• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements interprocedural passes which walk the
11 /// call-graph deducing and/or propagating function attributes.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/FunctionAttrs.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/SCCIterator.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/BasicAliasAnalysis.h"
26 #include "llvm/Analysis/CGSCCPassManager.h"
27 #include "llvm/Analysis/CallGraph.h"
28 #include "llvm/Analysis/CallGraphSCCPass.h"
29 #include "llvm/Analysis/CaptureTracking.h"
30 #include "llvm/Analysis/LazyCallGraph.h"
31 #include "llvm/Analysis/MemoryBuiltins.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Argument.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/InstIterator.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Metadata.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Use.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/InitializePasses.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/IPO.h"
60 #include <cassert>
61 #include <iterator>
62 #include <map>
63 #include <vector>
64 
65 using namespace llvm;
66 
67 #define DEBUG_TYPE "function-attrs"
68 
69 STATISTIC(NumReadNone, "Number of functions marked readnone");
70 STATISTIC(NumReadOnly, "Number of functions marked readonly");
71 STATISTIC(NumWriteOnly, "Number of functions marked writeonly");
72 STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
73 STATISTIC(NumReturned, "Number of arguments marked returned");
74 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone");
75 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly");
76 STATISTIC(NumNoAlias, "Number of function returns marked noalias");
77 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull");
78 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse");
79 STATISTIC(NumNoUnwind, "Number of functions marked as nounwind");
80 STATISTIC(NumNoFree, "Number of functions marked as nofree");
81 
82 static cl::opt<bool> EnableNonnullArgPropagation(
83     "enable-nonnull-arg-prop", cl::init(true), cl::Hidden,
84     cl::desc("Try to propagate nonnull argument attributes from callsites to "
85              "caller functions."));
86 
87 static cl::opt<bool> DisableNoUnwindInference(
88     "disable-nounwind-inference", cl::Hidden,
89     cl::desc("Stop inferring nounwind attribute during function-attrs pass"));
90 
91 static cl::opt<bool> DisableNoFreeInference(
92     "disable-nofree-inference", cl::Hidden,
93     cl::desc("Stop inferring nofree attribute during function-attrs pass"));
94 
95 namespace {
96 
97 using SCCNodeSet = SmallSetVector<Function *, 8>;
98 
99 } // end anonymous namespace
100 
101 /// Returns the memory access attribute for function F using AAR for AA results,
102 /// where SCCNodes is the current SCC.
103 ///
104 /// If ThisBody is true, this function may examine the function body and will
105 /// return a result pertaining to this copy of the function. If it is false, the
106 /// result will be based only on AA results for the function declaration; it
107 /// will be assumed that some other (perhaps less optimized) version of the
108 /// function may be selected at link time.
checkFunctionMemoryAccess(Function & F,bool ThisBody,AAResults & AAR,const SCCNodeSet & SCCNodes)109 static MemoryAccessKind checkFunctionMemoryAccess(Function &F, bool ThisBody,
110                                                   AAResults &AAR,
111                                                   const SCCNodeSet &SCCNodes) {
112   FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F);
113   if (MRB == FMRB_DoesNotAccessMemory)
114     // Already perfect!
115     return MAK_ReadNone;
116 
117   if (!ThisBody) {
118     if (AliasAnalysis::onlyReadsMemory(MRB))
119       return MAK_ReadOnly;
120 
121     if (AliasAnalysis::doesNotReadMemory(MRB))
122       return MAK_WriteOnly;
123 
124     // Conservatively assume it reads and writes to memory.
125     return MAK_MayWrite;
126   }
127 
128   // Scan the function body for instructions that may read or write memory.
129   bool ReadsMemory = false;
130   bool WritesMemory = false;
131   for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
132     Instruction *I = &*II;
133 
134     // Some instructions can be ignored even if they read or write memory.
135     // Detect these now, skipping to the next instruction if one is found.
136     if (auto *Call = dyn_cast<CallBase>(I)) {
137       // Ignore calls to functions in the same SCC, as long as the call sites
138       // don't have operand bundles.  Calls with operand bundles are allowed to
139       // have memory effects not described by the memory effects of the call
140       // target.
141       if (!Call->hasOperandBundles() && Call->getCalledFunction() &&
142           SCCNodes.count(Call->getCalledFunction()))
143         continue;
144       FunctionModRefBehavior MRB = AAR.getModRefBehavior(Call);
145       ModRefInfo MRI = createModRefInfo(MRB);
146 
147       // If the call doesn't access memory, we're done.
148       if (isNoModRef(MRI))
149         continue;
150 
151       if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) {
152         // The call could access any memory. If that includes writes, note it.
153         if (isModSet(MRI))
154           WritesMemory = true;
155         // If it reads, note it.
156         if (isRefSet(MRI))
157           ReadsMemory = true;
158         continue;
159       }
160 
161       // Check whether all pointer arguments point to local memory, and
162       // ignore calls that only access local memory.
163       for (auto CI = Call->arg_begin(), CE = Call->arg_end(); CI != CE; ++CI) {
164         Value *Arg = *CI;
165         if (!Arg->getType()->isPtrOrPtrVectorTy())
166           continue;
167 
168         AAMDNodes AAInfo;
169         I->getAAMetadata(AAInfo);
170         MemoryLocation Loc = MemoryLocation::getBeforeOrAfter(Arg, AAInfo);
171 
172         // Skip accesses to local or constant memory as they don't impact the
173         // externally visible mod/ref behavior.
174         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
175           continue;
176 
177         if (isModSet(MRI))
178           // Writes non-local memory.
179           WritesMemory = true;
180         if (isRefSet(MRI))
181           // Ok, it reads non-local memory.
182           ReadsMemory = true;
183       }
184       continue;
185     } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
186       // Ignore non-volatile loads from local memory. (Atomic is okay here.)
187       if (!LI->isVolatile()) {
188         MemoryLocation Loc = MemoryLocation::get(LI);
189         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
190           continue;
191       }
192     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
193       // Ignore non-volatile stores to local memory. (Atomic is okay here.)
194       if (!SI->isVolatile()) {
195         MemoryLocation Loc = MemoryLocation::get(SI);
196         if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
197           continue;
198       }
199     } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
200       // Ignore vaargs on local memory.
201       MemoryLocation Loc = MemoryLocation::get(VI);
202       if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
203         continue;
204     }
205 
206     // Any remaining instructions need to be taken seriously!  Check if they
207     // read or write memory.
208     //
209     // Writes memory, remember that.
210     WritesMemory |= I->mayWriteToMemory();
211 
212     // If this instruction may read memory, remember that.
213     ReadsMemory |= I->mayReadFromMemory();
214   }
215 
216   if (WritesMemory) {
217     if (!ReadsMemory)
218       return MAK_WriteOnly;
219     else
220       return MAK_MayWrite;
221   }
222 
223   return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone;
224 }
225 
computeFunctionBodyMemoryAccess(Function & F,AAResults & AAR)226 MemoryAccessKind llvm::computeFunctionBodyMemoryAccess(Function &F,
227                                                        AAResults &AAR) {
228   return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {});
229 }
230 
231 /// Deduce readonly/readnone attributes for the SCC.
232 template <typename AARGetterT>
addReadAttrs(const SCCNodeSet & SCCNodes,AARGetterT && AARGetter)233 static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter) {
234   // Check if any of the functions in the SCC read or write memory.  If they
235   // write memory then they can't be marked readnone or readonly.
236   bool ReadsMemory = false;
237   bool WritesMemory = false;
238   for (Function *F : SCCNodes) {
239     // Call the callable parameter to look up AA results for this function.
240     AAResults &AAR = AARGetter(*F);
241 
242     // Non-exact function definitions may not be selected at link time, and an
243     // alternative version that writes to memory may be selected.  See the
244     // comment on GlobalValue::isDefinitionExact for more details.
245     switch (checkFunctionMemoryAccess(*F, F->hasExactDefinition(),
246                                       AAR, SCCNodes)) {
247     case MAK_MayWrite:
248       return false;
249     case MAK_ReadOnly:
250       ReadsMemory = true;
251       break;
252     case MAK_WriteOnly:
253       WritesMemory = true;
254       break;
255     case MAK_ReadNone:
256       // Nothing to do!
257       break;
258     }
259   }
260 
261   // If the SCC contains both functions that read and functions that write, then
262   // we cannot add readonly attributes.
263   if (ReadsMemory && WritesMemory)
264     return false;
265 
266   // Success!  Functions in this SCC do not access memory, or only read memory.
267   // Give them the appropriate attribute.
268   bool MadeChange = false;
269 
270   for (Function *F : SCCNodes) {
271     if (F->doesNotAccessMemory())
272       // Already perfect!
273       continue;
274 
275     if (F->onlyReadsMemory() && ReadsMemory)
276       // No change.
277       continue;
278 
279     if (F->doesNotReadMemory() && WritesMemory)
280       continue;
281 
282     MadeChange = true;
283 
284     // Clear out any existing attributes.
285     AttrBuilder AttrsToRemove;
286     AttrsToRemove.addAttribute(Attribute::ReadOnly);
287     AttrsToRemove.addAttribute(Attribute::ReadNone);
288     AttrsToRemove.addAttribute(Attribute::WriteOnly);
289 
290     if (!WritesMemory && !ReadsMemory) {
291       // Clear out any "access range attributes" if readnone was deduced.
292       AttrsToRemove.addAttribute(Attribute::ArgMemOnly);
293       AttrsToRemove.addAttribute(Attribute::InaccessibleMemOnly);
294       AttrsToRemove.addAttribute(Attribute::InaccessibleMemOrArgMemOnly);
295     }
296     F->removeAttributes(AttributeList::FunctionIndex, AttrsToRemove);
297 
298     // Add in the new attribute.
299     if (WritesMemory && !ReadsMemory)
300       F->addFnAttr(Attribute::WriteOnly);
301     else
302       F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);
303 
304     if (WritesMemory && !ReadsMemory)
305       ++NumWriteOnly;
306     else if (ReadsMemory)
307       ++NumReadOnly;
308     else
309       ++NumReadNone;
310   }
311 
312   return MadeChange;
313 }
314 
315 namespace {
316 
317 /// For a given pointer Argument, this retains a list of Arguments of functions
318 /// in the same SCC that the pointer data flows into. We use this to build an
319 /// SCC of the arguments.
320 struct ArgumentGraphNode {
321   Argument *Definition;
322   SmallVector<ArgumentGraphNode *, 4> Uses;
323 };
324 
325 class ArgumentGraph {
326   // We store pointers to ArgumentGraphNode objects, so it's important that
327   // that they not move around upon insert.
328   using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>;
329 
330   ArgumentMapTy ArgumentMap;
331 
332   // There is no root node for the argument graph, in fact:
333   //   void f(int *x, int *y) { if (...) f(x, y); }
334   // is an example where the graph is disconnected. The SCCIterator requires a
335   // single entry point, so we maintain a fake ("synthetic") root node that
336   // uses every node. Because the graph is directed and nothing points into
337   // the root, it will not participate in any SCCs (except for its own).
338   ArgumentGraphNode SyntheticRoot;
339 
340 public:
ArgumentGraph()341   ArgumentGraph() { SyntheticRoot.Definition = nullptr; }
342 
343   using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator;
344 
begin()345   iterator begin() { return SyntheticRoot.Uses.begin(); }
end()346   iterator end() { return SyntheticRoot.Uses.end(); }
getEntryNode()347   ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }
348 
operator [](Argument * A)349   ArgumentGraphNode *operator[](Argument *A) {
350     ArgumentGraphNode &Node = ArgumentMap[A];
351     Node.Definition = A;
352     SyntheticRoot.Uses.push_back(&Node);
353     return &Node;
354   }
355 };
356 
357 /// This tracker checks whether callees are in the SCC, and if so it does not
358 /// consider that a capture, instead adding it to the "Uses" list and
359 /// continuing with the analysis.
360 struct ArgumentUsesTracker : public CaptureTracker {
ArgumentUsesTracker__anon0331d7500211::ArgumentUsesTracker361   ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {}
362 
tooManyUses__anon0331d7500211::ArgumentUsesTracker363   void tooManyUses() override { Captured = true; }
364 
captured__anon0331d7500211::ArgumentUsesTracker365   bool captured(const Use *U) override {
366     CallBase *CB = dyn_cast<CallBase>(U->getUser());
367     if (!CB) {
368       Captured = true;
369       return true;
370     }
371 
372     Function *F = CB->getCalledFunction();
373     if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) {
374       Captured = true;
375       return true;
376     }
377 
378     // Note: the callee and the two successor blocks *follow* the argument
379     // operands.  This means there is no need to adjust UseIndex to account for
380     // these.
381 
382     unsigned UseIndex =
383         std::distance(const_cast<const Use *>(CB->arg_begin()), U);
384 
385     assert(UseIndex < CB->data_operands_size() &&
386            "Indirect function calls should have been filtered above!");
387 
388     if (UseIndex >= CB->getNumArgOperands()) {
389       // Data operand, but not a argument operand -- must be a bundle operand
390       assert(CB->hasOperandBundles() && "Must be!");
391 
392       // CaptureTracking told us that we're being captured by an operand bundle
393       // use.  In this case it does not matter if the callee is within our SCC
394       // or not -- we've been captured in some unknown way, and we have to be
395       // conservative.
396       Captured = true;
397       return true;
398     }
399 
400     if (UseIndex >= F->arg_size()) {
401       assert(F->isVarArg() && "More params than args in non-varargs call");
402       Captured = true;
403       return true;
404     }
405 
406     Uses.push_back(&*std::next(F->arg_begin(), UseIndex));
407     return false;
408   }
409 
410   // True only if certainly captured (used outside our SCC).
411   bool Captured = false;
412 
413   // Uses within our SCC.
414   SmallVector<Argument *, 4> Uses;
415 
416   const SCCNodeSet &SCCNodes;
417 };
418 
419 } // end anonymous namespace
420 
421 namespace llvm {
422 
423 template <> struct GraphTraits<ArgumentGraphNode *> {
424   using NodeRef = ArgumentGraphNode *;
425   using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator;
426 
getEntryNodellvm::GraphTraits427   static NodeRef getEntryNode(NodeRef A) { return A; }
child_beginllvm::GraphTraits428   static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); }
child_endllvm::GraphTraits429   static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); }
430 };
431 
432 template <>
433 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> {
getEntryNodellvm::GraphTraits434   static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); }
435 
nodes_beginllvm::GraphTraits436   static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
437     return AG->begin();
438   }
439 
nodes_endllvm::GraphTraits440   static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); }
441 };
442 
443 } // end namespace llvm
444 
445 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
446 static Attribute::AttrKind
determinePointerReadAttrs(Argument * A,const SmallPtrSet<Argument *,8> & SCCNodes)447 determinePointerReadAttrs(Argument *A,
448                           const SmallPtrSet<Argument *, 8> &SCCNodes) {
449   SmallVector<Use *, 32> Worklist;
450   SmallPtrSet<Use *, 32> Visited;
451 
452   // inalloca arguments are always clobbered by the call.
453   if (A->hasInAllocaAttr() || A->hasPreallocatedAttr())
454     return Attribute::None;
455 
456   bool IsRead = false;
457   // We don't need to track IsWritten. If A is written to, return immediately.
458 
459   for (Use &U : A->uses()) {
460     Visited.insert(&U);
461     Worklist.push_back(&U);
462   }
463 
464   while (!Worklist.empty()) {
465     Use *U = Worklist.pop_back_val();
466     Instruction *I = cast<Instruction>(U->getUser());
467 
468     switch (I->getOpcode()) {
469     case Instruction::BitCast:
470     case Instruction::GetElementPtr:
471     case Instruction::PHI:
472     case Instruction::Select:
473     case Instruction::AddrSpaceCast:
474       // The original value is not read/written via this if the new value isn't.
475       for (Use &UU : I->uses())
476         if (Visited.insert(&UU).second)
477           Worklist.push_back(&UU);
478       break;
479 
480     case Instruction::Call:
481     case Instruction::Invoke: {
482       bool Captures = true;
483 
484       if (I->getType()->isVoidTy())
485         Captures = false;
486 
487       auto AddUsersToWorklistIfCapturing = [&] {
488         if (Captures)
489           for (Use &UU : I->uses())
490             if (Visited.insert(&UU).second)
491               Worklist.push_back(&UU);
492       };
493 
494       CallBase &CB = cast<CallBase>(*I);
495       if (CB.doesNotAccessMemory()) {
496         AddUsersToWorklistIfCapturing();
497         continue;
498       }
499 
500       Function *F = CB.getCalledFunction();
501       if (!F) {
502         if (CB.onlyReadsMemory()) {
503           IsRead = true;
504           AddUsersToWorklistIfCapturing();
505           continue;
506         }
507         return Attribute::None;
508       }
509 
510       // Note: the callee and the two successor blocks *follow* the argument
511       // operands.  This means there is no need to adjust UseIndex to account
512       // for these.
513 
514       unsigned UseIndex = std::distance(CB.arg_begin(), U);
515 
516       // U cannot be the callee operand use: since we're exploring the
517       // transitive uses of an Argument, having such a use be a callee would
518       // imply the call site is an indirect call or invoke; and we'd take the
519       // early exit above.
520       assert(UseIndex < CB.data_operands_size() &&
521              "Data operand use expected!");
522 
523       bool IsOperandBundleUse = UseIndex >= CB.getNumArgOperands();
524 
525       if (UseIndex >= F->arg_size() && !IsOperandBundleUse) {
526         assert(F->isVarArg() && "More params than args in non-varargs call");
527         return Attribute::None;
528       }
529 
530       Captures &= !CB.doesNotCapture(UseIndex);
531 
532       // Since the optimizer (by design) cannot see the data flow corresponding
533       // to a operand bundle use, these cannot participate in the optimistic SCC
534       // analysis.  Instead, we model the operand bundle uses as arguments in
535       // call to a function external to the SCC.
536       if (IsOperandBundleUse ||
537           !SCCNodes.count(&*std::next(F->arg_begin(), UseIndex))) {
538 
539         // The accessors used on call site here do the right thing for calls and
540         // invokes with operand bundles.
541 
542         if (!CB.onlyReadsMemory() && !CB.onlyReadsMemory(UseIndex))
543           return Attribute::None;
544         if (!CB.doesNotAccessMemory(UseIndex))
545           IsRead = true;
546       }
547 
548       AddUsersToWorklistIfCapturing();
549       break;
550     }
551 
552     case Instruction::Load:
553       // A volatile load has side effects beyond what readonly can be relied
554       // upon.
555       if (cast<LoadInst>(I)->isVolatile())
556         return Attribute::None;
557 
558       IsRead = true;
559       break;
560 
561     case Instruction::ICmp:
562     case Instruction::Ret:
563       break;
564 
565     default:
566       return Attribute::None;
567     }
568   }
569 
570   return IsRead ? Attribute::ReadOnly : Attribute::ReadNone;
571 }
572 
573 /// Deduce returned attributes for the SCC.
addArgumentReturnedAttrs(const SCCNodeSet & SCCNodes)574 static bool addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes) {
575   bool Changed = false;
576 
577   // Check each function in turn, determining if an argument is always returned.
578   for (Function *F : SCCNodes) {
579     // We can infer and propagate function attributes only when we know that the
580     // definition we'll get at link time is *exactly* the definition we see now.
581     // For more details, see GlobalValue::mayBeDerefined.
582     if (!F->hasExactDefinition())
583       continue;
584 
585     if (F->getReturnType()->isVoidTy())
586       continue;
587 
588     // There is nothing to do if an argument is already marked as 'returned'.
589     if (llvm::any_of(F->args(),
590                      [](const Argument &Arg) { return Arg.hasReturnedAttr(); }))
591       continue;
592 
593     auto FindRetArg = [&]() -> Value * {
594       Value *RetArg = nullptr;
595       for (BasicBlock &BB : *F)
596         if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) {
597           // Note that stripPointerCasts should look through functions with
598           // returned arguments.
599           Value *RetVal = Ret->getReturnValue()->stripPointerCasts();
600           if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType())
601             return nullptr;
602 
603           if (!RetArg)
604             RetArg = RetVal;
605           else if (RetArg != RetVal)
606             return nullptr;
607         }
608 
609       return RetArg;
610     };
611 
612     if (Value *RetArg = FindRetArg()) {
613       auto *A = cast<Argument>(RetArg);
614       A->addAttr(Attribute::Returned);
615       ++NumReturned;
616       Changed = true;
617     }
618   }
619 
620   return Changed;
621 }
622 
623 /// If a callsite has arguments that are also arguments to the parent function,
624 /// try to propagate attributes from the callsite's arguments to the parent's
625 /// arguments. This may be important because inlining can cause information loss
626 /// when attribute knowledge disappears with the inlined call.
addArgumentAttrsFromCallsites(Function & F)627 static bool addArgumentAttrsFromCallsites(Function &F) {
628   if (!EnableNonnullArgPropagation)
629     return false;
630 
631   bool Changed = false;
632 
633   // For an argument attribute to transfer from a callsite to the parent, the
634   // call must be guaranteed to execute every time the parent is called.
635   // Conservatively, just check for calls in the entry block that are guaranteed
636   // to execute.
637   // TODO: This could be enhanced by testing if the callsite post-dominates the
638   // entry block or by doing simple forward walks or backward walks to the
639   // callsite.
640   BasicBlock &Entry = F.getEntryBlock();
641   for (Instruction &I : Entry) {
642     if (auto *CB = dyn_cast<CallBase>(&I)) {
643       if (auto *CalledFunc = CB->getCalledFunction()) {
644         for (auto &CSArg : CalledFunc->args()) {
645           if (!CSArg.hasNonNullAttr())
646             continue;
647 
648           // If the non-null callsite argument operand is an argument to 'F'
649           // (the caller) and the call is guaranteed to execute, then the value
650           // must be non-null throughout 'F'.
651           auto *FArg = dyn_cast<Argument>(CB->getArgOperand(CSArg.getArgNo()));
652           if (FArg && !FArg->hasNonNullAttr()) {
653             FArg->addAttr(Attribute::NonNull);
654             Changed = true;
655           }
656         }
657       }
658     }
659     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
660       break;
661   }
662 
663   return Changed;
664 }
665 
addReadAttr(Argument * A,Attribute::AttrKind R)666 static bool addReadAttr(Argument *A, Attribute::AttrKind R) {
667   assert((R == Attribute::ReadOnly || R == Attribute::ReadNone)
668          && "Must be a Read attribute.");
669   assert(A && "Argument must not be null.");
670 
671   // If the argument already has the attribute, nothing needs to be done.
672   if (A->hasAttribute(R))
673       return false;
674 
675   // Otherwise, remove potentially conflicting attribute, add the new one,
676   // and update statistics.
677   A->removeAttr(Attribute::WriteOnly);
678   A->removeAttr(Attribute::ReadOnly);
679   A->removeAttr(Attribute::ReadNone);
680   A->addAttr(R);
681   R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
682   return true;
683 }
684 
685 /// Deduce nocapture attributes for the SCC.
addArgumentAttrs(const SCCNodeSet & SCCNodes)686 static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) {
687   bool Changed = false;
688 
689   ArgumentGraph AG;
690 
691   // Check each function in turn, determining which pointer arguments are not
692   // captured.
693   for (Function *F : SCCNodes) {
694     // We can infer and propagate function attributes only when we know that the
695     // definition we'll get at link time is *exactly* the definition we see now.
696     // For more details, see GlobalValue::mayBeDerefined.
697     if (!F->hasExactDefinition())
698       continue;
699 
700     Changed |= addArgumentAttrsFromCallsites(*F);
701 
702     // Functions that are readonly (or readnone) and nounwind and don't return
703     // a value can't capture arguments. Don't analyze them.
704     if (F->onlyReadsMemory() && F->doesNotThrow() &&
705         F->getReturnType()->isVoidTy()) {
706       for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
707            ++A) {
708         if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
709           A->addAttr(Attribute::NoCapture);
710           ++NumNoCapture;
711           Changed = true;
712         }
713       }
714       continue;
715     }
716 
717     for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
718          ++A) {
719       if (!A->getType()->isPointerTy())
720         continue;
721       bool HasNonLocalUses = false;
722       if (!A->hasNoCaptureAttr()) {
723         ArgumentUsesTracker Tracker(SCCNodes);
724         PointerMayBeCaptured(&*A, &Tracker);
725         if (!Tracker.Captured) {
726           if (Tracker.Uses.empty()) {
727             // If it's trivially not captured, mark it nocapture now.
728             A->addAttr(Attribute::NoCapture);
729             ++NumNoCapture;
730             Changed = true;
731           } else {
732             // If it's not trivially captured and not trivially not captured,
733             // then it must be calling into another function in our SCC. Save
734             // its particulars for Argument-SCC analysis later.
735             ArgumentGraphNode *Node = AG[&*A];
736             for (Argument *Use : Tracker.Uses) {
737               Node->Uses.push_back(AG[Use]);
738               if (Use != &*A)
739                 HasNonLocalUses = true;
740             }
741           }
742         }
743         // Otherwise, it's captured. Don't bother doing SCC analysis on it.
744       }
745       if (!HasNonLocalUses && !A->onlyReadsMemory()) {
746         // Can we determine that it's readonly/readnone without doing an SCC?
747         // Note that we don't allow any calls at all here, or else our result
748         // will be dependent on the iteration order through the functions in the
749         // SCC.
750         SmallPtrSet<Argument *, 8> Self;
751         Self.insert(&*A);
752         Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self);
753         if (R != Attribute::None)
754           Changed = addReadAttr(A, R);
755       }
756     }
757   }
758 
759   // The graph we've collected is partial because we stopped scanning for
760   // argument uses once we solved the argument trivially. These partial nodes
761   // show up as ArgumentGraphNode objects with an empty Uses list, and for
762   // these nodes the final decision about whether they capture has already been
763   // made.  If the definition doesn't have a 'nocapture' attribute by now, it
764   // captures.
765 
766   for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) {
767     const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I;
768     if (ArgumentSCC.size() == 1) {
769       if (!ArgumentSCC[0]->Definition)
770         continue; // synthetic root node
771 
772       // eg. "void f(int* x) { if (...) f(x); }"
773       if (ArgumentSCC[0]->Uses.size() == 1 &&
774           ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
775         Argument *A = ArgumentSCC[0]->Definition;
776         A->addAttr(Attribute::NoCapture);
777         ++NumNoCapture;
778         Changed = true;
779       }
780       continue;
781     }
782 
783     bool SCCCaptured = false;
784     for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
785          I != E && !SCCCaptured; ++I) {
786       ArgumentGraphNode *Node = *I;
787       if (Node->Uses.empty()) {
788         if (!Node->Definition->hasNoCaptureAttr())
789           SCCCaptured = true;
790       }
791     }
792     if (SCCCaptured)
793       continue;
794 
795     SmallPtrSet<Argument *, 8> ArgumentSCCNodes;
796     // Fill ArgumentSCCNodes with the elements of the ArgumentSCC.  Used for
797     // quickly looking up whether a given Argument is in this ArgumentSCC.
798     for (ArgumentGraphNode *I : ArgumentSCC) {
799       ArgumentSCCNodes.insert(I->Definition);
800     }
801 
802     for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
803          I != E && !SCCCaptured; ++I) {
804       ArgumentGraphNode *N = *I;
805       for (ArgumentGraphNode *Use : N->Uses) {
806         Argument *A = Use->Definition;
807         if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
808           continue;
809         SCCCaptured = true;
810         break;
811       }
812     }
813     if (SCCCaptured)
814       continue;
815 
816     for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
817       Argument *A = ArgumentSCC[i]->Definition;
818       A->addAttr(Attribute::NoCapture);
819       ++NumNoCapture;
820       Changed = true;
821     }
822 
823     // We also want to compute readonly/readnone. With a small number of false
824     // negatives, we can assume that any pointer which is captured isn't going
825     // to be provably readonly or readnone, since by definition we can't
826     // analyze all uses of a captured pointer.
827     //
828     // The false negatives happen when the pointer is captured by a function
829     // that promises readonly/readnone behaviour on the pointer, then the
830     // pointer's lifetime ends before anything that writes to arbitrary memory.
831     // Also, a readonly/readnone pointer may be returned, but returning a
832     // pointer is capturing it.
833 
834     Attribute::AttrKind ReadAttr = Attribute::ReadNone;
835     for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
836       Argument *A = ArgumentSCC[i]->Definition;
837       Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes);
838       if (K == Attribute::ReadNone)
839         continue;
840       if (K == Attribute::ReadOnly) {
841         ReadAttr = Attribute::ReadOnly;
842         continue;
843       }
844       ReadAttr = K;
845       break;
846     }
847 
848     if (ReadAttr != Attribute::None) {
849       for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
850         Argument *A = ArgumentSCC[i]->Definition;
851         Changed = addReadAttr(A, ReadAttr);
852       }
853     }
854   }
855 
856   return Changed;
857 }
858 
859 /// Tests whether a function is "malloc-like".
860 ///
861 /// A function is "malloc-like" if it returns either null or a pointer that
862 /// doesn't alias any other pointer visible to the caller.
isFunctionMallocLike(Function * F,const SCCNodeSet & SCCNodes)863 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) {
864   SmallSetVector<Value *, 8> FlowsToReturn;
865   for (BasicBlock &BB : *F)
866     if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
867       FlowsToReturn.insert(Ret->getReturnValue());
868 
869   for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
870     Value *RetVal = FlowsToReturn[i];
871 
872     if (Constant *C = dyn_cast<Constant>(RetVal)) {
873       if (!C->isNullValue() && !isa<UndefValue>(C))
874         return false;
875 
876       continue;
877     }
878 
879     if (isa<Argument>(RetVal))
880       return false;
881 
882     if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
883       switch (RVI->getOpcode()) {
884       // Extend the analysis by looking upwards.
885       case Instruction::BitCast:
886       case Instruction::GetElementPtr:
887       case Instruction::AddrSpaceCast:
888         FlowsToReturn.insert(RVI->getOperand(0));
889         continue;
890       case Instruction::Select: {
891         SelectInst *SI = cast<SelectInst>(RVI);
892         FlowsToReturn.insert(SI->getTrueValue());
893         FlowsToReturn.insert(SI->getFalseValue());
894         continue;
895       }
896       case Instruction::PHI: {
897         PHINode *PN = cast<PHINode>(RVI);
898         for (Value *IncValue : PN->incoming_values())
899           FlowsToReturn.insert(IncValue);
900         continue;
901       }
902 
903       // Check whether the pointer came from an allocation.
904       case Instruction::Alloca:
905         break;
906       case Instruction::Call:
907       case Instruction::Invoke: {
908         CallBase &CB = cast<CallBase>(*RVI);
909         if (CB.hasRetAttr(Attribute::NoAlias))
910           break;
911         if (CB.getCalledFunction() && SCCNodes.count(CB.getCalledFunction()))
912           break;
913         LLVM_FALLTHROUGH;
914       }
915       default:
916         return false; // Did not come from an allocation.
917       }
918 
919     if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
920       return false;
921   }
922 
923   return true;
924 }
925 
926 /// Deduce noalias attributes for the SCC.
addNoAliasAttrs(const SCCNodeSet & SCCNodes)927 static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) {
928   // Check each function in turn, determining which functions return noalias
929   // pointers.
930   for (Function *F : SCCNodes) {
931     // Already noalias.
932     if (F->returnDoesNotAlias())
933       continue;
934 
935     // We can infer and propagate function attributes only when we know that the
936     // definition we'll get at link time is *exactly* the definition we see now.
937     // For more details, see GlobalValue::mayBeDerefined.
938     if (!F->hasExactDefinition())
939       return false;
940 
941     // We annotate noalias return values, which are only applicable to
942     // pointer types.
943     if (!F->getReturnType()->isPointerTy())
944       continue;
945 
946     if (!isFunctionMallocLike(F, SCCNodes))
947       return false;
948   }
949 
950   bool MadeChange = false;
951   for (Function *F : SCCNodes) {
952     if (F->returnDoesNotAlias() ||
953         !F->getReturnType()->isPointerTy())
954       continue;
955 
956     F->setReturnDoesNotAlias();
957     ++NumNoAlias;
958     MadeChange = true;
959   }
960 
961   return MadeChange;
962 }
963 
964 /// Tests whether this function is known to not return null.
965 ///
966 /// Requires that the function returns a pointer.
967 ///
968 /// Returns true if it believes the function will not return a null, and sets
969 /// \p Speculative based on whether the returned conclusion is a speculative
970 /// conclusion due to SCC calls.
isReturnNonNull(Function * F,const SCCNodeSet & SCCNodes,bool & Speculative)971 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes,
972                             bool &Speculative) {
973   assert(F->getReturnType()->isPointerTy() &&
974          "nonnull only meaningful on pointer types");
975   Speculative = false;
976 
977   SmallSetVector<Value *, 8> FlowsToReturn;
978   for (BasicBlock &BB : *F)
979     if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
980       FlowsToReturn.insert(Ret->getReturnValue());
981 
982   auto &DL = F->getParent()->getDataLayout();
983 
984   for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
985     Value *RetVal = FlowsToReturn[i];
986 
987     // If this value is locally known to be non-null, we're good
988     if (isKnownNonZero(RetVal, DL))
989       continue;
990 
991     // Otherwise, we need to look upwards since we can't make any local
992     // conclusions.
993     Instruction *RVI = dyn_cast<Instruction>(RetVal);
994     if (!RVI)
995       return false;
996     switch (RVI->getOpcode()) {
997     // Extend the analysis by looking upwards.
998     case Instruction::BitCast:
999     case Instruction::GetElementPtr:
1000     case Instruction::AddrSpaceCast:
1001       FlowsToReturn.insert(RVI->getOperand(0));
1002       continue;
1003     case Instruction::Select: {
1004       SelectInst *SI = cast<SelectInst>(RVI);
1005       FlowsToReturn.insert(SI->getTrueValue());
1006       FlowsToReturn.insert(SI->getFalseValue());
1007       continue;
1008     }
1009     case Instruction::PHI: {
1010       PHINode *PN = cast<PHINode>(RVI);
1011       for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1012         FlowsToReturn.insert(PN->getIncomingValue(i));
1013       continue;
1014     }
1015     case Instruction::Call:
1016     case Instruction::Invoke: {
1017       CallBase &CB = cast<CallBase>(*RVI);
1018       Function *Callee = CB.getCalledFunction();
1019       // A call to a node within the SCC is assumed to return null until
1020       // proven otherwise
1021       if (Callee && SCCNodes.count(Callee)) {
1022         Speculative = true;
1023         continue;
1024       }
1025       return false;
1026     }
1027     default:
1028       return false; // Unknown source, may be null
1029     };
1030     llvm_unreachable("should have either continued or returned");
1031   }
1032 
1033   return true;
1034 }
1035 
1036 /// Deduce nonnull attributes for the SCC.
addNonNullAttrs(const SCCNodeSet & SCCNodes)1037 static bool addNonNullAttrs(const SCCNodeSet &SCCNodes) {
1038   // Speculative that all functions in the SCC return only nonnull
1039   // pointers.  We may refute this as we analyze functions.
1040   bool SCCReturnsNonNull = true;
1041 
1042   bool MadeChange = false;
1043 
1044   // Check each function in turn, determining which functions return nonnull
1045   // pointers.
1046   for (Function *F : SCCNodes) {
1047     // Already nonnull.
1048     if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1049                                         Attribute::NonNull))
1050       continue;
1051 
1052     // We can infer and propagate function attributes only when we know that the
1053     // definition we'll get at link time is *exactly* the definition we see now.
1054     // For more details, see GlobalValue::mayBeDerefined.
1055     if (!F->hasExactDefinition())
1056       return false;
1057 
1058     // We annotate nonnull return values, which are only applicable to
1059     // pointer types.
1060     if (!F->getReturnType()->isPointerTy())
1061       continue;
1062 
1063     bool Speculative = false;
1064     if (isReturnNonNull(F, SCCNodes, Speculative)) {
1065       if (!Speculative) {
1066         // Mark the function eagerly since we may discover a function
1067         // which prevents us from speculating about the entire SCC
1068         LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName()
1069                           << " as nonnull\n");
1070         F->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
1071         ++NumNonNullReturn;
1072         MadeChange = true;
1073       }
1074       continue;
1075     }
1076     // At least one function returns something which could be null, can't
1077     // speculate any more.
1078     SCCReturnsNonNull = false;
1079   }
1080 
1081   if (SCCReturnsNonNull) {
1082     for (Function *F : SCCNodes) {
1083       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1084                                           Attribute::NonNull) ||
1085           !F->getReturnType()->isPointerTy())
1086         continue;
1087 
1088       LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n");
1089       F->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
1090       ++NumNonNullReturn;
1091       MadeChange = true;
1092     }
1093   }
1094 
1095   return MadeChange;
1096 }
1097 
1098 namespace {
1099 
1100 /// Collects a set of attribute inference requests and performs them all in one
1101 /// go on a single SCC Node. Inference involves scanning function bodies
1102 /// looking for instructions that violate attribute assumptions.
1103 /// As soon as all the bodies are fine we are free to set the attribute.
1104 /// Customization of inference for individual attributes is performed by
1105 /// providing a handful of predicates for each attribute.
1106 class AttributeInferer {
1107 public:
1108   /// Describes a request for inference of a single attribute.
1109   struct InferenceDescriptor {
1110 
1111     /// Returns true if this function does not have to be handled.
1112     /// General intent for this predicate is to provide an optimization
1113     /// for functions that do not need this attribute inference at all
1114     /// (say, for functions that already have the attribute).
1115     std::function<bool(const Function &)> SkipFunction;
1116 
1117     /// Returns true if this instruction violates attribute assumptions.
1118     std::function<bool(Instruction &)> InstrBreaksAttribute;
1119 
1120     /// Sets the inferred attribute for this function.
1121     std::function<void(Function &)> SetAttribute;
1122 
1123     /// Attribute we derive.
1124     Attribute::AttrKind AKind;
1125 
1126     /// If true, only "exact" definitions can be used to infer this attribute.
1127     /// See GlobalValue::isDefinitionExact.
1128     bool RequiresExactDefinition;
1129 
InferenceDescriptor__anon0331d7500611::AttributeInferer::InferenceDescriptor1130     InferenceDescriptor(Attribute::AttrKind AK,
1131                         std::function<bool(const Function &)> SkipFunc,
1132                         std::function<bool(Instruction &)> InstrScan,
1133                         std::function<void(Function &)> SetAttr,
1134                         bool ReqExactDef)
1135         : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan),
1136           SetAttribute(SetAttr), AKind(AK),
1137           RequiresExactDefinition(ReqExactDef) {}
1138   };
1139 
1140 private:
1141   SmallVector<InferenceDescriptor, 4> InferenceDescriptors;
1142 
1143 public:
registerAttrInference(InferenceDescriptor AttrInference)1144   void registerAttrInference(InferenceDescriptor AttrInference) {
1145     InferenceDescriptors.push_back(AttrInference);
1146   }
1147 
1148   bool run(const SCCNodeSet &SCCNodes);
1149 };
1150 
1151 /// Perform all the requested attribute inference actions according to the
1152 /// attribute predicates stored before.
run(const SCCNodeSet & SCCNodes)1153 bool AttributeInferer::run(const SCCNodeSet &SCCNodes) {
1154   SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors;
1155   // Go through all the functions in SCC and check corresponding attribute
1156   // assumptions for each of them. Attributes that are invalid for this SCC
1157   // will be removed from InferInSCC.
1158   for (Function *F : SCCNodes) {
1159 
1160     // No attributes whose assumptions are still valid - done.
1161     if (InferInSCC.empty())
1162       return false;
1163 
1164     // Check if our attributes ever need scanning/can be scanned.
1165     llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) {
1166       if (ID.SkipFunction(*F))
1167         return false;
1168 
1169       // Remove from further inference (invalidate) when visiting a function
1170       // that has no instructions to scan/has an unsuitable definition.
1171       return F->isDeclaration() ||
1172              (ID.RequiresExactDefinition && !F->hasExactDefinition());
1173     });
1174 
1175     // For each attribute still in InferInSCC that doesn't explicitly skip F,
1176     // set up the F instructions scan to verify assumptions of the attribute.
1177     SmallVector<InferenceDescriptor, 4> InferInThisFunc;
1178     llvm::copy_if(
1179         InferInSCC, std::back_inserter(InferInThisFunc),
1180         [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); });
1181 
1182     if (InferInThisFunc.empty())
1183       continue;
1184 
1185     // Start instruction scan.
1186     for (Instruction &I : instructions(*F)) {
1187       llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) {
1188         if (!ID.InstrBreaksAttribute(I))
1189           return false;
1190         // Remove attribute from further inference on any other functions
1191         // because attribute assumptions have just been violated.
1192         llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) {
1193           return D.AKind == ID.AKind;
1194         });
1195         // Remove attribute from the rest of current instruction scan.
1196         return true;
1197       });
1198 
1199       if (InferInThisFunc.empty())
1200         break;
1201     }
1202   }
1203 
1204   if (InferInSCC.empty())
1205     return false;
1206 
1207   bool Changed = false;
1208   for (Function *F : SCCNodes)
1209     // At this point InferInSCC contains only functions that were either:
1210     //   - explicitly skipped from scan/inference, or
1211     //   - verified to have no instructions that break attribute assumptions.
1212     // Hence we just go and force the attribute for all non-skipped functions.
1213     for (auto &ID : InferInSCC) {
1214       if (ID.SkipFunction(*F))
1215         continue;
1216       Changed = true;
1217       ID.SetAttribute(*F);
1218     }
1219   return Changed;
1220 }
1221 
1222 struct SCCNodesResult {
1223   SCCNodeSet SCCNodes;
1224   bool HasUnknownCall;
1225 };
1226 
1227 } // end anonymous namespace
1228 
1229 /// Helper for non-Convergent inference predicate InstrBreaksAttribute.
InstrBreaksNonConvergent(Instruction & I,const SCCNodeSet & SCCNodes)1230 static bool InstrBreaksNonConvergent(Instruction &I,
1231                                      const SCCNodeSet &SCCNodes) {
1232   const CallBase *CB = dyn_cast<CallBase>(&I);
1233   // Breaks non-convergent assumption if CS is a convergent call to a function
1234   // not in the SCC.
1235   return CB && CB->isConvergent() &&
1236          SCCNodes.count(CB->getCalledFunction()) == 0;
1237 }
1238 
1239 /// Helper for NoUnwind inference predicate InstrBreaksAttribute.
InstrBreaksNonThrowing(Instruction & I,const SCCNodeSet & SCCNodes)1240 static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) {
1241   if (!I.mayThrow())
1242     return false;
1243   if (const auto *CI = dyn_cast<CallInst>(&I)) {
1244     if (Function *Callee = CI->getCalledFunction()) {
1245       // I is a may-throw call to a function inside our SCC. This doesn't
1246       // invalidate our current working assumption that the SCC is no-throw; we
1247       // just have to scan that other function.
1248       if (SCCNodes.count(Callee) > 0)
1249         return false;
1250     }
1251   }
1252   return true;
1253 }
1254 
1255 /// Helper for NoFree inference predicate InstrBreaksAttribute.
InstrBreaksNoFree(Instruction & I,const SCCNodeSet & SCCNodes)1256 static bool InstrBreaksNoFree(Instruction &I, const SCCNodeSet &SCCNodes) {
1257   CallBase *CB = dyn_cast<CallBase>(&I);
1258   if (!CB)
1259     return false;
1260 
1261   Function *Callee = CB->getCalledFunction();
1262   if (!Callee)
1263     return true;
1264 
1265   if (Callee->doesNotFreeMemory())
1266     return false;
1267 
1268   if (SCCNodes.count(Callee) > 0)
1269     return false;
1270 
1271   return true;
1272 }
1273 
1274 /// Attempt to remove convergent function attribute when possible.
1275 ///
1276 /// Returns true if any changes to function attributes were made.
inferConvergent(const SCCNodeSet & SCCNodes)1277 static bool inferConvergent(const SCCNodeSet &SCCNodes) {
1278   AttributeInferer AI;
1279 
1280   // Request to remove the convergent attribute from all functions in the SCC
1281   // if every callsite within the SCC is not convergent (except for calls
1282   // to functions within the SCC).
1283   // Note: Removal of the attr from the callsites will happen in
1284   // InstCombineCalls separately.
1285   AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
1286       Attribute::Convergent,
1287       // Skip non-convergent functions.
1288       [](const Function &F) { return !F.isConvergent(); },
1289       // Instructions that break non-convergent assumption.
1290       [SCCNodes](Instruction &I) {
1291         return InstrBreaksNonConvergent(I, SCCNodes);
1292       },
1293       [](Function &F) {
1294         LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName()
1295                           << "\n");
1296         F.setNotConvergent();
1297       },
1298       /* RequiresExactDefinition= */ false});
1299   // Perform all the requested attribute inference actions.
1300   return AI.run(SCCNodes);
1301 }
1302 
1303 /// Infer attributes from all functions in the SCC by scanning every
1304 /// instruction for compliance to the attribute assumptions. Currently it
1305 /// does:
1306 ///   - addition of NoUnwind attribute
1307 ///
1308 /// Returns true if any changes to function attributes were made.
inferAttrsFromFunctionBodies(const SCCNodeSet & SCCNodes)1309 static bool inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes) {
1310   AttributeInferer AI;
1311 
1312   if (!DisableNoUnwindInference)
1313     // Request to infer nounwind attribute for all the functions in the SCC if
1314     // every callsite within the SCC is not throwing (except for calls to
1315     // functions within the SCC). Note that nounwind attribute suffers from
1316     // derefinement - results may change depending on how functions are
1317     // optimized. Thus it can be inferred only from exact definitions.
1318     AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
1319         Attribute::NoUnwind,
1320         // Skip non-throwing functions.
1321         [](const Function &F) { return F.doesNotThrow(); },
1322         // Instructions that break non-throwing assumption.
1323         [&SCCNodes](Instruction &I) {
1324           return InstrBreaksNonThrowing(I, SCCNodes);
1325         },
1326         [](Function &F) {
1327           LLVM_DEBUG(dbgs()
1328                      << "Adding nounwind attr to fn " << F.getName() << "\n");
1329           F.setDoesNotThrow();
1330           ++NumNoUnwind;
1331         },
1332         /* RequiresExactDefinition= */ true});
1333 
1334   if (!DisableNoFreeInference)
1335     // Request to infer nofree attribute for all the functions in the SCC if
1336     // every callsite within the SCC does not directly or indirectly free
1337     // memory (except for calls to functions within the SCC). Note that nofree
1338     // attribute suffers from derefinement - results may change depending on
1339     // how functions are optimized. Thus it can be inferred only from exact
1340     // definitions.
1341     AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
1342         Attribute::NoFree,
1343         // Skip functions known not to free memory.
1344         [](const Function &F) { return F.doesNotFreeMemory(); },
1345         // Instructions that break non-deallocating assumption.
1346         [&SCCNodes](Instruction &I) {
1347           return InstrBreaksNoFree(I, SCCNodes);
1348         },
1349         [](Function &F) {
1350           LLVM_DEBUG(dbgs()
1351                      << "Adding nofree attr to fn " << F.getName() << "\n");
1352           F.setDoesNotFreeMemory();
1353           ++NumNoFree;
1354         },
1355         /* RequiresExactDefinition= */ true});
1356 
1357   // Perform all the requested attribute inference actions.
1358   return AI.run(SCCNodes);
1359 }
1360 
addNoRecurseAttrs(const SCCNodeSet & SCCNodes)1361 static bool addNoRecurseAttrs(const SCCNodeSet &SCCNodes) {
1362   // Try and identify functions that do not recurse.
1363 
1364   // If the SCC contains multiple nodes we know for sure there is recursion.
1365   if (SCCNodes.size() != 1)
1366     return false;
1367 
1368   Function *F = *SCCNodes.begin();
1369   if (!F || !F->hasExactDefinition() || F->doesNotRecurse())
1370     return false;
1371 
1372   // If all of the calls in F are identifiable and are to norecurse functions, F
1373   // is norecurse. This check also detects self-recursion as F is not currently
1374   // marked norecurse, so any called from F to F will not be marked norecurse.
1375   for (auto &BB : *F)
1376     for (auto &I : BB.instructionsWithoutDebug())
1377       if (auto *CB = dyn_cast<CallBase>(&I)) {
1378         Function *Callee = CB->getCalledFunction();
1379         if (!Callee || Callee == F || !Callee->doesNotRecurse())
1380           // Function calls a potentially recursive function.
1381           return false;
1382       }
1383 
1384   // Every call was to a non-recursive function other than this function, and
1385   // we have no indirect recursion as the SCC size is one. This function cannot
1386   // recurse.
1387   F->setDoesNotRecurse();
1388   ++NumNoRecurse;
1389   return true;
1390 }
1391 
createSCCNodeSet(ArrayRef<Function * > Functions)1392 static SCCNodesResult createSCCNodeSet(ArrayRef<Function *> Functions) {
1393   SCCNodesResult Res;
1394   Res.HasUnknownCall = false;
1395   for (Function *F : Functions) {
1396     if (!F || F->hasOptNone() || F->hasFnAttribute(Attribute::Naked)) {
1397       // Treat any function we're trying not to optimize as if it were an
1398       // indirect call and omit it from the node set used below.
1399       Res.HasUnknownCall = true;
1400       continue;
1401     }
1402     // Track whether any functions in this SCC have an unknown call edge.
1403     // Note: if this is ever a performance hit, we can common it with
1404     // subsequent routines which also do scans over the instructions of the
1405     // function.
1406     if (!Res.HasUnknownCall) {
1407       for (Instruction &I : instructions(*F)) {
1408         if (auto *CB = dyn_cast<CallBase>(&I)) {
1409           if (!CB->getCalledFunction()) {
1410             Res.HasUnknownCall = true;
1411             break;
1412           }
1413         }
1414       }
1415     }
1416     Res.SCCNodes.insert(F);
1417   }
1418   return Res;
1419 }
1420 
1421 template <typename AARGetterT>
deriveAttrsInPostOrder(ArrayRef<Function * > Functions,AARGetterT && AARGetter)1422 static bool deriveAttrsInPostOrder(ArrayRef<Function *> Functions,
1423                                    AARGetterT &&AARGetter) {
1424   SCCNodesResult Nodes = createSCCNodeSet(Functions);
1425   bool Changed = false;
1426 
1427   // Bail if the SCC only contains optnone functions.
1428   if (Nodes.SCCNodes.empty())
1429     return Changed;
1430 
1431   Changed |= addArgumentReturnedAttrs(Nodes.SCCNodes);
1432   Changed |= addReadAttrs(Nodes.SCCNodes, AARGetter);
1433   Changed |= addArgumentAttrs(Nodes.SCCNodes);
1434   Changed |= inferConvergent(Nodes.SCCNodes);
1435 
1436   // If we have no external nodes participating in the SCC, we can deduce some
1437   // more precise attributes as well.
1438   if (!Nodes.HasUnknownCall) {
1439     Changed |= addNoAliasAttrs(Nodes.SCCNodes);
1440     Changed |= addNonNullAttrs(Nodes.SCCNodes);
1441     Changed |= inferAttrsFromFunctionBodies(Nodes.SCCNodes);
1442     Changed |= addNoRecurseAttrs(Nodes.SCCNodes);
1443   }
1444 
1445   return Changed;
1446 }
1447 
run(LazyCallGraph::SCC & C,CGSCCAnalysisManager & AM,LazyCallGraph & CG,CGSCCUpdateResult &)1448 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C,
1449                                                   CGSCCAnalysisManager &AM,
1450                                                   LazyCallGraph &CG,
1451                                                   CGSCCUpdateResult &) {
1452   FunctionAnalysisManager &FAM =
1453       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1454 
1455   // We pass a lambda into functions to wire them up to the analysis manager
1456   // for getting function analyses.
1457   auto AARGetter = [&](Function &F) -> AAResults & {
1458     return FAM.getResult<AAManager>(F);
1459   };
1460 
1461   SmallVector<Function *, 8> Functions;
1462   for (LazyCallGraph::Node &N : C) {
1463     Functions.push_back(&N.getFunction());
1464   }
1465 
1466   if (deriveAttrsInPostOrder(Functions, AARGetter))
1467     return PreservedAnalyses::none();
1468 
1469   return PreservedAnalyses::all();
1470 }
1471 
1472 namespace {
1473 
1474 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass {
1475   // Pass identification, replacement for typeid
1476   static char ID;
1477 
PostOrderFunctionAttrsLegacyPass__anon0331d7501511::PostOrderFunctionAttrsLegacyPass1478   PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) {
1479     initializePostOrderFunctionAttrsLegacyPassPass(
1480         *PassRegistry::getPassRegistry());
1481   }
1482 
1483   bool runOnSCC(CallGraphSCC &SCC) override;
1484 
getAnalysisUsage__anon0331d7501511::PostOrderFunctionAttrsLegacyPass1485   void getAnalysisUsage(AnalysisUsage &AU) const override {
1486     AU.setPreservesCFG();
1487     AU.addRequired<AssumptionCacheTracker>();
1488     getAAResultsAnalysisUsage(AU);
1489     CallGraphSCCPass::getAnalysisUsage(AU);
1490   }
1491 };
1492 
1493 } // end anonymous namespace
1494 
1495 char PostOrderFunctionAttrsLegacyPass::ID = 0;
1496 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "function-attrs",
1497                       "Deduce function attributes", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)1498 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1499 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1500 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "function-attrs",
1501                     "Deduce function attributes", false, false)
1502 
1503 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() {
1504   return new PostOrderFunctionAttrsLegacyPass();
1505 }
1506 
1507 template <typename AARGetterT>
runImpl(CallGraphSCC & SCC,AARGetterT AARGetter)1508 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) {
1509   SmallVector<Function *, 8> Functions;
1510   for (CallGraphNode *I : SCC) {
1511     Functions.push_back(I->getFunction());
1512   }
1513 
1514   return deriveAttrsInPostOrder(Functions, AARGetter);
1515 }
1516 
runOnSCC(CallGraphSCC & SCC)1517 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) {
1518   if (skipSCC(SCC))
1519     return false;
1520   return runImpl(SCC, LegacyAARGetter(*this));
1521 }
1522 
1523 namespace {
1524 
1525 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass {
1526   // Pass identification, replacement for typeid
1527   static char ID;
1528 
ReversePostOrderFunctionAttrsLegacyPass__anon0331d7501611::ReversePostOrderFunctionAttrsLegacyPass1529   ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) {
1530     initializeReversePostOrderFunctionAttrsLegacyPassPass(
1531         *PassRegistry::getPassRegistry());
1532   }
1533 
1534   bool runOnModule(Module &M) override;
1535 
getAnalysisUsage__anon0331d7501611::ReversePostOrderFunctionAttrsLegacyPass1536   void getAnalysisUsage(AnalysisUsage &AU) const override {
1537     AU.setPreservesCFG();
1538     AU.addRequired<CallGraphWrapperPass>();
1539     AU.addPreserved<CallGraphWrapperPass>();
1540   }
1541 };
1542 
1543 } // end anonymous namespace
1544 
1545 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0;
1546 
1547 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass,
1548                       "rpo-function-attrs", "Deduce function attributes in RPO",
1549                       false, false)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)1550 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1551 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass,
1552                     "rpo-function-attrs", "Deduce function attributes in RPO",
1553                     false, false)
1554 
1555 Pass *llvm::createReversePostOrderFunctionAttrsPass() {
1556   return new ReversePostOrderFunctionAttrsLegacyPass();
1557 }
1558 
addNoRecurseAttrsTopDown(Function & F)1559 static bool addNoRecurseAttrsTopDown(Function &F) {
1560   // We check the preconditions for the function prior to calling this to avoid
1561   // the cost of building up a reversible post-order list. We assert them here
1562   // to make sure none of the invariants this relies on were violated.
1563   assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!");
1564   assert(!F.doesNotRecurse() &&
1565          "This function has already been deduced as norecurs!");
1566   assert(F.hasInternalLinkage() &&
1567          "Can only do top-down deduction for internal linkage functions!");
1568 
1569   // If F is internal and all of its uses are calls from a non-recursive
1570   // functions, then none of its calls could in fact recurse without going
1571   // through a function marked norecurse, and so we can mark this function too
1572   // as norecurse. Note that the uses must actually be calls -- otherwise
1573   // a pointer to this function could be returned from a norecurse function but
1574   // this function could be recursively (indirectly) called. Note that this
1575   // also detects if F is directly recursive as F is not yet marked as
1576   // a norecurse function.
1577   for (auto *U : F.users()) {
1578     auto *I = dyn_cast<Instruction>(U);
1579     if (!I)
1580       return false;
1581     CallBase *CB = dyn_cast<CallBase>(I);
1582     if (!CB || !CB->getParent()->getParent()->doesNotRecurse())
1583       return false;
1584   }
1585   F.setDoesNotRecurse();
1586   ++NumNoRecurse;
1587   return true;
1588 }
1589 
deduceFunctionAttributeInRPO(Module & M,CallGraph & CG)1590 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) {
1591   // We only have a post-order SCC traversal (because SCCs are inherently
1592   // discovered in post-order), so we accumulate them in a vector and then walk
1593   // it in reverse. This is simpler than using the RPO iterator infrastructure
1594   // because we need to combine SCC detection and the PO walk of the call
1595   // graph. We can also cheat egregiously because we're primarily interested in
1596   // synthesizing norecurse and so we can only save the singular SCCs as SCCs
1597   // with multiple functions in them will clearly be recursive.
1598   SmallVector<Function *, 16> Worklist;
1599   for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
1600     if (I->size() != 1)
1601       continue;
1602 
1603     Function *F = I->front()->getFunction();
1604     if (F && !F->isDeclaration() && !F->doesNotRecurse() &&
1605         F->hasInternalLinkage())
1606       Worklist.push_back(F);
1607   }
1608 
1609   bool Changed = false;
1610   for (auto *F : llvm::reverse(Worklist))
1611     Changed |= addNoRecurseAttrsTopDown(*F);
1612 
1613   return Changed;
1614 }
1615 
runOnModule(Module & M)1616 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) {
1617   if (skipModule(M))
1618     return false;
1619 
1620   auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1621 
1622   return deduceFunctionAttributeInRPO(M, CG);
1623 }
1624 
1625 PreservedAnalyses
run(Module & M,ModuleAnalysisManager & AM)1626 ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) {
1627   auto &CG = AM.getResult<CallGraphAnalysis>(M);
1628 
1629   if (!deduceFunctionAttributeInRPO(M, CG))
1630     return PreservedAnalyses::all();
1631 
1632   PreservedAnalyses PA;
1633   PA.preserve<CallGraphAnalysis>();
1634   return PA;
1635 }
1636