1 /*
2 * Copyright (C) 2018 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_LIBARTBASE_BASE_BIT_TABLE_H_
18 #define ART_LIBARTBASE_BASE_BIT_TABLE_H_
19
20 #include <array>
21 #include <initializer_list>
22 #include <numeric>
23 #include <string.h>
24 #include <type_traits>
25 #include <unordered_map>
26
27 #include "base/bit_memory_region.h"
28 #include "base/casts.h"
29 #include "base/iteration_range.h"
30 #include "base/memory_region.h"
31 #include "base/scoped_arena_containers.h"
32 #include "base/stl_util.h"
33
34 namespace art {
35
36 // Generic purpose table of uint32_t values, which are tightly packed at bit level.
37 // It has its own header with the number of rows and the bit-widths of all columns.
38 // The values are accessible by (row, column). The value -1 is stored efficiently.
39 template<uint32_t kNumColumns>
40 class BitTableBase {
41 public:
42 static constexpr uint32_t kNoValue = std::numeric_limits<uint32_t>::max(); // == -1.
43 static constexpr uint32_t kValueBias = kNoValue; // Bias so that -1 is encoded as 0.
44
BitTableBase()45 BitTableBase() {}
BitTableBase(BitMemoryReader & reader)46 explicit BitTableBase(BitMemoryReader& reader) {
47 Decode(reader);
48 }
49
Decode(BitMemoryReader & reader)50 ALWAYS_INLINE void Decode(BitMemoryReader& reader) {
51 // Decode row count and column sizes from the table header.
52 std::array<uint32_t, 1+kNumColumns> header = reader.ReadInterleavedVarints<1+kNumColumns>();
53 num_rows_ = header[0];
54 column_offset_[0] = 0;
55 for (uint32_t i = 0; i < kNumColumns; i++) {
56 size_t column_end = column_offset_[i] + header[i + 1];
57 column_offset_[i + 1] = dchecked_integral_cast<uint16_t>(column_end);
58 }
59
60 // Record the region which contains the table data and skip past it.
61 table_data_ = reader.ReadRegion(num_rows_ * NumRowBits());
62 }
63
64 ALWAYS_INLINE uint32_t Get(uint32_t row, uint32_t column = 0) const {
65 DCHECK(table_data_.IsValid()) << "Table has not been loaded";
66 DCHECK_LT(row, num_rows_);
67 DCHECK_LT(column, kNumColumns);
68 size_t offset = row * NumRowBits() + column_offset_[column];
69 return table_data_.LoadBits(offset, NumColumnBits(column)) + kValueBias;
70 }
71
72 ALWAYS_INLINE BitMemoryRegion GetBitMemoryRegion(uint32_t row, uint32_t column = 0) const {
73 DCHECK(table_data_.IsValid()) << "Table has not been loaded";
74 DCHECK_LT(row, num_rows_);
75 DCHECK_LT(column, kNumColumns);
76 size_t offset = row * NumRowBits() + column_offset_[column];
77 return table_data_.Subregion(offset, NumColumnBits(column));
78 }
79
NumRows()80 size_t NumRows() const { return num_rows_; }
81
NumRowBits()82 uint32_t NumRowBits() const { return column_offset_[kNumColumns]; }
83
NumColumns()84 constexpr size_t NumColumns() const { return kNumColumns; }
85
NumColumnBits(uint32_t column)86 uint32_t NumColumnBits(uint32_t column) const {
87 return column_offset_[column + 1] - column_offset_[column];
88 }
89
DataBitSize()90 size_t DataBitSize() const { return table_data_.size_in_bits(); }
91
Equals(const BitTableBase & other)92 bool Equals(const BitTableBase& other) const {
93 return num_rows_ == other.num_rows_ &&
94 std::equal(column_offset_, column_offset_ + kNumColumns, other.column_offset_) &&
95 BitMemoryRegion::Compare(table_data_, other.table_data_) == 0;
96 }
97
98 protected:
99 BitMemoryRegion table_data_;
100 size_t num_rows_ = 0;
101 uint16_t column_offset_[kNumColumns + 1] = {};
102 };
103
104 // Helper class which can be used to create BitTable accessors with named getters.
105 template<uint32_t NumColumns>
106 class BitTableAccessor {
107 public:
108 static constexpr uint32_t kNumColumns = NumColumns;
109 static constexpr uint32_t kNoValue = BitTableBase<kNumColumns>::kNoValue;
110
111 BitTableAccessor() = default;
BitTableAccessor(const BitTableBase<kNumColumns> * table,uint32_t row)112 BitTableAccessor(const BitTableBase<kNumColumns>* table, uint32_t row)
113 : table_(table), row_(row) {
114 DCHECK(table_ != nullptr);
115 }
116
Row()117 ALWAYS_INLINE uint32_t Row() const { return row_; }
118
IsValid()119 ALWAYS_INLINE bool IsValid() const { return row_ < table_->NumRows(); }
120
Equals(const BitTableAccessor & other)121 ALWAYS_INLINE bool Equals(const BitTableAccessor& other) {
122 return this->table_ == other.table_ && this->row_ == other.row_;
123 }
124
125 // Helper macro to create constructors and per-table utilities in derived class.
126 #define BIT_TABLE_HEADER(NAME) \
127 using BitTableAccessor<kNumColumns>::BitTableAccessor; /* inherit constructors */ \
128 template<int COLUMN, int UNUSED /*needed to compile*/> struct ColumnName; \
129 static constexpr const char* kTableName = #NAME; \
130
131 // Helper macro to create named column accessors in derived class.
132 #define BIT_TABLE_COLUMN(COLUMN, NAME) \
133 static constexpr uint32_t k##NAME = COLUMN; \
134 ALWAYS_INLINE uint32_t Get##NAME() const { return table_->Get(row_, COLUMN); } \
135 ALWAYS_INLINE bool Has##NAME() const { return Get##NAME() != kNoValue; } \
136 template<int UNUSED> struct ColumnName<COLUMN, UNUSED> { \
137 static constexpr const char* Value = #NAME; \
138 }; \
139
140 protected:
141 const BitTableBase<kNumColumns>* table_ = nullptr;
142 uint32_t row_ = -1;
143 };
144
145 // Template meta-programming helper.
146 template<typename Accessor, size_t... Columns>
GetBitTableColumnNamesImpl(std::index_sequence<Columns...>)147 static const char* const* GetBitTableColumnNamesImpl(std::index_sequence<Columns...>) {
148 static const char* names[] = { Accessor::template ColumnName<Columns, 0>::Value... };
149 return names;
150 }
151
152 // Wrapper which makes it easier to use named accessors for the individual rows.
153 template<typename Accessor>
154 class BitTable : public BitTableBase<Accessor::kNumColumns> {
155 public:
156 class const_iterator : public std::iterator<std::random_access_iterator_tag,
157 /* value_type */ Accessor,
158 /* difference_type */ int32_t,
159 /* pointer */ void,
160 /* reference */ void> {
161 public:
162 using difference_type = int32_t;
const_iterator()163 const_iterator() {}
const_iterator(const BitTable * table,uint32_t row)164 const_iterator(const BitTable* table, uint32_t row) : table_(table), row_(row) {}
165 const_iterator operator+(difference_type n) { return const_iterator(table_, row_ + n); }
166 const_iterator operator-(difference_type n) { return const_iterator(table_, row_ - n); }
167 difference_type operator-(const const_iterator& other) { return row_ - other.row_; }
168 void operator+=(difference_type rows) { row_ += rows; }
169 void operator-=(difference_type rows) { row_ -= rows; }
170 const_iterator operator++() { return const_iterator(table_, ++row_); }
171 const_iterator operator--() { return const_iterator(table_, --row_); }
172 const_iterator operator++(int) { return const_iterator(table_, row_++); }
173 const_iterator operator--(int) { return const_iterator(table_, row_--); }
174 bool operator==(const_iterator i) const { DCHECK(table_ == i.table_); return row_ == i.row_; }
175 bool operator!=(const_iterator i) const { DCHECK(table_ == i.table_); return row_ != i.row_; }
176 bool operator<=(const_iterator i) const { DCHECK(table_ == i.table_); return row_ <= i.row_; }
177 bool operator>=(const_iterator i) const { DCHECK(table_ == i.table_); return row_ >= i.row_; }
178 bool operator<(const_iterator i) const { DCHECK(table_ == i.table_); return row_ < i.row_; }
179 bool operator>(const_iterator i) const { DCHECK(table_ == i.table_); return row_ > i.row_; }
180 Accessor operator*() {
181 DCHECK_LT(row_, table_->NumRows());
182 return Accessor(table_, row_);
183 }
184 Accessor operator->() {
185 DCHECK_LT(row_, table_->NumRows());
186 return Accessor(table_, row_);
187 }
188 Accessor operator[](size_t index) {
189 DCHECK_LT(row_ + index, table_->NumRows());
190 return Accessor(table_, row_ + index);
191 }
192 private:
193 const BitTable* table_ = nullptr;
194 uint32_t row_ = 0;
195 };
196
197 using BitTableBase<Accessor::kNumColumns>::BitTableBase; // Constructors.
198
begin()199 ALWAYS_INLINE const_iterator begin() const { return const_iterator(this, 0); }
end()200 ALWAYS_INLINE const_iterator end() const { return const_iterator(this, this->NumRows()); }
201
GetRow(uint32_t row)202 ALWAYS_INLINE Accessor GetRow(uint32_t row) const {
203 return Accessor(this, row);
204 }
205
GetInvalidRow()206 ALWAYS_INLINE Accessor GetInvalidRow() const {
207 return Accessor(this, static_cast<uint32_t>(-1));
208 }
209
GetName()210 const char* GetName() const {
211 return Accessor::kTableName;
212 }
213
GetColumnNames()214 const char* const* GetColumnNames() const {
215 return GetBitTableColumnNamesImpl<Accessor>(std::make_index_sequence<Accessor::kNumColumns>());
216 }
217 };
218
219 template<typename Accessor>
220 typename BitTable<Accessor>::const_iterator operator+(
221 typename BitTable<Accessor>::const_iterator::difference_type n,
222 typename BitTable<Accessor>::const_iterator a) {
223 return a + n;
224 }
225
226 template<typename Accessor>
227 class BitTableRange : public IterationRange<typename BitTable<Accessor>::const_iterator> {
228 public:
229 typedef typename BitTable<Accessor>::const_iterator const_iterator;
230
231 using IterationRange<const_iterator>::IterationRange;
BitTableRange()232 BitTableRange() : IterationRange<const_iterator>(const_iterator(), const_iterator()) { }
233
empty()234 bool empty() const { return this->begin() == this->end(); }
size()235 size_t size() const { return this->end() - this->begin(); }
236
237 Accessor operator[](size_t index) const {
238 const_iterator it = this->begin() + index;
239 DCHECK(it < this->end());
240 return *it;
241 }
242
back()243 Accessor back() const {
244 DCHECK(!empty());
245 return *(this->end() - 1);
246 }
247
pop_back()248 void pop_back() {
249 DCHECK(!empty());
250 --this->last_;
251 }
252 };
253
254 // Helper class for encoding BitTable. It can optionally de-duplicate the inputs.
255 template<uint32_t kNumColumns>
256 class BitTableBuilderBase {
257 public:
258 static constexpr uint32_t kNoValue = BitTableBase<kNumColumns>::kNoValue;
259 static constexpr uint32_t kValueBias = BitTableBase<kNumColumns>::kValueBias;
260
261 class Entry {
262 public:
Entry()263 Entry() {
264 // The definition of kNoValue here is for host and target debug builds which complain about
265 // missing a symbol definition for BitTableBase<N>::kNovValue when optimization is off.
266 static constexpr uint32_t kNoValue = BitTableBase<kNumColumns>::kNoValue;
267 std::fill_n(data_, kNumColumns, kNoValue);
268 }
269
Entry(std::initializer_list<uint32_t> values)270 Entry(std::initializer_list<uint32_t> values) {
271 DCHECK_EQ(values.size(), kNumColumns);
272 std::copy(values.begin(), values.end(), data_);
273 }
274
275 uint32_t& operator[](size_t column) {
276 DCHECK_LT(column, kNumColumns);
277 return data_[column];
278 }
279
280 uint32_t operator[](size_t column) const {
281 DCHECK_LT(column, kNumColumns);
282 return data_[column];
283 }
284
285 private:
286 uint32_t data_[kNumColumns];
287 };
288
BitTableBuilderBase(ScopedArenaAllocator * allocator)289 explicit BitTableBuilderBase(ScopedArenaAllocator* allocator)
290 : rows_(allocator->Adapter(kArenaAllocBitTableBuilder)),
291 dedup_(8, allocator->Adapter(kArenaAllocBitTableBuilder)) {
292 }
293
294 Entry& operator[](size_t row) { return rows_[row]; }
295 const Entry& operator[](size_t row) const { return rows_[row]; }
back()296 const Entry& back() const { return rows_.back(); }
size()297 size_t size() const { return rows_.size(); }
298
299 // Append given value to the vector without de-duplication.
300 // This will not add the element to the dedup map to avoid its associated costs.
Add(Entry value)301 void Add(Entry value) {
302 rows_.push_back(value);
303 }
304
305 // Append given list of values and return the index of the first value.
306 // If the exact same set of values was already added, return the old index.
307 uint32_t Dedup(Entry* values, size_t count = 1) {
308 FNVHash<MemoryRegion> hasher;
309 uint32_t hash = hasher(MemoryRegion(values, sizeof(Entry) * count));
310
311 // Check if we have already added identical set of values.
312 auto range = dedup_.equal_range(hash);
313 for (auto it = range.first; it != range.second; ++it) {
314 uint32_t index = it->second;
315 if (count <= size() - index &&
316 std::equal(values,
317 values + count,
318 rows_.begin() + index,
319 [](const Entry& lhs, const Entry& rhs) {
320 return memcmp(&lhs, &rhs, sizeof(Entry)) == 0;
321 })) {
322 return index;
323 }
324 }
325
326 // Add the set of values and add the index to the dedup map.
327 uint32_t index = size();
328 rows_.insert(rows_.end(), values, values + count);
329 dedup_.emplace(hash, index);
330 return index;
331 }
332
Dedup(Entry value)333 uint32_t Dedup(Entry value) {
334 return Dedup(&value, /* count */ 1);
335 }
336
337 // Calculate the column bit widths based on the current data.
Measure(uint32_t * column_bits)338 void Measure(/*out*/ uint32_t* column_bits) const {
339 uint32_t max_column_value[kNumColumns];
340 std::fill_n(max_column_value, kNumColumns, 0);
341 for (uint32_t r = 0; r < size(); r++) {
342 for (uint32_t c = 0; c < kNumColumns; c++) {
343 max_column_value[c] |= rows_[r][c] - kValueBias;
344 }
345 }
346 for (uint32_t c = 0; c < kNumColumns; c++) {
347 column_bits[c] = MinimumBitsToStore(max_column_value[c]);
348 }
349 }
350
351 // Encode the stored data into a BitTable.
352 template<typename Vector>
Encode(BitMemoryWriter<Vector> & out)353 void Encode(BitMemoryWriter<Vector>& out) const {
354 size_t initial_bit_offset = out.NumberOfWrittenBits();
355
356 // Write table header.
357 std::array<uint32_t, 1 + kNumColumns> header;
358 header[0] = size();
359 uint32_t* column_bits = header.data() + 1;
360 Measure(column_bits);
361 out.WriteInterleavedVarints(header);
362
363 // Write table data.
364 for (uint32_t r = 0; r < size(); r++) {
365 for (uint32_t c = 0; c < kNumColumns; c++) {
366 out.WriteBits(rows_[r][c] - kValueBias, column_bits[c]);
367 }
368 }
369
370 // Verify the written data.
371 if (kIsDebugBuild) {
372 BitTableBase<kNumColumns> table;
373 BitMemoryReader reader(out.GetWrittenRegion().Subregion(initial_bit_offset));
374 table.Decode(reader);
375 DCHECK_EQ(size(), table.NumRows());
376 for (uint32_t c = 0; c < kNumColumns; c++) {
377 DCHECK_EQ(column_bits[c], table.NumColumnBits(c));
378 }
379 for (uint32_t r = 0; r < size(); r++) {
380 for (uint32_t c = 0; c < kNumColumns; c++) {
381 DCHECK_EQ(rows_[r][c], table.Get(r, c)) << " (" << r << ", " << c << ")";
382 }
383 }
384 }
385 }
386
387 protected:
388 ScopedArenaDeque<Entry> rows_;
389 ScopedArenaUnorderedMultimap<uint32_t, uint32_t> dedup_; // Hash -> row index.
390 };
391
392 template<typename Accessor>
393 class BitTableBuilder : public BitTableBuilderBase<Accessor::kNumColumns> {
394 public:
395 using BitTableBuilderBase<Accessor::kNumColumns>::BitTableBuilderBase; // Constructors.
396 };
397
398 // Helper class for encoding single-column BitTable of bitmaps (allows more than 32 bits).
399 class BitmapTableBuilder {
400 public:
BitmapTableBuilder(ScopedArenaAllocator * const allocator)401 explicit BitmapTableBuilder(ScopedArenaAllocator* const allocator)
402 : allocator_(allocator),
403 rows_(allocator->Adapter(kArenaAllocBitTableBuilder)),
404 dedup_(8, allocator_->Adapter(kArenaAllocBitTableBuilder)) {
405 }
406
407 MemoryRegion operator[](size_t row) { return rows_[row]; }
408 const MemoryRegion operator[](size_t row) const { return rows_[row]; }
size()409 size_t size() const { return rows_.size(); }
410
411 // Add the given bitmap to the table and return its index.
412 // If the bitmap was already added it will be deduplicated.
413 // The last bit must be set and any padding bits in the last byte must be zero.
Dedup(const void * bitmap,size_t num_bits)414 uint32_t Dedup(const void* bitmap, size_t num_bits) {
415 MemoryRegion region(const_cast<void*>(bitmap), BitsToBytesRoundUp(num_bits));
416 DCHECK(num_bits == 0 || BitMemoryRegion(region).LoadBit(num_bits - 1) == 1);
417 DCHECK_EQ(BitMemoryRegion(region).LoadBits(num_bits, region.size_in_bits() - num_bits), 0u);
418 FNVHash<MemoryRegion> hasher;
419 uint32_t hash = hasher(region);
420
421 // Check if we have already added identical bitmap.
422 auto range = dedup_.equal_range(hash);
423 for (auto it = range.first; it != range.second; ++it) {
424 if (MemoryRegion::ContentEquals()(region, rows_[it->second])) {
425 return it->second;
426 }
427 }
428
429 // Add the bitmap and add the index to the dedup map.
430 uint32_t index = size();
431 void* copy = allocator_->Alloc(region.size(), kArenaAllocBitTableBuilder);
432 memcpy(copy, region.pointer(), region.size());
433 rows_.push_back(MemoryRegion(copy, region.size()));
434 dedup_.emplace(hash, index);
435 max_num_bits_ = std::max(max_num_bits_, num_bits);
436 return index;
437 }
438
439 // Encode the stored data into a BitTable.
440 template<typename Vector>
Encode(BitMemoryWriter<Vector> & out)441 void Encode(BitMemoryWriter<Vector>& out) const {
442 size_t initial_bit_offset = out.NumberOfWrittenBits();
443
444 // Write table header.
445 out.WriteInterleavedVarints(std::array<uint32_t, 2>{
446 dchecked_integral_cast<uint32_t>(size()),
447 dchecked_integral_cast<uint32_t>(max_num_bits_),
448 });
449
450 // Write table data.
451 for (MemoryRegion row : rows_) {
452 BitMemoryRegion src(row);
453 BitMemoryRegion dst = out.Allocate(max_num_bits_);
454 dst.StoreBits(/* bit_offset */ 0, src, std::min(max_num_bits_, src.size_in_bits()));
455 }
456
457 // Verify the written data.
458 if (kIsDebugBuild) {
459 BitTableBase<1> table;
460 BitMemoryReader reader(out.GetWrittenRegion().Subregion(initial_bit_offset));
461 table.Decode(reader);
462 DCHECK_EQ(size(), table.NumRows());
463 DCHECK_EQ(max_num_bits_, table.NumColumnBits(0));
464 for (uint32_t r = 0; r < size(); r++) {
465 BitMemoryRegion expected(rows_[r]);
466 BitMemoryRegion seen = table.GetBitMemoryRegion(r);
467 size_t num_bits = std::max(expected.size_in_bits(), seen.size_in_bits());
468 for (size_t b = 0; b < num_bits; b++) {
469 bool e = b < expected.size_in_bits() && expected.LoadBit(b);
470 bool s = b < seen.size_in_bits() && seen.LoadBit(b);
471 DCHECK_EQ(e, s) << " (" << r << ")[" << b << "]";
472 }
473 }
474 }
475 }
476
477 private:
478 ScopedArenaAllocator* const allocator_;
479 ScopedArenaDeque<MemoryRegion> rows_;
480 ScopedArenaUnorderedMultimap<uint32_t, uint32_t> dedup_; // Hash -> row index.
481 size_t max_num_bits_ = 0u;
482 };
483
484 } // namespace art
485
486 #endif // ART_LIBARTBASE_BASE_BIT_TABLE_H_
487