• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Wrapper functions for crypto libraries
3  * Copyright (c) 2004-2017, Jouni Malinen <j@w1.fi>
4  *
5  * This software may be distributed under the terms of the BSD license.
6  * See README for more details.
7  *
8  * This file defines the cryptographic functions that need to be implemented
9  * for wpa_supplicant and hostapd. When TLS is not used, internal
10  * implementation of MD5, SHA1, and AES is used and no external libraries are
11  * required. When TLS is enabled (e.g., by enabling EAP-TLS or EAP-PEAP), the
12  * crypto library used by the TLS implementation is expected to be used for
13  * non-TLS needs, too, in order to save space by not implementing these
14  * functions twice.
15  *
16  * Wrapper code for using each crypto library is in its own file (crypto*.c)
17  * and one of these files is build and linked in to provide the functions
18  * defined here.
19  */
20 
21 #ifndef CRYPTO_H
22 #define CRYPTO_H
23 
24 /**
25  * md4_vector - MD4 hash for data vector
26  * @num_elem: Number of elements in the data vector
27  * @addr: Pointers to the data areas
28  * @len: Lengths of the data blocks
29  * @mac: Buffer for the hash
30  * Returns: 0 on success, -1 on failure
31  */
32 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac);
33 
34 /**
35  * md5_vector - MD5 hash for data vector
36  * @num_elem: Number of elements in the data vector
37  * @addr: Pointers to the data areas
38  * @len: Lengths of the data blocks
39  * @mac: Buffer for the hash
40  * Returns: 0 on success, -1 on failure
41  */
42 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac);
43 
44 
45 /**
46  * sha1_vector - SHA-1 hash for data vector
47  * @num_elem: Number of elements in the data vector
48  * @addr: Pointers to the data areas
49  * @len: Lengths of the data blocks
50  * @mac: Buffer for the hash
51  * Returns: 0 on success, -1 on failure
52  */
53 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len,
54 		u8 *mac);
55 
56 /**
57  * fips186_2-prf - NIST FIPS Publication 186-2 change notice 1 PRF
58  * @seed: Seed/key for the PRF
59  * @seed_len: Seed length in bytes
60  * @x: Buffer for PRF output
61  * @xlen: Output length in bytes
62  * Returns: 0 on success, -1 on failure
63  *
64  * This function implements random number generation specified in NIST FIPS
65  * Publication 186-2 for EAP-SIM. This PRF uses a function that is similar to
66  * SHA-1, but has different message padding.
67  */
68 int __must_check fips186_2_prf(const u8 *seed, size_t seed_len, u8 *x,
69 			       size_t xlen);
70 
71 /**
72  * sha256_vector - SHA256 hash for data vector
73  * @num_elem: Number of elements in the data vector
74  * @addr: Pointers to the data areas
75  * @len: Lengths of the data blocks
76  * @mac: Buffer for the hash
77  * Returns: 0 on success, -1 on failure
78  */
79 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
80 		  u8 *mac);
81 
82 /**
83  * sha384_vector - SHA384 hash for data vector
84  * @num_elem: Number of elements in the data vector
85  * @addr: Pointers to the data areas
86  * @len: Lengths of the data blocks
87  * @mac: Buffer for the hash
88  * Returns: 0 on success, -1 on failure
89  */
90 int sha384_vector(size_t num_elem, const u8 *addr[], const size_t *len,
91 		  u8 *mac);
92 
93 /**
94  * sha512_vector - SHA512 hash for data vector
95  * @num_elem: Number of elements in the data vector
96  * @addr: Pointers to the data areas
97  * @len: Lengths of the data blocks
98  * @mac: Buffer for the hash
99  * Returns: 0 on success, -1 on failure
100  */
101 int sha512_vector(size_t num_elem, const u8 *addr[], const size_t *len,
102 		  u8 *mac);
103 
104 /**
105  * des_encrypt - Encrypt one block with DES
106  * @clear: 8 octets (in)
107  * @key: 7 octets (in) (no parity bits included)
108  * @cypher: 8 octets (out)
109  * Returns: 0 on success, -1 on failure
110  */
111 int des_encrypt(const u8 *clear, const u8 *key, u8 *cypher);
112 
113 /**
114  * aes_encrypt_init - Initialize AES for encryption
115  * @key: Encryption key
116  * @len: Key length in bytes (usually 16, i.e., 128 bits)
117  * Returns: Pointer to context data or %NULL on failure
118  */
119 void * aes_encrypt_init(const u8 *key, size_t len);
120 
121 /**
122  * aes_encrypt - Encrypt one AES block
123  * @ctx: Context pointer from aes_encrypt_init()
124  * @plain: Plaintext data to be encrypted (16 bytes)
125  * @crypt: Buffer for the encrypted data (16 bytes)
126  * Returns: 0 on success, -1 on failure
127  */
128 int aes_encrypt(void *ctx, const u8 *plain, u8 *crypt);
129 
130 /**
131  * aes_encrypt_deinit - Deinitialize AES encryption
132  * @ctx: Context pointer from aes_encrypt_init()
133  */
134 void aes_encrypt_deinit(void *ctx);
135 
136 /**
137  * aes_decrypt_init - Initialize AES for decryption
138  * @key: Decryption key
139  * @len: Key length in bytes (usually 16, i.e., 128 bits)
140  * Returns: Pointer to context data or %NULL on failure
141  */
142 void * aes_decrypt_init(const u8 *key, size_t len);
143 
144 /**
145  * aes_decrypt - Decrypt one AES block
146  * @ctx: Context pointer from aes_encrypt_init()
147  * @crypt: Encrypted data (16 bytes)
148  * @plain: Buffer for the decrypted data (16 bytes)
149  * Returns: 0 on success, -1 on failure
150  */
151 int aes_decrypt(void *ctx, const u8 *crypt, u8 *plain);
152 
153 /**
154  * aes_decrypt_deinit - Deinitialize AES decryption
155  * @ctx: Context pointer from aes_encrypt_init()
156  */
157 void aes_decrypt_deinit(void *ctx);
158 
159 
160 enum crypto_hash_alg {
161 	CRYPTO_HASH_ALG_MD5, CRYPTO_HASH_ALG_SHA1,
162 	CRYPTO_HASH_ALG_HMAC_MD5, CRYPTO_HASH_ALG_HMAC_SHA1,
163 	CRYPTO_HASH_ALG_SHA256, CRYPTO_HASH_ALG_HMAC_SHA256,
164 	CRYPTO_HASH_ALG_SHA384, CRYPTO_HASH_ALG_SHA512
165 };
166 
167 struct crypto_hash;
168 
169 /**
170  * crypto_hash_init - Initialize hash/HMAC function
171  * @alg: Hash algorithm
172  * @key: Key for keyed hash (e.g., HMAC) or %NULL if not needed
173  * @key_len: Length of the key in bytes
174  * Returns: Pointer to hash context to use with other hash functions or %NULL
175  * on failure
176  *
177  * This function is only used with internal TLSv1 implementation
178  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
179  * to implement this.
180  */
181 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
182 				      size_t key_len);
183 
184 /**
185  * crypto_hash_update - Add data to hash calculation
186  * @ctx: Context pointer from crypto_hash_init()
187  * @data: Data buffer to add
188  * @len: Length of the buffer
189  *
190  * This function is only used with internal TLSv1 implementation
191  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
192  * to implement this.
193  */
194 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len);
195 
196 /**
197  * crypto_hash_finish - Complete hash calculation
198  * @ctx: Context pointer from crypto_hash_init()
199  * @hash: Buffer for hash value or %NULL if caller is just freeing the hash
200  * context
201  * @len: Pointer to length of the buffer or %NULL if caller is just freeing the
202  * hash context; on return, this is set to the actual length of the hash value
203  * Returns: 0 on success, -1 if buffer is too small (len set to needed length),
204  * or -2 on other failures (including failed crypto_hash_update() operations)
205  *
206  * This function calculates the hash value and frees the context buffer that
207  * was used for hash calculation.
208  *
209  * This function is only used with internal TLSv1 implementation
210  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
211  * to implement this.
212  */
213 int crypto_hash_finish(struct crypto_hash *ctx, u8 *hash, size_t *len);
214 
215 
216 enum crypto_cipher_alg {
217 	CRYPTO_CIPHER_NULL = 0, CRYPTO_CIPHER_ALG_AES, CRYPTO_CIPHER_ALG_3DES,
218 	CRYPTO_CIPHER_ALG_DES, CRYPTO_CIPHER_ALG_RC2, CRYPTO_CIPHER_ALG_RC4
219 };
220 
221 struct crypto_cipher;
222 
223 /**
224  * crypto_cipher_init - Initialize block/stream cipher function
225  * @alg: Cipher algorithm
226  * @iv: Initialization vector for block ciphers or %NULL for stream ciphers
227  * @key: Cipher key
228  * @key_len: Length of key in bytes
229  * Returns: Pointer to cipher context to use with other cipher functions or
230  * %NULL on failure
231  *
232  * This function is only used with internal TLSv1 implementation
233  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
234  * to implement this.
235  */
236 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
237 					  const u8 *iv, const u8 *key,
238 					  size_t key_len);
239 
240 /**
241  * crypto_cipher_encrypt - Cipher encrypt
242  * @ctx: Context pointer from crypto_cipher_init()
243  * @plain: Plaintext to cipher
244  * @crypt: Resulting ciphertext
245  * @len: Length of the plaintext
246  * Returns: 0 on success, -1 on failure
247  *
248  * This function is only used with internal TLSv1 implementation
249  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
250  * to implement this.
251  */
252 int __must_check crypto_cipher_encrypt(struct crypto_cipher *ctx,
253 				       const u8 *plain, u8 *crypt, size_t len);
254 
255 /**
256  * crypto_cipher_decrypt - Cipher decrypt
257  * @ctx: Context pointer from crypto_cipher_init()
258  * @crypt: Ciphertext to decrypt
259  * @plain: Resulting plaintext
260  * @len: Length of the cipher text
261  * Returns: 0 on success, -1 on failure
262  *
263  * This function is only used with internal TLSv1 implementation
264  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
265  * to implement this.
266  */
267 int __must_check crypto_cipher_decrypt(struct crypto_cipher *ctx,
268 				       const u8 *crypt, u8 *plain, size_t len);
269 
270 /**
271  * crypto_cipher_decrypt - Free cipher context
272  * @ctx: Context pointer from crypto_cipher_init()
273  *
274  * This function is only used with internal TLSv1 implementation
275  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
276  * to implement this.
277  */
278 void crypto_cipher_deinit(struct crypto_cipher *ctx);
279 
280 
281 struct crypto_public_key;
282 struct crypto_private_key;
283 
284 /**
285  * crypto_public_key_import - Import an RSA public key
286  * @key: Key buffer (DER encoded RSA public key)
287  * @len: Key buffer length in bytes
288  * Returns: Pointer to the public key or %NULL on failure
289  *
290  * This function can just return %NULL if the crypto library supports X.509
291  * parsing. In that case, crypto_public_key_from_cert() is used to import the
292  * public key from a certificate.
293  *
294  * This function is only used with internal TLSv1 implementation
295  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
296  * to implement this.
297  */
298 struct crypto_public_key * crypto_public_key_import(const u8 *key, size_t len);
299 
300 struct crypto_public_key *
301 crypto_public_key_import_parts(const u8 *n, size_t n_len,
302 			       const u8 *e, size_t e_len);
303 
304 /**
305  * crypto_private_key_import - Import an RSA private key
306  * @key: Key buffer (DER encoded RSA private key)
307  * @len: Key buffer length in bytes
308  * @passwd: Key encryption password or %NULL if key is not encrypted
309  * Returns: Pointer to the private key or %NULL on failure
310  *
311  * This function is only used with internal TLSv1 implementation
312  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
313  * to implement this.
314  */
315 struct crypto_private_key * crypto_private_key_import(const u8 *key,
316 						      size_t len,
317 						      const char *passwd);
318 
319 /**
320  * crypto_public_key_from_cert - Import an RSA public key from a certificate
321  * @buf: DER encoded X.509 certificate
322  * @len: Certificate buffer length in bytes
323  * Returns: Pointer to public key or %NULL on failure
324  *
325  * This function can just return %NULL if the crypto library does not support
326  * X.509 parsing. In that case, internal code will be used to parse the
327  * certificate and public key is imported using crypto_public_key_import().
328  *
329  * This function is only used with internal TLSv1 implementation
330  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
331  * to implement this.
332  */
333 struct crypto_public_key * crypto_public_key_from_cert(const u8 *buf,
334 						       size_t len);
335 
336 /**
337  * crypto_public_key_encrypt_pkcs1_v15 - Public key encryption (PKCS #1 v1.5)
338  * @key: Public key
339  * @in: Plaintext buffer
340  * @inlen: Length of plaintext buffer in bytes
341  * @out: Output buffer for encrypted data
342  * @outlen: Length of output buffer in bytes; set to used length on success
343  * Returns: 0 on success, -1 on failure
344  *
345  * This function is only used with internal TLSv1 implementation
346  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
347  * to implement this.
348  */
349 int __must_check crypto_public_key_encrypt_pkcs1_v15(
350 	struct crypto_public_key *key, const u8 *in, size_t inlen,
351 	u8 *out, size_t *outlen);
352 
353 /**
354  * crypto_private_key_decrypt_pkcs1_v15 - Private key decryption (PKCS #1 v1.5)
355  * @key: Private key
356  * @in: Encrypted buffer
357  * @inlen: Length of encrypted buffer in bytes
358  * @out: Output buffer for encrypted data
359  * @outlen: Length of output buffer in bytes; set to used length on success
360  * Returns: 0 on success, -1 on failure
361  *
362  * This function is only used with internal TLSv1 implementation
363  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
364  * to implement this.
365  */
366 int __must_check crypto_private_key_decrypt_pkcs1_v15(
367 	struct crypto_private_key *key, const u8 *in, size_t inlen,
368 	u8 *out, size_t *outlen);
369 
370 /**
371  * crypto_private_key_sign_pkcs1 - Sign with private key (PKCS #1)
372  * @key: Private key from crypto_private_key_import()
373  * @in: Plaintext buffer
374  * @inlen: Length of plaintext buffer in bytes
375  * @out: Output buffer for encrypted (signed) data
376  * @outlen: Length of output buffer in bytes; set to used length on success
377  * Returns: 0 on success, -1 on failure
378  *
379  * This function is only used with internal TLSv1 implementation
380  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
381  * to implement this.
382  */
383 int __must_check crypto_private_key_sign_pkcs1(struct crypto_private_key *key,
384 					       const u8 *in, size_t inlen,
385 					       u8 *out, size_t *outlen);
386 
387 /**
388  * crypto_public_key_free - Free public key
389  * @key: Public key
390  *
391  * This function is only used with internal TLSv1 implementation
392  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
393  * to implement this.
394  */
395 void crypto_public_key_free(struct crypto_public_key *key);
396 
397 /**
398  * crypto_private_key_free - Free private key
399  * @key: Private key from crypto_private_key_import()
400  *
401  * This function is only used with internal TLSv1 implementation
402  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
403  * to implement this.
404  */
405 void crypto_private_key_free(struct crypto_private_key *key);
406 
407 /**
408  * crypto_public_key_decrypt_pkcs1 - Decrypt PKCS #1 signature
409  * @key: Public key
410  * @crypt: Encrypted signature data (using the private key)
411  * @crypt_len: Encrypted signature data length
412  * @plain: Buffer for plaintext (at least crypt_len bytes)
413  * @plain_len: Plaintext length (max buffer size on input, real len on output);
414  * Returns: 0 on success, -1 on failure
415  */
416 int __must_check crypto_public_key_decrypt_pkcs1(
417 	struct crypto_public_key *key, const u8 *crypt, size_t crypt_len,
418 	u8 *plain, size_t *plain_len);
419 
420 int crypto_dh_init(u8 generator, const u8 *prime, size_t prime_len, u8 *privkey,
421 		   u8 *pubkey);
422 int crypto_dh_derive_secret(u8 generator, const u8 *prime, size_t prime_len,
423 			    const u8 *order, size_t order_len,
424 			    const u8 *privkey, size_t privkey_len,
425 			    const u8 *pubkey, size_t pubkey_len,
426 			    u8 *secret, size_t *len);
427 
428 /**
429  * crypto_global_init - Initialize crypto wrapper
430  *
431  * This function is only used with internal TLSv1 implementation
432  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
433  * to implement this.
434  */
435 int __must_check crypto_global_init(void);
436 
437 /**
438  * crypto_global_deinit - Deinitialize crypto wrapper
439  *
440  * This function is only used with internal TLSv1 implementation
441  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
442  * to implement this.
443  */
444 void crypto_global_deinit(void);
445 
446 /**
447  * crypto_mod_exp - Modular exponentiation of large integers
448  * @base: Base integer (big endian byte array)
449  * @base_len: Length of base integer in bytes
450  * @power: Power integer (big endian byte array)
451  * @power_len: Length of power integer in bytes
452  * @modulus: Modulus integer (big endian byte array)
453  * @modulus_len: Length of modulus integer in bytes
454  * @result: Buffer for the result
455  * @result_len: Result length (max buffer size on input, real len on output)
456  * Returns: 0 on success, -1 on failure
457  *
458  * This function calculates result = base ^ power mod modulus. modules_len is
459  * used as the maximum size of modulus buffer. It is set to the used size on
460  * success.
461  *
462  * This function is only used with internal TLSv1 implementation
463  * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need
464  * to implement this.
465  */
466 int __must_check crypto_mod_exp(const u8 *base, size_t base_len,
467 				const u8 *power, size_t power_len,
468 				const u8 *modulus, size_t modulus_len,
469 				u8 *result, size_t *result_len);
470 
471 /**
472  * rc4_skip - XOR RC4 stream to given data with skip-stream-start
473  * @key: RC4 key
474  * @keylen: RC4 key length
475  * @skip: number of bytes to skip from the beginning of the RC4 stream
476  * @data: data to be XOR'ed with RC4 stream
477  * @data_len: buf length
478  * Returns: 0 on success, -1 on failure
479  *
480  * Generate RC4 pseudo random stream for the given key, skip beginning of the
481  * stream, and XOR the end result with the data buffer to perform RC4
482  * encryption/decryption.
483  */
484 int rc4_skip(const u8 *key, size_t keylen, size_t skip,
485 	     u8 *data, size_t data_len);
486 
487 /**
488  * crypto_get_random - Generate cryptographically strong pseudo-random bytes
489  * @buf: Buffer for data
490  * @len: Number of bytes to generate
491  * Returns: 0 on success, -1 on failure
492  *
493  * If the PRNG does not have enough entropy to ensure unpredictable byte
494  * sequence, this functions must return -1.
495  */
496 int crypto_get_random(void *buf, size_t len);
497 
498 
499 /**
500  * struct crypto_bignum - bignum
501  *
502  * Internal data structure for bignum implementation. The contents is specific
503  * to the used crypto library.
504  */
505 struct crypto_bignum;
506 
507 /**
508  * crypto_bignum_init - Allocate memory for bignum
509  * Returns: Pointer to allocated bignum or %NULL on failure
510  */
511 struct crypto_bignum * crypto_bignum_init(void);
512 
513 /**
514  * crypto_bignum_init_set - Allocate memory for bignum and set the value
515  * @buf: Buffer with unsigned binary value
516  * @len: Length of buf in octets
517  * Returns: Pointer to allocated bignum or %NULL on failure
518  */
519 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len);
520 
521 /**
522  * crypto_bignum_init_set - Allocate memory for bignum and set the value (uint)
523  * @val: Value to set
524  * Returns: Pointer to allocated bignum or %NULL on failure
525  */
526 struct crypto_bignum * crypto_bignum_init_uint(unsigned int val);
527 
528 /**
529  * crypto_bignum_deinit - Free bignum
530  * @n: Bignum from crypto_bignum_init() or crypto_bignum_init_set()
531  * @clear: Whether to clear the value from memory
532  */
533 void crypto_bignum_deinit(struct crypto_bignum *n, int clear);
534 
535 /**
536  * crypto_bignum_to_bin - Set binary buffer to unsigned bignum
537  * @a: Bignum
538  * @buf: Buffer for the binary number
539  * @len: Length of @buf in octets
540  * @padlen: Length in octets to pad the result to or 0 to indicate no padding
541  * Returns: Number of octets written on success, -1 on failure
542  */
543 int crypto_bignum_to_bin(const struct crypto_bignum *a,
544 			 u8 *buf, size_t buflen, size_t padlen);
545 
546 /**
547  * crypto_bignum_rand - Create a random number in range of modulus
548  * @r: Bignum; set to a random value
549  * @m: Bignum; modulus
550  * Returns: 0 on success, -1 on failure
551  */
552 int crypto_bignum_rand(struct crypto_bignum *r, const struct crypto_bignum *m);
553 
554 /**
555  * crypto_bignum_add - c = a + b
556  * @a: Bignum
557  * @b: Bignum
558  * @c: Bignum; used to store the result of a + b
559  * Returns: 0 on success, -1 on failure
560  */
561 int crypto_bignum_add(const struct crypto_bignum *a,
562 		      const struct crypto_bignum *b,
563 		      struct crypto_bignum *c);
564 
565 /**
566  * crypto_bignum_mod - c = a % b
567  * @a: Bignum
568  * @b: Bignum
569  * @c: Bignum; used to store the result of a % b
570  * Returns: 0 on success, -1 on failure
571  */
572 int crypto_bignum_mod(const struct crypto_bignum *a,
573 		      const struct crypto_bignum *b,
574 		      struct crypto_bignum *c);
575 
576 /**
577  * crypto_bignum_exptmod - Modular exponentiation: d = a^b (mod c)
578  * @a: Bignum; base
579  * @b: Bignum; exponent
580  * @c: Bignum; modulus
581  * @d: Bignum; used to store the result of a^b (mod c)
582  * Returns: 0 on success, -1 on failure
583  */
584 int crypto_bignum_exptmod(const struct crypto_bignum *a,
585 			  const struct crypto_bignum *b,
586 			  const struct crypto_bignum *c,
587 			  struct crypto_bignum *d);
588 
589 /**
590  * crypto_bignum_inverse - Inverse a bignum so that a * c = 1 (mod b)
591  * @a: Bignum
592  * @b: Bignum
593  * @c: Bignum; used to store the result
594  * Returns: 0 on success, -1 on failure
595  */
596 int crypto_bignum_inverse(const struct crypto_bignum *a,
597 			  const struct crypto_bignum *b,
598 			  struct crypto_bignum *c);
599 
600 /**
601  * crypto_bignum_sub - c = a - b
602  * @a: Bignum
603  * @b: Bignum
604  * @c: Bignum; used to store the result of a - b
605  * Returns: 0 on success, -1 on failure
606  */
607 int crypto_bignum_sub(const struct crypto_bignum *a,
608 		      const struct crypto_bignum *b,
609 		      struct crypto_bignum *c);
610 
611 /**
612  * crypto_bignum_div - c = a / b
613  * @a: Bignum
614  * @b: Bignum
615  * @c: Bignum; used to store the result of a / b
616  * Returns: 0 on success, -1 on failure
617  */
618 int crypto_bignum_div(const struct crypto_bignum *a,
619 		      const struct crypto_bignum *b,
620 		      struct crypto_bignum *c);
621 
622 /**
623  * crypto_bignum_addmod - d = a + b (mod c)
624  * @a: Bignum
625  * @b: Bignum
626  * @c: Bignum
627  * @d: Bignum; used to store the result of (a + b) % c
628  * Returns: 0 on success, -1 on failure
629  */
630 int crypto_bignum_addmod(const struct crypto_bignum *a,
631 			 const struct crypto_bignum *b,
632 			 const struct crypto_bignum *c,
633 			 struct crypto_bignum *d);
634 
635 /**
636  * crypto_bignum_mulmod - d = a * b (mod c)
637  * @a: Bignum
638  * @b: Bignum
639  * @c: Bignum
640  * @d: Bignum; used to store the result of (a * b) % c
641  * Returns: 0 on success, -1 on failure
642  */
643 int crypto_bignum_mulmod(const struct crypto_bignum *a,
644 			 const struct crypto_bignum *b,
645 			 const struct crypto_bignum *c,
646 			 struct crypto_bignum *d);
647 
648 /**
649  * crypto_bignum_sqrmod - c = a^2 (mod b)
650  * @a: Bignum
651  * @b: Bignum
652  * @c: Bignum; used to store the result of a^2 % b
653  * Returns: 0 on success, -1 on failure
654  */
655 int crypto_bignum_sqrmod(const struct crypto_bignum *a,
656 			 const struct crypto_bignum *b,
657 			 struct crypto_bignum *c);
658 
659 /**
660  * crypto_bignum_rshift - r = a >> n
661  * @a: Bignum
662  * @n: Number of bits
663  * @r: Bignum; used to store the result of a >> n
664  * Returns: 0 on success, -1 on failure
665  */
666 int crypto_bignum_rshift(const struct crypto_bignum *a, int n,
667 			 struct crypto_bignum *r);
668 
669 /**
670  * crypto_bignum_cmp - Compare two bignums
671  * @a: Bignum
672  * @b: Bignum
673  * Returns: -1 if a < b, 0 if a == b, or 1 if a > b
674  */
675 int crypto_bignum_cmp(const struct crypto_bignum *a,
676 		      const struct crypto_bignum *b);
677 
678 /**
679  * crypto_bignum_is_zero - Is the given bignum zero
680  * @a: Bignum
681  * Returns: 1 if @a is zero or 0 if not
682  */
683 int crypto_bignum_is_zero(const struct crypto_bignum *a);
684 
685 /**
686  * crypto_bignum_is_one - Is the given bignum one
687  * @a: Bignum
688  * Returns: 1 if @a is one or 0 if not
689  */
690 int crypto_bignum_is_one(const struct crypto_bignum *a);
691 
692 /**
693  * crypto_bignum_is_odd - Is the given bignum odd
694  * @a: Bignum
695  * Returns: 1 if @a is odd or 0 if not
696  */
697 int crypto_bignum_is_odd(const struct crypto_bignum *a);
698 
699 /**
700  * crypto_bignum_legendre - Compute the Legendre symbol (a/p)
701  * @a: Bignum
702  * @p: Bignum
703  * Returns: Legendre symbol -1,0,1 on success; -2 on calculation failure
704  */
705 int crypto_bignum_legendre(const struct crypto_bignum *a,
706 			   const struct crypto_bignum *p);
707 
708 /**
709  * struct crypto_ec - Elliptic curve context
710  *
711  * Internal data structure for EC implementation. The contents is specific
712  * to the used crypto library.
713  */
714 struct crypto_ec;
715 
716 /**
717  * crypto_ec_init - Initialize elliptic curve context
718  * @group: Identifying number for the ECC group (IANA "Group Description"
719  *	attribute registrty for RFC 2409)
720  * Returns: Pointer to EC context or %NULL on failure
721  */
722 struct crypto_ec * crypto_ec_init(int group);
723 
724 /**
725  * crypto_ec_deinit - Deinitialize elliptic curve context
726  * @e: EC context from crypto_ec_init()
727  */
728 void crypto_ec_deinit(struct crypto_ec *e);
729 
730 /**
731  * crypto_ec_prime_len - Get length of the prime in octets
732  * @e: EC context from crypto_ec_init()
733  * Returns: Length of the prime defining the group
734  */
735 size_t crypto_ec_prime_len(struct crypto_ec *e);
736 
737 /**
738  * crypto_ec_prime_len_bits - Get length of the prime in bits
739  * @e: EC context from crypto_ec_init()
740  * Returns: Length of the prime defining the group in bits
741  */
742 size_t crypto_ec_prime_len_bits(struct crypto_ec *e);
743 
744 /**
745  * crypto_ec_order_len - Get length of the order in octets
746  * @e: EC context from crypto_ec_init()
747  * Returns: Length of the order defining the group
748  */
749 size_t crypto_ec_order_len(struct crypto_ec *e);
750 
751 /**
752  * crypto_ec_get_prime - Get prime defining an EC group
753  * @e: EC context from crypto_ec_init()
754  * Returns: Prime (bignum) defining the group
755  */
756 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e);
757 
758 /**
759  * crypto_ec_get_order - Get order of an EC group
760  * @e: EC context from crypto_ec_init()
761  * Returns: Order (bignum) of the group
762  */
763 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e);
764 
765 const struct crypto_bignum * crypto_ec_get_a(struct crypto_ec *e);
766 const struct crypto_bignum * crypto_ec_get_b(struct crypto_ec *e);
767 
768 /**
769  * struct crypto_ec_point - Elliptic curve point
770  *
771  * Internal data structure for EC implementation to represent a point. The
772  * contents is specific to the used crypto library.
773  */
774 struct crypto_ec_point;
775 
776 /**
777  * crypto_ec_point_init - Initialize data for an EC point
778  * @e: EC context from crypto_ec_init()
779  * Returns: Pointer to EC point data or %NULL on failure
780  */
781 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e);
782 
783 /**
784  * crypto_ec_point_deinit - Deinitialize EC point data
785  * @p: EC point data from crypto_ec_point_init()
786  * @clear: Whether to clear the EC point value from memory
787  */
788 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear);
789 
790 /**
791  * crypto_ec_point_x - Copies the x-ordinate point into big number
792  * @e: EC context from crypto_ec_init()
793  * @p: EC point data
794  * @x: Big number to set to the copy of x-ordinate
795  * Returns: 0 on success, -1 on failure
796  */
797 int crypto_ec_point_x(struct crypto_ec *e, const struct crypto_ec_point *p,
798 		      struct crypto_bignum *x);
799 
800 /**
801  * crypto_ec_point_to_bin - Write EC point value as binary data
802  * @e: EC context from crypto_ec_init()
803  * @p: EC point data from crypto_ec_point_init()
804  * @x: Buffer for writing the binary data for x coordinate or %NULL if not used
805  * @y: Buffer for writing the binary data for y coordinate or %NULL if not used
806  * Returns: 0 on success, -1 on failure
807  *
808  * This function can be used to write an EC point as binary data in a format
809  * that has the x and y coordinates in big endian byte order fields padded to
810  * the length of the prime defining the group.
811  */
812 int crypto_ec_point_to_bin(struct crypto_ec *e,
813 			   const struct crypto_ec_point *point, u8 *x, u8 *y);
814 
815 /**
816  * crypto_ec_point_from_bin - Create EC point from binary data
817  * @e: EC context from crypto_ec_init()
818  * @val: Binary data to read the EC point from
819  * Returns: Pointer to EC point data or %NULL on failure
820  *
821  * This function readers x and y coordinates of the EC point from the provided
822  * buffer assuming the values are in big endian byte order with fields padded to
823  * the length of the prime defining the group.
824  */
825 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
826 						  const u8 *val);
827 
828 /**
829  * crypto_ec_point_add - c = a + b
830  * @e: EC context from crypto_ec_init()
831  * @a: Bignum
832  * @b: Bignum
833  * @c: Bignum; used to store the result of a + b
834  * Returns: 0 on success, -1 on failure
835  */
836 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
837 			const struct crypto_ec_point *b,
838 			struct crypto_ec_point *c);
839 
840 /**
841  * crypto_ec_point_mul - res = b * p
842  * @e: EC context from crypto_ec_init()
843  * @p: EC point
844  * @b: Bignum
845  * @res: EC point; used to store the result of b * p
846  * Returns: 0 on success, -1 on failure
847  */
848 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
849 			const struct crypto_bignum *b,
850 			struct crypto_ec_point *res);
851 
852 /**
853  * crypto_ec_point_invert - Compute inverse of an EC point
854  * @e: EC context from crypto_ec_init()
855  * @p: EC point to invert (and result of the operation)
856  * Returns: 0 on success, -1 on failure
857  */
858 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p);
859 
860 /**
861  * crypto_ec_point_solve_y_coord - Solve y coordinate for an x coordinate
862  * @e: EC context from crypto_ec_init()
863  * @p: EC point to use for the returning the result
864  * @x: x coordinate
865  * @y_bit: y-bit (0 or 1) for selecting the y value to use
866  * Returns: 0 on success, -1 on failure
867  */
868 int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
869 				  struct crypto_ec_point *p,
870 				  const struct crypto_bignum *x, int y_bit);
871 
872 /**
873  * crypto_ec_point_compute_y_sqr - Compute y^2 = x^3 + ax + b
874  * @e: EC context from crypto_ec_init()
875  * @x: x coordinate
876  * Returns: y^2 on success, %NULL failure
877  */
878 struct crypto_bignum *
879 crypto_ec_point_compute_y_sqr(struct crypto_ec *e,
880 			      const struct crypto_bignum *x);
881 
882 /**
883  * crypto_ec_point_is_at_infinity - Check whether EC point is neutral element
884  * @e: EC context from crypto_ec_init()
885  * @p: EC point
886  * Returns: 1 if the specified EC point is the neutral element of the group or
887  *	0 if not
888  */
889 int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
890 				   const struct crypto_ec_point *p);
891 
892 /**
893  * crypto_ec_point_is_on_curve - Check whether EC point is on curve
894  * @e: EC context from crypto_ec_init()
895  * @p: EC point
896  * Returns: 1 if the specified EC point is on the curve or 0 if not
897  */
898 int crypto_ec_point_is_on_curve(struct crypto_ec *e,
899 				const struct crypto_ec_point *p);
900 
901 /**
902  * crypto_ec_point_cmp - Compare two EC points
903  * @e: EC context from crypto_ec_init()
904  * @a: EC point
905  * @b: EC point
906  * Returns: 0 on equal, non-zero otherwise
907  */
908 int crypto_ec_point_cmp(const struct crypto_ec *e,
909 			const struct crypto_ec_point *a,
910 			const struct crypto_ec_point *b);
911 
912 struct crypto_ecdh;
913 
914 struct crypto_ecdh * crypto_ecdh_init(int group);
915 struct wpabuf * crypto_ecdh_get_pubkey(struct crypto_ecdh *ecdh, int inc_y);
916 struct wpabuf * crypto_ecdh_set_peerkey(struct crypto_ecdh *ecdh, int inc_y,
917 					const u8 *key, size_t len);
918 void crypto_ecdh_deinit(struct crypto_ecdh *ecdh);
919 size_t crypto_ecdh_prime_len(struct crypto_ecdh *ecdh);
920 
921 struct crypto_ec_key;
922 
923 struct crypto_ec_key * crypto_ec_key_parse_priv(const u8 *der, size_t der_len);
924 struct crypto_ec_key * crypto_ec_key_parse_pub(const u8 *der, size_t der_len);
925 void crypto_ec_key_deinit(struct crypto_ec_key *key);
926 struct wpabuf * crypto_ec_key_get_subject_public_key(struct crypto_ec_key *key);
927 struct wpabuf * crypto_ec_key_sign(struct crypto_ec_key *key, const u8 *data,
928 				   size_t len);
929 int crypto_ec_key_verify_signature(struct crypto_ec_key *key, const u8 *data,
930 				   size_t len, const u8 *sig, size_t sig_len);
931 int crypto_ec_key_group(struct crypto_ec_key *key);
932 
933 #endif /* CRYPTO_H */
934