• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef C2BUFFER_H_
18 #define C2BUFFER_H_
19 
20 #include <C2.h>
21 #include <C2BufferBase.h>
22 #include <C2Param.h> // for C2Info
23 
24 #include <memory>
25 #include <vector>
26 
27 #ifdef __ANDROID__
28 #include <android-C2Buffer.h>
29 #else
30 
31 typedef void* C2Handle;
32 
33 #endif
34 
35 /// \defgroup buffer Buffers
36 /// @{
37 
38 /// \defgroup buffer_sync Synchronization
39 /// @{
40 
41 /**
42  * Synchronization is accomplished using event and fence objects.
43  *
44  * These are cross-process extensions of promise/future infrastructure.
45  * Events are analogous to std::promise<void>, whereas fences are to std::shared_future<void>.
46  *
47  * Fences and events are shareable/copyable.
48  *
49  * Fences are used in two scenarios, and all copied instances refer to the same event.
50  * \todo do events need to be copyable or should they be unique?
51  *
52  * acquire sync fence object: signaled when it is safe for the component or client to access
53  * (the contents of) an object.
54  *
55  * release sync fence object: \todo
56  *
57  * Fences can be backed by hardware. Hardware fences are guaranteed to signal NO MATTER WHAT within
58  * a short (platform specific) amount of time; this guarantee is usually less than 15 msecs.
59  */
60 
61 /**
62  * Fence object used by components and the framework.
63  *
64  * Implements the waiting for an event, analogous to a 'future'.
65  *
66  * To be implemented by vendors if using HW fences.
67  */
68 class C2Fence {
69 public:
70     /**
71      * Waits for a fence to be signaled with a timeout.
72      *
73      * \todo a mechanism to cancel a wait - for now the only way to do this is to abandon the
74      * event, but fences are shared so canceling a wait will cancel all waits.
75      *
76      * \param timeoutNs           the maximum time to wait in nsecs
77      *
78      * \retval C2_OK            the fence has been signaled
79      * \retval C2_TIMED_OUT     the fence has not been signaled within the timeout
80      * \retval C2_BAD_STATE     the fence has been abandoned without being signaled (it will never
81      *                          be signaled)
82      * \retval C2_REFUSED       no permission to wait for the fence (unexpected - system)
83      * \retval C2_CORRUPTED     some unknown error prevented waiting for the fence (unexpected)
84      */
85     c2_status_t wait(c2_nsecs_t timeoutNs);
86 
87     /**
88      * Used to check if this fence is valid (if there is a chance for it to be signaled.)
89      * A fence becomes invalid if the controling event is destroyed without it signaling the fence.
90      *
91      * \return whether this fence is valid
92      */
93     bool valid() const;
94 
95     /**
96      * Used to check if this fence has been signaled (is ready).
97      *
98      * \return whether this fence has been signaled
99      */
100     bool ready() const;
101 
102     /**
103      * Returns a file descriptor that can be used to wait for this fence in a select system call.
104      * \note The returned file descriptor, if valid, must be closed by the caller.
105      *
106      * This can be used in e.g. poll() system calls. This file becomes readable (POLLIN) when the
107      * fence is signaled, and bad (POLLERR) if the fence is abandoned.
108      *
109      * \return a file descriptor representing this fence (with ownership), or -1 if the fence
110      * has already been signaled (\todo or abandoned).
111      *
112      * \todo this must be compatible with fences used by gralloc
113      */
114     int fd() const;
115 
116     /**
117      * Returns whether this fence is a hardware-backed fence.
118      * \return whether this is a hardware fence
119      */
120     bool isHW() const;
121 
122     /**
123      * Null-fence. A fence that has fired.
124      */
C2Fence()125     constexpr C2Fence() : mImpl(nullptr) { }
126 
127 private:
128     class Impl;
129     std::shared_ptr<Impl> mImpl;
130     C2Fence(std::shared_ptr<Impl> impl);
131     friend struct _C2FenceFactory;
132 };
133 
134 /**
135  * Event object used by components and the framework.
136  *
137  * Implements the signaling of an event, analogous to a 'promise'.
138  *
139  * Hardware backed events do not go through this object, and must be exposed directly as fences
140  * by vendors.
141  */
142 class C2Event {
143 public:
144     /**
145      * Returns a fence for this event.
146      */
147     C2Fence fence() const;
148 
149     /**
150      * Signals (all) associated fence(s).
151      * This has no effect no effect if the event was already signaled or abandoned.
152      *
153      * \retval C2_OK            the fence(s) were successfully signaled
154      * \retval C2_BAD_STATE     the fence(s) have already been abandoned or merged (caller error)
155      * \retval C2_DUPLICATE     the fence(s) have already been signaled (caller error)
156      * \retval C2_REFUSED       no permission to signal the fence (unexpected - system)
157      * \retval C2_CORRUPTED     some unknown error prevented signaling the fence(s) (unexpected)
158      */
159     c2_status_t fire();
160 
161     /**
162      * Trigger this event from the merging of the supplied fences. This means that it will be
163      * abandoned if any of these fences have been abandoned, and it will be fired if all of these
164      * fences have been signaled.
165      *
166      * \retval C2_OK            the merging was successfully done
167      * \retval C2_NO_MEMORY     not enough memory to perform the merging
168      * \retval C2_DUPLICATE     the fence have already been merged (caller error)
169      * \retval C2_BAD_STATE     the fence have already been signaled or abandoned (caller error)
170      * \retval C2_REFUSED       no permission to merge the fence (unexpected - system)
171      * \retval C2_CORRUPTED     some unknown error prevented merging the fence(s) (unexpected)
172      */
173     c2_status_t merge(std::vector<C2Fence> fences);
174 
175     /**
176      * Abandons the event and any associated fence(s).
177      * \note Call this to explicitly abandon an event before it is destructed to avoid a warning.
178      *
179      * This has no effect no effect if the event was already signaled or abandoned.
180      *
181      * \retval C2_OK            the fence(s) were successfully signaled
182      * \retval C2_BAD_STATE     the fence(s) have already been signaled or merged (caller error)
183      * \retval C2_DUPLICATE     the fence(s) have already been abandoned (caller error)
184      * \retval C2_REFUSED       no permission to abandon the fence (unexpected - system)
185      * \retval C2_CORRUPTED     some unknown error prevented signaling the fence(s) (unexpected)
186      */
187     c2_status_t abandon();
188 
189 private:
190     class Impl;
191     std::shared_ptr<Impl> mImpl;
192 };
193 
194 /// \addtogroup buf_internal Internal
195 /// @{
196 
197 /**
198  * Interface for objects that encapsulate an updatable status value.
199  */
200 struct _C2InnateStatus {
status_C2InnateStatus201     inline c2_status_t status() const { return mStatus; }
202 
203 protected:
_C2InnateStatus_C2InnateStatus204     _C2InnateStatus(c2_status_t status) : mStatus(status) { }
205 
206     c2_status_t mStatus; // this status is updatable by the object
207 };
208 
209 /// @}
210 
211 /**
212  * This is a utility template for objects protected by an acquire fence, so that errors during
213  * acquiring the object are propagated to the object itself.
214  */
215 template<typename T>
216 class C2Acquirable : public C2Fence {
217 public:
218     /**
219      * Acquires the object protected by an acquire fence. Any errors during the mapping will be
220      * passed to the object.
221      *
222      * \return acquired object potentially invalidated if waiting for the fence failed.
223      */
get()224     T get() {
225         // TODO:
226         // wait();
227         return mT;
228     }
229 
230 protected:
C2Acquirable(c2_status_t error,C2Fence fence,T t)231     C2Acquirable(c2_status_t error, C2Fence fence, T t) : C2Fence(fence), mInitialError(error), mT(t) { }
232 
233 private:
234     c2_status_t mInitialError;
235     T mT; // TODO: move instead of copy
236 };
237 
238 /// @}
239 
240 /// \defgroup linear Linear Data Blocks
241 /// @{
242 
243 /**************************************************************************************************
244   LINEAR ASPECTS, BLOCKS AND VIEWS
245 **************************************************************************************************/
246 
247 /**
248  * Basic segment math support.
249  */
250 struct C2Segment {
251     uint32_t offset;
252     uint32_t size;
253 
C2SegmentC2Segment254     inline constexpr C2Segment(uint32_t offset_, uint32_t size_)
255         : offset(offset_),
256           size(size_) {
257     }
258 
isEmptyC2Segment259     inline constexpr bool isEmpty() const {
260         return size == 0;
261     }
262 
isValidC2Segment263     inline constexpr bool isValid() const {
264         return offset <= ~size;
265     }
266 
267     inline constexpr operator bool() const {
268         return isValid() && !isEmpty();
269     }
270 
271     inline constexpr bool operator!() const {
272         return !bool(*this);
273     }
274 
275     C2_ALLOW_OVERFLOW
containsC2Segment276     inline constexpr bool contains(const C2Segment &other) const {
277         if (!isValid() || !other.isValid()) {
278             return false;
279         } else {
280             return offset <= other.offset
281                     && offset + size >= other.offset + other.size;
282         }
283     }
284 
285     inline constexpr bool operator==(const C2Segment &other) const {
286         if (!isValid()) {
287             return !other.isValid();
288         } else {
289             return offset == other.offset && size == other.size;
290         }
291     }
292 
293     inline constexpr bool operator!=(const C2Segment &other) const {
294         return !operator==(other);
295     }
296 
297     inline constexpr bool operator>=(const C2Segment &other) const {
298         return contains(other);
299     }
300 
301     inline constexpr bool operator>(const C2Segment &other) const {
302         return contains(other) && !operator==(other);
303     }
304 
305     inline constexpr bool operator<=(const C2Segment &other) const {
306         return other.contains(*this);
307     }
308 
309     inline constexpr bool operator<(const C2Segment &other) const {
310         return other.contains(*this) && !operator==(other);
311     }
312 
313     C2_ALLOW_OVERFLOW
endC2Segment314     inline constexpr uint32_t end() const {
315         return offset + size;
316     }
317 
318     C2_ALLOW_OVERFLOW
intersectC2Segment319     inline constexpr C2Segment intersect(const C2Segment &other) const {
320         return C2Segment(c2_max(offset, other.offset),
321                          c2_min(end(), other.end()) - c2_max(offset, other.offset));
322     }
323 
324     /** clamps end to offset if it overflows */
normalizeC2Segment325     inline constexpr C2Segment normalize() const {
326         return C2Segment(offset, c2_max(offset, end()) - offset);
327     }
328 
329     /** clamps end to max if it overflows */
saturateC2Segment330     inline constexpr C2Segment saturate() const {
331         return C2Segment(offset, c2_min(size, ~offset));
332     }
333 
334 };
335 
336 /**
337  * Common aspect for all objects that have a linear capacity.
338  */
339 class _C2LinearCapacityAspect {
340 /// \name Linear capacity interface
341 /// @{
342 public:
capacity()343     inline constexpr uint32_t capacity() const { return mCapacity; }
344 
C2Segment()345     inline constexpr operator C2Segment() const {
346         return C2Segment(0, mCapacity);
347     }
348 
349 protected:
350 
351 #if UINTPTR_MAX == 0xffffffff
352     static_assert(sizeof(size_t) == sizeof(uint32_t), "size_t is too big");
353 #else
354     static_assert(sizeof(size_t) > sizeof(uint32_t), "size_t is too small");
355     // explicitly disable construction from size_t
356     inline explicit _C2LinearCapacityAspect(size_t capacity) = delete;
357 #endif
358 
_C2LinearCapacityAspect(uint32_t capacity)359     inline explicit constexpr _C2LinearCapacityAspect(uint32_t capacity)
360       : mCapacity(capacity) { }
361 
_C2LinearCapacityAspect(const _C2LinearCapacityAspect * parent)362     inline explicit constexpr _C2LinearCapacityAspect(const _C2LinearCapacityAspect *parent)
363         : mCapacity(parent == nullptr ? 0 : parent->capacity()) { }
364 
365 private:
366     uint32_t mCapacity;
367 /// @}
368 };
369 
370 /**
371  * Aspect for objects that have a linear range inside a linear capacity.
372  *
373  * This class is copiable.
374  */
375 class _C2LinearRangeAspect : public _C2LinearCapacityAspect {
376 /// \name Linear range interface
377 /// @{
378 public:
offset()379     inline constexpr uint32_t offset() const { return mOffset; }
endOffset()380     inline constexpr uint32_t endOffset() const { return mOffset + mSize; }
size()381     inline constexpr uint32_t size() const { return mSize; }
382 
C2Segment()383     inline constexpr operator C2Segment() const {
384         return C2Segment(mOffset, mSize);
385     }
386 
387 private:
388     // subrange of capacity [0, capacity] & [size, size + offset]
_C2LinearRangeAspect(uint32_t capacity_,size_t offset,size_t size)389     inline constexpr _C2LinearRangeAspect(uint32_t capacity_, size_t offset, size_t size)
390         : _C2LinearCapacityAspect(capacity_),
391           mOffset(c2_min(offset, capacity())),
392           mSize(c2_min(size, capacity() - mOffset)) {
393     }
394 
395 protected:
396     // copy constructor (no error check)
_C2LinearRangeAspect(const _C2LinearRangeAspect & other)397     inline constexpr _C2LinearRangeAspect(const _C2LinearRangeAspect &other)
398         : _C2LinearCapacityAspect(other.capacity()),
399           mOffset(other.offset()),
400           mSize(other.size()) {
401     }
402 
403     // parent capacity range [0, capacity]
_C2LinearRangeAspect(const _C2LinearCapacityAspect * parent)404     inline constexpr explicit _C2LinearRangeAspect(const _C2LinearCapacityAspect *parent)
405         : _C2LinearCapacityAspect(parent),
406           mOffset(0),
407           mSize(capacity()) {
408     }
409 
410     // subrange of parent capacity [0, capacity] & [size, size + offset]
_C2LinearRangeAspect(const _C2LinearCapacityAspect * parent,size_t offset,size_t size)411     inline constexpr _C2LinearRangeAspect(const _C2LinearCapacityAspect *parent, size_t offset, size_t size)
412         : _C2LinearCapacityAspect(parent),
413           mOffset(c2_min(offset, capacity())),
414           mSize(c2_min(size, capacity() - mOffset)) {
415     }
416 
417     // subsection of the parent's and [offset, offset + size] ranges
_C2LinearRangeAspect(const _C2LinearRangeAspect * parent,size_t offset,size_t size)418     inline constexpr _C2LinearRangeAspect(const _C2LinearRangeAspect *parent, size_t offset, size_t size)
419         : _C2LinearCapacityAspect(parent),
420           mOffset(c2_min(c2_max(offset, parent == nullptr ? 0 : parent->offset()), capacity())),
421           mSize(std::min(c2_min(size, parent == nullptr ? 0 : parent->size()), capacity() - mOffset)) {
422     }
423 
424 public:
childRange(size_t offset,size_t size)425     inline constexpr _C2LinearRangeAspect childRange(size_t offset, size_t size) const {
426         return _C2LinearRangeAspect(
427             mSize,
428             c2_min(c2_max(offset, mOffset), capacity()) - mOffset,
429             c2_min(c2_min(size, mSize), capacity() - c2_min(c2_max(offset, mOffset), capacity())));
430     }
431 
432     friend class _C2EditableLinearRangeAspect;
433     // invariants 0 <= mOffset <= mOffset + mSize <= capacity()
434     uint32_t mOffset;
435     uint32_t mSize;
436 /// @}
437 };
438 
439 /**
440  * Utility class for safe range calculations using size_t-s.
441  */
442 class C2LinearRange : public _C2LinearRangeAspect {
443 public:
C2LinearRange(const _C2LinearCapacityAspect & parent,size_t offset,size_t size)444     inline constexpr C2LinearRange(const _C2LinearCapacityAspect &parent, size_t offset, size_t size)
445         : _C2LinearRangeAspect(&parent, offset, size) { }
446 
C2LinearRange(const _C2LinearRangeAspect & parent,size_t offset,size_t size)447     inline constexpr C2LinearRange(const _C2LinearRangeAspect &parent, size_t offset, size_t size)
448         : _C2LinearRangeAspect(&parent, offset, size) { }
449 
intersect(size_t offset,size_t size)450     inline constexpr C2LinearRange intersect(size_t offset, size_t size) const {
451         return C2LinearRange(*this, offset, size);
452     }
453 };
454 
455 /**
456  * Utility class for simple and safe capacity and range construction.
457  */
458 class C2LinearCapacity : public _C2LinearCapacityAspect {
459 public:
C2LinearCapacity(size_t capacity)460     inline constexpr explicit C2LinearCapacity(size_t capacity)
461         : _C2LinearCapacityAspect(c2_min(capacity, std::numeric_limits<uint32_t>::max())) { }
462 
range(size_t offset,size_t size)463     inline constexpr C2LinearRange range(size_t offset, size_t size) const {
464         return C2LinearRange(*this, offset, size);
465     }
466 };
467 
468 /**
469  * Aspect for objects that have an editable linear range.
470  *
471  * This class is copiable.
472  */
473 class _C2EditableLinearRangeAspect : public _C2LinearRangeAspect {
474     using _C2LinearRangeAspect::_C2LinearRangeAspect;
475 
476 public:
477 /// \name Editable linear range interface
478 /// @{
479 
480     /**
481      * Sets the offset to |offset|, while trying to keep the end of the buffer unchanged (e.g.
482      * size will grow if offset is decreased, and may shrink if offset is increased.) Returns
483      * true if successful, which is equivalent to if 0 <= |offset| <= capacity().
484      *
485      * Note: setting offset and size will yield different result depending on the order of the
486      * operations. Always set offset first to ensure proper size.
487      */
setOffset(uint32_t offset)488     inline bool setOffset(uint32_t offset) {
489         if (offset > capacity()) {
490             return false;
491         }
492 
493         if (offset > mOffset + mSize) {
494             mSize = 0;
495         } else {
496             mSize = mOffset + mSize - offset;
497         }
498         mOffset = offset;
499         return true;
500     }
501 
502     /**
503      * Sets the size to |size|. Returns true if successful, which is equivalent to
504      * if 0 <= |size| <= capacity() - offset().
505      *
506      * Note: setting offset and size will yield different result depending on the order of the
507      * operations. Always set offset first to ensure proper size.
508      */
setSize(uint32_t size)509     inline bool setSize(uint32_t size) {
510         if (size > capacity() - mOffset) {
511             return false;
512         } else {
513             mSize = size;
514             return true;
515         }
516     }
517 
518     /**
519      * Sets the offset to |offset| with best effort. Same as setOffset() except that offset will
520      * be clamped to the buffer capacity.
521      *
522      * Note: setting offset and size (even using best effort) will yield different result depending
523      * on the order of the operations. Always set offset first to ensure proper size.
524      */
setOffset_be(uint32_t offset)525     inline void setOffset_be(uint32_t offset) {
526         (void)setOffset(c2_min(offset, capacity()));
527     }
528 
529     /**
530      * Sets the size to |size| with best effort. Same as setSize() except that the selected region
531      * will be clamped to the buffer capacity (e.g. size is clamped to [0, capacity() - offset()]).
532      *
533      * Note: setting offset and size (even using best effort) will yield different result depending
534      * on the order of the operations. Always set offset first to ensure proper size.
535      */
setSize_be(uint32_t size)536     inline void setSize_be(uint32_t size) {
537         mSize = c2_min(size, capacity() - mOffset);
538     }
539 /// @}
540 };
541 
542 /**************************************************************************************************
543   ALLOCATIONS
544 **************************************************************************************************/
545 
546 /// \ingroup allocator Allocation and memory placement
547 /// @{
548 
549 class C2LinearAllocation;
550 class C2GraphicAllocation;
551 
552 /**
553  *  Allocators are used by the framework to allocate memory (allocations) for buffers. They can
554  *  support either 1D or 2D allocations.
555  *
556  *  \note In theory they could support both, but in practice, we will use only one or the other.
557  *
558  *  Never constructed on stack.
559  *
560  *  Allocators are provided by vendors.
561  */
562 class C2Allocator {
563 public:
564     /**
565      * Allocator ID type.
566      */
567     typedef uint32_t id_t;
568     enum : id_t {
569         BAD_ID = 0xBADD, // invalid allocator ID
570     };
571 
572     /**
573      * Allocation types. This is a bitmask and is used in C2Allocator::Info
574      * to list the supported allocation types of an allocator.
575      */
576     enum type_t : uint32_t {
577         LINEAR  = 1 << 0, //
578         GRAPHIC = 1 << 1,
579     };
580 
581     /**
582      * Information about an allocator.
583      *
584      * Allocators don't have a query API so all queriable information is stored here.
585      */
586     struct Traits {
587         C2String name;              ///< allocator name
588         id_t id;                    ///< allocator ID
589         type_t supportedTypes;      ///< supported allocation types
590         C2MemoryUsage minimumUsage; ///< usage that is minimally required for allocations
591         C2MemoryUsage maximumUsage; ///< usage that is maximally allowed for allocations
592     };
593 
594     /**
595      * Returns the unique name of this allocator.
596      *
597      * This method MUST be "non-blocking" and return within 1ms.
598      *
599      * \return the name of this allocator.
600      * \retval an empty string if there was not enough memory to allocate the actual name.
601      */
602     virtual C2String getName() const = 0;
603 
604     /**
605      * Returns a unique ID for this allocator. This ID is used to get this allocator from the
606      * allocator store, and to identify this allocator across all processes.
607      *
608      * This method MUST be "non-blocking" and return within 1ms.
609      *
610      * \return a unique ID for this allocator.
611      */
612     virtual id_t getId() const = 0;
613 
614     /**
615      * Returns the allocator traits.
616      *
617      * This method MUST be "non-blocking" and return within 1ms.
618      *
619      * Allocators don't have a full-fledged query API, only this method.
620      *
621      * \return allocator information
622      */
623     virtual std::shared_ptr<const Traits> getTraits() const = 0;
624 
625     /**
626      * Allocates a 1D allocation of given |capacity| and |usage|. If successful, the allocation is
627      * stored in |allocation|. Otherwise, |allocation| is set to 'nullptr'.
628      *
629      * \param capacity      the size of requested allocation (the allocation could be slightly
630      *                      larger, e.g. to account for any system-required alignment)
631      * \param usage         the memory usage info for the requested allocation. \note that the
632      *                      returned allocation may be later used/mapped with different usage.
633      *                      The allocator should layout the buffer to be optimized for this usage,
634      *                      but must support any usage. One exception: protected buffers can
635      *                      only be used in a protected scenario.
636      * \param allocation    pointer to where the allocation shall be stored on success. nullptr
637      *                      will be stored here on failure
638      *
639      * \retval C2_OK        the allocation was successful
640      * \retval C2_NO_MEMORY not enough memory to complete the allocation
641      * \retval C2_TIMED_OUT the allocation timed out
642      * \retval C2_REFUSED   no permission to complete the allocation
643      * \retval C2_BAD_VALUE capacity or usage are not supported (invalid) (caller error)
644      * \retval C2_OMITTED   this allocator does not support 1D allocations
645      * \retval C2_CORRUPTED some unknown, unrecoverable error occurred during allocation
646      *                      (unexpected)
647      */
newLinearAllocation(uint32_t capacity __unused,C2MemoryUsage usage __unused,std::shared_ptr<C2LinearAllocation> * allocation)648     virtual c2_status_t newLinearAllocation(
649             uint32_t capacity __unused, C2MemoryUsage usage __unused,
650             std::shared_ptr<C2LinearAllocation> *allocation /* nonnull */) {
651         *allocation = nullptr;
652         return C2_OMITTED;
653     }
654 
655     /**
656      * (Re)creates a 1D allocation from a native |handle|. If successful, the allocation is stored
657      * in |allocation|. Otherwise, |allocation| is set to 'nullptr'.
658      *
659      * \param handle      the handle for the existing allocation. On success, the allocation will
660      *                    take ownership of |handle|.
661      * \param allocation  pointer to where the allocation shall be stored on success. nullptr
662      *                    will be stored here on failure
663      *
664      * \retval C2_OK        the allocation was recreated successfully
665      * \retval C2_NO_MEMORY not enough memory to recreate the allocation
666      * \retval C2_TIMED_OUT the recreation timed out (unexpected)
667      * \retval C2_REFUSED   no permission to recreate the allocation
668      * \retval C2_BAD_VALUE invalid handle (caller error)
669      * \retval C2_OMITTED   this allocator does not support 1D allocations
670      * \retval C2_CORRUPTED some unknown, unrecoverable error occurred during allocation
671      *                      (unexpected)
672      */
priorLinearAllocation(const C2Handle * handle __unused,std::shared_ptr<C2LinearAllocation> * allocation)673     virtual c2_status_t priorLinearAllocation(
674             const C2Handle *handle __unused,
675             std::shared_ptr<C2LinearAllocation> *allocation /* nonnull */) {
676         *allocation = nullptr;
677         return C2_OMITTED;
678     }
679 
680     /**
681      * Allocates a 2D allocation of given |width|, |height|, |format| and |usage|. If successful,
682      * the allocation is stored in |allocation|. Otherwise, |allocation| is set to 'nullptr'.
683      *
684      * \param width         the width of requested allocation (the allocation could be slightly
685      *                      larger, e.g. to account for any system-required alignment)
686      * \param height        the height of requested allocation (the allocation could be slightly
687      *                      larger, e.g. to account for any system-required alignment)
688      * \param format        the pixel format of requested allocation. This could be a vendor
689      *                      specific format.
690      * \param usage         the memory usage info for the requested allocation. \note that the
691      *                      returned allocation may be later used/mapped with different usage.
692      *                      The allocator should layout the buffer to be optimized for this usage,
693      *                      but must support any usage. One exception: protected buffers can
694      *                      only be used in a protected scenario.
695      * \param allocation    pointer to where the allocation shall be stored on success. nullptr
696      *                      will be stored here on failure
697      *
698      * \retval C2_OK        the allocation was successful
699      * \retval C2_NO_MEMORY not enough memory to complete the allocation
700      * \retval C2_TIMED_OUT the allocation timed out
701      * \retval C2_REFUSED   no permission to complete the allocation
702      * \retval C2_BAD_VALUE width, height, format or usage are not supported (invalid) (caller error)
703      * \retval C2_OMITTED   this allocator does not support 2D allocations
704      * \retval C2_CORRUPTED some unknown, unrecoverable error occurred during allocation
705      *                      (unexpected)
706      */
newGraphicAllocation(uint32_t width __unused,uint32_t height __unused,uint32_t format __unused,C2MemoryUsage usage __unused,std::shared_ptr<C2GraphicAllocation> * allocation)707     virtual c2_status_t newGraphicAllocation(
708             uint32_t width __unused, uint32_t height __unused, uint32_t format __unused,
709             C2MemoryUsage usage __unused,
710             std::shared_ptr<C2GraphicAllocation> *allocation /* nonnull */) {
711         *allocation = nullptr;
712         return C2_OMITTED;
713     }
714 
715     /**
716      * (Re)creates a 2D allocation from a native handle.  If successful, the allocation is stored
717      * in |allocation|. Otherwise, |allocation| is set to 'nullptr'.
718      *
719      * \param handle      the handle for the existing allocation. On success, the allocation will
720      *                    take ownership of |handle|.
721      * \param allocation  pointer to where the allocation shall be stored on success. nullptr
722      *                    will be stored here on failure
723      *
724      * \retval C2_OK        the allocation was recreated successfully
725      * \retval C2_NO_MEMORY not enough memory to recreate the allocation
726      * \retval C2_TIMED_OUT the recreation timed out (unexpected)
727      * \retval C2_REFUSED   no permission to recreate the allocation
728      * \retval C2_BAD_VALUE invalid handle (caller error)
729      * \retval C2_OMITTED   this allocator does not support 2D allocations
730      * \retval C2_CORRUPTED some unknown, unrecoverable error occurred during recreation
731      *                      (unexpected)
732      */
priorGraphicAllocation(const C2Handle * handle __unused,std::shared_ptr<C2GraphicAllocation> * allocation)733     virtual c2_status_t priorGraphicAllocation(
734             const C2Handle *handle __unused,
735             std::shared_ptr<C2GraphicAllocation> *allocation /* nonnull */) {
736         *allocation = nullptr;
737         return C2_OMITTED;
738     }
739 
740     virtual ~C2Allocator() = default;
741 
742     /**
743      * Returns a true if the handle looks valid for this allocator.
744      *
745      * It does not actually validate that the handle represents a valid allocation (by this
746      * allocator), only that the handle could have been returned by this allocator. As such,
747      * multiple allocators may return true for looksValid for the same handle.
748      *
749      * This method MUST be "non-blocking", MUST not access kernel and/or device drivers, and
750      * return within 1us.
751      *
752      * \param handle      the handle for an existing allocation (possibly from another
753      *                    allocator)
754      */
755     virtual bool checkHandle(const C2Handle *const handle) const = 0;
756 
757 protected:
758     C2Allocator() = default;
759 };
760 
761 /**
762  * \ingroup linear allocator
763  * 1D allocation interface.
764  */
765 class C2LinearAllocation : public _C2LinearCapacityAspect {
766 public:
767     /**
768      * Maps a portion of an allocation starting from |offset| with |size| into local process memory.
769      * Stores the starting address into |addr|, or NULL if the operation was unsuccessful.
770      * |fence| will contain an acquire sync fence object. If it is already
771      * safe to access the buffer contents, then it will contain an empty (already fired) fence.
772      *
773      * \param offset        starting position of the portion to be mapped (this does not have to
774      *                      be page aligned)
775      * \param size          size of the portion to be mapped (this does not have to be page
776      *                      aligned)
777      * \param usage         the desired usage. \todo this must be kSoftwareRead and/or
778      *                      kSoftwareWrite.
779      * \param fence         a pointer to a fence object if an async mapping is requested. If
780      *                      not-null, and acquire fence will be stored here on success, or empty
781      *                      fence on failure. If null, the mapping will be synchronous.
782      * \param addr          a pointer to where the starting address of the mapped portion will be
783      *                      stored. On failure, nullptr will be stored here.
784      *
785      * \todo Only one portion can be mapped at the same time - this is true for gralloc, but there
786      *       is no need for this for 1D buffers.
787      * \todo Do we need to support sync operation as we could just wait for the fence?
788      *
789      * \retval C2_OK        the operation was successful
790      * \retval C2_REFUSED   no permission to map the portion
791      * \retval C2_TIMED_OUT the operation timed out
792      * \retval C2_DUPLICATE if the allocation is already mapped.
793      * \retval C2_NO_MEMORY not enough memory to complete the operation
794      * \retval C2_BAD_VALUE the parameters (offset/size) are invalid or outside the allocation, or
795      *                      the usage flags are invalid (caller error)
796      * \retval C2_CORRUPTED some unknown error prevented the operation from completing (unexpected)
797      */
798     virtual c2_status_t map(
799             size_t offset, size_t size, C2MemoryUsage usage, C2Fence *fence /* nullable */,
800             void **addr /* nonnull */) = 0;
801 
802     /**
803      * Unmaps a portion of an allocation at |addr| with |size|. These must be parameters previously
804      * passed to and returned by |map|; otherwise, this operation is a no-op.
805      *
806      * \param addr          starting address of the mapped region
807      * \param size          size of the mapped region
808      * \param fence         a pointer to a fence object if an async unmapping is requested. If
809      *                      not-null, a release fence will be stored here on success, or empty fence
810      *                      on failure. This fence signals when the original allocation contains
811      *                      all changes that happened to the mapped region. If null, the unmapping
812      *                      will be synchronous.
813      *
814      * \retval C2_OK        the operation was successful
815      * \retval C2_TIMED_OUT the operation timed out
816      * \retval C2_NOT_FOUND if the allocation was not mapped previously.
817      * \retval C2_BAD_VALUE the parameters (addr/size) do not correspond to previously mapped
818      *                      regions (caller error)
819      * \retval C2_CORRUPTED some unknown error prevented the operation from completing (unexpected)
820      * \retval C2_REFUSED   no permission to unmap the portion (unexpected - system)
821      */
822     virtual c2_status_t unmap(void *addr, size_t size, C2Fence *fence /* nullable */) = 0;
823 
824     /**
825      * Returns the allocator ID for this allocation. This is useful to put the handle into context.
826      */
827     virtual C2Allocator::id_t getAllocatorId() const = 0;
828 
829     /**
830      * Returns a pointer to the allocation handle.
831      */
832     virtual const C2Handle *handle() const = 0;
833 
834     /**
835      * Returns true if this is the same allocation as |other|.
836      */
837     virtual bool equals(const std::shared_ptr<C2LinearAllocation> &other) const = 0;
838 
839 protected:
840     // \todo should we limit allocation directly?
C2LinearAllocation(size_t capacity)841     C2LinearAllocation(size_t capacity) : _C2LinearCapacityAspect(c2_min(capacity, UINT32_MAX)) {}
842     virtual ~C2LinearAllocation() = default;
843 };
844 
845 class C2CircularBlock;
846 class C2LinearBlock;
847 class C2GraphicBlock;
848 
849 /**
850  *  Block pools are used by components to obtain output buffers in an efficient way. They can
851  *  support either linear (1D), circular (1D) or graphic (2D) blocks.
852  *
853  *  Block pools decouple the recycling of memory/allocations from the components. They are meant to
854  *  be an opaque service (there are no public APIs other than obtaining blocks) provided by the
855  *  platform. Block pools are also meant to decouple allocations from memory used by buffers. This
856  *  is accomplished by allowing pools to allot multiple memory 'blocks' on a single allocation. As
857  *  their name suggest, block pools maintain a pool of memory blocks. When a component asks for
858  *  a memory block, pools will try to return a free memory block already in the pool. If no such
859  *  block exists, they will allocate memory using the backing allocator and allot a block on that
860  *  allocation. When blocks are no longer used in the system, they are recycled back to the block
861  *  pool and are available as free blocks.
862  *
863  *  Never constructed on stack.
864  */
865 class C2BlockPool {
866 public:
867     /**
868      * Block pool ID type.
869      */
870     typedef uint64_t local_id_t;
871 
872     enum : local_id_t {
873         BASIC_LINEAR = 0,  ///< ID of basic (unoptimized) block pool for fetching 1D blocks
874         BASIC_GRAPHIC = 1, ///< ID of basic (unoptimized) block pool for fetching 2D blocks
875         PLATFORM_START = 0x10,
876     };
877 
878     /**
879      * Returns the ID for this block pool. This ID is used to get this block pool from the platform.
880      * It is only valid in the current process.
881      *
882      * This method MUST be "non-blocking" and return within 1ms.
883      *
884      * \return a local ID for this block pool.
885      */
886     virtual local_id_t getLocalId() const = 0;
887 
888     /**
889      * Returns the ID of the backing allocator of this block pool.
890      *
891      * This method MUST be "non-blocking" and return within 1ms.
892      *
893      * \return the ID of the backing allocator of this block pool.
894      */
895     virtual C2Allocator::id_t getAllocatorId() const = 0;
896 
897     /**
898      * Obtains a linear writeable block of given |capacity| and |usage|. If successful, the
899      * block is stored in |block|. Otherwise, |block| is set to 'nullptr'.
900      *
901      * \note The returned buffer may have a larger capacity than requested. In this case the
902      * larger (returned) capacity may be fully used.
903      *
904      * \note There is no guarantee on the alignedness of the returned block. The only guarantee is
905      * that its capacity is equal to or larger than the requested capacity.
906      *
907      * \param capacity the size of requested block.
908      * \param usage    the memory usage info for the requested block. Returned blocks will be
909      *                 optimized for this usage, but may be used with any usage. One exception:
910      *                 protected blocks/buffers can only be used in a protected scenario.
911      * \param block    pointer to where the obtained block shall be stored on success. nullptr will
912      *                 be stored here on failure
913      *
914      * \retval C2_OK        the operation was successful
915      * \retval C2_NO_MEMORY not enough memory to complete any required allocation
916      * \retval C2_TIMED_OUT the operation timed out
917      * \retval C2_BLOCKING  the operation is blocked
918      * \retval C2_REFUSED   no permission to complete any required allocation
919      * \retval C2_BAD_VALUE capacity or usage are not supported (invalid) (caller error)
920      * \retval C2_OMITTED   this pool does not support linear blocks
921      * \retval C2_CORRUPTED some unknown, unrecoverable error occurred during operation
922      *                      (unexpected)
923      */
fetchLinearBlock(uint32_t capacity __unused,C2MemoryUsage usage __unused,std::shared_ptr<C2LinearBlock> * block)924     virtual c2_status_t fetchLinearBlock(
925             uint32_t capacity __unused, C2MemoryUsage usage __unused,
926             std::shared_ptr<C2LinearBlock> *block /* nonnull */) {
927         *block = nullptr;
928         return C2_OMITTED;
929     }
930 
931     /**
932      * Obtains a circular writeable block of given |capacity| and |usage|. If successful, the
933      * block is stored in |block|. Otherwise, |block| is set to 'nullptr'.
934      *
935      * \note The returned buffer may have a larger capacity than requested. In this case the
936      * larger (returned) capacity may be fully used.
937      *
938      * \note There is no guarantee on the alignedness of the returned block. The only guarantee is
939      * that its capacity is equal to or larger than the requested capacity.
940      *
941      * \param capacity the size of requested circular block. (note: the size of the obtained
942      *                 block could be slightly larger, e.g. to accommodate any system-required
943      *                 alignment)
944      * \param usage    the memory usage info for the requested block. Returned blocks will be
945      *                 optimized for this usage, but may be used with any usage. One exception:
946      *                 protected blocks/buffers can only be used in a protected scenario.
947      * \param block    pointer to where the obtained block shall be stored on success. nullptr
948      *                 will be stored here on failure
949      *
950      * \retval C2_OK        the operation was successful
951      * \retval C2_NO_MEMORY not enough memory to complete any required allocation
952      * \retval C2_TIMED_OUT the operation timed out
953      * \retval C2_BLOCKING  the operation is blocked
954      * \retval C2_REFUSED   no permission to complete any required allocation
955      * \retval C2_BAD_VALUE capacity or usage are not supported (invalid) (caller error)
956      * \retval C2_OMITTED   this pool does not support circular blocks
957      * \retval C2_CORRUPTED some unknown, unrecoverable error occurred during operation
958      *                      (unexpected)
959      */
fetchCircularBlock(uint32_t capacity __unused,C2MemoryUsage usage __unused,std::shared_ptr<C2CircularBlock> * block)960     virtual c2_status_t fetchCircularBlock(
961             uint32_t capacity __unused, C2MemoryUsage usage __unused,
962             std::shared_ptr<C2CircularBlock> *block /* nonnull */) {
963         *block = nullptr;
964         return C2_OMITTED;
965     }
966 
967     /**
968      * Obtains a 2D graphic block of given |width|, |height|, |format| and |usage|. If successful,
969      * the block is stored in |block|. Otherwise, |block| is set to 'nullptr'.
970      *
971      * \note The returned buffer may have a larger capacity (width and height) than requested. In
972      * this case the larger (returned) capacity may be fully used.
973      *
974      * \note There is no guarantee on the alignedness of the returned block. The only guarantee is
975      * that its capacity is equal to or larger than the requested capacity (width and height).
976      *
977      * \param width  the width of requested block (the obtained block could be slightly larger, e.g.
978      *               to accommodate any system-required alignment)
979      * \param height the height of requested block (the obtained block could be slightly larger,
980      *               e.g. to accommodate any system-required alignment)
981      * \param format the pixel format of requested block. This could be a vendor specific format.
982      * \param usage  the memory usage info for the requested block. Returned blocks will be
983      *               optimized for this usage, but may be used with any usage. One exception:
984      *               protected blocks/buffers can only be used in a protected scenario.
985      * \param block  pointer to where the obtained block shall be stored on success. nullptr
986      *               will be stored here on failure
987      *
988      * \retval C2_OK        the operation was successful
989      * \retval C2_NO_MEMORY not enough memory to complete any required allocation
990      * \retval C2_TIMED_OUT the operation timed out
991      * \retval C2_BLOCKING  the operation is blocked
992      * \retval C2_REFUSED   no permission to complete any required allocation
993      * \retval C2_BAD_VALUE width, height, format or usage are not supported (invalid) (caller
994      *                      error)
995      * \retval C2_OMITTED   this pool does not support 2D blocks
996      * \retval C2_CORRUPTED some unknown, unrecoverable error occurred during operation
997      *                      (unexpected)
998      */
fetchGraphicBlock(uint32_t width __unused,uint32_t height __unused,uint32_t format __unused,C2MemoryUsage usage __unused,std::shared_ptr<C2GraphicBlock> * block)999     virtual c2_status_t fetchGraphicBlock(
1000             uint32_t width __unused, uint32_t height __unused, uint32_t format __unused,
1001             C2MemoryUsage usage __unused,
1002             std::shared_ptr<C2GraphicBlock> *block /* nonnull */) {
1003         *block = nullptr;
1004         return C2_OMITTED;
1005     }
1006 
1007     virtual ~C2BlockPool() = default;
1008 
1009     /**
1010      * Blocking fetch for linear block. Obtains a linear writable block of given |capacity|
1011      * and |usage|. If a block can be successfully obtained, the block is stored in |block|,
1012      * |fence| is set to a null-fence and C2_OK is returned.
1013      *
1014      * If a block cannot be temporarily obtained, |block| is set to nullptr, a waitable fence
1015      * is stored into |fence| and C2_BLOCKING is returned.
1016      *
1017      * Otherwise, |block| is set to nullptr and |fence| is set to a null-fence. The waitable
1018      * fence is signalled when the temporary restriction on fetch is lifted.
1019      * e.g. more memory is available to fetch because some meomory or prior blocks were released.
1020      *
1021      * \note The returned buffer may have a larger capacity than requested. In this case the
1022      * larger (returned) capacity may be fully used.
1023      *
1024      * \note There is no guarantee on the alignedness of the returned block. The only guarantee is
1025      * that its capacity is equal to or larger than the requested capacity.
1026      *
1027      * \param capacity the size of requested block.
1028      * \param usage    the memory usage info for the requested block. Returned blocks will be
1029      *                 optimized for this usage, but may be used with any usage. One exception:
1030      *                 protected blocks/buffers can only be used in a protected scenario.
1031      * \param block    pointer to where the obtained block shall be stored on success. nullptr will
1032      *                 be stored here on failure
1033      * \param fence    pointer to where the fence shall be stored on C2_BLOCKING error.
1034      *
1035      * \retval C2_OK        the operation was successful
1036      * \retval C2_NO_MEMORY not enough memory to complete any required allocation
1037      * \retval C2_TIMED_OUT the operation timed out
1038      * \retval C2_BLOCKING  the operation is blocked
1039      * \retval C2_REFUSED   no permission to complete any required allocation
1040      * \retval C2_BAD_VALUE capacity or usage are not supported (invalid) (caller error)
1041      * \retval C2_OMITTED   this pool does not support linear blocks nor fence.
1042      * \retval C2_CORRUPTED some unknown, unrecoverable error occurred during operation
1043      *                      (unexpected)
1044      */
fetchLinearBlock(uint32_t capacity __unused,C2MemoryUsage usage __unused,std::shared_ptr<C2LinearBlock> * block,C2Fence * fence)1045     virtual c2_status_t fetchLinearBlock(
1046             uint32_t capacity __unused, C2MemoryUsage usage __unused,
1047             std::shared_ptr<C2LinearBlock> *block /* nonnull */,
1048             C2Fence *fence /* nonnull */) {
1049         *block = nullptr;
1050         (void) fence;
1051         return C2_OMITTED;
1052     }
1053 
1054     /**
1055      * Blocking fetch for 2D graphic block. Obtains a 2D graphic writable block of given |capacity|
1056      * and |usage|. If a block can be successfully obtained, the block is stored in |block|,
1057      * |fence| is set to a null-fence and C2_OK is returned.
1058      *
1059      * If a block cannot be temporarily obtained, |block| is set to nullptr, a waitable fence
1060      * is stored into |fence| and C2_BLOCKING is returned.
1061      *
1062      * Otherwise, |block| is set to nullptr and |fence| is set to a null-fence. The waitable
1063      * fence is signalled when the temporary restriction on fetch is lifted.
1064      * e.g. more memory is available to fetch because some meomory or prior blocks were released.
1065      *
1066      * \note The returned buffer may have a larger capacity (width and height) than requested. In
1067      * this case the larger (returned) capacity may be fully used.
1068      *
1069      * \note There is no guarantee on the alignedness of the returned block. The only guarantee is
1070      * that its capacity is equal to or larger than the requested capacity (width and height).
1071      *
1072      * \param width  the width of requested block (the obtained block could be slightly larger, e.g.
1073      *               to accommodate any system-required alignment)
1074      * \param height the height of requested block (the obtained block could be slightly larger,
1075      *               e.g. to accommodate any system-required alignment)
1076      * \param format the pixel format of requested block. This could be a vendor specific format.
1077      * \param usage  the memory usage info for the requested block. Returned blocks will be
1078      *               optimized for this usage, but may be used with any usage. One exception:
1079      *               protected blocks/buffers can only be used in a protected scenario.
1080      * \param block  pointer to where the obtained block shall be stored on success. nullptr
1081      *               will be stored here on failure
1082      * \param fence  pointer to where the fence shall be stored on C2_BLOCKING error.
1083      *
1084      * \retval C2_OK        the operation was successful
1085      * \retval C2_NO_MEMORY not enough memory to complete any required allocation
1086      * \retval C2_TIMED_OUT the operation timed out
1087      * \retval C2_BLOCKING  the operation is blocked
1088      * \retval C2_REFUSED   no permission to complete any required allocation
1089      * \retval C2_BAD_VALUE width, height, format or usage are not supported (invalid) (caller
1090      *                      error)
1091      * \retval C2_OMITTED   this pool does not support 2D blocks
1092      * \retval C2_CORRUPTED some unknown, unrecoverable error occurred during operation
1093      *                      (unexpected)
1094      */
fetchGraphicBlock(uint32_t width __unused,uint32_t height __unused,uint32_t format __unused,C2MemoryUsage usage __unused,std::shared_ptr<C2GraphicBlock> * block,C2Fence * fence)1095     virtual c2_status_t fetchGraphicBlock(
1096             uint32_t width __unused, uint32_t height __unused, uint32_t format __unused,
1097             C2MemoryUsage usage __unused,
1098             std::shared_ptr<C2GraphicBlock> *block /* nonnull */,
1099             C2Fence *fence /* nonnull */) {
1100         *block = nullptr;
1101         (void) fence;
1102         return C2_OMITTED;
1103     }
1104 protected:
1105     C2BlockPool() = default;
1106 };
1107 
1108 /// @}
1109 
1110 // ================================================================================================
1111 //  BLOCKS
1112 // ================================================================================================
1113 
1114 /**
1115  * Blocks are sections of allocations. They can be either 1D or 2D.
1116  */
1117 
1118 class C2LinearAllocation;
1119 
1120 /**
1121  * A 1D block.
1122  *
1123  * \note capacity() is not meaningful for users of blocks; instead size() is the capacity of the
1124  * usable portion. Use and offset() and size() if accessing the block directly through its handle
1125  * to represent the allotted range of the underlying allocation to this block.
1126  */
1127 class C2Block1D : public _C2LinearRangeAspect {
1128 public:
1129     /**
1130      * Returns the underlying handle for this allocation.
1131      *
1132      * \note that the block and its block pool has shared ownership of the handle
1133      *       and if all references to the block are released, the underlying block
1134      *       allocation may get reused even if a client keeps a clone of this handle.
1135      */
1136     const C2Handle *handle() const;
1137 
1138     /**
1139      * Returns the allocator's ID that created the underlying allocation for this block. This
1140      * provides the context for understanding the handle.
1141      */
1142     C2Allocator::id_t getAllocatorId() const;
1143 
1144 protected:
1145     class Impl;
1146     /** construct a block. */
1147     C2Block1D(std::shared_ptr<Impl> impl, const _C2LinearRangeAspect &range);
1148 
1149     friend struct _C2BlockFactory;
1150     std::shared_ptr<Impl> mImpl;
1151 };
1152 
1153 /**
1154  * Read view provides read-only access for a linear memory segment.
1155  *
1156  * This class is copiable.
1157  */
1158 class C2ReadView : public _C2LinearCapacityAspect {
1159 public:
1160     /**
1161      * \return pointer to the start of the block or nullptr on error.
1162      *         This pointer is only valid during the lifetime of this view or until it is released.
1163      */
1164     const uint8_t *data() const;
1165 
1166     /**
1167      * Returns a portion of this view.
1168      *
1169      * \param offset  the start offset of the portion. \note This is clamped to the capacity of this
1170      *              view.
1171      * \param size    the size of the portion. \note This is clamped to the remaining data from offset.
1172      *
1173      * \return a read view containing a portion of this view
1174      */
1175     C2ReadView subView(size_t offset, size_t size) const;
1176 
1177     /**
1178      * \return error during the creation/mapping of this view.
1179      */
1180     c2_status_t error() const;
1181 
1182     /**
1183      * Releases this view. This sets error to C2_NO_INIT.
1184      */
1185     //void release();
1186 
1187 protected:
1188     class Impl;
1189     C2ReadView(std::shared_ptr<Impl> impl, uint32_t offset, uint32_t size);
1190     explicit C2ReadView(c2_status_t error);
1191 
1192 private:
1193     friend struct _C2BlockFactory;
1194     std::shared_ptr<Impl> mImpl;
1195     uint32_t mOffset; /**< offset into the linear block backing this read view */
1196 };
1197 
1198 /**
1199  * Write view provides read/write access for a linear memory segment.
1200  *
1201  * This class is copiable. \todo movable only?
1202  */
1203 class C2WriteView : public _C2EditableLinearRangeAspect {
1204 public:
1205     /**
1206      * Start of the block.
1207      *
1208      * \return pointer to the start of the block or nullptr on error.
1209      *         This pointer is only valid during the lifetime of this view or until it is released.
1210      */
1211     uint8_t *base();
1212 
1213     /**
1214      * \return pointer to the block at the current offset or nullptr on error.
1215      *         This pointer is only valid during the lifetime of this view or until it is released.
1216      */
1217     uint8_t *data();
1218 
1219     /**
1220      * \return error during the creation/mapping of this view.
1221      */
1222     c2_status_t error() const;
1223 
1224     /**
1225      * Releases this view. This sets error to C2_NO_INIT.
1226      */
1227     //void release();
1228 
1229 protected:
1230     class Impl;
1231     C2WriteView(std::shared_ptr<Impl> impl);
1232     explicit C2WriteView(c2_status_t error);
1233 
1234 private:
1235     friend struct _C2BlockFactory;
1236     std::shared_ptr<Impl> mImpl;
1237 };
1238 
1239 /**
1240  * A constant (read-only) linear block (portion of an allocation) with an acquire fence.
1241  * Blocks are unmapped when created, and can be mapped into a read view on demand.
1242  *
1243  * This class is copiable and contains a reference to the allocation that it is based on.
1244  */
1245 class C2ConstLinearBlock : public C2Block1D {
1246 public:
1247     /**
1248      * Maps this block into memory and returns a read view for it.
1249      *
1250      * \return a read view for this block.
1251      */
1252     C2Acquirable<C2ReadView> map() const;
1253 
1254     /**
1255      * Returns a portion of this block.
1256      *
1257      * \param offset  the start offset of the portion. \note This is clamped to the capacity of this
1258      *              block.
1259      * \param size    the size of the portion. \note This is clamped to the remaining data from offset.
1260      *
1261      * \return a constant linear block containing a portion of this block
1262      */
1263     C2ConstLinearBlock subBlock(size_t offset, size_t size) const;
1264 
1265     /**
1266      * Returns the acquire fence for this block.
1267      *
1268      * \return a fence that must be waited on before reading the block.
1269      */
fence()1270     C2Fence fence() const { return mFence; }
1271 
1272 protected:
1273     C2ConstLinearBlock(std::shared_ptr<Impl> impl, const _C2LinearRangeAspect &range, C2Fence mFence);
1274 
1275 private:
1276     friend struct _C2BlockFactory;
1277     C2Fence mFence;
1278 };
1279 
1280 /**
1281  * Linear block is a writeable 1D block. Once written, it can be shared in whole or in parts with
1282  * consumers/readers as read-only const linear block(s).
1283  */
1284 class C2LinearBlock : public C2Block1D {
1285 public:
1286     /**
1287      * Maps this block into memory and returns a write view for it.
1288      *
1289      * \return a write view for this block.
1290      */
1291     C2Acquirable<C2WriteView> map();
1292 
1293     /**
1294      * Creates a read-only const linear block for a portion of this block; optionally protected
1295      * by an acquire fence. There are two ways to use this:
1296      *
1297      * 1) share ready block after writing data into the block. In this case no fence shall be
1298      *    supplied, and the block shall not be modified after calling this method.
1299      * 2) share block metadata before actually (finishing) writing the data into the block. In
1300      *    this case a fence must be supplied that will be triggered when the data is written.
1301      *    The block shall be modified only until firing the event for the fence.
1302      */
1303     C2ConstLinearBlock share(size_t offset, size_t size, C2Fence fence);
1304 
1305 protected:
1306     C2LinearBlock(std::shared_ptr<Impl> impl, const _C2LinearRangeAspect &range);
1307 
1308     friend struct _C2BlockFactory;
1309 };
1310 
1311 /// @}
1312 
1313 /**************************************************************************************************
1314   CIRCULAR BLOCKS AND VIEWS
1315 **************************************************************************************************/
1316 
1317 /// \defgroup circular Circular buffer support
1318 /// @{
1319 
1320 /**
1321  * Circular blocks can be used to share data between a writer and a reader (and/or other consumers)-
1322  * in a memory-efficient way by reusing a section of memory. Circular blocks are a bit more complex
1323  * than single reader/single writer schemes to facilitate block-based consuming of data.
1324  *
1325  * They can operate in two modes:
1326  *
1327  * 1) one writer that creates blocks to be consumed (this model can be used by components)
1328  *
1329  * 2) one writer that writes continuously, and one reader that can creates blocks to be consumed
1330  *    by further recipients (this model is used by the framework, and cannot be used by components.)
1331  *
1332  * Circular blocks have four segments with running pointers:
1333  *  - reserved: data reserved and available for the writer
1334  *  - committed: data committed by the writer and available to the reader (if present)
1335  *  - used: data used by consumers (if present)
1336  *  - available: unused data available to be reserved
1337  */
1338 class C2CircularBlock : public C2Block1D {
1339     // TODO: add methods
1340 
1341 private:
1342     size_t mReserved __unused;   // end of reserved section
1343     size_t mCommitted __unused;  // end of committed section
1344     size_t mUsed __unused;       // end of used section
1345     size_t mFree __unused;       // end of free section
1346 };
1347 
1348 class _C2CircularBlockSegment : public _C2LinearCapacityAspect {
1349 public:
1350     /**
1351      * Returns the available size for this segment.
1352      *
1353      * \return currently available size for this segment
1354      */
1355     size_t available() const;
1356 
1357     /**
1358      * Reserve some space for this segment from its current start.
1359      *
1360      * \param size    desired space in bytes
1361      * \param fence   a pointer to an acquire fence. If non-null, the reservation is asynchronous and
1362      *              a fence will be stored here that will be signaled when the reservation is
1363      *              complete. If null, the reservation is synchronous.
1364      *
1365      * \retval C2_OK            the space was successfully reserved
1366      * \retval C2_NO_MEMORY     the space requested cannot be reserved
1367      * \retval C2_TIMED_OUT     the reservation timed out \todo when?
1368      * \retval C2_CORRUPTED     some unknown error prevented reserving space. (unexpected)
1369      */
1370     c2_status_t reserve(size_t size, C2Fence *fence /* nullable */);
1371 
1372     /**
1373      * Abandons a portion of this segment. This will move to the beginning of this segment.
1374      *
1375      * \note This methods is only allowed if this segment is producing blocks.
1376      *
1377      * \param size    number of bytes to abandon
1378      *
1379      * \retval C2_OK            the data was successfully abandoned
1380      * \retval C2_TIMED_OUT     the operation timed out (unexpected)
1381      * \retval C2_CORRUPTED     some unknown error prevented abandoning the data (unexpected)
1382      */
1383     c2_status_t abandon(size_t size);
1384 
1385     /**
1386      * Share a portion as block(s) with consumers (these are moved to the used section).
1387      *
1388      * \note This methods is only allowed if this segment is producing blocks.
1389      * \note Share does not move the beginning of the segment. (\todo add abandon/offset?)
1390      *
1391      * \param size    number of bytes to share
1392      * \param fence   fence to be used for the section
1393      * \param blocks  vector where the blocks of the section are appended to
1394      *
1395      * \retval C2_OK            the portion was successfully shared
1396      * \retval C2_NO_MEMORY     not enough memory to share the portion
1397      * \retval C2_TIMED_OUT     the operation timed out (unexpected)
1398      * \retval C2_CORRUPTED     some unknown error prevented sharing the data (unexpected)
1399      */
1400     c2_status_t share(size_t size, C2Fence fence, std::vector<C2ConstLinearBlock> &blocks);
1401 
1402     /**
1403      * Returns the beginning offset of this segment from the start of this circular block.
1404      *
1405      * @return beginning offset
1406      */
1407     size_t begin();
1408 
1409     /**
1410      * Returns the end offset of this segment from the start of this circular block.
1411      *
1412      * @return end offset
1413      */
1414     size_t end();
1415 };
1416 
1417 /**
1418  * A circular write-view is a dynamic mapped view for a segment of a circular block. Care must be
1419  * taken when using this view so that only the section owned by the segment is modified.
1420  */
1421 class C2CircularWriteView : public _C2LinearCapacityAspect {
1422 public:
1423     /**
1424      * Start of the circular block.
1425      * \note the segment does not own this pointer.
1426      *
1427      * \return pointer to the start of the circular block or nullptr on error.
1428      */
1429     uint8_t *base();
1430 
1431     /**
1432      * \return error during the creation/mapping of this view.
1433      */
1434     c2_status_t error() const;
1435 };
1436 
1437 /**
1438  * The writer of a circular buffer.
1439  *
1440  * Can commit data to a reader (not supported for components) OR share data blocks directly with a
1441  * consumer.
1442  *
1443  * If a component supports outputting data into circular buffers, it must allocate a circular
1444  * block and use a circular writer.
1445  */
1446 class C2CircularWriter : public _C2CircularBlockSegment {
1447 public:
1448     /**
1449      * Commits a portion of this segment to the next segment. This moves the beginning of the
1450      * segment.
1451      *
1452      * \param size    number of bytes to commit to the next segment
1453      * \param fence   fence used for the commit (the fence must signal before the data is committed)
1454      */
1455     c2_status_t commit(size_t size, C2Fence fence);
1456 
1457     /**
1458      * Maps this block into memory and returns a write view for it.
1459      *
1460      * \return a write view for this block.
1461      */
1462     C2Acquirable<C2CircularWriteView> map();
1463 };
1464 
1465 /// @}
1466 
1467 /// \defgroup graphic Graphic Data Blocks
1468 /// @{
1469 
1470 /**
1471  * C2Rect: rectangle type with non-negative coordinates.
1472  *
1473  * \note This struct has public fields without getters/setters. All methods are inline.
1474  */
1475 struct C2Rect {
1476 // public:
1477     uint32_t width;
1478     uint32_t height;
1479     uint32_t left;
1480     uint32_t top;
1481 
C2RectC2Rect1482     constexpr inline C2Rect()
1483         : C2Rect(0, 0, 0, 0) { }
1484 
C2RectC2Rect1485     constexpr inline C2Rect(uint32_t width_, uint32_t height_)
1486         : C2Rect(width_, height_, 0, 0) { }
1487 
atC2Rect1488     constexpr C2Rect inline at(uint32_t left_, uint32_t top_) const {
1489         return C2Rect(width, height, left_, top_);
1490     }
1491 
1492     // utility methods
1493 
isEmptyC2Rect1494     inline constexpr bool isEmpty() const {
1495         return width == 0 || height == 0;
1496     }
1497 
isValidC2Rect1498     inline constexpr bool isValid() const {
1499         return left <= ~width && top <= ~height;
1500     }
1501 
1502     inline constexpr operator bool() const {
1503         return isValid() && !isEmpty();
1504     }
1505 
1506     inline constexpr bool operator!() const {
1507         return !bool(*this);
1508     }
1509 
1510     C2_ALLOW_OVERFLOW
containsC2Rect1511     inline constexpr bool contains(const C2Rect &other) const {
1512         if (!isValid() || !other.isValid()) {
1513             return false;
1514         } else {
1515             return left <= other.left && top <= other.top
1516                     && left + width >= other.left + other.width
1517                     && top + height >= other.top + other.height;
1518         }
1519     }
1520 
1521     inline constexpr bool operator==(const C2Rect &other) const {
1522         if (!isValid()) {
1523             return !other.isValid();
1524         } else {
1525             return left == other.left && top == other.top
1526                     && width == other.width && height == other.height;
1527         }
1528     }
1529 
1530     inline constexpr bool operator!=(const C2Rect &other) const {
1531         return !operator==(other);
1532     }
1533 
1534     inline constexpr bool operator>=(const C2Rect &other) const {
1535         return contains(other);
1536     }
1537 
1538     inline constexpr bool operator>(const C2Rect &other) const {
1539         return contains(other) && !operator==(other);
1540     }
1541 
1542     inline constexpr bool operator<=(const C2Rect &other) const {
1543         return other.contains(*this);
1544     }
1545 
1546     inline constexpr bool operator<(const C2Rect &other) const {
1547         return other.contains(*this) && !operator==(other);
1548     }
1549 
1550     C2_ALLOW_OVERFLOW
rightC2Rect1551     inline constexpr uint32_t right() const {
1552         return left + width;
1553     }
1554 
1555     C2_ALLOW_OVERFLOW
bottomC2Rect1556     inline constexpr uint32_t bottom() const {
1557         return top + height;
1558     }
1559 
1560     C2_ALLOW_OVERFLOW
intersectC2Rect1561     inline constexpr C2Rect intersect(const C2Rect &other) const {
1562         return C2Rect(c2_min(right(), other.right()) - c2_max(left, other.left),
1563                       c2_min(bottom(), other.bottom()) - c2_max(top, other.top),
1564                       c2_max(left, other.left),
1565                       c2_max(top, other.top));
1566     }
1567 
1568     /** clamps right and bottom to top, left if they overflow */
normalizeC2Rect1569     inline constexpr C2Rect normalize() const {
1570         return C2Rect(c2_max(left, right()) - left, c2_max(top, bottom()) - top, left, top);
1571     }
1572 
1573 private:
1574     /// note: potentially unusual argument order
C2RectC2Rect1575     constexpr inline C2Rect(uint32_t width_, uint32_t height_, uint32_t left_, uint32_t top_)
1576         : width(width_),
1577           height(height_),
1578           left(left_),
1579           top(top_) { }
1580 };
1581 
1582 /**
1583  * Interface for objects that have a width and height (planar capacity).
1584  */
1585 class _C2PlanarCapacityAspect {
1586 /// \name Planar capacity interface
1587 /// @{
1588 public:
width()1589     inline constexpr uint32_t width() const { return _mWidth; }
height()1590     inline constexpr uint32_t height() const { return _mHeight; }
1591 
C2Rect()1592     inline constexpr operator C2Rect() const {
1593         return C2Rect(_mWidth, _mHeight);
1594     }
1595 
1596 protected:
_C2PlanarCapacityAspect(uint32_t width,uint32_t height)1597     inline constexpr _C2PlanarCapacityAspect(uint32_t width, uint32_t height)
1598       : _mWidth(width), _mHeight(height) { }
1599 
_C2PlanarCapacityAspect(const _C2PlanarCapacityAspect * parent)1600     inline explicit constexpr _C2PlanarCapacityAspect(const _C2PlanarCapacityAspect *parent)
1601         : _mWidth(parent == nullptr ? 0 : parent->width()),
1602           _mHeight(parent == nullptr ? 0 : parent->height()) { }
1603 
1604 private:
1605     uint32_t _mWidth;
1606     uint32_t _mHeight;
1607 /// @}
1608 };
1609 
1610 /**
1611  * C2PlaneInfo: information on the layout of a singe flexible plane.
1612  *
1613  * Public fields without getters/setters.
1614  */
1615 struct C2PlaneInfo {
1616 //public:
1617     enum channel_t : uint32_t {
1618         CHANNEL_Y,  ///< luma
1619         CHANNEL_R,  ///< red
1620         CHANNEL_G,  ///< green
1621         CHANNEL_B,  ///< blue
1622         CHANNEL_A,  ///< alpha
1623         CHANNEL_CR, ///< Cr
1624         CHANNEL_CB, ///< Cb
1625     } channel;
1626 
1627     int32_t colInc;       ///< column increment in bytes. may be negative
1628     int32_t rowInc;       ///< row increment in bytes. may be negative
1629 
1630     uint32_t colSampling; ///< subsampling compared to width (must be a power of 2)
1631     uint32_t rowSampling; ///< subsampling compared to height (must be a power of 2)
1632 
1633     uint32_t allocatedDepth; ///< size of each sample (must be a multiple of 8)
1634     uint32_t bitDepth;       ///< significant bits per sample
1635     /**
1636      * the right shift of the significant bits in the sample. E.g. if a 10-bit significant
1637      * value is laid out in a 16-bit allocation aligned to LSB (values 0-1023), rightShift
1638      * would be 0 as the 16-bit value read from the sample does not need to be right shifted
1639      * and can be used as is (after applying a 10-bit mask of 0x3FF).
1640      *
1641      * +--------+--------+
1642      * |      VV|VVVVVVVV|
1643      * +--------+--------+
1644      *  15     8 7      0
1645      *
1646      * If the value is laid out aligned to MSB, rightShift would be 6, as the value read
1647      * from the allocated sample must be right-shifted by 6 to get the actual sample value.
1648      *
1649      * +--------+--------+
1650      * |VVVVVVVV|VV      |
1651      * +--------+--------+
1652      *  15     8 7      0
1653      */
1654     uint32_t rightShift;
1655 
1656     enum endianness_t : uint32_t {
1657         NATIVE,
1658         LITTLE_END, // LITTLE_ENDIAN is reserved macro
1659         BIG_END,    // BIG_ENDIAN is a reserved macro
1660     } endianness; ///< endianness of the samples
1661 
1662     /**
1663      * The following two fields define the relation between multiple planes. If multiple planes are
1664      * interleaved, they share a root plane (whichever plane's start address is the lowest), and
1665      * |offset| is the offset of this plane inside the root plane (in bytes). |rootIx| is the index
1666      * of the root plane. If a plane is independent, rootIx is its index and offset is 0.
1667      */
1668     uint32_t rootIx; ///< index of the root plane
1669     uint32_t offset; ///< offset of this plane inside of the root plane
1670 
minOffsetC2PlaneInfo1671     inline constexpr ssize_t minOffset(uint32_t width, uint32_t height) const {
1672         ssize_t offs = 0;
1673         if (width > 0 && colInc < 0) {
1674             offs += colInc * (ssize_t)(width - 1);
1675         }
1676         if (height > 0 && rowInc < 0) {
1677             offs += rowInc * (ssize_t)(height - 1);
1678         }
1679         return offs;
1680     }
1681 
maxOffsetC2PlaneInfo1682     inline constexpr ssize_t maxOffset(uint32_t width, uint32_t height) const {
1683         ssize_t offs = (allocatedDepth + 7) >> 3;
1684         if (width > 0 && colInc > 0) {
1685             offs += colInc * (ssize_t)(width - 1);
1686         }
1687         if (height > 0 && rowInc > 0) {
1688             offs += rowInc * (ssize_t)(height - 1);
1689         }
1690         return offs;
1691     }
1692 } C2_PACK;
1693 
1694 struct C2PlanarLayout {
1695 //public:
1696     enum type_t : uint32_t {
1697         TYPE_UNKNOWN = 0,
1698         TYPE_YUV = 0x100,   ///< YUV image with 3 planes
1699         TYPE_YUVA,          ///< YUVA image with 4 planes
1700         TYPE_RGB,           ///< RGB image with 3 planes
1701         TYPE_RGBA,          ///< RBGA image with 4 planes
1702     };
1703 
1704     type_t type;                    // image type
1705     uint32_t numPlanes;             // number of component planes
1706     uint32_t rootPlanes;            // number of layout planes (root planes)
1707 
1708     enum plane_index_t : uint32_t {
1709         PLANE_Y = 0,
1710         PLANE_U = 1,
1711         PLANE_V = 2,
1712         PLANE_R = 0,
1713         PLANE_G = 1,
1714         PLANE_B = 2,
1715         PLANE_A = 3,
1716         MAX_NUM_PLANES = 4,
1717     };
1718 
1719     C2PlaneInfo planes[MAX_NUM_PLANES];
1720 };
1721 
1722 /**
1723  * Aspect for objects that have a planar section (crop rectangle).
1724  *
1725  * This class is copiable.
1726  */
1727 class _C2PlanarSectionAspect : public _C2PlanarCapacityAspect {
1728 /// \name Planar section interface
1729 /// @{
1730 private:
_C2PlanarSectionAspect(uint32_t width,uint32_t height,const C2Rect & crop)1731     inline constexpr _C2PlanarSectionAspect(uint32_t width, uint32_t height, const C2Rect &crop)
1732         : _C2PlanarCapacityAspect(width, height),
1733           mCrop(C2Rect(std::min(width - std::min(crop.left, width), crop.width),
1734                        std::min(height - std::min(crop.top, height), crop.height)).at(
1735                                std::min(crop.left, width),
1736                                std::min(crop.height, height))) {
1737     }
1738 
1739 public:
1740     // crop can be an empty rect, does not have to line up with subsampling
1741     // NOTE: we do not support floating-point crop
crop()1742     inline constexpr C2Rect crop() const { return mCrop; }
1743 
1744     /**
1745      * Returns a child planar section for |crop|, where the capacity represents this section.
1746      */
childSection(const C2Rect & crop)1747     inline constexpr _C2PlanarSectionAspect childSection(const C2Rect &crop) const {
1748         return _C2PlanarSectionAspect(
1749                 mCrop.width, mCrop.height,
1750                 // crop and translate |crop| rect
1751                 C2Rect(c2_min(mCrop.right() - c2_clamp(mCrop.left, crop.left, mCrop.right()),
1752                               crop.width),
1753                        c2_min(mCrop.bottom() - c2_clamp(mCrop.top, crop.top, mCrop.bottom()),
1754                               crop.height))
1755                 .at(c2_clamp(mCrop.left, crop.left, mCrop.right()) - mCrop.left,
1756                     c2_clamp(mCrop.top, crop.top, mCrop.bottom()) - mCrop.top));
1757     }
1758 
1759 protected:
_C2PlanarSectionAspect(const _C2PlanarCapacityAspect * parent)1760     inline constexpr _C2PlanarSectionAspect(const _C2PlanarCapacityAspect *parent)
1761         : _C2PlanarCapacityAspect(parent), mCrop(width(), height()) {}
1762 
_C2PlanarSectionAspect(const _C2PlanarCapacityAspect * parent,const C2Rect & crop)1763     inline constexpr _C2PlanarSectionAspect(const _C2PlanarCapacityAspect *parent, const C2Rect &crop)
1764         : _C2PlanarCapacityAspect(parent),
1765           mCrop(parent == nullptr ? C2Rect() : ((C2Rect)*parent).intersect(crop).normalize()) { }
1766 
_C2PlanarSectionAspect(const _C2PlanarSectionAspect * parent,const C2Rect & crop)1767     inline constexpr _C2PlanarSectionAspect(const _C2PlanarSectionAspect *parent, const C2Rect &crop)
1768         : _C2PlanarCapacityAspect(parent),
1769           mCrop(parent == nullptr ? C2Rect() : parent->crop().intersect(crop).normalize()) { }
1770 
1771 private:
1772     friend class _C2EditablePlanarSectionAspect;
1773     C2Rect mCrop;
1774 /// @}
1775 };
1776 
1777 /**
1778  * Aspect for objects that have an editable planar section (crop rectangle).
1779  *
1780  * This class is copiable.
1781  */
1782 class _C2EditablePlanarSectionAspect : public _C2PlanarSectionAspect {
1783 /// \name Planar section interface
1784 /// @{
1785     using _C2PlanarSectionAspect::_C2PlanarSectionAspect;
1786 
1787 public:
1788     // crop can be an empty rect, does not have to line up with subsampling
1789     // NOTE: we do not support floating-point crop
crop()1790     inline constexpr C2Rect crop() const { return mCrop; }
1791 
1792     /**
1793      *  Sets crop to crop intersected with [(0,0) .. (width, height)]
1794      */
setCrop_be(const C2Rect & crop)1795     inline void setCrop_be(const C2Rect &crop) {
1796         mCrop.left = std::min(width(), crop.left);
1797         mCrop.top = std::min(height(), crop.top);
1798         // It's guaranteed that mCrop.left <= width() && mCrop.top <= height()
1799         mCrop.width = std::min(width() - mCrop.left, crop.width);
1800         mCrop.height = std::min(height() - mCrop.top, crop.height);
1801     }
1802 
1803     /**
1804      * If crop is within the dimensions of this object, it sets crop to it.
1805      *
1806      * \return true iff crop is within the dimensions of this object
1807      */
setCrop(const C2Rect & crop)1808     inline bool setCrop(const C2Rect &crop) {
1809         if (width() < crop.width || height() < crop.height
1810                 || width() - crop.width < crop.left || height() - crop.height < crop.top) {
1811             return false;
1812         }
1813         mCrop = crop;
1814         return true;
1815     }
1816 /// @}
1817 };
1818 
1819 /**
1820  * Utility class for safe range calculations using size_t-s.
1821  */
1822 class C2PlanarSection : public _C2PlanarSectionAspect {
1823 public:
C2PlanarSection(const _C2PlanarCapacityAspect & parent,const C2Rect & crop)1824     inline constexpr C2PlanarSection(const _C2PlanarCapacityAspect &parent, const C2Rect &crop)
1825         : _C2PlanarSectionAspect(&parent, crop) { }
1826 
C2PlanarSection(const _C2PlanarSectionAspect & parent,const C2Rect & crop)1827     inline constexpr C2PlanarSection(const _C2PlanarSectionAspect &parent, const C2Rect &crop)
1828         : _C2PlanarSectionAspect(&parent, crop) { }
1829 
intersect(const C2Rect & crop)1830     inline constexpr C2PlanarSection intersect(const C2Rect &crop) const {
1831         return C2PlanarSection(*this, crop);
1832     }
1833 };
1834 
1835 /**
1836  * Utility class for simple and safe planar capacity and section construction.
1837  */
1838 class C2PlanarCapacity : public _C2PlanarCapacityAspect {
1839 public:
C2PlanarCapacity(size_t width,size_t height)1840     inline constexpr explicit C2PlanarCapacity(size_t width, size_t height)
1841         : _C2PlanarCapacityAspect(c2_min(width, std::numeric_limits<uint32_t>::max()),
1842                                   c2_min(height, std::numeric_limits<uint32_t>::max())) { }
1843 
section(const C2Rect & crop)1844     inline constexpr C2PlanarSection section(const C2Rect &crop) const {
1845         return C2PlanarSection(*this, crop);
1846     }
1847 };
1848 
1849 
1850 /**
1851  * \ingroup graphic allocator
1852  * 2D allocation interface.
1853  */
1854 class C2GraphicAllocation : public _C2PlanarCapacityAspect {
1855 public:
1856     /**
1857      * Maps a rectangular section (as defined by |rect|) of a 2D allocation into local process
1858      * memory for flexible access. On success, it fills out |layout| with the plane specifications
1859      * and fills the |addr| array with pointers to the first byte of the top-left pixel of each
1860      * plane used. Otherwise, it leaves |layout| and |addr| untouched. |fence| will contain
1861      * an acquire sync fence object. If it is already safe to access the
1862      * buffer contents, then it will be an empty (already fired) fence.
1863      *
1864      * Safe regions for the pointer addresses returned can be gotten via C2LayoutInfo.minOffset()/
1865      * maxOffset().
1866      *
1867      * \param rect          section to be mapped (this does not have to be aligned)
1868      * \param usage         the desired usage. \todo this must be kSoftwareRead and/or
1869      *                      kSoftwareWrite.
1870      * \param fence         a pointer to a fence object if an async mapping is requested. If
1871      *                      not-null, and acquire fence will be stored here on success, or empty
1872      *                      fence on failure. If null, the mapping will be synchronous.
1873      * \param layout        a pointer to where the mapped planes' descriptors will be
1874      *                      stored. On failure, nullptr will be stored here.
1875      * \param addr          pointer to an array with at least C2PlanarLayout::MAX_NUM_PLANES
1876      *                      elements. Only layout.numPlanes elements will be modified on success.
1877      *
1878      * \retval C2_OK        the operation was successful
1879      * \retval C2_REFUSED   no permission to map the section
1880      * \retval C2_DUPLICATE there is already a mapped region and this allocation cannot support
1881      *                      multi-mapping (caller error)
1882      * \retval C2_TIMED_OUT the operation timed out
1883      * \retval C2_NO_MEMORY not enough memory to complete the operation
1884      * \retval C2_BAD_VALUE the parameters (rect) are invalid or outside the allocation, or the
1885      *                      usage flags are invalid (caller error)
1886      * \retval C2_CORRUPTED some unknown error prevented the operation from completing (unexpected)
1887 
1888      */
1889     virtual c2_status_t map(
1890             C2Rect rect, C2MemoryUsage usage, C2Fence *fence,
1891             C2PlanarLayout *layout /* nonnull */, uint8_t **addr /* nonnull */) = 0;
1892 
1893     /**
1894      * Unmaps a section of an allocation at |addr| with |rect|. These must be parameters previously
1895      * passed to and returned by |map|; otherwise, this operation is a no-op.
1896      *
1897      * \param addr          pointer to an array with at least C2PlanarLayout::MAX_NUM_PLANES
1898      *                      elements containing the starting addresses of the mapped layers
1899      * \param rect          boundaries of the mapped section
1900      * \param fence         a pointer to a fence object if an async unmapping is requested. If
1901      *                      not-null, a release fence will be stored here on success, or empty fence
1902      *                      on failure. This fence signals when the original allocation contains
1903      *                      all changes that happened to the mapped section. If null, the unmapping
1904      *                      will be synchronous.
1905      *
1906      * \retval C2_OK        the operation was successful
1907      * \retval C2_TIMED_OUT the operation timed out
1908      * \retval C2_NOT_FOUND there is no such mapped region (caller error)
1909      * \retval C2_CORRUPTED some unknown error prevented the operation from completing (unexpected)
1910      * \retval C2_REFUSED   no permission to unmap the section (unexpected - system)
1911      */
1912     virtual c2_status_t unmap(
1913             uint8_t **addr /* nonnull */, C2Rect rect, C2Fence *fence /* nullable */) = 0;
1914 
1915     /**
1916      * Returns the allocator ID for this allocation. This is useful to put the handle into context.
1917      */
1918     virtual C2Allocator::id_t getAllocatorId() const = 0;
1919 
1920     /**
1921      * Returns a pointer to the allocation handle.
1922      */
1923     virtual const C2Handle *handle() const = 0;
1924 
1925     /**
1926      * Returns true if this is the same allocation as |other|.
1927      */
1928     virtual bool equals(const std::shared_ptr<const C2GraphicAllocation> &other) const = 0;
1929 
1930 protected:
1931     using _C2PlanarCapacityAspect::_C2PlanarCapacityAspect;
1932     virtual ~C2GraphicAllocation() = default;
1933 };
1934 
1935 class C2GraphicAllocation;
1936 
1937 /**
1938  * A 2D block.
1939  *
1940  * \note width()/height() is not meaningful for users of blocks; instead, crop().width() and
1941  * crop().height() is the capacity of the usable portion. Use and crop() if accessing the block
1942  * directly through its handle to represent the allotted region of the underlying allocation to this
1943  * block.
1944  */
1945 class C2Block2D : public _C2PlanarSectionAspect {
1946 public:
1947     /**
1948      * Returns the underlying handle for this allocation.
1949      *
1950      * \note that the block and its block pool has shared ownership of the handle
1951      *       and if all references to the block are released, the underlying block
1952      *       allocation may get reused even if a client keeps a clone of this handle.
1953      */
1954     const C2Handle *handle() const;
1955 
1956     /**
1957      * Returns the allocator's ID that created the underlying allocation for this block. This
1958      * provides the context for understanding the handle.
1959      */
1960     C2Allocator::id_t getAllocatorId() const;
1961 
1962 protected:
1963     class Impl;
1964     C2Block2D(std::shared_ptr<Impl> impl, const _C2PlanarSectionAspect &section);
1965 
1966     friend struct _C2BlockFactory;
1967     std::shared_ptr<Impl> mImpl;
1968 };
1969 
1970 /**
1971  * Graphic view provides read or read-write access for a graphic block.
1972  *
1973  * This class is copiable.
1974  *
1975  * \note Due to the subsampling of graphic buffers, a read view must still contain a crop rectangle
1976  * to ensure subsampling is followed. This results in nearly identical interface between read and
1977  * write views, so C2GraphicView can encompass both of them.
1978  */
1979 class C2GraphicView : public _C2EditablePlanarSectionAspect {
1980 public:
1981     /**
1982      * \return array of pointers (of layout().numPlanes elements) to the start of the planes or
1983      * nullptr on error. Regardless of crop rect, they always point to the top-left corner of each
1984      * plane. Access outside of the crop rect results in an undefined behavior.
1985      */
1986     const uint8_t *const *data() const;
1987 
1988     /**
1989      * \return array of pointers (of layout().numPlanes elements) to the start of the planes or
1990      * nullptr on error. Regardless of crop rect, they always point to the top-left corner of each
1991      * plane. Access outside of the crop rect results in an undefined behavior.
1992      */
1993     uint8_t *const *data();
1994 
1995     /**
1996      * \return layout of the graphic block to interpret the returned data.
1997      */
1998     const C2PlanarLayout layout() const;
1999 
2000     /**
2001      * Returns a section of this view.
2002      *
2003      * \param rect    the dimension of the section. \note This is clamped to the crop of this view.
2004      *
2005      * \return a read view containing the requested section of this view
2006      */
2007     const C2GraphicView subView(const C2Rect &rect) const;
2008     C2GraphicView subView(const C2Rect &rect);
2009 
2010     /**
2011      * \return error during the creation/mapping of this view.
2012      */
2013     c2_status_t error() const;
2014 
2015 protected:
2016     class Impl;
2017     C2GraphicView(std::shared_ptr<Impl> impl, const _C2PlanarSectionAspect &section);
2018     explicit C2GraphicView(c2_status_t error);
2019 
2020 private:
2021     friend struct _C2BlockFactory;
2022     std::shared_ptr<Impl> mImpl;
2023 };
2024 
2025 /**
2026  * A constant (read-only) graphic block (portion of an allocation) with an acquire fence.
2027  * Blocks are unmapped when created, and can be mapped into a read view on demand.
2028  *
2029  * This class is copiable and contains a reference to the allocation that it is based on.
2030  */
2031 class C2ConstGraphicBlock : public C2Block2D {
2032 public:
2033     /**
2034      * Maps this block into memory and returns a read view for it.
2035      *
2036      * \return a read view for this block.
2037      */
2038     C2Acquirable<const C2GraphicView> map() const;
2039 
2040     /**
2041      * Returns a section of this block.
2042      *
2043      * \param rect    the coordinates of the section. \note This is clamped to the crop rectangle of
2044      *              this block.
2045      *
2046      * \return a constant graphic block containing a portion of this block
2047      */
2048     C2ConstGraphicBlock subBlock(const C2Rect &rect) const;
2049 
2050     /**
2051      * Returns the acquire fence for this block.
2052      *
2053      * \return a fence that must be waited on before reading the block.
2054      */
fence()2055     C2Fence fence() const { return mFence; }
2056 
2057 protected:
2058     C2ConstGraphicBlock(
2059             std::shared_ptr<Impl> impl, const _C2PlanarSectionAspect &section, C2Fence fence);
2060 
2061 private:
2062     friend struct _C2BlockFactory;
2063     C2Fence mFence;
2064 };
2065 
2066 /**
2067  * Graphic block is a writeable 2D block. Once written, it can be shared in whole or in part with
2068  * consumers/readers as read-only const graphic block.
2069  */
2070 class C2GraphicBlock : public C2Block2D {
2071 public:
2072     /**
2073      * Maps this block into memory and returns a write view for it.
2074      *
2075      * \return a write view for this block.
2076      */
2077     C2Acquirable<C2GraphicView> map();
2078 
2079     /**
2080      * Creates a read-only const linear block for a portion of this block; optionally protected
2081      * by an acquire fence. There are two ways to use this:
2082      *
2083      * 1) share ready block after writing data into the block. In this case no fence shall be
2084      *    supplied, and the block shall not be modified after calling this method.
2085      * 2) share block metadata before actually (finishing) writing the data into the block. In
2086      *    this case a fence must be supplied that will be triggered when the data is written.
2087      *    The block shall be modified only until firing the event for the fence.
2088      */
2089     C2ConstGraphicBlock share(const C2Rect &crop, C2Fence fence);
2090 
2091 protected:
2092     C2GraphicBlock(std::shared_ptr<Impl> impl, const _C2PlanarSectionAspect &section);
2093 
2094     friend struct _C2BlockFactory;
2095 };
2096 
2097 /// @}
2098 
2099 /// \defgroup buffer_onj Buffer objects
2100 /// @{
2101 
2102 // ================================================================================================
2103 //  BUFFERS
2104 // ================================================================================================
2105 
2106 /// \todo: Do we still need this?
2107 ///
2108 // There are 2 kinds of buffers: linear or graphic. Linear buffers can contain a single block, or
2109 // a list of blocks (LINEAR_CHUNKS). Support for list of blocks is optional, and can allow consuming
2110 // data from circular buffers or scattered data sources without extra memcpy. Currently, list of
2111 // graphic blocks is not supported.
2112 
2113 class C2LinearBuffer;   // read-write buffer
2114 class C2GraphicBuffer;  // read-write buffer
2115 class C2LinearChunksBuffer;
2116 
2117 /**
2118  * C2BufferData: the main, non-meta data of a buffer. A buffer can contain either linear blocks
2119  * or graphic blocks, and can contain either a single block or multiple blocks. This is determined
2120  * by its type.
2121  */
2122 class C2BufferData {
2123 public:
2124     /**
2125      *  The type of buffer data.
2126      */
2127     enum type_t : uint32_t {
2128         INVALID,            ///< invalid buffer type. Do not use.
2129         LINEAR,             ///< the buffer contains a single linear block
2130         LINEAR_CHUNKS,      ///< the buffer contains one or more linear blocks
2131         GRAPHIC,            ///< the buffer contains a single graphic block
2132         GRAPHIC_CHUNKS,     ///< the buffer contains one of more graphic blocks
2133     };
2134 
2135     /**
2136      * Gets the type of this buffer (data).
2137      * \return the type of this buffer data.
2138      */
2139     type_t type() const;
2140 
2141     /**
2142      * Gets the linear blocks of this buffer.
2143      * \return a constant list of const linear blocks of this buffer.
2144      * \retval empty list if this buffer does not contain linear block(s).
2145      */
2146     const std::vector<C2ConstLinearBlock> linearBlocks() const;
2147 
2148     /**
2149      * Gets the graphic blocks of this buffer.
2150      * \return a constant list of const graphic blocks of this buffer.
2151      * \retval empty list if this buffer does not contain graphic block(s).
2152      */
2153     const std::vector<C2ConstGraphicBlock> graphicBlocks() const;
2154 
2155 private:
2156     class Impl;
2157     std::shared_ptr<Impl> mImpl;
2158 
2159 protected:
2160     // no public constructor
2161     explicit C2BufferData(const std::vector<C2ConstLinearBlock> &blocks);
2162     explicit C2BufferData(const std::vector<C2ConstGraphicBlock> &blocks);
2163 };
2164 
2165 /**
2166  * C2Buffer: buffer base class. These are always used as shared_ptrs. Though the underlying buffer
2167  * objects (native buffers, ion buffers, or dmabufs) are reference-counted by the system,
2168  * C2Buffers hold only a single reference.
2169  *
2170  * These objects cannot be used on the stack.
2171  */
2172 class C2Buffer {
2173 public:
2174     /**
2175      * Gets the buffer's data.
2176      *
2177      * \return the buffer's data.
2178      */
2179     const C2BufferData data() const;
2180 
2181     ///@name Pre-destroy notification handling
2182     ///@{
2183 
2184     /**
2185      * Register for notification just prior to the destruction of this object.
2186      */
2187     typedef void (*OnDestroyNotify) (const C2Buffer *buf, void *arg);
2188 
2189     /**
2190      * Registers for a pre-destroy notification. This is called just prior to the destruction of
2191      * this buffer (when this buffer is no longer valid.)
2192      *
2193      * \param onDestroyNotify   the notification callback
2194      * \param arg               an arbitrary parameter passed to the callback
2195      *
2196      * \retval C2_OK        the registration was successful.
2197      * \retval C2_DUPLICATE a notification was already registered for this callback and argument
2198      * \retval C2_NO_MEMORY not enough memory to register for this callback
2199      * \retval C2_CORRUPTED an unknown error prevented the registration (unexpected)
2200      */
2201     c2_status_t registerOnDestroyNotify(OnDestroyNotify onDestroyNotify, void *arg = nullptr);
2202 
2203     /**
2204      * Unregisters a previously registered pre-destroy notification.
2205      *
2206      * \param onDestroyNotify   the notification callback
2207      * \param arg               an arbitrary parameter passed to the callback
2208      *
2209      * \retval C2_OK        the unregistration was successful.
2210      * \retval C2_NOT_FOUND the notification was not found
2211      * \retval C2_CORRUPTED an unknown error prevented the registration (unexpected)
2212      */
2213     c2_status_t unregisterOnDestroyNotify(OnDestroyNotify onDestroyNotify, void *arg = nullptr);
2214 
2215     ///@}
2216 
2217     virtual ~C2Buffer() = default;
2218 
2219     ///@name Buffer-specific arbitrary metadata handling
2220     ///@{
2221 
2222     /**
2223      * Gets the list of metadata associated with this buffer.
2224      *
2225      * \return a constant list of info objects associated with this buffer.
2226      */
2227     const std::vector<std::shared_ptr<const C2Info>> info() const;
2228 
2229     /**
2230      * Attaches (or updates) an (existing) metadata for this buffer.
2231      * If the metadata is stream specific, the stream information will be reset.
2232      *
2233      * \param info Metadata to update
2234      *
2235      * \retval C2_OK        the metadata was successfully attached/updated.
2236      * \retval C2_NO_MEMORY not enough memory to attach the metadata (this return value is not
2237      *                      used if the same kind of metadata is already attached to the buffer).
2238      */
2239     c2_status_t setInfo(const std::shared_ptr<C2Info> &info);
2240 
2241     /**
2242      * Checks if there is a certain type of metadata attached to this buffer.
2243      *
2244      * \param index the parameter type of the metadata
2245      *
2246      * \return true iff there is a metadata with the parameter type attached to this buffer.
2247      */
2248     bool hasInfo(C2Param::Type index) const;
2249 
2250     /**
2251      * Checks if there is a certain type of metadata attached to this buffer, and returns a
2252      * shared pointer to it if there is. Returns an empty shared pointer object (nullptr) if there
2253      * is not.
2254      *
2255      * \param index the parameter type of the metadata
2256      *
2257      * \return shared pointer to the metadata.
2258      */
2259     std::shared_ptr<const C2Info> getInfo(C2Param::Type index) const;
2260 
2261     /**
2262      * Removes a metadata from the buffer.
2263      */
2264     std::shared_ptr<C2Info> removeInfo(C2Param::Type index);
2265     ///@}
2266 
2267     /**
2268      * Creates a buffer containing a single linear block.
2269      *
2270      * \param block the content of the buffer.
2271      *
2272      * \return shared pointer to the created buffer.
2273      */
2274     static std::shared_ptr<C2Buffer> CreateLinearBuffer(const C2ConstLinearBlock &block);
2275 
2276     /**
2277      * Creates a buffer containing a single graphic block.
2278      *
2279      * \param block the content of the buffer.
2280      *
2281      * \return shared pointer to the created buffer.
2282      */
2283     static std::shared_ptr<C2Buffer> CreateGraphicBuffer(const C2ConstGraphicBlock &block);
2284 
2285 protected:
2286     // no public constructor
2287     explicit C2Buffer(const std::vector<C2ConstLinearBlock> &blocks);
2288     explicit C2Buffer(const std::vector<C2ConstGraphicBlock> &blocks);
2289 
2290 private:
2291     class Impl;
2292     std::shared_ptr<Impl> mImpl;
2293 };
2294 
2295 /**
2296  * A const metadata object that can contain arbitrary buffer data.
2297  *
2298  * This object is not an actual C2Info and is not attached to buffers (C2Buffer), but rather to
2299  * frames (C2FrameData). It is not describable via C2ParamDescriptor.
2300  *
2301  * C2InfoBuffer is a const object that can be allocated on stack and is copiable.
2302  */
2303 class C2InfoBuffer {
2304 public:
2305     /**
2306      * Gets the index of this info object.
2307      *
2308      * \return the parameter index.
2309      */
index()2310     const C2Param::Index index() const { return mIndex; }
2311 
2312     /**
2313      * Gets the buffer's data.
2314      *
2315      * \return the buffer's data.
2316      */
data()2317     const C2BufferData data() const { return mData; }
2318 
2319     /// Returns a clone of this as a global info buffer.
asGlobal()2320     C2InfoBuffer asGlobal() const {
2321         C2Param::Index index = mIndex;
2322         index.convertToGlobal();
2323         return C2InfoBuffer(index, mData);
2324     }
2325 
2326     /// Returns a clone of this as a port info buffer.
asPort(bool output)2327     C2InfoBuffer asPort(bool output) const {
2328         C2Param::Index index = mIndex;
2329         index.convertToPort(output);
2330         return C2InfoBuffer(index, mData);
2331     }
2332 
2333     /// Returns a clone of this as a stream info buffer.
asStream(bool output,unsigned stream)2334     C2InfoBuffer asStream(bool output, unsigned stream) const {
2335         C2Param::Index index = mIndex;
2336         index.convertToStream(output, stream);
2337         return C2InfoBuffer(index, mData);
2338     }
2339 
2340     /**
2341      * Creates a global info buffer containing a single linear block.
2342      *
2343      * \param index the core parameter index of this info buffer.
2344      * \param block the content of the info buffer.
2345      *
2346      * \return shared pointer to the created info buffer.
2347      */
2348     static C2InfoBuffer CreateLinearBuffer(C2Param::CoreIndex index, const C2ConstLinearBlock &block);
2349 
2350     /**
2351      * Creates a global info buffer containing a single graphic block.
2352      *
2353      * \param index the core parameter index of this info buffer.
2354      * \param block the content of the info buffer.
2355      *
2356      * \return shared pointer to the created info buffer.
2357      */
2358     static C2InfoBuffer CreateGraphicBuffer(C2Param::CoreIndex index, const C2ConstGraphicBlock &block);
2359 
2360 protected:
2361     // no public constructor
2362     explicit C2InfoBuffer(C2Param::Index index, const std::vector<C2ConstLinearBlock> &blocks);
2363     explicit C2InfoBuffer(C2Param::Index index, const std::vector<C2ConstGraphicBlock> &blocks);
2364 
2365 private:
2366     C2Param::Index mIndex;
2367     C2BufferData mData;
2368     explicit C2InfoBuffer(C2Param::Index index, const C2BufferData &data);
2369 };
2370 
2371 /// @}
2372 
2373 /// @}
2374 
2375 #endif  // C2BUFFER_H_
2376