1 /*
2 * Copyright 2015 The WebRTC Project Authors. All rights reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "rtc_base/bit_buffer.h"
12
13 #include <algorithm>
14 #include <limits>
15
16 #include "rtc_base/checks.h"
17
18 namespace {
19
20 // Returns the lowest (right-most) |bit_count| bits in |byte|.
LowestBits(uint8_t byte,size_t bit_count)21 uint8_t LowestBits(uint8_t byte, size_t bit_count) {
22 RTC_DCHECK_LE(bit_count, 8);
23 return byte & ((1 << bit_count) - 1);
24 }
25
26 // Returns the highest (left-most) |bit_count| bits in |byte|, shifted to the
27 // lowest bits (to the right).
HighestBits(uint8_t byte,size_t bit_count)28 uint8_t HighestBits(uint8_t byte, size_t bit_count) {
29 RTC_DCHECK_LE(bit_count, 8);
30 uint8_t shift = 8 - static_cast<uint8_t>(bit_count);
31 uint8_t mask = 0xFF << shift;
32 return (byte & mask) >> shift;
33 }
34
35 // Returns the highest byte of |val| in a uint8_t.
HighestByte(uint64_t val)36 uint8_t HighestByte(uint64_t val) {
37 return static_cast<uint8_t>(val >> 56);
38 }
39
40 // Returns the result of writing partial data from |source|, of
41 // |source_bit_count| size in the highest bits, to |target| at
42 // |target_bit_offset| from the highest bit.
WritePartialByte(uint8_t source,size_t source_bit_count,uint8_t target,size_t target_bit_offset)43 uint8_t WritePartialByte(uint8_t source,
44 size_t source_bit_count,
45 uint8_t target,
46 size_t target_bit_offset) {
47 RTC_DCHECK(target_bit_offset < 8);
48 RTC_DCHECK(source_bit_count < 9);
49 RTC_DCHECK(source_bit_count <= (8 - target_bit_offset));
50 // Generate a mask for just the bits we're going to overwrite, so:
51 uint8_t mask =
52 // The number of bits we want, in the most significant bits...
53 static_cast<uint8_t>(0xFF << (8 - source_bit_count))
54 // ...shifted over to the target offset from the most signficant bit.
55 >> target_bit_offset;
56
57 // We want the target, with the bits we'll overwrite masked off, or'ed with
58 // the bits from the source we want.
59 return (target & ~mask) | (source >> target_bit_offset);
60 }
61
62 // Counts the number of bits used in the binary representation of val.
CountBits(uint64_t val)63 size_t CountBits(uint64_t val) {
64 size_t bit_count = 0;
65 while (val != 0) {
66 bit_count++;
67 val >>= 1;
68 }
69 return bit_count;
70 }
71
72 } // namespace
73
74 namespace rtc {
75
BitBuffer(const uint8_t * bytes,size_t byte_count)76 BitBuffer::BitBuffer(const uint8_t* bytes, size_t byte_count)
77 : bytes_(bytes), byte_count_(byte_count), byte_offset_(), bit_offset_() {
78 RTC_DCHECK(static_cast<uint64_t>(byte_count_) <=
79 std::numeric_limits<uint32_t>::max());
80 }
81
RemainingBitCount() const82 uint64_t BitBuffer::RemainingBitCount() const {
83 return (static_cast<uint64_t>(byte_count_) - byte_offset_) * 8 - bit_offset_;
84 }
85
ReadUInt8(uint8_t * val)86 bool BitBuffer::ReadUInt8(uint8_t* val) {
87 uint32_t bit_val;
88 if (!ReadBits(&bit_val, sizeof(uint8_t) * 8)) {
89 return false;
90 }
91 RTC_DCHECK(bit_val <= std::numeric_limits<uint8_t>::max());
92 *val = static_cast<uint8_t>(bit_val);
93 return true;
94 }
95
ReadUInt16(uint16_t * val)96 bool BitBuffer::ReadUInt16(uint16_t* val) {
97 uint32_t bit_val;
98 if (!ReadBits(&bit_val, sizeof(uint16_t) * 8)) {
99 return false;
100 }
101 RTC_DCHECK(bit_val <= std::numeric_limits<uint16_t>::max());
102 *val = static_cast<uint16_t>(bit_val);
103 return true;
104 }
105
ReadUInt32(uint32_t * val)106 bool BitBuffer::ReadUInt32(uint32_t* val) {
107 return ReadBits(val, sizeof(uint32_t) * 8);
108 }
109
PeekBits(uint32_t * val,size_t bit_count)110 bool BitBuffer::PeekBits(uint32_t* val, size_t bit_count) {
111 // TODO(nisse): Could allow bit_count == 0 and always return success. But
112 // current code reads one byte beyond end of buffer in the case that
113 // RemainingBitCount() == 0 and bit_count == 0.
114 RTC_DCHECK(bit_count > 0);
115 if (!val || bit_count > RemainingBitCount() || bit_count > 32) {
116 return false;
117 }
118 const uint8_t* bytes = bytes_ + byte_offset_;
119 size_t remaining_bits_in_current_byte = 8 - bit_offset_;
120 uint32_t bits = LowestBits(*bytes++, remaining_bits_in_current_byte);
121 // If we're reading fewer bits than what's left in the current byte, just
122 // return the portion of this byte that we need.
123 if (bit_count < remaining_bits_in_current_byte) {
124 *val = HighestBits(bits, bit_offset_ + bit_count);
125 return true;
126 }
127 // Otherwise, subtract what we've read from the bit count and read as many
128 // full bytes as we can into bits.
129 bit_count -= remaining_bits_in_current_byte;
130 while (bit_count >= 8) {
131 bits = (bits << 8) | *bytes++;
132 bit_count -= 8;
133 }
134 // Whatever we have left is smaller than a byte, so grab just the bits we need
135 // and shift them into the lowest bits.
136 if (bit_count > 0) {
137 bits <<= bit_count;
138 bits |= HighestBits(*bytes, bit_count);
139 }
140 *val = bits;
141 return true;
142 }
143
ReadBits(uint32_t * val,size_t bit_count)144 bool BitBuffer::ReadBits(uint32_t* val, size_t bit_count) {
145 return PeekBits(val, bit_count) && ConsumeBits(bit_count);
146 }
147
ConsumeBytes(size_t byte_count)148 bool BitBuffer::ConsumeBytes(size_t byte_count) {
149 return ConsumeBits(byte_count * 8);
150 }
151
ConsumeBits(size_t bit_count)152 bool BitBuffer::ConsumeBits(size_t bit_count) {
153 if (bit_count > RemainingBitCount()) {
154 return false;
155 }
156
157 byte_offset_ += (bit_offset_ + bit_count) / 8;
158 bit_offset_ = (bit_offset_ + bit_count) % 8;
159 return true;
160 }
161
ReadNonSymmetric(uint32_t * val,uint32_t num_values)162 bool BitBuffer::ReadNonSymmetric(uint32_t* val, uint32_t num_values) {
163 RTC_DCHECK_GT(num_values, 0);
164 RTC_DCHECK_LE(num_values, uint32_t{1} << 31);
165 if (num_values == 1) {
166 // When there is only one possible value, it requires zero bits to store it.
167 // But ReadBits doesn't support reading zero bits.
168 *val = 0;
169 return true;
170 }
171 size_t count_bits = CountBits(num_values);
172 uint32_t num_min_bits_values = (uint32_t{1} << count_bits) - num_values;
173
174 if (!ReadBits(val, count_bits - 1)) {
175 return false;
176 }
177
178 if (*val < num_min_bits_values) {
179 return true;
180 }
181
182 uint32_t extra_bit;
183 if (!ReadBits(&extra_bit, /*bit_count=*/1)) {
184 return false;
185 }
186
187 *val = (*val << 1) + extra_bit - num_min_bits_values;
188 return true;
189 }
190
ReadExponentialGolomb(uint32_t * val)191 bool BitBuffer::ReadExponentialGolomb(uint32_t* val) {
192 if (!val) {
193 return false;
194 }
195 // Store off the current byte/bit offset, in case we want to restore them due
196 // to a failed parse.
197 size_t original_byte_offset = byte_offset_;
198 size_t original_bit_offset = bit_offset_;
199
200 // Count the number of leading 0 bits by peeking/consuming them one at a time.
201 size_t zero_bit_count = 0;
202 uint32_t peeked_bit;
203 while (PeekBits(&peeked_bit, 1) && peeked_bit == 0) {
204 zero_bit_count++;
205 ConsumeBits(1);
206 }
207
208 // We should either be at the end of the stream, or the next bit should be 1.
209 RTC_DCHECK(!PeekBits(&peeked_bit, 1) || peeked_bit == 1);
210
211 // The bit count of the value is the number of zeros + 1. Make sure that many
212 // bits fits in a uint32_t and that we have enough bits left for it, and then
213 // read the value.
214 size_t value_bit_count = zero_bit_count + 1;
215 if (value_bit_count > 32 || !ReadBits(val, value_bit_count)) {
216 RTC_CHECK(Seek(original_byte_offset, original_bit_offset));
217 return false;
218 }
219 *val -= 1;
220 return true;
221 }
222
ReadSignedExponentialGolomb(int32_t * val)223 bool BitBuffer::ReadSignedExponentialGolomb(int32_t* val) {
224 uint32_t unsigned_val;
225 if (!ReadExponentialGolomb(&unsigned_val)) {
226 return false;
227 }
228 if ((unsigned_val & 1) == 0) {
229 *val = -static_cast<int32_t>(unsigned_val / 2);
230 } else {
231 *val = (unsigned_val + 1) / 2;
232 }
233 return true;
234 }
235
GetCurrentOffset(size_t * out_byte_offset,size_t * out_bit_offset)236 void BitBuffer::GetCurrentOffset(size_t* out_byte_offset,
237 size_t* out_bit_offset) {
238 RTC_CHECK(out_byte_offset != nullptr);
239 RTC_CHECK(out_bit_offset != nullptr);
240 *out_byte_offset = byte_offset_;
241 *out_bit_offset = bit_offset_;
242 }
243
Seek(size_t byte_offset,size_t bit_offset)244 bool BitBuffer::Seek(size_t byte_offset, size_t bit_offset) {
245 if (byte_offset > byte_count_ || bit_offset > 7 ||
246 (byte_offset == byte_count_ && bit_offset > 0)) {
247 return false;
248 }
249 byte_offset_ = byte_offset;
250 bit_offset_ = bit_offset;
251 return true;
252 }
253
BitBufferWriter(uint8_t * bytes,size_t byte_count)254 BitBufferWriter::BitBufferWriter(uint8_t* bytes, size_t byte_count)
255 : BitBuffer(bytes, byte_count), writable_bytes_(bytes) {}
256
WriteUInt8(uint8_t val)257 bool BitBufferWriter::WriteUInt8(uint8_t val) {
258 return WriteBits(val, sizeof(uint8_t) * 8);
259 }
260
WriteUInt16(uint16_t val)261 bool BitBufferWriter::WriteUInt16(uint16_t val) {
262 return WriteBits(val, sizeof(uint16_t) * 8);
263 }
264
WriteUInt32(uint32_t val)265 bool BitBufferWriter::WriteUInt32(uint32_t val) {
266 return WriteBits(val, sizeof(uint32_t) * 8);
267 }
268
WriteBits(uint64_t val,size_t bit_count)269 bool BitBufferWriter::WriteBits(uint64_t val, size_t bit_count) {
270 if (bit_count > RemainingBitCount()) {
271 return false;
272 }
273 size_t total_bits = bit_count;
274
275 // For simplicity, push the bits we want to read from val to the highest bits.
276 val <<= (sizeof(uint64_t) * 8 - bit_count);
277
278 uint8_t* bytes = writable_bytes_ + byte_offset_;
279
280 // The first byte is relatively special; the bit offset to write to may put us
281 // in the middle of the byte, and the total bit count to write may require we
282 // save the bits at the end of the byte.
283 size_t remaining_bits_in_current_byte = 8 - bit_offset_;
284 size_t bits_in_first_byte =
285 std::min(bit_count, remaining_bits_in_current_byte);
286 *bytes = WritePartialByte(HighestByte(val), bits_in_first_byte, *bytes,
287 bit_offset_);
288 if (bit_count <= remaining_bits_in_current_byte) {
289 // Nothing left to write, so quit early.
290 return ConsumeBits(total_bits);
291 }
292
293 // Subtract what we've written from the bit count, shift it off the value, and
294 // write the remaining full bytes.
295 val <<= bits_in_first_byte;
296 bytes++;
297 bit_count -= bits_in_first_byte;
298 while (bit_count >= 8) {
299 *bytes++ = HighestByte(val);
300 val <<= 8;
301 bit_count -= 8;
302 }
303
304 // Last byte may also be partial, so write the remaining bits from the top of
305 // val.
306 if (bit_count > 0) {
307 *bytes = WritePartialByte(HighestByte(val), bit_count, *bytes, 0);
308 }
309
310 // All done! Consume the bits we've written.
311 return ConsumeBits(total_bits);
312 }
313
WriteNonSymmetric(uint32_t val,uint32_t num_values)314 bool BitBufferWriter::WriteNonSymmetric(uint32_t val, uint32_t num_values) {
315 RTC_DCHECK_LT(val, num_values);
316 RTC_DCHECK_LE(num_values, uint32_t{1} << 31);
317 if (num_values == 1) {
318 // When there is only one possible value, it requires zero bits to store it.
319 // But WriteBits doesn't support writing zero bits.
320 return true;
321 }
322 size_t count_bits = CountBits(num_values);
323 uint32_t num_min_bits_values = (uint32_t{1} << count_bits) - num_values;
324
325 return val < num_min_bits_values
326 ? WriteBits(val, count_bits - 1)
327 : WriteBits(val + num_min_bits_values, count_bits);
328 }
329
SizeNonSymmetricBits(uint32_t val,uint32_t num_values)330 size_t BitBufferWriter::SizeNonSymmetricBits(uint32_t val,
331 uint32_t num_values) {
332 RTC_DCHECK_LT(val, num_values);
333 RTC_DCHECK_LE(num_values, uint32_t{1} << 31);
334 size_t count_bits = CountBits(num_values);
335 uint32_t num_min_bits_values = (uint32_t{1} << count_bits) - num_values;
336
337 return val < num_min_bits_values ? (count_bits - 1) : count_bits;
338 }
339
WriteExponentialGolomb(uint32_t val)340 bool BitBufferWriter::WriteExponentialGolomb(uint32_t val) {
341 // We don't support reading UINT32_MAX, because it doesn't fit in a uint32_t
342 // when encoded, so don't support writing it either.
343 if (val == std::numeric_limits<uint32_t>::max()) {
344 return false;
345 }
346 uint64_t val_to_encode = static_cast<uint64_t>(val) + 1;
347
348 // We need to write CountBits(val+1) 0s and then val+1. Since val (as a
349 // uint64_t) has leading zeros, we can just write the total golomb encoded
350 // size worth of bits, knowing the value will appear last.
351 return WriteBits(val_to_encode, CountBits(val_to_encode) * 2 - 1);
352 }
353
WriteSignedExponentialGolomb(int32_t val)354 bool BitBufferWriter::WriteSignedExponentialGolomb(int32_t val) {
355 if (val == 0) {
356 return WriteExponentialGolomb(0);
357 } else if (val > 0) {
358 uint32_t signed_val = val;
359 return WriteExponentialGolomb((signed_val * 2) - 1);
360 } else {
361 if (val == std::numeric_limits<int32_t>::min())
362 return false; // Not supported, would cause overflow.
363 uint32_t signed_val = -val;
364 return WriteExponentialGolomb(signed_val * 2);
365 }
366 }
367
368 } // namespace rtc
369