock* other);
1307 
1308   // Replace `this` with `other`. Predecessors, successors, and dominated blocks
1309   // of `this` are moved to `other`.
1310   // Note that this method does not update the graph, reverse post order, loop
1311   // information, nor make sure the blocks are consistent (for example ending
1312   // with a control flow instruction).
1313   void ReplaceWith(HBasicBlock* other);
1314 
1315   // Merges the instructions of `other` at the end of `this`.
1316   void MergeInstructionsWith(HBasicBlock* other);
1317 
1318   // Merge `other` at the end of `this`. This method updates loops, reverse post
1319   // order, links to predecessors, successors, dominators and deletes the block
1320   // from the graph. The two blocks must be successive, i.e. `this` the only
1321   // predecessor of `other` and vice versa.
1322   void MergeWith(HBasicBlock* other);
1323 
1324   // Disconnects `this` from all its predecessors, successors and dominator,
1325   // removes it from all loops it is included in and eventually from the graph.
1326   // The block must not dominate any other block. Predecessors and successors
1327   // are safely updated.
1328   void DisconnectAndDelete();
1329 
1330   void AddInstruction(HInstruction* instruction);
1331   // Insert `instruction` before/after an existing instruction `cursor`.
1332   void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
1333   void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
1334   // Replace phi `initial` with `replacement` within this block.
1335   void ReplaceAndRemovePhiWith(HPhi* initial, HPhi* replacement);
1336   // Replace instruction `initial` with `replacement` within this block.
1337   void ReplaceAndRemoveInstructionWith(HInstruction* initial,
1338                                        HInstruction* replacement);
1339   void AddPhi(HPhi* phi);
1340   void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
1341   // RemoveInstruction and RemovePhi delete a given instruction from the respective
1342   // instruction list. With 'ensure_safety' set to true, it verifies that the
1343   // instruction is not in use and removes it from the use lists of its inputs.
1344   void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
1345   void RemovePhi(HPhi* phi, bool ensure_safety = true);
1346   void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
1347 
IsLoopHeader()1348   bool IsLoopHeader() const {
1349     return IsInLoop() && (loop_information_->GetHeader() == this);
1350   }
1351 
IsLoopPreHeaderFirstPredecessor()1352   bool IsLoopPreHeaderFirstPredecessor() const {
1353     DCHECK(IsLoopHeader());
1354     return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader();
1355   }
1356 
IsFirstPredecessorBackEdge()1357   bool IsFirstPredecessorBackEdge() const {
1358     DCHECK(IsLoopHeader());
1359     return GetLoopInformation()->IsBackEdge(*GetPredecessors()[0]);
1360   }
1361 
GetLoopInformation()1362   HLoopInformation* GetLoopInformation() const {
1363     return loop_information_;
1364   }
1365 
1366   // Set the loop_information_ on this block. Overrides the current
1367   // loop_information if it is an outer loop of the passed loop information.
1368   // Note that this method is called while creating the loop information.
SetInLoop(HLoopInformation * info)1369   void SetInLoop(HLoopInformation* info) {
1370     if (IsLoopHeader()) {
1371       // Nothing to do. This just means `info` is an outer loop.
1372     } else if (!IsInLoop()) {
1373       loop_information_ = info;
1374     } else if (loop_information_->Contains(*info->GetHeader())) {
1375       // Block is currently part of an outer loop. Make it part of this inner loop.
1376       // Note that a non loop header having a loop information means this loop information
1377       // has already been populated
1378       loop_information_ = info;
1379     } else {
1380       // Block is part of an inner loop. Do not update the loop information.
1381       // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
1382       // at this point, because this method is being called while populating `info`.
1383     }
1384   }
1385 
1386   // Raw update of the loop information.
SetLoopInformation(HLoopInformation * info)1387   void SetLoopInformation(HLoopInformation* info) {
1388     loop_information_ = info;
1389   }
1390 
IsInLoop()1391   bool IsInLoop() const { return loop_information_ != nullptr; }
1392 
GetTryCatchInformation()1393   TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; }
1394 
SetTryCatchInformation(TryCatchInformation * try_catch_information)1395   void SetTryCatchInformation(TryCatchInformation* try_catch_information) {
1396     try_catch_information_ = try_catch_information;
1397   }
1398 
IsTryBlock()1399   bool IsTryBlock() const {
1400     return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock();
1401   }
1402 
IsCatchBlock()1403   bool IsCatchBlock() const {
1404     return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock();
1405   }
1406 
1407   // Returns the try entry that this block's successors should have. They will
1408   // be in the same try, unless the block ends in a try boundary. In that case,
1409   // the appropriate try entry will be returned.
1410   const HTryBoundary* ComputeTryEntryOfSuccessors() const;
1411 
1412   bool HasThrowingInstructions() const;
1413 
1414   // Returns whether this block dominates the blocked passed as parameter.
1415   bool Dominates(HBasicBlock* block) const;
1416 
GetLifetimeStart()1417   size_t GetLifetimeStart() const { return lifetime_start_; }
GetLifetimeEnd()1418   size_t GetLifetimeEnd() const { return lifetime_end_; }
1419 
SetLifetimeStart(size_t start)1420   void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
SetLifetimeEnd(size_t end)1421   void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
1422 
1423   bool EndsWithControlFlowInstruction() const;
1424   bool EndsWithReturn() const;
1425   bool EndsWithIf() const;
1426   bool EndsWithTryBoundary() const;
1427   bool HasSinglePhi() const;
1428 
1429  private:
1430   HGraph* graph_;
1431   ArenaVector<HBasicBlock*> predecessors_;
1432   ArenaVector<HBasicBlock*> successors_;
1433   HInstructionList instructions_;
1434   HInstructionList phis_;
1435   HLoopInformation* loop_information_;
1436   HBasicBlock* dominator_;
1437   ArenaVector<HBasicBlock*> dominated_blocks_;
1438   uint32_t block_id_;
1439   // The dex program counter of the first instruction of this block.
1440   const uint32_t dex_pc_;
1441   size_t lifetime_start_;
1442   size_t lifetime_end_;
1443   TryCatchInformation* try_catch_information_;
1444 
1445   friend class HGraph;
1446   friend class HInstruction;
1447   // Allow manual control of the ordering of predecessors/successors
1448   friend class OptimizingUnitTestHelper;
1449 
1450   DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
1451 };
1452 
1453 // Iterates over the LoopInformation of all loops which contain 'block'
1454 // from the innermost to the outermost.
1455 class HLoopInformationOutwardIterator : public ValueObject {
1456  public:
HLoopInformationOutwardIterator(const HBasicBlock & block)1457   explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
1458       : current_(block.GetLoopInformation()) {}
1459 
Done()1460   bool Done() const { return current_ == nullptr; }
1461 
Advance()1462   void Advance() {
1463     DCHECK(!Done());
1464     current_ = current_->GetPreHeader()->GetLoopInformation();
1465   }
1466 
Current()1467   HLoopInformation* Current() const {
1468     DCHECK(!Done());
1469     return current_;
1470   }
1471 
1472  private:
1473   HLoopInformation* current_;
1474 
1475   DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
1476 };
1477 
1478 #define FOR_EACH_CONCRETE_INSTRUCTION_SCALAR_COMMON(M)                  \
1479   M(Above, Condition)                                                   \
1480   M(AboveOrEqual, Condition)                                            \
1481   M(Abs, UnaryOperation)                                                \
1482   M(Add, BinaryOperation)                                               \
1483   M(And, BinaryOperation)                                               \
1484   M(ArrayGet, Instruction)                                              \
1485   M(ArrayLength, Instruction)                                           \
1486   M(ArraySet, Instruction)                                              \
1487   M(Below, Condition)                                                   \
1488   M(BelowOrEqual, Condition)                                            \
1489   M(BooleanNot, UnaryOperation)                                         \
1490   M(BoundsCheck, Instruction)                                           \
1491   M(BoundType, Instruction)                                             \
1492   M(CheckCast, Instruction)                                             \
1493   M(ClassTableGet, Instruction)                                         \
1494   M(ClearException, Instruction)                                        \
1495   M(ClinitCheck, Instruction)                                           \
1496   M(Compare, BinaryOperation)                                           \
1497   M(ConstructorFence, Instruction)                                      \
1498   M(CurrentMethod, Instruction)                                         \
1499   M(ShouldDeoptimizeFlag, Instruction)                                  \
1500   M(Deoptimize, Instruction)                                            \
1501   M(Div, BinaryOperation)                                               \
1502   M(DivZeroCheck, Instruction)                                          \
1503   M(DoubleConstant, Constant)                                           \
1504   M(Equal, Condition)                                                   \
1505   M(Exit, Instruction)                                                  \
1506   M(FloatConstant, Constant)                                            \
1507   M(Goto, Instruction)                                                  \
1508   M(GreaterThan, Condition)                                             \
1509   M(GreaterThanOrEqual, Condition)                                      \
1510   M(If, Instruction)                                                    \
1511   M(InstanceFieldGet, Instruction)                                      \
1512   M(InstanceFieldSet, Instruction)                                      \
1513   M(PredicatedInstanceFieldGet, Instruction)                            \
1514   M(InstanceOf, Instruction)                                            \
1515   M(IntConstant, Constant)                                              \
1516   M(IntermediateAddress, Instruction)                                   \
1517   M(InvokeUnresolved, Invoke)                                           \
1518   M(InvokeInterface, Invoke)                                            \
1519   M(InvokeStaticOrDirect, Invoke)                                       \
1520   M(InvokeVirtual, Invoke)                                              \
1521   M(InvokePolymorphic, Invoke)                                          \
1522   M(InvokeCustom, Invoke)                                               \
1523   M(LessThan, Condition)                                                \
1524   M(LessThanOrEqual, Condition)                                         \
1525   M(LoadClass, Instruction)                                             \
1526   M(LoadException, Instruction)                                         \
1527   M(LoadMethodHandle, Instruction)                                      \
1528   M(LoadMethodType, Instruction)                                        \
1529   M(LoadString, Instruction)                                            \
1530   M(LongConstant, Constant)                                             \
1531   M(Max, Instruction)                                                   \
1532   M(MemoryBarrier, Instruction)                                         \
1533   M(Min, BinaryOperation)                                               \
1534   M(MonitorOperation, Instruction)                                      \
1535   M(Mul, BinaryOperation)                                               \
1536   M(NativeDebugInfo, Instruction)                                       \
1537   M(Neg, UnaryOperation)                                                \
1538   M(NewArray, Instruction)                                              \
1539   M(NewInstance, Instruction)                                           \
1540   M(Not, UnaryOperation)                                                \
1541   M(NotEqual, Condition)                                                \
1542   M(NullConstant, Instruction)                                          \
1543   M(NullCheck, Instruction)                                             \
1544   M(Or, BinaryOperation)                                                \
1545   M(PackedSwitch, Instruction)                                          \
1546   M(ParallelMove, Instruction)                                          \
1547   M(ParameterValue, Instruction)                                        \
1548   M(Phi, Instruction)                                                   \
1549   M(Rem, BinaryOperation)                                               \
1550   M(Return, Instruction)                                                \
1551   M(ReturnVoid, Instruction)                                            \
1552   M(Ror, BinaryOperation)                                               \
1553   M(Shl, BinaryOperation)                                               \
1554   M(Shr, BinaryOperation)                                               \
1555   M(StaticFieldGet, Instruction)                                        \
1556   M(StaticFieldSet, Instruction)                                        \
1557   M(StringBuilderAppend, Instruction)                                   \
1558   M(UnresolvedInstanceFieldGet, Instruction)                            \
1559   M(UnresolvedInstanceFieldSet, Instruction)                            \
1560   M(UnresolvedStaticFieldGet, Instruction)                              \
1561   M(UnresolvedStaticFieldSet, Instruction)                              \
1562   M(Select, Instruction)                                                \
1563   M(Sub, BinaryOperation)                                               \
1564   M(SuspendCheck, Instruction)                                          \
1565   M(Throw, Instruction)                                                 \
1566   M(TryBoundary, Instruction)                                           \
1567   M(TypeConversion, Instruction)                                        \
1568   M(UShr, BinaryOperation)                                              \
1569   M(Xor, BinaryOperation)
1570 
1571 #define FOR_EACH_CONCRETE_INSTRUCTION_VECTOR_COMMON(M)                  \
1572   M(VecReplicateScalar, VecUnaryOperation)                              \
1573   M(VecExtractScalar, VecUnaryOperation)                                \
1574   M(VecReduce, VecUnaryOperation)                                       \
1575   M(VecCnv, VecUnaryOperation)                                          \
1576   M(VecNeg, VecUnaryOperation)                                          \
1577   M(VecAbs, VecUnaryOperation)                                          \
1578   M(VecNot, VecUnaryOperation)                                          \
1579   M(VecAdd, VecBinaryOperation)                                         \
1580   M(VecHalvingAdd, VecBinaryOperation)                                  \
1581   M(VecSub, VecBinaryOperation)                                         \
1582   M(VecMul, VecBinaryOperation)                                         \
1583   M(VecDiv, VecBinaryOperation)                                         \
1584   M(VecMin, VecBinaryOperation)                                         \
1585   M(VecMax, VecBinaryOperation)                                         \
1586   M(VecAnd, VecBinaryOperation)                                         \
1587   M(VecAndNot, VecBinaryOperation)                                      \
1588   M(VecOr, VecBinaryOperation)                                          \
1589   M(VecXor, VecBinaryOperation)                                         \
1590   M(VecSaturationAdd, VecBinaryOperation)                               \
1591   M(VecSaturationSub, VecBinaryOperation)                               \
1592   M(VecShl, VecBinaryOperation)                                         \
1593   M(VecShr, VecBinaryOperation)                                         \
1594   M(VecUShr, VecBinaryOperation)                                        \
1595   M(VecSetScalars, VecOperation)                                        \
1596   M(VecMultiplyAccumulate, VecOperation)                                \
1597   M(VecSADAccumulate, VecOperation)                                     \
1598   M(VecDotProd, VecOperation)                                           \
1599   M(VecLoad, VecMemoryOperation)                                        \
1600   M(VecStore, VecMemoryOperation)                                       \
1601   M(VecPredSetAll, VecPredSetOperation)                                 \
1602   M(VecPredWhile, VecPredSetOperation)                                  \
1603   M(VecPredCondition, VecOperation)                                     \
1604 
1605 #define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                         \
1606   FOR_EACH_CONCRETE_INSTRUCTION_SCALAR_COMMON(M)                        \
1607   FOR_EACH_CONCRETE_INSTRUCTION_VECTOR_COMMON(M)
1608 
1609 /*
1610  * Instructions, shared across several (not all) architectures.
1611  */
1612 #if !defined(ART_ENABLE_CODEGEN_arm) && !defined(ART_ENABLE_CODEGEN_arm64)
1613 #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M)
1614 #else
1615 #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M)                         \
1616   M(BitwiseNegatedRight, Instruction)                                   \
1617   M(DataProcWithShifterOp, Instruction)                                 \
1618   M(MultiplyAccumulate, Instruction)                                    \
1619   M(IntermediateAddressIndex, Instruction)
1620 #endif
1621 
1622 #define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
1623 
1624 #define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
1625 
1626 #ifndef ART_ENABLE_CODEGEN_x86
1627 #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)
1628 #else
1629 #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                            \
1630   M(X86ComputeBaseMethodAddress, Instruction)                           \
1631   M(X86LoadFromConstantTable, Instruction)                              \
1632   M(X86FPNeg, Instruction)                                              \
1633   M(X86PackedSwitch, Instruction)
1634 #endif
1635 
1636 #if defined(ART_ENABLE_CODEGEN_x86) || defined(ART_ENABLE_CODEGEN_x86_64)
1637 #define FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M)                     \
1638   M(X86AndNot, Instruction)                                             \
1639   M(X86MaskOrResetLeastSetBit, Instruction)
1640 #else
1641 #define FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M)
1642 #endif
1643 
1644 #define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1645 
1646 #define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
1647   FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                               \
1648   FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M)                               \
1649   FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                                  \
1650   FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                                \
1651   FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                                  \
1652   FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)                               \
1653   FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M)
1654 
1655 #define FOR_EACH_ABSTRACT_INSTRUCTION(M)                                \
1656   M(Condition, BinaryOperation)                                         \
1657   M(Constant, Instruction)                                              \
1658   M(UnaryOperation, Instruction)                                        \
1659   M(BinaryOperation, Instruction)                                       \
1660   M(Invoke, Instruction)                                                \
1661   M(VecOperation, Instruction)                                          \
1662   M(VecUnaryOperation, VecOperation)                                    \
1663   M(VecBinaryOperation, VecOperation)                                   \
1664   M(VecMemoryOperation, VecOperation)                                   \
1665   M(VecPredSetOperation, VecOperation)
1666 
1667 #define FOR_EACH_INSTRUCTION(M)                                         \
1668   FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
1669   FOR_EACH_ABSTRACT_INSTRUCTION(M)
1670 
1671 #define FORWARD_DECLARATION(type, super) class H##type;
FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)1672 FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
1673 #undef FORWARD_DECLARATION
1674 
1675 #define DECLARE_INSTRUCTION(type)                                         \
1676   private:                                                                \
1677   H##type& operator=(const H##type&) = delete;                            \
1678   public:                                                                 \
1679   const char* DebugName() const override { return #type; }                \
1680   HInstruction* Clone(ArenaAllocator* arena) const override {             \
1681     DCHECK(IsClonable());                                                 \
1682     return new (arena) H##type(*this->As##type());                        \
1683   }                                                                       \
1684   void Accept(HGraphVisitor* visitor) override
1685 
1686 #define DECLARE_ABSTRACT_INSTRUCTION(type)                              \
1687   private:                                                              \
1688   H##type& operator=(const H##type&) = delete;                          \
1689   public:
1690 
1691 #define DEFAULT_COPY_CONSTRUCTOR(type) H##type(const H##type& other) = default;
1692 
1693 template <typename T>
1694 class HUseListNode : public ArenaObject<kArenaAllocUseListNode>,
1695                      public IntrusiveForwardListNode<HUseListNode<T>> {
1696  public:
1697   // Get the instruction which has this use as one of the inputs.
1698   T GetUser() const { return user_; }
1699   // Get the position of the input record that this use corresponds to.
1700   size_t GetIndex() const { return index_; }
1701   // Set the position of the input record that this use corresponds to.
1702   void SetIndex(size_t index) { index_ = index; }
1703 
1704  private:
1705   HUseListNode(T user, size_t index)
1706       : user_(user), index_(index) {}
1707 
1708   T const user_;
1709   size_t index_;
1710 
1711   friend class HInstruction;
1712 
1713   DISALLOW_COPY_AND_ASSIGN(HUseListNode);
1714 };
1715 
1716 template <typename T>
1717 using HUseList = IntrusiveForwardList<HUseListNode<T>>;
1718 
1719 // This class is used by HEnvironment and HInstruction classes to record the
1720 // instructions they use and pointers to the corresponding HUseListNodes kept
1721 // by the used instructions.
1722 template <typename T>
1723 class HUserRecord : public ValueObject {
1724  public:
HUserRecord()1725   HUserRecord() : instruction_(nullptr), before_use_node_() {}
HUserRecord(HInstruction * instruction)1726   explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), before_use_node_() {}
1727 
HUserRecord(const HUserRecord<T> & old_record,typename HUseList<T>::iterator before_use_node)1728   HUserRecord(const HUserRecord<T>& old_record, typename HUseList<T>::iterator before_use_node)
1729       : HUserRecord(old_record.instruction_, before_use_node) {}
HUserRecord(HInstruction * instruction,typename HUseList<T>::iterator before_use_node)1730   HUserRecord(HInstruction* instruction, typename HUseList<T>::iterator before_use_node)
1731       : instruction_(instruction), before_use_node_(before_use_node) {
1732     DCHECK(instruction_ != nullptr);
1733   }
1734 
GetInstruction()1735   HInstruction* GetInstruction() const { return instruction_; }
GetBeforeUseNode()1736   typename HUseList<T>::iterator GetBeforeUseNode() const { return before_use_node_; }
GetUseNode()1737   typename HUseList<T>::iterator GetUseNode() const { return ++GetBeforeUseNode(); }
1738 
1739  private:
1740   // Instruction used by the user.
1741   HInstruction* instruction_;
1742 
1743   // Iterator before the corresponding entry in the use list kept by 'instruction_'.
1744   typename HUseList<T>::iterator before_use_node_;
1745 };
1746 
1747 // Helper class that extracts the input instruction from HUserRecord<HInstruction*>.
1748 // This is used for HInstruction::GetInputs() to return a container wrapper providing
1749 // HInstruction* values even though the underlying container has HUserRecord<>s.
1750 struct HInputExtractor {
operatorHInputExtractor1751   HInstruction* operator()(HUserRecord<HInstruction*>& record) const {
1752     return record.GetInstruction();
1753   }
operatorHInputExtractor1754   const HInstruction* operator()(const HUserRecord<HInstruction*>& record) const {
1755     return record.GetInstruction();
1756   }
1757 };
1758 
1759 using HInputsRef = TransformArrayRef<HUserRecord<HInstruction*>, HInputExtractor>;
1760 using HConstInputsRef = TransformArrayRef<const HUserRecord<HInstruction*>, HInputExtractor>;
1761 
1762 /**
1763  * Side-effects representation.
1764  *
1765  * For write/read dependences on fields/arrays, the dependence analysis uses
1766  * type disambiguation (e.g. a float field write cannot modify the value of an
1767  * integer field read) and the access type (e.g.  a reference array write cannot
1768  * modify the value of a reference field read [although it may modify the
1769  * reference fetch prior to reading the field, which is represented by its own
1770  * write/read dependence]). The analysis makes conservative points-to
1771  * assumptions on reference types (e.g. two same typed arrays are assumed to be
1772  * the same, and any reference read depends on any reference read without
1773  * further regard of its type).
1774  *
1775  * kDependsOnGCBit is defined in the following way: instructions with kDependsOnGCBit must not be
1776  * alive across the point where garbage collection might happen.
1777  *
1778  * Note: Instructions with kCanTriggerGCBit do not depend on each other.
1779  *
1780  * kCanTriggerGCBit must be used for instructions for which GC might happen on the path across
1781  * those instructions from the compiler perspective (between this instruction and the next one
1782  * in the IR).
1783  *
1784  * Note: Instructions which can cause GC only on a fatal slow path do not need
1785  *       kCanTriggerGCBit as the execution never returns to the instruction next to the exceptional
1786  *       one. However the execution may return to compiled code if there is a catch block in the
1787  *       current method; for this purpose the TryBoundary exit instruction has kCanTriggerGCBit
1788  *       set.
1789  *
1790  * The internal representation uses 38-bit and is described in the table below.
1791  * The first line indicates the side effect, and for field/array accesses the
1792  * second line indicates the type of the access (in the order of the
1793  * DataType::Type enum).
1794  * The two numbered lines below indicate the bit position in the bitfield (read
1795  * vertically).
1796  *
1797  *   |Depends on GC|ARRAY-R  |FIELD-R  |Can trigger GC|ARRAY-W  |FIELD-W  |
1798  *   +-------------+---------+---------+--------------+---------+---------+
1799  *   |             |DFJISCBZL|DFJISCBZL|              |DFJISCBZL|DFJISCBZL|
1800  *   |      3      |333333322|222222221|       1      |111111110|000000000|
1801  *   |      7      |654321098|765432109|       8      |765432109|876543210|
1802  *
1803  * Note that, to ease the implementation, 'changes' bits are least significant
1804  * bits, while 'dependency' bits are most significant bits.
1805  */
1806 class SideEffects : public ValueObject {
1807  public:
SideEffects()1808   SideEffects() : flags_(0) {}
1809 
None()1810   static SideEffects None() {
1811     return SideEffects(0);
1812   }
1813 
All()1814   static SideEffects All() {
1815     return SideEffects(kAllChangeBits | kAllDependOnBits);
1816   }
1817 
AllChanges()1818   static SideEffects AllChanges() {
1819     return SideEffects(kAllChangeBits);
1820   }
1821 
AllDependencies()1822   static SideEffects AllDependencies() {
1823     return SideEffects(kAllDependOnBits);
1824   }
1825 
AllExceptGCDependency()1826   static SideEffects AllExceptGCDependency() {
1827     return AllWritesAndReads().Union(SideEffects::CanTriggerGC());
1828   }
1829 
AllWritesAndReads()1830   static SideEffects AllWritesAndReads() {
1831     return SideEffects(kAllWrites | kAllReads);
1832   }
1833 
AllWrites()1834   static SideEffects AllWrites() {
1835     return SideEffects(kAllWrites);
1836   }
1837 
AllReads()1838   static SideEffects AllReads() {
1839     return SideEffects(kAllReads);
1840   }
1841 
FieldWriteOfType(DataType::Type type,bool is_volatile)1842   static SideEffects FieldWriteOfType(DataType::Type type, bool is_volatile) {
1843     return is_volatile
1844         ? AllWritesAndReads()
1845         : SideEffects(TypeFlag(type, kFieldWriteOffset));
1846   }
1847 
ArrayWriteOfType(DataType::Type type)1848   static SideEffects ArrayWriteOfType(DataType::Type type) {
1849     return SideEffects(TypeFlag(type, kArrayWriteOffset));
1850   }
1851 
FieldReadOfType(DataType::Type type,bool is_volatile)1852   static SideEffects FieldReadOfType(DataType::Type type, bool is_volatile) {
1853     return is_volatile
1854         ? AllWritesAndReads()
1855         : SideEffects(TypeFlag(type, kFieldReadOffset));
1856   }
1857 
ArrayReadOfType(DataType::Type type)1858   static SideEffects ArrayReadOfType(DataType::Type type) {
1859     return SideEffects(TypeFlag(type, kArrayReadOffset));
1860   }
1861 
1862   // Returns whether GC might happen across this instruction from the compiler perspective so
1863   // the next instruction in the IR would see that.
1864   //
1865   // See the SideEffect class comments.
CanTriggerGC()1866   static SideEffects CanTriggerGC() {
1867     return SideEffects(1ULL << kCanTriggerGCBit);
1868   }
1869 
1870   // Returns whether the instruction must not be alive across a GC point.
1871   //
1872   // See the SideEffect class comments.
DependsOnGC()1873   static SideEffects DependsOnGC() {
1874     return SideEffects(1ULL << kDependsOnGCBit);
1875   }
1876 
1877   // Combines the side-effects of this and the other.
Union(SideEffects other)1878   SideEffects Union(SideEffects other) const {
1879     return SideEffects(flags_ | other.flags_);
1880   }
1881 
Exclusion(SideEffects other)1882   SideEffects Exclusion(SideEffects other) const {
1883     return SideEffects(flags_ & ~other.flags_);
1884   }
1885 
Add(SideEffects other)1886   void Add(SideEffects other) {
1887     flags_ |= other.flags_;
1888   }
1889 
Includes(SideEffects other)1890   bool Includes(SideEffects other) const {
1891     return (other.flags_ & flags_) == other.flags_;
1892   }
1893 
HasSideEffects()1894   bool HasSideEffects() const {
1895     return (flags_ & kAllChangeBits);
1896   }
1897 
HasDependencies()1898   bool HasDependencies() const {
1899     return (flags_ & kAllDependOnBits);
1900   }
1901 
1902   // Returns true if there are no side effects or dependencies.
DoesNothing()1903   bool DoesNothing() const {
1904     return flags_ == 0;
1905   }
1906 
1907   // Returns true if something is written.
DoesAnyWrite()1908   bool DoesAnyWrite() const {
1909     return (flags_ & kAllWrites);
1910   }
1911 
1912   // Returns true if something is read.
DoesAnyRead()1913   bool DoesAnyRead() const {
1914     return (flags_ & kAllReads);
1915   }
1916 
1917   // Returns true if potentially everything is written and read
1918   // (every type and every kind of access).
DoesAllReadWrite()1919   bool DoesAllReadWrite() const {
1920     return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads);
1921   }
1922 
DoesAll()1923   bool DoesAll() const {
1924     return flags_ == (kAllChangeBits | kAllDependOnBits);
1925   }
1926 
1927   // Returns true if `this` may read something written by `other`.
MayDependOn(SideEffects other)1928   bool MayDependOn(SideEffects other) const {
1929     const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits;
1930     return (other.flags_ & depends_on_flags);
1931   }
1932 
1933   // Returns string representation of flags (for debugging only).
1934   // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL|
ToString()1935   std::string ToString() const {
1936     std::string flags = "|";
1937     for (int s = kLastBit; s >= 0; s--) {
1938       bool current_bit_is_set = ((flags_ >> s) & 1) != 0;
1939       if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) {
1940         // This is a bit for the GC side effect.
1941         if (current_bit_is_set) {
1942           flags += "GC";
1943         }
1944         flags += "|";
1945       } else {
1946         // This is a bit for the array/field analysis.
1947         // The underscore character stands for the 'can trigger GC' bit.
1948         static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD";
1949         if (current_bit_is_set) {
1950           flags += kDebug[s];
1951         }
1952         if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) ||
1953             (s == kFieldReadOffset) || (s == kArrayReadOffset)) {
1954           flags += "|";
1955         }
1956       }
1957     }
1958     return flags;
1959   }
1960 
Equals(const SideEffects & other)1961   bool Equals(const SideEffects& other) const { return flags_ == other.flags_; }
1962 
1963  private:
1964   static constexpr int kFieldArrayAnalysisBits = 9;
1965 
1966   static constexpr int kFieldWriteOffset = 0;
1967   static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits;
1968   static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1;
1969   static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1;
1970 
1971   static constexpr int kChangeBits = kCanTriggerGCBit + 1;
1972 
1973   static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1;
1974   static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits;
1975   static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1;
1976   static constexpr int kDependsOnGCBit = kLastBitForReads + 1;
1977 
1978   static constexpr int kLastBit = kDependsOnGCBit;
1979   static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits;
1980 
1981   // Aliases.
1982 
1983   static_assert(kChangeBits == kDependOnBits,
1984                 "the 'change' bits should match the 'depend on' bits.");
1985 
1986   static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1);
1987   static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits;
1988   static constexpr uint64_t kAllWrites =
1989       ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset;
1990   static constexpr uint64_t kAllReads =
1991       ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset;
1992 
1993   // Translates type to bit flag. The type must correspond to a Java type.
TypeFlag(DataType::Type type,int offset)1994   static uint64_t TypeFlag(DataType::Type type, int offset) {
1995     int shift;
1996     switch (type) {
1997       case DataType::Type::kReference: shift = 0; break;
1998       case DataType::Type::kBool:      shift = 1; break;
1999       case DataType::Type::kInt8:      shift = 2; break;
2000       case DataType::Type::kUint16:    shift = 3; break;
2001       case DataType::Type::kInt16:     shift = 4; break;
2002       case DataType::Type::kInt32:     shift = 5; break;
2003       case DataType::Type::kInt64:     shift = 6; break;
2004       case DataType::Type::kFloat32:   shift = 7; break;
2005       case DataType::Type::kFloat64:   shift = 8; break;
2006       default:
2007         LOG(FATAL) << "Unexpected data type " << type;
2008         UNREACHABLE();
2009     }
2010     DCHECK_LE(kFieldWriteOffset, shift);
2011     DCHECK_LT(shift, kArrayWriteOffset);
2012     return UINT64_C(1) << (shift + offset);
2013   }
2014 
2015   // Private constructor on direct flags value.
SideEffects(uint64_t flags)2016   explicit SideEffects(uint64_t flags) : flags_(flags) {}
2017 
2018   uint64_t flags_;
2019 };
2020 
2021 // A HEnvironment object contains the values of virtual registers at a given location.
2022 class HEnvironment : public ArenaObject<kArenaAllocEnvironment> {
2023  public:
HEnvironment(ArenaAllocator * allocator,size_t number_of_vregs,ArtMethod * method,uint32_t dex_pc,HInstruction * holder)2024   ALWAYS_INLINE HEnvironment(ArenaAllocator* allocator,
2025                              size_t number_of_vregs,
2026                              ArtMethod* method,
2027                              uint32_t dex_pc,
2028                              HInstruction* holder)
2029      : vregs_(number_of_vregs, allocator->Adapter(kArenaAllocEnvironmentVRegs)),
2030        locations_(allocator->Adapter(kArenaAllocEnvironmentLocations)),
2031        parent_(nullptr),
2032        method_(method),
2033        dex_pc_(dex_pc),
2034        holder_(holder) {
2035   }
2036 
HEnvironment(ArenaAllocator * allocator,const HEnvironment & to_copy,HInstruction * holder)2037   ALWAYS_INLINE HEnvironment(ArenaAllocator* allocator,
2038                              const HEnvironment& to_copy,
2039                              HInstruction* holder)
2040       : HEnvironment(allocator,
2041                      to_copy.Size(),
2042                      to_copy.GetMethod(),
2043                      to_copy.GetDexPc(),
2044                      holder) {}
2045 
AllocateLocations()2046   void AllocateLocations() {
2047     DCHECK(locations_.empty());
2048     locations_.resize(vregs_.size());
2049   }
2050 
SetAndCopyParentChain(ArenaAllocator * allocator,HEnvironment * parent)2051   void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
2052     if (parent_ != nullptr) {
2053       parent_->SetAndCopyParentChain(allocator, parent);
2054     } else {
2055       parent_ = new (allocator) HEnvironment(allocator, *parent, holder_);
2056       parent_->CopyFrom(parent);
2057       if (parent->GetParent() != nullptr) {
2058         parent_->SetAndCopyParentChain(allocator, parent->GetParent());
2059       }
2060     }
2061   }
2062 
2063   void CopyFrom(ArrayRef<HInstruction* const> locals);
2064   void CopyFrom(HEnvironment* environment);
2065 
2066   // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
2067   // input to the loop phi instead. This is for inserting instructions that
2068   // require an environment (like HDeoptimization) in the loop pre-header.
2069   void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
2070 
SetRawEnvAt(size_t index,HInstruction * instruction)2071   void SetRawEnvAt(size_t index, HInstruction* instruction) {
2072     vregs_[index] = HUserRecord<HEnvironment*>(instruction);
2073   }
2074 
GetInstructionAt(size_t index)2075   HInstruction* GetInstructionAt(size_t index) const {
2076     return vregs_[index].GetInstruction();
2077   }
2078 
2079   void RemoveAsUserOfInput(size_t index) const;
2080 
2081   // Replaces the input at the position 'index' with the replacement; the replacement and old
2082   // input instructions' env_uses_ lists are adjusted. The function works similar to
2083   // HInstruction::ReplaceInput.
2084   void ReplaceInput(HInstruction* replacement, size_t index);
2085 
Size()2086   size_t Size() const { return vregs_.size(); }
2087 
GetParent()2088   HEnvironment* GetParent() const { return parent_; }
2089 
SetLocationAt(size_t index,Location location)2090   void SetLocationAt(size_t index, Location location) {
2091     locations_[index] = location;
2092   }
2093 
GetLocationAt(size_t index)2094   Location GetLocationAt(size_t index) const {
2095     return locations_[index];
2096   }
2097 
GetDexPc()2098   uint32_t GetDexPc() const {
2099     return dex_pc_;
2100   }
2101 
GetMethod()2102   ArtMethod* GetMethod() const {
2103     return method_;
2104   }
2105 
GetHolder()2106   HInstruction* GetHolder() const {
2107     return holder_;
2108   }
2109 
2110 
IsFromInlinedInvoke()2111   bool IsFromInlinedInvoke() const {
2112     return GetParent() != nullptr;
2113   }
2114 
2115   class EnvInputSelector {
2116    public:
EnvInputSelector(const HEnvironment * e)2117     explicit EnvInputSelector(const HEnvironment* e) : env_(e) {}
operator()2118     HInstruction* operator()(size_t s) const {
2119       return env_->GetInstructionAt(s);
2120     }
2121    private:
2122     const HEnvironment* env_;
2123   };
2124 
2125   using HConstEnvInputRef = TransformIterator<CountIter, EnvInputSelector>;
GetEnvInputs()2126   IterationRange<HConstEnvInputRef> GetEnvInputs() const {
2127     IterationRange<CountIter> range(Range(Size()));
2128     return MakeIterationRange(MakeTransformIterator(range.begin(), EnvInputSelector(this)),
2129                               MakeTransformIterator(range.end(), EnvInputSelector(this)));
2130   }
2131 
2132  private:
2133   ArenaVector<HUserRecord<HEnvironment*>> vregs_;
2134   ArenaVector<Location> locations_;
2135   HEnvironment* parent_;
2136   ArtMethod* method_;
2137   const uint32_t dex_pc_;
2138 
2139   // The instruction that holds this environment.
2140   HInstruction* const holder_;
2141 
2142   friend class HInstruction;
2143 
2144   DISALLOW_COPY_AND_ASSIGN(HEnvironment);
2145 };
2146 
2147 std::ostream& operator<<(std::ostream& os, const HInstruction& rhs);
2148 
2149 // Iterates over the Environments
2150 class HEnvironmentIterator : public ValueObject,
2151                              public std::iterator<std::forward_iterator_tag, HEnvironment*> {
2152  public:
HEnvironmentIterator(HEnvironment * cur)2153   explicit HEnvironmentIterator(HEnvironment* cur) : cur_(cur) {}
2154 
2155   HEnvironment* operator*() const {
2156     return cur_;
2157   }
2158 
2159   HEnvironmentIterator& operator++() {
2160     DCHECK(cur_ != nullptr);
2161     cur_ = cur_->GetParent();
2162     return *this;
2163   }
2164 
2165   HEnvironmentIterator operator++(int) {
2166     HEnvironmentIterator prev(*this);
2167     ++(*this);
2168     return prev;
2169   }
2170 
2171   bool operator==(const HEnvironmentIterator& other) const {
2172     return other.cur_ == cur_;
2173   }
2174 
2175   bool operator!=(const HEnvironmentIterator& other) const {
2176     return !(*this == other);
2177   }
2178 
2179  private:
2180   HEnvironment* cur_;
2181 };
2182 
2183 class HInstruction : public ArenaObject<kArenaAllocInstruction> {
2184  public:
2185 #define DECLARE_KIND(type, super) k##type,
2186   enum InstructionKind {  // private marker to avoid generate-operator-out.py from processing.
2187     FOR_EACH_CONCRETE_INSTRUCTION(DECLARE_KIND)
2188     kLastInstructionKind
2189   };
2190 #undef DECLARE_KIND
2191 
HInstruction(InstructionKind kind,SideEffects side_effects,uint32_t dex_pc)2192   HInstruction(InstructionKind kind, SideEffects side_effects, uint32_t dex_pc)
2193       : HInstruction(kind, DataType::Type::kVoid, side_effects, dex_pc) {}
2194 
HInstruction(InstructionKind kind,DataType::Type type,SideEffects side_effects,uint32_t dex_pc)2195   HInstruction(InstructionKind kind, DataType::Type type, SideEffects side_effects, uint32_t dex_pc)
2196       : previous_(nullptr),
2197         next_(nullptr),
2198         block_(nullptr),
2199         dex_pc_(dex_pc),
2200         id_(-1),
2201         ssa_index_(-1),
2202         packed_fields_(0u),
2203         environment_(nullptr),
2204         locations_(nullptr),
2205         live_interval_(nullptr),
2206         lifetime_position_(kNoLifetime),
2207         side_effects_(side_effects),
2208         reference_type_handle_(ReferenceTypeInfo::CreateInvalid().GetTypeHandle()) {
2209     SetPackedField<InstructionKindField>(kind);
2210     SetPackedField<TypeField>(type);
2211     SetPackedFlag<kFlagReferenceTypeIsExact>(ReferenceTypeInfo::CreateInvalid().IsExact());
2212   }
2213 
~HInstruction()2214   virtual ~HInstruction() {}
2215 
2216   std::ostream& Dump(std::ostream& os, bool dump_args = false);
2217 
2218   // Helper for dumping without argument information using operator<<
2219   struct NoArgsDump {
2220     const HInstruction* ins;
2221   };
DumpWithoutArgs()2222   NoArgsDump DumpWithoutArgs() const {
2223     return NoArgsDump{this};
2224   }
2225   // Helper for dumping with argument information using operator<<
2226   struct ArgsDump {
2227     const HInstruction* ins;
2228   };
DumpWithArgs()2229   ArgsDump DumpWithArgs() const {
2230     return ArgsDump{this};
2231   }
2232 
GetNext()2233   HInstruction* GetNext() const { return next_; }
GetPrevious()2234   HInstruction* GetPrevious() const { return previous_; }
2235 
2236   HInstruction* GetNextDisregardingMoves() const;
2237   HInstruction* GetPreviousDisregardingMoves() const;
2238 
GetBlock()2239   HBasicBlock* GetBlock() const { return block_; }
GetAllocator()2240   ArenaAllocator* GetAllocator() const { return block_->GetGraph()->GetAllocator(); }
SetBlock(HBasicBlock * block)2241   void SetBlock(HBasicBlock* block) { block_ = block; }
IsInBlock()2242   bool IsInBlock() const { return block_ != nullptr; }
IsInLoop()2243   bool IsInLoop() const { return block_->IsInLoop(); }
IsLoopHeaderPhi()2244   bool IsLoopHeaderPhi() const { return IsPhi() && block_->IsLoopHeader(); }
IsIrreducibleLoopHeaderPhi()2245   bool IsIrreducibleLoopHeaderPhi() const {
2246     return IsLoopHeaderPhi() && GetBlock()->GetLoopInformation()->IsIrreducible();
2247   }
2248 
2249   virtual ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() = 0;
2250 
GetInputRecords()2251   ArrayRef<const HUserRecord<HInstruction*>> GetInputRecords() const {
2252     // One virtual method is enough, just const_cast<> and then re-add the const.
2253     return ArrayRef<const HUserRecord<HInstruction*>>(
2254         const_cast<HInstruction*>(this)->GetInputRecords());
2255   }
2256 
GetInputs()2257   HInputsRef GetInputs() {
2258     return MakeTransformArrayRef(GetInputRecords(), HInputExtractor());
2259   }
2260 
GetInputs()2261   HConstInputsRef GetInputs() const {
2262     return MakeTransformArrayRef(GetInputRecords(), HInputExtractor());
2263   }
2264 
InputCount()2265   size_t InputCount() const { return GetInputRecords().size(); }
InputAt(size_t i)2266   HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
2267 
HasInput(HInstruction * input)2268   bool HasInput(HInstruction* input) const {
2269     for (const HInstruction* i : GetInputs()) {
2270       if (i == input) {
2271         return true;
2272       }
2273     }
2274     return false;
2275   }
2276 
SetRawInputAt(size_t index,HInstruction * input)2277   void SetRawInputAt(size_t index, HInstruction* input) {
2278     SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
2279   }
2280 
2281   virtual void Accept(HGraphVisitor* visitor) = 0;
2282   virtual const char* DebugName() const = 0;
2283 
GetType()2284   DataType::Type GetType() const {
2285     return TypeField::Decode(GetPackedFields());
2286   }
2287 
NeedsEnvironment()2288   virtual bool NeedsEnvironment() const { return false; }
2289 
GetDexPc()2290   uint32_t GetDexPc() const { return dex_pc_; }
2291 
IsControlFlow()2292   virtual bool IsControlFlow() const { return false; }
2293 
2294   // Can the instruction throw?
2295   // TODO: We should rename to CanVisiblyThrow, as some instructions (like HNewInstance),
2296   // could throw OOME, but it is still OK to remove them if they are unused.
CanThrow()2297   virtual bool CanThrow() const { return false; }
2298 
2299   // Does the instruction always throw an exception unconditionally?
AlwaysThrows()2300   virtual bool AlwaysThrows() const { return false; }
2301   // Will this instruction only cause async exceptions if it causes any at all?
OnlyThrowsAsyncExceptions()2302   virtual bool OnlyThrowsAsyncExceptions() const {
2303     return false;
2304   }
2305 
CanThrowIntoCatchBlock()2306   bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); }
2307 
HasSideEffects()2308   bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
DoesAnyWrite()2309   bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); }
2310 
2311   // Does not apply for all instructions, but having this at top level greatly
2312   // simplifies the null check elimination.
2313   // TODO: Consider merging can_be_null into ReferenceTypeInfo.
CanBeNull()2314   virtual bool CanBeNull() const {
2315     DCHECK_EQ(GetType(), DataType::Type::kReference) << "CanBeNull only applies to reference types";
2316     return true;
2317   }
2318 
CanDoImplicitNullCheckOn(HInstruction * obj ATTRIBUTE_UNUSED)2319   virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const {
2320     return false;
2321   }
2322 
2323   // If this instruction will do an implicit null check, return the `HNullCheck` associated
2324   // with it. Otherwise return null.
GetImplicitNullCheck()2325   HNullCheck* GetImplicitNullCheck() const {
2326     // Go over previous non-move instructions that are emitted at use site.
2327     HInstruction* prev_not_move = GetPreviousDisregardingMoves();
2328     while (prev_not_move != nullptr && prev_not_move->IsEmittedAtUseSite()) {
2329       if (prev_not_move->IsNullCheck()) {
2330         return prev_not_move->AsNullCheck();
2331       }
2332       prev_not_move = prev_not_move->GetPreviousDisregardingMoves();
2333     }
2334     return nullptr;
2335   }
2336 
IsActualObject()2337   virtual bool IsActualObject() const {
2338     return GetType() == DataType::Type::kReference;
2339   }
2340 
2341   void SetReferenceTypeInfo(ReferenceTypeInfo rti);
2342 
GetReferenceTypeInfo()2343   ReferenceTypeInfo GetReferenceTypeInfo() const {
2344     DCHECK_EQ(GetType(), DataType::Type::kReference);
2345     return ReferenceTypeInfo::CreateUnchecked(reference_type_handle_,
2346                                               GetPackedFlag<kFlagReferenceTypeIsExact>());
2347   }
2348 
AddUseAt(HInstruction * user,size_t index)2349   void AddUseAt(HInstruction* user, size_t index) {
2350     DCHECK(user != nullptr);
2351     // Note: fixup_end remains valid across push_front().
2352     auto fixup_end = uses_.empty() ? uses_.begin() : ++uses_.begin();
2353     ArenaAllocator* allocator = user->GetBlock()->GetGraph()->GetAllocator();
2354     HUseListNode<HInstruction*>* new_node =
2355         new (allocator) HUseListNode<HInstruction*>(user, index);
2356     uses_.push_front(*new_node);
2357     FixUpUserRecordsAfterUseInsertion(fixup_end);
2358   }
2359 
AddEnvUseAt(HEnvironment * user,size_t index)2360   void AddEnvUseAt(HEnvironment* user, size_t index) {
2361     DCHECK(user != nullptr);
2362     // Note: env_fixup_end remains valid across push_front().
2363     auto env_fixup_end = env_uses_.empty() ? env_uses_.begin() : ++env_uses_.begin();
2364     HUseListNode<HEnvironment*>* new_node =
2365         new (GetBlock()->GetGraph()->GetAllocator()) HUseListNode<HEnvironment*>(user, index);
2366     env_uses_.push_front(*new_node);
2367     FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end);
2368   }
2369 
RemoveAsUserOfInput(size_t input)2370   void RemoveAsUserOfInput(size_t input) {
2371     HUserRecord<HInstruction*> input_use = InputRecordAt(input);
2372     HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
2373     input_use.GetInstruction()->uses_.erase_after(before_use_node);
2374     input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
2375   }
2376 
RemoveAsUserOfAllInputs()2377   void RemoveAsUserOfAllInputs() {
2378     for (const HUserRecord<HInstruction*>& input_use : GetInputRecords()) {
2379       HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
2380       input_use.GetInstruction()->uses_.erase_after(before_use_node);
2381       input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
2382     }
2383   }
2384 
GetUses()2385   const HUseList<HInstruction*>& GetUses() const { return uses_; }
GetEnvUses()2386   const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
2387 
HasUses()2388   bool HasUses() const { return !uses_.empty() || !env_uses_.empty(); }
HasEnvironmentUses()2389   bool HasEnvironmentUses() const { return !env_uses_.empty(); }
HasNonEnvironmentUses()2390   bool HasNonEnvironmentUses() const { return !uses_.empty(); }
HasOnlyOneNonEnvironmentUse()2391   bool HasOnlyOneNonEnvironmentUse() const {
2392     return !HasEnvironmentUses() && GetUses().HasExactlyOneElement();
2393   }
2394 
IsRemovable()2395   bool IsRemovable() const {
2396     return
2397         !DoesAnyWrite() &&
2398         !CanThrow() &&
2399         !IsSuspendCheck() &&
2400         !IsControlFlow() &&
2401         !IsNativeDebugInfo() &&
2402         !IsParameterValue() &&
2403         // If we added an explicit barrier then we should keep it.
2404         !IsMemoryBarrier() &&
2405         !IsConstructorFence();
2406   }
2407 
IsDeadAndRemovable()2408   bool IsDeadAndRemovable() const {
2409     return IsRemovable() && !HasUses();
2410   }
2411 
2412   // Does this instruction strictly dominate `other_instruction`?
2413   // Returns false if this instruction and `other_instruction` are the same.
2414   // Aborts if this instruction and `other_instruction` are both phis.
2415   bool StrictlyDominates(HInstruction* other_instruction) const;
2416 
GetId()2417   int GetId() const { return id_; }
SetId(int id)2418   void SetId(int id) { id_ = id; }
2419 
GetSsaIndex()2420   int GetSsaIndex() const { return ssa_index_; }
SetSsaIndex(int ssa_index)2421   void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
HasSsaIndex()2422   bool HasSsaIndex() const { return ssa_index_ != -1; }
2423 
HasEnvironment()2424   bool HasEnvironment() const { return environment_ != nullptr; }
GetEnvironment()2425   HEnvironment* GetEnvironment() const { return environment_; }
GetAllEnvironments()2426   IterationRange<HEnvironmentIterator> GetAllEnvironments() const {
2427     return MakeIterationRange(HEnvironmentIterator(GetEnvironment()),
2428                               HEnvironmentIterator(nullptr));
2429   }
2430   // Set the `environment_` field. Raw because this method does not
2431   // update the uses lists.
SetRawEnvironment(HEnvironment * environment)2432   void SetRawEnvironment(HEnvironment* environment) {
2433     DCHECK(environment_ == nullptr);
2434     DCHECK_EQ(environment->GetHolder(), this);
2435     environment_ = environment;
2436   }
2437 
InsertRawEnvironment(HEnvironment * environment)2438   void InsertRawEnvironment(HEnvironment* environment) {
2439     DCHECK(environment_ != nullptr);
2440     DCHECK_EQ(environment->GetHolder(), this);
2441     DCHECK(environment->GetParent() == nullptr);
2442     environment->parent_ = environment_;
2443     environment_ = environment;
2444   }
2445 
2446   void RemoveEnvironment();
2447 
2448   // Set the environment of this instruction, copying it from `environment`. While
2449   // copying, the uses lists are being updated.
CopyEnvironmentFrom(HEnvironment * environment)2450   void CopyEnvironmentFrom(HEnvironment* environment) {
2451     DCHECK(environment_ == nullptr);
2452     ArenaAllocator* allocator = GetBlock()->GetGraph()->GetAllocator();
2453     environment_ = new (allocator) HEnvironment(allocator, *environment, this);
2454     environment_->CopyFrom(environment);
2455     if (environment->GetParent() != nullptr) {
2456       environment_->SetAndCopyParentChain(allocator, environment->GetParent());
2457     }
2458   }
2459 
CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment * environment,HBasicBlock * block)2460   void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
2461                                                 HBasicBlock* block) {
2462     DCHECK(environment_ == nullptr);
2463     ArenaAllocator* allocator = GetBlock()->GetGraph()->GetAllocator();
2464     environment_ = new (allocator) HEnvironment(allocator, *environment, this);
2465     environment_->CopyFromWithLoopPhiAdjustment(environment, block);
2466     if (environment->GetParent() != nullptr) {
2467       environment_->SetAndCopyParentChain(allocator, environment->GetParent());
2468     }
2469   }
2470 
2471   // Returns the number of entries in the environment. Typically, that is the
2472   // number of dex registers in a method. It could be more in case of inlining.
2473   size_t EnvironmentSize() const;
2474 
GetLocations()2475   LocationSummary* GetLocations() const { return locations_; }
SetLocations(LocationSummary * locations)2476   void SetLocations(LocationSummary* locations) { locations_ = locations; }
2477 
2478   void ReplaceWith(HInstruction* instruction);
2479   void ReplaceUsesDominatedBy(HInstruction* dominator, HInstruction* replacement);
2480   void ReplaceEnvUsesDominatedBy(HInstruction* dominator, HInstruction* replacement);
2481   void ReplaceInput(HInstruction* replacement, size_t index);
2482 
2483   // This is almost the same as doing `ReplaceWith()`. But in this helper, the
2484   // uses of this instruction by `other` are *not* updated.
ReplaceWithExceptInReplacementAtIndex(HInstruction * other,size_t use_index)2485   void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
2486     ReplaceWith(other);
2487     other->ReplaceInput(this, use_index);
2488   }
2489 
2490   // Move `this` instruction before `cursor`
2491   void MoveBefore(HInstruction* cursor, bool do_checks = true);
2492 
2493   // Move `this` before its first user and out of any loops. If there is no
2494   // out-of-loop user that dominates all other users, move the instruction
2495   // to the end of the out-of-loop common dominator of the user's blocks.
2496   //
2497   // This can be used only on non-throwing instructions with no side effects that
2498   // have at least one use but no environment uses.
2499   void MoveBeforeFirstUserAndOutOfLoops();
2500 
2501 #define INSTRUCTION_TYPE_CHECK(type, super)                                    \
2502   bool Is##type() const;
2503 
2504   FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
2505 #undef INSTRUCTION_TYPE_CHECK
2506 
2507 #define INSTRUCTION_TYPE_CAST(type, super)                                     \
2508   const H##type* As##type() const;                                             \
2509   H##type* As##type();
2510 
FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CAST)2511   FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CAST)
2512 #undef INSTRUCTION_TYPE_CAST
2513 
2514   // Return a clone of the instruction if it is clonable (shallow copy by default, custom copy
2515   // if a custom copy-constructor is provided for a particular type). If IsClonable() is false for
2516   // the instruction then the behaviour of this function is undefined.
2517   //
2518   // Note: It is semantically valid to create a clone of the instruction only until
2519   // prepare_for_register_allocator phase as lifetime, intervals and codegen info are not
2520   // copied.
2521   //
2522   // Note: HEnvironment and some other fields are not copied and are set to default values, see
2523   // 'explicit HInstruction(const HInstruction& other)' for details.
2524   virtual HInstruction* Clone(ArenaAllocator* arena ATTRIBUTE_UNUSED) const {
2525     LOG(FATAL) << "Cloning is not implemented for the instruction " <<
2526                   DebugName() << " " << GetId();
2527     UNREACHABLE();
2528   }
2529 
IsFieldAccess()2530   virtual bool IsFieldAccess() const {
2531     return false;
2532   }
2533 
GetFieldInfo()2534   virtual const FieldInfo& GetFieldInfo() const {
2535     CHECK(IsFieldAccess()) << "Only callable on field accessors not " << DebugName() << " "
2536                            << *this;
2537     LOG(FATAL) << "Must be overridden by field accessors. Not implemented by " << *this;
2538     UNREACHABLE();
2539   }
2540 
2541   // Return whether instruction can be cloned (copied).
IsClonable()2542   virtual bool IsClonable() const { return false; }
2543 
2544   // Returns whether the instruction can be moved within the graph.
2545   // TODO: this method is used by LICM and GVN with possibly different
2546   //       meanings? split and rename?
CanBeMoved()2547   virtual bool CanBeMoved() const { return false; }
2548 
2549   // Returns whether any data encoded in the two instructions is equal.
2550   // This method does not look at the inputs. Both instructions must be
2551   // of the same type, otherwise the method has undefined behavior.
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)2552   virtual bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const {
2553     return false;
2554   }
2555 
2556   // Returns whether two instructions are equal, that is:
2557   // 1) They have the same type and contain the same data (InstructionDataEquals).
2558   // 2) Their inputs are identical.
2559   bool Equals(const HInstruction* other) const;
2560 
GetKind()2561   InstructionKind GetKind() const { return GetPackedField<InstructionKindField>(); }
2562 
ComputeHashCode()2563   virtual size_t ComputeHashCode() const {
2564     size_t result = GetKind();
2565     for (const HInstruction* input : GetInputs()) {
2566       result = (result * 31) + input->GetId();
2567     }
2568     return result;
2569   }
2570 
GetSideEffects()2571   SideEffects GetSideEffects() const { return side_effects_; }
SetSideEffects(SideEffects other)2572   void SetSideEffects(SideEffects other) { side_effects_ = other; }
AddSideEffects(SideEffects other)2573   void AddSideEffects(SideEffects other) { side_effects_.Add(other); }
2574 
GetLifetimePosition()2575   size_t GetLifetimePosition() const { return lifetime_position_; }
SetLifetimePosition(size_t position)2576   void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
GetLiveInterval()2577   LiveInterval* GetLiveInterval() const { return live_interval_; }
SetLiveInterval(LiveInterval * interval)2578   void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
HasLiveInterval()2579   bool HasLiveInterval() const { return live_interval_ != nullptr; }
2580 
IsSuspendCheckEntry()2581   bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
2582 
2583   // Returns whether the code generation of the instruction will require to have access
2584   // to the current method. Such instructions are:
2585   // (1): Instructions that require an environment, as calling the runtime requires
2586   //      to walk the stack and have the current method stored at a specific stack address.
2587   // (2): HCurrentMethod, potentially used by HInvokeStaticOrDirect, HLoadString, or HLoadClass
2588   //      to access the dex cache.
NeedsCurrentMethod()2589   bool NeedsCurrentMethod() const {
2590     return NeedsEnvironment() || IsCurrentMethod();
2591   }
2592 
2593   // Does this instruction have any use in an environment before
2594   // control flow hits 'other'?
2595   bool HasAnyEnvironmentUseBefore(HInstruction* other);
2596 
2597   // Remove all references to environment uses of this instruction.
2598   // The caller must ensure that this is safe to do.
2599   void RemoveEnvironmentUsers();
2600 
IsEmittedAtUseSite()2601   bool IsEmittedAtUseSite() const { return GetPackedFlag<kFlagEmittedAtUseSite>(); }
MarkEmittedAtUseSite()2602   void MarkEmittedAtUseSite() { SetPackedFlag<kFlagEmittedAtUseSite>(true); }
2603 
2604  protected:
2605   // If set, the machine code for this instruction is assumed to be generated by
2606   // its users. Used by liveness analysis to compute use positions accordingly.
2607   static constexpr size_t kFlagEmittedAtUseSite = 0u;
2608   static constexpr size_t kFlagReferenceTypeIsExact = kFlagEmittedAtUseSite + 1;
2609   static constexpr size_t kFieldInstructionKind = kFlagReferenceTypeIsExact + 1;
2610   static constexpr size_t kFieldInstructionKindSize =
2611       MinimumBitsToStore(static_cast<size_t>(InstructionKind::kLastInstructionKind - 1));
2612   static constexpr size_t kFieldType =
2613       kFieldInstructionKind + kFieldInstructionKindSize;
2614   static constexpr size_t kFieldTypeSize =
2615       MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
2616   static constexpr size_t kNumberOfGenericPackedBits = kFieldType + kFieldTypeSize;
2617   static constexpr size_t kMaxNumberOfPackedBits = sizeof(uint32_t) * kBitsPerByte;
2618 
2619   static_assert(kNumberOfGenericPackedBits <= kMaxNumberOfPackedBits,
2620                 "Too many generic packed fields");
2621 
2622   using TypeField = BitField<DataType::Type, kFieldType, kFieldTypeSize>;
2623 
InputRecordAt(size_t i)2624   const HUserRecord<HInstruction*> InputRecordAt(size_t i) const {
2625     return GetInputRecords()[i];
2626   }
2627 
SetRawInputRecordAt(size_t index,const HUserRecord<HInstruction * > & input)2628   void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) {
2629     ArrayRef<HUserRecord<HInstruction*>> input_records = GetInputRecords();
2630     input_records[index] = input;
2631   }
2632 
GetPackedFields()2633   uint32_t GetPackedFields() const {
2634     return packed_fields_;
2635   }
2636 
2637   template <size_t flag>
GetPackedFlag()2638   bool GetPackedFlag() const {
2639     return (packed_fields_ & (1u << flag)) != 0u;
2640   }
2641 
2642   template <size_t flag>
2643   void SetPackedFlag(bool value = true) {
2644     packed_fields_ = (packed_fields_ & ~(1u << flag)) | ((value ? 1u : 0u) << flag);
2645   }
2646 
2647   template <typename BitFieldType>
GetPackedField()2648   typename BitFieldType::value_type GetPackedField() const {
2649     return BitFieldType::Decode(packed_fields_);
2650   }
2651 
2652   template <typename BitFieldType>
SetPackedField(typename BitFieldType::value_type value)2653   void SetPackedField(typename BitFieldType::value_type value) {
2654     DCHECK(IsUint<BitFieldType::size>(static_cast<uintptr_t>(value)));
2655     packed_fields_ = BitFieldType::Update(value, packed_fields_);
2656   }
2657 
2658   // Copy construction for the instruction (used for Clone function).
2659   //
2660   // Fields (e.g. lifetime, intervals and codegen info) associated with phases starting from
2661   // prepare_for_register_allocator are not copied (set to default values).
2662   //
2663   // Copy constructors must be provided for every HInstruction type; default copy constructor is
2664   // fine for most of them. However for some of the instructions a custom copy constructor must be
2665   // specified (when instruction has non-trivially copyable fields and must have a special behaviour
2666   // for copying them).
HInstruction(const HInstruction & other)2667   explicit HInstruction(const HInstruction& other)
2668       : previous_(nullptr),
2669         next_(nullptr),
2670         block_(nullptr),
2671         dex_pc_(other.dex_pc_),
2672         id_(-1),
2673         ssa_index_(-1),
2674         packed_fields_(other.packed_fields_),
2675         environment_(nullptr),
2676         locations_(nullptr),
2677         live_interval_(nullptr),
2678         lifetime_position_(kNoLifetime),
2679         side_effects_(other.side_effects_),
2680         reference_type_handle_(other.reference_type_handle_) {
2681   }
2682 
2683  private:
2684   using InstructionKindField =
2685      BitField<InstructionKind, kFieldInstructionKind, kFieldInstructionKindSize>;
2686 
FixUpUserRecordsAfterUseInsertion(HUseList<HInstruction * >::iterator fixup_end)2687   void FixUpUserRecordsAfterUseInsertion(HUseList<HInstruction*>::iterator fixup_end) {
2688     auto before_use_node = uses_.before_begin();
2689     for (auto use_node = uses_.begin(); use_node != fixup_end; ++use_node) {
2690       HInstruction* user = use_node->GetUser();
2691       size_t input_index = use_node->GetIndex();
2692       user->SetRawInputRecordAt(input_index, HUserRecord<HInstruction*>(this, before_use_node));
2693       before_use_node = use_node;
2694     }
2695   }
2696 
FixUpUserRecordsAfterUseRemoval(HUseList<HInstruction * >::iterator before_use_node)2697   void FixUpUserRecordsAfterUseRemoval(HUseList<HInstruction*>::iterator before_use_node) {
2698     auto next = ++HUseList<HInstruction*>::iterator(before_use_node);
2699     if (next != uses_.end()) {
2700       HInstruction* next_user = next->GetUser();
2701       size_t next_index = next->GetIndex();
2702       DCHECK(next_user->InputRecordAt(next_index).GetInstruction() == this);
2703       next_user->SetRawInputRecordAt(next_index, HUserRecord<HInstruction*>(this, before_use_node));
2704     }
2705   }
2706 
FixUpUserRecordsAfterEnvUseInsertion(HUseList<HEnvironment * >::iterator env_fixup_end)2707   void FixUpUserRecordsAfterEnvUseInsertion(HUseList<HEnvironment*>::iterator env_fixup_end) {
2708     auto before_env_use_node = env_uses_.before_begin();
2709     for (auto env_use_node = env_uses_.begin(); env_use_node != env_fixup_end; ++env_use_node) {
2710       HEnvironment* user = env_use_node->GetUser();
2711       size_t input_index = env_use_node->GetIndex();
2712       user->vregs_[input_index] = HUserRecord<HEnvironment*>(this, before_env_use_node);
2713       before_env_use_node = env_use_node;
2714     }
2715   }
2716 
FixUpUserRecordsAfterEnvUseRemoval(HUseList<HEnvironment * >::iterator before_env_use_node)2717   void FixUpUserRecordsAfterEnvUseRemoval(HUseList<HEnvironment*>::iterator before_env_use_node) {
2718     auto next = ++HUseList<HEnvironment*>::iterator(before_env_use_node);
2719     if (next != env_uses_.end()) {
2720       HEnvironment* next_user = next->GetUser();
2721       size_t next_index = next->GetIndex();
2722       DCHECK(next_user->vregs_[next_index].GetInstruction() == this);
2723       next_user->vregs_[next_index] = HUserRecord<HEnvironment*>(this, before_env_use_node);
2724     }
2725   }
2726 
2727   HInstruction* previous_;
2728   HInstruction* next_;
2729   HBasicBlock* block_;
2730   const uint32_t dex_pc_;
2731 
2732   // An instruction gets an id when it is added to the graph.
2733   // It reflects creation order. A negative id means the instruction
2734   // has not been added to the graph.
2735   int id_;
2736 
2737   // When doing liveness analysis, instructions that have uses get an SSA index.
2738   int ssa_index_;
2739 
2740   // Packed fields.
2741   uint32_t packed_fields_;
2742 
2743   // List of instructions that have this instruction as input.
2744   HUseList<HInstruction*> uses_;
2745 
2746   // List of environments that contain this instruction.
2747   HUseList<HEnvironment*> env_uses_;
2748 
2749   // The environment associated with this instruction. Not null if the instruction
2750   // might jump out of the method.
2751   HEnvironment* environment_;
2752 
2753   // Set by the code generator.
2754   LocationSummary* locations_;
2755 
2756   // Set by the liveness analysis.
2757   LiveInterval* live_interval_;
2758 
2759   // Set by the liveness analysis, this is the position in a linear
2760   // order of blocks where this instruction's live interval start.
2761   size_t lifetime_position_;
2762 
2763   SideEffects side_effects_;
2764 
2765   // The reference handle part of the reference type info.
2766   // The IsExact() flag is stored in packed fields.
2767   // TODO: for primitive types this should be marked as invalid.
2768   ReferenceTypeInfo::TypeHandle reference_type_handle_;
2769 
2770   friend class GraphChecker;
2771   friend class HBasicBlock;
2772   friend class HEnvironment;
2773   friend class HGraph;
2774   friend class HInstructionList;
2775 };
2776 
2777 std::ostream& operator<<(std::ostream& os, HInstruction::InstructionKind rhs);
2778 std::ostream& operator<<(std::ostream& os, const HInstruction::NoArgsDump rhs);
2779 std::ostream& operator<<(std::ostream& os, const HInstruction::ArgsDump rhs);
2780 std::ostream& operator<<(std::ostream& os, const HUseList<HInstruction*>& lst);
2781 std::ostream& operator<<(std::ostream& os, const HUseList<HEnvironment*>& lst);
2782 
2783 // Forward declarations for friends
2784 template <typename InnerIter> struct HSTLInstructionIterator;
2785 
2786 // Iterates over the instructions, while preserving the next instruction
2787 // in case the current instruction gets removed from the list by the user
2788 // of this iterator.
2789 class HInstructionIterator : public ValueObject {
2790  public:
HInstructionIterator(const HInstructionList & instructions)2791   explicit HInstructionIterator(const HInstructionList& instructions)
2792       : instruction_(instructions.first_instruction_) {
2793     next_ = Done() ? nullptr : instruction_->GetNext();
2794   }
2795 
Done()2796   bool Done() const { return instruction_ == nullptr; }
Current()2797   HInstruction* Current() const { return instruction_; }
Advance()2798   void Advance() {
2799     instruction_ = next_;
2800     next_ = Done() ? nullptr : instruction_->GetNext();
2801   }
2802 
2803  private:
HInstructionIterator()2804   HInstructionIterator() : instruction_(nullptr), next_(nullptr) {}
2805 
2806   HInstruction* instruction_;
2807   HInstruction* next_;
2808 
2809   friend struct HSTLInstructionIterator<HInstructionIterator>;
2810 };
2811 
2812 // Iterates over the instructions without saving the next instruction,
2813 // therefore handling changes in the graph potentially made by the user
2814 // of this iterator.
2815 class HInstructionIteratorHandleChanges : public ValueObject {
2816  public:
2817   explicit HInstructionIteratorHandleChanges(const HInstructionList& instructions)
2818       : instruction_(instructions.first_instruction_) {
2819   }
2820 
2821   bool Done() const { return instruction_ == nullptr; }
2822   HInstruction* Current() const { return instruction_; }
2823   void Advance() {
2824     instruction_ = instruction_->GetNext();
2825   }
2826 
2827  private:
2828   HInstructionIteratorHandleChanges() : instruction_(nullptr) {}
2829 
2830   HInstruction* instruction_;
2831 
2832   friend struct HSTLInstructionIterator<HInstructionIteratorHandleChanges>;
2833 };
2834 
2835 
2836 class HBackwardInstructionIterator : public ValueObject {
2837  public:
2838   explicit HBackwardInstructionIterator(const HInstructionList& instructions)
2839       : instruction_(instructions.last_instruction_) {
2840     next_ = Done() ? nullptr : instruction_->GetPrevious();
2841   }
2842 
2843   bool Done() const { return instruction_ == nullptr; }
2844   HInstruction* Current() const { return instruction_; }
2845   void Advance() {
2846     instruction_ = next_;
2847     next_ = Done() ? nullptr : instruction_->GetPrevious();
2848   }
2849 
2850  private:
2851   HBackwardInstructionIterator() : instruction_(nullptr), next_(nullptr) {}
2852 
2853   HInstruction* instruction_;
2854   HInstruction* next_;
2855 
2856   friend struct HSTLInstructionIterator<HBackwardInstructionIterator>;
2857 };
2858 
2859 template <typename InnerIter>
2860 struct HSTLInstructionIterator : public ValueObject,
2861                                  public std::iterator<std::forward_iterator_tag, HInstruction*> {
2862  public:
2863   static_assert(std::is_same_v<InnerIter, HBackwardInstructionIterator> ||
2864                     std::is_same_v<InnerIter, HInstructionIterator> ||
2865                     std::is_same_v<InnerIter, HInstructionIteratorHandleChanges>,
2866                 "Unknown wrapped iterator!");
2867 
2868   explicit HSTLInstructionIterator(InnerIter inner) : inner_(inner) {}
2869   HInstruction* operator*() const {
2870     DCHECK(inner_.Current() != nullptr);
2871     return inner_.Current();
2872   }
2873 
2874   HSTLInstructionIterator<InnerIter>& operator++() {
2875     DCHECK(*this != HSTLInstructionIterator<InnerIter>::EndIter());
2876     inner_.Advance();
2877     return *this;
2878   }
2879 
2880   HSTLInstructionIterator<InnerIter> operator++(int) {
2881     HSTLInstructionIterator<InnerIter> prev(*this);
2882     ++(*this);
2883     return prev;
2884   }
2885 
2886   bool operator==(const HSTLInstructionIterator<InnerIter>& other) const {
2887     return inner_.Current() == other.inner_.Current();
2888   }
2889 
2890   bool operator!=(const HSTLInstructionIterator<InnerIter>& other) const {
2891     return !(*this == other);
2892   }
2893 
2894   static HSTLInstructionIterator<InnerIter> EndIter() {
2895     return HSTLInstructionIterator<InnerIter>(InnerIter());
2896   }
2897 
2898  private:
2899   InnerIter inner_;
2900 };
2901 
2902 template <typename InnerIter>
2903 IterationRange<HSTLInstructionIterator<InnerIter>> MakeSTLInstructionIteratorRange(InnerIter iter) {
2904   return MakeIterationRange(HSTLInstructionIterator<InnerIter>(iter),
2905                             HSTLInstructionIterator<InnerIter>::EndIter());
2906 }
2907 
2908 class HVariableInputSizeInstruction : public HInstruction {
2909  public:
2910   using HInstruction::GetInputRecords;  // Keep the const version visible.
2911   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() override {
2912     return ArrayRef<HUserRecord<HInstruction*>>(inputs_);
2913   }
2914 
2915   void AddInput(HInstruction* input);
2916   void InsertInputAt(size_t index, HInstruction* input);
2917   void RemoveInputAt(size_t index);
2918 
2919   // Removes all the inputs.
2920   // Also removes this instructions from each input's use list
2921   // (for non-environment uses only).
2922   void RemoveAllInputs();
2923 
2924  protected:
2925   HVariableInputSizeInstruction(InstructionKind inst_kind,
2926                                 SideEffects side_effects,
2927                                 uint32_t dex_pc,
2928                                 ArenaAllocator* allocator,
2929                                 size_t number_of_inputs,
2930                                 ArenaAllocKind kind)
2931       : HInstruction(inst_kind, side_effects, dex_pc),
2932         inputs_(number_of_inputs, allocator->Adapter(kind)) {}
2933   HVariableInputSizeInstruction(InstructionKind inst_kind,
2934                                 DataType::Type type,
2935                                 SideEffects side_effects,
2936                                 uint32_t dex_pc,
2937                                 ArenaAllocator* allocator,
2938                                 size_t number_of_inputs,
2939                                 ArenaAllocKind kind)
2940       : HInstruction(inst_kind, type, side_effects, dex_pc),
2941         inputs_(number_of_inputs, allocator->Adapter(kind)) {}
2942 
2943   DEFAULT_COPY_CONSTRUCTOR(VariableInputSizeInstruction);
2944 
2945   ArenaVector<HUserRecord<HInstruction*>> inputs_;
2946 };
2947 
2948 template<size_t N>
2949 class HExpression : public HInstruction {
2950  public:
2951   HExpression<N>(InstructionKind kind, SideEffects side_effects, uint32_t dex_pc)
2952       : HInstruction(kind, side_effects, dex_pc), inputs_() {}
2953   HExpression<N>(InstructionKind kind,
2954                  DataType::Type type,
2955                  SideEffects side_effects,
2956                  uint32_t dex_pc)
2957       : HInstruction(kind, type, side_effects, dex_pc), inputs_() {}
2958   virtual ~HExpression() {}
2959 
2960   using HInstruction::GetInputRecords;  // Keep the const version visible.
2961   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
2962     return ArrayRef<HUserRecord<HInstruction*>>(inputs_);
2963   }
2964 
2965  protected:
2966   DEFAULT_COPY_CONSTRUCTOR(Expression<N>);
2967 
2968  private:
2969   std::array<HUserRecord<HInstruction*>, N> inputs_;
2970 
2971   friend class SsaBuilder;
2972 };
2973 
2974 // HExpression specialization for N=0.
2975 template<>
2976 class HExpression<0> : public HInstruction {
2977  public:
2978   using HInstruction::HInstruction;
2979 
2980   virtual ~HExpression() {}
2981 
2982   using HInstruction::GetInputRecords;  // Keep the const version visible.
2983   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
2984     return ArrayRef<HUserRecord<HInstruction*>>();
2985   }
2986 
2987  protected:
2988   DEFAULT_COPY_CONSTRUCTOR(Expression<0>);
2989 
2990  private:
2991   friend class SsaBuilder;
2992 };
2993 
2994 // Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
2995 // instruction that branches to the exit block.
2996 class HReturnVoid final : public HExpression<0> {
2997  public:
2998   explicit HReturnVoid(uint32_t dex_pc = kNoDexPc)
2999       : HExpression(kReturnVoid, SideEffects::None(), dex_pc) {
3000   }
3001 
3002   bool IsControlFlow() const override { return true; }
3003 
3004   DECLARE_INSTRUCTION(ReturnVoid);
3005 
3006  protected:
3007   DEFAULT_COPY_CONSTRUCTOR(ReturnVoid);
3008 };
3009 
3010 // Represents dex's RETURN opcodes. A HReturn is a control flow
3011 // instruction that branches to the exit block.
3012 class HReturn final : public HExpression<1> {
3013  public:
3014   explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc)
3015       : HExpression(kReturn, SideEffects::None(), dex_pc) {
3016     SetRawInputAt(0, value);
3017   }
3018 
3019   bool IsControlFlow() const override { return true; }
3020 
3021   DECLARE_INSTRUCTION(Return);
3022 
3023  protected:
3024   DEFAULT_COPY_CONSTRUCTOR(Return);
3025 };
3026 
3027 class HPhi final : public HVariableInputSizeInstruction {
3028  public:
3029   HPhi(ArenaAllocator* allocator,
3030        uint32_t reg_number,
3031        size_t number_of_inputs,
3032        DataType::Type type,
3033        uint32_t dex_pc = kNoDexPc)
3034       : HVariableInputSizeInstruction(
3035             kPhi,
3036             ToPhiType(type),
3037             SideEffects::None(),
3038             dex_pc,
3039             allocator,
3040             number_of_inputs,
3041             kArenaAllocPhiInputs),
3042         reg_number_(reg_number) {
3043     DCHECK_NE(GetType(), DataType::Type::kVoid);
3044     // Phis are constructed live and marked dead if conflicting or unused.
3045     // Individual steps of SsaBuilder should assume that if a phi has been
3046     // marked dead, it can be ignored and will be removed by SsaPhiElimination.
3047     SetPackedFlag<kFlagIsLive>(true);
3048     SetPackedFlag<kFlagCanBeNull>(true);
3049   }
3050 
3051   bool IsClonable() const override { return true; }
3052 
3053   // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
3054   static DataType::Type ToPhiType(DataType::Type type) {
3055     return DataType::Kind(type);
3056   }
3057 
3058   bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); }
3059 
3060   void SetType(DataType::Type new_type) {
3061     // Make sure that only valid type changes occur. The following are allowed:
3062     //  (1) int  -> float/ref (primitive type propagation),
3063     //  (2) long -> double (primitive type propagation).
3064     DCHECK(GetType() == new_type ||
3065            (GetType() == DataType::Type::kInt32 && new_type == DataType::Type::kFloat32) ||
3066            (GetType() == DataType::Type::kInt32 && new_type == DataType::Type::kReference) ||
3067            (GetType() == DataType::Type::kInt64 && new_type == DataType::Type::kFloat64));
3068     SetPackedField<TypeField>(new_type);
3069   }
3070 
3071   bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); }
3072   void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); }
3073 
3074   uint32_t GetRegNumber() const { return reg_number_; }
3075 
3076   void SetDead() { SetPackedFlag<kFlagIsLive>(false); }
3077   void SetLive() { SetPackedFlag<kFlagIsLive>(true); }
3078   bool IsDead() const { return !IsLive(); }
3079   bool IsLive() const { return GetPackedFlag<kFlagIsLive>(); }
3080 
3081   bool IsVRegEquivalentOf(const HInstruction* other) const {
3082     return other != nullptr
3083         && other->IsPhi()
3084         && other->AsPhi()->GetBlock() == GetBlock()
3085         && other->AsPhi()->GetRegNumber() == GetRegNumber();
3086   }
3087 
3088   bool HasEquivalentPhi() const {
3089     if (GetPrevious() != nullptr && GetPrevious()->AsPhi()->GetRegNumber() == GetRegNumber()) {
3090       return true;
3091     }
3092     if (GetNext() != nullptr && GetNext()->AsPhi()->GetRegNumber() == GetRegNumber()) {
3093       return true;
3094     }
3095     return false;
3096   }
3097 
3098   // Returns the next equivalent phi (starting from the current one) or null if there is none.
3099   // An equivalent phi is a phi having the same dex register and type.
3100   // It assumes that phis with the same dex register are adjacent.
3101   HPhi* GetNextEquivalentPhiWithSameType() {
3102     HInstruction* next = GetNext();
3103     while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
3104       if (next->GetType() == GetType()) {
3105         return next->AsPhi();
3106       }
3107       next = next->GetNext();
3108     }
3109     return nullptr;
3110   }
3111 
3112   DECLARE_INSTRUCTION(Phi);
3113 
3114  protected:
3115   DEFAULT_COPY_CONSTRUCTOR(Phi);
3116 
3117  private:
3118   static constexpr size_t kFlagIsLive = HInstruction::kNumberOfGenericPackedBits;
3119   static constexpr size_t kFlagCanBeNull = kFlagIsLive + 1;
3120   static constexpr size_t kNumberOfPhiPackedBits = kFlagCanBeNull + 1;
3121   static_assert(kNumberOfPhiPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
3122 
3123   const uint32_t reg_number_;
3124 };
3125 
3126 // The exit instruction is the only instruction of the exit block.
3127 // Instructions aborting the method (HThrow and HReturn) must branch to the
3128 // exit block.
3129 class HExit final : public HExpression<0> {
3130  public:
3131   explicit HExit(uint32_t dex_pc = kNoDexPc)
3132       : HExpression(kExit, SideEffects::None(), dex_pc) {
3133   }
3134 
3135   bool IsControlFlow() const override { return true; }
3136 
3137   DECLARE_INSTRUCTION(Exit);
3138 
3139  protected:
3140   DEFAULT_COPY_CONSTRUCTOR(Exit);
3141 };
3142 
3143 // Jumps from one block to another.
3144 class HGoto final : public HExpression<0> {
3145  public:
3146   explicit HGoto(uint32_t dex_pc = kNoDexPc)
3147       : HExpression(kGoto, SideEffects::None(), dex_pc) {
3148   }
3149 
3150   bool IsClonable() const override { return true; }
3151   bool IsControlFlow() const override { return true; }
3152 
3153   HBasicBlock* GetSuccessor() const {
3154     return GetBlock()->GetSingleSuccessor();
3155   }
3156 
3157   DECLARE_INSTRUCTION(Goto);
3158 
3159  protected:
3160   DEFAULT_COPY_CONSTRUCTOR(Goto);
3161 };
3162 
3163 class HConstant : public HExpression<0> {
3164  public:
3165   explicit HConstant(InstructionKind kind, DataType::Type type, uint32_t dex_pc = kNoDexPc)
3166       : HExpression(kind, type, SideEffects::None(), dex_pc) {
3167   }
3168 
3169   bool CanBeMoved() const override { return true; }
3170 
3171   // Is this constant -1 in the arithmetic sense?
3172   virtual bool IsMinusOne() const { return false; }
3173   // Is this constant 0 in the arithmetic sense?
3174   virtual bool IsArithmeticZero() const { return false; }
3175   // Is this constant a 0-bit pattern?
3176   virtual bool IsZeroBitPattern() const { return false; }
3177   // Is this constant 1 in the arithmetic sense?
3178   virtual bool IsOne() const { return false; }
3179 
3180   virtual uint64_t GetValueAsUint64() const = 0;
3181 
3182   DECLARE_ABSTRACT_INSTRUCTION(Constant);
3183 
3184  protected:
3185   DEFAULT_COPY_CONSTRUCTOR(Constant);
3186 };
3187 
3188 class HNullConstant final : public HConstant {
3189  public:
3190   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
3191     return true;
3192   }
3193 
3194   uint64_t GetValueAsUint64() const override { return 0; }
3195 
3196   size_t ComputeHashCode() const override { return 0; }
3197 
3198   // The null constant representation is a 0-bit pattern.
3199   bool IsZeroBitPattern() const override { return true; }
3200 
3201   DECLARE_INSTRUCTION(NullConstant);
3202 
3203  protected:
3204   DEFAULT_COPY_CONSTRUCTOR(NullConstant);
3205 
3206  private:
3207   explicit HNullConstant(uint32_t dex_pc = kNoDexPc)
3208       : HConstant(kNullConstant, DataType::Type::kReference, dex_pc) {
3209   }
3210 
3211   friend class HGraph;
3212 };
3213 
3214 // Constants of the type int. Those can be from Dex instructions, or
3215 // synthesized (for example with the if-eqz instruction).
3216 class HIntConstant final : public HConstant {
3217  public:
3218   int32_t GetValue() const { return value_; }
3219 
3220   uint64_t GetValueAsUint64() const override {
3221     return static_cast<uint64_t>(static_cast<uint32_t>(value_));
3222   }
3223 
3224   bool InstructionDataEquals(const HInstruction* other) const override {
3225     DCHECK(other->IsIntConstant()) << other->DebugName();
3226     return other->AsIntConstant()->value_ == value_;
3227   }
3228 
3229   size_t ComputeHashCode() const override { return GetValue(); }
3230 
3231   bool IsMinusOne() const override { return GetValue() == -1; }
3232   bool IsArithmeticZero() const override { return GetValue() == 0; }
3233   bool IsZeroBitPattern() const override { return GetValue() == 0; }
3234   bool IsOne() const override { return GetValue() == 1; }
3235 
3236   // Integer constants are used to encode Boolean values as well,
3237   // where 1 means true and 0 means false.
3238   bool IsTrue() const { return GetValue() == 1; }
3239   bool IsFalse() const { return GetValue() == 0; }
3240 
3241   DECLARE_INSTRUCTION(IntConstant);
3242 
3243  protected:
3244   DEFAULT_COPY_CONSTRUCTOR(IntConstant);
3245 
3246  private:
3247   explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
3248       : HConstant(kIntConstant, DataType::Type::kInt32, dex_pc), value_(value) {
3249   }
3250   explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc)
3251       : HConstant(kIntConstant, DataType::Type::kInt32, dex_pc),
3252         value_(value ? 1 : 0) {
3253   }
3254 
3255   const int32_t value_;
3256 
3257   friend class HGraph;
3258   ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
3259   ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
3260 };
3261 
3262 class HLongConstant final : public HConstant {
3263  public:
3264   int64_t GetValue() const { return value_; }
3265 
3266   uint64_t GetValueAsUint64() const override { return value_; }
3267 
3268   bool InstructionDataEquals(const HInstruction* other) const override {
3269     DCHECK(other->IsLongConstant()) << other->DebugName();
3270     return other->AsLongConstant()->value_ == value_;
3271   }
3272 
3273   size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); }
3274 
3275   bool IsMinusOne() const override { return GetValue() == -1; }
3276   bool IsArithmeticZero() const override { return GetValue() == 0; }
3277   bool IsZeroBitPattern() const override { return GetValue() == 0; }
3278   bool IsOne() const override { return GetValue() == 1; }
3279 
3280   DECLARE_INSTRUCTION(LongConstant);
3281 
3282  protected:
3283   DEFAULT_COPY_CONSTRUCTOR(LongConstant);
3284 
3285  private:
3286   explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
3287       : HConstant(kLongConstant, DataType::Type::kInt64, dex_pc),
3288         value_(value) {
3289   }
3290 
3291   const int64_t value_;
3292 
3293   friend class HGraph;
3294 };
3295 
3296 class HFloatConstant final : public HConstant {
3297  public:
3298   float GetValue() const { return value_; }
3299 
3300   uint64_t GetValueAsUint64() const override {
3301     return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_));
3302   }
3303 
3304   bool InstructionDataEquals(const HInstruction* other) const override {
3305     DCHECK(other->IsFloatConstant()) << other->DebugName();
3306     return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64();
3307   }
3308 
3309   size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); }
3310 
3311   bool IsMinusOne() const override {
3312     return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
3313   }
3314   bool IsArithmeticZero() const override {
3315     return std::fpclassify(value_) == FP_ZERO;
3316   }
3317   bool IsArithmeticPositiveZero() const {
3318     return IsArithmeticZero() && !std::signbit(value_);
3319   }
3320   bool IsArithmeticNegativeZero() const {
3321     return IsArithmeticZero() && std::signbit(value_);
3322   }
3323   bool IsZeroBitPattern() const override {
3324     return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(0.0f);
3325   }
3326   bool IsOne() const override {
3327     return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
3328   }
3329   bool IsNaN() const {
3330     return std::isnan(value_);
3331   }
3332 
3333   DECLARE_INSTRUCTION(FloatConstant);
3334 
3335  protected:
3336   DEFAULT_COPY_CONSTRUCTOR(FloatConstant);
3337 
3338  private:
3339   explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc)
3340       : HConstant(kFloatConstant, DataType::Type::kFloat32, dex_pc),
3341         value_(value) {
3342   }
3343   explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
3344       : HConstant(kFloatConstant, DataType::Type::kFloat32, dex_pc),
3345         value_(bit_cast<float, int32_t>(value)) {
3346   }
3347 
3348   const float value_;
3349 
3350   // Only the SsaBuilder and HGraph can create floating-point constants.
3351   friend class SsaBuilder;
3352   friend class HGraph;
3353 };
3354 
3355 class HDoubleConstant final : public HConstant {
3356  public:
3357   double GetValue() const { return value_; }
3358 
3359   uint64_t GetValueAsUint64() const override { return bit_cast<uint64_t, double>(value_); }
3360 
3361   bool InstructionDataEquals(const HInstruction* other) const override {
3362     DCHECK(other->IsDoubleConstant()) << other->DebugName();
3363     return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64();
3364   }
3365 
3366   size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); }
3367 
3368   bool IsMinusOne() const override {
3369     return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
3370   }
3371   bool IsArithmeticZero() const override {
3372     return std::fpclassify(value_) == FP_ZERO;
3373   }
3374   bool IsArithmeticPositiveZero() const {
3375     return IsArithmeticZero() && !std::signbit(value_);
3376   }
3377   bool IsArithmeticNegativeZero() const {
3378     return IsArithmeticZero() && std::signbit(value_);
3379   }
3380   bool IsZeroBitPattern() const override {
3381     return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((0.0));
3382   }
3383   bool IsOne() const override {
3384     return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
3385   }
3386   bool IsNaN() const {
3387     return std::isnan(value_);
3388   }
3389 
3390   DECLARE_INSTRUCTION(DoubleConstant);
3391 
3392  protected:
3393   DEFAULT_COPY_CONSTRUCTOR(DoubleConstant);
3394 
3395  private:
3396   explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc)
3397       : HConstant(kDoubleConstant, DataType::Type::kFloat64, dex_pc),
3398         value_(value) {
3399   }
3400   explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
3401       : HConstant(kDoubleConstant, DataType::Type::kFloat64, dex_pc),
3402         value_(bit_cast<double, int64_t>(value)) {
3403   }
3404 
3405   const double value_;
3406 
3407   // Only the SsaBuilder and HGraph can create floating-point constants.
3408   friend class SsaBuilder;
3409   friend class HGraph;
3410 };
3411 
3412 // Conditional branch. A block ending with an HIf instruction must have
3413 // two successors.
3414 class HIf final : public HExpression<1> {
3415  public:
3416   explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc)
3417       : HExpression(kIf, SideEffects::None(), dex_pc) {
3418     SetRawInputAt(0, input);
3419   }
3420 
3421   bool IsClonable() const override { return true; }
3422   bool IsControlFlow() const override { return true; }
3423 
3424   HBasicBlock* IfTrueSuccessor() const {
3425     return GetBlock()->GetSuccessors()[0];
3426   }
3427 
3428   HBasicBlock* IfFalseSuccessor() const {
3429     return GetBlock()->GetSuccessors()[1];
3430   }
3431 
3432   DECLARE_INSTRUCTION(If);
3433 
3434  protected:
3435   DEFAULT_COPY_CONSTRUCTOR(If);
3436 };
3437 
3438 
3439 // Abstract instruction which marks the beginning and/or end of a try block and
3440 // links it to the respective exception handlers. Behaves the same as a Goto in
3441 // non-exceptional control flow.
3442 // Normal-flow successor is stored at index zero, exception handlers under
3443 // higher indices in no particular order.
3444 class HTryBoundary final : public HExpression<0> {
3445  public:
3446   enum class BoundaryKind {
3447     kEntry,
3448     kExit,
3449     kLast = kExit
3450   };
3451 
3452   // SideEffects::CanTriggerGC prevents instructions with SideEffects::DependOnGC to be alive
3453   // across the catch block entering edges as GC might happen during throwing an exception.
3454   // TryBoundary with BoundaryKind::kExit is conservatively used for that as there is no
3455   // HInstruction which a catch block must start from.
3456   explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc)
3457       : HExpression(kTryBoundary,
3458                     (kind == BoundaryKind::kExit) ? SideEffects::CanTriggerGC()
3459                                                   : SideEffects::None(),
3460                     dex_pc) {
3461     SetPackedField<BoundaryKindField>(kind);
3462   }
3463 
3464   bool IsControlFlow() const override { return true; }
3465 
3466   // Returns the block's non-exceptional successor (index zero).
3467   HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; }
3468 
3469   ArrayRef<HBasicBlock* const> GetExceptionHandlers() const {
3470     return ArrayRef<HBasicBlock* const>(GetBlock()->GetSuccessors()).SubArray(1u);
3471   }
3472 
3473   // Returns whether `handler` is among its exception handlers (non-zero index
3474   // successors).
3475   bool HasExceptionHandler(const HBasicBlock& handler) const {
3476     DCHECK(handler.IsCatchBlock());
3477     return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */);
3478   }
3479 
3480   // If not present already, adds `handler` to its block's list of exception
3481   // handlers.
3482   void AddExceptionHandler(HBasicBlock* handler) {
3483     if (!HasExceptionHandler(*handler)) {
3484       GetBlock()->AddSuccessor(handler);
3485     }
3486   }
3487 
3488   BoundaryKind GetBoundaryKind() const { return GetPackedField<BoundaryKindField>(); }
3489   bool IsEntry() const { return GetBoundaryKind() == BoundaryKind::kEntry; }
3490 
3491   bool HasSameExceptionHandlersAs(const HTryBoundary& other) const;
3492 
3493   DECLARE_INSTRUCTION(TryBoundary);
3494 
3495  protected:
3496   DEFAULT_COPY_CONSTRUCTOR(TryBoundary);
3497 
3498  private:
3499   static constexpr size_t kFieldBoundaryKind = kNumberOfGenericPackedBits;
3500   static constexpr size_t kFieldBoundaryKindSize =
3501       MinimumBitsToStore(static_cast<size_t>(BoundaryKind::kLast));
3502   static constexpr size_t kNumberOfTryBoundaryPackedBits =
3503       kFieldBoundaryKind + kFieldBoundaryKindSize;
3504   static_assert(kNumberOfTryBoundaryPackedBits <= kMaxNumberOfPackedBits,
3505                 "Too many packed fields.");
3506   using BoundaryKindField = BitField<BoundaryKind, kFieldBoundaryKind, kFieldBoundaryKindSize>;
3507 };
3508 
3509 // Deoptimize to interpreter, upon checking a condition.
3510 class HDeoptimize final : public HVariableInputSizeInstruction {
3511  public:
3512   // Use this constructor when the `HDeoptimize` acts as a barrier, where no code can move
3513   // across.
3514   HDeoptimize(ArenaAllocator* allocator,
3515               HInstruction* cond,
3516               DeoptimizationKind kind,
3517               uint32_t dex_pc)
3518       : HVariableInputSizeInstruction(
3519             kDeoptimize,
3520             SideEffects::All(),
3521             dex_pc,
3522             allocator,
3523             /* number_of_inputs= */ 1,
3524             kArenaAllocMisc) {
3525     SetPackedFlag<kFieldCanBeMoved>(false);
3526     SetPackedField<DeoptimizeKindField>(kind);
3527     SetRawInputAt(0, cond);
3528   }
3529 
3530   bool IsClonable() const override { return true; }
3531 
3532   // Use this constructor when the `HDeoptimize` guards an instruction, and any user
3533   // that relies on the deoptimization to pass should have its input be the `HDeoptimize`
3534   // instead of `guard`.
3535   // We set CanTriggerGC to prevent any intermediate address to be live
3536   // at the point of the `HDeoptimize`.
3537   HDeoptimize(ArenaAllocator* allocator,
3538               HInstruction* cond,
3539               HInstruction* guard,
3540               DeoptimizationKind kind,
3541               uint32_t dex_pc)
3542       : HVariableInputSizeInstruction(
3543             kDeoptimize,
3544             guard->GetType(),
3545             SideEffects::CanTriggerGC(),
3546             dex_pc,
3547             allocator,
3548             /* number_of_inputs= */ 2,
3549             kArenaAllocMisc) {
3550     SetPackedFlag<kFieldCanBeMoved>(true);
3551     SetPackedField<DeoptimizeKindField>(kind);
3552     SetRawInputAt(0, cond);
3553     SetRawInputAt(1, guard);
3554   }
3555 
3556   bool CanBeMoved() const override { return GetPackedFlag<kFieldCanBeMoved>(); }
3557 
3558   bool InstructionDataEquals(const HInstruction* other) const override {
3559     return (other->CanBeMoved() == CanBeMoved()) && (other->AsDeoptimize()->GetKind() == GetKind());
3560   }
3561 
3562   bool NeedsEnvironment() const override { return true; }
3563 
3564   bool CanThrow() const override { return true; }
3565 
3566   DeoptimizationKind GetDeoptimizationKind() const { return GetPackedField<DeoptimizeKindField>(); }
3567 
3568   bool GuardsAnInput() const {
3569     return InputCount() == 2;
3570   }
3571 
3572   HInstruction* GuardedInput() const {
3573     DCHECK(GuardsAnInput());
3574     return InputAt(1);
3575   }
3576 
3577   void RemoveGuard() {
3578     RemoveInputAt(1);
3579   }
3580 
3581   DECLARE_INSTRUCTION(Deoptimize);
3582 
3583  protected:
3584   DEFAULT_COPY_CONSTRUCTOR(Deoptimize);
3585 
3586  private:
3587   static constexpr size_t kFieldCanBeMoved = kNumberOfGenericPackedBits;
3588   static constexpr size_t kFieldDeoptimizeKind = kNumberOfGenericPackedBits + 1;
3589   static constexpr size_t kFieldDeoptimizeKindSize =
3590       MinimumBitsToStore(static_cast<size_t>(DeoptimizationKind::kLast));
3591   static constexpr size_t kNumberOfDeoptimizePackedBits =
3592       kFieldDeoptimizeKind + kFieldDeoptimizeKindSize;
3593   static_assert(kNumberOfDeoptimizePackedBits <= kMaxNumberOfPackedBits,
3594                 "Too many packed fields.");
3595   using DeoptimizeKindField =
3596       BitField<DeoptimizationKind, kFieldDeoptimizeKind, kFieldDeoptimizeKindSize>;
3597 };
3598 
3599 // Represents a should_deoptimize flag. Currently used for CHA-based devirtualization.
3600 // The compiled code checks this flag value in a guard before devirtualized call and
3601 // if it's true, starts to do deoptimization.
3602 // It has a 4-byte slot on stack.
3603 // TODO: allocate a register for this flag.
3604 class HShouldDeoptimizeFlag final : public HVariableInputSizeInstruction {
3605  public:
3606   // CHA guards are only optimized in a separate pass and it has no side effects
3607   // with regard to other passes.
3608   HShouldDeoptimizeFlag(ArenaAllocator* allocator, uint32_t dex_pc)
3609       : HVariableInputSizeInstruction(kShouldDeoptimizeFlag,
3610                                       DataType::Type::kInt32,
3611                                       SideEffects::None(),
3612                                       dex_pc,
3613                                       allocator,
3614                                       0,
3615                                       kArenaAllocCHA) {
3616   }
3617 
3618   // We do all CHA guard elimination/motion in a single pass, after which there is no
3619   // further guard elimination/motion since a guard might have been used for justification
3620   // of the elimination of another guard. Therefore, we pretend this guard cannot be moved
3621   // to avoid other optimizations trying to move it.
3622   bool CanBeMoved() const override { return false; }
3623 
3624   DECLARE_INSTRUCTION(ShouldDeoptimizeFlag);
3625 
3626  protected:
3627   DEFAULT_COPY_CONSTRUCTOR(ShouldDeoptimizeFlag);
3628 };
3629 
3630 // Represents the ArtMethod that was passed as a first argument to
3631 // the method. It is used by instructions that depend on it, like
3632 // instructions that work with the dex cache.
3633 class HCurrentMethod final : public HExpression<0> {
3634  public:
3635   explicit HCurrentMethod(DataType::Type type, uint32_t dex_pc = kNoDexPc)
3636       : HExpression(kCurrentMethod, type, SideEffects::None(), dex_pc) {
3637   }
3638 
3639   DECLARE_INSTRUCTION(CurrentMethod);
3640 
3641  protected:
3642   DEFAULT_COPY_CONSTRUCTOR(CurrentMethod);
3643 };
3644 
3645 // Fetches an ArtMethod from the virtual table or the interface method table
3646 // of a class.
3647 class HClassTableGet final : public HExpression<1> {
3648  public:
3649   enum class TableKind {
3650     kVTable,
3651     kIMTable,
3652     kLast = kIMTable
3653   };
3654   HClassTableGet(HInstruction* cls,
3655                  DataType::Type type,
3656                  TableKind kind,
3657                  size_t index,
3658                  uint32_t dex_pc)
3659       : HExpression(kClassTableGet, type, SideEffects::None(), dex_pc),
3660         index_(index) {
3661     SetPackedField<TableKindField>(kind);
3662     SetRawInputAt(0, cls);
3663   }
3664 
3665   bool IsClonable() const override { return true; }
3666   bool CanBeMoved() const override { return true; }
3667   bool InstructionDataEquals(const HInstruction* other) const override {
3668     return other->AsClassTableGet()->GetIndex() == index_ &&
3669         other->AsClassTableGet()->GetPackedFields() == GetPackedFields();
3670   }
3671 
3672   TableKind GetTableKind() const { return GetPackedField<TableKindField>(); }
3673   size_t GetIndex() const { return index_; }
3674 
3675   DECLARE_INSTRUCTION(ClassTableGet);
3676 
3677  protected:
3678   DEFAULT_COPY_CONSTRUCTOR(ClassTableGet);
3679 
3680  private:
3681   static constexpr size_t kFieldTableKind = kNumberOfGenericPackedBits;
3682   static constexpr size_t kFieldTableKindSize =
3683       MinimumBitsToStore(static_cast<size_t>(TableKind::kLast));
3684   static constexpr size_t kNumberOfClassTableGetPackedBits = kFieldTableKind + kFieldTableKindSize;
3685   static_assert(kNumberOfClassTableGetPackedBits <= kMaxNumberOfPackedBits,
3686                 "Too many packed fields.");
3687   using TableKindField = BitField<TableKind, kFieldTableKind, kFieldTableKind>;
3688 
3689   // The index of the ArtMethod in the table.
3690   const size_t index_;
3691 };
3692 
3693 // PackedSwitch (jump table). A block ending with a PackedSwitch instruction will
3694 // have one successor for each entry in the switch table, and the final successor
3695 // will be the block containing the next Dex opcode.
3696 class HPackedSwitch final : public HExpression<1> {
3697  public:
3698   HPackedSwitch(int32_t start_value,
3699                 uint32_t num_entries,
3700                 HInstruction* input,
3701                 uint32_t dex_pc = kNoDexPc)
3702     : HExpression(kPackedSwitch, SideEffects::None(), dex_pc),
3703       start_value_(start_value),
3704       num_entries_(num_entries) {
3705     SetRawInputAt(0, input);
3706   }
3707 
3708   bool IsClonable() const override { return true; }
3709 
3710   bool IsControlFlow() const override { return true; }
3711 
3712   int32_t GetStartValue() const { return start_value_; }
3713 
3714   uint32_t GetNumEntries() const { return num_entries_; }
3715 
3716   HBasicBlock* GetDefaultBlock() const {
3717     // Last entry is the default block.
3718     return GetBlock()->GetSuccessors()[num_entries_];
3719   }
3720   DECLARE_INSTRUCTION(PackedSwitch);
3721 
3722  protected:
3723   DEFAULT_COPY_CONSTRUCTOR(PackedSwitch);
3724 
3725  private:
3726   const int32_t start_value_;
3727   const uint32_t num_entries_;
3728 };
3729 
3730 class HUnaryOperation : public HExpression<1> {
3731  public:
3732   HUnaryOperation(InstructionKind kind,
3733                   DataType::Type result_type,
3734                   HInstruction* input,
3735                   uint32_t dex_pc = kNoDexPc)
3736       : HExpression(kind, result_type, SideEffects::None(), dex_pc) {
3737     SetRawInputAt(0, input);
3738   }
3739 
3740   // All of the UnaryOperation instructions are clonable.
3741   bool IsClonable() const override { return true; }
3742 
3743   HInstruction* GetInput() const { return InputAt(0); }
3744   DataType::Type GetResultType() const { return GetType(); }
3745 
3746   bool CanBeMoved() const override { return true; }
3747   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
3748     return true;
3749   }
3750 
3751   // Try to statically evaluate `this` and return a HConstant
3752   // containing the result of this evaluation.  If `this` cannot
3753   // be evaluated as a constant, return null.
3754   HConstant* TryStaticEvaluation() const;
3755 
3756   // Apply this operation to `x`.
3757   virtual HConstant* Evaluate(HIntConstant* x) const = 0;
3758   virtual HConstant* Evaluate(HLongConstant* x) const = 0;
3759   virtual HConstant* Evaluate(HFloatConstant* x) const = 0;
3760   virtual HConstant* Evaluate(HDoubleConstant* x) const = 0;
3761 
3762   DECLARE_ABSTRACT_INSTRUCTION(UnaryOperation);
3763 
3764  protected:
3765   DEFAULT_COPY_CONSTRUCTOR(UnaryOperation);
3766 };
3767 
3768 class HBinaryOperation : public HExpression<2> {
3769  public:
3770   HBinaryOperation(InstructionKind kind,
3771                    DataType::Type result_type,
3772                    HInstruction* left,
3773                    HInstruction* right,
3774                    SideEffects side_effects = SideEffects::None(),
3775                    uint32_t dex_pc = kNoDexPc)
3776       : HExpression(kind, result_type, side_effects, dex_pc) {
3777     SetRawInputAt(0, left);
3778     SetRawInputAt(1, right);
3779   }
3780 
3781   // All of the BinaryOperation instructions are clonable.
3782   bool IsClonable() const override { return true; }
3783 
3784   HInstruction* GetLeft() const { return InputAt(0); }
3785   HInstruction* GetRight() const { return InputAt(1); }
3786   DataType::Type GetResultType() const { return GetType(); }
3787 
3788   virtual bool IsCommutative() const { return false; }
3789 
3790   // Put constant on the right.
3791   // Returns whether order is changed.
3792   bool OrderInputsWithConstantOnTheRight() {
3793     HInstruction* left = InputAt(0);
3794     HInstruction* right = InputAt(1);
3795     if (left->IsConstant() && !right->IsConstant()) {
3796       ReplaceInput(right, 0);
3797       ReplaceInput(left, 1);
3798       return true;
3799     }
3800     return false;
3801   }
3802 
3803   // Order inputs by instruction id, but favor constant on the right side.
3804   // This helps GVN for commutative ops.
3805   void OrderInputs() {
3806     DCHECK(IsCommutative());
3807     HInstruction* left = InputAt(0);
3808     HInstruction* right = InputAt(1);
3809     if (left == right || (!left->IsConstant() && right->IsConstant())) {
3810       return;
3811     }
3812     if (OrderInputsWithConstantOnTheRight()) {
3813       return;
3814     }
3815     // Order according to instruction id.
3816     if (left->GetId() > right->GetId()) {
3817       ReplaceInput(right, 0);
3818       ReplaceInput(left, 1);
3819     }
3820   }
3821 
3822   bool CanBeMoved() const override { return true; }
3823   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
3824     return true;
3825   }
3826 
3827   // Try to statically evaluate `this` and return a HConstant
3828   // containing the result of this evaluation.  If `this` cannot
3829   // be evaluated as a constant, return null.
3830   HConstant* TryStaticEvaluation() const;
3831 
3832   // Apply this operation to `x` and `y`.
3833   virtual HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
3834                               HNullConstant* y ATTRIBUTE_UNUSED) const {
3835     LOG(FATAL) << DebugName() << " is not defined for the (null, null) case.";
3836     UNREACHABLE();
3837   }
3838   virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0;
3839   virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0;
3840   virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED,
3841                               HIntConstant* y ATTRIBUTE_UNUSED) const {
3842     LOG(FATAL) << DebugName() << " is not defined for the (long, int) case.";
3843     UNREACHABLE();
3844   }
3845   virtual HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const = 0;
3846   virtual HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const = 0;
3847 
3848   // Returns an input that can legally be used as the right input and is
3849   // constant, or null.
3850   HConstant* GetConstantRight() const;
3851 
3852   // If `GetConstantRight()` returns one of the input, this returns the other
3853   // one. Otherwise it returns null.
3854   HInstruction* GetLeastConstantLeft() const;
3855 
3856   DECLARE_ABSTRACT_INSTRUCTION(BinaryOperation);
3857 
3858  protected:
3859   DEFAULT_COPY_CONSTRUCTOR(BinaryOperation);
3860 };
3861 
3862 // The comparison bias applies for floating point operations and indicates how NaN
3863 // comparisons are treated:
3864 enum class ComparisonBias {  // private marker to avoid generate-operator-out.py from processing.
3865   kNoBias,  // bias is not applicable (i.e. for long operation)
3866   kGtBias,  // return 1 for NaN comparisons
3867   kLtBias,  // return -1 for NaN comparisons
3868   kLast = kLtBias
3869 };
3870 
3871 std::ostream& operator<<(std::ostream& os, ComparisonBias rhs);
3872 
3873 class HCondition : public HBinaryOperation {
3874  public:
3875   HCondition(InstructionKind kind,
3876              HInstruction* first,
3877              HInstruction* second,
3878              uint32_t dex_pc = kNoDexPc)
3879       : HBinaryOperation(kind,
3880                          DataType::Type::kBool,
3881                          first,
3882                          second,
3883                          SideEffects::None(),
3884                          dex_pc) {
3885     SetPackedField<ComparisonBiasField>(ComparisonBias::kNoBias);
3886   }
3887 
3888   // For code generation purposes, returns whether this instruction is just before
3889   // `instruction`, and disregard moves in between.
3890   bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
3891 
3892   DECLARE_ABSTRACT_INSTRUCTION(Condition);
3893 
3894   virtual IfCondition GetCondition() const = 0;
3895 
3896   virtual IfCondition GetOppositeCondition() const = 0;
3897 
3898   bool IsGtBias() const { return GetBias() == ComparisonBias::kGtBias; }
3899   bool IsLtBias() const { return GetBias() == ComparisonBias::kLtBias; }
3900 
3901   ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); }
3902   void SetBias(ComparisonBias bias) { SetPackedField<ComparisonBiasField>(bias); }
3903 
3904   bool InstructionDataEquals(const HInstruction* other) const override {
3905     return GetPackedFields() == other->AsCondition()->GetPackedFields();
3906   }
3907 
3908   bool IsFPConditionTrueIfNaN() const {
3909     DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3910     IfCondition if_cond = GetCondition();
3911     if (if_cond == kCondNE) {
3912       return true;
3913     } else if (if_cond == kCondEQ) {
3914       return false;
3915     }
3916     return ((if_cond == kCondGT) || (if_cond == kCondGE)) && IsGtBias();
3917   }
3918 
3919   bool IsFPConditionFalseIfNaN() const {
3920     DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3921     IfCondition if_cond = GetCondition();
3922     if (if_cond == kCondEQ) {
3923       return true;
3924     } else if (if_cond == kCondNE) {
3925       return false;
3926     }
3927     return ((if_cond == kCondLT) || (if_cond == kCondLE)) && IsGtBias();
3928   }
3929 
3930  protected:
3931   // Needed if we merge a HCompare into a HCondition.
3932   static constexpr size_t kFieldComparisonBias = kNumberOfGenericPackedBits;
3933   static constexpr size_t kFieldComparisonBiasSize =
3934       MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast));
3935   static constexpr size_t kNumberOfConditionPackedBits =
3936       kFieldComparisonBias + kFieldComparisonBiasSize;
3937   static_assert(kNumberOfConditionPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
3938   using ComparisonBiasField =
3939       BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>;
3940 
3941   template <typename T>
3942   int32_t Compare(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); }
3943 
3944   template <typename T>
3945   int32_t CompareFP(T x, T y) const {
3946     DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3947     DCHECK_NE(GetBias(), ComparisonBias::kNoBias);
3948     // Handle the bias.
3949     return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compare(x, y);
3950   }
3951 
3952   // Return an integer constant containing the result of a condition evaluated at compile time.
3953   HIntConstant* MakeConstantCondition(bool value, uint32_t dex_pc) const {
3954     return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc);
3955   }
3956 
3957   DEFAULT_COPY_CONSTRUCTOR(Condition);
3958 };
3959 
3960 // Instruction to check if two inputs are equal to each other.
3961 class HEqual final : public HCondition {
3962  public:
3963   HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
3964       : HCondition(kEqual, first, second, dex_pc) {
3965   }
3966 
3967   bool IsCommutative() const override { return true; }
3968 
3969   HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
3970                       HNullConstant* y ATTRIBUTE_UNUSED) const override {
3971     return MakeConstantCondition(true, GetDexPc());
3972   }
3973   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
3974     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3975   }
3976   // In the following Evaluate methods, a HCompare instruction has
3977   // been merged into this HEqual instruction; evaluate it as
3978   // `Compare(x, y) == 0`.
3979   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
3980     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0),
3981                                  GetDexPc());
3982   }
3983   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
3984     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3985   }
3986   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
3987     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3988   }
3989 
3990   DECLARE_INSTRUCTION(Equal);
3991 
3992   IfCondition GetCondition() const override {
3993     return kCondEQ;
3994   }
3995 
3996   IfCondition GetOppositeCondition() const override {
3997     return kCondNE;
3998   }
3999 
4000  protected:
4001   DEFAULT_COPY_CONSTRUCTOR(Equal);
4002 
4003  private:
4004   template <typename T> static bool Compute(T x, T y) { return x == y; }
4005 };
4006 
4007 class HNotEqual final : public HCondition {
4008  public:
4009   HNotEqual(HInstruction* first, HInstruction* second,
4010             uint32_t dex_pc = kNoDexPc)
4011       : HCondition(kNotEqual, first, second, dex_pc) {
4012   }
4013 
4014   bool IsCommutative() const override { return true; }
4015 
4016   HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
4017                       HNullConstant* y ATTRIBUTE_UNUSED) const override {
4018     return MakeConstantCondition(false, GetDexPc());
4019   }
4020   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4021     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4022   }
4023   // In the following Evaluate methods, a HCompare instruction has
4024   // been merged into this HNotEqual instruction; evaluate it as
4025   // `Compare(x, y) != 0`.
4026   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4027     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
4028   }
4029   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
4030     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
4031   }
4032   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
4033     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
4034   }
4035 
4036   DECLARE_INSTRUCTION(NotEqual);
4037 
4038   IfCondition GetCondition() const override {
4039     return kCondNE;
4040   }
4041 
4042   IfCondition GetOppositeCondition() const override {
4043     return kCondEQ;
4044   }
4045 
4046  protected:
4047   DEFAULT_COPY_CONSTRUCTOR(NotEqual);
4048 
4049  private:
4050   template <typename T> static bool Compute(T x, T y) { return x != y; }
4051 };
4052 
4053 class HLessThan final : public HCondition {
4054  public:
4055   HLessThan(HInstruction* first, HInstruction* second,
4056             uint32_t dex_pc = kNoDexPc)
4057       : HCondition(kLessThan, first, second, dex_pc) {
4058   }
4059 
4060   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4061     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4062   }
4063   // In the following Evaluate methods, a HCompare instruction has
4064   // been merged into this HLessThan instruction; evaluate it as
4065   // `Compare(x, y) < 0`.
4066   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4067     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
4068   }
4069   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
4070     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
4071   }
4072   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
4073     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
4074   }
4075 
4076   DECLARE_INSTRUCTION(LessThan);
4077 
4078   IfCondition GetCondition() const override {
4079     return kCondLT;
4080   }
4081 
4082   IfCondition GetOppositeCondition() const override {
4083     return kCondGE;
4084   }
4085 
4086  protected:
4087   DEFAULT_COPY_CONSTRUCTOR(LessThan);
4088 
4089  private:
4090   template <typename T> static bool Compute(T x, T y) { return x < y; }
4091 };
4092 
4093 class HLessThanOrEqual final : public HCondition {
4094  public:
4095   HLessThanOrEqual(HInstruction* first, HInstruction* second,
4096                    uint32_t dex_pc = kNoDexPc)
4097       : HCondition(kLessThanOrEqual, first, second, dex_pc) {
4098   }
4099 
4100   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4101     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4102   }
4103   // In the following Evaluate methods, a HCompare instruction has
4104   // been merged into this HLessThanOrEqual instruction; evaluate it as
4105   // `Compare(x, y) <= 0`.
4106   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4107     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
4108   }
4109   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
4110     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
4111   }
4112   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
4113     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
4114   }
4115 
4116   DECLARE_INSTRUCTION(LessThanOrEqual);
4117 
4118   IfCondition GetCondition() const override {
4119     return kCondLE;
4120   }
4121 
4122   IfCondition GetOppositeCondition() const override {
4123     return kCondGT;
4124   }
4125 
4126  protected:
4127   DEFAULT_COPY_CONSTRUCTOR(LessThanOrEqual);
4128 
4129  private:
4130   template <typename T> static bool Compute(T x, T y) { return x <= y; }
4131 };
4132 
4133 class HGreaterThan final : public HCondition {
4134  public:
4135   HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
4136       : HCondition(kGreaterThan, first, second, dex_pc) {
4137   }
4138 
4139   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4140     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4141   }
4142   // In the following Evaluate methods, a HCompare instruction has
4143   // been merged into this HGreaterThan instruction; evaluate it as
4144   // `Compare(x, y) > 0`.
4145   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4146     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
4147   }
4148   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
4149     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
4150   }
4151   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
4152     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
4153   }
4154 
4155   DECLARE_INSTRUCTION(GreaterThan);
4156 
4157   IfCondition GetCondition() const override {
4158     return kCondGT;
4159   }
4160 
4161   IfCondition GetOppositeCondition() const override {
4162     return kCondLE;
4163   }
4164 
4165  protected:
4166   DEFAULT_COPY_CONSTRUCTOR(GreaterThan);
4167 
4168  private:
4169   template <typename T> static bool Compute(T x, T y) { return x > y; }
4170 };
4171 
4172 class HGreaterThanOrEqual final : public HCondition {
4173  public:
4174   HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
4175       : HCondition(kGreaterThanOrEqual, first, second, dex_pc) {
4176   }
4177 
4178   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4179     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4180   }
4181   // In the following Evaluate methods, a HCompare instruction has
4182   // been merged into this HGreaterThanOrEqual instruction; evaluate it as
4183   // `Compare(x, y) >= 0`.
4184   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4185     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
4186   }
4187   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
4188     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
4189   }
4190   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
4191     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
4192   }
4193 
4194   DECLARE_INSTRUCTION(GreaterThanOrEqual);
4195 
4196   IfCondition GetCondition() const override {
4197     return kCondGE;
4198   }
4199 
4200   IfCondition GetOppositeCondition() const override {
4201     return kCondLT;
4202   }
4203 
4204  protected:
4205   DEFAULT_COPY_CONSTRUCTOR(GreaterThanOrEqual);
4206 
4207  private:
4208   template <typename T> static bool Compute(T x, T y) { return x >= y; }
4209 };
4210 
4211 class HBelow final : public HCondition {
4212  public:
4213   HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
4214       : HCondition(kBelow, first, second, dex_pc) {
4215   }
4216 
4217   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4218     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4219   }
4220   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4221     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4222   }
4223   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4224                       HFloatConstant* y ATTRIBUTE_UNUSED) const override {
4225     LOG(FATAL) << DebugName() << " is not defined for float values";
4226     UNREACHABLE();
4227   }
4228   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
4229                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
4230     LOG(FATAL) << DebugName() << " is not defined for double values";
4231     UNREACHABLE();
4232   }
4233 
4234   DECLARE_INSTRUCTION(Below);
4235 
4236   IfCondition GetCondition() const override {
4237     return kCondB;
4238   }
4239 
4240   IfCondition GetOppositeCondition() const override {
4241     return kCondAE;
4242   }
4243 
4244  protected:
4245   DEFAULT_COPY_CONSTRUCTOR(Below);
4246 
4247  private:
4248   template <typename T> static bool Compute(T x, T y) {
4249     return MakeUnsigned(x) < MakeUnsigned(y);
4250   }
4251 };
4252 
4253 class HBelowOrEqual final : public HCondition {
4254  public:
4255   HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
4256       : HCondition(kBelowOrEqual, first, second, dex_pc) {
4257   }
4258 
4259   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4260     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4261   }
4262   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4263     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4264   }
4265   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4266                       HFloatConstant* y ATTRIBUTE_UNUSED) const override {
4267     LOG(FATAL) << DebugName() << " is not defined for float values";
4268     UNREACHABLE();
4269   }
4270   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
4271                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
4272     LOG(FATAL) << DebugName() << " is not defined for double values";
4273     UNREACHABLE();
4274   }
4275 
4276   DECLARE_INSTRUCTION(BelowOrEqual);
4277 
4278   IfCondition GetCondition() const override {
4279     return kCondBE;
4280   }
4281 
4282   IfCondition GetOppositeCondition() const override {
4283     return kCondA;
4284   }
4285 
4286  protected:
4287   DEFAULT_COPY_CONSTRUCTOR(BelowOrEqual);
4288 
4289  private:
4290   template <typename T> static bool Compute(T x, T y) {
4291     return MakeUnsigned(x) <= MakeUnsigned(y);
4292   }
4293 };
4294 
4295 class HAbove final : public HCondition {
4296  public:
4297   HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
4298       : HCondition(kAbove, first, second, dex_pc) {
4299   }
4300 
4301   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4302     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4303   }
4304   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4305     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4306   }
4307   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4308                       HFloatConstant* y ATTRIBUTE_UNUSED) const override {
4309     LOG(FATAL) << DebugName() << " is not defined for float values";
4310     UNREACHABLE();
4311   }
4312   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
4313                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
4314     LOG(FATAL) << DebugName() << " is not defined for double values";
4315     UNREACHABLE();
4316   }
4317 
4318   DECLARE_INSTRUCTION(Above);
4319 
4320   IfCondition GetCondition() const override {
4321     return kCondA;
4322   }
4323 
4324   IfCondition GetOppositeCondition() const override {
4325     return kCondBE;
4326   }
4327 
4328  protected:
4329   DEFAULT_COPY_CONSTRUCTOR(Above);
4330 
4331  private:
4332   template <typename T> static bool Compute(T x, T y) {
4333     return MakeUnsigned(x) > MakeUnsigned(y);
4334   }
4335 };
4336 
4337 class HAboveOrEqual final : public HCondition {
4338  public:
4339   HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
4340       : HCondition(kAboveOrEqual, first, second, dex_pc) {
4341   }
4342 
4343   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4344     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4345   }
4346   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4347     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4348   }
4349   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4350                       HFloatConstant* y ATTRIBUTE_UNUSED) const override {
4351     LOG(FATAL) << DebugName() << " is not defined for float values";
4352     UNREACHABLE();
4353   }
4354   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
4355                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
4356     LOG(FATAL) << DebugName() << " is not defined for double values";
4357     UNREACHABLE();
4358   }
4359 
4360   DECLARE_INSTRUCTION(AboveOrEqual);
4361 
4362   IfCondition GetCondition() const override {
4363     return kCondAE;
4364   }
4365 
4366   IfCondition GetOppositeCondition() const override {
4367     return kCondB;
4368   }
4369 
4370  protected:
4371   DEFAULT_COPY_CONSTRUCTOR(AboveOrEqual);
4372 
4373  private:
4374   template <typename T> static bool Compute(T x, T y) {
4375     return MakeUnsigned(x) >= MakeUnsigned(y);
4376   }
4377 };
4378 
4379 // Instruction to check how two inputs compare to each other.
4380 // Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
4381 class HCompare final : public HBinaryOperation {
4382  public:
4383   // Note that `comparison_type` is the type of comparison performed
4384   // between the comparison's inputs, not the type of the instantiated
4385   // HCompare instruction (which is always DataType::Type::kInt).
4386   HCompare(DataType::Type comparison_type,
4387            HInstruction* first,
4388            HInstruction* second,
4389            ComparisonBias bias,
4390            uint32_t dex_pc)
4391       : HBinaryOperation(kCompare,
4392                          DataType::Type::kInt32,
4393                          first,
4394                          second,
4395                          SideEffectsForArchRuntimeCalls(comparison_type),
4396                          dex_pc) {
4397     SetPackedField<ComparisonBiasField>(bias);
4398   }
4399 
4400   template <typename T>
4401   int32_t Compute(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); }
4402 
4403   template <typename T>
4404   int32_t ComputeFP(T x, T y) const {
4405     DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
4406     DCHECK_NE(GetBias(), ComparisonBias::kNoBias);
4407     // Handle the bias.
4408     return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compute(x, y);
4409   }
4410 
4411   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4412     // Note that there is no "cmp-int" Dex instruction so we shouldn't
4413     // reach this code path when processing a freshly built HIR
4414     // graph. However HCompare integer instructions can be synthesized
4415     // by the instruction simplifier to implement IntegerCompare and
4416     // IntegerSignum intrinsics, so we have to handle this case.
4417     return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4418   }
4419   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4420     return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4421   }
4422   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
4423     return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
4424   }
4425   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
4426     return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
4427   }
4428 
4429   bool InstructionDataEquals(const HInstruction* other) const override {
4430     return GetPackedFields() == other->AsCompare()->GetPackedFields();
4431   }
4432 
4433   ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); }
4434 
4435   // Does this compare instruction have a "gt bias" (vs an "lt bias")?
4436   // Only meaningful for floating-point comparisons.
4437   bool IsGtBias() const {
4438     DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
4439     return GetBias() == ComparisonBias::kGtBias;
4440   }
4441 
4442   static SideEffects SideEffectsForArchRuntimeCalls(DataType::Type type ATTRIBUTE_UNUSED) {
4443     // Comparisons do not require a runtime call in any back end.
4444     return SideEffects::None();
4445   }
4446 
4447   DECLARE_INSTRUCTION(Compare);
4448 
4449  protected:
4450   static constexpr size_t kFieldComparisonBias = kNumberOfGenericPackedBits;
4451   static constexpr size_t kFieldComparisonBiasSize =
4452       MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast));
4453   static constexpr size_t kNumberOfComparePackedBits =
4454       kFieldComparisonBias + kFieldComparisonBiasSize;
4455   static_assert(kNumberOfComparePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
4456   using ComparisonBiasField =
4457       BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>;
4458 
4459   // Return an integer constant containing the result of a comparison evaluated at compile time.
4460   HIntConstant* MakeConstantComparison(int32_t value, uint32_t dex_pc) const {
4461     DCHECK(value == -1 || value == 0 || value == 1) << value;
4462     return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc);
4463   }
4464 
4465   DEFAULT_COPY_CONSTRUCTOR(Compare);
4466 };
4467 
4468 class HNewInstance final : public HExpression<1> {
4469  public:
4470   HNewInstance(HInstruction* cls,
4471                uint32_t dex_pc,
4472                dex::TypeIndex type_index,
4473                const DexFile& dex_file,
4474                bool finalizable,
4475                QuickEntrypointEnum entrypoint)
4476       : HExpression(kNewInstance,
4477                     DataType::Type::kReference,
4478                     SideEffects::CanTriggerGC(),
4479                     dex_pc),
4480         type_index_(type_index),
4481         dex_file_(dex_file),
4482         entrypoint_(entrypoint) {
4483     SetPackedFlag<kFlagFinalizable>(finalizable);
4484     SetPackedFlag<kFlagPartialMaterialization>(false);
4485     SetRawInputAt(0, cls);
4486   }
4487 
4488   bool IsClonable() const override { return true; }
4489 
4490   void SetPartialMaterialization() {
4491     SetPackedFlag<kFlagPartialMaterialization>(true);
4492   }
4493 
4494   dex::TypeIndex GetTypeIndex() const { return type_index_; }
4495   const DexFile& GetDexFile() const { return dex_file_; }
4496 
4497   // Calls runtime so needs an environment.
4498   bool NeedsEnvironment() const override { return true; }
4499 
4500   // Can throw errors when out-of-memory or if it's not instantiable/accessible.
4501   bool CanThrow() const override { return true; }
4502   bool OnlyThrowsAsyncExceptions() const override {
4503     return !IsFinalizable() && !NeedsChecks();
4504   }
4505 
4506   bool NeedsChecks() const {
4507     return entrypoint_ == kQuickAllocObjectWithChecks;
4508   }
4509 
4510   bool IsFinalizable() const { return GetPackedFlag<kFlagFinalizable>(); }
4511 
4512   bool CanBeNull() const override { return false; }
4513 
4514   bool IsPartialMaterialization() const {
4515     return GetPackedFlag<kFlagPartialMaterialization>();
4516   }
4517 
4518   QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
4519 
4520   void SetEntrypoint(QuickEntrypointEnum entrypoint) {
4521     entrypoint_ = entrypoint;
4522   }
4523 
4524   HLoadClass* GetLoadClass() const {
4525     HInstruction* input = InputAt(0);
4526     if (input->IsClinitCheck()) {
4527       input = input->InputAt(0);
4528     }
4529     DCHECK(input->IsLoadClass());
4530     return input->AsLoadClass();
4531   }
4532 
4533   bool IsStringAlloc() const;
4534 
4535   DECLARE_INSTRUCTION(NewInstance);
4536 
4537  protected:
4538   DEFAULT_COPY_CONSTRUCTOR(NewInstance);
4539 
4540  private:
4541   static constexpr size_t kFlagFinalizable = kNumberOfGenericPackedBits;
4542   static constexpr size_t kFlagPartialMaterialization = kFlagFinalizable + 1;
4543   static constexpr size_t kNumberOfNewInstancePackedBits = kFlagPartialMaterialization + 1;
4544   static_assert(kNumberOfNewInstancePackedBits <= kMaxNumberOfPackedBits,
4545                 "Too many packed fields.");
4546 
4547   const dex::TypeIndex type_index_;
4548   const DexFile& dex_file_;
4549   QuickEntrypointEnum entrypoint_;
4550 };
4551 
4552 enum IntrinsicNeedsEnvironment {
4553   kNoEnvironment,        // Intrinsic does not require an environment.
4554   kNeedsEnvironment      // Intrinsic requires an environment.
4555 };
4556 
4557 enum IntrinsicSideEffects {
4558   kNoSideEffects,     // Intrinsic does not have any heap memory side effects.
4559   kReadSideEffects,   // Intrinsic may read heap memory.
4560   kWriteSideEffects,  // Intrinsic may write heap memory.
4561   kAllSideEffects     // Intrinsic may read or write heap memory, or trigger GC.
4562 };
4563 
4564 enum IntrinsicExceptions {
4565   kNoThrow,  // Intrinsic does not throw any exceptions.
4566   kCanThrow  // Intrinsic may throw exceptions.
4567 };
4568 
4569 // Determines how to load an ArtMethod*.
4570 enum class MethodLoadKind {
4571   // Use a String init ArtMethod* loaded from Thread entrypoints.
4572   kStringInit,
4573 
4574   // Use the method's own ArtMethod* loaded by the register allocator.
4575   kRecursive,
4576 
4577   // Use PC-relative boot image ArtMethod* address that will be known at link time.
4578   // Used for boot image methods referenced by boot image code.
4579   kBootImageLinkTimePcRelative,
4580 
4581   // Load from an entry in the .data.bimg.rel.ro using a PC-relative load.
4582   // Used for app->boot calls with relocatable image.
4583   kBootImageRelRo,
4584 
4585   // Load from an entry in the .bss section using a PC-relative load.
4586   // Used for methods outside boot image referenced by AOT-compiled app and boot image code.
4587   kBssEntry,
4588 
4589   // Use ArtMethod* at a known address, embed the direct address in the code.
4590   // Used for for JIT-compiled calls.
4591   kJitDirectAddress,
4592 
4593   // Make a runtime call to resolve and call the method. This is the last-resort-kind
4594   // used when other kinds are unimplemented on a particular architecture.
4595   kRuntimeCall,
4596 };
4597 
4598 // Determines the location of the code pointer of an invoke.
4599 enum class CodePtrLocation {
4600   // Recursive call, use local PC-relative call instruction.
4601   kCallSelf,
4602 
4603   // Use native pointer from the Artmethod*.
4604   // Used for @CriticalNative to avoid going through the compiled stub. This call goes through
4605   // a special resolution stub if the class is not initialized or no native code is registered.
4606   kCallCriticalNative,
4607 
4608   // Use code pointer from the ArtMethod*.
4609   // Used when we don't know the target code. This is also the last-resort-kind used when
4610   // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture.
4611   kCallArtMethod,
4612 };
4613 
4614 static inline bool IsPcRelativeMethodLoadKind(MethodLoadKind load_kind) {
4615   return load_kind == MethodLoadKind::kBootImageLinkTimePcRelative ||
4616          load_kind == MethodLoadKind::kBootImageRelRo ||
4617          load_kind == MethodLoadKind::kBssEntry;
4618 }
4619 
4620 class HInvoke : public HVariableInputSizeInstruction {
4621  public:
4622   bool NeedsEnvironment() const override;
4623 
4624   void SetArgumentAt(size_t index, HInstruction* argument) {
4625     SetRawInputAt(index, argument);
4626   }
4627 
4628   // Return the number of arguments.  This number can be lower than
4629   // the number of inputs returned by InputCount(), as some invoke
4630   // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
4631   // inputs at the end of their list of inputs.
4632   uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
4633 
4634   InvokeType GetInvokeType() const {
4635     return GetPackedField<InvokeTypeField>();
4636   }
4637 
4638   Intrinsics GetIntrinsic() const {
4639     return intrinsic_;
4640   }
4641 
4642   void SetIntrinsic(Intrinsics intrinsic,
4643                     IntrinsicNeedsEnvironment needs_env,
4644                     IntrinsicSideEffects side_effects,
4645                     IntrinsicExceptions exceptions);
4646 
4647   bool IsFromInlinedInvoke() const {
4648     return GetEnvironment()->IsFromInlinedInvoke();
4649   }
4650 
4651   void SetCanThrow(bool can_throw) { SetPackedFlag<kFlagCanThrow>(can_throw); }
4652 
4653   bool CanThrow() const override { return GetPackedFlag<kFlagCanThrow>(); }
4654 
4655   void SetAlwaysThrows(bool always_throws) { SetPackedFlag<kFlagAlwaysThrows>(always_throws); }
4656 
4657   bool AlwaysThrows() const override { return GetPackedFlag<kFlagAlwaysThrows>(); }
4658 
4659   bool CanBeMoved() const override { return IsIntrinsic() && !DoesAnyWrite(); }
4660 
4661   bool InstructionDataEquals(const HInstruction* other) const override {
4662     return intrinsic_ != Intrinsics::kNone && intrinsic_ == other->AsInvoke()->intrinsic_;
4663   }
4664 
4665   uint32_t* GetIntrinsicOptimizations() {
4666     return &intrinsic_optimizations_;
4667   }
4668 
4669   const uint32_t* GetIntrinsicOptimizations() const {
4670     return &intrinsic_optimizations_;
4671   }
4672 
4673   bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; }
4674 
4675   ArtMethod* GetResolvedMethod() const { return resolved_method_; }
4676   void SetResolvedMethod(ArtMethod* method);
4677 
4678   MethodReference GetMethodReference() const { return method_reference_; }
4679 
4680   const MethodReference GetResolvedMethodReference() const {
4681     return resolved_method_reference_;
4682   }
4683 
4684   DECLARE_ABSTRACT_INSTRUCTION(Invoke);
4685 
4686  protected:
4687   static constexpr size_t kFieldInvokeType = kNumberOfGenericPackedBits;
4688   static constexpr size_t kFieldInvokeTypeSize =
4689       MinimumBitsToStore(static_cast<size_t>(kMaxInvokeType));
4690   static constexpr size_t kFlagCanThrow = kFieldInvokeType + kFieldInvokeTypeSize;
4691   static constexpr size_t kFlagAlwaysThrows = kFlagCanThrow + 1;
4692   static constexpr size_t kNumberOfInvokePackedBits = kFlagAlwaysThrows + 1;
4693   static_assert(kNumberOfInvokePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
4694   using InvokeTypeField = BitField<InvokeType, kFieldInvokeType, kFieldInvokeTypeSize>;
4695 
4696   HInvoke(InstructionKind kind,
4697           ArenaAllocator* allocator,
4698           uint32_t number_of_arguments,
4699           uint32_t number_of_other_inputs,
4700           DataType::Type return_type,
4701           uint32_t dex_pc,
4702           MethodReference method_reference,
4703           ArtMethod* resolved_method,
4704           MethodReference resolved_method_reference,
4705           InvokeType invoke_type)
4706     : HVariableInputSizeInstruction(
4707           kind,
4708           return_type,
4709           SideEffects::AllExceptGCDependency(),  // Assume write/read on all fields/arrays.
4710           dex_pc,
4711           allocator,
4712           number_of_arguments + number_of_other_inputs,
4713           kArenaAllocInvokeInputs),
4714       number_of_arguments_(number_of_arguments),
4715       method_reference_(method_reference),
4716       resolved_method_reference_(resolved_method_reference),
4717       intrinsic_(Intrinsics::kNone),
4718       intrinsic_optimizations_(0) {
4719     SetPackedField<InvokeTypeField>(invoke_type);
4720     SetPackedFlag<kFlagCanThrow>(true);
4721     SetResolvedMethod(resolved_method);
4722   }
4723 
4724   DEFAULT_COPY_CONSTRUCTOR(Invoke);
4725 
4726   uint32_t number_of_arguments_;
4727   ArtMethod* resolved_method_;
4728   const MethodReference method_reference_;
4729   // Cached values of the resolved method, to avoid needing the mutator lock.
4730   const MethodReference resolved_method_reference_;
4731   Intrinsics intrinsic_;
4732 
4733   // A magic word holding optimizations for intrinsics. See intrinsics.h.
4734   uint32_t intrinsic_optimizations_;
4735 };
4736 
4737 class HInvokeUnresolved final : public HInvoke {
4738  public:
4739   HInvokeUnresolved(ArenaAllocator* allocator,
4740                     uint32_t number_of_arguments,
4741                     DataType::Type return_type,
4742                     uint32_t dex_pc,
4743                     MethodReference method_reference,
4744                     InvokeType invoke_type)
4745       : HInvoke(kInvokeUnresolved,
4746                 allocator,
4747                 number_of_arguments,
4748                 /* number_of_other_inputs= */ 0u,
4749                 return_type,
4750                 dex_pc,
4751                 method_reference,
4752                 nullptr,
4753                 MethodReference(nullptr, 0u),
4754                 invoke_type) {
4755   }
4756 
4757   bool IsClonable() const override { return true; }
4758 
4759   DECLARE_INSTRUCTION(InvokeUnresolved);
4760 
4761  protected:
4762   DEFAULT_COPY_CONSTRUCTOR(InvokeUnresolved);
4763 };
4764 
4765 class HInvokePolymorphic final : public HInvoke {
4766  public:
4767   HInvokePolymorphic(ArenaAllocator* allocator,
4768                      uint32_t number_of_arguments,
4769                      DataType::Type return_type,
4770                      uint32_t dex_pc,
4771                      MethodReference method_reference,
4772                      // resolved_method is the ArtMethod object corresponding to the polymorphic
4773                      // method (e.g. VarHandle.get), resolved using the class linker. It is needed
4774                      // to pass intrinsic information to the HInvokePolymorphic node.
4775                      ArtMethod* resolved_method,
4776                      MethodReference resolved_method_reference,
4777                      dex::ProtoIndex proto_idx)
4778       : HInvoke(kInvokePolymorphic,
4779                 allocator,
4780                 number_of_arguments,
4781                 /* number_of_other_inputs= */ 0u,
4782                 return_type,
4783                 dex_pc,
4784                 method_reference,
4785                 resolved_method,
4786                 resolved_method_reference,
4787                 kPolymorphic),
4788         proto_idx_(proto_idx) {
4789   }
4790 
4791   bool IsClonable() const override { return true; }
4792 
4793   dex::ProtoIndex GetProtoIndex() { return proto_idx_; }
4794 
4795   DECLARE_INSTRUCTION(InvokePolymorphic);
4796 
4797  protected:
4798   dex::ProtoIndex proto_idx_;
4799   DEFAULT_COPY_CONSTRUCTOR(InvokePolymorphic);
4800 };
4801 
4802 class HInvokeCustom final : public HInvoke {
4803  public:
4804   HInvokeCustom(ArenaAllocator* allocator,
4805                 uint32_t number_of_arguments,
4806                 uint32_t call_site_index,
4807                 DataType::Type return_type,
4808                 uint32_t dex_pc,
4809                 MethodReference method_reference)
4810       : HInvoke(kInvokeCustom,
4811                 allocator,
4812                 number_of_arguments,
4813                 /* number_of_other_inputs= */ 0u,
4814                 return_type,
4815                 dex_pc,
4816                 method_reference,
4817                 /* resolved_method= */ nullptr,
4818                 MethodReference(nullptr, 0u),
4819                 kStatic),
4820       call_site_index_(call_site_index) {
4821   }
4822 
4823   uint32_t GetCallSiteIndex() const { return call_site_index_; }
4824 
4825   bool IsClonable() const override { return true; }
4826 
4827   DECLARE_INSTRUCTION(InvokeCustom);
4828 
4829  protected:
4830   DEFAULT_COPY_CONSTRUCTOR(InvokeCustom);
4831 
4832  private:
4833   uint32_t call_site_index_;
4834 };
4835 
4836 class HInvokeStaticOrDirect final : public HInvoke {
4837  public:
4838   // Requirements of this method call regarding the class
4839   // initialization (clinit) check of its declaring class.
4840   enum class ClinitCheckRequirement {  // private marker to avoid generate-operator-out.py from processing.
4841     kNone,      // Class already initialized.
4842     kExplicit,  // Static call having explicit clinit check as last input.
4843     kImplicit,  // Static call implicitly requiring a clinit check.
4844     kLast = kImplicit
4845   };
4846 
4847   struct DispatchInfo {
4848     MethodLoadKind method_load_kind;
4849     CodePtrLocation code_ptr_location;
4850     // The method load data holds
4851     //   - thread entrypoint offset for kStringInit method if this is a string init invoke.
4852     //     Note that there are multiple string init methods, each having its own offset.
4853     //   - the method address for kDirectAddress
4854     uint64_t method_load_data;
4855   };
4856 
4857   HInvokeStaticOrDirect(ArenaAllocator* allocator,
4858                         uint32_t number_of_arguments,
4859                         DataType::Type return_type,
4860                         uint32_t dex_pc,
4861                         MethodReference method_reference,
4862                         ArtMethod* resolved_method,
4863                         DispatchInfo dispatch_info,
4864                         InvokeType invoke_type,
4865                         MethodReference resolved_method_reference,
4866                         ClinitCheckRequirement clinit_check_requirement)
4867       : HInvoke(kInvokeStaticOrDirect,
4868                 allocator,
4869                 number_of_arguments,
4870                 // There is potentially one extra argument for the HCurrentMethod input,
4871                 // and one other if the clinit check is explicit. These can be removed later.
4872                 (NeedsCurrentMethodInput(dispatch_info) ? 1u : 0u) +
4873                     (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u),
4874                 return_type,
4875                 dex_pc,
4876                 method_reference,
4877                 resolved_method,
4878                 resolved_method_reference,
4879                 invoke_type),
4880         dispatch_info_(dispatch_info) {
4881     SetPackedField<ClinitCheckRequirementField>(clinit_check_requirement);
4882   }
4883 
4884   bool IsClonable() const override { return true; }
4885 
4886   void SetDispatchInfo(DispatchInfo dispatch_info) {
4887     bool had_current_method_input = HasCurrentMethodInput();
4888     bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info);
4889 
4890     // Using the current method is the default and once we find a better
4891     // method load kind, we should not go back to using the current method.
4892     DCHECK(had_current_method_input || !needs_current_method_input);
4893 
4894     if (had_current_method_input && !needs_current_method_input) {
4895       DCHECK_EQ(InputAt(GetCurrentMethodIndex()), GetBlock()->GetGraph()->GetCurrentMethod());
4896       RemoveInputAt(GetCurrentMethodIndex());
4897     }
4898     dispatch_info_ = dispatch_info;
4899   }
4900 
4901   DispatchInfo GetDispatchInfo() const {
4902     return dispatch_info_;
4903   }
4904 
4905   using HInstruction::GetInputRecords;  // Keep the const version visible.
4906   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() override {
4907     ArrayRef<HUserRecord<HInstruction*>> input_records = HInvoke::GetInputRecords();
4908     if (kIsDebugBuild && IsStaticWithExplicitClinitCheck()) {
4909       DCHECK(!input_records.empty());
4910       DCHECK_GT(input_records.size(), GetNumberOfArguments());
4911       HInstruction* last_input = input_records.back().GetInstruction();
4912       // Note: `last_input` may be null during arguments setup.
4913       if (last_input != nullptr) {
4914         // `last_input` is the last input of a static invoke marked as having
4915         // an explicit clinit check. It must either be:
4916         // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
4917         // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
4918         DCHECK(last_input->IsClinitCheck() || last_input->IsLoadClass()) << last_input->DebugName();
4919       }
4920     }
4921     return input_records;
4922   }
4923 
4924   bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override {
4925     // We do not access the method via object reference, so we cannot do an implicit null check.
4926     // TODO: for intrinsics we can generate implicit null checks.
4927     return false;
4928   }
4929 
4930   bool CanBeNull() const override {
4931     return GetType() == DataType::Type::kReference && !IsStringInit();
4932   }
4933 
4934   MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; }
4935   CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; }
4936   bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; }
4937   bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; }
4938   bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kJitDirectAddress; }
4939   bool HasPcRelativeMethodLoadKind() const {
4940     return IsPcRelativeMethodLoadKind(GetMethodLoadKind());
4941   }
4942 
4943   QuickEntrypointEnum GetStringInitEntryPoint() const {
4944     DCHECK(IsStringInit());
4945     return static_cast<QuickEntrypointEnum>(dispatch_info_.method_load_data);
4946   }
4947 
4948   uint64_t GetMethodAddress() const {
4949     DCHECK(HasMethodAddress());
4950     return dispatch_info_.method_load_data;
4951   }
4952 
4953   const DexFile& GetDexFileForPcRelativeDexCache() const;
4954 
4955   ClinitCheckRequirement GetClinitCheckRequirement() const {
4956     return GetPackedField<ClinitCheckRequirementField>();
4957   }
4958 
4959   // Is this instruction a call to a static method?
4960   bool IsStatic() const {
4961     return GetInvokeType() == kStatic;
4962   }
4963 
4964   // Does this method load kind need the current method as an input?
4965   static bool NeedsCurrentMethodInput(DispatchInfo dispatch_info) {
4966     return dispatch_info.method_load_kind == MethodLoadKind::kRecursive ||
4967            dispatch_info.method_load_kind == MethodLoadKind::kRuntimeCall ||
4968            dispatch_info.code_ptr_location == CodePtrLocation::kCallCriticalNative;
4969   }
4970 
4971   // Get the index of the current method input.
4972   size_t GetCurrentMethodIndex() const {
4973     DCHECK(HasCurrentMethodInput());
4974     return GetCurrentMethodIndexUnchecked();
4975   }
4976   size_t GetCurrentMethodIndexUnchecked() const {
4977     return GetNumberOfArguments();
4978   }
4979 
4980   // Check if the method has a current method input.
4981   bool HasCurrentMethodInput() const {
4982     if (NeedsCurrentMethodInput(GetDispatchInfo())) {
4983       DCHECK(InputAt(GetCurrentMethodIndexUnchecked()) == nullptr ||  // During argument setup.
4984              InputAt(GetCurrentMethodIndexUnchecked())->IsCurrentMethod());
4985       return true;
4986     } else {
4987       DCHECK(InputCount() == GetCurrentMethodIndexUnchecked() ||
4988              InputAt(GetCurrentMethodIndexUnchecked()) == nullptr ||  // During argument setup.
4989              !InputAt(GetCurrentMethodIndexUnchecked())->IsCurrentMethod());
4990       return false;
4991     }
4992   }
4993 
4994   // Get the index of the special input.
4995   size_t GetSpecialInputIndex() const {
4996     DCHECK(HasSpecialInput());
4997     return GetSpecialInputIndexUnchecked();
4998   }
4999   size_t GetSpecialInputIndexUnchecked() const {
5000     return GetNumberOfArguments() + (HasCurrentMethodInput() ? 1u : 0u);
5001   }
5002 
5003   // Check if the method has a special input.
5004   bool HasSpecialInput() const {
5005     size_t other_inputs =
5006         GetSpecialInputIndexUnchecked() + (IsStaticWithExplicitClinitCheck() ? 1u : 0u);
5007     size_t input_count = InputCount();
5008     DCHECK_LE(input_count - other_inputs, 1u) << other_inputs << " " << input_count;
5009     return other_inputs != input_count;
5010   }
5011 
5012   void AddSpecialInput(HInstruction* input) {
5013     // We allow only one special input.
5014     DCHECK(!HasSpecialInput());
5015     InsertInputAt(GetSpecialInputIndexUnchecked(), input);
5016   }
5017 
5018   // Remove the HClinitCheck or the replacement HLoadClass (set as last input by
5019   // PrepareForRegisterAllocation::VisitClinitCheck() in lieu of the initial HClinitCheck)
5020   // instruction; only relevant for static calls with explicit clinit check.
5021   void RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement) {
5022     DCHECK(IsStaticWithExplicitClinitCheck());
5023     size_t last_input_index = inputs_.size() - 1u;
5024     HInstruction* last_input = inputs_.back().GetInstruction();
5025     DCHECK(last_input != nullptr);
5026     DCHECK(last_input->IsLoadClass() || last_input->IsClinitCheck()) << last_input->DebugName();
5027     RemoveAsUserOfInput(last_input_index);
5028     inputs_.pop_back();
5029     SetPackedField<ClinitCheckRequirementField>(new_requirement);
5030     DCHECK(!IsStaticWithExplicitClinitCheck());
5031   }
5032 
5033   // Is this a call to a static method whose declaring class has an
5034   // explicit initialization check in the graph?
5035   bool IsStaticWithExplicitClinitCheck() const {
5036     return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kExplicit);
5037   }
5038 
5039   // Is this a call to a static method whose declaring class has an
5040   // implicit intialization check requirement?
5041   bool IsStaticWithImplicitClinitCheck() const {
5042     return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kImplicit);
5043   }
5044 
5045   DECLARE_INSTRUCTION(InvokeStaticOrDirect);
5046 
5047  protected:
5048   DEFAULT_COPY_CONSTRUCTOR(InvokeStaticOrDirect);
5049 
5050  private:
5051   static constexpr size_t kFieldClinitCheckRequirement = kNumberOfInvokePackedBits;
5052   static constexpr size_t kFieldClinitCheckRequirementSize =
5053       MinimumBitsToStore(static_cast<size_t>(ClinitCheckRequirement::kLast));
5054   static constexpr size_t kNumberOfInvokeStaticOrDirectPackedBits =
5055       kFieldClinitCheckRequirement + kFieldClinitCheckRequirementSize;
5056   static_assert(kNumberOfInvokeStaticOrDirectPackedBits <= kMaxNumberOfPackedBits,
5057                 "Too many packed fields.");
5058   using ClinitCheckRequirementField = BitField<ClinitCheckRequirement,
5059                                                kFieldClinitCheckRequirement,
5060                                                kFieldClinitCheckRequirementSize>;
5061 
5062   DispatchInfo dispatch_info_;
5063 };
5064 std::ostream& operator<<(std::ostream& os, MethodLoadKind rhs);
5065 std::ostream& operator<<(std::ostream& os, CodePtrLocation rhs);
5066 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs);
5067 
5068 class HInvokeVirtual final : public HInvoke {
5069  public:
5070   HInvokeVirtual(ArenaAllocator* allocator,
5071                  uint32_t number_of_arguments,
5072                  DataType::Type return_type,
5073                  uint32_t dex_pc,
5074                  MethodReference method_reference,
5075                  ArtMethod* resolved_method,
5076                  MethodReference resolved_method_reference,
5077                  uint32_t vtable_index)
5078       : HInvoke(kInvokeVirtual,
5079                 allocator,
5080                 number_of_arguments,
5081                 0u,
5082                 return_type,
5083                 dex_pc,
5084                 method_reference,
5085                 resolved_method,
5086                 resolved_method_reference,
5087                 kVirtual),
5088         vtable_index_(vtable_index) {
5089   }
5090 
5091   bool IsClonable() const override { return true; }
5092 
5093   bool CanBeNull() const override {
5094     switch (GetIntrinsic()) {
5095       case Intrinsics::kThreadCurrentThread:
5096       case Intrinsics::kStringBufferAppend:
5097       case Intrinsics::kStringBufferToString:
5098       case Intrinsics::kStringBuilderAppendObject:
5099       case Intrinsics::kStringBuilderAppendString:
5100       case Intrinsics::kStringBuilderAppendCharSequence:
5101       case Intrinsics::kStringBuilderAppendCharArray:
5102       case Intrinsics::kStringBuilderAppendBoolean:
5103       case Intrinsics::kStringBuilderAppendChar:
5104       case Intrinsics::kStringBuilderAppendInt:
5105       case Intrinsics::kStringBuilderAppendLong:
5106       case Intrinsics::kStringBuilderAppendFloat:
5107       case Intrinsics::kStringBuilderAppendDouble:
5108       case Intrinsics::kStringBuilderToString:
5109         return false;
5110       default:
5111         return HInvoke::CanBeNull();
5112     }
5113   }
5114 
5115   bool CanDoImplicitNullCheckOn(HInstruction* obj) const override;
5116 
5117   uint32_t GetVTableIndex() const { return vtable_index_; }
5118 
5119   DECLARE_INSTRUCTION(InvokeVirtual);
5120 
5121  protected:
5122   DEFAULT_COPY_CONSTRUCTOR(InvokeVirtual);
5123 
5124  private:
5125   // Cached value of the resolved method, to avoid needing the mutator lock.
5126   const uint32_t vtable_index_;
5127 };
5128 
5129 class HInvokeInterface final : public HInvoke {
5130  public:
5131   HInvokeInterface(ArenaAllocator* allocator,
5132                    uint32_t number_of_arguments,
5133                    DataType::Type return_type,
5134                    uint32_t dex_pc,
5135                    MethodReference method_reference,
5136                    ArtMethod* resolved_method,
5137                    MethodReference resolved_method_reference,
5138                    uint32_t imt_index,
5139                    MethodLoadKind load_kind)
5140       : HInvoke(kInvokeInterface,
5141                 allocator,
5142                 number_of_arguments + (NeedsCurrentMethod(load_kind) ? 1 : 0),
5143                 0u,
5144                 return_type,
5145                 dex_pc,
5146                 method_reference,
5147                 resolved_method,
5148                 resolved_method_reference,
5149                 kInterface),
5150         imt_index_(imt_index),
5151         hidden_argument_load_kind_(load_kind) {
5152   }
5153 
5154   static bool NeedsCurrentMethod(MethodLoadKind load_kind) {
5155     return load_kind == MethodLoadKind::kRecursive;
5156   }
5157 
5158   bool IsClonable() const override { return true; }
5159 
5160   bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
5161     // TODO: Add implicit null checks in intrinsics.
5162     return (obj == InputAt(0)) && !IsIntrinsic();
5163   }
5164 
5165   size_t GetSpecialInputIndex() const {
5166     return GetNumberOfArguments();
5167   }
5168 
5169   void AddSpecialInput(HInstruction* input) {
5170     InsertInputAt(GetSpecialInputIndex(), input);
5171   }
5172 
5173   uint32_t GetImtIndex() const { return imt_index_; }
5174   MethodLoadKind GetHiddenArgumentLoadKind() const { return hidden_argument_load_kind_; }
5175 
5176   DECLARE_INSTRUCTION(InvokeInterface);
5177 
5178  protected:
5179   DEFAULT_COPY_CONSTRUCTOR(InvokeInterface);
5180 
5181  private:
5182   // Cached value of the resolved method, to avoid needing the mutator lock.
5183   const uint32_t imt_index_;
5184 
5185   // How the hidden argument (the interface method) is being loaded.
5186   const MethodLoadKind hidden_argument_load_kind_;
5187 };
5188 
5189 class HNeg final : public HUnaryOperation {
5190  public:
5191   HNeg(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
5192       : HUnaryOperation(kNeg, result_type, input, dex_pc) {
5193     DCHECK_EQ(result_type, DataType::Kind(input->GetType()));
5194   }
5195 
5196   template <typename T> static T Compute(T x) { return -x; }
5197 
5198   HConstant* Evaluate(HIntConstant* x) const override {
5199     return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
5200   }
5201   HConstant* Evaluate(HLongConstant* x) const override {
5202     return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
5203   }
5204   HConstant* Evaluate(HFloatConstant* x) const override {
5205     return GetBlock()->GetGraph()->GetFloatConstant(Compute(x->GetValue()), GetDexPc());
5206   }
5207   HConstant* Evaluate(HDoubleConstant* x) const override {
5208     return GetBlock()->GetGraph()->GetDoubleConstant(Compute(x->GetValue()), GetDexPc());
5209   }
5210 
5211   DECLARE_INSTRUCTION(Neg);
5212 
5213  protected:
5214   DEFAULT_COPY_CONSTRUCTOR(Neg);
5215 };
5216 
5217 class HNewArray final : public HExpression<2> {
5218  public:
5219   HNewArray(HInstruction* cls, HInstruction* length, uint32_t dex_pc, size_t component_size_shift)
5220       : HExpression(kNewArray, DataType::Type::kReference, SideEffects::CanTriggerGC(), dex_pc) {
5221     SetRawInputAt(0, cls);
5222     SetRawInputAt(1, length);
5223     SetPackedField<ComponentSizeShiftField>(component_size_shift);
5224   }
5225 
5226   bool IsClonable() const override { return true; }
5227 
5228   // Calls runtime so needs an environment.
5229   bool NeedsEnvironment() const override { return true; }
5230 
5231   // May throw NegativeArraySizeException, OutOfMemoryError, etc.
5232   bool CanThrow() const override { return true; }
5233 
5234   bool CanBeNull() const override { return false; }
5235 
5236   HLoadClass* GetLoadClass() const {
5237     DCHECK(InputAt(0)->IsLoadClass());
5238     return InputAt(0)->AsLoadClass();
5239   }
5240 
5241   HInstruction* GetLength() const {
5242     return InputAt(1);
5243   }
5244 
5245   size_t GetComponentSizeShift() {
5246     return GetPackedField<ComponentSizeShiftField>();
5247   }
5248 
5249   DECLARE_INSTRUCTION(NewArray);
5250 
5251  protected:
5252   DEFAULT_COPY_CONSTRUCTOR(NewArray);
5253 
5254  private:
5255   static constexpr size_t kFieldComponentSizeShift = kNumberOfGenericPackedBits;
5256   static constexpr size_t kFieldComponentSizeShiftSize = MinimumBitsToStore(3u);
5257   static constexpr size_t kNumberOfNewArrayPackedBits =
5258       kFieldComponentSizeShift + kFieldComponentSizeShiftSize;
5259   static_assert(kNumberOfNewArrayPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
5260   using ComponentSizeShiftField =
5261       BitField<size_t, kFieldComponentSizeShift, kFieldComponentSizeShift>;
5262 };
5263 
5264 class HAdd final : public HBinaryOperation {
5265  public:
5266   HAdd(DataType::Type result_type,
5267        HInstruction* left,
5268        HInstruction* right,
5269        uint32_t dex_pc = kNoDexPc)
5270       : HBinaryOperation(kAdd, result_type, left, right, SideEffects::None(), dex_pc) {
5271   }
5272 
5273   bool IsCommutative() const override { return true; }
5274 
5275   template <typename T> static T Compute(T x, T y) { return x + y; }
5276 
5277   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5278     return GetBlock()->GetGraph()->GetIntConstant(
5279         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5280   }
5281   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5282     return GetBlock()->GetGraph()->GetLongConstant(
5283         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5284   }
5285   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
5286     return GetBlock()->GetGraph()->GetFloatConstant(
5287         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5288   }
5289   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
5290     return GetBlock()->GetGraph()->GetDoubleConstant(
5291         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5292   }
5293 
5294   DECLARE_INSTRUCTION(Add);
5295 
5296  protected:
5297   DEFAULT_COPY_CONSTRUCTOR(Add);
5298 };
5299 
5300 class HSub final : public HBinaryOperation {
5301  public:
5302   HSub(DataType::Type result_type,
5303        HInstruction* left,
5304        HInstruction* right,
5305        uint32_t dex_pc = kNoDexPc)
5306       : HBinaryOperation(kSub, result_type, left, right, SideEffects::None(), dex_pc) {
5307   }
5308 
5309   template <typename T> static T Compute(T x, T y) { return x - y; }
5310 
5311   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5312     return GetBlock()->GetGraph()->GetIntConstant(
5313         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5314   }
5315   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5316     return GetBlock()->GetGraph()->GetLongConstant(
5317         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5318   }
5319   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
5320     return GetBlock()->GetGraph()->GetFloatConstant(
5321         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5322   }
5323   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
5324     return GetBlock()->GetGraph()->GetDoubleConstant(
5325         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5326   }
5327 
5328   DECLARE_INSTRUCTION(Sub);
5329 
5330  protected:
5331   DEFAULT_COPY_CONSTRUCTOR(Sub);
5332 };
5333 
5334 class HMul final : public HBinaryOperation {
5335  public:
5336   HMul(DataType::Type result_type,
5337        HInstruction* left,
5338        HInstruction* right,
5339        uint32_t dex_pc = kNoDexPc)
5340       : HBinaryOperation(kMul, result_type, left, right, SideEffects::None(), dex_pc) {
5341   }
5342 
5343   bool IsCommutative() const override { return true; }
5344 
5345   template <typename T> static T Compute(T x, T y) { return x * y; }
5346 
5347   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5348     return GetBlock()->GetGraph()->GetIntConstant(
5349         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5350   }
5351   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5352     return GetBlock()->GetGraph()->GetLongConstant(
5353         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5354   }
5355   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
5356     return GetBlock()->GetGraph()->GetFloatConstant(
5357         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5358   }
5359   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
5360     return GetBlock()->GetGraph()->GetDoubleConstant(
5361         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5362   }
5363 
5364   DECLARE_INSTRUCTION(Mul);
5365 
5366  protected:
5367   DEFAULT_COPY_CONSTRUCTOR(Mul);
5368 };
5369 
5370 class HDiv final : public HBinaryOperation {
5371  public:
5372   HDiv(DataType::Type result_type,
5373        HInstruction* left,
5374        HInstruction* right,
5375        uint32_t dex_pc)
5376       : HBinaryOperation(kDiv, result_type, left, right, SideEffects::None(), dex_pc) {
5377   }
5378 
5379   template <typename T>
5380   T ComputeIntegral(T x, T y) const {
5381     DCHECK(!DataType::IsFloatingPointType(GetType())) << GetType();
5382     // Our graph structure ensures we never have 0 for `y` during
5383     // constant folding.
5384     DCHECK_NE(y, 0);
5385     // Special case -1 to avoid getting a SIGFPE on x86(_64).
5386     return (y == -1) ? -x : x / y;
5387   }
5388 
5389   template <typename T>
5390   T ComputeFP(T x, T y) const {
5391     DCHECK(DataType::IsFloatingPointType(GetType())) << GetType();
5392     return x / y;
5393   }
5394 
5395   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5396     return GetBlock()->GetGraph()->GetIntConstant(
5397         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5398   }
5399   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5400     return GetBlock()->GetGraph()->GetLongConstant(
5401         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5402   }
5403   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
5404     return GetBlock()->GetGraph()->GetFloatConstant(
5405         ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
5406   }
5407   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
5408     return GetBlock()->GetGraph()->GetDoubleConstant(
5409         ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
5410   }
5411 
5412   DECLARE_INSTRUCTION(Div);
5413 
5414  protected:
5415   DEFAULT_COPY_CONSTRUCTOR(Div);
5416 };
5417 
5418 class HRem final : public HBinaryOperation {
5419  public:
5420   HRem(DataType::Type result_type,
5421        HInstruction* left,
5422        HInstruction* right,
5423        uint32_t dex_pc)
5424       : HBinaryOperation(kRem, result_type, left, right, SideEffects::None(), dex_pc) {
5425   }
5426 
5427   template <typename T>
5428   T ComputeIntegral(T x, T y) const {
5429     DCHECK(!DataType::IsFloatingPointType(GetType())) << GetType();
5430     // Our graph structure ensures we never have 0 for `y` during
5431     // constant folding.
5432     DCHECK_NE(y, 0);
5433     // Special case -1 to avoid getting a SIGFPE on x86(_64).
5434     return (y == -1) ? 0 : x % y;
5435   }
5436 
5437   template <typename T>
5438   T ComputeFP(T x, T y) const {
5439     DCHECK(DataType::IsFloatingPointType(GetType())) << GetType();
5440     return std::fmod(x, y);
5441   }
5442 
5443   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5444     return GetBlock()->GetGraph()->GetIntConstant(
5445         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5446   }
5447   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5448     return GetBlock()->GetGraph()->GetLongConstant(
5449         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5450   }
5451   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
5452     return GetBlock()->GetGraph()->GetFloatConstant(
5453         ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
5454   }
5455   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
5456     return GetBlock()->GetGraph()->GetDoubleConstant(
5457         ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
5458   }
5459 
5460   DECLARE_INSTRUCTION(Rem);
5461 
5462  protected:
5463   DEFAULT_COPY_CONSTRUCTOR(Rem);
5464 };
5465 
5466 class HMin final : public HBinaryOperation {
5467  public:
5468   HMin(DataType::Type result_type,
5469        HInstruction* left,
5470        HInstruction* right,
5471        uint32_t dex_pc)
5472       : HBinaryOperation(kMin, result_type, left, right, SideEffects::None(), dex_pc) {}
5473 
5474   bool IsCommutative() const override { return true; }
5475 
5476   // Evaluation for integral values.
5477   template <typename T> static T ComputeIntegral(T x, T y) {
5478     return (x <= y) ? x : y;
5479   }
5480 
5481   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5482     return GetBlock()->GetGraph()->GetIntConstant(
5483         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5484   }
5485   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5486     return GetBlock()->GetGraph()->GetLongConstant(
5487         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5488   }
5489   // TODO: Evaluation for floating-point values.
5490   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
5491                       HFloatConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; }
5492   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
5493                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; }
5494 
5495   DECLARE_INSTRUCTION(Min);
5496 
5497  protected:
5498   DEFAULT_COPY_CONSTRUCTOR(Min);
5499 };
5500 
5501 class HMax final : public HBinaryOperation {
5502  public:
5503   HMax(DataType::Type result_type,
5504        HInstruction* left,
5505        HInstruction* right,
5506        uint32_t dex_pc)
5507       : HBinaryOperation(kMax, result_type, left, right, SideEffects::None(), dex_pc) {}
5508 
5509   bool IsCommutative() const override { return true; }
5510 
5511   // Evaluation for integral values.
5512   template <typename T> static T ComputeIntegral(T x, T y) {
5513     return (x >= y) ? x : y;
5514   }
5515 
5516   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5517     return GetBlock()->GetGraph()->GetIntConstant(
5518         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5519   }
5520   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5521     return GetBlock()->GetGraph()->GetLongConstant(
5522         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5523   }
5524   // TODO: Evaluation for floating-point values.
5525   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
5526                       HFloatConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; }
5527   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
5528                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; }
5529 
5530   DECLARE_INSTRUCTION(Max);
5531 
5532  protected:
5533   DEFAULT_COPY_CONSTRUCTOR(Max);
5534 };
5535 
5536 class HAbs final : public HUnaryOperation {
5537  public:
5538   HAbs(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
5539       : HUnaryOperation(kAbs, result_type, input, dex_pc) {}
5540 
5541   // Evaluation for integral values.
5542   template <typename T> static T ComputeIntegral(T x) {
5543     return x < 0 ? -x : x;
5544   }
5545 
5546   // Evaluation for floating-point values.
5547   // Note, as a "quality of implementation", rather than pure "spec compliance",
5548   // we require that Math.abs() clears the sign bit (but changes nothing else)
5549   // for all floating-point numbers, including NaN (signaling NaN may become quiet though).
5550   // http://b/30758343
5551   template <typename T, typename S> static T ComputeFP(T x) {
5552     S bits = bit_cast<S, T>(x);
5553     return bit_cast<T, S>(bits & std::numeric_limits<S>::max());
5554   }
5555 
5556   HConstant* Evaluate(HIntConstant* x) const override {
5557     return GetBlock()->GetGraph()->GetIntConstant(ComputeIntegral(x->GetValue()), GetDexPc());
5558   }
5559   HConstant* Evaluate(HLongConstant* x) const override {
5560     return GetBlock()->GetGraph()->GetLongConstant(ComputeIntegral(x->GetValue()), GetDexPc());
5561   }
5562   HConstant* Evaluate(HFloatConstant* x) const override {
5563     return GetBlock()->GetGraph()->GetFloatConstant(
5564         ComputeFP<float, int32_t>(x->GetValue()), GetDexPc());
5565   }
5566   HConstant* Evaluate(HDoubleConstant* x) const override {
5567     return GetBlock()->GetGraph()->GetDoubleConstant(
5568         ComputeFP<double, int64_t>(x->GetValue()), GetDexPc());
5569   }
5570 
5571   DECLARE_INSTRUCTION(Abs);
5572 
5573  protected:
5574   DEFAULT_COPY_CONSTRUCTOR(Abs);
5575 };
5576 
5577 class HDivZeroCheck final : public HExpression<1> {
5578  public:
5579   // `HDivZeroCheck` can trigger GC, as it may call the `ArithmeticException`
5580   // constructor. However it can only do it on a fatal slow path so execution never returns to the
5581   // instruction following the current one; thus 'SideEffects::None()' is used.
5582   HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
5583       : HExpression(kDivZeroCheck, value->GetType(), SideEffects::None(), dex_pc) {
5584     SetRawInputAt(0, value);
5585   }
5586 
5587   bool IsClonable() const override { return true; }
5588   bool CanBeMoved() const override { return true; }
5589 
5590   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
5591     return true;
5592   }
5593 
5594   bool NeedsEnvironment() const override { return true; }
5595   bool CanThrow() const override { return true; }
5596 
5597   DECLARE_INSTRUCTION(DivZeroCheck);
5598 
5599  protected:
5600   DEFAULT_COPY_CONSTRUCTOR(DivZeroCheck);
5601 };
5602 
5603 class HShl final : public HBinaryOperation {
5604  public:
5605   HShl(DataType::Type result_type,
5606        HInstruction* value,
5607        HInstruction* distance,
5608        uint32_t dex_pc = kNoDexPc)
5609       : HBinaryOperation(kShl, result_type, value, distance, SideEffects::None(), dex_pc) {
5610     DCHECK_EQ(result_type, DataType::Kind(value->GetType()));
5611     DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType()));
5612   }
5613 
5614   template <typename T>
5615   static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
5616     return value << (distance & max_shift_distance);
5617   }
5618 
5619   HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
5620     return GetBlock()->GetGraph()->GetIntConstant(
5621         Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
5622   }
5623   HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
5624     return GetBlock()->GetGraph()->GetLongConstant(
5625         Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
5626   }
5627   HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
5628                       HLongConstant* distance ATTRIBUTE_UNUSED) const override {
5629     LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
5630     UNREACHABLE();
5631   }
5632   HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
5633                       HFloatConstant* distance ATTRIBUTE_UNUSED) const override {
5634     LOG(FATAL) << DebugName() << " is not defined for float values";
5635     UNREACHABLE();
5636   }
5637   HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
5638                       HDoubleConstant* distance ATTRIBUTE_UNUSED) const override {
5639     LOG(FATAL) << DebugName() << " is not defined for double values";
5640     UNREACHABLE();
5641   }
5642 
5643   DECLARE_INSTRUCTION(Shl);
5644 
5645  protected:
5646   DEFAULT_COPY_CONSTRUCTOR(Shl);
5647 };
5648 
5649 class HShr final : public HBinaryOperation {
5650  public:
5651   HShr(DataType::Type result_type,
5652        HInstruction* value,
5653        HInstruction* distance,
5654        uint32_t dex_pc = kNoDexPc)
5655       : HBinaryOperation(kShr, result_type, value, distance, SideEffects::None(), dex_pc) {
5656     DCHECK_EQ(result_type, DataType::Kind(value->GetType()));
5657     DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType()));
5658   }
5659 
5660   template <typename T>
5661   static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
5662     return value >> (distance & max_shift_distance);
5663   }
5664 
5665   HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
5666     return GetBlock()->GetGraph()->GetIntConstant(
5667         Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
5668   }
5669   HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
5670     return GetBlock()->GetGraph()->GetLongConstant(
5671         Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
5672   }
5673   HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
5674                       HLongConstant* distance ATTRIBUTE_UNUSED) const override {
5675     LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
5676     UNREACHABLE();
5677   }
5678   HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
5679                       HFloatConstant* distance ATTRIBUTE_UNUSED) const override {
5680     LOG(FATAL) << DebugName() << " is not defined for float values";
5681     UNREACHABLE();
5682   }
5683   HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
5684                       HDoubleConstant* distance ATTRIBUTE_UNUSED) const override {
5685     LOG(FATAL) << DebugName() << " is not defined for double values";
5686     UNREACHABLE();
5687   }
5688 
5689   DECLARE_INSTRUCTION(Shr);
5690 
5691  protected:
5692   DEFAULT_COPY_CONSTRUCTOR(Shr);
5693 };
5694 
5695 class HUShr final : public HBinaryOperation {
5696  public:
5697   HUShr(DataType::Type result_type,
5698         HInstruction* value,
5699         HInstruction* distance,
5700         uint32_t dex_pc = kNoDexPc)
5701       : HBinaryOperation(kUShr, result_type, value, distance, SideEffects::None(), dex_pc) {
5702     DCHECK_EQ(result_type, DataType::Kind(value->GetType()));
5703     DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType()));
5704   }
5705 
5706   template <typename T>
5707   static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
5708     typedef typename std::make_unsigned<T>::type V;
5709     V ux = static_cast<V>(value);
5710     return static_cast<T>(ux >> (distance & max_shift_distance));
5711   }
5712 
5713   HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
5714     return GetBlock()->GetGraph()->GetIntConstant(
5715         Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
5716   }
5717   HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
5718     return GetBlock()->GetGraph()->GetLongConstant(
5719         Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
5720   }
5721   HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
5722                       HLongConstant* distance ATTRIBUTE_UNUSED) const override {
5723     LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
5724     UNREACHABLE();
5725   }
5726   HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
5727                       HFloatConstant* distance ATTRIBUTE_UNUSED) const override {
5728     LOG(FATAL) << DebugName() << " is not defined for float values";
5729     UNREACHABLE();
5730   }
5731   HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
5732                       HDoubleConstant* distance ATTRIBUTE_UNUSED) const override {
5733     LOG(FATAL) << DebugName() << " is not defined for double values";
5734     UNREACHABLE();
5735   }
5736 
5737   DECLARE_INSTRUCTION(UShr);
5738 
5739  protected:
5740   DEFAULT_COPY_CONSTRUCTOR(UShr);
5741 };
5742 
5743 class HAnd final : public HBinaryOperation {
5744  public:
5745   HAnd(DataType::Type result_type,
5746        HInstruction* left,
5747        HInstruction* right,
5748        uint32_t dex_pc = kNoDexPc)
5749       : HBinaryOperation(kAnd, result_type, left, right, SideEffects::None(), dex_pc) {
5750   }
5751 
5752   bool IsCommutative() const override { return true; }
5753 
5754   template <typename T> static T Compute(T x, T y) { return x & y; }
5755 
5756   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5757     return GetBlock()->GetGraph()->GetIntConstant(
5758         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5759   }
5760   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5761     return GetBlock()->GetGraph()->GetLongConstant(
5762         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5763   }
5764   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
5765                       HFloatConstant* y ATTRIBUTE_UNUSED) const override {
5766     LOG(FATAL) << DebugName() << " is not defined for float values";
5767     UNREACHABLE();
5768   }
5769   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
5770                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
5771     LOG(FATAL) << DebugName() << " is not defined for double values";
5772     UNREACHABLE();
5773   }
5774 
5775   DECLARE_INSTRUCTION(And);
5776 
5777  protected:
5778   DEFAULT_COPY_CONSTRUCTOR(And);
5779 };
5780 
5781 class HOr final : public HBinaryOperation {
5782  public:
5783   HOr(DataType::Type result_type,
5784       HInstruction* left,
5785       HInstruction* right,
5786       uint32_t dex_pc = kNoDexPc)
5787       : HBinaryOperation(kOr, result_type, left, right, SideEffects::None(), dex_pc) {
5788   }
5789 
5790   bool IsCommutative() const override { return true; }
5791 
5792   template <typename T> static T Compute(T x, T y) { return x | y; }
5793 
5794   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5795     return GetBlock()->GetGraph()->GetIntConstant(
5796         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5797   }
5798   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5799     return GetBlock()->GetGraph()->GetLongConstant(
5800         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5801   }
5802   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
5803                       HFloatConstant* y ATTRIBUTE_UNUSED) const override {
5804     LOG(FATAL) << DebugName() << " is not defined for float values";
5805     UNREACHABLE();
5806   }
5807   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
5808                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
5809     LOG(FATAL) << DebugName() << " is not defined for double values";
5810     UNREACHABLE();
5811   }
5812 
5813   DECLARE_INSTRUCTION(Or);
5814 
5815  protected:
5816   DEFAULT_COPY_CONSTRUCTOR(Or);
5817 };
5818 
5819 class HXor final : public HBinaryOperation {
5820  public:
5821   HXor(DataType::Type result_type,
5822        HInstruction* left,
5823        HInstruction* right,
5824        uint32_t dex_pc = kNoDexPc)
5825       : HBinaryOperation(kXor, result_type, left, right, SideEffects::None(), dex_pc) {
5826   }
5827 
5828   bool IsCommutative() const override { return true; }
5829 
5830   template <typename T> static T Compute(T x, T y) { return x ^ y; }
5831 
5832   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5833     return GetBlock()->GetGraph()->GetIntConstant(
5834         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5835   }
5836   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5837     return GetBlock()->GetGraph()->GetLongConstant(
5838         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5839   }
5840   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
5841                       HFloatConstant* y ATTRIBUTE_UNUSED) const override {
5842     LOG(FATAL) << DebugName() << " is not defined for float values";
5843     UNREACHABLE();
5844   }
5845   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
5846                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
5847     LOG(FATAL) << DebugName() << " is not defined for double values";
5848     UNREACHABLE();
5849   }
5850 
5851   DECLARE_INSTRUCTION(Xor);
5852 
5853  protected:
5854   DEFAULT_COPY_CONSTRUCTOR(Xor);
5855 };
5856 
5857 class HRor final : public HBinaryOperation {
5858  public:
5859   HRor(DataType::Type result_type, HInstruction* value, HInstruction* distance)
5860       : HBinaryOperation(kRor, result_type, value, distance) {
5861   }
5862 
5863   template <typename T>
5864   static T Compute(T value, int32_t distance, int32_t max_shift_value) {
5865     typedef typename std::make_unsigned<T>::type V;
5866     V ux = static_cast<V>(value);
5867     if ((distance & max_shift_value) == 0) {
5868       return static_cast<T>(ux);
5869     } else {
5870       const V reg_bits = sizeof(T) * 8;
5871       return static_cast<T>(ux >> (distance & max_shift_value)) |
5872                            (value << (reg_bits - (distance & max_shift_value)));
5873     }
5874   }
5875 
5876   HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
5877     return GetBlock()->GetGraph()->GetIntConstant(
5878         Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
5879   }
5880   HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
5881     return GetBlock()->GetGraph()->GetLongConstant(
5882         Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
5883   }
5884   HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
5885                       HLongConstant* distance ATTRIBUTE_UNUSED) const override {
5886     LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
5887     UNREACHABLE();
5888   }
5889   HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
5890                       HFloatConstant* distance ATTRIBUTE_UNUSED) const override {
5891     LOG(FATAL) << DebugName() << " is not defined for float values";
5892     UNREACHABLE();
5893   }
5894   HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
5895                       HDoubleConstant* distance ATTRIBUTE_UNUSED) const override {
5896     LOG(FATAL) << DebugName() << " is not defined for double values";
5897     UNREACHABLE();
5898   }
5899 
5900   DECLARE_INSTRUCTION(Ror);
5901 
5902  protected:
5903   DEFAULT_COPY_CONSTRUCTOR(Ror);
5904 };
5905 
5906 // The value of a parameter in this method. Its location depends on
5907 // the calling convention.
5908 class HParameterValue final : public HExpression<0> {
5909  public:
5910   HParameterValue(const DexFile& dex_file,
5911                   dex::TypeIndex type_index,
5912                   uint8_t index,
5913                   DataType::Type parameter_type,
5914                   bool is_this = false)
5915       : HExpression(kParameterValue, parameter_type, SideEffects::None(), kNoDexPc),
5916         dex_file_(dex_file),
5917         type_index_(type_index),
5918         index_(index) {
5919     SetPackedFlag<kFlagIsThis>(is_this);
5920     SetPackedFlag<kFlagCanBeNull>(!is_this);
5921   }
5922 
5923   const DexFile& GetDexFile() const { return dex_file_; }
5924   dex::TypeIndex GetTypeIndex() const { return type_index_; }
5925   uint8_t GetIndex() const { return index_; }
5926   bool IsThis() const { return GetPackedFlag<kFlagIsThis>(); }
5927 
5928   bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); }
5929   void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); }
5930 
5931   DECLARE_INSTRUCTION(ParameterValue);
5932 
5933  protected:
5934   DEFAULT_COPY_CONSTRUCTOR(ParameterValue);
5935 
5936  private:
5937   // Whether or not the parameter value corresponds to 'this' argument.
5938   static constexpr size_t kFlagIsThis = kNumberOfGenericPackedBits;
5939   static constexpr size_t kFlagCanBeNull = kFlagIsThis + 1;
5940   static constexpr size_t kNumberOfParameterValuePackedBits = kFlagCanBeNull + 1;
5941   static_assert(kNumberOfParameterValuePackedBits <= kMaxNumberOfPackedBits,
5942                 "Too many packed fields.");
5943 
5944   const DexFile& dex_file_;
5945   const dex::TypeIndex type_index_;
5946   // The index of this parameter in the parameters list. Must be less
5947   // than HGraph::number_of_in_vregs_.
5948   const uint8_t index_;
5949 };
5950 
5951 class HNot final : public HUnaryOperation {
5952  public:
5953   HNot(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
5954       : HUnaryOperation(kNot, result_type, input, dex_pc) {
5955   }
5956 
5957   bool CanBeMoved() const override { return true; }
5958   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
5959     return true;
5960   }
5961 
5962   template <typename T> static T Compute(T x) { return ~x; }
5963 
5964   HConstant* Evaluate(HIntConstant* x) const override {
5965     return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
5966   }
5967   HConstant* Evaluate(HLongConstant* x) const override {
5968     return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
5969   }
5970   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const override {
5971     LOG(FATAL) << DebugName() << " is not defined for float values";
5972     UNREACHABLE();
5973   }
5974   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const override {
5975     LOG(FATAL) << DebugName() << " is not defined for double values";
5976     UNREACHABLE();
5977   }
5978 
5979   DECLARE_INSTRUCTION(Not);
5980 
5981  protected:
5982   DEFAULT_COPY_CONSTRUCTOR(Not);
5983 };
5984 
5985 class HBooleanNot final : public HUnaryOperation {
5986  public:
5987   explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc)
5988       : HUnaryOperation(kBooleanNot, DataType::Type::kBool, input, dex_pc) {
5989   }
5990 
5991   bool CanBeMoved() const override { return true; }
5992   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
5993     return true;
5994   }
5995 
5996   template <typename T> static bool Compute(T x) {
5997     DCHECK(IsUint<1>(x)) << x;
5998     return !x;
5999   }
6000 
6001   HConstant* Evaluate(HIntConstant* x) const override {
6002     return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
6003   }
6004   HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const override {
6005     LOG(FATAL) << DebugName() << " is not defined for long values";
6006     UNREACHABLE();
6007   }
6008   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const override {
6009     LOG(FATAL) << DebugName() << " is not defined for float values";
6010     UNREACHABLE();
6011   }
6012   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const override {
6013     LOG(FATAL) << DebugName() << " is not defined for double values";
6014     UNREACHABLE();
6015   }
6016 
6017   DECLARE_INSTRUCTION(BooleanNot);
6018 
6019  protected:
6020   DEFAULT_COPY_CONSTRUCTOR(BooleanNot);
6021 };
6022 
6023 class HTypeConversion final : public HExpression<1> {
6024  public:
6025   // Instantiate a type conversion of `input` to `result_type`.
6026   HTypeConversion(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
6027       : HExpression(kTypeConversion, result_type, SideEffects::None(), dex_pc) {
6028     SetRawInputAt(0, input);
6029     // Invariant: We should never generate a conversion to a Boolean value.
6030     DCHECK_NE(DataType::Type::kBool, result_type);
6031   }
6032 
6033   HInstruction* GetInput() const { return InputAt(0); }
6034   DataType::Type GetInputType() const { return GetInput()->GetType(); }
6035   DataType::Type GetResultType() const { return GetType(); }
6036 
6037   bool IsClonable() const override { return true; }
6038   bool CanBeMoved() const override { return true; }
6039   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
6040     return true;
6041   }
6042   // Return whether the conversion is implicit. This includes conversion to the same type.
6043   bool IsImplicitConversion() const {
6044     return DataType::IsTypeConversionImplicit(GetInputType(), GetResultType());
6045   }
6046 
6047   // Try to statically evaluate the conversion and return a HConstant
6048   // containing the result.  If the input cannot be converted, return nullptr.
6049   HConstant* TryStaticEvaluation() const;
6050 
6051   DECLARE_INSTRUCTION(TypeConversion);
6052 
6053  protected:
6054   DEFAULT_COPY_CONSTRUCTOR(TypeConversion);
6055 };
6056 
6057 static constexpr uint32_t kNoRegNumber = -1;
6058 
6059 class HNullCheck final : public HExpression<1> {
6060  public:
6061   // `HNullCheck` can trigger GC, as it may call the `NullPointerException`
6062   // constructor. However it can only do it on a fatal slow path so execution never returns to the
6063   // instruction following the current one; thus 'SideEffects::None()' is used.
6064   HNullCheck(HInstruction* value, uint32_t dex_pc)
6065       : HExpression(kNullCheck, value->GetType(), SideEffects::None(), dex_pc) {
6066     SetRawInputAt(0, value);
6067   }
6068 
6069   bool IsClonable() const override { return true; }
6070   bool CanBeMoved() const override { return true; }
6071   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
6072     return true;
6073   }
6074 
6075   bool NeedsEnvironment() const override { return true; }
6076 
6077   bool CanThrow() const override { return true; }
6078 
6079   bool CanBeNull() const override { return false; }
6080 
6081   DECLARE_INSTRUCTION(NullCheck);
6082 
6083  protected:
6084   DEFAULT_COPY_CONSTRUCTOR(NullCheck);
6085 };
6086 
6087 // Embeds an ArtField and all the information required by the compiler. We cache
6088 // that information to avoid requiring the mutator lock every time we need it.
6089 class FieldInfo : public ValueObject {
6090  public:
6091   FieldInfo(ArtField* field,
6092             MemberOffset field_offset,
6093             DataType::Type field_type,
6094             bool is_volatile,
6095             uint32_t index,
6096             uint16_t declaring_class_def_index,
6097             const DexFile& dex_file)
6098       : field_(field),
6099         field_offset_(field_offset),
6100         field_type_(field_type),
6101         is_volatile_(is_volatile),
6102         index_(index),
6103         declaring_class_def_index_(declaring_class_def_index),
6104         dex_file_(dex_file) {}
6105 
6106   ArtField* GetField() const { return field_; }
6107   MemberOffset GetFieldOffset() const { return field_offset_; }
6108   DataType::Type GetFieldType() const { return field_type_; }
6109   uint32_t GetFieldIndex() const { return index_; }
6110   uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;}
6111   const DexFile& GetDexFile() const { return dex_file_; }
6112   bool IsVolatile() const { return is_volatile_; }
6113 
6114   bool Equals(const FieldInfo& other) const {
6115     return field_ == other.field_ &&
6116            field_offset_ == other.field_offset_ &&
6117            field_type_ == other.field_type_ &&
6118            is_volatile_ == other.is_volatile_ &&
6119            index_ == other.index_ &&
6120            declaring_class_def_index_ == other.declaring_class_def_index_ &&
6121            &dex_file_ == &other.dex_file_;
6122   }
6123 
6124   std::ostream& Dump(std::ostream& os) const {
6125     os << field_ << ", off: " << field_offset_ << ", type: " << field_type_
6126        << ", volatile: " << std::boolalpha << is_volatile_ << ", index_: " << std::dec << index_
6127        << ", declaring_class: " << declaring_class_def_index_ << ", dex: " << dex_file_;
6128     return os;
6129   }
6130 
6131  private:
6132   ArtField* const field_;
6133   const MemberOffset field_offset_;
6134   const DataType::Type field_type_;
6135   const bool is_volatile_;
6136   const uint32_t index_;
6137   const uint16_t declaring_class_def_index_;
6138   const DexFile& dex_file_;
6139 };
6140 
6141 inline bool operator==(const FieldInfo& a, const FieldInfo& b) {
6142   return a.Equals(b);
6143 }
6144 
6145 inline std::ostream& operator<<(std::ostream& os, const FieldInfo& a) {
6146   return a.Dump(os);
6147 }
6148 
6149 class HInstanceFieldGet final : public HExpression<1> {
6150  public:
6151   HInstanceFieldGet(HInstruction* value,
6152                     ArtField* field,
6153                     DataType::Type field_type,
6154                     MemberOffset field_offset,
6155                     bool is_volatile,
6156                     uint32_t field_idx,
6157                     uint16_t declaring_class_def_index,
6158                     const DexFile& dex_file,
6159                     uint32_t dex_pc)
6160       : HExpression(kInstanceFieldGet,
6161                     field_type,
6162                     SideEffects::FieldReadOfType(field_type, is_volatile),
6163                     dex_pc),
6164         field_info_(field,
6165                     field_offset,
6166                     field_type,
6167                     is_volatile,
6168                     field_idx,
6169                     declaring_class_def_index,
6170                     dex_file) {
6171     SetRawInputAt(0, value);
6172   }
6173 
6174   bool IsClonable() const override { return true; }
6175   bool CanBeMoved() const override { return !IsVolatile(); }
6176 
6177   bool InstructionDataEquals(const HInstruction* other) const override {
6178     const HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
6179     return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
6180   }
6181 
6182   bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
6183     return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value());
6184   }
6185 
6186   size_t ComputeHashCode() const override {
6187     return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
6188   }
6189 
6190   bool IsFieldAccess() const override { return true; }
6191   const FieldInfo& GetFieldInfo() const override { return field_info_; }
6192   MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
6193   DataType::Type GetFieldType() const { return field_info_.GetFieldType(); }
6194   bool IsVolatile() const { return field_info_.IsVolatile(); }
6195 
6196   void SetType(DataType::Type new_type) {
6197     DCHECK(DataType::IsIntegralType(GetType()));
6198     DCHECK(DataType::IsIntegralType(new_type));
6199     DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type));
6200     SetPackedField<TypeField>(new_type);
6201   }
6202 
6203   DECLARE_INSTRUCTION(InstanceFieldGet);
6204 
6205  protected:
6206   DEFAULT_COPY_CONSTRUCTOR(InstanceFieldGet);
6207 
6208  private:
6209   const FieldInfo field_info_;
6210 };
6211 
6212 class HPredicatedInstanceFieldGet final : public HExpression<2> {
6213  public:
6214   HPredicatedInstanceFieldGet(HInstanceFieldGet* orig,
6215                               HInstruction* target,
6216                               HInstruction* default_val)
6217       : HExpression(kPredicatedInstanceFieldGet,
6218                     orig->GetFieldType(),
6219                     orig->GetSideEffects(),
6220                     orig->GetDexPc()),
6221         field_info_(orig->GetFieldInfo()) {
6222     // NB Default-val is at 0 so we can avoid doing a move.
6223     SetRawInputAt(1, target);
6224     SetRawInputAt(0, default_val);
6225   }
6226 
6227   HPredicatedInstanceFieldGet(HInstruction* value,
6228                               ArtField* field,
6229                               HInstruction* default_value,
6230                               DataType::Type field_type,
6231                               MemberOffset field_offset,
6232                               bool is_volatile,
6233                               uint32_t field_idx,
6234                               uint16_t declaring_class_def_index,
6235                               const DexFile& dex_file,
6236                               uint32_t dex_pc)
6237       : HExpression(kPredicatedInstanceFieldGet,
6238                     field_type,
6239                     SideEffects::FieldReadOfType(field_type, is_volatile),
6240                     dex_pc),
6241         field_info_(field,
6242                     field_offset,
6243                     field_type,
6244                     is_volatile,
6245                     field_idx,
6246                     declaring_class_def_index,
6247                     dex_file) {
6248     SetRawInputAt(1, value);
6249     SetRawInputAt(0, default_value);
6250   }
6251 
6252   bool IsClonable() const override {
6253     return true;
6254   }
6255   bool CanBeMoved() const override {
6256     return !IsVolatile();
6257   }
6258 
6259   HInstruction* GetDefaultValue() const {
6260     return InputAt(0);
6261   }
6262   HInstruction* GetTarget() const {
6263     return InputAt(1);
6264   }
6265 
6266   bool InstructionDataEquals(const HInstruction* other) const override {
6267     const HPredicatedInstanceFieldGet* other_get = other->AsPredicatedInstanceFieldGet();
6268     return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue() &&
6269            GetDefaultValue() == other_get->GetDefaultValue();
6270   }
6271 
6272   bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
6273     return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value());
6274   }
6275 
6276   size_t ComputeHashCode() const override {
6277     return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
6278   }
6279 
6280   bool IsFieldAccess() const override { return true; }
6281   const FieldInfo& GetFieldInfo() const override { return field_info_; }
6282   MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
6283   DataType::Type GetFieldType() const { return field_info_.GetFieldType(); }
6284   bool IsVolatile() const { return field_info_.IsVolatile(); }
6285 
6286   void SetType(DataType::Type new_type) {
6287     DCHECK(DataType::IsIntegralType(GetType()));
6288     DCHECK(DataType::IsIntegralType(new_type));
6289     DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type));
6290     SetPackedField<TypeField>(new_type);
6291   }
6292 
6293   DECLARE_INSTRUCTION(PredicatedInstanceFieldGet);
6294 
6295  protected:
6296   DEFAULT_COPY_CONSTRUCTOR(PredicatedInstanceFieldGet);
6297 
6298  private:
6299   const FieldInfo field_info_;
6300 };
6301 
6302 class HInstanceFieldSet final : public HExpression<2> {
6303  public:
6304   HInstanceFieldSet(HInstruction* object,
6305                     HInstruction* value,
6306                     ArtField* field,
6307                     DataType::Type field_type,
6308                     MemberOffset field_offset,
6309                     bool is_volatile,
6310                     uint32_t field_idx,
6311                     uint16_t declaring_class_def_index,
6312                     const DexFile& dex_file,
6313                     uint32_t dex_pc)
6314       : HExpression(kInstanceFieldSet,
6315                     SideEffects::FieldWriteOfType(field_type, is_volatile),
6316                     dex_pc),
6317         field_info_(field,
6318                     field_offset,
6319                     field_type,
6320                     is_volatile,
6321                     field_idx,
6322                     declaring_class_def_index,
6323                     dex_file) {
6324     SetPackedFlag<kFlagValueCanBeNull>(true);
6325     SetPackedFlag<kFlagIsPredicatedSet>(false);
6326     SetRawInputAt(0, object);
6327     SetRawInputAt(1, value);
6328   }
6329 
6330   bool IsClonable() const override { return true; }
6331 
6332   bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
6333     return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value());
6334   }
6335 
6336   bool IsFieldAccess() const override { return true; }
6337   const FieldInfo& GetFieldInfo() const override { return field_info_; }
6338   MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
6339   DataType::Type GetFieldType() const { return field_info_.GetFieldType(); }
6340   bool IsVolatile() const { return field_info_.IsVolatile(); }
6341   HInstruction* GetValue() const { return InputAt(1); }
6342   bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
6343   void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); }
6344   bool GetIsPredicatedSet() const { return GetPackedFlag<kFlagIsPredicatedSet>(); }
6345   void SetIsPredicatedSet(bool value = true) { SetPackedFlag<kFlagIsPredicatedSet>(value); }
6346 
6347   DECLARE_INSTRUCTION(InstanceFieldSet);
6348 
6349  protected:
6350   DEFAULT_COPY_CONSTRUCTOR(InstanceFieldSet);
6351 
6352  private:
6353   static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits;
6354   static constexpr size_t kFlagIsPredicatedSet = kFlagValueCanBeNull + 1;
6355   static constexpr size_t kNumberOfInstanceFieldSetPackedBits = kFlagIsPredicatedSet + 1;
6356   static_assert(kNumberOfInstanceFieldSetPackedBits <= kMaxNumberOfPackedBits,
6357                 "Too many packed fields.");
6358 
6359   const FieldInfo field_info_;
6360 };
6361 
6362 class HArrayGet final : public HExpression<2> {
6363  public:
6364   HArrayGet(HInstruction* array,
6365             HInstruction* index,
6366             DataType::Type type,
6367             uint32_t dex_pc)
6368      : HArrayGet(array,
6369                  index,
6370                  type,
6371                  SideEffects::ArrayReadOfType(type),
6372                  dex_pc,
6373                  /* is_string_char_at= */ false) {
6374   }
6375 
6376   HArrayGet(HInstruction* array,
6377             HInstruction* index,
6378             DataType::Type type,
6379             SideEffects side_effects,
6380             uint32_t dex_pc,
6381             bool is_string_char_at)
6382       : HExpression(kArrayGet, type, side_effects, dex_pc) {
6383     SetPackedFlag<kFlagIsStringCharAt>(is_string_char_at);
6384     SetRawInputAt(0, array);
6385     SetRawInputAt(1, index);
6386   }
6387 
6388   bool IsClonable() const override { return true; }
6389   bool CanBeMoved() const override { return true; }
6390   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
6391     return true;
6392   }
6393   bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override {
6394     // TODO: We can be smarter here.
6395     // Currently, unless the array is the result of NewArray, the array access is always
6396     // preceded by some form of null NullCheck necessary for the bounds check, usually
6397     // implicit null check on the ArrayLength input to BoundsCheck or Deoptimize for
6398     // dynamic BCE. There are cases when these could be removed to produce better code.
6399     // If we ever add optimizations to do so we should allow an implicit check here
6400     // (as long as the address falls in the first page).
6401     //
6402     // As an example of such fancy optimization, we could eliminate BoundsCheck for
6403     //     a = cond ? new int[1] : null;
6404     //     a[0];  // The Phi does not need bounds check for either input.
6405     return false;
6406   }
6407 
6408   bool IsEquivalentOf(HArrayGet* other) const {
6409     bool result = (GetDexPc() == other->GetDexPc());
6410     if (kIsDebugBuild && result) {
6411       DCHECK_EQ(GetBlock(), other->GetBlock());
6412       DCHECK_EQ(GetArray(), other->GetArray());
6413       DCHECK_EQ(GetIndex(), other->GetIndex());
6414       if (DataType::IsIntOrLongType(GetType())) {
6415         DCHECK(DataType::IsFloatingPointType(other->GetType())) << other->GetType();
6416       } else {
6417         DCHECK(DataType::IsFloatingPointType(GetType())) << GetType();
6418         DCHECK(DataType::IsIntOrLongType(other->GetType())) << other->GetType();
6419       }
6420     }
6421     return result;
6422   }
6423 
6424   bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); }
6425 
6426   HInstruction* GetArray() const { return InputAt(0); }
6427   HInstruction* GetIndex() const { return InputAt(1); }
6428 
6429   void SetType(DataType::Type new_type) {
6430     DCHECK(DataType::IsIntegralType(GetType()));
6431     DCHECK(DataType::IsIntegralType(new_type));
6432     DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type));
6433     SetPackedField<TypeField>(new_type);
6434   }
6435 
6436   DECLARE_INSTRUCTION(ArrayGet);
6437 
6438  protected:
6439   DEFAULT_COPY_CONSTRUCTOR(ArrayGet);
6440 
6441  private:
6442   // We treat a String as an array, creating the HArrayGet from String.charAt()
6443   // intrinsic in the instruction simplifier. We can always determine whether
6444   // a particular HArrayGet is actually a String.charAt() by looking at the type
6445   // of the input but that requires holding the mutator lock, so we prefer to use
6446   // a flag, so that code generators don't need to do the locking.
6447   static constexpr size_t kFlagIsStringCharAt = kNumberOfGenericPackedBits;
6448   static constexpr size_t kNumberOfArrayGetPackedBits = kFlagIsStringCharAt + 1;
6449   static_assert(kNumberOfArrayGetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
6450                 "Too many packed fields.");
6451 };
6452 
6453 class HArraySet final : public HExpression<3> {
6454  public:
6455   HArraySet(HInstruction* array,
6456             HInstruction* index,
6457             HInstruction* value,
6458             DataType::Type expected_component_type,
6459             uint32_t dex_pc)
6460       : HArraySet(array,
6461                   index,
6462                   value,
6463                   expected_component_type,
6464                   // Make a best guess for side effects now, may be refined during SSA building.
6465                   ComputeSideEffects(GetComponentType(value->GetType(), expected_component_type)),
6466                   dex_pc) {
6467   }
6468 
6469   HArraySet(HInstruction* array,
6470             HInstruction* index,
6471             HInstruction* value,
6472             DataType::Type expected_component_type,
6473             SideEffects side_effects,
6474             uint32_t dex_pc)
6475       : HExpression(kArraySet, side_effects, dex_pc) {
6476     SetPackedField<ExpectedComponentTypeField>(expected_component_type);
6477     SetPackedFlag<kFlagNeedsTypeCheck>(value->GetType() == DataType::Type::kReference);
6478     SetPackedFlag<kFlagValueCanBeNull>(true);
6479     SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(false);
6480     SetRawInputAt(0, array);
6481     SetRawInputAt(1, index);
6482     SetRawInputAt(2, value);
6483   }
6484 
6485   bool IsClonable() const override { return true; }
6486 
6487   bool NeedsEnvironment() const override {
6488     // We call a runtime method to throw ArrayStoreException.
6489     return NeedsTypeCheck();
6490   }
6491 
6492   // Can throw ArrayStoreException.
6493   bool CanThrow() const override { return NeedsTypeCheck(); }
6494 
6495   bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override {
6496     // TODO: Same as for ArrayGet.
6497     return false;
6498   }
6499 
6500   void ClearNeedsTypeCheck() {
6501     SetPackedFlag<kFlagNeedsTypeCheck>(false);
6502   }
6503 
6504   void ClearValueCanBeNull() {
6505     SetPackedFlag<kFlagValueCanBeNull>(false);
6506   }
6507 
6508   void SetStaticTypeOfArrayIsObjectArray() {
6509     SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(true);
6510   }
6511 
6512   bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
6513   bool NeedsTypeCheck() const { return GetPackedFlag<kFlagNeedsTypeCheck>(); }
6514   bool StaticTypeOfArrayIsObjectArray() const {
6515     return GetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>();
6516   }
6517 
6518   HInstruction* GetArray() const { return InputAt(0); }
6519   HInstruction* GetIndex() const { return InputAt(1); }
6520   HInstruction* GetValue() const { return InputAt(2); }
6521 
6522   DataType::Type GetComponentType() const {
6523     return GetComponentType(GetValue()->GetType(), GetRawExpectedComponentType());
6524   }
6525 
6526   static DataType::Type GetComponentType(DataType::Type value_type,
6527                                          DataType::Type expected_component_type) {
6528     // The Dex format does not type floating point index operations. Since the
6529     // `expected_component_type` comes from SSA building and can therefore not
6530     // be correct, we also check what is the value type. If it is a floating
6531     // point type, we must use that type.
6532     return ((value_type == DataType::Type::kFloat32) || (value_type == DataType::Type::kFloat64))
6533         ? value_type
6534         : expected_component_type;
6535   }
6536 
6537   DataType::Type GetRawExpectedComponentType() const {
6538     return GetPackedField<ExpectedComponentTypeField>();
6539   }
6540 
6541   static SideEffects ComputeSideEffects(DataType::Type type) {
6542     return SideEffects::ArrayWriteOfType(type).Union(SideEffectsForArchRuntimeCalls(type));
6543   }
6544 
6545   static SideEffects SideEffectsForArchRuntimeCalls(DataType::Type value_type) {
6546     return (value_type == DataType::Type::kReference) ? SideEffects::CanTriggerGC()
6547                                                       : SideEffects::None();
6548   }
6549 
6550   DECLARE_INSTRUCTION(ArraySet);
6551 
6552  protected:
6553   DEFAULT_COPY_CONSTRUCTOR(ArraySet);
6554 
6555  private:
6556   static constexpr size_t kFieldExpectedComponentType = kNumberOfGenericPackedBits;
6557   static constexpr size_t kFieldExpectedComponentTypeSize =
6558       MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
6559   static constexpr size_t kFlagNeedsTypeCheck =
6560       kFieldExpectedComponentType + kFieldExpectedComponentTypeSize;
6561   static constexpr size_t kFlagValueCanBeNull = kFlagNeedsTypeCheck + 1;
6562   // Cached information for the reference_type_info_ so that codegen
6563   // does not need to inspect the static type.
6564   static constexpr size_t kFlagStaticTypeOfArrayIsObjectArray = kFlagValueCanBeNull + 1;
6565   static constexpr size_t kNumberOfArraySetPackedBits =
6566       kFlagStaticTypeOfArrayIsObjectArray + 1;
6567   static_assert(kNumberOfArraySetPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
6568   using ExpectedComponentTypeField =
6569       BitField<DataType::Type, kFieldExpectedComponentType, kFieldExpectedComponentTypeSize>;
6570 };
6571 
6572 class HArrayLength final : public HExpression<1> {
6573  public:
6574   HArrayLength(HInstruction* array, uint32_t dex_pc, bool is_string_length = false)
6575       : HExpression(kArrayLength, DataType::Type::kInt32, SideEffects::None(), dex_pc) {
6576     SetPackedFlag<kFlagIsStringLength>(is_string_length);
6577     // Note that arrays do not change length, so the instruction does not
6578     // depend on any write.
6579     SetRawInputAt(0, array);
6580   }
6581 
6582   bool IsClonable() const override { return true; }
6583   bool CanBeMoved() const override { return true; }
6584   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
6585     return true;
6586   }
6587   bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
6588     return obj == InputAt(0);
6589   }
6590 
6591   bool IsStringLength() const { return GetPackedFlag<kFlagIsStringLength>(); }
6592 
6593   DECLARE_INSTRUCTION(ArrayLength);
6594 
6595  protected:
6596   DEFAULT_COPY_CONSTRUCTOR(ArrayLength);
6597 
6598  private:
6599   // We treat a String as an array, creating the HArrayLength from String.length()
6600   // or String.isEmpty() intrinsic in the instruction simplifier. We can always
6601   // determine whether a particular HArrayLength is actually a String.length() by
6602   // looking at the type of the input but that requires holding the mutator lock, so
6603   // we prefer to use a flag, so that code generators don't need to do the locking.
6604   static constexpr size_t kFlagIsStringLength = kNumberOfGenericPackedBits;
6605   static constexpr size_t kNumberOfArrayLengthPackedBits = kFlagIsStringLength + 1;
6606   static_assert(kNumberOfArrayLengthPackedBits <= HInstruction::kMaxNumberOfPackedBits,
6607                 "Too many packed fields.");
6608 };
6609 
6610 class HBoundsCheck final : public HExpression<2> {
6611  public:
6612   // `HBoundsCheck` can trigger GC, as it may call the `IndexOutOfBoundsException`
6613   // constructor. However it can only do it on a fatal slow path so execution never returns to the
6614   // instruction following the current one; thus 'SideEffects::None()' is used.
6615   HBoundsCheck(HInstruction* index,
6616                HInstruction* length,
6617                uint32_t dex_pc,
6618                bool is_string_char_at = false)
6619       : HExpression(kBoundsCheck, index->GetType(), SideEffects::None(), dex_pc) {
6620     DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(index->GetType()));
6621     SetPackedFlag<kFlagIsStringCharAt>(is_string_char_at);
6622     SetRawInputAt(0, index);
6623     SetRawInputAt(1, length);
6624   }
6625 
6626   bool IsClonable() const override { return true; }
6627   bool CanBeMoved() const override { return true; }
6628   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
6629     return true;
6630   }
6631 
6632   bool NeedsEnvironment() const override { return true; }
6633 
6634   bool CanThrow() const override { return true; }
6635 
6636   bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); }
6637 
6638   HInstruction* GetIndex() const { return InputAt(0); }
6639 
6640   DECLARE_INSTRUCTION(BoundsCheck);
6641 
6642  protected:
6643   DEFAULT_COPY_CONSTRUCTOR(BoundsCheck);
6644 
6645  private:
6646   static constexpr size_t kFlagIsStringCharAt = kNumberOfGenericPackedBits;
6647   static constexpr size_t kNumberOfBoundsCheckPackedBits = kFlagIsStringCharAt + 1;
6648   static_assert(kNumberOfBoundsCheckPackedBits <= HInstruction::kMaxNumberOfPackedBits,
6649                 "Too many packed fields.");
6650 };
6651 
6652 class HSuspendCheck final : public HExpression<0> {
6653  public:
6654   explicit HSuspendCheck(uint32_t dex_pc = kNoDexPc)
6655       : HExpression(kSuspendCheck, SideEffects::CanTriggerGC(), dex_pc),
6656         slow_path_(nullptr) {
6657   }
6658 
6659   bool IsClonable() const override { return true; }
6660 
6661   bool NeedsEnvironment() const override {
6662     return true;
6663   }
6664 
6665   void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
6666   SlowPathCode* GetSlowPath() const { return slow_path_; }
6667 
6668   DECLARE_INSTRUCTION(SuspendCheck);
6669 
6670  protected:
6671   DEFAULT_COPY_CONSTRUCTOR(SuspendCheck);
6672 
6673  private:
6674   // Only used for code generation, in order to share the same slow path between back edges
6675   // of a same loop.
6676   SlowPathCode* slow_path_;
6677 };
6678 
6679 // Pseudo-instruction which provides the native debugger with mapping information.
6680 // It ensures that we can generate line number and local variables at this point.
6681 class HNativeDebugInfo : public HExpression<0> {
6682  public:
6683   explicit HNativeDebugInfo(uint32_t dex_pc)
6684       : HExpression<0>(kNativeDebugInfo, SideEffects::None(), dex_pc) {
6685   }
6686 
6687   bool NeedsEnvironment() const override {
6688     return true;
6689   }
6690 
6691   DECLARE_INSTRUCTION(NativeDebugInfo);
6692 
6693  protected:
6694   DEFAULT_COPY_CONSTRUCTOR(NativeDebugInfo);
6695 };
6696 
6697 /**
6698  * Instruction to load a Class object.
6699  */
6700 class HLoadClass final : public HInstruction {
6701  public:
6702   // Determines how to load the Class.
6703   enum class LoadKind {
6704     // We cannot load this class. See HSharpening::SharpenLoadClass.
6705     kInvalid = -1,
6706 
6707     // Use the Class* from the method's own ArtMethod*.
6708     kReferrersClass,
6709 
6710     // Use PC-relative boot image Class* address that will be known at link time.
6711     // Used for boot image classes referenced by boot image code.
6712     kBootImageLinkTimePcRelative,
6713 
6714     // Load from an entry in the .data.bimg.rel.ro using a PC-relative load.
6715     // Used for boot image classes referenced by apps in AOT-compiled code.
6716     kBootImageRelRo,
6717 
6718     // Load from an entry in the .bss section using a PC-relative load.
6719     // Used for classes outside boot image referenced by AOT-compiled app and boot image code.
6720     kBssEntry,
6721 
6722     // Load from an entry for public class in the .bss section using a PC-relative load.
6723     // Used for classes that were unresolved during AOT-compilation outside the literal
6724     // package of the compiling class. Such classes are accessible only if they are public
6725     // and the .bss entry shall therefore be filled only if the resolved class is public.
6726     kBssEntryPublic,
6727 
6728     // Load from an entry for package class in the .bss section using a PC-relative load.
6729     // Used for classes that were unresolved during AOT-compilation but within the literal
6730     // package of the compiling class. Such classes are accessible if they are public or
6731     // in the same package which, given the literal package match, requires only matching
6732     // defining class loader and the .bss entry shall therefore be filled only if at least
6733     // one of those conditions holds. Note that all code in an oat file belongs to classes
6734     // with the same defining class loader.
6735     kBssEntryPackage,
6736 
6737     // Use a known boot image Class* address, embedded in the code by the codegen.
6738     // Used for boot image classes referenced by apps in JIT-compiled code.
6739     kJitBootImageAddress,
6740 
6741     // Load from the root table associated with the JIT compiled method.
6742     kJitTableAddress,
6743 
6744     // Load using a simple runtime call. This is the fall-back load kind when
6745     // the codegen is unable to use another appropriate kind.
6746     kRuntimeCall,
6747 
6748     kLast = kRuntimeCall
6749   };
6750 
6751   HLoadClass(HCurrentMethod* current_method,
6752              dex::TypeIndex type_index,
6753              const DexFile& dex_file,
6754              Handle<mirror::Class> klass,
6755              bool is_referrers_class,
6756              uint32_t dex_pc,
6757              bool needs_access_check)
6758       : HInstruction(kLoadClass,
6759                      DataType::Type::kReference,
6760                      SideEffectsForArchRuntimeCalls(),
6761                      dex_pc),
6762         special_input_(HUserRecord<HInstruction*>(current_method)),
6763         type_index_(type_index),
6764         dex_file_(dex_file),
6765         klass_(klass) {
6766     // Referrers class should not need access check. We never inline unverified
6767     // methods so we can't possibly end up in this situation.
6768     DCHECK(!is_referrers_class || !needs_access_check);
6769 
6770     SetPackedField<LoadKindField>(
6771         is_referrers_class ? LoadKind::kReferrersClass : LoadKind::kRuntimeCall);
6772     SetPackedFlag<kFlagNeedsAccessCheck>(needs_access_check);
6773     SetPackedFlag<kFlagIsInBootImage>(false);
6774     SetPackedFlag<kFlagGenerateClInitCheck>(false);
6775     SetPackedFlag<kFlagValidLoadedClassRTI>(false);
6776   }
6777 
6778   bool IsClonable() const override { return true; }
6779 
6780   void SetLoadKind(LoadKind load_kind);
6781 
6782   LoadKind GetLoadKind() const {
6783     return GetPackedField<LoadKindField>();
6784   }
6785 
6786   bool HasPcRelativeLoadKind() const {
6787     return GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
6788            GetLoadKind() == LoadKind::kBootImageRelRo ||
6789            GetLoadKind() == LoadKind::kBssEntry ||
6790            GetLoadKind() == LoadKind::kBssEntryPublic ||
6791            GetLoadKind() == LoadKind::kBssEntryPackage;
6792   }
6793 
6794   bool CanBeMoved() const override { return true; }
6795 
6796   bool InstructionDataEquals(const HInstruction* other) const override;
6797 
6798   size_t ComputeHashCode() const override { return type_index_.index_; }
6799 
6800   bool CanBeNull() const override { return false; }
6801 
6802   bool NeedsEnvironment() const override {
6803     return CanCallRuntime();
6804   }
6805 
6806   void SetMustGenerateClinitCheck(bool generate_clinit_check) {
6807     SetPackedFlag<kFlagGenerateClInitCheck>(generate_clinit_check);
6808   }
6809 
6810   bool CanCallRuntime() const {
6811     return NeedsAccessCheck() ||
6812            MustGenerateClinitCheck() ||
6813            GetLoadKind() == LoadKind::kRuntimeCall ||
6814            GetLoadKind() == LoadKind::kBssEntry;
6815   }
6816 
6817   bool CanThrow() const override {
6818     return NeedsAccessCheck() ||
6819            MustGenerateClinitCheck() ||
6820            // If the class is in the boot image, the lookup in the runtime call cannot throw.
6821            ((GetLoadKind() == LoadKind::kRuntimeCall ||
6822              GetLoadKind() == LoadKind::kBssEntry) &&
6823             !IsInBootImage());
6824   }
6825 
6826   ReferenceTypeInfo GetLoadedClassRTI() {
6827     if (GetPackedFlag<kFlagValidLoadedClassRTI>()) {
6828       // Note: The is_exact flag from the return value should not be used.
6829       return ReferenceTypeInfo::CreateUnchecked(klass_, /* is_exact= */ true);
6830     } else {
6831       return ReferenceTypeInfo::CreateInvalid();
6832     }
6833   }
6834 
6835   // Loaded class RTI is marked as valid by RTP if the klass_ is admissible.
6836   void SetValidLoadedClassRTI() {
6837     DCHECK(klass_ != nullptr);
6838     SetPackedFlag<kFlagValidLoadedClassRTI>(true);
6839   }
6840 
6841   dex::TypeIndex GetTypeIndex() const { return type_index_; }
6842   const DexFile& GetDexFile() const { return dex_file_; }
6843 
6844   static SideEffects SideEffectsForArchRuntimeCalls() {
6845     return SideEffects::CanTriggerGC();
6846   }
6847 
6848   bool IsReferrersClass() const { return GetLoadKind() == LoadKind::kReferrersClass; }
6849   bool NeedsAccessCheck() const { return GetPackedFlag<kFlagNeedsAccessCheck>(); }
6850   bool IsInBootImage() const { return GetPackedFlag<kFlagIsInBootImage>(); }
6851   bool MustGenerateClinitCheck() const { return GetPackedFlag<kFlagGenerateClInitCheck>(); }
6852 
6853   bool MustResolveTypeOnSlowPath() const {
6854     // Check that this instruction has a slow path.
6855     LoadKind load_kind = GetLoadKind();
6856     DCHECK(load_kind != LoadKind::kRuntimeCall);  // kRuntimeCall calls on main path.
6857     bool must_resolve_type_on_slow_path =
6858        load_kind == LoadKind::kBssEntry ||
6859        load_kind == LoadKind::kBssEntryPublic ||
6860        load_kind == LoadKind::kBssEntryPackage;
6861     DCHECK(must_resolve_type_on_slow_path || MustGenerateClinitCheck());
6862     return must_resolve_type_on_slow_path;
6863   }
6864 
6865   void MarkInBootImage() {
6866     SetPackedFlag<kFlagIsInBootImage>(true);
6867   }
6868 
6869   void AddSpecialInput(HInstruction* special_input);
6870 
6871   using HInstruction::GetInputRecords;  // Keep the const version visible.
6872   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
6873     return ArrayRef<HUserRecord<HInstruction*>>(
6874         &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
6875   }
6876 
6877   Handle<mirror::Class> GetClass() const {
6878     return klass_;
6879   }
6880 
6881   DECLARE_INSTRUCTION(LoadClass);
6882 
6883  protected:
6884   DEFAULT_COPY_CONSTRUCTOR(LoadClass);
6885 
6886  private:
6887   static constexpr size_t kFlagNeedsAccessCheck    = kNumberOfGenericPackedBits;
6888   static constexpr size_t kFlagIsInBootImage       = kFlagNeedsAccessCheck + 1;
6889   // Whether this instruction must generate the initialization check.
6890   // Used for code generation.
6891   static constexpr size_t kFlagGenerateClInitCheck = kFlagIsInBootImage + 1;
6892   static constexpr size_t kFieldLoadKind           = kFlagGenerateClInitCheck + 1;
6893   static constexpr size_t kFieldLoadKindSize =
6894       MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast));
6895   static constexpr size_t kFlagValidLoadedClassRTI = kFieldLoadKind + kFieldLoadKindSize;
6896   static constexpr size_t kNumberOfLoadClassPackedBits = kFlagValidLoadedClassRTI + 1;
6897   static_assert(kNumberOfLoadClassPackedBits < kMaxNumberOfPackedBits, "Too many packed fields.");
6898   using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>;
6899 
6900   static bool HasTypeReference(LoadKind load_kind) {
6901     return load_kind == LoadKind::kReferrersClass ||
6902         load_kind == LoadKind::kBootImageLinkTimePcRelative ||
6903         load_kind == LoadKind::kBssEntry ||
6904         load_kind == LoadKind::kBssEntryPublic ||
6905         load_kind == LoadKind::kBssEntryPackage ||
6906         load_kind == LoadKind::kRuntimeCall;
6907   }
6908 
6909   void SetLoadKindInternal(LoadKind load_kind);
6910 
6911   // The special input is the HCurrentMethod for kRuntimeCall or kReferrersClass.
6912   // For other load kinds it's empty or possibly some architecture-specific instruction
6913   // for PC-relative loads, i.e. kBssEntry* or kBootImageLinkTimePcRelative.
6914   HUserRecord<HInstruction*> special_input_;
6915 
6916   // A type index and dex file where the class can be accessed. The dex file can be:
6917   // - The compiling method's dex file if the class is defined there too.
6918   // - The compiling method's dex file if the class is referenced there.
6919   // - The dex file where the class is defined. When the load kind can only be
6920   //   kBssEntry* or kRuntimeCall, we cannot emit code for this `HLoadClass`.
6921   const dex::TypeIndex type_index_;
6922   const DexFile& dex_file_;
6923 
6924   Handle<mirror::Class> klass_;
6925 };
6926 std::ostream& operator<<(std::ostream& os, HLoadClass::LoadKind rhs);
6927 
6928 // Note: defined outside class to see operator<<(., HLoadClass::LoadKind).
6929 inline void HLoadClass::SetLoadKind(LoadKind load_kind) {
6930   // The load kind should be determined before inserting the instruction to the graph.
6931   DCHECK(GetBlock() == nullptr);
6932   DCHECK(GetEnvironment() == nullptr);
6933   SetPackedField<LoadKindField>(load_kind);
6934   if (load_kind != LoadKind::kRuntimeCall && load_kind != LoadKind::kReferrersClass) {
6935     special_input_ = HUserRecord<HInstruction*>(nullptr);
6936   }
6937   if (!NeedsEnvironment()) {
6938     SetSideEffects(SideEffects::None());
6939   }
6940 }
6941 
6942 // Note: defined outside class to see operator<<(., HLoadClass::LoadKind).
6943 inline void HLoadClass::AddSpecialInput(HInstruction* special_input) {
6944   // The special input is used for PC-relative loads on some architectures,
6945   // including literal pool loads, which are PC-relative too.
6946   DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
6947          GetLoadKind() == LoadKind::kBootImageRelRo ||
6948          GetLoadKind() == LoadKind::kBssEntry ||
6949          GetLoadKind() == LoadKind::kBssEntryPublic ||
6950          GetLoadKind() == LoadKind::kBssEntryPackage ||
6951          GetLoadKind() == LoadKind::kJitBootImageAddress) << GetLoadKind();
6952   DCHECK(special_input_.GetInstruction() == nullptr);
6953   special_input_ = HUserRecord<HInstruction*>(special_input);
6954   special_input->AddUseAt(this, 0);
6955 }
6956 
6957 class HLoadString final : public HInstruction {
6958  public:
6959   // Determines how to load the String.
6960   enum class LoadKind {
6961     // Use PC-relative boot image String* address that will be known at link time.
6962     // Used for boot image strings referenced by boot image code.
6963     kBootImageLinkTimePcRelative,
6964 
6965     // Load from an entry in the .data.bimg.rel.ro using a PC-relative load.
6966     // Used for boot image strings referenced by apps in AOT-compiled code.
6967     kBootImageRelRo,
6968 
6969     // Load from an entry in the .bss section using a PC-relative load.
6970     // Used for strings outside boot image referenced by AOT-compiled app and boot image code.
6971     kBssEntry,
6972 
6973     // Use a known boot image String* address, embedded in the code by the codegen.
6974     // Used for boot image strings referenced by apps in JIT-compiled code.
6975     kJitBootImageAddress,
6976 
6977     // Load from the root table associated with the JIT compiled method.
6978     kJitTableAddress,
6979 
6980     // Load using a simple runtime call. This is the fall-back load kind when
6981     // the codegen is unable to use another appropriate kind.
6982     kRuntimeCall,
6983 
6984     kLast = kRuntimeCall,
6985   };
6986 
6987   HLoadString(HCurrentMethod* current_method,
6988               dex::StringIndex string_index,
6989               const DexFile& dex_file,
6990               uint32_t dex_pc)
6991       : HInstruction(kLoadString,
6992                      DataType::Type::kReference,
6993                      SideEffectsForArchRuntimeCalls(),
6994                      dex_pc),
6995         special_input_(HUserRecord<HInstruction*>(current_method)),
6996         string_index_(string_index),
6997         dex_file_(dex_file) {
6998     SetPackedField<LoadKindField>(LoadKind::kRuntimeCall);
6999   }
7000 
7001   bool IsClonable() const override { return true; }
7002 
7003   void SetLoadKind(LoadKind load_kind);
7004 
7005   LoadKind GetLoadKind() const {
7006     return GetPackedField<LoadKindField>();
7007   }
7008 
7009   bool HasPcRelativeLoadKind() const {
7010     return GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
7011            GetLoadKind() == LoadKind::kBootImageRelRo ||
7012            GetLoadKind() == LoadKind::kBssEntry;
7013   }
7014 
7015   const DexFile& GetDexFile() const {
7016     return dex_file_;
7017   }
7018 
7019   dex::StringIndex GetStringIndex() const {
7020     return string_index_;
7021   }
7022 
7023   Handle<mirror::String> GetString() const {
7024     return string_;
7025   }
7026 
7027   void SetString(Handle<mirror::String> str) {
7028     string_ = str;
7029   }
7030 
7031   bool CanBeMoved() const override { return true; }
7032 
7033   bool InstructionDataEquals(const HInstruction* other) const override;
7034 
7035   size_t ComputeHashCode() const override { return string_index_.index_; }
7036 
7037   // Will call the runtime if we need to load the string through
7038   // the dex cache and the string is not guaranteed to be there yet.
7039   bool NeedsEnvironment() const override {
7040     LoadKind load_kind = GetLoadKind();
7041     if (load_kind == LoadKind::kBootImageLinkTimePcRelative ||
7042         load_kind == LoadKind::kBootImageRelRo ||
7043         load_kind == LoadKind::kJitBootImageAddress ||
7044         load_kind == LoadKind::kJitTableAddress) {
7045       return false;
7046     }
7047     return true;
7048   }
7049 
7050   bool CanBeNull() const override { return false; }
7051   bool CanThrow() const override { return NeedsEnvironment(); }
7052 
7053   static SideEffects SideEffectsForArchRuntimeCalls() {
7054     return SideEffects::CanTriggerGC();
7055   }
7056 
7057   void AddSpecialInput(HInstruction* special_input);
7058 
7059   using HInstruction::GetInputRecords;  // Keep the const version visible.
7060   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
7061     return ArrayRef<HUserRecord<HInstruction*>>(
7062         &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
7063   }
7064 
7065   DECLARE_INSTRUCTION(LoadString);
7066 
7067  protected:
7068   DEFAULT_COPY_CONSTRUCTOR(LoadString);
7069 
7070  private:
7071   static constexpr size_t kFieldLoadKind = kNumberOfGenericPackedBits;
7072   static constexpr size_t kFieldLoadKindSize =
7073       MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast));
7074   static constexpr size_t kNumberOfLoadStringPackedBits = kFieldLoadKind + kFieldLoadKindSize;
7075   static_assert(kNumberOfLoadStringPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
7076   using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>;
7077 
7078   void SetLoadKindInternal(LoadKind load_kind);
7079 
7080   // The special input is the HCurrentMethod for kRuntimeCall.
7081   // For other load kinds it's empty or possibly some architecture-specific instruction
7082   // for PC-relative loads, i.e. kBssEntry or kBootImageLinkTimePcRelative.
7083   HUserRecord<HInstruction*> special_input_;
7084 
7085   dex::StringIndex string_index_;
7086   const DexFile& dex_file_;
7087 
7088   Handle<mirror::String> string_;
7089 };
7090 std::ostream& operator<<(std::ostream& os, HLoadString::LoadKind rhs);
7091 
7092 // Note: defined outside class to see operator<<(., HLoadString::LoadKind).
7093 inline void HLoadString::SetLoadKind(LoadKind load_kind) {
7094   // The load kind should be determined before inserting the instruction to the graph.
7095   DCHECK(GetBlock() == nullptr);
7096   DCHECK(GetEnvironment() == nullptr);
7097   DCHECK_EQ(GetLoadKind(), LoadKind::kRuntimeCall);
7098   SetPackedField<LoadKindField>(load_kind);
7099   if (load_kind != LoadKind::kRuntimeCall) {
7100     special_input_ = HUserRecord<HInstruction*>(nullptr);
7101   }
7102   if (!NeedsEnvironment()) {
7103     SetSideEffects(SideEffects::None());
7104   }
7105 }
7106 
7107 // Note: defined outside class to see operator<<(., HLoadString::LoadKind).
7108 inline void HLoadString::AddSpecialInput(HInstruction* special_input) {
7109   // The special input is used for PC-relative loads on some architectures,
7110   // including literal pool loads, which are PC-relative too.
7111   DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
7112          GetLoadKind() == LoadKind::kBootImageRelRo ||
7113          GetLoadKind() == LoadKind::kBssEntry ||
7114          GetLoadKind() == LoadKind::kJitBootImageAddress) << GetLoadKind();
7115   // HLoadString::GetInputRecords() returns an empty array at this point,
7116   // so use the GetInputRecords() from the base class to set the input record.
7117   DCHECK(special_input_.GetInstruction() == nullptr);
7118   special_input_ = HUserRecord<HInstruction*>(special_input);
7119   special_input->AddUseAt(this, 0);
7120 }
7121 
7122 class HLoadMethodHandle final : public HInstruction {
7123  public:
7124   HLoadMethodHandle(HCurrentMethod* current_method,
7125                     uint16_t method_handle_idx,
7126                     const DexFile& dex_file,
7127                     uint32_t dex_pc)
7128       : HInstruction(kLoadMethodHandle,
7129                      DataType::Type::kReference,
7130                      SideEffectsForArchRuntimeCalls(),
7131                      dex_pc),
7132         special_input_(HUserRecord<HInstruction*>(current_method)),
7133         method_handle_idx_(method_handle_idx),
7134         dex_file_(dex_file) {
7135   }
7136 
7137   using HInstruction::GetInputRecords;  // Keep the const version visible.
7138   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
7139     return ArrayRef<HUserRecord<HInstruction*>>(
7140         &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
7141   }
7142 
7143   bool IsClonable() const override { return true; }
7144 
7145   uint16_t GetMethodHandleIndex() const { return method_handle_idx_; }
7146 
7147   const DexFile& GetDexFile() const { return dex_file_; }
7148 
7149   static SideEffects SideEffectsForArchRuntimeCalls() {
7150     return SideEffects::CanTriggerGC();
7151   }
7152 
7153   DECLARE_INSTRUCTION(LoadMethodHandle);
7154 
7155  protected:
7156   DEFAULT_COPY_CONSTRUCTOR(LoadMethodHandle);
7157 
7158  private:
7159   // The special input is the HCurrentMethod for kRuntimeCall.
7160   HUserRecord<HInstruction*> special_input_;
7161 
7162   const uint16_t method_handle_idx_;
7163   const DexFile& dex_file_;
7164 };
7165 
7166 class HLoadMethodType final : public HInstruction {
7167  public:
7168   HLoadMethodType(HCurrentMethod* current_method,
7169                   dex::ProtoIndex proto_index,
7170                   const DexFile& dex_file,
7171                   uint32_t dex_pc)
7172       : HInstruction(kLoadMethodType,
7173                      DataType::Type::kReference,
7174                      SideEffectsForArchRuntimeCalls(),
7175                      dex_pc),
7176         special_input_(HUserRecord<HInstruction*>(current_method)),
7177         proto_index_(proto_index),
7178         dex_file_(dex_file) {
7179   }
7180 
7181   using HInstruction::GetInputRecords;  // Keep the const version visible.
7182   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
7183     return ArrayRef<HUserRecord<HInstruction*>>(
7184         &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
7185   }
7186 
7187   bool IsClonable() const override { return true; }
7188 
7189   dex::ProtoIndex GetProtoIndex() const { return proto_index_; }
7190 
7191   const DexFile& GetDexFile() const { return dex_file_; }
7192 
7193   static SideEffects SideEffectsForArchRuntimeCalls() {
7194     return SideEffects::CanTriggerGC();
7195   }
7196 
7197   DECLARE_INSTRUCTION(LoadMethodType);
7198 
7199  protected:
7200   DEFAULT_COPY_CONSTRUCTOR(LoadMethodType);
7201 
7202  private:
7203   // The special input is the HCurrentMethod for kRuntimeCall.
7204   HUserRecord<HInstruction*> special_input_;
7205 
7206   const dex::ProtoIndex proto_index_;
7207   const DexFile& dex_file_;
7208 };
7209 
7210 /**
7211  * Performs an initialization check on its Class object input.
7212  */
7213 class HClinitCheck final : public HExpression<1> {
7214  public:
7215   HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
7216       : HExpression(
7217             kClinitCheck,
7218             DataType::Type::kReference,
7219             SideEffects::AllExceptGCDependency(),  // Assume write/read on all fields/arrays.
7220             dex_pc) {
7221     SetRawInputAt(0, constant);
7222   }
7223   // TODO: Make ClinitCheck clonable.
7224   bool CanBeMoved() const override { return true; }
7225   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
7226     return true;
7227   }
7228 
7229   bool NeedsEnvironment() const override {
7230     // May call runtime to initialize the class.
7231     return true;
7232   }
7233 
7234   bool CanThrow() const override { return true; }
7235 
7236   HLoadClass* GetLoadClass() const {
7237     DCHECK(InputAt(0)->IsLoadClass());
7238     return InputAt(0)->AsLoadClass();
7239   }
7240 
7241   DECLARE_INSTRUCTION(ClinitCheck);
7242 
7243 
7244  protected:
7245   DEFAULT_COPY_CONSTRUCTOR(ClinitCheck);
7246 };
7247 
7248 class HStaticFieldGet final : public HExpression<1> {
7249  public:
7250   HStaticFieldGet(HInstruction* cls,
7251                   ArtField* field,
7252                   DataType::Type field_type,
7253                   MemberOffset field_offset,
7254                   bool is_volatile,
7255                   uint32_t field_idx,
7256                   uint16_t declaring_class_def_index,
7257                   const DexFile& dex_file,
7258                   uint32_t dex_pc)
7259       : HExpression(kStaticFieldGet,
7260                     field_type,
7261                     SideEffects::FieldReadOfType(field_type, is_volatile),
7262                     dex_pc),
7263         field_info_(field,
7264                     field_offset,
7265                     field_type,
7266                     is_volatile,
7267                     field_idx,
7268                     declaring_class_def_index,
7269                     dex_file) {
7270     SetRawInputAt(0, cls);
7271   }
7272 
7273 
7274   bool IsClonable() const override { return true; }
7275   bool CanBeMoved() const override { return !IsVolatile(); }
7276 
7277   bool InstructionDataEquals(const HInstruction* other) const override {
7278     const HStaticFieldGet* other_get = other->AsStaticFieldGet();
7279     return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
7280   }
7281 
7282   size_t ComputeHashCode() const override {
7283     return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
7284   }
7285 
7286   bool IsFieldAccess() const override { return true; }
7287   const FieldInfo& GetFieldInfo() const override { return field_info_; }
7288   MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
7289   DataType::Type GetFieldType() const { return field_info_.GetFieldType(); }
7290   bool IsVolatile() const { return field_info_.IsVolatile(); }
7291 
7292   void SetType(DataType::Type new_type) {
7293     DCHECK(DataType::IsIntegralType(GetType()));
7294     DCHECK(DataType::IsIntegralType(new_type));
7295     DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type));
7296     SetPackedField<TypeField>(new_type);
7297   }
7298 
7299   DECLARE_INSTRUCTION(StaticFieldGet);
7300 
7301  protected:
7302   DEFAULT_COPY_CONSTRUCTOR(StaticFieldGet);
7303 
7304  private:
7305   const FieldInfo field_info_;
7306 };
7307 
7308 class HStaticFieldSet final : public HExpression<2> {
7309  public:
7310   HStaticFieldSet(HInstruction* cls,
7311                   HInstruction* value,
7312                   ArtField* field,
7313                   DataType::Type field_type,
7314                   MemberOffset field_offset,
7315                   bool is_volatile,
7316                   uint32_t field_idx,
7317                   uint16_t declaring_class_def_index,
7318                   const DexFile& dex_file,
7319                   uint32_t dex_pc)
7320       : HExpression(kStaticFieldSet,
7321                     SideEffects::FieldWriteOfType(field_type, is_volatile),
7322                     dex_pc),
7323         field_info_(field,
7324                     field_offset,
7325                     field_type,
7326                     is_volatile,
7327                     field_idx,
7328                     declaring_class_def_index,
7329                     dex_file) {
7330     SetPackedFlag<kFlagValueCanBeNull>(true);
7331     SetRawInputAt(0, cls);
7332     SetRawInputAt(1, value);
7333   }
7334 
7335   bool IsClonable() const override { return true; }
7336   bool IsFieldAccess() const override { return true; }
7337   const FieldInfo& GetFieldInfo() const override { return field_info_; }
7338   MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
7339   DataType::Type GetFieldType() const { return field_info_.GetFieldType(); }
7340   bool IsVolatile() const { return field_info_.IsVolatile(); }
7341 
7342   HInstruction* GetValue() const { return InputAt(1); }
7343   bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
7344   void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); }
7345 
7346   DECLARE_INSTRUCTION(StaticFieldSet);
7347 
7348  protected:
7349   DEFAULT_COPY_CONSTRUCTOR(StaticFieldSet);
7350 
7351  private:
7352   static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits;
7353   static constexpr size_t kNumberOfStaticFieldSetPackedBits = kFlagValueCanBeNull + 1;
7354   static_assert(kNumberOfStaticFieldSetPackedBits <= kMaxNumberOfPackedBits,
7355                 "Too many packed fields.");
7356 
7357   const FieldInfo field_info_;
7358 };
7359 
7360 class HStringBuilderAppend final : public HVariableInputSizeInstruction {
7361  public:
7362   HStringBuilderAppend(HIntConstant* format,
7363                        uint32_t number_of_arguments,
7364                        ArenaAllocator* allocator,
7365                        uint32_t dex_pc)
7366       : HVariableInputSizeInstruction(
7367             kStringBuilderAppend,
7368             DataType::Type::kReference,
7369             // The runtime call may read memory from inputs. It never writes outside
7370             // of the newly allocated result object (or newly allocated helper objects).
7371             SideEffects::AllReads().Union(SideEffects::CanTriggerGC()),
7372             dex_pc,
7373             allocator,
7374             number_of_arguments + /* format */ 1u,
7375             kArenaAllocInvokeInputs) {
7376     DCHECK_GE(number_of_arguments, 1u);  // There must be something to append.
7377     SetRawInputAt(FormatIndex(), format);
7378   }
7379 
7380   void SetArgumentAt(size_t index, HInstruction* argument) {
7381     DCHECK_LE(index, GetNumberOfArguments());
7382     SetRawInputAt(index, argument);
7383   }
7384 
7385   // Return the number of arguments, excluding the format.
7386   size_t GetNumberOfArguments() const {
7387     DCHECK_GE(InputCount(), 1u);
7388     return InputCount() - 1u;
7389   }
7390 
7391   size_t FormatIndex() const {
7392     return GetNumberOfArguments();
7393   }
7394 
7395   HIntConstant* GetFormat() {
7396     return InputAt(FormatIndex())->AsIntConstant();
7397   }
7398 
7399   bool NeedsEnvironment() const override { return true; }
7400 
7401   bool CanThrow() const override { return true; }
7402 
7403   bool CanBeNull() const override { return false; }
7404 
7405   DECLARE_INSTRUCTION(StringBuilderAppend);
7406 
7407  protected:
7408   DEFAULT_COPY_CONSTRUCTOR(StringBuilderAppend);
7409 };
7410 
7411 class HUnresolvedInstanceFieldGet final : public HExpression<1> {
7412  public:
7413   HUnresolvedInstanceFieldGet(HInstruction* obj,
7414                               DataType::Type field_type,
7415                               uint32_t field_index,
7416                               uint32_t dex_pc)
7417       : HExpression(kUnresolvedInstanceFieldGet,
7418                     field_type,
7419                     SideEffects::AllExceptGCDependency(),
7420                     dex_pc),
7421         field_index_(field_index) {
7422     SetRawInputAt(0, obj);
7423   }
7424 
7425   bool IsClonable() const override { return true; }
7426   bool NeedsEnvironment() const override { return true; }
7427   bool CanThrow() const override { return true; }
7428 
7429   DataType::Type GetFieldType() const { return GetType(); }
7430   uint32_t GetFieldIndex() const { return field_index_; }
7431 
7432   DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet);
7433 
7434  protected:
7435   DEFAULT_COPY_CONSTRUCTOR(UnresolvedInstanceFieldGet);
7436 
7437  private:
7438   const uint32_t field_index_;
7439 };
7440 
7441 class HUnresolvedInstanceFieldSet final : public HExpression<2> {
7442  public:
7443   HUnresolvedInstanceFieldSet(HInstruction* obj,
7444                               HInstruction* value,
7445                               DataType::Type field_type,
7446                               uint32_t field_index,
7447                               uint32_t dex_pc)
7448       : HExpression(kUnresolvedInstanceFieldSet, SideEffects::AllExceptGCDependency(), dex_pc),
7449         field_index_(field_index) {
7450     SetPackedField<FieldTypeField>(field_type);
7451     DCHECK_EQ(DataType::Kind(field_type), DataType::Kind(value->GetType()));
7452     SetRawInputAt(0, obj);
7453     SetRawInputAt(1, value);
7454   }
7455 
7456   bool IsClonable() const override { return true; }
7457   bool NeedsEnvironment() const override { return true; }
7458   bool CanThrow() const override { return true; }
7459 
7460   DataType::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); }
7461   uint32_t GetFieldIndex() const { return field_index_; }
7462 
7463   DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet);
7464 
7465  protected:
7466   DEFAULT_COPY_CONSTRUCTOR(UnresolvedInstanceFieldSet);
7467 
7468  private:
7469   static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits;
7470   static constexpr size_t kFieldFieldTypeSize =
7471       MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
7472   static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits =
7473       kFieldFieldType + kFieldFieldTypeSize;
7474   static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
7475                 "Too many packed fields.");
7476   using FieldTypeField = BitField<DataType::Type, kFieldFieldType, kFieldFieldTypeSize>;
7477 
7478   const uint32_t field_index_;
7479 };
7480 
7481 class HUnresolvedStaticFieldGet final : public HExpression<0> {
7482  public:
7483   HUnresolvedStaticFieldGet(DataType::Type field_type,
7484                             uint32_t field_index,
7485                             uint32_t dex_pc)
7486       : HExpression(kUnresolvedStaticFieldGet,
7487                     field_type,
7488                     SideEffects::AllExceptGCDependency(),
7489                     dex_pc),
7490         field_index_(field_index) {
7491   }
7492 
7493   bool IsClonable() const override { return true; }
7494   bool NeedsEnvironment() const override { return true; }
7495   bool CanThrow() const override { return true; }
7496 
7497   DataType::Type GetFieldType() const { return GetType(); }
7498   uint32_t GetFieldIndex() const { return field_index_; }
7499 
7500   DECLARE_INSTRUCTION(UnresolvedStaticFieldGet);
7501 
7502  protected:
7503   DEFAULT_COPY_CONSTRUCTOR(UnresolvedStaticFieldGet);
7504 
7505  private:
7506   const uint32_t field_index_;
7507 };
7508 
7509 class HUnresolvedStaticFieldSet final : public HExpression<1> {
7510  public:
7511   HUnresolvedStaticFieldSet(HInstruction* value,
7512                             DataType::Type field_type,
7513                             uint32_t field_index,
7514                             uint32_t dex_pc)
7515       : HExpression(kUnresolvedStaticFieldSet, SideEffects::AllExceptGCDependency(), dex_pc),
7516         field_index_(field_index) {
7517     SetPackedField<FieldTypeField>(field_type);
7518     DCHECK_EQ(DataType::Kind(field_type), DataType::Kind(value->GetType()));
7519     SetRawInputAt(0, value);
7520   }
7521 
7522   bool IsClonable() const override { return true; }
7523   bool NeedsEnvironment() const override { return true; }
7524   bool CanThrow() const override { return true; }
7525 
7526   DataType::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); }
7527   uint32_t GetFieldIndex() const { return field_index_; }
7528 
7529   DECLARE_INSTRUCTION(UnresolvedStaticFieldSet);
7530 
7531  protected:
7532   DEFAULT_COPY_CONSTRUCTOR(UnresolvedStaticFieldSet);
7533 
7534  private:
7535   static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits;
7536   static constexpr size_t kFieldFieldTypeSize =
7537       MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
7538   static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits =
7539       kFieldFieldType + kFieldFieldTypeSize;
7540   static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
7541                 "Too many packed fields.");
7542   using FieldTypeField = BitField<DataType::Type, kFieldFieldType, kFieldFieldTypeSize>;
7543 
7544   const uint32_t field_index_;
7545 };
7546 
7547 // Implement the move-exception DEX instruction.
7548 class HLoadException final : public HExpression<0> {
7549  public:
7550   explicit HLoadException(uint32_t dex_pc = kNoDexPc)
7551       : HExpression(kLoadException, DataType::Type::kReference, SideEffects::None(), dex_pc) {
7552   }
7553 
7554   bool CanBeNull() const override { return false; }
7555 
7556   DECLARE_INSTRUCTION(LoadException);
7557 
7558  protected:
7559   DEFAULT_COPY_CONSTRUCTOR(LoadException);
7560 };
7561 
7562 // Implicit part of move-exception which clears thread-local exception storage.
7563 // Must not be removed because the runtime expects the TLS to get cleared.
7564 class HClearException final : public HExpression<0> {
7565  public:
7566   explicit HClearException(uint32_t dex_pc = kNoDexPc)
7567       : HExpression(kClearException, SideEffects::AllWrites(), dex_pc) {
7568   }
7569 
7570   DECLARE_INSTRUCTION(ClearException);
7571 
7572  protected:
7573   DEFAULT_COPY_CONSTRUCTOR(ClearException);
7574 };
7575 
7576 class HThrow final : public HExpression<1> {
7577  public:
7578   HThrow(HInstruction* exception, uint32_t dex_pc)
7579       : HExpression(kThrow, SideEffects::CanTriggerGC(), dex_pc) {
7580     SetRawInputAt(0, exception);
7581   }
7582 
7583   bool IsControlFlow() const override { return true; }
7584 
7585   bool NeedsEnvironment() const override { return true; }
7586 
7587   bool CanThrow() const override { return true; }
7588 
7589   bool AlwaysThrows() const override { return true; }
7590 
7591   DECLARE_INSTRUCTION(Throw);
7592 
7593  protected:
7594   DEFAULT_COPY_CONSTRUCTOR(Throw);
7595 };
7596 
7597 /**
7598  * Implementation strategies for the code generator of a HInstanceOf
7599  * or `HCheckCast`.
7600  */
7601 enum class TypeCheckKind {  // private marker to avoid generate-operator-out.py from processing.
7602   kUnresolvedCheck,       // Check against an unresolved type.
7603   kExactCheck,            // Can do a single class compare.
7604   kClassHierarchyCheck,   // Can just walk the super class chain.
7605   kAbstractClassCheck,    // Can just walk the super class chain, starting one up.
7606   kInterfaceCheck,        // No optimization yet when checking against an interface.
7607   kArrayObjectCheck,      // Can just check if the array is not primitive.
7608   kArrayCheck,            // No optimization yet when checking against a generic array.
7609   kBitstringCheck,        // Compare the type check bitstring.
7610   kLast = kArrayCheck
7611 };
7612 
7613 std::ostream& operator<<(std::ostream& os, TypeCheckKind rhs);
7614 
7615 // Note: HTypeCheckInstruction is just a helper class, not an abstract instruction with an
7616 // `IsTypeCheckInstruction()`. (New virtual methods in the HInstruction class have a high cost.)
7617 class HTypeCheckInstruction : public HVariableInputSizeInstruction {
7618  public:
7619   HTypeCheckInstruction(InstructionKind kind,
7620                         DataType::Type type,
7621                         HInstruction* object,
7622                         HInstruction* target_class_or_null,
7623                         TypeCheckKind check_kind,
7624                         Handle<mirror::Class> klass,
7625                         uint32_t dex_pc,
7626                         ArenaAllocator* allocator,
7627                         HIntConstant* bitstring_path_to_root,
7628                         HIntConstant* bitstring_mask,
7629                         SideEffects side_effects)
7630       : HVariableInputSizeInstruction(
7631           kind,
7632           type,
7633           side_effects,
7634           dex_pc,
7635           allocator,
7636           /* number_of_inputs= */ check_kind == TypeCheckKind::kBitstringCheck ? 4u : 2u,
7637           kArenaAllocTypeCheckInputs),
7638         klass_(klass) {
7639     SetPackedField<TypeCheckKindField>(check_kind);
7640     SetPackedFlag<kFlagMustDoNullCheck>(true);
7641     SetPackedFlag<kFlagValidTargetClassRTI>(false);
7642     SetRawInputAt(0, object);
7643     SetRawInputAt(1, target_class_or_null);
7644     DCHECK_EQ(check_kind == TypeCheckKind::kBitstringCheck, bitstring_path_to_root != nullptr);
7645     DCHECK_EQ(check_kind == TypeCheckKind::kBitstringCheck, bitstring_mask != nullptr);
7646     if (check_kind == TypeCheckKind::kBitstringCheck) {
7647       DCHECK(target_class_or_null->IsNullConstant());
7648       SetRawInputAt(2, bitstring_path_to_root);
7649       SetRawInputAt(3, bitstring_mask);
7650     } else {
7651       DCHECK(target_class_or_null->IsLoadClass());
7652     }
7653   }
7654 
7655   HLoadClass* GetTargetClass() const {
7656     DCHECK_NE(GetTypeCheckKind(), TypeCheckKind::kBitstringCheck);
7657     HInstruction* load_class = InputAt(1);
7658     DCHECK(load_class->IsLoadClass());
7659     return load_class->AsLoadClass();
7660   }
7661 
7662   uint32_t GetBitstringPathToRoot() const {
7663     DCHECK_EQ(GetTypeCheckKind(), TypeCheckKind::kBitstringCheck);
7664     HInstruction* path_to_root = InputAt(2);
7665     DCHECK(path_to_root->IsIntConstant());
7666     return static_cast<uint32_t>(path_to_root->AsIntConstant()->GetValue());
7667   }
7668 
7669   uint32_t GetBitstringMask() const {
7670     DCHECK_EQ(GetTypeCheckKind(), TypeCheckKind::kBitstringCheck);
7671     HInstruction* mask = InputAt(3);
7672     DCHECK(mask->IsIntConstant());
7673     return static_cast<uint32_t>(mask->AsIntConstant()->GetValue());
7674   }
7675 
7676   bool IsClonable() const override { return true; }
7677   bool CanBeMoved() const override { return true; }
7678 
7679   bool InstructionDataEquals(const HInstruction* other) const override {
7680     DCHECK(other->IsInstanceOf() || other->IsCheckCast()) << other->DebugName();
7681     return GetPackedFields() == down_cast<const HTypeCheckInstruction*>(other)->GetPackedFields();
7682   }
7683 
7684   bool MustDoNullCheck() const { return GetPackedFlag<kFlagMustDoNullCheck>(); }
7685   void ClearMustDoNullCheck() { SetPackedFlag<kFlagMustDoNullCheck>(false); }
7686   TypeCheckKind GetTypeCheckKind() const { return GetPackedField<TypeCheckKindField>(); }
7687   bool IsExactCheck() const { return GetTypeCheckKind() == TypeCheckKind::kExactCheck; }
7688 
7689   ReferenceTypeInfo GetTargetClassRTI() {
7690     if (GetPackedFlag<kFlagValidTargetClassRTI>()) {
7691       // Note: The is_exact flag from the return value should not be used.
7692       return ReferenceTypeInfo::CreateUnchecked(klass_, /* is_exact= */ true);
7693     } else {
7694       return ReferenceTypeInfo::CreateInvalid();
7695     }
7696   }
7697 
7698   // Target class RTI is marked as valid by RTP if the klass_ is admissible.
7699   void SetValidTargetClassRTI() {
7700     DCHECK(klass_ != nullptr);
7701     SetPackedFlag<kFlagValidTargetClassRTI>(true);
7702   }
7703 
7704   Handle<mirror::Class> GetClass() const {
7705     return klass_;
7706   }
7707 
7708  protected:
7709   DEFAULT_COPY_CONSTRUCTOR(TypeCheckInstruction);
7710 
7711  private:
7712   static constexpr size_t kFieldTypeCheckKind = kNumberOfGenericPackedBits;
7713   static constexpr size_t kFieldTypeCheckKindSize =
7714       MinimumBitsToStore(static_cast<size_t>(TypeCheckKind::kLast));
7715   static constexpr size_t kFlagMustDoNullCheck = kFieldTypeCheckKind + kFieldTypeCheckKindSize;
7716   static constexpr size_t kFlagValidTargetClassRTI = kFlagMustDoNullCheck + 1;
7717   static constexpr size_t kNumberOfInstanceOfPackedBits = kFlagValidTargetClassRTI + 1;
7718   static_assert(kNumberOfInstanceOfPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
7719   using TypeCheckKindField = BitField<TypeCheckKind, kFieldTypeCheckKind, kFieldTypeCheckKindSize>;
7720 
7721   Handle<mirror::Class> klass_;
7722 };
7723 
7724 class HInstanceOf final : public HTypeCheckInstruction {
7725  public:
7726   HInstanceOf(HInstruction* object,
7727               HInstruction* target_class_or_null,
7728               TypeCheckKind check_kind,
7729               Handle<mirror::Class> klass,
7730               uint32_t dex_pc,
7731               ArenaAllocator* allocator,
7732               HIntConstant* bitstring_path_to_root,
7733               HIntConstant* bitstring_mask)
7734       : HTypeCheckInstruction(kInstanceOf,
7735                               DataType::Type::kBool,
7736                               object,
7737                               target_class_or_null,
7738                               check_kind,
7739                               klass,
7740                               dex_pc,
7741                               allocator,
7742                               bitstring_path_to_root,
7743                               bitstring_mask,
7744                               SideEffectsForArchRuntimeCalls(check_kind)) {}
7745 
7746   bool IsClonable() const override { return true; }
7747 
7748   bool NeedsEnvironment() const override {
7749     return CanCallRuntime(GetTypeCheckKind());
7750   }
7751 
7752   static bool CanCallRuntime(TypeCheckKind check_kind) {
7753     // TODO: Re-evaluate now that mips codegen has been removed.
7754     return check_kind != TypeCheckKind::kExactCheck;
7755   }
7756 
7757   static SideEffects SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind) {
7758     return CanCallRuntime(check_kind) ? SideEffects::CanTriggerGC() : SideEffects::None();
7759   }
7760 
7761   DECLARE_INSTRUCTION(InstanceOf);
7762 
7763  protected:
7764   DEFAULT_COPY_CONSTRUCTOR(InstanceOf);
7765 };
7766 
7767 class HBoundType final : public HExpression<1> {
7768  public:
7769   explicit HBoundType(HInstruction* input, uint32_t dex_pc = kNoDexPc)
7770       : HExpression(kBoundType, DataType::Type::kReference, SideEffects::None(), dex_pc),
7771         upper_bound_(ReferenceTypeInfo::CreateInvalid()) {
7772     SetPackedFlag<kFlagUpperCanBeNull>(true);
7773     SetPackedFlag<kFlagCanBeNull>(true);
7774     DCHECK_EQ(input->GetType(), DataType::Type::kReference);
7775     SetRawInputAt(0, input);
7776   }
7777 
7778   bool InstructionDataEquals(const HInstruction* other) const override;
7779   bool IsClonable() const override { return true; }
7780 
7781   // {Get,Set}Upper* should only be used in reference type propagation.
7782   const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; }
7783   bool GetUpperCanBeNull() const { return GetPackedFlag<kFlagUpperCanBeNull>(); }
7784   void SetUpperBound(const ReferenceTypeInfo& upper_bound, bool can_be_null);
7785 
7786   void SetCanBeNull(bool can_be_null) {
7787     DCHECK(GetUpperCanBeNull() || !can_be_null);
7788     SetPackedFlag<kFlagCanBeNull>(can_be_null);
7789   }
7790 
7791   bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); }
7792 
7793   DECLARE_INSTRUCTION(BoundType);
7794 
7795  protected:
7796   DEFAULT_COPY_CONSTRUCTOR(BoundType);
7797 
7798  private:
7799   // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this
7800   // is false then CanBeNull() cannot be true).
7801   static constexpr size_t kFlagUpperCanBeNull = kNumberOfGenericPackedBits;
7802   static constexpr size_t kFlagCanBeNull = kFlagUpperCanBeNull + 1;
7803   static constexpr size_t kNumberOfBoundTypePackedBits = kFlagCanBeNull + 1;
7804   static_assert(kNumberOfBoundTypePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
7805 
7806   // Encodes the most upper class that this instruction can have. In other words
7807   // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()).
7808   // It is used to bound the type in cases like:
7809   //   if (x instanceof ClassX) {
7810   //     // uper_bound_ will be ClassX
7811   //   }
7812   ReferenceTypeInfo upper_bound_;
7813 };
7814 
7815 class HCheckCast final : public HTypeCheckInstruction {
7816  public:
7817   HCheckCast(HInstruction* object,
7818              HInstruction* target_class_or_null,
7819              TypeCheckKind check_kind,
7820              Handle<mirror::Class> klass,
7821              uint32_t dex_pc,
7822              ArenaAllocator* allocator,
7823              HIntConstant* bitstring_path_to_root,
7824              HIntConstant* bitstring_mask)
7825       : HTypeCheckInstruction(kCheckCast,
7826                               DataType::Type::kVoid,
7827                               object,
7828                               target_class_or_null,
7829                               check_kind,
7830                               klass,
7831                               dex_pc,
7832                               allocator,
7833                               bitstring_path_to_root,
7834                               bitstring_mask,
7835                               SideEffects::CanTriggerGC()) {}
7836 
7837   bool IsClonable() const override { return true; }
7838   bool NeedsEnvironment() const override {
7839     // Instruction may throw a CheckCastError.
7840     return true;
7841   }
7842 
7843   bool CanThrow() const override { return true; }
7844 
7845   DECLARE_INSTRUCTION(CheckCast);
7846 
7847  protected:
7848   DEFAULT_COPY_CONSTRUCTOR(CheckCast);
7849 };
7850 
7851 /**
7852  * @brief Memory barrier types (see "The JSR-133 Cookbook for Compiler Writers").
7853  * @details We define the combined barrier types that are actually required
7854  * by the Java Memory Model, rather than using exactly the terminology from
7855  * the JSR-133 cookbook.  These should, in many cases, be replaced by acquire/release
7856  * primitives.  Note that the JSR-133 cookbook generally does not deal with
7857  * store atomicity issues, and the recipes there are not always entirely sufficient.
7858  * The current recipe is as follows:
7859  * -# Use AnyStore ~= (LoadStore | StoreStore) ~= release barrier before volatile store.
7860  * -# Use AnyAny barrier after volatile store.  (StoreLoad is as expensive.)
7861  * -# Use LoadAny barrier ~= (LoadLoad | LoadStore) ~= acquire barrier after each volatile load.
7862  * -# Use StoreStore barrier after all stores but before return from any constructor whose
7863  *    class has final fields.
7864  * -# Use NTStoreStore to order non-temporal stores with respect to all later
7865  *    store-to-memory instructions.  Only generated together with non-temporal stores.
7866  */
7867 enum MemBarrierKind {
7868   kAnyStore,
7869   kLoadAny,
7870   kStoreStore,
7871   kAnyAny,
7872   kNTStoreStore,
7873   kLastBarrierKind = kNTStoreStore
7874 };
7875 std::ostream& operator<<(std::ostream& os, MemBarrierKind kind);
7876 
7877 class HMemoryBarrier final : public HExpression<0> {
7878  public:
7879   explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc)
7880       : HExpression(kMemoryBarrier,
7881                     SideEffects::AllWritesAndReads(),  // Assume write/read on all fields/arrays.
7882                     dex_pc) {
7883     SetPackedField<BarrierKindField>(barrier_kind);
7884   }
7885 
7886   bool IsClonable() const override { return true; }
7887 
7888   MemBarrierKind GetBarrierKind() { return GetPackedField<BarrierKindField>(); }
7889 
7890   DECLARE_INSTRUCTION(MemoryBarrier);
7891 
7892  protected:
7893   DEFAULT_COPY_CONSTRUCTOR(MemoryBarrier);
7894 
7895  private:
7896   static constexpr size_t kFieldBarrierKind = HInstruction::kNumberOfGenericPackedBits;
7897   static constexpr size_t kFieldBarrierKindSize =
7898       MinimumBitsToStore(static_cast<size_t>(kLastBarrierKind));
7899   static constexpr size_t kNumberOfMemoryBarrierPackedBits =
7900       kFieldBarrierKind + kFieldBarrierKindSize;
7901   static_assert(kNumberOfMemoryBarrierPackedBits <= kMaxNumberOfPackedBits,
7902                 "Too many packed fields.");
7903   using BarrierKindField = BitField<MemBarrierKind, kFieldBarrierKind, kFieldBarrierKindSize>;
7904 };
7905 
7906 // A constructor fence orders all prior stores to fields that could be accessed via a final field of
7907 // the specified object(s), with respect to any subsequent store that might "publish"
7908 // (i.e. make visible) the specified object to another thread.
7909 //
7910 // JLS 17.5.1 "Semantics of final fields" states that a freeze action happens
7911 // for all final fields (that were set) at the end of the invoked constructor.
7912 //
7913 // The constructor fence models the freeze actions for the final fields of an object
7914 // being constructed (semantically at the end of the constructor). Constructor fences
7915 // have a per-object affinity; two separate objects being constructed get two separate
7916 // constructor fences.
7917 //
7918 // (Note: that if calling a super-constructor or forwarding to another constructor,
7919 // the freezes would happen at the end of *that* constructor being invoked).
7920 //
7921 // The memory model guarantees that when the object being constructed is "published" after
7922 // constructor completion (i.e. escapes the current thread via a store), then any final field
7923 // writes must be observable on other threads (once they observe that publication).
7924 //
7925 // Further, anything written before the freeze, and read by dereferencing through the final field,
7926 // must also be visible (so final object field could itself have an object with non-final fields;
7927 // yet the freeze must also extend to them).
7928 //
7929 // Constructor example:
7930 //
7931 //     class HasFinal {
7932 //        final int field;                              Optimizing IR for <init>()V:
7933 //        HasFinal() {
7934 //          field = 123;                                HInstanceFieldSet(this, HasFinal.field, 123)
7935 //          // freeze(this.field);                      HConstructorFence(this)
7936 //        }                                             HReturn
7937 //     }
7938 //
7939 // HConstructorFence can serve double duty as a fence for new-instance/new-array allocations of
7940 // already-initialized classes; in that case the allocation must act as a "default-initializer"
7941 // of the object which effectively writes the class pointer "final field".
7942 //
7943 // For example, we can model default-initialiation as roughly the equivalent of the following:
7944 //
7945 //     class Object {
7946 //       private final Class header;
7947 //     }
7948 //
7949 //  Java code:                                           Optimizing IR:
7950 //
7951 //     T new_instance<T>() {
7952 //       Object obj = allocate_memory(T.class.size);     obj = HInvoke(art_quick_alloc_object, T)
7953 //       obj.header = T.class;                           // header write is done by above call.
7954 //       // freeze(obj.header)                           HConstructorFence(obj)
7955 //       return (T)obj;
7956 //     }
7957 //
7958 // See also:
7959 // * DexCompilationUnit::RequiresConstructorBarrier
7960 // * QuasiAtomic::ThreadFenceForConstructor
7961 //
7962 class HConstructorFence final : public HVariableInputSizeInstruction {
7963                                   // A fence has variable inputs because the inputs can be removed
7964                                   // after prepare_for_register_allocation phase.
7965                                   // (TODO: In the future a fence could freeze multiple objects
7966                                   //        after merging two fences together.)
7967  public:
7968   // `fence_object` is the reference that needs to be protected for correct publication.
7969   //
7970   // It makes sense in the following situations:
7971   // * <init> constructors, it's the "this" parameter (i.e. HParameterValue, s.t. IsThis() == true).
7972   // * new-instance-like instructions, it's the return value (i.e. HNewInstance).
7973   //
7974   // After construction the `fence_object` becomes the 0th input.
7975   // This is not an input in a real sense, but just a convenient place to stash the information
7976   // about the associated object.
7977   HConstructorFence(HInstruction* fence_object,
7978                     uint32_t dex_pc,
7979                     ArenaAllocator* allocator)
7980     // We strongly suspect there is not a more accurate way to describe the fine-grained reordering
7981     // constraints described in the class header. We claim that these SideEffects constraints
7982     // enforce a superset of the real constraints.
7983     //
7984     // The ordering described above is conservatively modeled with SideEffects as follows:
7985     //
7986     // * To prevent reordering of the publication stores:
7987     // ----> "Reads of objects" is the initial SideEffect.
7988     // * For every primitive final field store in the constructor:
7989     // ----> Union that field's type as a read (e.g. "Read of T") into the SideEffect.
7990     // * If there are any stores to reference final fields in the constructor:
7991     // ----> Use a more conservative "AllReads" SideEffect because any stores to any references
7992     //       that are reachable from `fence_object` also need to be prevented for reordering
7993     //       (and we do not want to do alias analysis to figure out what those stores are).
7994     //
7995     // In the implementation, this initially starts out as an "all reads" side effect; this is an
7996     // even more conservative approach than the one described above, and prevents all of the
7997     // above reordering without analyzing any of the instructions in the constructor.
7998     //
7999     // If in a later phase we discover that there are no writes to reference final fields,
8000     // we can refine the side effect to a smaller set of type reads (see above constraints).
8001       : HVariableInputSizeInstruction(kConstructorFence,
8002                                       SideEffects::AllReads(),
8003                                       dex_pc,
8004                                       allocator,
8005                                       /* number_of_inputs= */ 1,
8006                                       kArenaAllocConstructorFenceInputs) {
8007     DCHECK(fence_object != nullptr);
8008     SetRawInputAt(0, fence_object);
8009   }
8010 
8011   // The object associated with this constructor fence.
8012   //
8013   // (Note: This will be null after the prepare_for_register_allocation phase,
8014   // as all constructor fence inputs are removed there).
8015   HInstruction* GetFenceObject() const {
8016     return InputAt(0);
8017   }
8018 
8019   // Find all the HConstructorFence uses (`fence_use`) for `this` and:
8020   // - Delete `fence_use` from `this`'s use list.
8021   // - Delete `this` from `fence_use`'s inputs list.
8022   // - If the `fence_use` is dead, remove it from the graph.
8023   //
8024   // A fence is considered dead once it no longer has any uses
8025   // and all of the inputs are dead.
8026   //
8027   // This must *not* be called during/after prepare_for_register_allocation,
8028   // because that removes all the inputs to the fences but the fence is actually
8029   // still considered live.
8030   //
8031   // Returns how many HConstructorFence instructions were removed from graph.
8032   static size_t RemoveConstructorFences(HInstruction* instruction);
8033 
8034   // Combine all inputs of `this` and `other` instruction and remove
8035   // `other` from the graph.
8036   //
8037   // Inputs are unique after the merge.
8038   //
8039   // Requirement: `this` must not be the same as `other.
8040   void Merge(HConstructorFence* other);
8041 
8042   // Check if this constructor fence is protecting
8043   // an HNewInstance or HNewArray that is also the immediate
8044   // predecessor of `this`.
8045   //
8046   // If `ignore_inputs` is true, then the immediate predecessor doesn't need
8047   // to be one of the inputs of `this`.
8048   //
8049   // Returns the associated HNewArray or HNewInstance,
8050   // or null otherwise.
8051   HInstruction* GetAssociatedAllocation(bool ignore_inputs = false);
8052 
8053   DECLARE_INSTRUCTION(ConstructorFence);
8054 
8055  protected:
8056   DEFAULT_COPY_CONSTRUCTOR(ConstructorFence);
8057 };
8058 
8059 class HMonitorOperation final : public HExpression<1> {
8060  public:
8061   enum class OperationKind {
8062     kEnter,
8063     kExit,
8064     kLast = kExit
8065   };
8066 
8067   HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
8068     : HExpression(kMonitorOperation,
8069                   SideEffects::AllExceptGCDependency(),  // Assume write/read on all fields/arrays.
8070                   dex_pc) {
8071     SetPackedField<OperationKindField>(kind);
8072     SetRawInputAt(0, object);
8073   }
8074 
8075   // Instruction may go into runtime, so we need an environment.
8076   bool NeedsEnvironment() const override { return true; }
8077 
8078   bool CanThrow() const override {
8079     // Verifier guarantees that monitor-exit cannot throw.
8080     // This is important because it allows the HGraphBuilder to remove
8081     // a dead throw-catch loop generated for `synchronized` blocks/methods.
8082     return IsEnter();
8083   }
8084 
8085   OperationKind GetOperationKind() const { return GetPackedField<OperationKindField>(); }
8086   bool IsEnter() const { return GetOperationKind() == OperationKind::kEnter; }
8087 
8088   DECLARE_INSTRUCTION(MonitorOperation);
8089 
8090  protected:
8091   DEFAULT_COPY_CONSTRUCTOR(MonitorOperation);
8092 
8093  private:
8094   static constexpr size_t kFieldOperationKind = HInstruction::kNumberOfGenericPackedBits;
8095   static constexpr size_t kFieldOperationKindSize =
8096       MinimumBitsToStore(static_cast<size_t>(OperationKind::kLast));
8097   static constexpr size_t kNumberOfMonitorOperationPackedBits =
8098       kFieldOperationKind + kFieldOperationKindSize;
8099   static_assert(kNumberOfMonitorOperationPackedBits <= HInstruction::kMaxNumberOfPackedBits,
8100                 "Too many packed fields.");
8101   using OperationKindField = BitField<OperationKind, kFieldOperationKind, kFieldOperationKindSize>;
8102 };
8103 
8104 class HSelect final : public HExpression<3> {
8105  public:
8106   HSelect(HInstruction* condition,
8107           HInstruction* true_value,
8108           HInstruction* false_value,
8109           uint32_t dex_pc)
8110       : HExpression(kSelect, HPhi::ToPhiType(true_value->GetType()), SideEffects::None(), dex_pc) {
8111     DCHECK_EQ(HPhi::ToPhiType(true_value->GetType()), HPhi::ToPhiType(false_value->GetType()));
8112 
8113     // First input must be `true_value` or `false_value` to allow codegens to
8114     // use the SameAsFirstInput allocation policy. We make it `false_value`, so
8115     // that architectures which implement HSelect as a conditional move also
8116     // will not need to invert the condition.
8117     SetRawInputAt(0, false_value);
8118     SetRawInputAt(1, true_value);
8119     SetRawInputAt(2, condition);
8120   }
8121 
8122   bool IsClonable() const override { return true; }
8123   HInstruction* GetFalseValue() const { return InputAt(0); }
8124   HInstruction* GetTrueValue() const { return InputAt(1); }
8125   HInstruction* GetCondition() const { return InputAt(2); }
8126 
8127   bool CanBeMoved() const override { return true; }
8128   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
8129     return true;
8130   }
8131 
8132   bool CanBeNull() const override {
8133     return GetTrueValue()->CanBeNull() || GetFalseValue()->CanBeNull();
8134   }
8135 
8136   DECLARE_INSTRUCTION(Select);
8137 
8138  protected:
8139   DEFAULT_COPY_CONSTRUCTOR(Select);
8140 };
8141 
8142 class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> {
8143  public:
8144   MoveOperands(Location source,
8145                Location destination,
8146                DataType::Type type,
8147                HInstruction* instruction)
8148       : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
8149 
8150   Location GetSource() const { return source_; }
8151   Location GetDestination() const { return destination_; }
8152 
8153   void SetSource(Location value) { source_ = value; }
8154   void SetDestination(Location value) { destination_ = value; }
8155 
8156   // The parallel move resolver marks moves as "in-progress" by clearing the
8157   // destination (but not the source).
8158   Location MarkPending() {
8159     DCHECK(!IsPending());
8160     Location dest = destination_;
8161     destination_ = Location::NoLocation();
8162     return dest;
8163   }
8164 
8165   void ClearPending(Location dest) {
8166     DCHECK(IsPending());
8167     destination_ = dest;
8168   }
8169 
8170   bool IsPending() const {
8171     DCHECK(source_.IsValid() || destination_.IsInvalid());
8172     return destination_.IsInvalid() && source_.IsValid();
8173   }
8174 
8175   // True if this blocks a move from the given location.
8176   bool Blocks(Location loc) const {
8177     return !IsEliminated() && source_.OverlapsWith(loc);
8178   }
8179 
8180   // A move is redundant if it's been eliminated, if its source and
8181   // destination are the same, or if its destination is unneeded.
8182   bool IsRedundant() const {
8183     return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
8184   }
8185 
8186   // We clear both operands to indicate move that's been eliminated.
8187   void Eliminate() {
8188     source_ = destination_ = Location::NoLocation();
8189   }
8190 
8191   bool IsEliminated() const {
8192     DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
8193     return source_.IsInvalid();
8194   }
8195 
8196   DataType::Type GetType() const { return type_; }
8197 
8198   bool Is64BitMove() const {
8199     return DataType::Is64BitType(type_);
8200   }
8201 
8202   HInstruction* GetInstruction() const { return instruction_; }
8203 
8204  private:
8205   Location source_;
8206   Location destination_;
8207   // The type this move is for.
8208   DataType::Type type_;
8209   // The instruction this move is assocatied with. Null when this move is
8210   // for moving an input in the expected locations of user (including a phi user).
8211   // This is only used in debug mode, to ensure we do not connect interval siblings
8212   // in the same parallel move.
8213   HInstruction* instruction_;
8214 };
8215 
8216 std::ostream& operator<<(std::ostream& os, const MoveOperands& rhs);
8217 
8218 static constexpr size_t kDefaultNumberOfMoves = 4;
8219 
8220 class HParallelMove final : public HExpression<0> {
8221  public:
8222   explicit HParallelMove(ArenaAllocator* allocator, uint32_t dex_pc = kNoDexPc)
8223       : HExpression(kParallelMove, SideEffects::None(), dex_pc),
8224         moves_(allocator->Adapter(kArenaAllocMoveOperands)) {
8225     moves_.reserve(kDefaultNumberOfMoves);
8226   }
8227 
8228   void AddMove(Location source,
8229                Location destination,
8230                DataType::Type type,
8231                HInstruction* instruction) {
8232     DCHECK(source.IsValid());
8233     DCHECK(destination.IsValid());
8234     if (kIsDebugBuild) {
8235       if (instruction != nullptr) {
8236         for (const MoveOperands& move : moves_) {
8237           if (move.GetInstruction() == instruction) {
8238             // Special case the situation where the move is for the spill slot
8239             // of the instruction.
8240             if ((GetPrevious() == instruction)
8241                 || ((GetPrevious() == nullptr)
8242                     && instruction->IsPhi()
8243                     && instruction->GetBlock() == GetBlock())) {
8244               DCHECK_NE(destination.GetKind(), move.GetDestination().GetKind())
8245                   << "Doing parallel moves for the same instruction.";
8246             } else {
8247               DCHECK(false) << "Doing parallel moves for the same instruction.";
8248             }
8249           }
8250         }
8251       }
8252       for (const MoveOperands& move : moves_) {
8253         DCHECK(!destination.OverlapsWith(move.GetDestination()))
8254             << "Overlapped destination for two moves in a parallel move: "
8255             << move.GetSource() << " ==> " << move.GetDestination() << " and "
8256             << source << " ==> " << destination << " for " << SafePrint(instruction);
8257       }
8258     }
8259     moves_.emplace_back(source, destination, type, instruction);
8260   }
8261 
8262   MoveOperands* MoveOperandsAt(size_t index) {
8263     return &moves_[index];
8264   }
8265 
8266   size_t NumMoves() const { return moves_.size(); }
8267 
8268   DECLARE_INSTRUCTION(ParallelMove);
8269 
8270  protected:
8271   DEFAULT_COPY_CONSTRUCTOR(ParallelMove);
8272 
8273  private:
8274   ArenaVector<MoveOperands> moves_;
8275 };
8276 
8277 // This instruction computes an intermediate address pointing in the 'middle' of an object. The
8278 // result pointer cannot be handled by GC, so extra care is taken to make sure that this value is
8279 // never used across anything that can trigger GC.
8280 // The result of this instruction is not a pointer in the sense of `DataType::Type::kreference`.
8281 // So we represent it by the type `DataType::Type::kInt`.
8282 class HIntermediateAddress final : public HExpression<2> {
8283  public:
8284   HIntermediateAddress(HInstruction* base_address, HInstruction* offset, uint32_t dex_pc)
8285       : HExpression(kIntermediateAddress,
8286                     DataType::Type::kInt32,
8287                     SideEffects::DependsOnGC(),
8288                     dex_pc) {
8289         DCHECK_EQ(DataType::Size(DataType::Type::kInt32),
8290                   DataType::Size(DataType::Type::kReference))
8291             << "kPrimInt and kPrimNot have different sizes.";
8292     SetRawInputAt(0, base_address);
8293     SetRawInputAt(1, offset);
8294   }
8295 
8296   bool IsClonable() const override { return true; }
8297   bool CanBeMoved() const override { return true; }
8298   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
8299     return true;
8300   }
8301   bool IsActualObject() const override { return false; }
8302 
8303   HInstruction* GetBaseAddress() const { return InputAt(0); }
8304   HInstruction* GetOffset() const { return InputAt(1); }
8305 
8306   DECLARE_INSTRUCTION(IntermediateAddress);
8307 
8308  protected:
8309   DEFAULT_COPY_CONSTRUCTOR(IntermediateAddress);
8310 };
8311 
8312 
8313 }  // namespace art
8314 
8315 #include "nodes_vector.h"
8316 
8317 #if defined(ART_ENABLE_CODEGEN_arm) || defined(ART_ENABLE_CODEGEN_arm64)
8318 #include "nodes_shared.h"
8319 #endif
8320 #if defined(ART_ENABLE_CODEGEN_x86) || defined(ART_ENABLE_CODEGEN_x86_64)
8321 #include "nodes_x86.h"
8322 #endif
8323 
8324 namespace art {
8325 
8326 class OptimizingCompilerStats;
8327 
8328 class HGraphVisitor : public ValueObject {
8329  public:
8330   explicit HGraphVisitor(HGraph* graph, OptimizingCompilerStats* stats = nullptr)
8331       : stats_(stats),
8332         graph_(graph) {}
8333   virtual ~HGraphVisitor() {}
8334 
8335   virtual void VisitInstruction(HInstruction* instruction ATTRIBUTE_UNUSED) {}
8336   virtual void VisitBasicBlock(HBasicBlock* block);
8337 
8338   // Visit the graph following basic block insertion order.
8339   void VisitInsertionOrder();
8340 
8341   // Visit the graph following dominator tree reverse post-order.
8342   void VisitReversePostOrder();
8343 
8344   HGraph* GetGraph() const { return graph_; }
8345 
8346   // Visit functions for instruction classes.
8347 #define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
8348   virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
8349 
8350   FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
8351 
8352 #undef DECLARE_VISIT_INSTRUCTION
8353 
8354  protected:
8355   OptimizingCompilerStats* stats_;
8356 
8357  private:
8358   HGraph* const graph_;
8359 
8360   DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
8361 };
8362 
8363 class HGraphDelegateVisitor : public HGraphVisitor {
8364  public:
8365   explicit HGraphDelegateVisitor(HGraph* graph, OptimizingCompilerStats* stats = nullptr)
8366       : HGraphVisitor(graph, stats) {}
8367   virtual ~HGraphDelegateVisitor() {}
8368 
8369   // Visit functions that delegate to to super class.
8370 #define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
8371   void Visit##name(H##name* instr) override { Visit##super(instr); }
8372 
8373   FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
8374 
8375 #undef DECLARE_VISIT_INSTRUCTION
8376 
8377  private:
8378   DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
8379 };
8380 
8381 // Create a clone of the instruction, insert it into the graph; replace the old one with a new
8382 // and remove the old instruction.
8383 HInstruction* ReplaceInstrOrPhiByClone(HInstruction* instr);
8384 
8385 // Create a clone for each clonable instructions/phis and replace the original with the clone.
8386 //
8387 // Used for testing individual instruction cloner.
8388 class CloneAndReplaceInstructionVisitor : public HGraphDelegateVisitor {
8389  public:
8390   explicit CloneAndReplaceInstructionVisitor(HGraph* graph)
8391       : HGraphDelegateVisitor(graph), instr_replaced_by_clones_count_(0) {}
8392 
8393   void VisitInstruction(HInstruction* instruction) override {
8394     if (instruction->IsClonable()) {
8395       ReplaceInstrOrPhiByClone(instruction);
8396       instr_replaced_by_clones_count_++;
8397     }
8398   }
8399 
8400   size_t GetInstrReplacedByClonesCount() const { return instr_replaced_by_clones_count_; }
8401 
8402  private:
8403   size_t instr_replaced_by_clones_count_;
8404 
8405   DISALLOW_COPY_AND_ASSIGN(CloneAndReplaceInstructionVisitor);
8406 };
8407 
8408 // Iterator over the blocks that art part of the loop. Includes blocks part
8409 // of an inner loop. The order in which the blocks are iterated is on their
8410 // block id.
8411 class HBlocksInLoopIterator : public ValueObject {
8412  public:
8413   explicit HBlocksInLoopIterator(const HLoopInformation& info)
8414       : blocks_in_loop_(info.GetBlocks()),
8415         blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
8416         index_(0) {
8417     if (!blocks_in_loop_.IsBitSet(index_)) {
8418       Advance();
8419     }
8420   }
8421 
8422   bool Done() const { return index_ == blocks_.size(); }
8423   HBasicBlock* Current() const { return blocks_[index_]; }
8424   void Advance() {
8425     ++index_;
8426     for (size_t e = blocks_.size(); index_ < e; ++index_) {
8427       if (blocks_in_loop_.IsBitSet(index_)) {
8428         break;
8429       }
8430     }
8431   }
8432 
8433  private:
8434   const BitVector& blocks_in_loop_;
8435   const ArenaVector<HBasicBlock*>& blocks_;
8436   size_t index_;
8437 
8438   DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
8439 };
8440 
8441 // Iterator over the blocks that art part of the loop. Includes blocks part
8442 // of an inner loop. The order in which the blocks are iterated is reverse
8443 // post order.
8444 class HBlocksInLoopReversePostOrderIterator : public ValueObject {
8445  public:
8446   explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info)
8447       : blocks_in_loop_(info.GetBlocks()),
8448         blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()),
8449         index_(0) {
8450     if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
8451       Advance();
8452     }
8453   }
8454 
8455   bool Done() const { return index_ == blocks_.size(); }
8456   HBasicBlock* Current() const { return blocks_[index_]; }
8457   void Advance() {
8458     ++index_;
8459     for (size_t e = blocks_.size(); index_ < e; ++index_) {
8460       if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
8461         break;
8462       }
8463     }
8464   }
8465 
8466  private:
8467   const BitVector& blocks_in_loop_;
8468   const ArenaVector<HBasicBlock*>& blocks_;
8469   size_t index_;
8470 
8471   DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator);
8472 };
8473 
8474 // Returns int64_t value of a properly typed constant.
8475 inline int64_t Int64FromConstant(HConstant* constant) {
8476   if (constant->IsIntConstant()) {
8477     return constant->AsIntConstant()->GetValue();
8478   } else if (constant->IsLongConstant()) {
8479     return constant->AsLongConstant()->GetValue();
8480   } else {
8481     DCHECK(constant->IsNullConstant()) << constant->DebugName();
8482     return 0;
8483   }
8484 }
8485 
8486 // Returns true iff instruction is an integral constant (and sets value on success).
8487 inline bool IsInt64AndGet(HInstruction* instruction, /*out*/ int64_t* value) {
8488   if (instruction->IsIntConstant()) {
8489     *value = instruction->AsIntConstant()->GetValue();
8490     return true;
8491   } else if (instruction->IsLongConstant()) {
8492     *value = instruction->AsLongConstant()->GetValue();
8493     return true;
8494   } else if (instruction->IsNullConstant()) {
8495     *value = 0;
8496     return true;
8497   }
8498   return false;
8499 }
8500 
8501 // Returns true iff instruction is the given integral constant.
8502 inline bool IsInt64Value(HInstruction* instruction, int64_t value) {
8503   int64_t val = 0;
8504   return IsInt64AndGet(instruction, &val) && val == value;
8505 }
8506 
8507 // Returns true iff instruction is a zero bit pattern.
8508 inline bool IsZeroBitPattern(HInstruction* instruction) {
8509   return instruction->IsConstant() && instruction->AsConstant()->IsZeroBitPattern();
8510 }
8511 
8512 // Implement HInstruction::Is##type() for concrete instructions.
8513 #define INSTRUCTION_TYPE_CHECK(type, super)                                    \
8514   inline bool HInstruction::Is##type() const { return GetKind() == k##type; }
8515   FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
8516 #undef INSTRUCTION_TYPE_CHECK
8517 
8518 // Implement HInstruction::Is##type() for abstract instructions.
8519 #define INSTRUCTION_TYPE_CHECK_RESULT(type, super)                             \
8520   std::is_base_of<BaseType, H##type>::value,
8521 #define INSTRUCTION_TYPE_CHECK(type, super)                                    \
8522   inline bool HInstruction::Is##type() const {                                 \
8523     DCHECK_LT(GetKind(), kLastInstructionKind);                                \
8524     using BaseType = H##type;                                                  \
8525     static constexpr bool results[] = {                                        \
8526         FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK_RESULT)           \
8527     };                                                                         \
8528     return results[static_cast<size_t>(GetKind())];                            \
8529   }
8530 
8531   FOR_EACH_ABSTRACT_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
8532 #undef INSTRUCTION_TYPE_CHECK
8533 #undef INSTRUCTION_TYPE_CHECK_RESULT
8534 
8535 #define INSTRUCTION_TYPE_CAST(type, super)                                     \
8536   inline const H##type* HInstruction::As##type() const {                       \
8537     return Is##type() ? down_cast<const H##type*>(this) : nullptr;             \
8538   }                                                                            \
8539   inline H##type* HInstruction::As##type() {                                   \
8540     return Is##type() ? static_cast<H##type*>(this) : nullptr;                 \
8541   }
8542 
8543   FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CAST)
8544 #undef INSTRUCTION_TYPE_CAST
8545 
8546 
8547 // Create space in `blocks` for adding `number_of_new_blocks` entries
8548 // starting at location `at`. Blocks after `at` are moved accordingly.
8549 inline void MakeRoomFor(ArenaVector<HBasicBlock*>* blocks,
8550                         size_t number_of_new_blocks,
8551                         size_t after) {
8552   DCHECK_LT(after, blocks->size());
8553   size_t old_size = blocks->size();
8554   size_t new_size = old_size + number_of_new_blocks;
8555   blocks->resize(new_size);
8556   std::copy_backward(blocks->begin() + after + 1u, blocks->begin() + old_size, blocks->end());
8557 }
8558 
8559 /*
8560  * Hunt "under the hood" of array lengths (leading to array references),
8561  * null checks (also leading to array references), and new arrays
8562  * (leading to the actual length). This makes it more likely related
8563  * instructions become actually comparable.
8564  */
8565 inline HInstruction* HuntForDeclaration(HInstruction* instruction) {
8566   while (instruction->IsArrayLength() ||
8567          instruction->IsNullCheck() ||
8568          instruction->IsNewArray()) {
8569     instruction = instruction->IsNewArray()
8570         ? instruction->AsNewArray()->GetLength()
8571         : instruction->InputAt(0);
8572   }
8573   return instruction;
8574 }
8575 
8576 inline bool IsAddOrSub(const HInstruction* instruction) {
8577   return instruction->IsAdd() || instruction->IsSub();
8578 }
8579 
8580 void RemoveEnvironmentUses(HInstruction* instruction);
8581 bool HasEnvironmentUsedByOthers(HInstruction* instruction);
8582 void ResetEnvironmentInputRecords(HInstruction* instruction);
8583 
8584 // Detects an instruction that is >= 0. As long as the value is carried by
8585 // a single instruction, arithmetic wrap-around cannot occur.
8586 bool IsGEZero(HInstruction* instruction);
8587 
8588 }  // namespace art
8589 
8590 #endif  // ART_COMPILER_OPTIMIZING_NODES_H_
8591