1 //===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the ASTContext interface.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/AST/ASTContext.h"
14 #include "CXXABI.h"
15 #include "Interp/Context.h"
16 #include "clang/AST/APValue.h"
17 #include "clang/AST/ASTConcept.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/ASTTypeTraits.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/AttrIterator.h"
22 #include "clang/AST/CharUnits.h"
23 #include "clang/AST/Comment.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclBase.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclContextInternals.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclOpenMP.h"
30 #include "clang/AST/DeclTemplate.h"
31 #include "clang/AST/DeclarationName.h"
32 #include "clang/AST/DependenceFlags.h"
33 #include "clang/AST/Expr.h"
34 #include "clang/AST/ExprCXX.h"
35 #include "clang/AST/ExprConcepts.h"
36 #include "clang/AST/ExternalASTSource.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/MangleNumberingContext.h"
39 #include "clang/AST/NestedNameSpecifier.h"
40 #include "clang/AST/ParentMapContext.h"
41 #include "clang/AST/RawCommentList.h"
42 #include "clang/AST/RecordLayout.h"
43 #include "clang/AST/Stmt.h"
44 #include "clang/AST/TemplateBase.h"
45 #include "clang/AST/TemplateName.h"
46 #include "clang/AST/Type.h"
47 #include "clang/AST/TypeLoc.h"
48 #include "clang/AST/UnresolvedSet.h"
49 #include "clang/AST/VTableBuilder.h"
50 #include "clang/Basic/AddressSpaces.h"
51 #include "clang/Basic/Builtins.h"
52 #include "clang/Basic/CommentOptions.h"
53 #include "clang/Basic/ExceptionSpecificationType.h"
54 #include "clang/Basic/IdentifierTable.h"
55 #include "clang/Basic/LLVM.h"
56 #include "clang/Basic/LangOptions.h"
57 #include "clang/Basic/Linkage.h"
58 #include "clang/Basic/Module.h"
59 #include "clang/Basic/ObjCRuntime.h"
60 #include "clang/Basic/SanitizerBlacklist.h"
61 #include "clang/Basic/SourceLocation.h"
62 #include "clang/Basic/SourceManager.h"
63 #include "clang/Basic/Specifiers.h"
64 #include "clang/Basic/TargetCXXABI.h"
65 #include "clang/Basic/TargetInfo.h"
66 #include "clang/Basic/XRayLists.h"
67 #include "llvm/ADT/APFixedPoint.h"
68 #include "llvm/ADT/APInt.h"
69 #include "llvm/ADT/APSInt.h"
70 #include "llvm/ADT/ArrayRef.h"
71 #include "llvm/ADT/DenseMap.h"
72 #include "llvm/ADT/DenseSet.h"
73 #include "llvm/ADT/FoldingSet.h"
74 #include "llvm/ADT/None.h"
75 #include "llvm/ADT/Optional.h"
76 #include "llvm/ADT/PointerUnion.h"
77 #include "llvm/ADT/STLExtras.h"
78 #include "llvm/ADT/SmallPtrSet.h"
79 #include "llvm/ADT/SmallVector.h"
80 #include "llvm/ADT/StringExtras.h"
81 #include "llvm/ADT/StringRef.h"
82 #include "llvm/ADT/Triple.h"
83 #include "llvm/Support/Capacity.h"
84 #include "llvm/Support/Casting.h"
85 #include "llvm/Support/Compiler.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/MathExtras.h"
88 #include "llvm/Support/raw_ostream.h"
89 #include <algorithm>
90 #include <cassert>
91 #include <cstddef>
92 #include <cstdint>
93 #include <cstdlib>
94 #include <map>
95 #include <memory>
96 #include <string>
97 #include <tuple>
98 #include <utility>
99
100 using namespace clang;
101
102 enum FloatingRank {
103 BFloat16Rank, Float16Rank, HalfRank, FloatRank, DoubleRank, LongDoubleRank, Float128Rank
104 };
105
106 /// \returns location that is relevant when searching for Doc comments related
107 /// to \p D.
getDeclLocForCommentSearch(const Decl * D,SourceManager & SourceMgr)108 static SourceLocation getDeclLocForCommentSearch(const Decl *D,
109 SourceManager &SourceMgr) {
110 assert(D);
111
112 // User can not attach documentation to implicit declarations.
113 if (D->isImplicit())
114 return {};
115
116 // User can not attach documentation to implicit instantiations.
117 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
118 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
119 return {};
120 }
121
122 if (const auto *VD = dyn_cast<VarDecl>(D)) {
123 if (VD->isStaticDataMember() &&
124 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
125 return {};
126 }
127
128 if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
129 if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
130 return {};
131 }
132
133 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
134 TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
135 if (TSK == TSK_ImplicitInstantiation ||
136 TSK == TSK_Undeclared)
137 return {};
138 }
139
140 if (const auto *ED = dyn_cast<EnumDecl>(D)) {
141 if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
142 return {};
143 }
144 if (const auto *TD = dyn_cast<TagDecl>(D)) {
145 // When tag declaration (but not definition!) is part of the
146 // decl-specifier-seq of some other declaration, it doesn't get comment
147 if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
148 return {};
149 }
150 // TODO: handle comments for function parameters properly.
151 if (isa<ParmVarDecl>(D))
152 return {};
153
154 // TODO: we could look up template parameter documentation in the template
155 // documentation.
156 if (isa<TemplateTypeParmDecl>(D) ||
157 isa<NonTypeTemplateParmDecl>(D) ||
158 isa<TemplateTemplateParmDecl>(D))
159 return {};
160
161 // Find declaration location.
162 // For Objective-C declarations we generally don't expect to have multiple
163 // declarators, thus use declaration starting location as the "declaration
164 // location".
165 // For all other declarations multiple declarators are used quite frequently,
166 // so we use the location of the identifier as the "declaration location".
167 if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
168 isa<ObjCPropertyDecl>(D) ||
169 isa<RedeclarableTemplateDecl>(D) ||
170 isa<ClassTemplateSpecializationDecl>(D) ||
171 // Allow association with Y across {} in `typedef struct X {} Y`.
172 isa<TypedefDecl>(D))
173 return D->getBeginLoc();
174 else {
175 const SourceLocation DeclLoc = D->getLocation();
176 if (DeclLoc.isMacroID()) {
177 if (isa<TypedefDecl>(D)) {
178 // If location of the typedef name is in a macro, it is because being
179 // declared via a macro. Try using declaration's starting location as
180 // the "declaration location".
181 return D->getBeginLoc();
182 } else if (const auto *TD = dyn_cast<TagDecl>(D)) {
183 // If location of the tag decl is inside a macro, but the spelling of
184 // the tag name comes from a macro argument, it looks like a special
185 // macro like NS_ENUM is being used to define the tag decl. In that
186 // case, adjust the source location to the expansion loc so that we can
187 // attach the comment to the tag decl.
188 if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
189 TD->isCompleteDefinition())
190 return SourceMgr.getExpansionLoc(DeclLoc);
191 }
192 }
193 return DeclLoc;
194 }
195
196 return {};
197 }
198
getRawCommentForDeclNoCacheImpl(const Decl * D,const SourceLocation RepresentativeLocForDecl,const std::map<unsigned,RawComment * > & CommentsInTheFile) const199 RawComment *ASTContext::getRawCommentForDeclNoCacheImpl(
200 const Decl *D, const SourceLocation RepresentativeLocForDecl,
201 const std::map<unsigned, RawComment *> &CommentsInTheFile) const {
202 // If the declaration doesn't map directly to a location in a file, we
203 // can't find the comment.
204 if (RepresentativeLocForDecl.isInvalid() ||
205 !RepresentativeLocForDecl.isFileID())
206 return nullptr;
207
208 // If there are no comments anywhere, we won't find anything.
209 if (CommentsInTheFile.empty())
210 return nullptr;
211
212 // Decompose the location for the declaration and find the beginning of the
213 // file buffer.
214 const std::pair<FileID, unsigned> DeclLocDecomp =
215 SourceMgr.getDecomposedLoc(RepresentativeLocForDecl);
216
217 // Slow path.
218 auto OffsetCommentBehindDecl =
219 CommentsInTheFile.lower_bound(DeclLocDecomp.second);
220
221 // First check whether we have a trailing comment.
222 if (OffsetCommentBehindDecl != CommentsInTheFile.end()) {
223 RawComment *CommentBehindDecl = OffsetCommentBehindDecl->second;
224 if ((CommentBehindDecl->isDocumentation() ||
225 LangOpts.CommentOpts.ParseAllComments) &&
226 CommentBehindDecl->isTrailingComment() &&
227 (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
228 isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
229
230 // Check that Doxygen trailing comment comes after the declaration, starts
231 // on the same line and in the same file as the declaration.
232 if (SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) ==
233 Comments.getCommentBeginLine(CommentBehindDecl, DeclLocDecomp.first,
234 OffsetCommentBehindDecl->first)) {
235 return CommentBehindDecl;
236 }
237 }
238 }
239
240 // The comment just after the declaration was not a trailing comment.
241 // Let's look at the previous comment.
242 if (OffsetCommentBehindDecl == CommentsInTheFile.begin())
243 return nullptr;
244
245 auto OffsetCommentBeforeDecl = --OffsetCommentBehindDecl;
246 RawComment *CommentBeforeDecl = OffsetCommentBeforeDecl->second;
247
248 // Check that we actually have a non-member Doxygen comment.
249 if (!(CommentBeforeDecl->isDocumentation() ||
250 LangOpts.CommentOpts.ParseAllComments) ||
251 CommentBeforeDecl->isTrailingComment())
252 return nullptr;
253
254 // Decompose the end of the comment.
255 const unsigned CommentEndOffset =
256 Comments.getCommentEndOffset(CommentBeforeDecl);
257
258 // Get the corresponding buffer.
259 bool Invalid = false;
260 const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
261 &Invalid).data();
262 if (Invalid)
263 return nullptr;
264
265 // Extract text between the comment and declaration.
266 StringRef Text(Buffer + CommentEndOffset,
267 DeclLocDecomp.second - CommentEndOffset);
268
269 // There should be no other declarations or preprocessor directives between
270 // comment and declaration.
271 if (Text.find_first_of(";{}#@") != StringRef::npos)
272 return nullptr;
273
274 return CommentBeforeDecl;
275 }
276
getRawCommentForDeclNoCache(const Decl * D) const277 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
278 const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
279
280 // If the declaration doesn't map directly to a location in a file, we
281 // can't find the comment.
282 if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
283 return nullptr;
284
285 if (ExternalSource && !CommentsLoaded) {
286 ExternalSource->ReadComments();
287 CommentsLoaded = true;
288 }
289
290 if (Comments.empty())
291 return nullptr;
292
293 const FileID File = SourceMgr.getDecomposedLoc(DeclLoc).first;
294 const auto CommentsInThisFile = Comments.getCommentsInFile(File);
295 if (!CommentsInThisFile || CommentsInThisFile->empty())
296 return nullptr;
297
298 return getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile);
299 }
300
addComment(const RawComment & RC)301 void ASTContext::addComment(const RawComment &RC) {
302 assert(LangOpts.RetainCommentsFromSystemHeaders ||
303 !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
304 Comments.addComment(RC, LangOpts.CommentOpts, BumpAlloc);
305 }
306
307 /// If we have a 'templated' declaration for a template, adjust 'D' to
308 /// refer to the actual template.
309 /// If we have an implicit instantiation, adjust 'D' to refer to template.
adjustDeclToTemplate(const Decl & D)310 static const Decl &adjustDeclToTemplate(const Decl &D) {
311 if (const auto *FD = dyn_cast<FunctionDecl>(&D)) {
312 // Is this function declaration part of a function template?
313 if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
314 return *FTD;
315
316 // Nothing to do if function is not an implicit instantiation.
317 if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
318 return D;
319
320 // Function is an implicit instantiation of a function template?
321 if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
322 return *FTD;
323
324 // Function is instantiated from a member definition of a class template?
325 if (const FunctionDecl *MemberDecl =
326 FD->getInstantiatedFromMemberFunction())
327 return *MemberDecl;
328
329 return D;
330 }
331 if (const auto *VD = dyn_cast<VarDecl>(&D)) {
332 // Static data member is instantiated from a member definition of a class
333 // template?
334 if (VD->isStaticDataMember())
335 if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
336 return *MemberDecl;
337
338 return D;
339 }
340 if (const auto *CRD = dyn_cast<CXXRecordDecl>(&D)) {
341 // Is this class declaration part of a class template?
342 if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
343 return *CTD;
344
345 // Class is an implicit instantiation of a class template or partial
346 // specialization?
347 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
348 if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
349 return D;
350 llvm::PointerUnion<ClassTemplateDecl *,
351 ClassTemplatePartialSpecializationDecl *>
352 PU = CTSD->getSpecializedTemplateOrPartial();
353 return PU.is<ClassTemplateDecl *>()
354 ? *static_cast<const Decl *>(PU.get<ClassTemplateDecl *>())
355 : *static_cast<const Decl *>(
356 PU.get<ClassTemplatePartialSpecializationDecl *>());
357 }
358
359 // Class is instantiated from a member definition of a class template?
360 if (const MemberSpecializationInfo *Info =
361 CRD->getMemberSpecializationInfo())
362 return *Info->getInstantiatedFrom();
363
364 return D;
365 }
366 if (const auto *ED = dyn_cast<EnumDecl>(&D)) {
367 // Enum is instantiated from a member definition of a class template?
368 if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
369 return *MemberDecl;
370
371 return D;
372 }
373 // FIXME: Adjust alias templates?
374 return D;
375 }
376
getRawCommentForAnyRedecl(const Decl * D,const Decl ** OriginalDecl) const377 const RawComment *ASTContext::getRawCommentForAnyRedecl(
378 const Decl *D,
379 const Decl **OriginalDecl) const {
380 if (!D) {
381 if (OriginalDecl)
382 OriginalDecl = nullptr;
383 return nullptr;
384 }
385
386 D = &adjustDeclToTemplate(*D);
387
388 // Any comment directly attached to D?
389 {
390 auto DeclComment = DeclRawComments.find(D);
391 if (DeclComment != DeclRawComments.end()) {
392 if (OriginalDecl)
393 *OriginalDecl = D;
394 return DeclComment->second;
395 }
396 }
397
398 // Any comment attached to any redeclaration of D?
399 const Decl *CanonicalD = D->getCanonicalDecl();
400 if (!CanonicalD)
401 return nullptr;
402
403 {
404 auto RedeclComment = RedeclChainComments.find(CanonicalD);
405 if (RedeclComment != RedeclChainComments.end()) {
406 if (OriginalDecl)
407 *OriginalDecl = RedeclComment->second;
408 auto CommentAtRedecl = DeclRawComments.find(RedeclComment->second);
409 assert(CommentAtRedecl != DeclRawComments.end() &&
410 "This decl is supposed to have comment attached.");
411 return CommentAtRedecl->second;
412 }
413 }
414
415 // Any redeclarations of D that we haven't checked for comments yet?
416 // We can't use DenseMap::iterator directly since it'd get invalid.
417 auto LastCheckedRedecl = [this, CanonicalD]() -> const Decl * {
418 auto LookupRes = CommentlessRedeclChains.find(CanonicalD);
419 if (LookupRes != CommentlessRedeclChains.end())
420 return LookupRes->second;
421 return nullptr;
422 }();
423
424 for (const auto Redecl : D->redecls()) {
425 assert(Redecl);
426 // Skip all redeclarations that have been checked previously.
427 if (LastCheckedRedecl) {
428 if (LastCheckedRedecl == Redecl) {
429 LastCheckedRedecl = nullptr;
430 }
431 continue;
432 }
433 const RawComment *RedeclComment = getRawCommentForDeclNoCache(Redecl);
434 if (RedeclComment) {
435 cacheRawCommentForDecl(*Redecl, *RedeclComment);
436 if (OriginalDecl)
437 *OriginalDecl = Redecl;
438 return RedeclComment;
439 }
440 CommentlessRedeclChains[CanonicalD] = Redecl;
441 }
442
443 if (OriginalDecl)
444 *OriginalDecl = nullptr;
445 return nullptr;
446 }
447
cacheRawCommentForDecl(const Decl & OriginalD,const RawComment & Comment) const448 void ASTContext::cacheRawCommentForDecl(const Decl &OriginalD,
449 const RawComment &Comment) const {
450 assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments);
451 DeclRawComments.try_emplace(&OriginalD, &Comment);
452 const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl();
453 RedeclChainComments.try_emplace(CanonicalDecl, &OriginalD);
454 CommentlessRedeclChains.erase(CanonicalDecl);
455 }
456
addRedeclaredMethods(const ObjCMethodDecl * ObjCMethod,SmallVectorImpl<const NamedDecl * > & Redeclared)457 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
458 SmallVectorImpl<const NamedDecl *> &Redeclared) {
459 const DeclContext *DC = ObjCMethod->getDeclContext();
460 if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) {
461 const ObjCInterfaceDecl *ID = IMD->getClassInterface();
462 if (!ID)
463 return;
464 // Add redeclared method here.
465 for (const auto *Ext : ID->known_extensions()) {
466 if (ObjCMethodDecl *RedeclaredMethod =
467 Ext->getMethod(ObjCMethod->getSelector(),
468 ObjCMethod->isInstanceMethod()))
469 Redeclared.push_back(RedeclaredMethod);
470 }
471 }
472 }
473
attachCommentsToJustParsedDecls(ArrayRef<Decl * > Decls,const Preprocessor * PP)474 void ASTContext::attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
475 const Preprocessor *PP) {
476 if (Comments.empty() || Decls.empty())
477 return;
478
479 FileID File;
480 for (Decl *D : Decls) {
481 SourceLocation Loc = D->getLocation();
482 if (Loc.isValid()) {
483 // See if there are any new comments that are not attached to a decl.
484 // The location doesn't have to be precise - we care only about the file.
485 File = SourceMgr.getDecomposedLoc(Loc).first;
486 break;
487 }
488 }
489
490 if (File.isInvalid())
491 return;
492
493 auto CommentsInThisFile = Comments.getCommentsInFile(File);
494 if (!CommentsInThisFile || CommentsInThisFile->empty() ||
495 CommentsInThisFile->rbegin()->second->isAttached())
496 return;
497
498 // There is at least one comment not attached to a decl.
499 // Maybe it should be attached to one of Decls?
500 //
501 // Note that this way we pick up not only comments that precede the
502 // declaration, but also comments that *follow* the declaration -- thanks to
503 // the lookahead in the lexer: we've consumed the semicolon and looked
504 // ahead through comments.
505
506 for (const Decl *D : Decls) {
507 assert(D);
508 if (D->isInvalidDecl())
509 continue;
510
511 D = &adjustDeclToTemplate(*D);
512
513 const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
514
515 if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
516 continue;
517
518 if (DeclRawComments.count(D) > 0)
519 continue;
520
521 if (RawComment *const DocComment =
522 getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile)) {
523 cacheRawCommentForDecl(*D, *DocComment);
524 comments::FullComment *FC = DocComment->parse(*this, PP, D);
525 ParsedComments[D->getCanonicalDecl()] = FC;
526 }
527 }
528 }
529
cloneFullComment(comments::FullComment * FC,const Decl * D) const530 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
531 const Decl *D) const {
532 auto *ThisDeclInfo = new (*this) comments::DeclInfo;
533 ThisDeclInfo->CommentDecl = D;
534 ThisDeclInfo->IsFilled = false;
535 ThisDeclInfo->fill();
536 ThisDeclInfo->CommentDecl = FC->getDecl();
537 if (!ThisDeclInfo->TemplateParameters)
538 ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
539 comments::FullComment *CFC =
540 new (*this) comments::FullComment(FC->getBlocks(),
541 ThisDeclInfo);
542 return CFC;
543 }
544
getLocalCommentForDeclUncached(const Decl * D) const545 comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
546 const RawComment *RC = getRawCommentForDeclNoCache(D);
547 return RC ? RC->parse(*this, nullptr, D) : nullptr;
548 }
549
getCommentForDecl(const Decl * D,const Preprocessor * PP) const550 comments::FullComment *ASTContext::getCommentForDecl(
551 const Decl *D,
552 const Preprocessor *PP) const {
553 if (!D || D->isInvalidDecl())
554 return nullptr;
555 D = &adjustDeclToTemplate(*D);
556
557 const Decl *Canonical = D->getCanonicalDecl();
558 llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
559 ParsedComments.find(Canonical);
560
561 if (Pos != ParsedComments.end()) {
562 if (Canonical != D) {
563 comments::FullComment *FC = Pos->second;
564 comments::FullComment *CFC = cloneFullComment(FC, D);
565 return CFC;
566 }
567 return Pos->second;
568 }
569
570 const Decl *OriginalDecl = nullptr;
571
572 const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
573 if (!RC) {
574 if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
575 SmallVector<const NamedDecl*, 8> Overridden;
576 const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
577 if (OMD && OMD->isPropertyAccessor())
578 if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
579 if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
580 return cloneFullComment(FC, D);
581 if (OMD)
582 addRedeclaredMethods(OMD, Overridden);
583 getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
584 for (unsigned i = 0, e = Overridden.size(); i < e; i++)
585 if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
586 return cloneFullComment(FC, D);
587 }
588 else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
589 // Attach any tag type's documentation to its typedef if latter
590 // does not have one of its own.
591 QualType QT = TD->getUnderlyingType();
592 if (const auto *TT = QT->getAs<TagType>())
593 if (const Decl *TD = TT->getDecl())
594 if (comments::FullComment *FC = getCommentForDecl(TD, PP))
595 return cloneFullComment(FC, D);
596 }
597 else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
598 while (IC->getSuperClass()) {
599 IC = IC->getSuperClass();
600 if (comments::FullComment *FC = getCommentForDecl(IC, PP))
601 return cloneFullComment(FC, D);
602 }
603 }
604 else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
605 if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
606 if (comments::FullComment *FC = getCommentForDecl(IC, PP))
607 return cloneFullComment(FC, D);
608 }
609 else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
610 if (!(RD = RD->getDefinition()))
611 return nullptr;
612 // Check non-virtual bases.
613 for (const auto &I : RD->bases()) {
614 if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
615 continue;
616 QualType Ty = I.getType();
617 if (Ty.isNull())
618 continue;
619 if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
620 if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
621 continue;
622
623 if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
624 return cloneFullComment(FC, D);
625 }
626 }
627 // Check virtual bases.
628 for (const auto &I : RD->vbases()) {
629 if (I.getAccessSpecifier() != AS_public)
630 continue;
631 QualType Ty = I.getType();
632 if (Ty.isNull())
633 continue;
634 if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
635 if (!(VirtualBase= VirtualBase->getDefinition()))
636 continue;
637 if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
638 return cloneFullComment(FC, D);
639 }
640 }
641 }
642 return nullptr;
643 }
644
645 // If the RawComment was attached to other redeclaration of this Decl, we
646 // should parse the comment in context of that other Decl. This is important
647 // because comments can contain references to parameter names which can be
648 // different across redeclarations.
649 if (D != OriginalDecl && OriginalDecl)
650 return getCommentForDecl(OriginalDecl, PP);
651
652 comments::FullComment *FC = RC->parse(*this, PP, D);
653 ParsedComments[Canonical] = FC;
654 return FC;
655 }
656
657 void
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & C,TemplateTemplateParmDecl * Parm)658 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
659 const ASTContext &C,
660 TemplateTemplateParmDecl *Parm) {
661 ID.AddInteger(Parm->getDepth());
662 ID.AddInteger(Parm->getPosition());
663 ID.AddBoolean(Parm->isParameterPack());
664
665 TemplateParameterList *Params = Parm->getTemplateParameters();
666 ID.AddInteger(Params->size());
667 for (TemplateParameterList::const_iterator P = Params->begin(),
668 PEnd = Params->end();
669 P != PEnd; ++P) {
670 if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
671 ID.AddInteger(0);
672 ID.AddBoolean(TTP->isParameterPack());
673 const TypeConstraint *TC = TTP->getTypeConstraint();
674 ID.AddBoolean(TC != nullptr);
675 if (TC)
676 TC->getImmediatelyDeclaredConstraint()->Profile(ID, C,
677 /*Canonical=*/true);
678 if (TTP->isExpandedParameterPack()) {
679 ID.AddBoolean(true);
680 ID.AddInteger(TTP->getNumExpansionParameters());
681 } else
682 ID.AddBoolean(false);
683 continue;
684 }
685
686 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
687 ID.AddInteger(1);
688 ID.AddBoolean(NTTP->isParameterPack());
689 ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
690 if (NTTP->isExpandedParameterPack()) {
691 ID.AddBoolean(true);
692 ID.AddInteger(NTTP->getNumExpansionTypes());
693 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
694 QualType T = NTTP->getExpansionType(I);
695 ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
696 }
697 } else
698 ID.AddBoolean(false);
699 continue;
700 }
701
702 auto *TTP = cast<TemplateTemplateParmDecl>(*P);
703 ID.AddInteger(2);
704 Profile(ID, C, TTP);
705 }
706 Expr *RequiresClause = Parm->getTemplateParameters()->getRequiresClause();
707 ID.AddBoolean(RequiresClause != nullptr);
708 if (RequiresClause)
709 RequiresClause->Profile(ID, C, /*Canonical=*/true);
710 }
711
712 static Expr *
canonicalizeImmediatelyDeclaredConstraint(const ASTContext & C,Expr * IDC,QualType ConstrainedType)713 canonicalizeImmediatelyDeclaredConstraint(const ASTContext &C, Expr *IDC,
714 QualType ConstrainedType) {
715 // This is a bit ugly - we need to form a new immediately-declared
716 // constraint that references the new parameter; this would ideally
717 // require semantic analysis (e.g. template<C T> struct S {}; - the
718 // converted arguments of C<T> could be an argument pack if C is
719 // declared as template<typename... T> concept C = ...).
720 // We don't have semantic analysis here so we dig deep into the
721 // ready-made constraint expr and change the thing manually.
722 ConceptSpecializationExpr *CSE;
723 if (const auto *Fold = dyn_cast<CXXFoldExpr>(IDC))
724 CSE = cast<ConceptSpecializationExpr>(Fold->getLHS());
725 else
726 CSE = cast<ConceptSpecializationExpr>(IDC);
727 ArrayRef<TemplateArgument> OldConverted = CSE->getTemplateArguments();
728 SmallVector<TemplateArgument, 3> NewConverted;
729 NewConverted.reserve(OldConverted.size());
730 if (OldConverted.front().getKind() == TemplateArgument::Pack) {
731 // The case:
732 // template<typename... T> concept C = true;
733 // template<C<int> T> struct S; -> constraint is C<{T, int}>
734 NewConverted.push_back(ConstrainedType);
735 for (auto &Arg : OldConverted.front().pack_elements().drop_front(1))
736 NewConverted.push_back(Arg);
737 TemplateArgument NewPack(NewConverted);
738
739 NewConverted.clear();
740 NewConverted.push_back(NewPack);
741 assert(OldConverted.size() == 1 &&
742 "Template parameter pack should be the last parameter");
743 } else {
744 assert(OldConverted.front().getKind() == TemplateArgument::Type &&
745 "Unexpected first argument kind for immediately-declared "
746 "constraint");
747 NewConverted.push_back(ConstrainedType);
748 for (auto &Arg : OldConverted.drop_front(1))
749 NewConverted.push_back(Arg);
750 }
751 Expr *NewIDC = ConceptSpecializationExpr::Create(
752 C, CSE->getNamedConcept(), NewConverted, nullptr,
753 CSE->isInstantiationDependent(), CSE->containsUnexpandedParameterPack());
754
755 if (auto *OrigFold = dyn_cast<CXXFoldExpr>(IDC))
756 NewIDC = new (C) CXXFoldExpr(
757 OrigFold->getType(), /*Callee*/nullptr, SourceLocation(), NewIDC,
758 BinaryOperatorKind::BO_LAnd, SourceLocation(), /*RHS=*/nullptr,
759 SourceLocation(), /*NumExpansions=*/None);
760 return NewIDC;
761 }
762
763 TemplateTemplateParmDecl *
getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl * TTP) const764 ASTContext::getCanonicalTemplateTemplateParmDecl(
765 TemplateTemplateParmDecl *TTP) const {
766 // Check if we already have a canonical template template parameter.
767 llvm::FoldingSetNodeID ID;
768 CanonicalTemplateTemplateParm::Profile(ID, *this, TTP);
769 void *InsertPos = nullptr;
770 CanonicalTemplateTemplateParm *Canonical
771 = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
772 if (Canonical)
773 return Canonical->getParam();
774
775 // Build a canonical template parameter list.
776 TemplateParameterList *Params = TTP->getTemplateParameters();
777 SmallVector<NamedDecl *, 4> CanonParams;
778 CanonParams.reserve(Params->size());
779 for (TemplateParameterList::const_iterator P = Params->begin(),
780 PEnd = Params->end();
781 P != PEnd; ++P) {
782 if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
783 TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create(*this,
784 getTranslationUnitDecl(), SourceLocation(), SourceLocation(),
785 TTP->getDepth(), TTP->getIndex(), nullptr, false,
786 TTP->isParameterPack(), TTP->hasTypeConstraint(),
787 TTP->isExpandedParameterPack() ?
788 llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None);
789 if (const auto *TC = TTP->getTypeConstraint()) {
790 QualType ParamAsArgument(NewTTP->getTypeForDecl(), 0);
791 Expr *NewIDC = canonicalizeImmediatelyDeclaredConstraint(
792 *this, TC->getImmediatelyDeclaredConstraint(),
793 ParamAsArgument);
794 TemplateArgumentListInfo CanonArgsAsWritten;
795 if (auto *Args = TC->getTemplateArgsAsWritten())
796 for (const auto &ArgLoc : Args->arguments())
797 CanonArgsAsWritten.addArgument(
798 TemplateArgumentLoc(ArgLoc.getArgument(),
799 TemplateArgumentLocInfo()));
800 NewTTP->setTypeConstraint(
801 NestedNameSpecifierLoc(),
802 DeclarationNameInfo(TC->getNamedConcept()->getDeclName(),
803 SourceLocation()), /*FoundDecl=*/nullptr,
804 // Actually canonicalizing a TemplateArgumentLoc is difficult so we
805 // simply omit the ArgsAsWritten
806 TC->getNamedConcept(), /*ArgsAsWritten=*/nullptr, NewIDC);
807 }
808 CanonParams.push_back(NewTTP);
809 } else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
810 QualType T = getCanonicalType(NTTP->getType());
811 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
812 NonTypeTemplateParmDecl *Param;
813 if (NTTP->isExpandedParameterPack()) {
814 SmallVector<QualType, 2> ExpandedTypes;
815 SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
816 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
817 ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
818 ExpandedTInfos.push_back(
819 getTrivialTypeSourceInfo(ExpandedTypes.back()));
820 }
821
822 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
823 SourceLocation(),
824 SourceLocation(),
825 NTTP->getDepth(),
826 NTTP->getPosition(), nullptr,
827 T,
828 TInfo,
829 ExpandedTypes,
830 ExpandedTInfos);
831 } else {
832 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
833 SourceLocation(),
834 SourceLocation(),
835 NTTP->getDepth(),
836 NTTP->getPosition(), nullptr,
837 T,
838 NTTP->isParameterPack(),
839 TInfo);
840 }
841 if (AutoType *AT = T->getContainedAutoType()) {
842 if (AT->isConstrained()) {
843 Param->setPlaceholderTypeConstraint(
844 canonicalizeImmediatelyDeclaredConstraint(
845 *this, NTTP->getPlaceholderTypeConstraint(), T));
846 }
847 }
848 CanonParams.push_back(Param);
849
850 } else
851 CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
852 cast<TemplateTemplateParmDecl>(*P)));
853 }
854
855 Expr *CanonRequiresClause = nullptr;
856 if (Expr *RequiresClause = TTP->getTemplateParameters()->getRequiresClause())
857 CanonRequiresClause = RequiresClause;
858
859 TemplateTemplateParmDecl *CanonTTP
860 = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
861 SourceLocation(), TTP->getDepth(),
862 TTP->getPosition(),
863 TTP->isParameterPack(),
864 nullptr,
865 TemplateParameterList::Create(*this, SourceLocation(),
866 SourceLocation(),
867 CanonParams,
868 SourceLocation(),
869 CanonRequiresClause));
870
871 // Get the new insert position for the node we care about.
872 Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
873 assert(!Canonical && "Shouldn't be in the map!");
874 (void)Canonical;
875
876 // Create the canonical template template parameter entry.
877 Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
878 CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
879 return CanonTTP;
880 }
881
createCXXABI(const TargetInfo & T)882 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
883 if (!LangOpts.CPlusPlus) return nullptr;
884
885 switch (T.getCXXABI().getKind()) {
886 case TargetCXXABI::AppleARM64:
887 case TargetCXXABI::Fuchsia:
888 case TargetCXXABI::GenericARM: // Same as Itanium at this level
889 case TargetCXXABI::iOS:
890 case TargetCXXABI::WatchOS:
891 case TargetCXXABI::GenericAArch64:
892 case TargetCXXABI::GenericMIPS:
893 case TargetCXXABI::GenericItanium:
894 case TargetCXXABI::WebAssembly:
895 case TargetCXXABI::XL:
896 return CreateItaniumCXXABI(*this);
897 case TargetCXXABI::Microsoft:
898 return CreateMicrosoftCXXABI(*this);
899 }
900 llvm_unreachable("Invalid CXXABI type!");
901 }
902
getInterpContext()903 interp::Context &ASTContext::getInterpContext() {
904 if (!InterpContext) {
905 InterpContext.reset(new interp::Context(*this));
906 }
907 return *InterpContext.get();
908 }
909
getParentMapContext()910 ParentMapContext &ASTContext::getParentMapContext() {
911 if (!ParentMapCtx)
912 ParentMapCtx.reset(new ParentMapContext(*this));
913 return *ParentMapCtx.get();
914 }
915
getAddressSpaceMap(const TargetInfo & T,const LangOptions & LOpts)916 static const LangASMap *getAddressSpaceMap(const TargetInfo &T,
917 const LangOptions &LOpts) {
918 if (LOpts.FakeAddressSpaceMap) {
919 // The fake address space map must have a distinct entry for each
920 // language-specific address space.
921 static const unsigned FakeAddrSpaceMap[] = {
922 0, // Default
923 1, // opencl_global
924 3, // opencl_local
925 2, // opencl_constant
926 0, // opencl_private
927 4, // opencl_generic
928 5, // opencl_global_device
929 6, // opencl_global_host
930 7, // cuda_device
931 8, // cuda_constant
932 9, // cuda_shared
933 10, // ptr32_sptr
934 11, // ptr32_uptr
935 12 // ptr64
936 };
937 return &FakeAddrSpaceMap;
938 } else {
939 return &T.getAddressSpaceMap();
940 }
941 }
942
isAddrSpaceMapManglingEnabled(const TargetInfo & TI,const LangOptions & LangOpts)943 static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
944 const LangOptions &LangOpts) {
945 switch (LangOpts.getAddressSpaceMapMangling()) {
946 case LangOptions::ASMM_Target:
947 return TI.useAddressSpaceMapMangling();
948 case LangOptions::ASMM_On:
949 return true;
950 case LangOptions::ASMM_Off:
951 return false;
952 }
953 llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
954 }
955
ASTContext(LangOptions & LOpts,SourceManager & SM,IdentifierTable & idents,SelectorTable & sels,Builtin::Context & builtins)956 ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
957 IdentifierTable &idents, SelectorTable &sels,
958 Builtin::Context &builtins)
959 : ConstantArrayTypes(this_()), FunctionProtoTypes(this_()),
960 TemplateSpecializationTypes(this_()),
961 DependentTemplateSpecializationTypes(this_()), AutoTypes(this_()),
962 SubstTemplateTemplateParmPacks(this_()),
963 CanonTemplateTemplateParms(this_()), SourceMgr(SM), LangOpts(LOpts),
964 SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFiles, SM)),
965 XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles,
966 LangOpts.XRayNeverInstrumentFiles,
967 LangOpts.XRayAttrListFiles, SM)),
968 PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
969 BuiltinInfo(builtins), DeclarationNames(*this), Comments(SM),
970 CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
971 CompCategories(this_()), LastSDM(nullptr, 0) {
972 TUDecl = TranslationUnitDecl::Create(*this);
973 TraversalScope = {TUDecl};
974 }
975
~ASTContext()976 ASTContext::~ASTContext() {
977 // Release the DenseMaps associated with DeclContext objects.
978 // FIXME: Is this the ideal solution?
979 ReleaseDeclContextMaps();
980
981 // Call all of the deallocation functions on all of their targets.
982 for (auto &Pair : Deallocations)
983 (Pair.first)(Pair.second);
984
985 // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
986 // because they can contain DenseMaps.
987 for (llvm::DenseMap<const ObjCContainerDecl*,
988 const ASTRecordLayout*>::iterator
989 I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
990 // Increment in loop to prevent using deallocated memory.
991 if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
992 R->Destroy(*this);
993
994 for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
995 I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
996 // Increment in loop to prevent using deallocated memory.
997 if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
998 R->Destroy(*this);
999 }
1000
1001 for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
1002 AEnd = DeclAttrs.end();
1003 A != AEnd; ++A)
1004 A->second->~AttrVec();
1005
1006 for (const auto &Value : ModuleInitializers)
1007 Value.second->~PerModuleInitializers();
1008 }
1009
setTraversalScope(const std::vector<Decl * > & TopLevelDecls)1010 void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) {
1011 TraversalScope = TopLevelDecls;
1012 getParentMapContext().clear();
1013 }
1014
AddDeallocation(void (* Callback)(void *),void * Data) const1015 void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const {
1016 Deallocations.push_back({Callback, Data});
1017 }
1018
1019 void
setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source)1020 ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
1021 ExternalSource = std::move(Source);
1022 }
1023
PrintStats() const1024 void ASTContext::PrintStats() const {
1025 llvm::errs() << "\n*** AST Context Stats:\n";
1026 llvm::errs() << " " << Types.size() << " types total.\n";
1027
1028 unsigned counts[] = {
1029 #define TYPE(Name, Parent) 0,
1030 #define ABSTRACT_TYPE(Name, Parent)
1031 #include "clang/AST/TypeNodes.inc"
1032 0 // Extra
1033 };
1034
1035 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1036 Type *T = Types[i];
1037 counts[(unsigned)T->getTypeClass()]++;
1038 }
1039
1040 unsigned Idx = 0;
1041 unsigned TotalBytes = 0;
1042 #define TYPE(Name, Parent) \
1043 if (counts[Idx]) \
1044 llvm::errs() << " " << counts[Idx] << " " << #Name \
1045 << " types, " << sizeof(Name##Type) << " each " \
1046 << "(" << counts[Idx] * sizeof(Name##Type) \
1047 << " bytes)\n"; \
1048 TotalBytes += counts[Idx] * sizeof(Name##Type); \
1049 ++Idx;
1050 #define ABSTRACT_TYPE(Name, Parent)
1051 #include "clang/AST/TypeNodes.inc"
1052
1053 llvm::errs() << "Total bytes = " << TotalBytes << "\n";
1054
1055 // Implicit special member functions.
1056 llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
1057 << NumImplicitDefaultConstructors
1058 << " implicit default constructors created\n";
1059 llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
1060 << NumImplicitCopyConstructors
1061 << " implicit copy constructors created\n";
1062 if (getLangOpts().CPlusPlus)
1063 llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
1064 << NumImplicitMoveConstructors
1065 << " implicit move constructors created\n";
1066 llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
1067 << NumImplicitCopyAssignmentOperators
1068 << " implicit copy assignment operators created\n";
1069 if (getLangOpts().CPlusPlus)
1070 llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
1071 << NumImplicitMoveAssignmentOperators
1072 << " implicit move assignment operators created\n";
1073 llvm::errs() << NumImplicitDestructorsDeclared << "/"
1074 << NumImplicitDestructors
1075 << " implicit destructors created\n";
1076
1077 if (ExternalSource) {
1078 llvm::errs() << "\n";
1079 ExternalSource->PrintStats();
1080 }
1081
1082 BumpAlloc.PrintStats();
1083 }
1084
mergeDefinitionIntoModule(NamedDecl * ND,Module * M,bool NotifyListeners)1085 void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
1086 bool NotifyListeners) {
1087 if (NotifyListeners)
1088 if (auto *Listener = getASTMutationListener())
1089 Listener->RedefinedHiddenDefinition(ND, M);
1090
1091 MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M);
1092 }
1093
deduplicateMergedDefinitonsFor(NamedDecl * ND)1094 void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
1095 auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl()));
1096 if (It == MergedDefModules.end())
1097 return;
1098
1099 auto &Merged = It->second;
1100 llvm::DenseSet<Module*> Found;
1101 for (Module *&M : Merged)
1102 if (!Found.insert(M).second)
1103 M = nullptr;
1104 Merged.erase(std::remove(Merged.begin(), Merged.end(), nullptr), Merged.end());
1105 }
1106
1107 ArrayRef<Module *>
getModulesWithMergedDefinition(const NamedDecl * Def)1108 ASTContext::getModulesWithMergedDefinition(const NamedDecl *Def) {
1109 auto MergedIt =
1110 MergedDefModules.find(cast<NamedDecl>(Def->getCanonicalDecl()));
1111 if (MergedIt == MergedDefModules.end())
1112 return None;
1113 return MergedIt->second;
1114 }
1115
resolve(ASTContext & Ctx)1116 void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) {
1117 if (LazyInitializers.empty())
1118 return;
1119
1120 auto *Source = Ctx.getExternalSource();
1121 assert(Source && "lazy initializers but no external source");
1122
1123 auto LazyInits = std::move(LazyInitializers);
1124 LazyInitializers.clear();
1125
1126 for (auto ID : LazyInits)
1127 Initializers.push_back(Source->GetExternalDecl(ID));
1128
1129 assert(LazyInitializers.empty() &&
1130 "GetExternalDecl for lazy module initializer added more inits");
1131 }
1132
addModuleInitializer(Module * M,Decl * D)1133 void ASTContext::addModuleInitializer(Module *M, Decl *D) {
1134 // One special case: if we add a module initializer that imports another
1135 // module, and that module's only initializer is an ImportDecl, simplify.
1136 if (const auto *ID = dyn_cast<ImportDecl>(D)) {
1137 auto It = ModuleInitializers.find(ID->getImportedModule());
1138
1139 // Maybe the ImportDecl does nothing at all. (Common case.)
1140 if (It == ModuleInitializers.end())
1141 return;
1142
1143 // Maybe the ImportDecl only imports another ImportDecl.
1144 auto &Imported = *It->second;
1145 if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) {
1146 Imported.resolve(*this);
1147 auto *OnlyDecl = Imported.Initializers.front();
1148 if (isa<ImportDecl>(OnlyDecl))
1149 D = OnlyDecl;
1150 }
1151 }
1152
1153 auto *&Inits = ModuleInitializers[M];
1154 if (!Inits)
1155 Inits = new (*this) PerModuleInitializers;
1156 Inits->Initializers.push_back(D);
1157 }
1158
addLazyModuleInitializers(Module * M,ArrayRef<uint32_t> IDs)1159 void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) {
1160 auto *&Inits = ModuleInitializers[M];
1161 if (!Inits)
1162 Inits = new (*this) PerModuleInitializers;
1163 Inits->LazyInitializers.insert(Inits->LazyInitializers.end(),
1164 IDs.begin(), IDs.end());
1165 }
1166
getModuleInitializers(Module * M)1167 ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) {
1168 auto It = ModuleInitializers.find(M);
1169 if (It == ModuleInitializers.end())
1170 return None;
1171
1172 auto *Inits = It->second;
1173 Inits->resolve(*this);
1174 return Inits->Initializers;
1175 }
1176
getExternCContextDecl() const1177 ExternCContextDecl *ASTContext::getExternCContextDecl() const {
1178 if (!ExternCContext)
1179 ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
1180
1181 return ExternCContext;
1182 }
1183
1184 BuiltinTemplateDecl *
buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,const IdentifierInfo * II) const1185 ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1186 const IdentifierInfo *II) const {
1187 auto *BuiltinTemplate = BuiltinTemplateDecl::Create(*this, TUDecl, II, BTK);
1188 BuiltinTemplate->setImplicit();
1189 TUDecl->addDecl(BuiltinTemplate);
1190
1191 return BuiltinTemplate;
1192 }
1193
1194 BuiltinTemplateDecl *
getMakeIntegerSeqDecl() const1195 ASTContext::getMakeIntegerSeqDecl() const {
1196 if (!MakeIntegerSeqDecl)
1197 MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
1198 getMakeIntegerSeqName());
1199 return MakeIntegerSeqDecl;
1200 }
1201
1202 BuiltinTemplateDecl *
getTypePackElementDecl() const1203 ASTContext::getTypePackElementDecl() const {
1204 if (!TypePackElementDecl)
1205 TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element,
1206 getTypePackElementName());
1207 return TypePackElementDecl;
1208 }
1209
buildImplicitRecord(StringRef Name,RecordDecl::TagKind TK) const1210 RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
1211 RecordDecl::TagKind TK) const {
1212 SourceLocation Loc;
1213 RecordDecl *NewDecl;
1214 if (getLangOpts().CPlusPlus)
1215 NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
1216 Loc, &Idents.get(Name));
1217 else
1218 NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
1219 &Idents.get(Name));
1220 NewDecl->setImplicit();
1221 NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
1222 const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
1223 return NewDecl;
1224 }
1225
buildImplicitTypedef(QualType T,StringRef Name) const1226 TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
1227 StringRef Name) const {
1228 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
1229 TypedefDecl *NewDecl = TypedefDecl::Create(
1230 const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
1231 SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
1232 NewDecl->setImplicit();
1233 return NewDecl;
1234 }
1235
getInt128Decl() const1236 TypedefDecl *ASTContext::getInt128Decl() const {
1237 if (!Int128Decl)
1238 Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
1239 return Int128Decl;
1240 }
1241
getUInt128Decl() const1242 TypedefDecl *ASTContext::getUInt128Decl() const {
1243 if (!UInt128Decl)
1244 UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
1245 return UInt128Decl;
1246 }
1247
InitBuiltinType(CanQualType & R,BuiltinType::Kind K)1248 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
1249 auto *Ty = new (*this, TypeAlignment) BuiltinType(K);
1250 R = CanQualType::CreateUnsafe(QualType(Ty, 0));
1251 Types.push_back(Ty);
1252 }
1253
InitBuiltinTypes(const TargetInfo & Target,const TargetInfo * AuxTarget)1254 void ASTContext::InitBuiltinTypes(const TargetInfo &Target,
1255 const TargetInfo *AuxTarget) {
1256 assert((!this->Target || this->Target == &Target) &&
1257 "Incorrect target reinitialization");
1258 assert(VoidTy.isNull() && "Context reinitialized?");
1259
1260 this->Target = &Target;
1261 this->AuxTarget = AuxTarget;
1262
1263 ABI.reset(createCXXABI(Target));
1264 AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
1265 AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
1266
1267 // C99 6.2.5p19.
1268 InitBuiltinType(VoidTy, BuiltinType::Void);
1269
1270 // C99 6.2.5p2.
1271 InitBuiltinType(BoolTy, BuiltinType::Bool);
1272 // C99 6.2.5p3.
1273 if (LangOpts.CharIsSigned)
1274 InitBuiltinType(CharTy, BuiltinType::Char_S);
1275 else
1276 InitBuiltinType(CharTy, BuiltinType::Char_U);
1277 // C99 6.2.5p4.
1278 InitBuiltinType(SignedCharTy, BuiltinType::SChar);
1279 InitBuiltinType(ShortTy, BuiltinType::Short);
1280 InitBuiltinType(IntTy, BuiltinType::Int);
1281 InitBuiltinType(LongTy, BuiltinType::Long);
1282 InitBuiltinType(LongLongTy, BuiltinType::LongLong);
1283
1284 // C99 6.2.5p6.
1285 InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
1286 InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
1287 InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
1288 InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
1289 InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
1290
1291 // C99 6.2.5p10.
1292 InitBuiltinType(FloatTy, BuiltinType::Float);
1293 InitBuiltinType(DoubleTy, BuiltinType::Double);
1294 InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
1295
1296 // GNU extension, __float128 for IEEE quadruple precision
1297 InitBuiltinType(Float128Ty, BuiltinType::Float128);
1298
1299 // C11 extension ISO/IEC TS 18661-3
1300 InitBuiltinType(Float16Ty, BuiltinType::Float16);
1301
1302 // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1303 InitBuiltinType(ShortAccumTy, BuiltinType::ShortAccum);
1304 InitBuiltinType(AccumTy, BuiltinType::Accum);
1305 InitBuiltinType(LongAccumTy, BuiltinType::LongAccum);
1306 InitBuiltinType(UnsignedShortAccumTy, BuiltinType::UShortAccum);
1307 InitBuiltinType(UnsignedAccumTy, BuiltinType::UAccum);
1308 InitBuiltinType(UnsignedLongAccumTy, BuiltinType::ULongAccum);
1309 InitBuiltinType(ShortFractTy, BuiltinType::ShortFract);
1310 InitBuiltinType(FractTy, BuiltinType::Fract);
1311 InitBuiltinType(LongFractTy, BuiltinType::LongFract);
1312 InitBuiltinType(UnsignedShortFractTy, BuiltinType::UShortFract);
1313 InitBuiltinType(UnsignedFractTy, BuiltinType::UFract);
1314 InitBuiltinType(UnsignedLongFractTy, BuiltinType::ULongFract);
1315 InitBuiltinType(SatShortAccumTy, BuiltinType::SatShortAccum);
1316 InitBuiltinType(SatAccumTy, BuiltinType::SatAccum);
1317 InitBuiltinType(SatLongAccumTy, BuiltinType::SatLongAccum);
1318 InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum);
1319 InitBuiltinType(SatUnsignedAccumTy, BuiltinType::SatUAccum);
1320 InitBuiltinType(SatUnsignedLongAccumTy, BuiltinType::SatULongAccum);
1321 InitBuiltinType(SatShortFractTy, BuiltinType::SatShortFract);
1322 InitBuiltinType(SatFractTy, BuiltinType::SatFract);
1323 InitBuiltinType(SatLongFractTy, BuiltinType::SatLongFract);
1324 InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract);
1325 InitBuiltinType(SatUnsignedFractTy, BuiltinType::SatUFract);
1326 InitBuiltinType(SatUnsignedLongFractTy, BuiltinType::SatULongFract);
1327
1328 // GNU extension, 128-bit integers.
1329 InitBuiltinType(Int128Ty, BuiltinType::Int128);
1330 InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128);
1331
1332 // C++ 3.9.1p5
1333 if (TargetInfo::isTypeSigned(Target.getWCharType()))
1334 InitBuiltinType(WCharTy, BuiltinType::WChar_S);
1335 else // -fshort-wchar makes wchar_t be unsigned.
1336 InitBuiltinType(WCharTy, BuiltinType::WChar_U);
1337 if (LangOpts.CPlusPlus && LangOpts.WChar)
1338 WideCharTy = WCharTy;
1339 else {
1340 // C99 (or C++ using -fno-wchar).
1341 WideCharTy = getFromTargetType(Target.getWCharType());
1342 }
1343
1344 WIntTy = getFromTargetType(Target.getWIntType());
1345
1346 // C++20 (proposed)
1347 InitBuiltinType(Char8Ty, BuiltinType::Char8);
1348
1349 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1350 InitBuiltinType(Char16Ty, BuiltinType::Char16);
1351 else // C99
1352 Char16Ty = getFromTargetType(Target.getChar16Type());
1353
1354 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1355 InitBuiltinType(Char32Ty, BuiltinType::Char32);
1356 else // C99
1357 Char32Ty = getFromTargetType(Target.getChar32Type());
1358
1359 // Placeholder type for type-dependent expressions whose type is
1360 // completely unknown. No code should ever check a type against
1361 // DependentTy and users should never see it; however, it is here to
1362 // help diagnose failures to properly check for type-dependent
1363 // expressions.
1364 InitBuiltinType(DependentTy, BuiltinType::Dependent);
1365
1366 // Placeholder type for functions.
1367 InitBuiltinType(OverloadTy, BuiltinType::Overload);
1368
1369 // Placeholder type for bound members.
1370 InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember);
1371
1372 // Placeholder type for pseudo-objects.
1373 InitBuiltinType(PseudoObjectTy, BuiltinType::PseudoObject);
1374
1375 // "any" type; useful for debugger-like clients.
1376 InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny);
1377
1378 // Placeholder type for unbridged ARC casts.
1379 InitBuiltinType(ARCUnbridgedCastTy, BuiltinType::ARCUnbridgedCast);
1380
1381 // Placeholder type for builtin functions.
1382 InitBuiltinType(BuiltinFnTy, BuiltinType::BuiltinFn);
1383
1384 // Placeholder type for OMP array sections.
1385 if (LangOpts.OpenMP) {
1386 InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
1387 InitBuiltinType(OMPArrayShapingTy, BuiltinType::OMPArrayShaping);
1388 InitBuiltinType(OMPIteratorTy, BuiltinType::OMPIterator);
1389 }
1390 if (LangOpts.MatrixTypes)
1391 InitBuiltinType(IncompleteMatrixIdxTy, BuiltinType::IncompleteMatrixIdx);
1392
1393 // C99 6.2.5p11.
1394 FloatComplexTy = getComplexType(FloatTy);
1395 DoubleComplexTy = getComplexType(DoubleTy);
1396 LongDoubleComplexTy = getComplexType(LongDoubleTy);
1397 Float128ComplexTy = getComplexType(Float128Ty);
1398
1399 // Builtin types for 'id', 'Class', and 'SEL'.
1400 InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1401 InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1402 InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1403
1404 if (LangOpts.OpenCL) {
1405 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1406 InitBuiltinType(SingletonId, BuiltinType::Id);
1407 #include "clang/Basic/OpenCLImageTypes.def"
1408
1409 InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1410 InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1411 InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
1412 InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
1413 InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
1414
1415 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1416 InitBuiltinType(Id##Ty, BuiltinType::Id);
1417 #include "clang/Basic/OpenCLExtensionTypes.def"
1418 }
1419
1420 if (Target.hasAArch64SVETypes()) {
1421 #define SVE_TYPE(Name, Id, SingletonId) \
1422 InitBuiltinType(SingletonId, BuiltinType::Id);
1423 #include "clang/Basic/AArch64SVEACLETypes.def"
1424 }
1425
1426 if (Target.getTriple().isPPC64() && Target.hasFeature("mma")) {
1427 #define PPC_MMA_VECTOR_TYPE(Name, Id, Size) \
1428 InitBuiltinType(Id##Ty, BuiltinType::Id);
1429 #include "clang/Basic/PPCTypes.def"
1430 }
1431
1432 // Builtin type for __objc_yes and __objc_no
1433 ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1434 SignedCharTy : BoolTy);
1435
1436 ObjCConstantStringType = QualType();
1437
1438 ObjCSuperType = QualType();
1439
1440 // void * type
1441 if (LangOpts.OpenCLVersion >= 200) {
1442 auto Q = VoidTy.getQualifiers();
1443 Q.setAddressSpace(LangAS::opencl_generic);
1444 VoidPtrTy = getPointerType(getCanonicalType(
1445 getQualifiedType(VoidTy.getUnqualifiedType(), Q)));
1446 } else {
1447 VoidPtrTy = getPointerType(VoidTy);
1448 }
1449
1450 // nullptr type (C++0x 2.14.7)
1451 InitBuiltinType(NullPtrTy, BuiltinType::NullPtr);
1452
1453 // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1454 InitBuiltinType(HalfTy, BuiltinType::Half);
1455
1456 InitBuiltinType(BFloat16Ty, BuiltinType::BFloat16);
1457
1458 // Builtin type used to help define __builtin_va_list.
1459 VaListTagDecl = nullptr;
1460
1461 // MSVC predeclares struct _GUID, and we need it to create MSGuidDecls.
1462 if (LangOpts.MicrosoftExt || LangOpts.Borland) {
1463 MSGuidTagDecl = buildImplicitRecord("_GUID");
1464 TUDecl->addDecl(MSGuidTagDecl);
1465 }
1466 }
1467
getDiagnostics() const1468 DiagnosticsEngine &ASTContext::getDiagnostics() const {
1469 return SourceMgr.getDiagnostics();
1470 }
1471
getDeclAttrs(const Decl * D)1472 AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1473 AttrVec *&Result = DeclAttrs[D];
1474 if (!Result) {
1475 void *Mem = Allocate(sizeof(AttrVec));
1476 Result = new (Mem) AttrVec;
1477 }
1478
1479 return *Result;
1480 }
1481
1482 /// Erase the attributes corresponding to the given declaration.
eraseDeclAttrs(const Decl * D)1483 void ASTContext::eraseDeclAttrs(const Decl *D) {
1484 llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1485 if (Pos != DeclAttrs.end()) {
1486 Pos->second->~AttrVec();
1487 DeclAttrs.erase(Pos);
1488 }
1489 }
1490
1491 // FIXME: Remove ?
1492 MemberSpecializationInfo *
getInstantiatedFromStaticDataMember(const VarDecl * Var)1493 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1494 assert(Var->isStaticDataMember() && "Not a static data member");
1495 return getTemplateOrSpecializationInfo(Var)
1496 .dyn_cast<MemberSpecializationInfo *>();
1497 }
1498
1499 ASTContext::TemplateOrSpecializationInfo
getTemplateOrSpecializationInfo(const VarDecl * Var)1500 ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1501 llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1502 TemplateOrInstantiation.find(Var);
1503 if (Pos == TemplateOrInstantiation.end())
1504 return {};
1505
1506 return Pos->second;
1507 }
1508
1509 void
setInstantiatedFromStaticDataMember(VarDecl * Inst,VarDecl * Tmpl,TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)1510 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1511 TemplateSpecializationKind TSK,
1512 SourceLocation PointOfInstantiation) {
1513 assert(Inst->isStaticDataMember() && "Not a static data member");
1514 assert(Tmpl->isStaticDataMember() && "Not a static data member");
1515 setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1516 Tmpl, TSK, PointOfInstantiation));
1517 }
1518
1519 void
setTemplateOrSpecializationInfo(VarDecl * Inst,TemplateOrSpecializationInfo TSI)1520 ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1521 TemplateOrSpecializationInfo TSI) {
1522 assert(!TemplateOrInstantiation[Inst] &&
1523 "Already noted what the variable was instantiated from");
1524 TemplateOrInstantiation[Inst] = TSI;
1525 }
1526
1527 NamedDecl *
getInstantiatedFromUsingDecl(NamedDecl * UUD)1528 ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) {
1529 auto Pos = InstantiatedFromUsingDecl.find(UUD);
1530 if (Pos == InstantiatedFromUsingDecl.end())
1531 return nullptr;
1532
1533 return Pos->second;
1534 }
1535
1536 void
setInstantiatedFromUsingDecl(NamedDecl * Inst,NamedDecl * Pattern)1537 ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) {
1538 assert((isa<UsingDecl>(Pattern) ||
1539 isa<UnresolvedUsingValueDecl>(Pattern) ||
1540 isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1541 "pattern decl is not a using decl");
1542 assert((isa<UsingDecl>(Inst) ||
1543 isa<UnresolvedUsingValueDecl>(Inst) ||
1544 isa<UnresolvedUsingTypenameDecl>(Inst)) &&
1545 "instantiation did not produce a using decl");
1546 assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1547 InstantiatedFromUsingDecl[Inst] = Pattern;
1548 }
1549
1550 UsingShadowDecl *
getInstantiatedFromUsingShadowDecl(UsingShadowDecl * Inst)1551 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1552 llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1553 = InstantiatedFromUsingShadowDecl.find(Inst);
1554 if (Pos == InstantiatedFromUsingShadowDecl.end())
1555 return nullptr;
1556
1557 return Pos->second;
1558 }
1559
1560 void
setInstantiatedFromUsingShadowDecl(UsingShadowDecl * Inst,UsingShadowDecl * Pattern)1561 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1562 UsingShadowDecl *Pattern) {
1563 assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1564 InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1565 }
1566
getInstantiatedFromUnnamedFieldDecl(FieldDecl * Field)1567 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1568 llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1569 = InstantiatedFromUnnamedFieldDecl.find(Field);
1570 if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1571 return nullptr;
1572
1573 return Pos->second;
1574 }
1575
setInstantiatedFromUnnamedFieldDecl(FieldDecl * Inst,FieldDecl * Tmpl)1576 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1577 FieldDecl *Tmpl) {
1578 assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1579 assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1580 assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1581 "Already noted what unnamed field was instantiated from");
1582
1583 InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1584 }
1585
1586 ASTContext::overridden_cxx_method_iterator
overridden_methods_begin(const CXXMethodDecl * Method) const1587 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1588 return overridden_methods(Method).begin();
1589 }
1590
1591 ASTContext::overridden_cxx_method_iterator
overridden_methods_end(const CXXMethodDecl * Method) const1592 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1593 return overridden_methods(Method).end();
1594 }
1595
1596 unsigned
overridden_methods_size(const CXXMethodDecl * Method) const1597 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1598 auto Range = overridden_methods(Method);
1599 return Range.end() - Range.begin();
1600 }
1601
1602 ASTContext::overridden_method_range
overridden_methods(const CXXMethodDecl * Method) const1603 ASTContext::overridden_methods(const CXXMethodDecl *Method) const {
1604 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos =
1605 OverriddenMethods.find(Method->getCanonicalDecl());
1606 if (Pos == OverriddenMethods.end())
1607 return overridden_method_range(nullptr, nullptr);
1608 return overridden_method_range(Pos->second.begin(), Pos->second.end());
1609 }
1610
addOverriddenMethod(const CXXMethodDecl * Method,const CXXMethodDecl * Overridden)1611 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1612 const CXXMethodDecl *Overridden) {
1613 assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1614 OverriddenMethods[Method].push_back(Overridden);
1615 }
1616
getOverriddenMethods(const NamedDecl * D,SmallVectorImpl<const NamedDecl * > & Overridden) const1617 void ASTContext::getOverriddenMethods(
1618 const NamedDecl *D,
1619 SmallVectorImpl<const NamedDecl *> &Overridden) const {
1620 assert(D);
1621
1622 if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1623 Overridden.append(overridden_methods_begin(CXXMethod),
1624 overridden_methods_end(CXXMethod));
1625 return;
1626 }
1627
1628 const auto *Method = dyn_cast<ObjCMethodDecl>(D);
1629 if (!Method)
1630 return;
1631
1632 SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1633 Method->getOverriddenMethods(OverDecls);
1634 Overridden.append(OverDecls.begin(), OverDecls.end());
1635 }
1636
addedLocalImportDecl(ImportDecl * Import)1637 void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1638 assert(!Import->getNextLocalImport() &&
1639 "Import declaration already in the chain");
1640 assert(!Import->isFromASTFile() && "Non-local import declaration");
1641 if (!FirstLocalImport) {
1642 FirstLocalImport = Import;
1643 LastLocalImport = Import;
1644 return;
1645 }
1646
1647 LastLocalImport->setNextLocalImport(Import);
1648 LastLocalImport = Import;
1649 }
1650
1651 //===----------------------------------------------------------------------===//
1652 // Type Sizing and Analysis
1653 //===----------------------------------------------------------------------===//
1654
1655 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1656 /// scalar floating point type.
getFloatTypeSemantics(QualType T) const1657 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1658 switch (T->castAs<BuiltinType>()->getKind()) {
1659 default:
1660 llvm_unreachable("Not a floating point type!");
1661 case BuiltinType::BFloat16:
1662 return Target->getBFloat16Format();
1663 case BuiltinType::Float16:
1664 case BuiltinType::Half:
1665 return Target->getHalfFormat();
1666 case BuiltinType::Float: return Target->getFloatFormat();
1667 case BuiltinType::Double: return Target->getDoubleFormat();
1668 case BuiltinType::LongDouble:
1669 if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
1670 return AuxTarget->getLongDoubleFormat();
1671 return Target->getLongDoubleFormat();
1672 case BuiltinType::Float128:
1673 if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
1674 return AuxTarget->getFloat128Format();
1675 return Target->getFloat128Format();
1676 }
1677 }
1678
getDeclAlign(const Decl * D,bool ForAlignof) const1679 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1680 unsigned Align = Target->getCharWidth();
1681
1682 bool UseAlignAttrOnly = false;
1683 if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1684 Align = AlignFromAttr;
1685
1686 // __attribute__((aligned)) can increase or decrease alignment
1687 // *except* on a struct or struct member, where it only increases
1688 // alignment unless 'packed' is also specified.
1689 //
1690 // It is an error for alignas to decrease alignment, so we can
1691 // ignore that possibility; Sema should diagnose it.
1692 if (isa<FieldDecl>(D)) {
1693 UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1694 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1695 } else {
1696 UseAlignAttrOnly = true;
1697 }
1698 }
1699 else if (isa<FieldDecl>(D))
1700 UseAlignAttrOnly =
1701 D->hasAttr<PackedAttr>() ||
1702 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1703
1704 // If we're using the align attribute only, just ignore everything
1705 // else about the declaration and its type.
1706 if (UseAlignAttrOnly) {
1707 // do nothing
1708 } else if (const auto *VD = dyn_cast<ValueDecl>(D)) {
1709 QualType T = VD->getType();
1710 if (const auto *RT = T->getAs<ReferenceType>()) {
1711 if (ForAlignof)
1712 T = RT->getPointeeType();
1713 else
1714 T = getPointerType(RT->getPointeeType());
1715 }
1716 QualType BaseT = getBaseElementType(T);
1717 if (T->isFunctionType())
1718 Align = getTypeInfoImpl(T.getTypePtr()).Align;
1719 else if (!BaseT->isIncompleteType()) {
1720 // Adjust alignments of declarations with array type by the
1721 // large-array alignment on the target.
1722 if (const ArrayType *arrayType = getAsArrayType(T)) {
1723 unsigned MinWidth = Target->getLargeArrayMinWidth();
1724 if (!ForAlignof && MinWidth) {
1725 if (isa<VariableArrayType>(arrayType))
1726 Align = std::max(Align, Target->getLargeArrayAlign());
1727 else if (isa<ConstantArrayType>(arrayType) &&
1728 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1729 Align = std::max(Align, Target->getLargeArrayAlign());
1730 }
1731 }
1732 Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1733 if (BaseT.getQualifiers().hasUnaligned())
1734 Align = Target->getCharWidth();
1735 if (const auto *VD = dyn_cast<VarDecl>(D)) {
1736 if (VD->hasGlobalStorage() && !ForAlignof) {
1737 uint64_t TypeSize = getTypeSize(T.getTypePtr());
1738 Align = std::max(Align, getTargetInfo().getMinGlobalAlign(TypeSize));
1739 }
1740 }
1741 }
1742
1743 // Fields can be subject to extra alignment constraints, like if
1744 // the field is packed, the struct is packed, or the struct has a
1745 // a max-field-alignment constraint (#pragma pack). So calculate
1746 // the actual alignment of the field within the struct, and then
1747 // (as we're expected to) constrain that by the alignment of the type.
1748 if (const auto *Field = dyn_cast<FieldDecl>(VD)) {
1749 const RecordDecl *Parent = Field->getParent();
1750 // We can only produce a sensible answer if the record is valid.
1751 if (!Parent->isInvalidDecl()) {
1752 const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1753
1754 // Start with the record's overall alignment.
1755 unsigned FieldAlign = toBits(Layout.getAlignment());
1756
1757 // Use the GCD of that and the offset within the record.
1758 uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1759 if (Offset > 0) {
1760 // Alignment is always a power of 2, so the GCD will be a power of 2,
1761 // which means we get to do this crazy thing instead of Euclid's.
1762 uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1763 if (LowBitOfOffset < FieldAlign)
1764 FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1765 }
1766
1767 Align = std::min(Align, FieldAlign);
1768 }
1769 }
1770 }
1771
1772 return toCharUnitsFromBits(Align);
1773 }
1774
getExnObjectAlignment() const1775 CharUnits ASTContext::getExnObjectAlignment() const {
1776 return toCharUnitsFromBits(Target->getExnObjectAlignment());
1777 }
1778
1779 // getTypeInfoDataSizeInChars - Return the size of a type, in
1780 // chars. If the type is a record, its data size is returned. This is
1781 // the size of the memcpy that's performed when assigning this type
1782 // using a trivial copy/move assignment operator.
getTypeInfoDataSizeInChars(QualType T) const1783 TypeInfoChars ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1784 TypeInfoChars Info = getTypeInfoInChars(T);
1785
1786 // In C++, objects can sometimes be allocated into the tail padding
1787 // of a base-class subobject. We decide whether that's possible
1788 // during class layout, so here we can just trust the layout results.
1789 if (getLangOpts().CPlusPlus) {
1790 if (const auto *RT = T->getAs<RecordType>()) {
1791 const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1792 Info.Width = layout.getDataSize();
1793 }
1794 }
1795
1796 return Info;
1797 }
1798
1799 /// getConstantArrayInfoInChars - Performing the computation in CharUnits
1800 /// instead of in bits prevents overflowing the uint64_t for some large arrays.
1801 TypeInfoChars
getConstantArrayInfoInChars(const ASTContext & Context,const ConstantArrayType * CAT)1802 static getConstantArrayInfoInChars(const ASTContext &Context,
1803 const ConstantArrayType *CAT) {
1804 TypeInfoChars EltInfo = Context.getTypeInfoInChars(CAT->getElementType());
1805 uint64_t Size = CAT->getSize().getZExtValue();
1806 assert((Size == 0 || static_cast<uint64_t>(EltInfo.Width.getQuantity()) <=
1807 (uint64_t)(-1)/Size) &&
1808 "Overflow in array type char size evaluation");
1809 uint64_t Width = EltInfo.Width.getQuantity() * Size;
1810 unsigned Align = EltInfo.Align.getQuantity();
1811 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1812 Context.getTargetInfo().getPointerWidth(0) == 64)
1813 Width = llvm::alignTo(Width, Align);
1814 return TypeInfoChars(CharUnits::fromQuantity(Width),
1815 CharUnits::fromQuantity(Align),
1816 EltInfo.AlignIsRequired);
1817 }
1818
getTypeInfoInChars(const Type * T) const1819 TypeInfoChars ASTContext::getTypeInfoInChars(const Type *T) const {
1820 if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1821 return getConstantArrayInfoInChars(*this, CAT);
1822 TypeInfo Info = getTypeInfo(T);
1823 return TypeInfoChars(toCharUnitsFromBits(Info.Width),
1824 toCharUnitsFromBits(Info.Align),
1825 Info.AlignIsRequired);
1826 }
1827
getTypeInfoInChars(QualType T) const1828 TypeInfoChars ASTContext::getTypeInfoInChars(QualType T) const {
1829 return getTypeInfoInChars(T.getTypePtr());
1830 }
1831
isAlignmentRequired(const Type * T) const1832 bool ASTContext::isAlignmentRequired(const Type *T) const {
1833 return getTypeInfo(T).AlignIsRequired;
1834 }
1835
isAlignmentRequired(QualType T) const1836 bool ASTContext::isAlignmentRequired(QualType T) const {
1837 return isAlignmentRequired(T.getTypePtr());
1838 }
1839
getTypeAlignIfKnown(QualType T,bool NeedsPreferredAlignment) const1840 unsigned ASTContext::getTypeAlignIfKnown(QualType T,
1841 bool NeedsPreferredAlignment) const {
1842 // An alignment on a typedef overrides anything else.
1843 if (const auto *TT = T->getAs<TypedefType>())
1844 if (unsigned Align = TT->getDecl()->getMaxAlignment())
1845 return Align;
1846
1847 // If we have an (array of) complete type, we're done.
1848 T = getBaseElementType(T);
1849 if (!T->isIncompleteType())
1850 return NeedsPreferredAlignment ? getPreferredTypeAlign(T) : getTypeAlign(T);
1851
1852 // If we had an array type, its element type might be a typedef
1853 // type with an alignment attribute.
1854 if (const auto *TT = T->getAs<TypedefType>())
1855 if (unsigned Align = TT->getDecl()->getMaxAlignment())
1856 return Align;
1857
1858 // Otherwise, see if the declaration of the type had an attribute.
1859 if (const auto *TT = T->getAs<TagType>())
1860 return TT->getDecl()->getMaxAlignment();
1861
1862 return 0;
1863 }
1864
getTypeInfo(const Type * T) const1865 TypeInfo ASTContext::getTypeInfo(const Type *T) const {
1866 TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1867 if (I != MemoizedTypeInfo.end())
1868 return I->second;
1869
1870 // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1871 TypeInfo TI = getTypeInfoImpl(T);
1872 MemoizedTypeInfo[T] = TI;
1873 return TI;
1874 }
1875
1876 /// getTypeInfoImpl - Return the size of the specified type, in bits. This
1877 /// method does not work on incomplete types.
1878 ///
1879 /// FIXME: Pointers into different addr spaces could have different sizes and
1880 /// alignment requirements: getPointerInfo should take an AddrSpace, this
1881 /// should take a QualType, &c.
getTypeInfoImpl(const Type * T) const1882 TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1883 uint64_t Width = 0;
1884 unsigned Align = 8;
1885 bool AlignIsRequired = false;
1886 unsigned AS = 0;
1887 switch (T->getTypeClass()) {
1888 #define TYPE(Class, Base)
1889 #define ABSTRACT_TYPE(Class, Base)
1890 #define NON_CANONICAL_TYPE(Class, Base)
1891 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1892 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \
1893 case Type::Class: \
1894 assert(!T->isDependentType() && "should not see dependent types here"); \
1895 return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1896 #include "clang/AST/TypeNodes.inc"
1897 llvm_unreachable("Should not see dependent types");
1898
1899 case Type::FunctionNoProto:
1900 case Type::FunctionProto:
1901 // GCC extension: alignof(function) = 32 bits
1902 Width = 0;
1903 Align = 32;
1904 break;
1905
1906 case Type::IncompleteArray:
1907 case Type::VariableArray:
1908 case Type::ConstantArray: {
1909 // Model non-constant sized arrays as size zero, but track the alignment.
1910 uint64_t Size = 0;
1911 if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1912 Size = CAT->getSize().getZExtValue();
1913
1914 TypeInfo EltInfo = getTypeInfo(cast<ArrayType>(T)->getElementType());
1915 assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
1916 "Overflow in array type bit size evaluation");
1917 Width = EltInfo.Width * Size;
1918 Align = EltInfo.Align;
1919 AlignIsRequired = EltInfo.AlignIsRequired;
1920 if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1921 getTargetInfo().getPointerWidth(0) == 64)
1922 Width = llvm::alignTo(Width, Align);
1923 break;
1924 }
1925
1926 case Type::ExtVector:
1927 case Type::Vector: {
1928 const auto *VT = cast<VectorType>(T);
1929 TypeInfo EltInfo = getTypeInfo(VT->getElementType());
1930 Width = EltInfo.Width * VT->getNumElements();
1931 Align = Width;
1932 // If the alignment is not a power of 2, round up to the next power of 2.
1933 // This happens for non-power-of-2 length vectors.
1934 if (Align & (Align-1)) {
1935 Align = llvm::NextPowerOf2(Align);
1936 Width = llvm::alignTo(Width, Align);
1937 }
1938 // Adjust the alignment based on the target max.
1939 uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1940 if (TargetVectorAlign && TargetVectorAlign < Align)
1941 Align = TargetVectorAlign;
1942 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector)
1943 // Adjust the alignment for fixed-length SVE vectors. This is important
1944 // for non-power-of-2 vector lengths.
1945 Align = 128;
1946 else if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
1947 // Adjust the alignment for fixed-length SVE predicates.
1948 Align = 16;
1949 break;
1950 }
1951
1952 case Type::ConstantMatrix: {
1953 const auto *MT = cast<ConstantMatrixType>(T);
1954 TypeInfo ElementInfo = getTypeInfo(MT->getElementType());
1955 // The internal layout of a matrix value is implementation defined.
1956 // Initially be ABI compatible with arrays with respect to alignment and
1957 // size.
1958 Width = ElementInfo.Width * MT->getNumRows() * MT->getNumColumns();
1959 Align = ElementInfo.Align;
1960 break;
1961 }
1962
1963 case Type::Builtin:
1964 switch (cast<BuiltinType>(T)->getKind()) {
1965 default: llvm_unreachable("Unknown builtin type!");
1966 case BuiltinType::Void:
1967 // GCC extension: alignof(void) = 8 bits.
1968 Width = 0;
1969 Align = 8;
1970 break;
1971 case BuiltinType::Bool:
1972 Width = Target->getBoolWidth();
1973 Align = Target->getBoolAlign();
1974 break;
1975 case BuiltinType::Char_S:
1976 case BuiltinType::Char_U:
1977 case BuiltinType::UChar:
1978 case BuiltinType::SChar:
1979 case BuiltinType::Char8:
1980 Width = Target->getCharWidth();
1981 Align = Target->getCharAlign();
1982 break;
1983 case BuiltinType::WChar_S:
1984 case BuiltinType::WChar_U:
1985 Width = Target->getWCharWidth();
1986 Align = Target->getWCharAlign();
1987 break;
1988 case BuiltinType::Char16:
1989 Width = Target->getChar16Width();
1990 Align = Target->getChar16Align();
1991 break;
1992 case BuiltinType::Char32:
1993 Width = Target->getChar32Width();
1994 Align = Target->getChar32Align();
1995 break;
1996 case BuiltinType::UShort:
1997 case BuiltinType::Short:
1998 Width = Target->getShortWidth();
1999 Align = Target->getShortAlign();
2000 break;
2001 case BuiltinType::UInt:
2002 case BuiltinType::Int:
2003 Width = Target->getIntWidth();
2004 Align = Target->getIntAlign();
2005 break;
2006 case BuiltinType::ULong:
2007 case BuiltinType::Long:
2008 Width = Target->getLongWidth();
2009 Align = Target->getLongAlign();
2010 break;
2011 case BuiltinType::ULongLong:
2012 case BuiltinType::LongLong:
2013 Width = Target->getLongLongWidth();
2014 Align = Target->getLongLongAlign();
2015 break;
2016 case BuiltinType::Int128:
2017 case BuiltinType::UInt128:
2018 Width = 128;
2019 Align = 128; // int128_t is 128-bit aligned on all targets.
2020 break;
2021 case BuiltinType::ShortAccum:
2022 case BuiltinType::UShortAccum:
2023 case BuiltinType::SatShortAccum:
2024 case BuiltinType::SatUShortAccum:
2025 Width = Target->getShortAccumWidth();
2026 Align = Target->getShortAccumAlign();
2027 break;
2028 case BuiltinType::Accum:
2029 case BuiltinType::UAccum:
2030 case BuiltinType::SatAccum:
2031 case BuiltinType::SatUAccum:
2032 Width = Target->getAccumWidth();
2033 Align = Target->getAccumAlign();
2034 break;
2035 case BuiltinType::LongAccum:
2036 case BuiltinType::ULongAccum:
2037 case BuiltinType::SatLongAccum:
2038 case BuiltinType::SatULongAccum:
2039 Width = Target->getLongAccumWidth();
2040 Align = Target->getLongAccumAlign();
2041 break;
2042 case BuiltinType::ShortFract:
2043 case BuiltinType::UShortFract:
2044 case BuiltinType::SatShortFract:
2045 case BuiltinType::SatUShortFract:
2046 Width = Target->getShortFractWidth();
2047 Align = Target->getShortFractAlign();
2048 break;
2049 case BuiltinType::Fract:
2050 case BuiltinType::UFract:
2051 case BuiltinType::SatFract:
2052 case BuiltinType::SatUFract:
2053 Width = Target->getFractWidth();
2054 Align = Target->getFractAlign();
2055 break;
2056 case BuiltinType::LongFract:
2057 case BuiltinType::ULongFract:
2058 case BuiltinType::SatLongFract:
2059 case BuiltinType::SatULongFract:
2060 Width = Target->getLongFractWidth();
2061 Align = Target->getLongFractAlign();
2062 break;
2063 case BuiltinType::BFloat16:
2064 Width = Target->getBFloat16Width();
2065 Align = Target->getBFloat16Align();
2066 break;
2067 case BuiltinType::Float16:
2068 case BuiltinType::Half:
2069 if (Target->hasFloat16Type() || !getLangOpts().OpenMP ||
2070 !getLangOpts().OpenMPIsDevice) {
2071 Width = Target->getHalfWidth();
2072 Align = Target->getHalfAlign();
2073 } else {
2074 assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2075 "Expected OpenMP device compilation.");
2076 Width = AuxTarget->getHalfWidth();
2077 Align = AuxTarget->getHalfAlign();
2078 }
2079 break;
2080 case BuiltinType::Float:
2081 Width = Target->getFloatWidth();
2082 Align = Target->getFloatAlign();
2083 break;
2084 case BuiltinType::Double:
2085 Width = Target->getDoubleWidth();
2086 Align = Target->getDoubleAlign();
2087 break;
2088 case BuiltinType::LongDouble:
2089 if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2090 (Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() ||
2091 Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) {
2092 Width = AuxTarget->getLongDoubleWidth();
2093 Align = AuxTarget->getLongDoubleAlign();
2094 } else {
2095 Width = Target->getLongDoubleWidth();
2096 Align = Target->getLongDoubleAlign();
2097 }
2098 break;
2099 case BuiltinType::Float128:
2100 if (Target->hasFloat128Type() || !getLangOpts().OpenMP ||
2101 !getLangOpts().OpenMPIsDevice) {
2102 Width = Target->getFloat128Width();
2103 Align = Target->getFloat128Align();
2104 } else {
2105 assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2106 "Expected OpenMP device compilation.");
2107 Width = AuxTarget->getFloat128Width();
2108 Align = AuxTarget->getFloat128Align();
2109 }
2110 break;
2111 case BuiltinType::NullPtr:
2112 Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
2113 Align = Target->getPointerAlign(0); // == sizeof(void*)
2114 break;
2115 case BuiltinType::ObjCId:
2116 case BuiltinType::ObjCClass:
2117 case BuiltinType::ObjCSel:
2118 Width = Target->getPointerWidth(0);
2119 Align = Target->getPointerAlign(0);
2120 break;
2121 case BuiltinType::OCLSampler:
2122 case BuiltinType::OCLEvent:
2123 case BuiltinType::OCLClkEvent:
2124 case BuiltinType::OCLQueue:
2125 case BuiltinType::OCLReserveID:
2126 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2127 case BuiltinType::Id:
2128 #include "clang/Basic/OpenCLImageTypes.def"
2129 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2130 case BuiltinType::Id:
2131 #include "clang/Basic/OpenCLExtensionTypes.def"
2132 AS = getTargetAddressSpace(
2133 Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)));
2134 Width = Target->getPointerWidth(AS);
2135 Align = Target->getPointerAlign(AS);
2136 break;
2137 // The SVE types are effectively target-specific. The length of an
2138 // SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple
2139 // of 128 bits. There is one predicate bit for each vector byte, so the
2140 // length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits.
2141 //
2142 // Because the length is only known at runtime, we use a dummy value
2143 // of 0 for the static length. The alignment values are those defined
2144 // by the Procedure Call Standard for the Arm Architecture.
2145 #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits, \
2146 IsSigned, IsFP, IsBF) \
2147 case BuiltinType::Id: \
2148 Width = 0; \
2149 Align = 128; \
2150 break;
2151 #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls) \
2152 case BuiltinType::Id: \
2153 Width = 0; \
2154 Align = 16; \
2155 break;
2156 #include "clang/Basic/AArch64SVEACLETypes.def"
2157 #define PPC_MMA_VECTOR_TYPE(Name, Id, Size) \
2158 case BuiltinType::Id: \
2159 Width = Size; \
2160 Align = Size; \
2161 break;
2162 #include "clang/Basic/PPCTypes.def"
2163 }
2164 break;
2165 case Type::ObjCObjectPointer:
2166 Width = Target->getPointerWidth(0);
2167 Align = Target->getPointerAlign(0);
2168 break;
2169 case Type::BlockPointer:
2170 AS = getTargetAddressSpace(cast<BlockPointerType>(T)->getPointeeType());
2171 Width = Target->getPointerWidth(AS);
2172 Align = Target->getPointerAlign(AS);
2173 break;
2174 case Type::LValueReference:
2175 case Type::RValueReference:
2176 // alignof and sizeof should never enter this code path here, so we go
2177 // the pointer route.
2178 AS = getTargetAddressSpace(cast<ReferenceType>(T)->getPointeeType());
2179 Width = Target->getPointerWidth(AS);
2180 Align = Target->getPointerAlign(AS);
2181 break;
2182 case Type::Pointer:
2183 AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
2184 Width = Target->getPointerWidth(AS);
2185 Align = Target->getPointerAlign(AS);
2186 break;
2187 case Type::MemberPointer: {
2188 const auto *MPT = cast<MemberPointerType>(T);
2189 CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT);
2190 Width = MPI.Width;
2191 Align = MPI.Align;
2192 break;
2193 }
2194 case Type::Complex: {
2195 // Complex types have the same alignment as their elements, but twice the
2196 // size.
2197 TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
2198 Width = EltInfo.Width * 2;
2199 Align = EltInfo.Align;
2200 break;
2201 }
2202 case Type::ObjCObject:
2203 return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
2204 case Type::Adjusted:
2205 case Type::Decayed:
2206 return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
2207 case Type::ObjCInterface: {
2208 const auto *ObjCI = cast<ObjCInterfaceType>(T);
2209 if (ObjCI->getDecl()->isInvalidDecl()) {
2210 Width = 8;
2211 Align = 8;
2212 break;
2213 }
2214 const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2215 Width = toBits(Layout.getSize());
2216 Align = toBits(Layout.getAlignment());
2217 break;
2218 }
2219 case Type::ExtInt: {
2220 const auto *EIT = cast<ExtIntType>(T);
2221 Align =
2222 std::min(static_cast<unsigned>(std::max(
2223 getCharWidth(), llvm::PowerOf2Ceil(EIT->getNumBits()))),
2224 Target->getLongLongAlign());
2225 Width = llvm::alignTo(EIT->getNumBits(), Align);
2226 break;
2227 }
2228 case Type::Record:
2229 case Type::Enum: {
2230 const auto *TT = cast<TagType>(T);
2231
2232 if (TT->getDecl()->isInvalidDecl()) {
2233 Width = 8;
2234 Align = 8;
2235 break;
2236 }
2237
2238 if (const auto *ET = dyn_cast<EnumType>(TT)) {
2239 const EnumDecl *ED = ET->getDecl();
2240 TypeInfo Info =
2241 getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
2242 if (unsigned AttrAlign = ED->getMaxAlignment()) {
2243 Info.Align = AttrAlign;
2244 Info.AlignIsRequired = true;
2245 }
2246 return Info;
2247 }
2248
2249 const auto *RT = cast<RecordType>(TT);
2250 const RecordDecl *RD = RT->getDecl();
2251 const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2252 Width = toBits(Layout.getSize());
2253 Align = toBits(Layout.getAlignment());
2254 AlignIsRequired = RD->hasAttr<AlignedAttr>();
2255 break;
2256 }
2257
2258 case Type::SubstTemplateTypeParm:
2259 return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
2260 getReplacementType().getTypePtr());
2261
2262 case Type::Auto:
2263 case Type::DeducedTemplateSpecialization: {
2264 const auto *A = cast<DeducedType>(T);
2265 assert(!A->getDeducedType().isNull() &&
2266 "cannot request the size of an undeduced or dependent auto type");
2267 return getTypeInfo(A->getDeducedType().getTypePtr());
2268 }
2269
2270 case Type::Paren:
2271 return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
2272
2273 case Type::MacroQualified:
2274 return getTypeInfo(
2275 cast<MacroQualifiedType>(T)->getUnderlyingType().getTypePtr());
2276
2277 case Type::ObjCTypeParam:
2278 return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr());
2279
2280 case Type::Typedef: {
2281 const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
2282 TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
2283 // If the typedef has an aligned attribute on it, it overrides any computed
2284 // alignment we have. This violates the GCC documentation (which says that
2285 // attribute(aligned) can only round up) but matches its implementation.
2286 if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
2287 Align = AttrAlign;
2288 AlignIsRequired = true;
2289 } else {
2290 Align = Info.Align;
2291 AlignIsRequired = Info.AlignIsRequired;
2292 }
2293 Width = Info.Width;
2294 break;
2295 }
2296
2297 case Type::Elaborated:
2298 return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
2299
2300 case Type::Attributed:
2301 return getTypeInfo(
2302 cast<AttributedType>(T)->getEquivalentType().getTypePtr());
2303
2304 case Type::Atomic: {
2305 // Start with the base type information.
2306 TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
2307 Width = Info.Width;
2308 Align = Info.Align;
2309
2310 if (!Width) {
2311 // An otherwise zero-sized type should still generate an
2312 // atomic operation.
2313 Width = Target->getCharWidth();
2314 assert(Align);
2315 } else if (Width <= Target->getMaxAtomicPromoteWidth()) {
2316 // If the size of the type doesn't exceed the platform's max
2317 // atomic promotion width, make the size and alignment more
2318 // favorable to atomic operations:
2319
2320 // Round the size up to a power of 2.
2321 if (!llvm::isPowerOf2_64(Width))
2322 Width = llvm::NextPowerOf2(Width);
2323
2324 // Set the alignment equal to the size.
2325 Align = static_cast<unsigned>(Width);
2326 }
2327 }
2328 break;
2329
2330 case Type::Pipe:
2331 Width = Target->getPointerWidth(getTargetAddressSpace(LangAS::opencl_global));
2332 Align = Target->getPointerAlign(getTargetAddressSpace(LangAS::opencl_global));
2333 break;
2334 }
2335
2336 assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
2337 return TypeInfo(Width, Align, AlignIsRequired);
2338 }
2339
getTypeUnadjustedAlign(const Type * T) const2340 unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const {
2341 UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T);
2342 if (I != MemoizedUnadjustedAlign.end())
2343 return I->second;
2344
2345 unsigned UnadjustedAlign;
2346 if (const auto *RT = T->getAs<RecordType>()) {
2347 const RecordDecl *RD = RT->getDecl();
2348 const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2349 UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2350 } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) {
2351 const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2352 UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2353 } else {
2354 UnadjustedAlign = getTypeAlign(T->getUnqualifiedDesugaredType());
2355 }
2356
2357 MemoizedUnadjustedAlign[T] = UnadjustedAlign;
2358 return UnadjustedAlign;
2359 }
2360
getOpenMPDefaultSimdAlign(QualType T) const2361 unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const {
2362 unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign();
2363 return SimdAlign;
2364 }
2365
2366 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
toCharUnitsFromBits(int64_t BitSize) const2367 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
2368 return CharUnits::fromQuantity(BitSize / getCharWidth());
2369 }
2370
2371 /// toBits - Convert a size in characters to a size in characters.
toBits(CharUnits CharSize) const2372 int64_t ASTContext::toBits(CharUnits CharSize) const {
2373 return CharSize.getQuantity() * getCharWidth();
2374 }
2375
2376 /// getTypeSizeInChars - Return the size of the specified type, in characters.
2377 /// This method does not work on incomplete types.
getTypeSizeInChars(QualType T) const2378 CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
2379 return getTypeInfoInChars(T).Width;
2380 }
getTypeSizeInChars(const Type * T) const2381 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
2382 return getTypeInfoInChars(T).Width;
2383 }
2384
2385 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
2386 /// characters. This method does not work on incomplete types.
getTypeAlignInChars(QualType T) const2387 CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
2388 return toCharUnitsFromBits(getTypeAlign(T));
2389 }
getTypeAlignInChars(const Type * T) const2390 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
2391 return toCharUnitsFromBits(getTypeAlign(T));
2392 }
2393
2394 /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a
2395 /// type, in characters, before alignment adustments. This method does
2396 /// not work on incomplete types.
getTypeUnadjustedAlignInChars(QualType T) const2397 CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const {
2398 return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2399 }
getTypeUnadjustedAlignInChars(const Type * T) const2400 CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const {
2401 return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2402 }
2403
2404 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
2405 /// type for the current target in bits. This can be different than the ABI
2406 /// alignment in cases where it is beneficial for performance or backwards
2407 /// compatibility preserving to overalign a data type. (Note: despite the name,
2408 /// the preferred alignment is ABI-impacting, and not an optimization.)
getPreferredTypeAlign(const Type * T) const2409 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
2410 TypeInfo TI = getTypeInfo(T);
2411 unsigned ABIAlign = TI.Align;
2412
2413 T = T->getBaseElementTypeUnsafe();
2414
2415 // The preferred alignment of member pointers is that of a pointer.
2416 if (T->isMemberPointerType())
2417 return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
2418
2419 if (!Target->allowsLargerPreferedTypeAlignment())
2420 return ABIAlign;
2421
2422 if (const auto *RT = T->getAs<RecordType>()) {
2423 if (TI.AlignIsRequired || RT->getDecl()->isInvalidDecl())
2424 return ABIAlign;
2425
2426 unsigned PreferredAlign = static_cast<unsigned>(
2427 toBits(getASTRecordLayout(RT->getDecl()).PreferredAlignment));
2428 assert(PreferredAlign >= ABIAlign &&
2429 "PreferredAlign should be at least as large as ABIAlign.");
2430 return PreferredAlign;
2431 }
2432
2433 // Double (and, for targets supporting AIX `power` alignment, long double) and
2434 // long long should be naturally aligned (despite requiring less alignment) if
2435 // possible.
2436 if (const auto *CT = T->getAs<ComplexType>())
2437 T = CT->getElementType().getTypePtr();
2438 if (const auto *ET = T->getAs<EnumType>())
2439 T = ET->getDecl()->getIntegerType().getTypePtr();
2440 if (T->isSpecificBuiltinType(BuiltinType::Double) ||
2441 T->isSpecificBuiltinType(BuiltinType::LongLong) ||
2442 T->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2443 (T->isSpecificBuiltinType(BuiltinType::LongDouble) &&
2444 Target->defaultsToAIXPowerAlignment()))
2445 // Don't increase the alignment if an alignment attribute was specified on a
2446 // typedef declaration.
2447 if (!TI.AlignIsRequired)
2448 return std::max(ABIAlign, (unsigned)getTypeSize(T));
2449
2450 return ABIAlign;
2451 }
2452
2453 /// getTargetDefaultAlignForAttributeAligned - Return the default alignment
2454 /// for __attribute__((aligned)) on this target, to be used if no alignment
2455 /// value is specified.
getTargetDefaultAlignForAttributeAligned() const2456 unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const {
2457 return getTargetInfo().getDefaultAlignForAttributeAligned();
2458 }
2459
2460 /// getAlignOfGlobalVar - Return the alignment in bits that should be given
2461 /// to a global variable of the specified type.
getAlignOfGlobalVar(QualType T) const2462 unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
2463 uint64_t TypeSize = getTypeSize(T.getTypePtr());
2464 return std::max(getPreferredTypeAlign(T),
2465 getTargetInfo().getMinGlobalAlign(TypeSize));
2466 }
2467
2468 /// getAlignOfGlobalVarInChars - Return the alignment in characters that
2469 /// should be given to a global variable of the specified type.
getAlignOfGlobalVarInChars(QualType T) const2470 CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
2471 return toCharUnitsFromBits(getAlignOfGlobalVar(T));
2472 }
2473
getOffsetOfBaseWithVBPtr(const CXXRecordDecl * RD) const2474 CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const {
2475 CharUnits Offset = CharUnits::Zero();
2476 const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
2477 while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
2478 Offset += Layout->getBaseClassOffset(Base);
2479 Layout = &getASTRecordLayout(Base);
2480 }
2481 return Offset;
2482 }
2483
getMemberPointerPathAdjustment(const APValue & MP) const2484 CharUnits ASTContext::getMemberPointerPathAdjustment(const APValue &MP) const {
2485 const ValueDecl *MPD = MP.getMemberPointerDecl();
2486 CharUnits ThisAdjustment = CharUnits::Zero();
2487 ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath();
2488 bool DerivedMember = MP.isMemberPointerToDerivedMember();
2489 const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext());
2490 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
2491 const CXXRecordDecl *Base = RD;
2492 const CXXRecordDecl *Derived = Path[I];
2493 if (DerivedMember)
2494 std::swap(Base, Derived);
2495 ThisAdjustment += getASTRecordLayout(Derived).getBaseClassOffset(Base);
2496 RD = Path[I];
2497 }
2498 if (DerivedMember)
2499 ThisAdjustment = -ThisAdjustment;
2500 return ThisAdjustment;
2501 }
2502
2503 /// DeepCollectObjCIvars -
2504 /// This routine first collects all declared, but not synthesized, ivars in
2505 /// super class and then collects all ivars, including those synthesized for
2506 /// current class. This routine is used for implementation of current class
2507 /// when all ivars, declared and synthesized are known.
DeepCollectObjCIvars(const ObjCInterfaceDecl * OI,bool leafClass,SmallVectorImpl<const ObjCIvarDecl * > & Ivars) const2508 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
2509 bool leafClass,
2510 SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
2511 if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
2512 DeepCollectObjCIvars(SuperClass, false, Ivars);
2513 if (!leafClass) {
2514 for (const auto *I : OI->ivars())
2515 Ivars.push_back(I);
2516 } else {
2517 auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
2518 for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
2519 Iv= Iv->getNextIvar())
2520 Ivars.push_back(Iv);
2521 }
2522 }
2523
2524 /// CollectInheritedProtocols - Collect all protocols in current class and
2525 /// those inherited by it.
CollectInheritedProtocols(const Decl * CDecl,llvm::SmallPtrSet<ObjCProtocolDecl *,8> & Protocols)2526 void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
2527 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
2528 if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2529 // We can use protocol_iterator here instead of
2530 // all_referenced_protocol_iterator since we are walking all categories.
2531 for (auto *Proto : OI->all_referenced_protocols()) {
2532 CollectInheritedProtocols(Proto, Protocols);
2533 }
2534
2535 // Categories of this Interface.
2536 for (const auto *Cat : OI->visible_categories())
2537 CollectInheritedProtocols(Cat, Protocols);
2538
2539 if (ObjCInterfaceDecl *SD = OI->getSuperClass())
2540 while (SD) {
2541 CollectInheritedProtocols(SD, Protocols);
2542 SD = SD->getSuperClass();
2543 }
2544 } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2545 for (auto *Proto : OC->protocols()) {
2546 CollectInheritedProtocols(Proto, Protocols);
2547 }
2548 } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
2549 // Insert the protocol.
2550 if (!Protocols.insert(
2551 const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
2552 return;
2553
2554 for (auto *Proto : OP->protocols())
2555 CollectInheritedProtocols(Proto, Protocols);
2556 }
2557 }
2558
unionHasUniqueObjectRepresentations(const ASTContext & Context,const RecordDecl * RD)2559 static bool unionHasUniqueObjectRepresentations(const ASTContext &Context,
2560 const RecordDecl *RD) {
2561 assert(RD->isUnion() && "Must be union type");
2562 CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl());
2563
2564 for (const auto *Field : RD->fields()) {
2565 if (!Context.hasUniqueObjectRepresentations(Field->getType()))
2566 return false;
2567 CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType());
2568 if (FieldSize != UnionSize)
2569 return false;
2570 }
2571 return !RD->field_empty();
2572 }
2573
isStructEmpty(QualType Ty)2574 static bool isStructEmpty(QualType Ty) {
2575 const RecordDecl *RD = Ty->castAs<RecordType>()->getDecl();
2576
2577 if (!RD->field_empty())
2578 return false;
2579
2580 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD))
2581 return ClassDecl->isEmpty();
2582
2583 return true;
2584 }
2585
2586 static llvm::Optional<int64_t>
structHasUniqueObjectRepresentations(const ASTContext & Context,const RecordDecl * RD)2587 structHasUniqueObjectRepresentations(const ASTContext &Context,
2588 const RecordDecl *RD) {
2589 assert(!RD->isUnion() && "Must be struct/class type");
2590 const auto &Layout = Context.getASTRecordLayout(RD);
2591
2592 int64_t CurOffsetInBits = 0;
2593 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) {
2594 if (ClassDecl->isDynamicClass())
2595 return llvm::None;
2596
2597 SmallVector<std::pair<QualType, int64_t>, 4> Bases;
2598 for (const auto &Base : ClassDecl->bases()) {
2599 // Empty types can be inherited from, and non-empty types can potentially
2600 // have tail padding, so just make sure there isn't an error.
2601 if (!isStructEmpty(Base.getType())) {
2602 llvm::Optional<int64_t> Size = structHasUniqueObjectRepresentations(
2603 Context, Base.getType()->castAs<RecordType>()->getDecl());
2604 if (!Size)
2605 return llvm::None;
2606 Bases.emplace_back(Base.getType(), Size.getValue());
2607 }
2608 }
2609
2610 llvm::sort(Bases, [&](const std::pair<QualType, int64_t> &L,
2611 const std::pair<QualType, int64_t> &R) {
2612 return Layout.getBaseClassOffset(L.first->getAsCXXRecordDecl()) <
2613 Layout.getBaseClassOffset(R.first->getAsCXXRecordDecl());
2614 });
2615
2616 for (const auto &Base : Bases) {
2617 int64_t BaseOffset = Context.toBits(
2618 Layout.getBaseClassOffset(Base.first->getAsCXXRecordDecl()));
2619 int64_t BaseSize = Base.second;
2620 if (BaseOffset != CurOffsetInBits)
2621 return llvm::None;
2622 CurOffsetInBits = BaseOffset + BaseSize;
2623 }
2624 }
2625
2626 for (const auto *Field : RD->fields()) {
2627 if (!Field->getType()->isReferenceType() &&
2628 !Context.hasUniqueObjectRepresentations(Field->getType()))
2629 return llvm::None;
2630
2631 int64_t FieldSizeInBits =
2632 Context.toBits(Context.getTypeSizeInChars(Field->getType()));
2633 if (Field->isBitField()) {
2634 int64_t BitfieldSize = Field->getBitWidthValue(Context);
2635
2636 if (BitfieldSize > FieldSizeInBits)
2637 return llvm::None;
2638 FieldSizeInBits = BitfieldSize;
2639 }
2640
2641 int64_t FieldOffsetInBits = Context.getFieldOffset(Field);
2642
2643 if (FieldOffsetInBits != CurOffsetInBits)
2644 return llvm::None;
2645
2646 CurOffsetInBits = FieldSizeInBits + FieldOffsetInBits;
2647 }
2648
2649 return CurOffsetInBits;
2650 }
2651
hasUniqueObjectRepresentations(QualType Ty) const2652 bool ASTContext::hasUniqueObjectRepresentations(QualType Ty) const {
2653 // C++17 [meta.unary.prop]:
2654 // The predicate condition for a template specialization
2655 // has_unique_object_representations<T> shall be
2656 // satisfied if and only if:
2657 // (9.1) - T is trivially copyable, and
2658 // (9.2) - any two objects of type T with the same value have the same
2659 // object representation, where two objects
2660 // of array or non-union class type are considered to have the same value
2661 // if their respective sequences of
2662 // direct subobjects have the same values, and two objects of union type
2663 // are considered to have the same
2664 // value if they have the same active member and the corresponding members
2665 // have the same value.
2666 // The set of scalar types for which this condition holds is
2667 // implementation-defined. [ Note: If a type has padding
2668 // bits, the condition does not hold; otherwise, the condition holds true
2669 // for unsigned integral types. -- end note ]
2670 assert(!Ty.isNull() && "Null QualType sent to unique object rep check");
2671
2672 // Arrays are unique only if their element type is unique.
2673 if (Ty->isArrayType())
2674 return hasUniqueObjectRepresentations(getBaseElementType(Ty));
2675
2676 // (9.1) - T is trivially copyable...
2677 if (!Ty.isTriviallyCopyableType(*this))
2678 return false;
2679
2680 // All integrals and enums are unique.
2681 if (Ty->isIntegralOrEnumerationType())
2682 return true;
2683
2684 // All other pointers are unique.
2685 if (Ty->isPointerType())
2686 return true;
2687
2688 if (Ty->isMemberPointerType()) {
2689 const auto *MPT = Ty->getAs<MemberPointerType>();
2690 return !ABI->getMemberPointerInfo(MPT).HasPadding;
2691 }
2692
2693 if (Ty->isRecordType()) {
2694 const RecordDecl *Record = Ty->castAs<RecordType>()->getDecl();
2695
2696 if (Record->isInvalidDecl())
2697 return false;
2698
2699 if (Record->isUnion())
2700 return unionHasUniqueObjectRepresentations(*this, Record);
2701
2702 Optional<int64_t> StructSize =
2703 structHasUniqueObjectRepresentations(*this, Record);
2704
2705 return StructSize &&
2706 StructSize.getValue() == static_cast<int64_t>(getTypeSize(Ty));
2707 }
2708
2709 // FIXME: More cases to handle here (list by rsmith):
2710 // vectors (careful about, eg, vector of 3 foo)
2711 // _Complex int and friends
2712 // _Atomic T
2713 // Obj-C block pointers
2714 // Obj-C object pointers
2715 // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t,
2716 // clk_event_t, queue_t, reserve_id_t)
2717 // There're also Obj-C class types and the Obj-C selector type, but I think it
2718 // makes sense for those to return false here.
2719
2720 return false;
2721 }
2722
CountNonClassIvars(const ObjCInterfaceDecl * OI) const2723 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
2724 unsigned count = 0;
2725 // Count ivars declared in class extension.
2726 for (const auto *Ext : OI->known_extensions())
2727 count += Ext->ivar_size();
2728
2729 // Count ivar defined in this class's implementation. This
2730 // includes synthesized ivars.
2731 if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
2732 count += ImplDecl->ivar_size();
2733
2734 return count;
2735 }
2736
isSentinelNullExpr(const Expr * E)2737 bool ASTContext::isSentinelNullExpr(const Expr *E) {
2738 if (!E)
2739 return false;
2740
2741 // nullptr_t is always treated as null.
2742 if (E->getType()->isNullPtrType()) return true;
2743
2744 if (E->getType()->isAnyPointerType() &&
2745 E->IgnoreParenCasts()->isNullPointerConstant(*this,
2746 Expr::NPC_ValueDependentIsNull))
2747 return true;
2748
2749 // Unfortunately, __null has type 'int'.
2750 if (isa<GNUNullExpr>(E)) return true;
2751
2752 return false;
2753 }
2754
2755 /// Get the implementation of ObjCInterfaceDecl, or nullptr if none
2756 /// exists.
getObjCImplementation(ObjCInterfaceDecl * D)2757 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
2758 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2759 I = ObjCImpls.find(D);
2760 if (I != ObjCImpls.end())
2761 return cast<ObjCImplementationDecl>(I->second);
2762 return nullptr;
2763 }
2764
2765 /// Get the implementation of ObjCCategoryDecl, or nullptr if none
2766 /// exists.
getObjCImplementation(ObjCCategoryDecl * D)2767 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
2768 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2769 I = ObjCImpls.find(D);
2770 if (I != ObjCImpls.end())
2771 return cast<ObjCCategoryImplDecl>(I->second);
2772 return nullptr;
2773 }
2774
2775 /// Set the implementation of ObjCInterfaceDecl.
setObjCImplementation(ObjCInterfaceDecl * IFaceD,ObjCImplementationDecl * ImplD)2776 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2777 ObjCImplementationDecl *ImplD) {
2778 assert(IFaceD && ImplD && "Passed null params");
2779 ObjCImpls[IFaceD] = ImplD;
2780 }
2781
2782 /// Set the implementation of ObjCCategoryDecl.
setObjCImplementation(ObjCCategoryDecl * CatD,ObjCCategoryImplDecl * ImplD)2783 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
2784 ObjCCategoryImplDecl *ImplD) {
2785 assert(CatD && ImplD && "Passed null params");
2786 ObjCImpls[CatD] = ImplD;
2787 }
2788
2789 const ObjCMethodDecl *
getObjCMethodRedeclaration(const ObjCMethodDecl * MD) const2790 ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const {
2791 return ObjCMethodRedecls.lookup(MD);
2792 }
2793
setObjCMethodRedeclaration(const ObjCMethodDecl * MD,const ObjCMethodDecl * Redecl)2794 void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2795 const ObjCMethodDecl *Redecl) {
2796 assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2797 ObjCMethodRedecls[MD] = Redecl;
2798 }
2799
getObjContainingInterface(const NamedDecl * ND) const2800 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
2801 const NamedDecl *ND) const {
2802 if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
2803 return ID;
2804 if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
2805 return CD->getClassInterface();
2806 if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
2807 return IMD->getClassInterface();
2808
2809 return nullptr;
2810 }
2811
2812 /// Get the copy initialization expression of VarDecl, or nullptr if
2813 /// none exists.
getBlockVarCopyInit(const VarDecl * VD) const2814 BlockVarCopyInit ASTContext::getBlockVarCopyInit(const VarDecl *VD) const {
2815 assert(VD && "Passed null params");
2816 assert(VD->hasAttr<BlocksAttr>() &&
2817 "getBlockVarCopyInits - not __block var");
2818 auto I = BlockVarCopyInits.find(VD);
2819 if (I != BlockVarCopyInits.end())
2820 return I->second;
2821 return {nullptr, false};
2822 }
2823
2824 /// Set the copy initialization expression of a block var decl.
setBlockVarCopyInit(const VarDecl * VD,Expr * CopyExpr,bool CanThrow)2825 void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr,
2826 bool CanThrow) {
2827 assert(VD && CopyExpr && "Passed null params");
2828 assert(VD->hasAttr<BlocksAttr>() &&
2829 "setBlockVarCopyInits - not __block var");
2830 BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow);
2831 }
2832
CreateTypeSourceInfo(QualType T,unsigned DataSize) const2833 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
2834 unsigned DataSize) const {
2835 if (!DataSize)
2836 DataSize = TypeLoc::getFullDataSizeForType(T);
2837 else
2838 assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
2839 "incorrect data size provided to CreateTypeSourceInfo!");
2840
2841 auto *TInfo =
2842 (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
2843 new (TInfo) TypeSourceInfo(T);
2844 return TInfo;
2845 }
2846
getTrivialTypeSourceInfo(QualType T,SourceLocation L) const2847 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
2848 SourceLocation L) const {
2849 TypeSourceInfo *DI = CreateTypeSourceInfo(T);
2850 DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
2851 return DI;
2852 }
2853
2854 const ASTRecordLayout &
getASTObjCInterfaceLayout(const ObjCInterfaceDecl * D) const2855 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
2856 return getObjCLayout(D, nullptr);
2857 }
2858
2859 const ASTRecordLayout &
getASTObjCImplementationLayout(const ObjCImplementationDecl * D) const2860 ASTContext::getASTObjCImplementationLayout(
2861 const ObjCImplementationDecl *D) const {
2862 return getObjCLayout(D->getClassInterface(), D);
2863 }
2864
2865 //===----------------------------------------------------------------------===//
2866 // Type creation/memoization methods
2867 //===----------------------------------------------------------------------===//
2868
2869 QualType
getExtQualType(const Type * baseType,Qualifiers quals) const2870 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
2871 unsigned fastQuals = quals.getFastQualifiers();
2872 quals.removeFastQualifiers();
2873
2874 // Check if we've already instantiated this type.
2875 llvm::FoldingSetNodeID ID;
2876 ExtQuals::Profile(ID, baseType, quals);
2877 void *insertPos = nullptr;
2878 if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
2879 assert(eq->getQualifiers() == quals);
2880 return QualType(eq, fastQuals);
2881 }
2882
2883 // If the base type is not canonical, make the appropriate canonical type.
2884 QualType canon;
2885 if (!baseType->isCanonicalUnqualified()) {
2886 SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
2887 canonSplit.Quals.addConsistentQualifiers(quals);
2888 canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
2889
2890 // Re-find the insert position.
2891 (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
2892 }
2893
2894 auto *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
2895 ExtQualNodes.InsertNode(eq, insertPos);
2896 return QualType(eq, fastQuals);
2897 }
2898
getAddrSpaceQualType(QualType T,LangAS AddressSpace) const2899 QualType ASTContext::getAddrSpaceQualType(QualType T,
2900 LangAS AddressSpace) const {
2901 QualType CanT = getCanonicalType(T);
2902 if (CanT.getAddressSpace() == AddressSpace)
2903 return T;
2904
2905 // If we are composing extended qualifiers together, merge together
2906 // into one ExtQuals node.
2907 QualifierCollector Quals;
2908 const Type *TypeNode = Quals.strip(T);
2909
2910 // If this type already has an address space specified, it cannot get
2911 // another one.
2912 assert(!Quals.hasAddressSpace() &&
2913 "Type cannot be in multiple addr spaces!");
2914 Quals.addAddressSpace(AddressSpace);
2915
2916 return getExtQualType(TypeNode, Quals);
2917 }
2918
removeAddrSpaceQualType(QualType T) const2919 QualType ASTContext::removeAddrSpaceQualType(QualType T) const {
2920 // If the type is not qualified with an address space, just return it
2921 // immediately.
2922 if (!T.hasAddressSpace())
2923 return T;
2924
2925 // If we are composing extended qualifiers together, merge together
2926 // into one ExtQuals node.
2927 QualifierCollector Quals;
2928 const Type *TypeNode;
2929
2930 while (T.hasAddressSpace()) {
2931 TypeNode = Quals.strip(T);
2932
2933 // If the type no longer has an address space after stripping qualifiers,
2934 // jump out.
2935 if (!QualType(TypeNode, 0).hasAddressSpace())
2936 break;
2937
2938 // There might be sugar in the way. Strip it and try again.
2939 T = T.getSingleStepDesugaredType(*this);
2940 }
2941
2942 Quals.removeAddressSpace();
2943
2944 // Removal of the address space can mean there are no longer any
2945 // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts)
2946 // or required.
2947 if (Quals.hasNonFastQualifiers())
2948 return getExtQualType(TypeNode, Quals);
2949 else
2950 return QualType(TypeNode, Quals.getFastQualifiers());
2951 }
2952
getObjCGCQualType(QualType T,Qualifiers::GC GCAttr) const2953 QualType ASTContext::getObjCGCQualType(QualType T,
2954 Qualifiers::GC GCAttr) const {
2955 QualType CanT = getCanonicalType(T);
2956 if (CanT.getObjCGCAttr() == GCAttr)
2957 return T;
2958
2959 if (const auto *ptr = T->getAs<PointerType>()) {
2960 QualType Pointee = ptr->getPointeeType();
2961 if (Pointee->isAnyPointerType()) {
2962 QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
2963 return getPointerType(ResultType);
2964 }
2965 }
2966
2967 // If we are composing extended qualifiers together, merge together
2968 // into one ExtQuals node.
2969 QualifierCollector Quals;
2970 const Type *TypeNode = Quals.strip(T);
2971
2972 // If this type already has an ObjCGC specified, it cannot get
2973 // another one.
2974 assert(!Quals.hasObjCGCAttr() &&
2975 "Type cannot have multiple ObjCGCs!");
2976 Quals.addObjCGCAttr(GCAttr);
2977
2978 return getExtQualType(TypeNode, Quals);
2979 }
2980
removePtrSizeAddrSpace(QualType T) const2981 QualType ASTContext::removePtrSizeAddrSpace(QualType T) const {
2982 if (const PointerType *Ptr = T->getAs<PointerType>()) {
2983 QualType Pointee = Ptr->getPointeeType();
2984 if (isPtrSizeAddressSpace(Pointee.getAddressSpace())) {
2985 return getPointerType(removeAddrSpaceQualType(Pointee));
2986 }
2987 }
2988 return T;
2989 }
2990
adjustFunctionType(const FunctionType * T,FunctionType::ExtInfo Info)2991 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
2992 FunctionType::ExtInfo Info) {
2993 if (T->getExtInfo() == Info)
2994 return T;
2995
2996 QualType Result;
2997 if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2998 Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
2999 } else {
3000 const auto *FPT = cast<FunctionProtoType>(T);
3001 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
3002 EPI.ExtInfo = Info;
3003 Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
3004 }
3005
3006 return cast<FunctionType>(Result.getTypePtr());
3007 }
3008
adjustDeducedFunctionResultType(FunctionDecl * FD,QualType ResultType)3009 void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
3010 QualType ResultType) {
3011 FD = FD->getMostRecentDecl();
3012 while (true) {
3013 const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
3014 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
3015 FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
3016 if (FunctionDecl *Next = FD->getPreviousDecl())
3017 FD = Next;
3018 else
3019 break;
3020 }
3021 if (ASTMutationListener *L = getASTMutationListener())
3022 L->DeducedReturnType(FD, ResultType);
3023 }
3024
3025 /// Get a function type and produce the equivalent function type with the
3026 /// specified exception specification. Type sugar that can be present on a
3027 /// declaration of a function with an exception specification is permitted
3028 /// and preserved. Other type sugar (for instance, typedefs) is not.
getFunctionTypeWithExceptionSpec(QualType Orig,const FunctionProtoType::ExceptionSpecInfo & ESI)3029 QualType ASTContext::getFunctionTypeWithExceptionSpec(
3030 QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) {
3031 // Might have some parens.
3032 if (const auto *PT = dyn_cast<ParenType>(Orig))
3033 return getParenType(
3034 getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI));
3035
3036 // Might be wrapped in a macro qualified type.
3037 if (const auto *MQT = dyn_cast<MacroQualifiedType>(Orig))
3038 return getMacroQualifiedType(
3039 getFunctionTypeWithExceptionSpec(MQT->getUnderlyingType(), ESI),
3040 MQT->getMacroIdentifier());
3041
3042 // Might have a calling-convention attribute.
3043 if (const auto *AT = dyn_cast<AttributedType>(Orig))
3044 return getAttributedType(
3045 AT->getAttrKind(),
3046 getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI),
3047 getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI));
3048
3049 // Anything else must be a function type. Rebuild it with the new exception
3050 // specification.
3051 const auto *Proto = Orig->castAs<FunctionProtoType>();
3052 return getFunctionType(
3053 Proto->getReturnType(), Proto->getParamTypes(),
3054 Proto->getExtProtoInfo().withExceptionSpec(ESI));
3055 }
3056
hasSameFunctionTypeIgnoringExceptionSpec(QualType T,QualType U)3057 bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T,
3058 QualType U) {
3059 return hasSameType(T, U) ||
3060 (getLangOpts().CPlusPlus17 &&
3061 hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None),
3062 getFunctionTypeWithExceptionSpec(U, EST_None)));
3063 }
3064
getFunctionTypeWithoutPtrSizes(QualType T)3065 QualType ASTContext::getFunctionTypeWithoutPtrSizes(QualType T) {
3066 if (const auto *Proto = T->getAs<FunctionProtoType>()) {
3067 QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3068 SmallVector<QualType, 16> Args(Proto->param_types());
3069 for (unsigned i = 0, n = Args.size(); i != n; ++i)
3070 Args[i] = removePtrSizeAddrSpace(Args[i]);
3071 return getFunctionType(RetTy, Args, Proto->getExtProtoInfo());
3072 }
3073
3074 if (const FunctionNoProtoType *Proto = T->getAs<FunctionNoProtoType>()) {
3075 QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3076 return getFunctionNoProtoType(RetTy, Proto->getExtInfo());
3077 }
3078
3079 return T;
3080 }
3081
hasSameFunctionTypeIgnoringPtrSizes(QualType T,QualType U)3082 bool ASTContext::hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U) {
3083 return hasSameType(T, U) ||
3084 hasSameType(getFunctionTypeWithoutPtrSizes(T),
3085 getFunctionTypeWithoutPtrSizes(U));
3086 }
3087
adjustExceptionSpec(FunctionDecl * FD,const FunctionProtoType::ExceptionSpecInfo & ESI,bool AsWritten)3088 void ASTContext::adjustExceptionSpec(
3089 FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
3090 bool AsWritten) {
3091 // Update the type.
3092 QualType Updated =
3093 getFunctionTypeWithExceptionSpec(FD->getType(), ESI);
3094 FD->setType(Updated);
3095
3096 if (!AsWritten)
3097 return;
3098
3099 // Update the type in the type source information too.
3100 if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
3101 // If the type and the type-as-written differ, we may need to update
3102 // the type-as-written too.
3103 if (TSInfo->getType() != FD->getType())
3104 Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI);
3105
3106 // FIXME: When we get proper type location information for exceptions,
3107 // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
3108 // up the TypeSourceInfo;
3109 assert(TypeLoc::getFullDataSizeForType(Updated) ==
3110 TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
3111 "TypeLoc size mismatch from updating exception specification");
3112 TSInfo->overrideType(Updated);
3113 }
3114 }
3115
3116 /// getComplexType - Return the uniqued reference to the type for a complex
3117 /// number with the specified element type.
getComplexType(QualType T) const3118 QualType ASTContext::getComplexType(QualType T) const {
3119 // Unique pointers, to guarantee there is only one pointer of a particular
3120 // structure.
3121 llvm::FoldingSetNodeID ID;
3122 ComplexType::Profile(ID, T);
3123
3124 void *InsertPos = nullptr;
3125 if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
3126 return QualType(CT, 0);
3127
3128 // If the pointee type isn't canonical, this won't be a canonical type either,
3129 // so fill in the canonical type field.
3130 QualType Canonical;
3131 if (!T.isCanonical()) {
3132 Canonical = getComplexType(getCanonicalType(T));
3133
3134 // Get the new insert position for the node we care about.
3135 ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
3136 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3137 }
3138 auto *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
3139 Types.push_back(New);
3140 ComplexTypes.InsertNode(New, InsertPos);
3141 return QualType(New, 0);
3142 }
3143
3144 /// getPointerType - Return the uniqued reference to the type for a pointer to
3145 /// the specified type.
getPointerType(QualType T) const3146 QualType ASTContext::getPointerType(QualType T) const {
3147 // Unique pointers, to guarantee there is only one pointer of a particular
3148 // structure.
3149 llvm::FoldingSetNodeID ID;
3150 PointerType::Profile(ID, T);
3151
3152 void *InsertPos = nullptr;
3153 if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3154 return QualType(PT, 0);
3155
3156 // If the pointee type isn't canonical, this won't be a canonical type either,
3157 // so fill in the canonical type field.
3158 QualType Canonical;
3159 if (!T.isCanonical()) {
3160 Canonical = getPointerType(getCanonicalType(T));
3161
3162 // Get the new insert position for the node we care about.
3163 PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3164 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3165 }
3166 auto *New = new (*this, TypeAlignment) PointerType(T, Canonical);
3167 Types.push_back(New);
3168 PointerTypes.InsertNode(New, InsertPos);
3169 return QualType(New, 0);
3170 }
3171
getAdjustedType(QualType Orig,QualType New) const3172 QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
3173 llvm::FoldingSetNodeID ID;
3174 AdjustedType::Profile(ID, Orig, New);
3175 void *InsertPos = nullptr;
3176 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3177 if (AT)
3178 return QualType(AT, 0);
3179
3180 QualType Canonical = getCanonicalType(New);
3181
3182 // Get the new insert position for the node we care about.
3183 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3184 assert(!AT && "Shouldn't be in the map!");
3185
3186 AT = new (*this, TypeAlignment)
3187 AdjustedType(Type::Adjusted, Orig, New, Canonical);
3188 Types.push_back(AT);
3189 AdjustedTypes.InsertNode(AT, InsertPos);
3190 return QualType(AT, 0);
3191 }
3192
getDecayedType(QualType T) const3193 QualType ASTContext::getDecayedType(QualType T) const {
3194 assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
3195
3196 QualType Decayed;
3197
3198 // C99 6.7.5.3p7:
3199 // A declaration of a parameter as "array of type" shall be
3200 // adjusted to "qualified pointer to type", where the type
3201 // qualifiers (if any) are those specified within the [ and ] of
3202 // the array type derivation.
3203 if (T->isArrayType())
3204 Decayed = getArrayDecayedType(T);
3205
3206 // C99 6.7.5.3p8:
3207 // A declaration of a parameter as "function returning type"
3208 // shall be adjusted to "pointer to function returning type", as
3209 // in 6.3.2.1.
3210 if (T->isFunctionType())
3211 Decayed = getPointerType(T);
3212
3213 llvm::FoldingSetNodeID ID;
3214 AdjustedType::Profile(ID, T, Decayed);
3215 void *InsertPos = nullptr;
3216 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3217 if (AT)
3218 return QualType(AT, 0);
3219
3220 QualType Canonical = getCanonicalType(Decayed);
3221
3222 // Get the new insert position for the node we care about.
3223 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3224 assert(!AT && "Shouldn't be in the map!");
3225
3226 AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
3227 Types.push_back(AT);
3228 AdjustedTypes.InsertNode(AT, InsertPos);
3229 return QualType(AT, 0);
3230 }
3231
3232 /// getBlockPointerType - Return the uniqued reference to the type for
3233 /// a pointer to the specified block.
getBlockPointerType(QualType T) const3234 QualType ASTContext::getBlockPointerType(QualType T) const {
3235 assert(T->isFunctionType() && "block of function types only");
3236 // Unique pointers, to guarantee there is only one block of a particular
3237 // structure.
3238 llvm::FoldingSetNodeID ID;
3239 BlockPointerType::Profile(ID, T);
3240
3241 void *InsertPos = nullptr;
3242 if (BlockPointerType *PT =
3243 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3244 return QualType(PT, 0);
3245
3246 // If the block pointee type isn't canonical, this won't be a canonical
3247 // type either so fill in the canonical type field.
3248 QualType Canonical;
3249 if (!T.isCanonical()) {
3250 Canonical = getBlockPointerType(getCanonicalType(T));
3251
3252 // Get the new insert position for the node we care about.
3253 BlockPointerType *NewIP =
3254 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3255 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3256 }
3257 auto *New = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
3258 Types.push_back(New);
3259 BlockPointerTypes.InsertNode(New, InsertPos);
3260 return QualType(New, 0);
3261 }
3262
3263 /// getLValueReferenceType - Return the uniqued reference to the type for an
3264 /// lvalue reference to the specified type.
3265 QualType
getLValueReferenceType(QualType T,bool SpelledAsLValue) const3266 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
3267 assert(getCanonicalType(T) != OverloadTy &&
3268 "Unresolved overloaded function type");
3269
3270 // Unique pointers, to guarantee there is only one pointer of a particular
3271 // structure.
3272 llvm::FoldingSetNodeID ID;
3273 ReferenceType::Profile(ID, T, SpelledAsLValue);
3274
3275 void *InsertPos = nullptr;
3276 if (LValueReferenceType *RT =
3277 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3278 return QualType(RT, 0);
3279
3280 const auto *InnerRef = T->getAs<ReferenceType>();
3281
3282 // If the referencee type isn't canonical, this won't be a canonical type
3283 // either, so fill in the canonical type field.
3284 QualType Canonical;
3285 if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
3286 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3287 Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
3288
3289 // Get the new insert position for the node we care about.
3290 LValueReferenceType *NewIP =
3291 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3292 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3293 }
3294
3295 auto *New = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
3296 SpelledAsLValue);
3297 Types.push_back(New);
3298 LValueReferenceTypes.InsertNode(New, InsertPos);
3299
3300 return QualType(New, 0);
3301 }
3302
3303 /// getRValueReferenceType - Return the uniqued reference to the type for an
3304 /// rvalue reference to the specified type.
getRValueReferenceType(QualType T) const3305 QualType ASTContext::getRValueReferenceType(QualType T) const {
3306 // Unique pointers, to guarantee there is only one pointer of a particular
3307 // structure.
3308 llvm::FoldingSetNodeID ID;
3309 ReferenceType::Profile(ID, T, false);
3310
3311 void *InsertPos = nullptr;
3312 if (RValueReferenceType *RT =
3313 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3314 return QualType(RT, 0);
3315
3316 const auto *InnerRef = T->getAs<ReferenceType>();
3317
3318 // If the referencee type isn't canonical, this won't be a canonical type
3319 // either, so fill in the canonical type field.
3320 QualType Canonical;
3321 if (InnerRef || !T.isCanonical()) {
3322 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3323 Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
3324
3325 // Get the new insert position for the node we care about.
3326 RValueReferenceType *NewIP =
3327 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3328 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3329 }
3330
3331 auto *New = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
3332 Types.push_back(New);
3333 RValueReferenceTypes.InsertNode(New, InsertPos);
3334 return QualType(New, 0);
3335 }
3336
3337 /// getMemberPointerType - Return the uniqued reference to the type for a
3338 /// member pointer to the specified type, in the specified class.
getMemberPointerType(QualType T,const Type * Cls) const3339 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
3340 // Unique pointers, to guarantee there is only one pointer of a particular
3341 // structure.
3342 llvm::FoldingSetNodeID ID;
3343 MemberPointerType::Profile(ID, T, Cls);
3344
3345 void *InsertPos = nullptr;
3346 if (MemberPointerType *PT =
3347 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3348 return QualType(PT, 0);
3349
3350 // If the pointee or class type isn't canonical, this won't be a canonical
3351 // type either, so fill in the canonical type field.
3352 QualType Canonical;
3353 if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
3354 Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
3355
3356 // Get the new insert position for the node we care about.
3357 MemberPointerType *NewIP =
3358 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3359 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3360 }
3361 auto *New = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
3362 Types.push_back(New);
3363 MemberPointerTypes.InsertNode(New, InsertPos);
3364 return QualType(New, 0);
3365 }
3366
3367 /// getConstantArrayType - Return the unique reference to the type for an
3368 /// array of the specified element type.
getConstantArrayType(QualType EltTy,const llvm::APInt & ArySizeIn,const Expr * SizeExpr,ArrayType::ArraySizeModifier ASM,unsigned IndexTypeQuals) const3369 QualType ASTContext::getConstantArrayType(QualType EltTy,
3370 const llvm::APInt &ArySizeIn,
3371 const Expr *SizeExpr,
3372 ArrayType::ArraySizeModifier ASM,
3373 unsigned IndexTypeQuals) const {
3374 assert((EltTy->isDependentType() ||
3375 EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
3376 "Constant array of VLAs is illegal!");
3377
3378 // We only need the size as part of the type if it's instantiation-dependent.
3379 if (SizeExpr && !SizeExpr->isInstantiationDependent())
3380 SizeExpr = nullptr;
3381
3382 // Convert the array size into a canonical width matching the pointer size for
3383 // the target.
3384 llvm::APInt ArySize(ArySizeIn);
3385 ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth());
3386
3387 llvm::FoldingSetNodeID ID;
3388 ConstantArrayType::Profile(ID, *this, EltTy, ArySize, SizeExpr, ASM,
3389 IndexTypeQuals);
3390
3391 void *InsertPos = nullptr;
3392 if (ConstantArrayType *ATP =
3393 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
3394 return QualType(ATP, 0);
3395
3396 // If the element type isn't canonical or has qualifiers, or the array bound
3397 // is instantiation-dependent, this won't be a canonical type either, so fill
3398 // in the canonical type field.
3399 QualType Canon;
3400 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) {
3401 SplitQualType canonSplit = getCanonicalType(EltTy).split();
3402 Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, nullptr,
3403 ASM, IndexTypeQuals);
3404 Canon = getQualifiedType(Canon, canonSplit.Quals);
3405
3406 // Get the new insert position for the node we care about.
3407 ConstantArrayType *NewIP =
3408 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
3409 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3410 }
3411
3412 void *Mem = Allocate(
3413 ConstantArrayType::totalSizeToAlloc<const Expr *>(SizeExpr ? 1 : 0),
3414 TypeAlignment);
3415 auto *New = new (Mem)
3416 ConstantArrayType(EltTy, Canon, ArySize, SizeExpr, ASM, IndexTypeQuals);
3417 ConstantArrayTypes.InsertNode(New, InsertPos);
3418 Types.push_back(New);
3419 return QualType(New, 0);
3420 }
3421
3422 /// getVariableArrayDecayedType - Turns the given type, which may be
3423 /// variably-modified, into the corresponding type with all the known
3424 /// sizes replaced with [*].
getVariableArrayDecayedType(QualType type) const3425 QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
3426 // Vastly most common case.
3427 if (!type->isVariablyModifiedType()) return type;
3428
3429 QualType result;
3430
3431 SplitQualType split = type.getSplitDesugaredType();
3432 const Type *ty = split.Ty;
3433 switch (ty->getTypeClass()) {
3434 #define TYPE(Class, Base)
3435 #define ABSTRACT_TYPE(Class, Base)
3436 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3437 #include "clang/AST/TypeNodes.inc"
3438 llvm_unreachable("didn't desugar past all non-canonical types?");
3439
3440 // These types should never be variably-modified.
3441 case Type::Builtin:
3442 case Type::Complex:
3443 case Type::Vector:
3444 case Type::DependentVector:
3445 case Type::ExtVector:
3446 case Type::DependentSizedExtVector:
3447 case Type::ConstantMatrix:
3448 case Type::DependentSizedMatrix:
3449 case Type::DependentAddressSpace:
3450 case Type::ObjCObject:
3451 case Type::ObjCInterface:
3452 case Type::ObjCObjectPointer:
3453 case Type::Record:
3454 case Type::Enum:
3455 case Type::UnresolvedUsing:
3456 case Type::TypeOfExpr:
3457 case Type::TypeOf:
3458 case Type::Decltype:
3459 case Type::UnaryTransform:
3460 case Type::DependentName:
3461 case Type::InjectedClassName:
3462 case Type::TemplateSpecialization:
3463 case Type::DependentTemplateSpecialization:
3464 case Type::TemplateTypeParm:
3465 case Type::SubstTemplateTypeParmPack:
3466 case Type::Auto:
3467 case Type::DeducedTemplateSpecialization:
3468 case Type::PackExpansion:
3469 case Type::ExtInt:
3470 case Type::DependentExtInt:
3471 llvm_unreachable("type should never be variably-modified");
3472
3473 // These types can be variably-modified but should never need to
3474 // further decay.
3475 case Type::FunctionNoProto:
3476 case Type::FunctionProto:
3477 case Type::BlockPointer:
3478 case Type::MemberPointer:
3479 case Type::Pipe:
3480 return type;
3481
3482 // These types can be variably-modified. All these modifications
3483 // preserve structure except as noted by comments.
3484 // TODO: if we ever care about optimizing VLAs, there are no-op
3485 // optimizations available here.
3486 case Type::Pointer:
3487 result = getPointerType(getVariableArrayDecayedType(
3488 cast<PointerType>(ty)->getPointeeType()));
3489 break;
3490
3491 case Type::LValueReference: {
3492 const auto *lv = cast<LValueReferenceType>(ty);
3493 result = getLValueReferenceType(
3494 getVariableArrayDecayedType(lv->getPointeeType()),
3495 lv->isSpelledAsLValue());
3496 break;
3497 }
3498
3499 case Type::RValueReference: {
3500 const auto *lv = cast<RValueReferenceType>(ty);
3501 result = getRValueReferenceType(
3502 getVariableArrayDecayedType(lv->getPointeeType()));
3503 break;
3504 }
3505
3506 case Type::Atomic: {
3507 const auto *at = cast<AtomicType>(ty);
3508 result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
3509 break;
3510 }
3511
3512 case Type::ConstantArray: {
3513 const auto *cat = cast<ConstantArrayType>(ty);
3514 result = getConstantArrayType(
3515 getVariableArrayDecayedType(cat->getElementType()),
3516 cat->getSize(),
3517 cat->getSizeExpr(),
3518 cat->getSizeModifier(),
3519 cat->getIndexTypeCVRQualifiers());
3520 break;
3521 }
3522
3523 case Type::DependentSizedArray: {
3524 const auto *dat = cast<DependentSizedArrayType>(ty);
3525 result = getDependentSizedArrayType(
3526 getVariableArrayDecayedType(dat->getElementType()),
3527 dat->getSizeExpr(),
3528 dat->getSizeModifier(),
3529 dat->getIndexTypeCVRQualifiers(),
3530 dat->getBracketsRange());
3531 break;
3532 }
3533
3534 // Turn incomplete types into [*] types.
3535 case Type::IncompleteArray: {
3536 const auto *iat = cast<IncompleteArrayType>(ty);
3537 result = getVariableArrayType(
3538 getVariableArrayDecayedType(iat->getElementType()),
3539 /*size*/ nullptr,
3540 ArrayType::Normal,
3541 iat->getIndexTypeCVRQualifiers(),
3542 SourceRange());
3543 break;
3544 }
3545
3546 // Turn VLA types into [*] types.
3547 case Type::VariableArray: {
3548 const auto *vat = cast<VariableArrayType>(ty);
3549 result = getVariableArrayType(
3550 getVariableArrayDecayedType(vat->getElementType()),
3551 /*size*/ nullptr,
3552 ArrayType::Star,
3553 vat->getIndexTypeCVRQualifiers(),
3554 vat->getBracketsRange());
3555 break;
3556 }
3557 }
3558
3559 // Apply the top-level qualifiers from the original.
3560 return getQualifiedType(result, split.Quals);
3561 }
3562
3563 /// getVariableArrayType - Returns a non-unique reference to the type for a
3564 /// variable array of the specified element type.
getVariableArrayType(QualType EltTy,Expr * NumElts,ArrayType::ArraySizeModifier ASM,unsigned IndexTypeQuals,SourceRange Brackets) const3565 QualType ASTContext::getVariableArrayType(QualType EltTy,
3566 Expr *NumElts,
3567 ArrayType::ArraySizeModifier ASM,
3568 unsigned IndexTypeQuals,
3569 SourceRange Brackets) const {
3570 // Since we don't unique expressions, it isn't possible to unique VLA's
3571 // that have an expression provided for their size.
3572 QualType Canon;
3573
3574 // Be sure to pull qualifiers off the element type.
3575 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
3576 SplitQualType canonSplit = getCanonicalType(EltTy).split();
3577 Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
3578 IndexTypeQuals, Brackets);
3579 Canon = getQualifiedType(Canon, canonSplit.Quals);
3580 }
3581
3582 auto *New = new (*this, TypeAlignment)
3583 VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
3584
3585 VariableArrayTypes.push_back(New);
3586 Types.push_back(New);
3587 return QualType(New, 0);
3588 }
3589
3590 /// getDependentSizedArrayType - Returns a non-unique reference to
3591 /// the type for a dependently-sized array of the specified element
3592 /// type.
getDependentSizedArrayType(QualType elementType,Expr * numElements,ArrayType::ArraySizeModifier ASM,unsigned elementTypeQuals,SourceRange brackets) const3593 QualType ASTContext::getDependentSizedArrayType(QualType elementType,
3594 Expr *numElements,
3595 ArrayType::ArraySizeModifier ASM,
3596 unsigned elementTypeQuals,
3597 SourceRange brackets) const {
3598 assert((!numElements || numElements->isTypeDependent() ||
3599 numElements->isValueDependent()) &&
3600 "Size must be type- or value-dependent!");
3601
3602 // Dependently-sized array types that do not have a specified number
3603 // of elements will have their sizes deduced from a dependent
3604 // initializer. We do no canonicalization here at all, which is okay
3605 // because they can't be used in most locations.
3606 if (!numElements) {
3607 auto *newType
3608 = new (*this, TypeAlignment)
3609 DependentSizedArrayType(*this, elementType, QualType(),
3610 numElements, ASM, elementTypeQuals,
3611 brackets);
3612 Types.push_back(newType);
3613 return QualType(newType, 0);
3614 }
3615
3616 // Otherwise, we actually build a new type every time, but we
3617 // also build a canonical type.
3618
3619 SplitQualType canonElementType = getCanonicalType(elementType).split();
3620
3621 void *insertPos = nullptr;
3622 llvm::FoldingSetNodeID ID;
3623 DependentSizedArrayType::Profile(ID, *this,
3624 QualType(canonElementType.Ty, 0),
3625 ASM, elementTypeQuals, numElements);
3626
3627 // Look for an existing type with these properties.
3628 DependentSizedArrayType *canonTy =
3629 DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3630
3631 // If we don't have one, build one.
3632 if (!canonTy) {
3633 canonTy = new (*this, TypeAlignment)
3634 DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
3635 QualType(), numElements, ASM, elementTypeQuals,
3636 brackets);
3637 DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
3638 Types.push_back(canonTy);
3639 }
3640
3641 // Apply qualifiers from the element type to the array.
3642 QualType canon = getQualifiedType(QualType(canonTy,0),
3643 canonElementType.Quals);
3644
3645 // If we didn't need extra canonicalization for the element type or the size
3646 // expression, then just use that as our result.
3647 if (QualType(canonElementType.Ty, 0) == elementType &&
3648 canonTy->getSizeExpr() == numElements)
3649 return canon;
3650
3651 // Otherwise, we need to build a type which follows the spelling
3652 // of the element type.
3653 auto *sugaredType
3654 = new (*this, TypeAlignment)
3655 DependentSizedArrayType(*this, elementType, canon, numElements,
3656 ASM, elementTypeQuals, brackets);
3657 Types.push_back(sugaredType);
3658 return QualType(sugaredType, 0);
3659 }
3660
getIncompleteArrayType(QualType elementType,ArrayType::ArraySizeModifier ASM,unsigned elementTypeQuals) const3661 QualType ASTContext::getIncompleteArrayType(QualType elementType,
3662 ArrayType::ArraySizeModifier ASM,
3663 unsigned elementTypeQuals) const {
3664 llvm::FoldingSetNodeID ID;
3665 IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
3666
3667 void *insertPos = nullptr;
3668 if (IncompleteArrayType *iat =
3669 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
3670 return QualType(iat, 0);
3671
3672 // If the element type isn't canonical, this won't be a canonical type
3673 // either, so fill in the canonical type field. We also have to pull
3674 // qualifiers off the element type.
3675 QualType canon;
3676
3677 if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
3678 SplitQualType canonSplit = getCanonicalType(elementType).split();
3679 canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
3680 ASM, elementTypeQuals);
3681 canon = getQualifiedType(canon, canonSplit.Quals);
3682
3683 // Get the new insert position for the node we care about.
3684 IncompleteArrayType *existing =
3685 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3686 assert(!existing && "Shouldn't be in the map!"); (void) existing;
3687 }
3688
3689 auto *newType = new (*this, TypeAlignment)
3690 IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
3691
3692 IncompleteArrayTypes.InsertNode(newType, insertPos);
3693 Types.push_back(newType);
3694 return QualType(newType, 0);
3695 }
3696
3697 ASTContext::BuiltinVectorTypeInfo
getBuiltinVectorTypeInfo(const BuiltinType * Ty) const3698 ASTContext::getBuiltinVectorTypeInfo(const BuiltinType *Ty) const {
3699 #define SVE_INT_ELTTY(BITS, ELTS, SIGNED, NUMVECTORS) \
3700 {getIntTypeForBitwidth(BITS, SIGNED), llvm::ElementCount::getScalable(ELTS), \
3701 NUMVECTORS};
3702
3703 #define SVE_ELTTY(ELTTY, ELTS, NUMVECTORS) \
3704 {ELTTY, llvm::ElementCount::getScalable(ELTS), NUMVECTORS};
3705
3706 switch (Ty->getKind()) {
3707 default:
3708 llvm_unreachable("Unsupported builtin vector type");
3709 case BuiltinType::SveInt8:
3710 return SVE_INT_ELTTY(8, 16, true, 1);
3711 case BuiltinType::SveUint8:
3712 return SVE_INT_ELTTY(8, 16, false, 1);
3713 case BuiltinType::SveInt8x2:
3714 return SVE_INT_ELTTY(8, 16, true, 2);
3715 case BuiltinType::SveUint8x2:
3716 return SVE_INT_ELTTY(8, 16, false, 2);
3717 case BuiltinType::SveInt8x3:
3718 return SVE_INT_ELTTY(8, 16, true, 3);
3719 case BuiltinType::SveUint8x3:
3720 return SVE_INT_ELTTY(8, 16, false, 3);
3721 case BuiltinType::SveInt8x4:
3722 return SVE_INT_ELTTY(8, 16, true, 4);
3723 case BuiltinType::SveUint8x4:
3724 return SVE_INT_ELTTY(8, 16, false, 4);
3725 case BuiltinType::SveInt16:
3726 return SVE_INT_ELTTY(16, 8, true, 1);
3727 case BuiltinType::SveUint16:
3728 return SVE_INT_ELTTY(16, 8, false, 1);
3729 case BuiltinType::SveInt16x2:
3730 return SVE_INT_ELTTY(16, 8, true, 2);
3731 case BuiltinType::SveUint16x2:
3732 return SVE_INT_ELTTY(16, 8, false, 2);
3733 case BuiltinType::SveInt16x3:
3734 return SVE_INT_ELTTY(16, 8, true, 3);
3735 case BuiltinType::SveUint16x3:
3736 return SVE_INT_ELTTY(16, 8, false, 3);
3737 case BuiltinType::SveInt16x4:
3738 return SVE_INT_ELTTY(16, 8, true, 4);
3739 case BuiltinType::SveUint16x4:
3740 return SVE_INT_ELTTY(16, 8, false, 4);
3741 case BuiltinType::SveInt32:
3742 return SVE_INT_ELTTY(32, 4, true, 1);
3743 case BuiltinType::SveUint32:
3744 return SVE_INT_ELTTY(32, 4, false, 1);
3745 case BuiltinType::SveInt32x2:
3746 return SVE_INT_ELTTY(32, 4, true, 2);
3747 case BuiltinType::SveUint32x2:
3748 return SVE_INT_ELTTY(32, 4, false, 2);
3749 case BuiltinType::SveInt32x3:
3750 return SVE_INT_ELTTY(32, 4, true, 3);
3751 case BuiltinType::SveUint32x3:
3752 return SVE_INT_ELTTY(32, 4, false, 3);
3753 case BuiltinType::SveInt32x4:
3754 return SVE_INT_ELTTY(32, 4, true, 4);
3755 case BuiltinType::SveUint32x4:
3756 return SVE_INT_ELTTY(32, 4, false, 4);
3757 case BuiltinType::SveInt64:
3758 return SVE_INT_ELTTY(64, 2, true, 1);
3759 case BuiltinType::SveUint64:
3760 return SVE_INT_ELTTY(64, 2, false, 1);
3761 case BuiltinType::SveInt64x2:
3762 return SVE_INT_ELTTY(64, 2, true, 2);
3763 case BuiltinType::SveUint64x2:
3764 return SVE_INT_ELTTY(64, 2, false, 2);
3765 case BuiltinType::SveInt64x3:
3766 return SVE_INT_ELTTY(64, 2, true, 3);
3767 case BuiltinType::SveUint64x3:
3768 return SVE_INT_ELTTY(64, 2, false, 3);
3769 case BuiltinType::SveInt64x4:
3770 return SVE_INT_ELTTY(64, 2, true, 4);
3771 case BuiltinType::SveUint64x4:
3772 return SVE_INT_ELTTY(64, 2, false, 4);
3773 case BuiltinType::SveBool:
3774 return SVE_ELTTY(BoolTy, 16, 1);
3775 case BuiltinType::SveFloat16:
3776 return SVE_ELTTY(HalfTy, 8, 1);
3777 case BuiltinType::SveFloat16x2:
3778 return SVE_ELTTY(HalfTy, 8, 2);
3779 case BuiltinType::SveFloat16x3:
3780 return SVE_ELTTY(HalfTy, 8, 3);
3781 case BuiltinType::SveFloat16x4:
3782 return SVE_ELTTY(HalfTy, 8, 4);
3783 case BuiltinType::SveFloat32:
3784 return SVE_ELTTY(FloatTy, 4, 1);
3785 case BuiltinType::SveFloat32x2:
3786 return SVE_ELTTY(FloatTy, 4, 2);
3787 case BuiltinType::SveFloat32x3:
3788 return SVE_ELTTY(FloatTy, 4, 3);
3789 case BuiltinType::SveFloat32x4:
3790 return SVE_ELTTY(FloatTy, 4, 4);
3791 case BuiltinType::SveFloat64:
3792 return SVE_ELTTY(DoubleTy, 2, 1);
3793 case BuiltinType::SveFloat64x2:
3794 return SVE_ELTTY(DoubleTy, 2, 2);
3795 case BuiltinType::SveFloat64x3:
3796 return SVE_ELTTY(DoubleTy, 2, 3);
3797 case BuiltinType::SveFloat64x4:
3798 return SVE_ELTTY(DoubleTy, 2, 4);
3799 case BuiltinType::SveBFloat16:
3800 return SVE_ELTTY(BFloat16Ty, 8, 1);
3801 case BuiltinType::SveBFloat16x2:
3802 return SVE_ELTTY(BFloat16Ty, 8, 2);
3803 case BuiltinType::SveBFloat16x3:
3804 return SVE_ELTTY(BFloat16Ty, 8, 3);
3805 case BuiltinType::SveBFloat16x4:
3806 return SVE_ELTTY(BFloat16Ty, 8, 4);
3807 }
3808 }
3809
3810 /// getScalableVectorType - Return the unique reference to a scalable vector
3811 /// type of the specified element type and size. VectorType must be a built-in
3812 /// type.
getScalableVectorType(QualType EltTy,unsigned NumElts) const3813 QualType ASTContext::getScalableVectorType(QualType EltTy,
3814 unsigned NumElts) const {
3815 if (Target->hasAArch64SVETypes()) {
3816 uint64_t EltTySize = getTypeSize(EltTy);
3817 #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits, \
3818 IsSigned, IsFP, IsBF) \
3819 if (!EltTy->isBooleanType() && \
3820 ((EltTy->hasIntegerRepresentation() && \
3821 EltTy->hasSignedIntegerRepresentation() == IsSigned) || \
3822 (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() && \
3823 IsFP && !IsBF) || \
3824 (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() && \
3825 IsBF && !IsFP)) && \
3826 EltTySize == ElBits && NumElts == NumEls) { \
3827 return SingletonId; \
3828 }
3829 #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls) \
3830 if (EltTy->isBooleanType() && NumElts == NumEls) \
3831 return SingletonId;
3832 #include "clang/Basic/AArch64SVEACLETypes.def"
3833 }
3834 return QualType();
3835 }
3836
3837 /// getVectorType - Return the unique reference to a vector type of
3838 /// the specified element type and size. VectorType must be a built-in type.
getVectorType(QualType vecType,unsigned NumElts,VectorType::VectorKind VecKind) const3839 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
3840 VectorType::VectorKind VecKind) const {
3841 assert(vecType->isBuiltinType());
3842
3843 // Check if we've already instantiated a vector of this type.
3844 llvm::FoldingSetNodeID ID;
3845 VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
3846
3847 void *InsertPos = nullptr;
3848 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
3849 return QualType(VTP, 0);
3850
3851 // If the element type isn't canonical, this won't be a canonical type either,
3852 // so fill in the canonical type field.
3853 QualType Canonical;
3854 if (!vecType.isCanonical()) {
3855 Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
3856
3857 // Get the new insert position for the node we care about.
3858 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3859 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3860 }
3861 auto *New = new (*this, TypeAlignment)
3862 VectorType(vecType, NumElts, Canonical, VecKind);
3863 VectorTypes.InsertNode(New, InsertPos);
3864 Types.push_back(New);
3865 return QualType(New, 0);
3866 }
3867
3868 QualType
getDependentVectorType(QualType VecType,Expr * SizeExpr,SourceLocation AttrLoc,VectorType::VectorKind VecKind) const3869 ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr,
3870 SourceLocation AttrLoc,
3871 VectorType::VectorKind VecKind) const {
3872 llvm::FoldingSetNodeID ID;
3873 DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr,
3874 VecKind);
3875 void *InsertPos = nullptr;
3876 DependentVectorType *Canon =
3877 DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3878 DependentVectorType *New;
3879
3880 if (Canon) {
3881 New = new (*this, TypeAlignment) DependentVectorType(
3882 *this, VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind);
3883 } else {
3884 QualType CanonVecTy = getCanonicalType(VecType);
3885 if (CanonVecTy == VecType) {
3886 New = new (*this, TypeAlignment) DependentVectorType(
3887 *this, VecType, QualType(), SizeExpr, AttrLoc, VecKind);
3888
3889 DependentVectorType *CanonCheck =
3890 DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3891 assert(!CanonCheck &&
3892 "Dependent-sized vector_size canonical type broken");
3893 (void)CanonCheck;
3894 DependentVectorTypes.InsertNode(New, InsertPos);
3895 } else {
3896 QualType CanonTy = getDependentVectorType(CanonVecTy, SizeExpr,
3897 SourceLocation(), VecKind);
3898 New = new (*this, TypeAlignment) DependentVectorType(
3899 *this, VecType, CanonTy, SizeExpr, AttrLoc, VecKind);
3900 }
3901 }
3902
3903 Types.push_back(New);
3904 return QualType(New, 0);
3905 }
3906
3907 /// getExtVectorType - Return the unique reference to an extended vector type of
3908 /// the specified element type and size. VectorType must be a built-in type.
3909 QualType
getExtVectorType(QualType vecType,unsigned NumElts) const3910 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
3911 assert(vecType->isBuiltinType() || vecType->isDependentType());
3912
3913 // Check if we've already instantiated a vector of this type.
3914 llvm::FoldingSetNodeID ID;
3915 VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
3916 VectorType::GenericVector);
3917 void *InsertPos = nullptr;
3918 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
3919 return QualType(VTP, 0);
3920
3921 // If the element type isn't canonical, this won't be a canonical type either,
3922 // so fill in the canonical type field.
3923 QualType Canonical;
3924 if (!vecType.isCanonical()) {
3925 Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
3926
3927 // Get the new insert position for the node we care about.
3928 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3929 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3930 }
3931 auto *New = new (*this, TypeAlignment)
3932 ExtVectorType(vecType, NumElts, Canonical);
3933 VectorTypes.InsertNode(New, InsertPos);
3934 Types.push_back(New);
3935 return QualType(New, 0);
3936 }
3937
3938 QualType
getDependentSizedExtVectorType(QualType vecType,Expr * SizeExpr,SourceLocation AttrLoc) const3939 ASTContext::getDependentSizedExtVectorType(QualType vecType,
3940 Expr *SizeExpr,
3941 SourceLocation AttrLoc) const {
3942 llvm::FoldingSetNodeID ID;
3943 DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
3944 SizeExpr);
3945
3946 void *InsertPos = nullptr;
3947 DependentSizedExtVectorType *Canon
3948 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3949 DependentSizedExtVectorType *New;
3950 if (Canon) {
3951 // We already have a canonical version of this array type; use it as
3952 // the canonical type for a newly-built type.
3953 New = new (*this, TypeAlignment)
3954 DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
3955 SizeExpr, AttrLoc);
3956 } else {
3957 QualType CanonVecTy = getCanonicalType(vecType);
3958 if (CanonVecTy == vecType) {
3959 New = new (*this, TypeAlignment)
3960 DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
3961 AttrLoc);
3962
3963 DependentSizedExtVectorType *CanonCheck
3964 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3965 assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
3966 (void)CanonCheck;
3967 DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
3968 } else {
3969 QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
3970 SourceLocation());
3971 New = new (*this, TypeAlignment) DependentSizedExtVectorType(
3972 *this, vecType, CanonExtTy, SizeExpr, AttrLoc);
3973 }
3974 }
3975
3976 Types.push_back(New);
3977 return QualType(New, 0);
3978 }
3979
getConstantMatrixType(QualType ElementTy,unsigned NumRows,unsigned NumColumns) const3980 QualType ASTContext::getConstantMatrixType(QualType ElementTy, unsigned NumRows,
3981 unsigned NumColumns) const {
3982 llvm::FoldingSetNodeID ID;
3983 ConstantMatrixType::Profile(ID, ElementTy, NumRows, NumColumns,
3984 Type::ConstantMatrix);
3985
3986 assert(MatrixType::isValidElementType(ElementTy) &&
3987 "need a valid element type");
3988 assert(ConstantMatrixType::isDimensionValid(NumRows) &&
3989 ConstantMatrixType::isDimensionValid(NumColumns) &&
3990 "need valid matrix dimensions");
3991 void *InsertPos = nullptr;
3992 if (ConstantMatrixType *MTP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos))
3993 return QualType(MTP, 0);
3994
3995 QualType Canonical;
3996 if (!ElementTy.isCanonical()) {
3997 Canonical =
3998 getConstantMatrixType(getCanonicalType(ElementTy), NumRows, NumColumns);
3999
4000 ConstantMatrixType *NewIP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4001 assert(!NewIP && "Matrix type shouldn't already exist in the map");
4002 (void)NewIP;
4003 }
4004
4005 auto *New = new (*this, TypeAlignment)
4006 ConstantMatrixType(ElementTy, NumRows, NumColumns, Canonical);
4007 MatrixTypes.InsertNode(New, InsertPos);
4008 Types.push_back(New);
4009 return QualType(New, 0);
4010 }
4011
getDependentSizedMatrixType(QualType ElementTy,Expr * RowExpr,Expr * ColumnExpr,SourceLocation AttrLoc) const4012 QualType ASTContext::getDependentSizedMatrixType(QualType ElementTy,
4013 Expr *RowExpr,
4014 Expr *ColumnExpr,
4015 SourceLocation AttrLoc) const {
4016 QualType CanonElementTy = getCanonicalType(ElementTy);
4017 llvm::FoldingSetNodeID ID;
4018 DependentSizedMatrixType::Profile(ID, *this, CanonElementTy, RowExpr,
4019 ColumnExpr);
4020
4021 void *InsertPos = nullptr;
4022 DependentSizedMatrixType *Canon =
4023 DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4024
4025 if (!Canon) {
4026 Canon = new (*this, TypeAlignment) DependentSizedMatrixType(
4027 *this, CanonElementTy, QualType(), RowExpr, ColumnExpr, AttrLoc);
4028 #ifndef NDEBUG
4029 DependentSizedMatrixType *CanonCheck =
4030 DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4031 assert(!CanonCheck && "Dependent-sized matrix canonical type broken");
4032 #endif
4033 DependentSizedMatrixTypes.InsertNode(Canon, InsertPos);
4034 Types.push_back(Canon);
4035 }
4036
4037 // Already have a canonical version of the matrix type
4038 //
4039 // If it exactly matches the requested type, use it directly.
4040 if (Canon->getElementType() == ElementTy && Canon->getRowExpr() == RowExpr &&
4041 Canon->getRowExpr() == ColumnExpr)
4042 return QualType(Canon, 0);
4043
4044 // Use Canon as the canonical type for newly-built type.
4045 DependentSizedMatrixType *New = new (*this, TypeAlignment)
4046 DependentSizedMatrixType(*this, ElementTy, QualType(Canon, 0), RowExpr,
4047 ColumnExpr, AttrLoc);
4048 Types.push_back(New);
4049 return QualType(New, 0);
4050 }
4051
getDependentAddressSpaceType(QualType PointeeType,Expr * AddrSpaceExpr,SourceLocation AttrLoc) const4052 QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType,
4053 Expr *AddrSpaceExpr,
4054 SourceLocation AttrLoc) const {
4055 assert(AddrSpaceExpr->isInstantiationDependent());
4056
4057 QualType canonPointeeType = getCanonicalType(PointeeType);
4058
4059 void *insertPos = nullptr;
4060 llvm::FoldingSetNodeID ID;
4061 DependentAddressSpaceType::Profile(ID, *this, canonPointeeType,
4062 AddrSpaceExpr);
4063
4064 DependentAddressSpaceType *canonTy =
4065 DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos);
4066
4067 if (!canonTy) {
4068 canonTy = new (*this, TypeAlignment)
4069 DependentAddressSpaceType(*this, canonPointeeType,
4070 QualType(), AddrSpaceExpr, AttrLoc);
4071 DependentAddressSpaceTypes.InsertNode(canonTy, insertPos);
4072 Types.push_back(canonTy);
4073 }
4074
4075 if (canonPointeeType == PointeeType &&
4076 canonTy->getAddrSpaceExpr() == AddrSpaceExpr)
4077 return QualType(canonTy, 0);
4078
4079 auto *sugaredType
4080 = new (*this, TypeAlignment)
4081 DependentAddressSpaceType(*this, PointeeType, QualType(canonTy, 0),
4082 AddrSpaceExpr, AttrLoc);
4083 Types.push_back(sugaredType);
4084 return QualType(sugaredType, 0);
4085 }
4086
4087 /// Determine whether \p T is canonical as the result type of a function.
isCanonicalResultType(QualType T)4088 static bool isCanonicalResultType(QualType T) {
4089 return T.isCanonical() &&
4090 (T.getObjCLifetime() == Qualifiers::OCL_None ||
4091 T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
4092 }
4093
4094 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
4095 QualType
getFunctionNoProtoType(QualType ResultTy,const FunctionType::ExtInfo & Info) const4096 ASTContext::getFunctionNoProtoType(QualType ResultTy,
4097 const FunctionType::ExtInfo &Info) const {
4098 // Unique functions, to guarantee there is only one function of a particular
4099 // structure.
4100 llvm::FoldingSetNodeID ID;
4101 FunctionNoProtoType::Profile(ID, ResultTy, Info);
4102
4103 void *InsertPos = nullptr;
4104 if (FunctionNoProtoType *FT =
4105 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
4106 return QualType(FT, 0);
4107
4108 QualType Canonical;
4109 if (!isCanonicalResultType(ResultTy)) {
4110 Canonical =
4111 getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info);
4112
4113 // Get the new insert position for the node we care about.
4114 FunctionNoProtoType *NewIP =
4115 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4116 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4117 }
4118
4119 auto *New = new (*this, TypeAlignment)
4120 FunctionNoProtoType(ResultTy, Canonical, Info);
4121 Types.push_back(New);
4122 FunctionNoProtoTypes.InsertNode(New, InsertPos);
4123 return QualType(New, 0);
4124 }
4125
4126 CanQualType
getCanonicalFunctionResultType(QualType ResultType) const4127 ASTContext::getCanonicalFunctionResultType(QualType ResultType) const {
4128 CanQualType CanResultType = getCanonicalType(ResultType);
4129
4130 // Canonical result types do not have ARC lifetime qualifiers.
4131 if (CanResultType.getQualifiers().hasObjCLifetime()) {
4132 Qualifiers Qs = CanResultType.getQualifiers();
4133 Qs.removeObjCLifetime();
4134 return CanQualType::CreateUnsafe(
4135 getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
4136 }
4137
4138 return CanResultType;
4139 }
4140
isCanonicalExceptionSpecification(const FunctionProtoType::ExceptionSpecInfo & ESI,bool NoexceptInType)4141 static bool isCanonicalExceptionSpecification(
4142 const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) {
4143 if (ESI.Type == EST_None)
4144 return true;
4145 if (!NoexceptInType)
4146 return false;
4147
4148 // C++17 onwards: exception specification is part of the type, as a simple
4149 // boolean "can this function type throw".
4150 if (ESI.Type == EST_BasicNoexcept)
4151 return true;
4152
4153 // A noexcept(expr) specification is (possibly) canonical if expr is
4154 // value-dependent.
4155 if (ESI.Type == EST_DependentNoexcept)
4156 return true;
4157
4158 // A dynamic exception specification is canonical if it only contains pack
4159 // expansions (so we can't tell whether it's non-throwing) and all its
4160 // contained types are canonical.
4161 if (ESI.Type == EST_Dynamic) {
4162 bool AnyPackExpansions = false;
4163 for (QualType ET : ESI.Exceptions) {
4164 if (!ET.isCanonical())
4165 return false;
4166 if (ET->getAs<PackExpansionType>())
4167 AnyPackExpansions = true;
4168 }
4169 return AnyPackExpansions;
4170 }
4171
4172 return false;
4173 }
4174
getFunctionTypeInternal(QualType ResultTy,ArrayRef<QualType> ArgArray,const FunctionProtoType::ExtProtoInfo & EPI,bool OnlyWantCanonical) const4175 QualType ASTContext::getFunctionTypeInternal(
4176 QualType ResultTy, ArrayRef<QualType> ArgArray,
4177 const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const {
4178 size_t NumArgs = ArgArray.size();
4179
4180 // Unique functions, to guarantee there is only one function of a particular
4181 // structure.
4182 llvm::FoldingSetNodeID ID;
4183 FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
4184 *this, true);
4185
4186 QualType Canonical;
4187 bool Unique = false;
4188
4189 void *InsertPos = nullptr;
4190 if (FunctionProtoType *FPT =
4191 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) {
4192 QualType Existing = QualType(FPT, 0);
4193
4194 // If we find a pre-existing equivalent FunctionProtoType, we can just reuse
4195 // it so long as our exception specification doesn't contain a dependent
4196 // noexcept expression, or we're just looking for a canonical type.
4197 // Otherwise, we're going to need to create a type
4198 // sugar node to hold the concrete expression.
4199 if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) ||
4200 EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr())
4201 return Existing;
4202
4203 // We need a new type sugar node for this one, to hold the new noexcept
4204 // expression. We do no canonicalization here, but that's OK since we don't
4205 // expect to see the same noexcept expression much more than once.
4206 Canonical = getCanonicalType(Existing);
4207 Unique = true;
4208 }
4209
4210 bool NoexceptInType = getLangOpts().CPlusPlus17;
4211 bool IsCanonicalExceptionSpec =
4212 isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType);
4213
4214 // Determine whether the type being created is already canonical or not.
4215 bool isCanonical = !Unique && IsCanonicalExceptionSpec &&
4216 isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn;
4217 for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
4218 if (!ArgArray[i].isCanonicalAsParam())
4219 isCanonical = false;
4220
4221 if (OnlyWantCanonical)
4222 assert(isCanonical &&
4223 "given non-canonical parameters constructing canonical type");
4224
4225 // If this type isn't canonical, get the canonical version of it if we don't
4226 // already have it. The exception spec is only partially part of the
4227 // canonical type, and only in C++17 onwards.
4228 if (!isCanonical && Canonical.isNull()) {
4229 SmallVector<QualType, 16> CanonicalArgs;
4230 CanonicalArgs.reserve(NumArgs);
4231 for (unsigned i = 0; i != NumArgs; ++i)
4232 CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
4233
4234 llvm::SmallVector<QualType, 8> ExceptionTypeStorage;
4235 FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
4236 CanonicalEPI.HasTrailingReturn = false;
4237
4238 if (IsCanonicalExceptionSpec) {
4239 // Exception spec is already OK.
4240 } else if (NoexceptInType) {
4241 switch (EPI.ExceptionSpec.Type) {
4242 case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated:
4243 // We don't know yet. It shouldn't matter what we pick here; no-one
4244 // should ever look at this.
4245 LLVM_FALLTHROUGH;
4246 case EST_None: case EST_MSAny: case EST_NoexceptFalse:
4247 CanonicalEPI.ExceptionSpec.Type = EST_None;
4248 break;
4249
4250 // A dynamic exception specification is almost always "not noexcept",
4251 // with the exception that a pack expansion might expand to no types.
4252 case EST_Dynamic: {
4253 bool AnyPacks = false;
4254 for (QualType ET : EPI.ExceptionSpec.Exceptions) {
4255 if (ET->getAs<PackExpansionType>())
4256 AnyPacks = true;
4257 ExceptionTypeStorage.push_back(getCanonicalType(ET));
4258 }
4259 if (!AnyPacks)
4260 CanonicalEPI.ExceptionSpec.Type = EST_None;
4261 else {
4262 CanonicalEPI.ExceptionSpec.Type = EST_Dynamic;
4263 CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage;
4264 }
4265 break;
4266 }
4267
4268 case EST_DynamicNone:
4269 case EST_BasicNoexcept:
4270 case EST_NoexceptTrue:
4271 case EST_NoThrow:
4272 CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept;
4273 break;
4274
4275 case EST_DependentNoexcept:
4276 llvm_unreachable("dependent noexcept is already canonical");
4277 }
4278 } else {
4279 CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
4280 }
4281
4282 // Adjust the canonical function result type.
4283 CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
4284 Canonical =
4285 getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true);
4286
4287 // Get the new insert position for the node we care about.
4288 FunctionProtoType *NewIP =
4289 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4290 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4291 }
4292
4293 // Compute the needed size to hold this FunctionProtoType and the
4294 // various trailing objects.
4295 auto ESH = FunctionProtoType::getExceptionSpecSize(
4296 EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size());
4297 size_t Size = FunctionProtoType::totalSizeToAlloc<
4298 QualType, SourceLocation, FunctionType::FunctionTypeExtraBitfields,
4299 FunctionType::ExceptionType, Expr *, FunctionDecl *,
4300 FunctionProtoType::ExtParameterInfo, Qualifiers>(
4301 NumArgs, EPI.Variadic,
4302 FunctionProtoType::hasExtraBitfields(EPI.ExceptionSpec.Type),
4303 ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr,
4304 EPI.ExtParameterInfos ? NumArgs : 0,
4305 EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0);
4306
4307 auto *FTP = (FunctionProtoType *)Allocate(Size, TypeAlignment);
4308 FunctionProtoType::ExtProtoInfo newEPI = EPI;
4309 new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
4310 Types.push_back(FTP);
4311 if (!Unique)
4312 FunctionProtoTypes.InsertNode(FTP, InsertPos);
4313 return QualType(FTP, 0);
4314 }
4315
getPipeType(QualType T,bool ReadOnly) const4316 QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const {
4317 llvm::FoldingSetNodeID ID;
4318 PipeType::Profile(ID, T, ReadOnly);
4319
4320 void *InsertPos = nullptr;
4321 if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos))
4322 return QualType(PT, 0);
4323
4324 // If the pipe element type isn't canonical, this won't be a canonical type
4325 // either, so fill in the canonical type field.
4326 QualType Canonical;
4327 if (!T.isCanonical()) {
4328 Canonical = getPipeType(getCanonicalType(T), ReadOnly);
4329
4330 // Get the new insert position for the node we care about.
4331 PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos);
4332 assert(!NewIP && "Shouldn't be in the map!");
4333 (void)NewIP;
4334 }
4335 auto *New = new (*this, TypeAlignment) PipeType(T, Canonical, ReadOnly);
4336 Types.push_back(New);
4337 PipeTypes.InsertNode(New, InsertPos);
4338 return QualType(New, 0);
4339 }
4340
adjustStringLiteralBaseType(QualType Ty) const4341 QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const {
4342 // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
4343 return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant)
4344 : Ty;
4345 }
4346
getReadPipeType(QualType T) const4347 QualType ASTContext::getReadPipeType(QualType T) const {
4348 return getPipeType(T, true);
4349 }
4350
getWritePipeType(QualType T) const4351 QualType ASTContext::getWritePipeType(QualType T) const {
4352 return getPipeType(T, false);
4353 }
4354
getExtIntType(bool IsUnsigned,unsigned NumBits) const4355 QualType ASTContext::getExtIntType(bool IsUnsigned, unsigned NumBits) const {
4356 llvm::FoldingSetNodeID ID;
4357 ExtIntType::Profile(ID, IsUnsigned, NumBits);
4358
4359 void *InsertPos = nullptr;
4360 if (ExtIntType *EIT = ExtIntTypes.FindNodeOrInsertPos(ID, InsertPos))
4361 return QualType(EIT, 0);
4362
4363 auto *New = new (*this, TypeAlignment) ExtIntType(IsUnsigned, NumBits);
4364 ExtIntTypes.InsertNode(New, InsertPos);
4365 Types.push_back(New);
4366 return QualType(New, 0);
4367 }
4368
getDependentExtIntType(bool IsUnsigned,Expr * NumBitsExpr) const4369 QualType ASTContext::getDependentExtIntType(bool IsUnsigned,
4370 Expr *NumBitsExpr) const {
4371 assert(NumBitsExpr->isInstantiationDependent() && "Only good for dependent");
4372 llvm::FoldingSetNodeID ID;
4373 DependentExtIntType::Profile(ID, *this, IsUnsigned, NumBitsExpr);
4374
4375 void *InsertPos = nullptr;
4376 if (DependentExtIntType *Existing =
4377 DependentExtIntTypes.FindNodeOrInsertPos(ID, InsertPos))
4378 return QualType(Existing, 0);
4379
4380 auto *New = new (*this, TypeAlignment)
4381 DependentExtIntType(*this, IsUnsigned, NumBitsExpr);
4382 DependentExtIntTypes.InsertNode(New, InsertPos);
4383
4384 Types.push_back(New);
4385 return QualType(New, 0);
4386 }
4387
4388 #ifndef NDEBUG
NeedsInjectedClassNameType(const RecordDecl * D)4389 static bool NeedsInjectedClassNameType(const RecordDecl *D) {
4390 if (!isa<CXXRecordDecl>(D)) return false;
4391 const auto *RD = cast<CXXRecordDecl>(D);
4392 if (isa<ClassTemplatePartialSpecializationDecl>(RD))
4393 return true;
4394 if (RD->getDescribedClassTemplate() &&
4395 !isa<ClassTemplateSpecializationDecl>(RD))
4396 return true;
4397 return false;
4398 }
4399 #endif
4400
4401 /// getInjectedClassNameType - Return the unique reference to the
4402 /// injected class name type for the specified templated declaration.
getInjectedClassNameType(CXXRecordDecl * Decl,QualType TST) const4403 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
4404 QualType TST) const {
4405 assert(NeedsInjectedClassNameType(Decl));
4406 if (Decl->TypeForDecl) {
4407 assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4408 } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
4409 assert(PrevDecl->TypeForDecl && "previous declaration has no type");
4410 Decl->TypeForDecl = PrevDecl->TypeForDecl;
4411 assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4412 } else {
4413 Type *newType =
4414 new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
4415 Decl->TypeForDecl = newType;
4416 Types.push_back(newType);
4417 }
4418 return QualType(Decl->TypeForDecl, 0);
4419 }
4420
4421 /// getTypeDeclType - Return the unique reference to the type for the
4422 /// specified type declaration.
getTypeDeclTypeSlow(const TypeDecl * Decl) const4423 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
4424 assert(Decl && "Passed null for Decl param");
4425 assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
4426
4427 if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl))
4428 return getTypedefType(Typedef);
4429
4430 assert(!isa<TemplateTypeParmDecl>(Decl) &&
4431 "Template type parameter types are always available.");
4432
4433 if (const auto *Record = dyn_cast<RecordDecl>(Decl)) {
4434 assert(Record->isFirstDecl() && "struct/union has previous declaration");
4435 assert(!NeedsInjectedClassNameType(Record));
4436 return getRecordType(Record);
4437 } else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) {
4438 assert(Enum->isFirstDecl() && "enum has previous declaration");
4439 return getEnumType(Enum);
4440 } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
4441 Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
4442 Decl->TypeForDecl = newType;
4443 Types.push_back(newType);
4444 } else
4445 llvm_unreachable("TypeDecl without a type?");
4446
4447 return QualType(Decl->TypeForDecl, 0);
4448 }
4449
4450 /// getTypedefType - Return the unique reference to the type for the
4451 /// specified typedef name decl.
4452 QualType
getTypedefType(const TypedefNameDecl * Decl,QualType Canonical) const4453 ASTContext::getTypedefType(const TypedefNameDecl *Decl,
4454 QualType Canonical) const {
4455 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4456
4457 if (Canonical.isNull())
4458 Canonical = getCanonicalType(Decl->getUnderlyingType());
4459 auto *newType = new (*this, TypeAlignment)
4460 TypedefType(Type::Typedef, Decl, Canonical);
4461 Decl->TypeForDecl = newType;
4462 Types.push_back(newType);
4463 return QualType(newType, 0);
4464 }
4465
getRecordType(const RecordDecl * Decl) const4466 QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
4467 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4468
4469 if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
4470 if (PrevDecl->TypeForDecl)
4471 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4472
4473 auto *newType = new (*this, TypeAlignment) RecordType(Decl);
4474 Decl->TypeForDecl = newType;
4475 Types.push_back(newType);
4476 return QualType(newType, 0);
4477 }
4478
getEnumType(const EnumDecl * Decl) const4479 QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
4480 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4481
4482 if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
4483 if (PrevDecl->TypeForDecl)
4484 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4485
4486 auto *newType = new (*this, TypeAlignment) EnumType(Decl);
4487 Decl->TypeForDecl = newType;
4488 Types.push_back(newType);
4489 return QualType(newType, 0);
4490 }
4491
getAttributedType(attr::Kind attrKind,QualType modifiedType,QualType equivalentType)4492 QualType ASTContext::getAttributedType(attr::Kind attrKind,
4493 QualType modifiedType,
4494 QualType equivalentType) {
4495 llvm::FoldingSetNodeID id;
4496 AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
4497
4498 void *insertPos = nullptr;
4499 AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
4500 if (type) return QualType(type, 0);
4501
4502 QualType canon = getCanonicalType(equivalentType);
4503 type = new (*this, TypeAlignment)
4504 AttributedType(canon, attrKind, modifiedType, equivalentType);
4505
4506 Types.push_back(type);
4507 AttributedTypes.InsertNode(type, insertPos);
4508
4509 return QualType(type, 0);
4510 }
4511
4512 /// Retrieve a substitution-result type.
4513 QualType
getSubstTemplateTypeParmType(const TemplateTypeParmType * Parm,QualType Replacement) const4514 ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
4515 QualType Replacement) const {
4516 assert(Replacement.isCanonical()
4517 && "replacement types must always be canonical");
4518
4519 llvm::FoldingSetNodeID ID;
4520 SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
4521 void *InsertPos = nullptr;
4522 SubstTemplateTypeParmType *SubstParm
4523 = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4524
4525 if (!SubstParm) {
4526 SubstParm = new (*this, TypeAlignment)
4527 SubstTemplateTypeParmType(Parm, Replacement);
4528 Types.push_back(SubstParm);
4529 SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
4530 }
4531
4532 return QualType(SubstParm, 0);
4533 }
4534
4535 /// Retrieve a
getSubstTemplateTypeParmPackType(const TemplateTypeParmType * Parm,const TemplateArgument & ArgPack)4536 QualType ASTContext::getSubstTemplateTypeParmPackType(
4537 const TemplateTypeParmType *Parm,
4538 const TemplateArgument &ArgPack) {
4539 #ifndef NDEBUG
4540 for (const auto &P : ArgPack.pack_elements()) {
4541 assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
4542 assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
4543 }
4544 #endif
4545
4546 llvm::FoldingSetNodeID ID;
4547 SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
4548 void *InsertPos = nullptr;
4549 if (SubstTemplateTypeParmPackType *SubstParm
4550 = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
4551 return QualType(SubstParm, 0);
4552
4553 QualType Canon;
4554 if (!Parm->isCanonicalUnqualified()) {
4555 Canon = getCanonicalType(QualType(Parm, 0));
4556 Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
4557 ArgPack);
4558 SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
4559 }
4560
4561 auto *SubstParm
4562 = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
4563 ArgPack);
4564 Types.push_back(SubstParm);
4565 SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos);
4566 return QualType(SubstParm, 0);
4567 }
4568
4569 /// Retrieve the template type parameter type for a template
4570 /// parameter or parameter pack with the given depth, index, and (optionally)
4571 /// name.
getTemplateTypeParmType(unsigned Depth,unsigned Index,bool ParameterPack,TemplateTypeParmDecl * TTPDecl) const4572 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
4573 bool ParameterPack,
4574 TemplateTypeParmDecl *TTPDecl) const {
4575 llvm::FoldingSetNodeID ID;
4576 TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
4577 void *InsertPos = nullptr;
4578 TemplateTypeParmType *TypeParm
4579 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4580
4581 if (TypeParm)
4582 return QualType(TypeParm, 0);
4583
4584 if (TTPDecl) {
4585 QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
4586 TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
4587
4588 TemplateTypeParmType *TypeCheck
4589 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4590 assert(!TypeCheck && "Template type parameter canonical type broken");
4591 (void)TypeCheck;
4592 } else
4593 TypeParm = new (*this, TypeAlignment)
4594 TemplateTypeParmType(Depth, Index, ParameterPack);
4595
4596 Types.push_back(TypeParm);
4597 TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
4598
4599 return QualType(TypeParm, 0);
4600 }
4601
4602 TypeSourceInfo *
getTemplateSpecializationTypeInfo(TemplateName Name,SourceLocation NameLoc,const TemplateArgumentListInfo & Args,QualType Underlying) const4603 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
4604 SourceLocation NameLoc,
4605 const TemplateArgumentListInfo &Args,
4606 QualType Underlying) const {
4607 assert(!Name.getAsDependentTemplateName() &&
4608 "No dependent template names here!");
4609 QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
4610
4611 TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
4612 TemplateSpecializationTypeLoc TL =
4613 DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
4614 TL.setTemplateKeywordLoc(SourceLocation());
4615 TL.setTemplateNameLoc(NameLoc);
4616 TL.setLAngleLoc(Args.getLAngleLoc());
4617 TL.setRAngleLoc(Args.getRAngleLoc());
4618 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
4619 TL.setArgLocInfo(i, Args[i].getLocInfo());
4620 return DI;
4621 }
4622
4623 QualType
getTemplateSpecializationType(TemplateName Template,const TemplateArgumentListInfo & Args,QualType Underlying) const4624 ASTContext::getTemplateSpecializationType(TemplateName Template,
4625 const TemplateArgumentListInfo &Args,
4626 QualType Underlying) const {
4627 assert(!Template.getAsDependentTemplateName() &&
4628 "No dependent template names here!");
4629
4630 SmallVector<TemplateArgument, 4> ArgVec;
4631 ArgVec.reserve(Args.size());
4632 for (const TemplateArgumentLoc &Arg : Args.arguments())
4633 ArgVec.push_back(Arg.getArgument());
4634
4635 return getTemplateSpecializationType(Template, ArgVec, Underlying);
4636 }
4637
4638 #ifndef NDEBUG
hasAnyPackExpansions(ArrayRef<TemplateArgument> Args)4639 static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) {
4640 for (const TemplateArgument &Arg : Args)
4641 if (Arg.isPackExpansion())
4642 return true;
4643
4644 return true;
4645 }
4646 #endif
4647
4648 QualType
getTemplateSpecializationType(TemplateName Template,ArrayRef<TemplateArgument> Args,QualType Underlying) const4649 ASTContext::getTemplateSpecializationType(TemplateName Template,
4650 ArrayRef<TemplateArgument> Args,
4651 QualType Underlying) const {
4652 assert(!Template.getAsDependentTemplateName() &&
4653 "No dependent template names here!");
4654 // Look through qualified template names.
4655 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4656 Template = TemplateName(QTN->getTemplateDecl());
4657
4658 bool IsTypeAlias =
4659 Template.getAsTemplateDecl() &&
4660 isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
4661 QualType CanonType;
4662 if (!Underlying.isNull())
4663 CanonType = getCanonicalType(Underlying);
4664 else {
4665 // We can get here with an alias template when the specialization contains
4666 // a pack expansion that does not match up with a parameter pack.
4667 assert((!IsTypeAlias || hasAnyPackExpansions(Args)) &&
4668 "Caller must compute aliased type");
4669 IsTypeAlias = false;
4670 CanonType = getCanonicalTemplateSpecializationType(Template, Args);
4671 }
4672
4673 // Allocate the (non-canonical) template specialization type, but don't
4674 // try to unique it: these types typically have location information that
4675 // we don't unique and don't want to lose.
4676 void *Mem = Allocate(sizeof(TemplateSpecializationType) +
4677 sizeof(TemplateArgument) * Args.size() +
4678 (IsTypeAlias? sizeof(QualType) : 0),
4679 TypeAlignment);
4680 auto *Spec
4681 = new (Mem) TemplateSpecializationType(Template, Args, CanonType,
4682 IsTypeAlias ? Underlying : QualType());
4683
4684 Types.push_back(Spec);
4685 return QualType(Spec, 0);
4686 }
4687
getCanonicalTemplateSpecializationType(TemplateName Template,ArrayRef<TemplateArgument> Args) const4688 QualType ASTContext::getCanonicalTemplateSpecializationType(
4689 TemplateName Template, ArrayRef<TemplateArgument> Args) const {
4690 assert(!Template.getAsDependentTemplateName() &&
4691 "No dependent template names here!");
4692
4693 // Look through qualified template names.
4694 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4695 Template = TemplateName(QTN->getTemplateDecl());
4696
4697 // Build the canonical template specialization type.
4698 TemplateName CanonTemplate = getCanonicalTemplateName(Template);
4699 SmallVector<TemplateArgument, 4> CanonArgs;
4700 unsigned NumArgs = Args.size();
4701 CanonArgs.reserve(NumArgs);
4702 for (const TemplateArgument &Arg : Args)
4703 CanonArgs.push_back(getCanonicalTemplateArgument(Arg));
4704
4705 // Determine whether this canonical template specialization type already
4706 // exists.
4707 llvm::FoldingSetNodeID ID;
4708 TemplateSpecializationType::Profile(ID, CanonTemplate,
4709 CanonArgs, *this);
4710
4711 void *InsertPos = nullptr;
4712 TemplateSpecializationType *Spec
4713 = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4714
4715 if (!Spec) {
4716 // Allocate a new canonical template specialization type.
4717 void *Mem = Allocate((sizeof(TemplateSpecializationType) +
4718 sizeof(TemplateArgument) * NumArgs),
4719 TypeAlignment);
4720 Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
4721 CanonArgs,
4722 QualType(), QualType());
4723 Types.push_back(Spec);
4724 TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
4725 }
4726
4727 assert(Spec->isDependentType() &&
4728 "Non-dependent template-id type must have a canonical type");
4729 return QualType(Spec, 0);
4730 }
4731
getElaboratedType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,QualType NamedType,TagDecl * OwnedTagDecl) const4732 QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
4733 NestedNameSpecifier *NNS,
4734 QualType NamedType,
4735 TagDecl *OwnedTagDecl) const {
4736 llvm::FoldingSetNodeID ID;
4737 ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl);
4738
4739 void *InsertPos = nullptr;
4740 ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4741 if (T)
4742 return QualType(T, 0);
4743
4744 QualType Canon = NamedType;
4745 if (!Canon.isCanonical()) {
4746 Canon = getCanonicalType(NamedType);
4747 ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4748 assert(!CheckT && "Elaborated canonical type broken");
4749 (void)CheckT;
4750 }
4751
4752 void *Mem = Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl),
4753 TypeAlignment);
4754 T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl);
4755
4756 Types.push_back(T);
4757 ElaboratedTypes.InsertNode(T, InsertPos);
4758 return QualType(T, 0);
4759 }
4760
4761 QualType
getParenType(QualType InnerType) const4762 ASTContext::getParenType(QualType InnerType) const {
4763 llvm::FoldingSetNodeID ID;
4764 ParenType::Profile(ID, InnerType);
4765
4766 void *InsertPos = nullptr;
4767 ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
4768 if (T)
4769 return QualType(T, 0);
4770
4771 QualType Canon = InnerType;
4772 if (!Canon.isCanonical()) {
4773 Canon = getCanonicalType(InnerType);
4774 ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
4775 assert(!CheckT && "Paren canonical type broken");
4776 (void)CheckT;
4777 }
4778
4779 T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
4780 Types.push_back(T);
4781 ParenTypes.InsertNode(T, InsertPos);
4782 return QualType(T, 0);
4783 }
4784
4785 QualType
getMacroQualifiedType(QualType UnderlyingTy,const IdentifierInfo * MacroII) const4786 ASTContext::getMacroQualifiedType(QualType UnderlyingTy,
4787 const IdentifierInfo *MacroII) const {
4788 QualType Canon = UnderlyingTy;
4789 if (!Canon.isCanonical())
4790 Canon = getCanonicalType(UnderlyingTy);
4791
4792 auto *newType = new (*this, TypeAlignment)
4793 MacroQualifiedType(UnderlyingTy, Canon, MacroII);
4794 Types.push_back(newType);
4795 return QualType(newType, 0);
4796 }
4797
getDependentNameType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,QualType Canon) const4798 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
4799 NestedNameSpecifier *NNS,
4800 const IdentifierInfo *Name,
4801 QualType Canon) const {
4802 if (Canon.isNull()) {
4803 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4804 if (CanonNNS != NNS)
4805 Canon = getDependentNameType(Keyword, CanonNNS, Name);
4806 }
4807
4808 llvm::FoldingSetNodeID ID;
4809 DependentNameType::Profile(ID, Keyword, NNS, Name);
4810
4811 void *InsertPos = nullptr;
4812 DependentNameType *T
4813 = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
4814 if (T)
4815 return QualType(T, 0);
4816
4817 T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
4818 Types.push_back(T);
4819 DependentNameTypes.InsertNode(T, InsertPos);
4820 return QualType(T, 0);
4821 }
4822
4823 QualType
getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,const TemplateArgumentListInfo & Args) const4824 ASTContext::getDependentTemplateSpecializationType(
4825 ElaboratedTypeKeyword Keyword,
4826 NestedNameSpecifier *NNS,
4827 const IdentifierInfo *Name,
4828 const TemplateArgumentListInfo &Args) const {
4829 // TODO: avoid this copy
4830 SmallVector<TemplateArgument, 16> ArgCopy;
4831 for (unsigned I = 0, E = Args.size(); I != E; ++I)
4832 ArgCopy.push_back(Args[I].getArgument());
4833 return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy);
4834 }
4835
4836 QualType
getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,ArrayRef<TemplateArgument> Args) const4837 ASTContext::getDependentTemplateSpecializationType(
4838 ElaboratedTypeKeyword Keyword,
4839 NestedNameSpecifier *NNS,
4840 const IdentifierInfo *Name,
4841 ArrayRef<TemplateArgument> Args) const {
4842 assert((!NNS || NNS->isDependent()) &&
4843 "nested-name-specifier must be dependent");
4844
4845 llvm::FoldingSetNodeID ID;
4846 DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
4847 Name, Args);
4848
4849 void *InsertPos = nullptr;
4850 DependentTemplateSpecializationType *T
4851 = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4852 if (T)
4853 return QualType(T, 0);
4854
4855 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4856
4857 ElaboratedTypeKeyword CanonKeyword = Keyword;
4858 if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
4859
4860 bool AnyNonCanonArgs = false;
4861 unsigned NumArgs = Args.size();
4862 SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
4863 for (unsigned I = 0; I != NumArgs; ++I) {
4864 CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
4865 if (!CanonArgs[I].structurallyEquals(Args[I]))
4866 AnyNonCanonArgs = true;
4867 }
4868
4869 QualType Canon;
4870 if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
4871 Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
4872 Name,
4873 CanonArgs);
4874
4875 // Find the insert position again.
4876 DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4877 }
4878
4879 void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
4880 sizeof(TemplateArgument) * NumArgs),
4881 TypeAlignment);
4882 T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
4883 Name, Args, Canon);
4884 Types.push_back(T);
4885 DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
4886 return QualType(T, 0);
4887 }
4888
getInjectedTemplateArg(NamedDecl * Param)4889 TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) {
4890 TemplateArgument Arg;
4891 if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4892 QualType ArgType = getTypeDeclType(TTP);
4893 if (TTP->isParameterPack())
4894 ArgType = getPackExpansionType(ArgType, None);
4895
4896 Arg = TemplateArgument(ArgType);
4897 } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4898 QualType T =
4899 NTTP->getType().getNonPackExpansionType().getNonLValueExprType(*this);
4900 // For class NTTPs, ensure we include the 'const' so the type matches that
4901 // of a real template argument.
4902 // FIXME: It would be more faithful to model this as something like an
4903 // lvalue-to-rvalue conversion applied to a const-qualified lvalue.
4904 if (T->isRecordType())
4905 T.addConst();
4906 Expr *E = new (*this) DeclRefExpr(
4907 *this, NTTP, /*enclosing*/ false, T,
4908 Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation());
4909
4910 if (NTTP->isParameterPack())
4911 E = new (*this) PackExpansionExpr(DependentTy, E, NTTP->getLocation(),
4912 None);
4913 Arg = TemplateArgument(E);
4914 } else {
4915 auto *TTP = cast<TemplateTemplateParmDecl>(Param);
4916 if (TTP->isParameterPack())
4917 Arg = TemplateArgument(TemplateName(TTP), Optional<unsigned>());
4918 else
4919 Arg = TemplateArgument(TemplateName(TTP));
4920 }
4921
4922 if (Param->isTemplateParameterPack())
4923 Arg = TemplateArgument::CreatePackCopy(*this, Arg);
4924
4925 return Arg;
4926 }
4927
4928 void
getInjectedTemplateArgs(const TemplateParameterList * Params,SmallVectorImpl<TemplateArgument> & Args)4929 ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params,
4930 SmallVectorImpl<TemplateArgument> &Args) {
4931 Args.reserve(Args.size() + Params->size());
4932
4933 for (NamedDecl *Param : *Params)
4934 Args.push_back(getInjectedTemplateArg(Param));
4935 }
4936
getPackExpansionType(QualType Pattern,Optional<unsigned> NumExpansions,bool ExpectPackInType)4937 QualType ASTContext::getPackExpansionType(QualType Pattern,
4938 Optional<unsigned> NumExpansions,
4939 bool ExpectPackInType) {
4940 assert((!ExpectPackInType || Pattern->containsUnexpandedParameterPack()) &&
4941 "Pack expansions must expand one or more parameter packs");
4942
4943 llvm::FoldingSetNodeID ID;
4944 PackExpansionType::Profile(ID, Pattern, NumExpansions);
4945
4946 void *InsertPos = nullptr;
4947 PackExpansionType *T = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
4948 if (T)
4949 return QualType(T, 0);
4950
4951 QualType Canon;
4952 if (!Pattern.isCanonical()) {
4953 Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions,
4954 /*ExpectPackInType=*/false);
4955
4956 // Find the insert position again, in case we inserted an element into
4957 // PackExpansionTypes and invalidated our insert position.
4958 PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
4959 }
4960
4961 T = new (*this, TypeAlignment)
4962 PackExpansionType(Pattern, Canon, NumExpansions);
4963 Types.push_back(T);
4964 PackExpansionTypes.InsertNode(T, InsertPos);
4965 return QualType(T, 0);
4966 }
4967
4968 /// CmpProtocolNames - Comparison predicate for sorting protocols
4969 /// alphabetically.
CmpProtocolNames(ObjCProtocolDecl * const * LHS,ObjCProtocolDecl * const * RHS)4970 static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
4971 ObjCProtocolDecl *const *RHS) {
4972 return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
4973 }
4974
areSortedAndUniqued(ArrayRef<ObjCProtocolDecl * > Protocols)4975 static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) {
4976 if (Protocols.empty()) return true;
4977
4978 if (Protocols[0]->getCanonicalDecl() != Protocols[0])
4979 return false;
4980
4981 for (unsigned i = 1; i != Protocols.size(); ++i)
4982 if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
4983 Protocols[i]->getCanonicalDecl() != Protocols[i])
4984 return false;
4985 return true;
4986 }
4987
4988 static void
SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl * > & Protocols)4989 SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) {
4990 // Sort protocols, keyed by name.
4991 llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames);
4992
4993 // Canonicalize.
4994 for (ObjCProtocolDecl *&P : Protocols)
4995 P = P->getCanonicalDecl();
4996
4997 // Remove duplicates.
4998 auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end());
4999 Protocols.erase(ProtocolsEnd, Protocols.end());
5000 }
5001
getObjCObjectType(QualType BaseType,ObjCProtocolDecl * const * Protocols,unsigned NumProtocols) const5002 QualType ASTContext::getObjCObjectType(QualType BaseType,
5003 ObjCProtocolDecl * const *Protocols,
5004 unsigned NumProtocols) const {
5005 return getObjCObjectType(BaseType, {},
5006 llvm::makeArrayRef(Protocols, NumProtocols),
5007 /*isKindOf=*/false);
5008 }
5009
getObjCObjectType(QualType baseType,ArrayRef<QualType> typeArgs,ArrayRef<ObjCProtocolDecl * > protocols,bool isKindOf) const5010 QualType ASTContext::getObjCObjectType(
5011 QualType baseType,
5012 ArrayRef<QualType> typeArgs,
5013 ArrayRef<ObjCProtocolDecl *> protocols,
5014 bool isKindOf) const {
5015 // If the base type is an interface and there aren't any protocols or
5016 // type arguments to add, then the interface type will do just fine.
5017 if (typeArgs.empty() && protocols.empty() && !isKindOf &&
5018 isa<ObjCInterfaceType>(baseType))
5019 return baseType;
5020
5021 // Look in the folding set for an existing type.
5022 llvm::FoldingSetNodeID ID;
5023 ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
5024 void *InsertPos = nullptr;
5025 if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
5026 return QualType(QT, 0);
5027
5028 // Determine the type arguments to be used for canonicalization,
5029 // which may be explicitly specified here or written on the base
5030 // type.
5031 ArrayRef<QualType> effectiveTypeArgs = typeArgs;
5032 if (effectiveTypeArgs.empty()) {
5033 if (const auto *baseObject = baseType->getAs<ObjCObjectType>())
5034 effectiveTypeArgs = baseObject->getTypeArgs();
5035 }
5036
5037 // Build the canonical type, which has the canonical base type and a
5038 // sorted-and-uniqued list of protocols and the type arguments
5039 // canonicalized.
5040 QualType canonical;
5041 bool typeArgsAreCanonical = std::all_of(effectiveTypeArgs.begin(),
5042 effectiveTypeArgs.end(),
5043 [&](QualType type) {
5044 return type.isCanonical();
5045 });
5046 bool protocolsSorted = areSortedAndUniqued(protocols);
5047 if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
5048 // Determine the canonical type arguments.
5049 ArrayRef<QualType> canonTypeArgs;
5050 SmallVector<QualType, 4> canonTypeArgsVec;
5051 if (!typeArgsAreCanonical) {
5052 canonTypeArgsVec.reserve(effectiveTypeArgs.size());
5053 for (auto typeArg : effectiveTypeArgs)
5054 canonTypeArgsVec.push_back(getCanonicalType(typeArg));
5055 canonTypeArgs = canonTypeArgsVec;
5056 } else {
5057 canonTypeArgs = effectiveTypeArgs;
5058 }
5059
5060 ArrayRef<ObjCProtocolDecl *> canonProtocols;
5061 SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
5062 if (!protocolsSorted) {
5063 canonProtocolsVec.append(protocols.begin(), protocols.end());
5064 SortAndUniqueProtocols(canonProtocolsVec);
5065 canonProtocols = canonProtocolsVec;
5066 } else {
5067 canonProtocols = protocols;
5068 }
5069
5070 canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
5071 canonProtocols, isKindOf);
5072
5073 // Regenerate InsertPos.
5074 ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
5075 }
5076
5077 unsigned size = sizeof(ObjCObjectTypeImpl);
5078 size += typeArgs.size() * sizeof(QualType);
5079 size += protocols.size() * sizeof(ObjCProtocolDecl *);
5080 void *mem = Allocate(size, TypeAlignment);
5081 auto *T =
5082 new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
5083 isKindOf);
5084
5085 Types.push_back(T);
5086 ObjCObjectTypes.InsertNode(T, InsertPos);
5087 return QualType(T, 0);
5088 }
5089
5090 /// Apply Objective-C protocol qualifiers to the given type.
5091 /// If this is for the canonical type of a type parameter, we can apply
5092 /// protocol qualifiers on the ObjCObjectPointerType.
5093 QualType
applyObjCProtocolQualifiers(QualType type,ArrayRef<ObjCProtocolDecl * > protocols,bool & hasError,bool allowOnPointerType) const5094 ASTContext::applyObjCProtocolQualifiers(QualType type,
5095 ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
5096 bool allowOnPointerType) const {
5097 hasError = false;
5098
5099 if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) {
5100 return getObjCTypeParamType(objT->getDecl(), protocols);
5101 }
5102
5103 // Apply protocol qualifiers to ObjCObjectPointerType.
5104 if (allowOnPointerType) {
5105 if (const auto *objPtr =
5106 dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) {
5107 const ObjCObjectType *objT = objPtr->getObjectType();
5108 // Merge protocol lists and construct ObjCObjectType.
5109 SmallVector<ObjCProtocolDecl*, 8> protocolsVec;
5110 protocolsVec.append(objT->qual_begin(),
5111 objT->qual_end());
5112 protocolsVec.append(protocols.begin(), protocols.end());
5113 ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec;
5114 type = getObjCObjectType(
5115 objT->getBaseType(),
5116 objT->getTypeArgsAsWritten(),
5117 protocols,
5118 objT->isKindOfTypeAsWritten());
5119 return getObjCObjectPointerType(type);
5120 }
5121 }
5122
5123 // Apply protocol qualifiers to ObjCObjectType.
5124 if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
5125 // FIXME: Check for protocols to which the class type is already
5126 // known to conform.
5127
5128 return getObjCObjectType(objT->getBaseType(),
5129 objT->getTypeArgsAsWritten(),
5130 protocols,
5131 objT->isKindOfTypeAsWritten());
5132 }
5133
5134 // If the canonical type is ObjCObjectType, ...
5135 if (type->isObjCObjectType()) {
5136 // Silently overwrite any existing protocol qualifiers.
5137 // TODO: determine whether that's the right thing to do.
5138
5139 // FIXME: Check for protocols to which the class type is already
5140 // known to conform.
5141 return getObjCObjectType(type, {}, protocols, false);
5142 }
5143
5144 // id<protocol-list>
5145 if (type->isObjCIdType()) {
5146 const auto *objPtr = type->castAs<ObjCObjectPointerType>();
5147 type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols,
5148 objPtr->isKindOfType());
5149 return getObjCObjectPointerType(type);
5150 }
5151
5152 // Class<protocol-list>
5153 if (type->isObjCClassType()) {
5154 const auto *objPtr = type->castAs<ObjCObjectPointerType>();
5155 type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols,
5156 objPtr->isKindOfType());
5157 return getObjCObjectPointerType(type);
5158 }
5159
5160 hasError = true;
5161 return type;
5162 }
5163
5164 QualType
getObjCTypeParamType(const ObjCTypeParamDecl * Decl,ArrayRef<ObjCProtocolDecl * > protocols) const5165 ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
5166 ArrayRef<ObjCProtocolDecl *> protocols) const {
5167 // Look in the folding set for an existing type.
5168 llvm::FoldingSetNodeID ID;
5169 ObjCTypeParamType::Profile(ID, Decl, Decl->getUnderlyingType(), protocols);
5170 void *InsertPos = nullptr;
5171 if (ObjCTypeParamType *TypeParam =
5172 ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos))
5173 return QualType(TypeParam, 0);
5174
5175 // We canonicalize to the underlying type.
5176 QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
5177 if (!protocols.empty()) {
5178 // Apply the protocol qualifers.
5179 bool hasError;
5180 Canonical = getCanonicalType(applyObjCProtocolQualifiers(
5181 Canonical, protocols, hasError, true /*allowOnPointerType*/));
5182 assert(!hasError && "Error when apply protocol qualifier to bound type");
5183 }
5184
5185 unsigned size = sizeof(ObjCTypeParamType);
5186 size += protocols.size() * sizeof(ObjCProtocolDecl *);
5187 void *mem = Allocate(size, TypeAlignment);
5188 auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols);
5189
5190 Types.push_back(newType);
5191 ObjCTypeParamTypes.InsertNode(newType, InsertPos);
5192 return QualType(newType, 0);
5193 }
5194
adjustObjCTypeParamBoundType(const ObjCTypeParamDecl * Orig,ObjCTypeParamDecl * New) const5195 void ASTContext::adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
5196 ObjCTypeParamDecl *New) const {
5197 New->setTypeSourceInfo(getTrivialTypeSourceInfo(Orig->getUnderlyingType()));
5198 // Update TypeForDecl after updating TypeSourceInfo.
5199 auto NewTypeParamTy = cast<ObjCTypeParamType>(New->getTypeForDecl());
5200 SmallVector<ObjCProtocolDecl *, 8> protocols;
5201 protocols.append(NewTypeParamTy->qual_begin(), NewTypeParamTy->qual_end());
5202 QualType UpdatedTy = getObjCTypeParamType(New, protocols);
5203 New->setTypeForDecl(UpdatedTy.getTypePtr());
5204 }
5205
5206 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
5207 /// protocol list adopt all protocols in QT's qualified-id protocol
5208 /// list.
ObjCObjectAdoptsQTypeProtocols(QualType QT,ObjCInterfaceDecl * IC)5209 bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
5210 ObjCInterfaceDecl *IC) {
5211 if (!QT->isObjCQualifiedIdType())
5212 return false;
5213
5214 if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) {
5215 // If both the right and left sides have qualifiers.
5216 for (auto *Proto : OPT->quals()) {
5217 if (!IC->ClassImplementsProtocol(Proto, false))
5218 return false;
5219 }
5220 return true;
5221 }
5222 return false;
5223 }
5224
5225 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
5226 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
5227 /// of protocols.
QIdProtocolsAdoptObjCObjectProtocols(QualType QT,ObjCInterfaceDecl * IDecl)5228 bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
5229 ObjCInterfaceDecl *IDecl) {
5230 if (!QT->isObjCQualifiedIdType())
5231 return false;
5232 const auto *OPT = QT->getAs<ObjCObjectPointerType>();
5233 if (!OPT)
5234 return false;
5235 if (!IDecl->hasDefinition())
5236 return false;
5237 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
5238 CollectInheritedProtocols(IDecl, InheritedProtocols);
5239 if (InheritedProtocols.empty())
5240 return false;
5241 // Check that if every protocol in list of id<plist> conforms to a protocol
5242 // of IDecl's, then bridge casting is ok.
5243 bool Conforms = false;
5244 for (auto *Proto : OPT->quals()) {
5245 Conforms = false;
5246 for (auto *PI : InheritedProtocols) {
5247 if (ProtocolCompatibleWithProtocol(Proto, PI)) {
5248 Conforms = true;
5249 break;
5250 }
5251 }
5252 if (!Conforms)
5253 break;
5254 }
5255 if (Conforms)
5256 return true;
5257
5258 for (auto *PI : InheritedProtocols) {
5259 // If both the right and left sides have qualifiers.
5260 bool Adopts = false;
5261 for (auto *Proto : OPT->quals()) {
5262 // return 'true' if 'PI' is in the inheritance hierarchy of Proto
5263 if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
5264 break;
5265 }
5266 if (!Adopts)
5267 return false;
5268 }
5269 return true;
5270 }
5271
5272 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
5273 /// the given object type.
getObjCObjectPointerType(QualType ObjectT) const5274 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
5275 llvm::FoldingSetNodeID ID;
5276 ObjCObjectPointerType::Profile(ID, ObjectT);
5277
5278 void *InsertPos = nullptr;
5279 if (ObjCObjectPointerType *QT =
5280 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
5281 return QualType(QT, 0);
5282
5283 // Find the canonical object type.
5284 QualType Canonical;
5285 if (!ObjectT.isCanonical()) {
5286 Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
5287
5288 // Regenerate InsertPos.
5289 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
5290 }
5291
5292 // No match.
5293 void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
5294 auto *QType =
5295 new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
5296
5297 Types.push_back(QType);
5298 ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
5299 return QualType(QType, 0);
5300 }
5301
5302 /// getObjCInterfaceType - Return the unique reference to the type for the
5303 /// specified ObjC interface decl. The list of protocols is optional.
getObjCInterfaceType(const ObjCInterfaceDecl * Decl,ObjCInterfaceDecl * PrevDecl) const5304 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
5305 ObjCInterfaceDecl *PrevDecl) const {
5306 if (Decl->TypeForDecl)
5307 return QualType(Decl->TypeForDecl, 0);
5308
5309 if (PrevDecl) {
5310 assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
5311 Decl->TypeForDecl = PrevDecl->TypeForDecl;
5312 return QualType(PrevDecl->TypeForDecl, 0);
5313 }
5314
5315 // Prefer the definition, if there is one.
5316 if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
5317 Decl = Def;
5318
5319 void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
5320 auto *T = new (Mem) ObjCInterfaceType(Decl);
5321 Decl->TypeForDecl = T;
5322 Types.push_back(T);
5323 return QualType(T, 0);
5324 }
5325
5326 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
5327 /// TypeOfExprType AST's (since expression's are never shared). For example,
5328 /// multiple declarations that refer to "typeof(x)" all contain different
5329 /// DeclRefExpr's. This doesn't effect the type checker, since it operates
5330 /// on canonical type's (which are always unique).
getTypeOfExprType(Expr * tofExpr) const5331 QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
5332 TypeOfExprType *toe;
5333 if (tofExpr->isTypeDependent()) {
5334 llvm::FoldingSetNodeID ID;
5335 DependentTypeOfExprType::Profile(ID, *this, tofExpr);
5336
5337 void *InsertPos = nullptr;
5338 DependentTypeOfExprType *Canon
5339 = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
5340 if (Canon) {
5341 // We already have a "canonical" version of an identical, dependent
5342 // typeof(expr) type. Use that as our canonical type.
5343 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
5344 QualType((TypeOfExprType*)Canon, 0));
5345 } else {
5346 // Build a new, canonical typeof(expr) type.
5347 Canon
5348 = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
5349 DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
5350 toe = Canon;
5351 }
5352 } else {
5353 QualType Canonical = getCanonicalType(tofExpr->getType());
5354 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
5355 }
5356 Types.push_back(toe);
5357 return QualType(toe, 0);
5358 }
5359
5360 /// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
5361 /// TypeOfType nodes. The only motivation to unique these nodes would be
5362 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
5363 /// an issue. This doesn't affect the type checker, since it operates
5364 /// on canonical types (which are always unique).
getTypeOfType(QualType tofType) const5365 QualType ASTContext::getTypeOfType(QualType tofType) const {
5366 QualType Canonical = getCanonicalType(tofType);
5367 auto *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
5368 Types.push_back(tot);
5369 return QualType(tot, 0);
5370 }
5371
5372 /// Unlike many "get<Type>" functions, we don't unique DecltypeType
5373 /// nodes. This would never be helpful, since each such type has its own
5374 /// expression, and would not give a significant memory saving, since there
5375 /// is an Expr tree under each such type.
getDecltypeType(Expr * e,QualType UnderlyingType) const5376 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
5377 DecltypeType *dt;
5378
5379 // C++11 [temp.type]p2:
5380 // If an expression e involves a template parameter, decltype(e) denotes a
5381 // unique dependent type. Two such decltype-specifiers refer to the same
5382 // type only if their expressions are equivalent (14.5.6.1).
5383 if (e->isInstantiationDependent()) {
5384 llvm::FoldingSetNodeID ID;
5385 DependentDecltypeType::Profile(ID, *this, e);
5386
5387 void *InsertPos = nullptr;
5388 DependentDecltypeType *Canon
5389 = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
5390 if (!Canon) {
5391 // Build a new, canonical decltype(expr) type.
5392 Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
5393 DependentDecltypeTypes.InsertNode(Canon, InsertPos);
5394 }
5395 dt = new (*this, TypeAlignment)
5396 DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
5397 } else {
5398 dt = new (*this, TypeAlignment)
5399 DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
5400 }
5401 Types.push_back(dt);
5402 return QualType(dt, 0);
5403 }
5404
5405 /// getUnaryTransformationType - We don't unique these, since the memory
5406 /// savings are minimal and these are rare.
getUnaryTransformType(QualType BaseType,QualType UnderlyingType,UnaryTransformType::UTTKind Kind) const5407 QualType ASTContext::getUnaryTransformType(QualType BaseType,
5408 QualType UnderlyingType,
5409 UnaryTransformType::UTTKind Kind)
5410 const {
5411 UnaryTransformType *ut = nullptr;
5412
5413 if (BaseType->isDependentType()) {
5414 // Look in the folding set for an existing type.
5415 llvm::FoldingSetNodeID ID;
5416 DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind);
5417
5418 void *InsertPos = nullptr;
5419 DependentUnaryTransformType *Canon
5420 = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos);
5421
5422 if (!Canon) {
5423 // Build a new, canonical __underlying_type(type) type.
5424 Canon = new (*this, TypeAlignment)
5425 DependentUnaryTransformType(*this, getCanonicalType(BaseType),
5426 Kind);
5427 DependentUnaryTransformTypes.InsertNode(Canon, InsertPos);
5428 }
5429 ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5430 QualType(), Kind,
5431 QualType(Canon, 0));
5432 } else {
5433 QualType CanonType = getCanonicalType(UnderlyingType);
5434 ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5435 UnderlyingType, Kind,
5436 CanonType);
5437 }
5438 Types.push_back(ut);
5439 return QualType(ut, 0);
5440 }
5441
5442 /// getAutoType - Return the uniqued reference to the 'auto' type which has been
5443 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the
5444 /// canonical deduced-but-dependent 'auto' type.
5445 QualType
getAutoType(QualType DeducedType,AutoTypeKeyword Keyword,bool IsDependent,bool IsPack,ConceptDecl * TypeConstraintConcept,ArrayRef<TemplateArgument> TypeConstraintArgs) const5446 ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
5447 bool IsDependent, bool IsPack,
5448 ConceptDecl *TypeConstraintConcept,
5449 ArrayRef<TemplateArgument> TypeConstraintArgs) const {
5450 assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack");
5451 if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto &&
5452 !TypeConstraintConcept && !IsDependent)
5453 return getAutoDeductType();
5454
5455 // Look in the folding set for an existing type.
5456 void *InsertPos = nullptr;
5457 llvm::FoldingSetNodeID ID;
5458 AutoType::Profile(ID, *this, DeducedType, Keyword, IsDependent,
5459 TypeConstraintConcept, TypeConstraintArgs);
5460 if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
5461 return QualType(AT, 0);
5462
5463 void *Mem = Allocate(sizeof(AutoType) +
5464 sizeof(TemplateArgument) * TypeConstraintArgs.size(),
5465 TypeAlignment);
5466 auto *AT = new (Mem) AutoType(
5467 DeducedType, Keyword,
5468 (IsDependent ? TypeDependence::DependentInstantiation
5469 : TypeDependence::None) |
5470 (IsPack ? TypeDependence::UnexpandedPack : TypeDependence::None),
5471 TypeConstraintConcept, TypeConstraintArgs);
5472 Types.push_back(AT);
5473 if (InsertPos)
5474 AutoTypes.InsertNode(AT, InsertPos);
5475 return QualType(AT, 0);
5476 }
5477
5478 /// Return the uniqued reference to the deduced template specialization type
5479 /// which has been deduced to the given type, or to the canonical undeduced
5480 /// such type, or the canonical deduced-but-dependent such type.
getDeducedTemplateSpecializationType(TemplateName Template,QualType DeducedType,bool IsDependent) const5481 QualType ASTContext::getDeducedTemplateSpecializationType(
5482 TemplateName Template, QualType DeducedType, bool IsDependent) const {
5483 // Look in the folding set for an existing type.
5484 void *InsertPos = nullptr;
5485 llvm::FoldingSetNodeID ID;
5486 DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType,
5487 IsDependent);
5488 if (DeducedTemplateSpecializationType *DTST =
5489 DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos))
5490 return QualType(DTST, 0);
5491
5492 auto *DTST = new (*this, TypeAlignment)
5493 DeducedTemplateSpecializationType(Template, DeducedType, IsDependent);
5494 Types.push_back(DTST);
5495 if (InsertPos)
5496 DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos);
5497 return QualType(DTST, 0);
5498 }
5499
5500 /// getAtomicType - Return the uniqued reference to the atomic type for
5501 /// the given value type.
getAtomicType(QualType T) const5502 QualType ASTContext::getAtomicType(QualType T) const {
5503 // Unique pointers, to guarantee there is only one pointer of a particular
5504 // structure.
5505 llvm::FoldingSetNodeID ID;
5506 AtomicType::Profile(ID, T);
5507
5508 void *InsertPos = nullptr;
5509 if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
5510 return QualType(AT, 0);
5511
5512 // If the atomic value type isn't canonical, this won't be a canonical type
5513 // either, so fill in the canonical type field.
5514 QualType Canonical;
5515 if (!T.isCanonical()) {
5516 Canonical = getAtomicType(getCanonicalType(T));
5517
5518 // Get the new insert position for the node we care about.
5519 AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
5520 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
5521 }
5522 auto *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
5523 Types.push_back(New);
5524 AtomicTypes.InsertNode(New, InsertPos);
5525 return QualType(New, 0);
5526 }
5527
5528 /// getAutoDeductType - Get type pattern for deducing against 'auto'.
getAutoDeductType() const5529 QualType ASTContext::getAutoDeductType() const {
5530 if (AutoDeductTy.isNull())
5531 AutoDeductTy = QualType(new (*this, TypeAlignment)
5532 AutoType(QualType(), AutoTypeKeyword::Auto,
5533 TypeDependence::None,
5534 /*concept*/ nullptr, /*args*/ {}),
5535 0);
5536 return AutoDeductTy;
5537 }
5538
5539 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
getAutoRRefDeductType() const5540 QualType ASTContext::getAutoRRefDeductType() const {
5541 if (AutoRRefDeductTy.isNull())
5542 AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
5543 assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
5544 return AutoRRefDeductTy;
5545 }
5546
5547 /// getTagDeclType - Return the unique reference to the type for the
5548 /// specified TagDecl (struct/union/class/enum) decl.
getTagDeclType(const TagDecl * Decl) const5549 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
5550 assert(Decl);
5551 // FIXME: What is the design on getTagDeclType when it requires casting
5552 // away const? mutable?
5553 return getTypeDeclType(const_cast<TagDecl*>(Decl));
5554 }
5555
5556 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
5557 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
5558 /// needs to agree with the definition in <stddef.h>.
getSizeType() const5559 CanQualType ASTContext::getSizeType() const {
5560 return getFromTargetType(Target->getSizeType());
5561 }
5562
5563 /// Return the unique signed counterpart of the integer type
5564 /// corresponding to size_t.
getSignedSizeType() const5565 CanQualType ASTContext::getSignedSizeType() const {
5566 return getFromTargetType(Target->getSignedSizeType());
5567 }
5568
5569 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
getIntMaxType() const5570 CanQualType ASTContext::getIntMaxType() const {
5571 return getFromTargetType(Target->getIntMaxType());
5572 }
5573
5574 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
getUIntMaxType() const5575 CanQualType ASTContext::getUIntMaxType() const {
5576 return getFromTargetType(Target->getUIntMaxType());
5577 }
5578
5579 /// getSignedWCharType - Return the type of "signed wchar_t".
5580 /// Used when in C++, as a GCC extension.
getSignedWCharType() const5581 QualType ASTContext::getSignedWCharType() const {
5582 // FIXME: derive from "Target" ?
5583 return WCharTy;
5584 }
5585
5586 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
5587 /// Used when in C++, as a GCC extension.
getUnsignedWCharType() const5588 QualType ASTContext::getUnsignedWCharType() const {
5589 // FIXME: derive from "Target" ?
5590 return UnsignedIntTy;
5591 }
5592
getIntPtrType() const5593 QualType ASTContext::getIntPtrType() const {
5594 return getFromTargetType(Target->getIntPtrType());
5595 }
5596
getUIntPtrType() const5597 QualType ASTContext::getUIntPtrType() const {
5598 return getCorrespondingUnsignedType(getIntPtrType());
5599 }
5600
5601 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
5602 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
getPointerDiffType() const5603 QualType ASTContext::getPointerDiffType() const {
5604 return getFromTargetType(Target->getPtrDiffType(0));
5605 }
5606
5607 /// Return the unique unsigned counterpart of "ptrdiff_t"
5608 /// integer type. The standard (C11 7.21.6.1p7) refers to this type
5609 /// in the definition of %tu format specifier.
getUnsignedPointerDiffType() const5610 QualType ASTContext::getUnsignedPointerDiffType() const {
5611 return getFromTargetType(Target->getUnsignedPtrDiffType(0));
5612 }
5613
5614 /// Return the unique type for "pid_t" defined in
5615 /// <sys/types.h>. We need this to compute the correct type for vfork().
getProcessIDType() const5616 QualType ASTContext::getProcessIDType() const {
5617 return getFromTargetType(Target->getProcessIDType());
5618 }
5619
5620 //===----------------------------------------------------------------------===//
5621 // Type Operators
5622 //===----------------------------------------------------------------------===//
5623
getCanonicalParamType(QualType T) const5624 CanQualType ASTContext::getCanonicalParamType(QualType T) const {
5625 // Push qualifiers into arrays, and then discard any remaining
5626 // qualifiers.
5627 T = getCanonicalType(T);
5628 T = getVariableArrayDecayedType(T);
5629 const Type *Ty = T.getTypePtr();
5630 QualType Result;
5631 if (isa<ArrayType>(Ty)) {
5632 Result = getArrayDecayedType(QualType(Ty,0));
5633 } else if (isa<FunctionType>(Ty)) {
5634 Result = getPointerType(QualType(Ty, 0));
5635 } else {
5636 Result = QualType(Ty, 0);
5637 }
5638
5639 return CanQualType::CreateUnsafe(Result);
5640 }
5641
getUnqualifiedArrayType(QualType type,Qualifiers & quals)5642 QualType ASTContext::getUnqualifiedArrayType(QualType type,
5643 Qualifiers &quals) {
5644 SplitQualType splitType = type.getSplitUnqualifiedType();
5645
5646 // FIXME: getSplitUnqualifiedType() actually walks all the way to
5647 // the unqualified desugared type and then drops it on the floor.
5648 // We then have to strip that sugar back off with
5649 // getUnqualifiedDesugaredType(), which is silly.
5650 const auto *AT =
5651 dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
5652
5653 // If we don't have an array, just use the results in splitType.
5654 if (!AT) {
5655 quals = splitType.Quals;
5656 return QualType(splitType.Ty, 0);
5657 }
5658
5659 // Otherwise, recurse on the array's element type.
5660 QualType elementType = AT->getElementType();
5661 QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
5662
5663 // If that didn't change the element type, AT has no qualifiers, so we
5664 // can just use the results in splitType.
5665 if (elementType == unqualElementType) {
5666 assert(quals.empty()); // from the recursive call
5667 quals = splitType.Quals;
5668 return QualType(splitType.Ty, 0);
5669 }
5670
5671 // Otherwise, add in the qualifiers from the outermost type, then
5672 // build the type back up.
5673 quals.addConsistentQualifiers(splitType.Quals);
5674
5675 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
5676 return getConstantArrayType(unqualElementType, CAT->getSize(),
5677 CAT->getSizeExpr(), CAT->getSizeModifier(), 0);
5678 }
5679
5680 if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) {
5681 return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
5682 }
5683
5684 if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) {
5685 return getVariableArrayType(unqualElementType,
5686 VAT->getSizeExpr(),
5687 VAT->getSizeModifier(),
5688 VAT->getIndexTypeCVRQualifiers(),
5689 VAT->getBracketsRange());
5690 }
5691
5692 const auto *DSAT = cast<DependentSizedArrayType>(AT);
5693 return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
5694 DSAT->getSizeModifier(), 0,
5695 SourceRange());
5696 }
5697
5698 /// Attempt to unwrap two types that may both be array types with the same bound
5699 /// (or both be array types of unknown bound) for the purpose of comparing the
5700 /// cv-decomposition of two types per C++ [conv.qual].
UnwrapSimilarArrayTypes(QualType & T1,QualType & T2)5701 bool ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2) {
5702 bool UnwrappedAny = false;
5703 while (true) {
5704 auto *AT1 = getAsArrayType(T1);
5705 if (!AT1) return UnwrappedAny;
5706
5707 auto *AT2 = getAsArrayType(T2);
5708 if (!AT2) return UnwrappedAny;
5709
5710 // If we don't have two array types with the same constant bound nor two
5711 // incomplete array types, we've unwrapped everything we can.
5712 if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) {
5713 auto *CAT2 = dyn_cast<ConstantArrayType>(AT2);
5714 if (!CAT2 || CAT1->getSize() != CAT2->getSize())
5715 return UnwrappedAny;
5716 } else if (!isa<IncompleteArrayType>(AT1) ||
5717 !isa<IncompleteArrayType>(AT2)) {
5718 return UnwrappedAny;
5719 }
5720
5721 T1 = AT1->getElementType();
5722 T2 = AT2->getElementType();
5723 UnwrappedAny = true;
5724 }
5725 }
5726
5727 /// Attempt to unwrap two types that may be similar (C++ [conv.qual]).
5728 ///
5729 /// If T1 and T2 are both pointer types of the same kind, or both array types
5730 /// with the same bound, unwraps layers from T1 and T2 until a pointer type is
5731 /// unwrapped. Top-level qualifiers on T1 and T2 are ignored.
5732 ///
5733 /// This function will typically be called in a loop that successively
5734 /// "unwraps" pointer and pointer-to-member types to compare them at each
5735 /// level.
5736 ///
5737 /// \return \c true if a pointer type was unwrapped, \c false if we reached a
5738 /// pair of types that can't be unwrapped further.
UnwrapSimilarTypes(QualType & T1,QualType & T2)5739 bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2) {
5740 UnwrapSimilarArrayTypes(T1, T2);
5741
5742 const auto *T1PtrType = T1->getAs<PointerType>();
5743 const auto *T2PtrType = T2->getAs<PointerType>();
5744 if (T1PtrType && T2PtrType) {
5745 T1 = T1PtrType->getPointeeType();
5746 T2 = T2PtrType->getPointeeType();
5747 return true;
5748 }
5749
5750 const auto *T1MPType = T1->getAs<MemberPointerType>();
5751 const auto *T2MPType = T2->getAs<MemberPointerType>();
5752 if (T1MPType && T2MPType &&
5753 hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
5754 QualType(T2MPType->getClass(), 0))) {
5755 T1 = T1MPType->getPointeeType();
5756 T2 = T2MPType->getPointeeType();
5757 return true;
5758 }
5759
5760 if (getLangOpts().ObjC) {
5761 const auto *T1OPType = T1->getAs<ObjCObjectPointerType>();
5762 const auto *T2OPType = T2->getAs<ObjCObjectPointerType>();
5763 if (T1OPType && T2OPType) {
5764 T1 = T1OPType->getPointeeType();
5765 T2 = T2OPType->getPointeeType();
5766 return true;
5767 }
5768 }
5769
5770 // FIXME: Block pointers, too?
5771
5772 return false;
5773 }
5774
hasSimilarType(QualType T1,QualType T2)5775 bool ASTContext::hasSimilarType(QualType T1, QualType T2) {
5776 while (true) {
5777 Qualifiers Quals;
5778 T1 = getUnqualifiedArrayType(T1, Quals);
5779 T2 = getUnqualifiedArrayType(T2, Quals);
5780 if (hasSameType(T1, T2))
5781 return true;
5782 if (!UnwrapSimilarTypes(T1, T2))
5783 return false;
5784 }
5785 }
5786
hasCvrSimilarType(QualType T1,QualType T2)5787 bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) {
5788 while (true) {
5789 Qualifiers Quals1, Quals2;
5790 T1 = getUnqualifiedArrayType(T1, Quals1);
5791 T2 = getUnqualifiedArrayType(T2, Quals2);
5792
5793 Quals1.removeCVRQualifiers();
5794 Quals2.removeCVRQualifiers();
5795 if (Quals1 != Quals2)
5796 return false;
5797
5798 if (hasSameType(T1, T2))
5799 return true;
5800
5801 if (!UnwrapSimilarTypes(T1, T2))
5802 return false;
5803 }
5804 }
5805
5806 DeclarationNameInfo
getNameForTemplate(TemplateName Name,SourceLocation NameLoc) const5807 ASTContext::getNameForTemplate(TemplateName Name,
5808 SourceLocation NameLoc) const {
5809 switch (Name.getKind()) {
5810 case TemplateName::QualifiedTemplate:
5811 case TemplateName::Template:
5812 // DNInfo work in progress: CHECKME: what about DNLoc?
5813 return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
5814 NameLoc);
5815
5816 case TemplateName::OverloadedTemplate: {
5817 OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
5818 // DNInfo work in progress: CHECKME: what about DNLoc?
5819 return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
5820 }
5821
5822 case TemplateName::AssumedTemplate: {
5823 AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName();
5824 return DeclarationNameInfo(Storage->getDeclName(), NameLoc);
5825 }
5826
5827 case TemplateName::DependentTemplate: {
5828 DependentTemplateName *DTN = Name.getAsDependentTemplateName();
5829 DeclarationName DName;
5830 if (DTN->isIdentifier()) {
5831 DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
5832 return DeclarationNameInfo(DName, NameLoc);
5833 } else {
5834 DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
5835 // DNInfo work in progress: FIXME: source locations?
5836 DeclarationNameLoc DNLoc;
5837 DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
5838 DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
5839 return DeclarationNameInfo(DName, NameLoc, DNLoc);
5840 }
5841 }
5842
5843 case TemplateName::SubstTemplateTemplateParm: {
5844 SubstTemplateTemplateParmStorage *subst
5845 = Name.getAsSubstTemplateTemplateParm();
5846 return DeclarationNameInfo(subst->getParameter()->getDeclName(),
5847 NameLoc);
5848 }
5849
5850 case TemplateName::SubstTemplateTemplateParmPack: {
5851 SubstTemplateTemplateParmPackStorage *subst
5852 = Name.getAsSubstTemplateTemplateParmPack();
5853 return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
5854 NameLoc);
5855 }
5856 }
5857
5858 llvm_unreachable("bad template name kind!");
5859 }
5860
getCanonicalTemplateName(TemplateName Name) const5861 TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
5862 switch (Name.getKind()) {
5863 case TemplateName::QualifiedTemplate:
5864 case TemplateName::Template: {
5865 TemplateDecl *Template = Name.getAsTemplateDecl();
5866 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Template))
5867 Template = getCanonicalTemplateTemplateParmDecl(TTP);
5868
5869 // The canonical template name is the canonical template declaration.
5870 return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
5871 }
5872
5873 case TemplateName::OverloadedTemplate:
5874 case TemplateName::AssumedTemplate:
5875 llvm_unreachable("cannot canonicalize unresolved template");
5876
5877 case TemplateName::DependentTemplate: {
5878 DependentTemplateName *DTN = Name.getAsDependentTemplateName();
5879 assert(DTN && "Non-dependent template names must refer to template decls.");
5880 return DTN->CanonicalTemplateName;
5881 }
5882
5883 case TemplateName::SubstTemplateTemplateParm: {
5884 SubstTemplateTemplateParmStorage *subst
5885 = Name.getAsSubstTemplateTemplateParm();
5886 return getCanonicalTemplateName(subst->getReplacement());
5887 }
5888
5889 case TemplateName::SubstTemplateTemplateParmPack: {
5890 SubstTemplateTemplateParmPackStorage *subst
5891 = Name.getAsSubstTemplateTemplateParmPack();
5892 TemplateTemplateParmDecl *canonParameter
5893 = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
5894 TemplateArgument canonArgPack
5895 = getCanonicalTemplateArgument(subst->getArgumentPack());
5896 return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
5897 }
5898 }
5899
5900 llvm_unreachable("bad template name!");
5901 }
5902
hasSameTemplateName(TemplateName X,TemplateName Y)5903 bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
5904 X = getCanonicalTemplateName(X);
5905 Y = getCanonicalTemplateName(Y);
5906 return X.getAsVoidPointer() == Y.getAsVoidPointer();
5907 }
5908
5909 TemplateArgument
getCanonicalTemplateArgument(const TemplateArgument & Arg) const5910 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
5911 switch (Arg.getKind()) {
5912 case TemplateArgument::Null:
5913 return Arg;
5914
5915 case TemplateArgument::Expression:
5916 return Arg;
5917
5918 case TemplateArgument::Declaration: {
5919 auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
5920 return TemplateArgument(D, Arg.getParamTypeForDecl());
5921 }
5922
5923 case TemplateArgument::NullPtr:
5924 return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
5925 /*isNullPtr*/true);
5926
5927 case TemplateArgument::Template:
5928 return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
5929
5930 case TemplateArgument::TemplateExpansion:
5931 return TemplateArgument(getCanonicalTemplateName(
5932 Arg.getAsTemplateOrTemplatePattern()),
5933 Arg.getNumTemplateExpansions());
5934
5935 case TemplateArgument::Integral:
5936 return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
5937
5938 case TemplateArgument::Type:
5939 return TemplateArgument(getCanonicalType(Arg.getAsType()));
5940
5941 case TemplateArgument::Pack: {
5942 if (Arg.pack_size() == 0)
5943 return Arg;
5944
5945 auto *CanonArgs = new (*this) TemplateArgument[Arg.pack_size()];
5946 unsigned Idx = 0;
5947 for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
5948 AEnd = Arg.pack_end();
5949 A != AEnd; (void)++A, ++Idx)
5950 CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
5951
5952 return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size()));
5953 }
5954 }
5955
5956 // Silence GCC warning
5957 llvm_unreachable("Unhandled template argument kind");
5958 }
5959
5960 NestedNameSpecifier *
getCanonicalNestedNameSpecifier(NestedNameSpecifier * NNS) const5961 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
5962 if (!NNS)
5963 return nullptr;
5964
5965 switch (NNS->getKind()) {
5966 case NestedNameSpecifier::Identifier:
5967 // Canonicalize the prefix but keep the identifier the same.
5968 return NestedNameSpecifier::Create(*this,
5969 getCanonicalNestedNameSpecifier(NNS->getPrefix()),
5970 NNS->getAsIdentifier());
5971
5972 case NestedNameSpecifier::Namespace:
5973 // A namespace is canonical; build a nested-name-specifier with
5974 // this namespace and no prefix.
5975 return NestedNameSpecifier::Create(*this, nullptr,
5976 NNS->getAsNamespace()->getOriginalNamespace());
5977
5978 case NestedNameSpecifier::NamespaceAlias:
5979 // A namespace is canonical; build a nested-name-specifier with
5980 // this namespace and no prefix.
5981 return NestedNameSpecifier::Create(*this, nullptr,
5982 NNS->getAsNamespaceAlias()->getNamespace()
5983 ->getOriginalNamespace());
5984
5985 case NestedNameSpecifier::TypeSpec:
5986 case NestedNameSpecifier::TypeSpecWithTemplate: {
5987 QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
5988
5989 // If we have some kind of dependent-named type (e.g., "typename T::type"),
5990 // break it apart into its prefix and identifier, then reconsititute those
5991 // as the canonical nested-name-specifier. This is required to canonicalize
5992 // a dependent nested-name-specifier involving typedefs of dependent-name
5993 // types, e.g.,
5994 // typedef typename T::type T1;
5995 // typedef typename T1::type T2;
5996 if (const auto *DNT = T->getAs<DependentNameType>())
5997 return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
5998 const_cast<IdentifierInfo *>(DNT->getIdentifier()));
5999
6000 // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
6001 // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
6002 // first place?
6003 return NestedNameSpecifier::Create(*this, nullptr, false,
6004 const_cast<Type *>(T.getTypePtr()));
6005 }
6006
6007 case NestedNameSpecifier::Global:
6008 case NestedNameSpecifier::Super:
6009 // The global specifier and __super specifer are canonical and unique.
6010 return NNS;
6011 }
6012
6013 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
6014 }
6015
getAsArrayType(QualType T) const6016 const ArrayType *ASTContext::getAsArrayType(QualType T) const {
6017 // Handle the non-qualified case efficiently.
6018 if (!T.hasLocalQualifiers()) {
6019 // Handle the common positive case fast.
6020 if (const auto *AT = dyn_cast<ArrayType>(T))
6021 return AT;
6022 }
6023
6024 // Handle the common negative case fast.
6025 if (!isa<ArrayType>(T.getCanonicalType()))
6026 return nullptr;
6027
6028 // Apply any qualifiers from the array type to the element type. This
6029 // implements C99 6.7.3p8: "If the specification of an array type includes
6030 // any type qualifiers, the element type is so qualified, not the array type."
6031
6032 // If we get here, we either have type qualifiers on the type, or we have
6033 // sugar such as a typedef in the way. If we have type qualifiers on the type
6034 // we must propagate them down into the element type.
6035
6036 SplitQualType split = T.getSplitDesugaredType();
6037 Qualifiers qs = split.Quals;
6038
6039 // If we have a simple case, just return now.
6040 const auto *ATy = dyn_cast<ArrayType>(split.Ty);
6041 if (!ATy || qs.empty())
6042 return ATy;
6043
6044 // Otherwise, we have an array and we have qualifiers on it. Push the
6045 // qualifiers into the array element type and return a new array type.
6046 QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
6047
6048 if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy))
6049 return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
6050 CAT->getSizeExpr(),
6051 CAT->getSizeModifier(),
6052 CAT->getIndexTypeCVRQualifiers()));
6053 if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy))
6054 return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
6055 IAT->getSizeModifier(),
6056 IAT->getIndexTypeCVRQualifiers()));
6057
6058 if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy))
6059 return cast<ArrayType>(
6060 getDependentSizedArrayType(NewEltTy,
6061 DSAT->getSizeExpr(),
6062 DSAT->getSizeModifier(),
6063 DSAT->getIndexTypeCVRQualifiers(),
6064 DSAT->getBracketsRange()));
6065
6066 const auto *VAT = cast<VariableArrayType>(ATy);
6067 return cast<ArrayType>(getVariableArrayType(NewEltTy,
6068 VAT->getSizeExpr(),
6069 VAT->getSizeModifier(),
6070 VAT->getIndexTypeCVRQualifiers(),
6071 VAT->getBracketsRange()));
6072 }
6073
getAdjustedParameterType(QualType T) const6074 QualType ASTContext::getAdjustedParameterType(QualType T) const {
6075 if (T->isArrayType() || T->isFunctionType())
6076 return getDecayedType(T);
6077 return T;
6078 }
6079
getSignatureParameterType(QualType T) const6080 QualType ASTContext::getSignatureParameterType(QualType T) const {
6081 T = getVariableArrayDecayedType(T);
6082 T = getAdjustedParameterType(T);
6083 return T.getUnqualifiedType();
6084 }
6085
getExceptionObjectType(QualType T) const6086 QualType ASTContext::getExceptionObjectType(QualType T) const {
6087 // C++ [except.throw]p3:
6088 // A throw-expression initializes a temporary object, called the exception
6089 // object, the type of which is determined by removing any top-level
6090 // cv-qualifiers from the static type of the operand of throw and adjusting
6091 // the type from "array of T" or "function returning T" to "pointer to T"
6092 // or "pointer to function returning T", [...]
6093 T = getVariableArrayDecayedType(T);
6094 if (T->isArrayType() || T->isFunctionType())
6095 T = getDecayedType(T);
6096 return T.getUnqualifiedType();
6097 }
6098
6099 /// getArrayDecayedType - Return the properly qualified result of decaying the
6100 /// specified array type to a pointer. This operation is non-trivial when
6101 /// handling typedefs etc. The canonical type of "T" must be an array type,
6102 /// this returns a pointer to a properly qualified element of the array.
6103 ///
6104 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
getArrayDecayedType(QualType Ty) const6105 QualType ASTContext::getArrayDecayedType(QualType Ty) const {
6106 // Get the element type with 'getAsArrayType' so that we don't lose any
6107 // typedefs in the element type of the array. This also handles propagation
6108 // of type qualifiers from the array type into the element type if present
6109 // (C99 6.7.3p8).
6110 const ArrayType *PrettyArrayType = getAsArrayType(Ty);
6111 assert(PrettyArrayType && "Not an array type!");
6112
6113 QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
6114
6115 // int x[restrict 4] -> int *restrict
6116 QualType Result = getQualifiedType(PtrTy,
6117 PrettyArrayType->getIndexTypeQualifiers());
6118
6119 // int x[_Nullable] -> int * _Nullable
6120 if (auto Nullability = Ty->getNullability(*this)) {
6121 Result = const_cast<ASTContext *>(this)->getAttributedType(
6122 AttributedType::getNullabilityAttrKind(*Nullability), Result, Result);
6123 }
6124 return Result;
6125 }
6126
getBaseElementType(const ArrayType * array) const6127 QualType ASTContext::getBaseElementType(const ArrayType *array) const {
6128 return getBaseElementType(array->getElementType());
6129 }
6130
getBaseElementType(QualType type) const6131 QualType ASTContext::getBaseElementType(QualType type) const {
6132 Qualifiers qs;
6133 while (true) {
6134 SplitQualType split = type.getSplitDesugaredType();
6135 const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
6136 if (!array) break;
6137
6138 type = array->getElementType();
6139 qs.addConsistentQualifiers(split.Quals);
6140 }
6141
6142 return getQualifiedType(type, qs);
6143 }
6144
6145 /// getConstantArrayElementCount - Returns number of constant array elements.
6146 uint64_t
getConstantArrayElementCount(const ConstantArrayType * CA) const6147 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const {
6148 uint64_t ElementCount = 1;
6149 do {
6150 ElementCount *= CA->getSize().getZExtValue();
6151 CA = dyn_cast_or_null<ConstantArrayType>(
6152 CA->getElementType()->getAsArrayTypeUnsafe());
6153 } while (CA);
6154 return ElementCount;
6155 }
6156
6157 /// getFloatingRank - Return a relative rank for floating point types.
6158 /// This routine will assert if passed a built-in type that isn't a float.
getFloatingRank(QualType T)6159 static FloatingRank getFloatingRank(QualType T) {
6160 if (const auto *CT = T->getAs<ComplexType>())
6161 return getFloatingRank(CT->getElementType());
6162
6163 switch (T->castAs<BuiltinType>()->getKind()) {
6164 default: llvm_unreachable("getFloatingRank(): not a floating type");
6165 case BuiltinType::Float16: return Float16Rank;
6166 case BuiltinType::Half: return HalfRank;
6167 case BuiltinType::Float: return FloatRank;
6168 case BuiltinType::Double: return DoubleRank;
6169 case BuiltinType::LongDouble: return LongDoubleRank;
6170 case BuiltinType::Float128: return Float128Rank;
6171 case BuiltinType::BFloat16: return BFloat16Rank;
6172 }
6173 }
6174
6175 /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
6176 /// point or a complex type (based on typeDomain/typeSize).
6177 /// 'typeDomain' is a real floating point or complex type.
6178 /// 'typeSize' is a real floating point or complex type.
getFloatingTypeOfSizeWithinDomain(QualType Size,QualType Domain) const6179 QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
6180 QualType Domain) const {
6181 FloatingRank EltRank = getFloatingRank(Size);
6182 if (Domain->isComplexType()) {
6183 switch (EltRank) {
6184 case BFloat16Rank: llvm_unreachable("Complex bfloat16 is not supported");
6185 case Float16Rank:
6186 case HalfRank: llvm_unreachable("Complex half is not supported");
6187 case FloatRank: return FloatComplexTy;
6188 case DoubleRank: return DoubleComplexTy;
6189 case LongDoubleRank: return LongDoubleComplexTy;
6190 case Float128Rank: return Float128ComplexTy;
6191 }
6192 }
6193
6194 assert(Domain->isRealFloatingType() && "Unknown domain!");
6195 switch (EltRank) {
6196 case Float16Rank: return HalfTy;
6197 case BFloat16Rank: return BFloat16Ty;
6198 case HalfRank: return HalfTy;
6199 case FloatRank: return FloatTy;
6200 case DoubleRank: return DoubleTy;
6201 case LongDoubleRank: return LongDoubleTy;
6202 case Float128Rank: return Float128Ty;
6203 }
6204 llvm_unreachable("getFloatingRank(): illegal value for rank");
6205 }
6206
6207 /// getFloatingTypeOrder - Compare the rank of the two specified floating
6208 /// point types, ignoring the domain of the type (i.e. 'double' ==
6209 /// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If
6210 /// LHS < RHS, return -1.
getFloatingTypeOrder(QualType LHS,QualType RHS) const6211 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
6212 FloatingRank LHSR = getFloatingRank(LHS);
6213 FloatingRank RHSR = getFloatingRank(RHS);
6214
6215 if (LHSR == RHSR)
6216 return 0;
6217 if (LHSR > RHSR)
6218 return 1;
6219 return -1;
6220 }
6221
getFloatingTypeSemanticOrder(QualType LHS,QualType RHS) const6222 int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const {
6223 if (&getFloatTypeSemantics(LHS) == &getFloatTypeSemantics(RHS))
6224 return 0;
6225 return getFloatingTypeOrder(LHS, RHS);
6226 }
6227
6228 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
6229 /// routine will assert if passed a built-in type that isn't an integer or enum,
6230 /// or if it is not canonicalized.
getIntegerRank(const Type * T) const6231 unsigned ASTContext::getIntegerRank(const Type *T) const {
6232 assert(T->isCanonicalUnqualified() && "T should be canonicalized");
6233
6234 // Results in this 'losing' to any type of the same size, but winning if
6235 // larger.
6236 if (const auto *EIT = dyn_cast<ExtIntType>(T))
6237 return 0 + (EIT->getNumBits() << 3);
6238
6239 switch (cast<BuiltinType>(T)->getKind()) {
6240 default: llvm_unreachable("getIntegerRank(): not a built-in integer");
6241 case BuiltinType::Bool:
6242 return 1 + (getIntWidth(BoolTy) << 3);
6243 case BuiltinType::Char_S:
6244 case BuiltinType::Char_U:
6245 case BuiltinType::SChar:
6246 case BuiltinType::UChar:
6247 return 2 + (getIntWidth(CharTy) << 3);
6248 case BuiltinType::Short:
6249 case BuiltinType::UShort:
6250 return 3 + (getIntWidth(ShortTy) << 3);
6251 case BuiltinType::Int:
6252 case BuiltinType::UInt:
6253 return 4 + (getIntWidth(IntTy) << 3);
6254 case BuiltinType::Long:
6255 case BuiltinType::ULong:
6256 return 5 + (getIntWidth(LongTy) << 3);
6257 case BuiltinType::LongLong:
6258 case BuiltinType::ULongLong:
6259 return 6 + (getIntWidth(LongLongTy) << 3);
6260 case BuiltinType::Int128:
6261 case BuiltinType::UInt128:
6262 return 7 + (getIntWidth(Int128Ty) << 3);
6263 }
6264 }
6265
6266 /// Whether this is a promotable bitfield reference according
6267 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
6268 ///
6269 /// \returns the type this bit-field will promote to, or NULL if no
6270 /// promotion occurs.
isPromotableBitField(Expr * E) const6271 QualType ASTContext::isPromotableBitField(Expr *E) const {
6272 if (E->isTypeDependent() || E->isValueDependent())
6273 return {};
6274
6275 // C++ [conv.prom]p5:
6276 // If the bit-field has an enumerated type, it is treated as any other
6277 // value of that type for promotion purposes.
6278 if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType())
6279 return {};
6280
6281 // FIXME: We should not do this unless E->refersToBitField() is true. This
6282 // matters in C where getSourceBitField() will find bit-fields for various
6283 // cases where the source expression is not a bit-field designator.
6284
6285 FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
6286 if (!Field)
6287 return {};
6288
6289 QualType FT = Field->getType();
6290
6291 uint64_t BitWidth = Field->getBitWidthValue(*this);
6292 uint64_t IntSize = getTypeSize(IntTy);
6293 // C++ [conv.prom]p5:
6294 // A prvalue for an integral bit-field can be converted to a prvalue of type
6295 // int if int can represent all the values of the bit-field; otherwise, it
6296 // can be converted to unsigned int if unsigned int can represent all the
6297 // values of the bit-field. If the bit-field is larger yet, no integral
6298 // promotion applies to it.
6299 // C11 6.3.1.1/2:
6300 // [For a bit-field of type _Bool, int, signed int, or unsigned int:]
6301 // If an int can represent all values of the original type (as restricted by
6302 // the width, for a bit-field), the value is converted to an int; otherwise,
6303 // it is converted to an unsigned int.
6304 //
6305 // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
6306 // We perform that promotion here to match GCC and C++.
6307 // FIXME: C does not permit promotion of an enum bit-field whose rank is
6308 // greater than that of 'int'. We perform that promotion to match GCC.
6309 if (BitWidth < IntSize)
6310 return IntTy;
6311
6312 if (BitWidth == IntSize)
6313 return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
6314
6315 // Bit-fields wider than int are not subject to promotions, and therefore act
6316 // like the base type. GCC has some weird bugs in this area that we
6317 // deliberately do not follow (GCC follows a pre-standard resolution to
6318 // C's DR315 which treats bit-width as being part of the type, and this leaks
6319 // into their semantics in some cases).
6320 return {};
6321 }
6322
6323 /// getPromotedIntegerType - Returns the type that Promotable will
6324 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
6325 /// integer type.
getPromotedIntegerType(QualType Promotable) const6326 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
6327 assert(!Promotable.isNull());
6328 assert(Promotable->isPromotableIntegerType());
6329 if (const auto *ET = Promotable->getAs<EnumType>())
6330 return ET->getDecl()->getPromotionType();
6331
6332 if (const auto *BT = Promotable->getAs<BuiltinType>()) {
6333 // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
6334 // (3.9.1) can be converted to a prvalue of the first of the following
6335 // types that can represent all the values of its underlying type:
6336 // int, unsigned int, long int, unsigned long int, long long int, or
6337 // unsigned long long int [...]
6338 // FIXME: Is there some better way to compute this?
6339 if (BT->getKind() == BuiltinType::WChar_S ||
6340 BT->getKind() == BuiltinType::WChar_U ||
6341 BT->getKind() == BuiltinType::Char8 ||
6342 BT->getKind() == BuiltinType::Char16 ||
6343 BT->getKind() == BuiltinType::Char32) {
6344 bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
6345 uint64_t FromSize = getTypeSize(BT);
6346 QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
6347 LongLongTy, UnsignedLongLongTy };
6348 for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
6349 uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
6350 if (FromSize < ToSize ||
6351 (FromSize == ToSize &&
6352 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
6353 return PromoteTypes[Idx];
6354 }
6355 llvm_unreachable("char type should fit into long long");
6356 }
6357 }
6358
6359 // At this point, we should have a signed or unsigned integer type.
6360 if (Promotable->isSignedIntegerType())
6361 return IntTy;
6362 uint64_t PromotableSize = getIntWidth(Promotable);
6363 uint64_t IntSize = getIntWidth(IntTy);
6364 assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
6365 return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
6366 }
6367
6368 /// Recurses in pointer/array types until it finds an objc retainable
6369 /// type and returns its ownership.
getInnerObjCOwnership(QualType T) const6370 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
6371 while (!T.isNull()) {
6372 if (T.getObjCLifetime() != Qualifiers::OCL_None)
6373 return T.getObjCLifetime();
6374 if (T->isArrayType())
6375 T = getBaseElementType(T);
6376 else if (const auto *PT = T->getAs<PointerType>())
6377 T = PT->getPointeeType();
6378 else if (const auto *RT = T->getAs<ReferenceType>())
6379 T = RT->getPointeeType();
6380 else
6381 break;
6382 }
6383
6384 return Qualifiers::OCL_None;
6385 }
6386
getIntegerTypeForEnum(const EnumType * ET)6387 static const Type *getIntegerTypeForEnum(const EnumType *ET) {
6388 // Incomplete enum types are not treated as integer types.
6389 // FIXME: In C++, enum types are never integer types.
6390 if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
6391 return ET->getDecl()->getIntegerType().getTypePtr();
6392 return nullptr;
6393 }
6394
6395 /// getIntegerTypeOrder - Returns the highest ranked integer type:
6396 /// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If
6397 /// LHS < RHS, return -1.
getIntegerTypeOrder(QualType LHS,QualType RHS) const6398 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
6399 const Type *LHSC = getCanonicalType(LHS).getTypePtr();
6400 const Type *RHSC = getCanonicalType(RHS).getTypePtr();
6401
6402 // Unwrap enums to their underlying type.
6403 if (const auto *ET = dyn_cast<EnumType>(LHSC))
6404 LHSC = getIntegerTypeForEnum(ET);
6405 if (const auto *ET = dyn_cast<EnumType>(RHSC))
6406 RHSC = getIntegerTypeForEnum(ET);
6407
6408 if (LHSC == RHSC) return 0;
6409
6410 bool LHSUnsigned = LHSC->isUnsignedIntegerType();
6411 bool RHSUnsigned = RHSC->isUnsignedIntegerType();
6412
6413 unsigned LHSRank = getIntegerRank(LHSC);
6414 unsigned RHSRank = getIntegerRank(RHSC);
6415
6416 if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned.
6417 if (LHSRank == RHSRank) return 0;
6418 return LHSRank > RHSRank ? 1 : -1;
6419 }
6420
6421 // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
6422 if (LHSUnsigned) {
6423 // If the unsigned [LHS] type is larger, return it.
6424 if (LHSRank >= RHSRank)
6425 return 1;
6426
6427 // If the signed type can represent all values of the unsigned type, it
6428 // wins. Because we are dealing with 2's complement and types that are
6429 // powers of two larger than each other, this is always safe.
6430 return -1;
6431 }
6432
6433 // If the unsigned [RHS] type is larger, return it.
6434 if (RHSRank >= LHSRank)
6435 return -1;
6436
6437 // If the signed type can represent all values of the unsigned type, it
6438 // wins. Because we are dealing with 2's complement and types that are
6439 // powers of two larger than each other, this is always safe.
6440 return 1;
6441 }
6442
getCFConstantStringDecl() const6443 TypedefDecl *ASTContext::getCFConstantStringDecl() const {
6444 if (CFConstantStringTypeDecl)
6445 return CFConstantStringTypeDecl;
6446
6447 assert(!CFConstantStringTagDecl &&
6448 "tag and typedef should be initialized together");
6449 CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag");
6450 CFConstantStringTagDecl->startDefinition();
6451
6452 struct {
6453 QualType Type;
6454 const char *Name;
6455 } Fields[5];
6456 unsigned Count = 0;
6457
6458 /// Objective-C ABI
6459 ///
6460 /// typedef struct __NSConstantString_tag {
6461 /// const int *isa;
6462 /// int flags;
6463 /// const char *str;
6464 /// long length;
6465 /// } __NSConstantString;
6466 ///
6467 /// Swift ABI (4.1, 4.2)
6468 ///
6469 /// typedef struct __NSConstantString_tag {
6470 /// uintptr_t _cfisa;
6471 /// uintptr_t _swift_rc;
6472 /// _Atomic(uint64_t) _cfinfoa;
6473 /// const char *_ptr;
6474 /// uint32_t _length;
6475 /// } __NSConstantString;
6476 ///
6477 /// Swift ABI (5.0)
6478 ///
6479 /// typedef struct __NSConstantString_tag {
6480 /// uintptr_t _cfisa;
6481 /// uintptr_t _swift_rc;
6482 /// _Atomic(uint64_t) _cfinfoa;
6483 /// const char *_ptr;
6484 /// uintptr_t _length;
6485 /// } __NSConstantString;
6486
6487 const auto CFRuntime = getLangOpts().CFRuntime;
6488 if (static_cast<unsigned>(CFRuntime) <
6489 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) {
6490 Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" };
6491 Fields[Count++] = { IntTy, "flags" };
6492 Fields[Count++] = { getPointerType(CharTy.withConst()), "str" };
6493 Fields[Count++] = { LongTy, "length" };
6494 } else {
6495 Fields[Count++] = { getUIntPtrType(), "_cfisa" };
6496 Fields[Count++] = { getUIntPtrType(), "_swift_rc" };
6497 Fields[Count++] = { getFromTargetType(Target->getUInt64Type()), "_swift_rc" };
6498 Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" };
6499 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6500 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6501 Fields[Count++] = { IntTy, "_ptr" };
6502 else
6503 Fields[Count++] = { getUIntPtrType(), "_ptr" };
6504 }
6505
6506 // Create fields
6507 for (unsigned i = 0; i < Count; ++i) {
6508 FieldDecl *Field =
6509 FieldDecl::Create(*this, CFConstantStringTagDecl, SourceLocation(),
6510 SourceLocation(), &Idents.get(Fields[i].Name),
6511 Fields[i].Type, /*TInfo=*/nullptr,
6512 /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
6513 Field->setAccess(AS_public);
6514 CFConstantStringTagDecl->addDecl(Field);
6515 }
6516
6517 CFConstantStringTagDecl->completeDefinition();
6518 // This type is designed to be compatible with NSConstantString, but cannot
6519 // use the same name, since NSConstantString is an interface.
6520 auto tagType = getTagDeclType(CFConstantStringTagDecl);
6521 CFConstantStringTypeDecl =
6522 buildImplicitTypedef(tagType, "__NSConstantString");
6523
6524 return CFConstantStringTypeDecl;
6525 }
6526
getCFConstantStringTagDecl() const6527 RecordDecl *ASTContext::getCFConstantStringTagDecl() const {
6528 if (!CFConstantStringTagDecl)
6529 getCFConstantStringDecl(); // Build the tag and the typedef.
6530 return CFConstantStringTagDecl;
6531 }
6532
6533 // getCFConstantStringType - Return the type used for constant CFStrings.
getCFConstantStringType() const6534 QualType ASTContext::getCFConstantStringType() const {
6535 return getTypedefType(getCFConstantStringDecl());
6536 }
6537
getObjCSuperType() const6538 QualType ASTContext::getObjCSuperType() const {
6539 if (ObjCSuperType.isNull()) {
6540 RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
6541 TUDecl->addDecl(ObjCSuperTypeDecl);
6542 ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
6543 }
6544 return ObjCSuperType;
6545 }
6546
setCFConstantStringType(QualType T)6547 void ASTContext::setCFConstantStringType(QualType T) {
6548 const auto *TD = T->castAs<TypedefType>();
6549 CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl());
6550 const auto *TagType =
6551 CFConstantStringTypeDecl->getUnderlyingType()->castAs<RecordType>();
6552 CFConstantStringTagDecl = TagType->getDecl();
6553 }
6554
getBlockDescriptorType() const6555 QualType ASTContext::getBlockDescriptorType() const {
6556 if (BlockDescriptorType)
6557 return getTagDeclType(BlockDescriptorType);
6558
6559 RecordDecl *RD;
6560 // FIXME: Needs the FlagAppleBlock bit.
6561 RD = buildImplicitRecord("__block_descriptor");
6562 RD->startDefinition();
6563
6564 QualType FieldTypes[] = {
6565 UnsignedLongTy,
6566 UnsignedLongTy,
6567 };
6568
6569 static const char *const FieldNames[] = {
6570 "reserved",
6571 "Size"
6572 };
6573
6574 for (size_t i = 0; i < 2; ++i) {
6575 FieldDecl *Field = FieldDecl::Create(
6576 *this, RD, SourceLocation(), SourceLocation(),
6577 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
6578 /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
6579 Field->setAccess(AS_public);
6580 RD->addDecl(Field);
6581 }
6582
6583 RD->completeDefinition();
6584
6585 BlockDescriptorType = RD;
6586
6587 return getTagDeclType(BlockDescriptorType);
6588 }
6589
getBlockDescriptorExtendedType() const6590 QualType ASTContext::getBlockDescriptorExtendedType() const {
6591 if (BlockDescriptorExtendedType)
6592 return getTagDeclType(BlockDescriptorExtendedType);
6593
6594 RecordDecl *RD;
6595 // FIXME: Needs the FlagAppleBlock bit.
6596 RD = buildImplicitRecord("__block_descriptor_withcopydispose");
6597 RD->startDefinition();
6598
6599 QualType FieldTypes[] = {
6600 UnsignedLongTy,
6601 UnsignedLongTy,
6602 getPointerType(VoidPtrTy),
6603 getPointerType(VoidPtrTy)
6604 };
6605
6606 static const char *const FieldNames[] = {
6607 "reserved",
6608 "Size",
6609 "CopyFuncPtr",
6610 "DestroyFuncPtr"
6611 };
6612
6613 for (size_t i = 0; i < 4; ++i) {
6614 FieldDecl *Field = FieldDecl::Create(
6615 *this, RD, SourceLocation(), SourceLocation(),
6616 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
6617 /*BitWidth=*/nullptr,
6618 /*Mutable=*/false, ICIS_NoInit);
6619 Field->setAccess(AS_public);
6620 RD->addDecl(Field);
6621 }
6622
6623 RD->completeDefinition();
6624
6625 BlockDescriptorExtendedType = RD;
6626 return getTagDeclType(BlockDescriptorExtendedType);
6627 }
6628
getOpenCLTypeKind(const Type * T) const6629 OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const {
6630 const auto *BT = dyn_cast<BuiltinType>(T);
6631
6632 if (!BT) {
6633 if (isa<PipeType>(T))
6634 return OCLTK_Pipe;
6635
6636 return OCLTK_Default;
6637 }
6638
6639 switch (BT->getKind()) {
6640 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6641 case BuiltinType::Id: \
6642 return OCLTK_Image;
6643 #include "clang/Basic/OpenCLImageTypes.def"
6644
6645 case BuiltinType::OCLClkEvent:
6646 return OCLTK_ClkEvent;
6647
6648 case BuiltinType::OCLEvent:
6649 return OCLTK_Event;
6650
6651 case BuiltinType::OCLQueue:
6652 return OCLTK_Queue;
6653
6654 case BuiltinType::OCLReserveID:
6655 return OCLTK_ReserveID;
6656
6657 case BuiltinType::OCLSampler:
6658 return OCLTK_Sampler;
6659
6660 default:
6661 return OCLTK_Default;
6662 }
6663 }
6664
getOpenCLTypeAddrSpace(const Type * T) const6665 LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const {
6666 return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T));
6667 }
6668
6669 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
6670 /// requires copy/dispose. Note that this must match the logic
6671 /// in buildByrefHelpers.
BlockRequiresCopying(QualType Ty,const VarDecl * D)6672 bool ASTContext::BlockRequiresCopying(QualType Ty,
6673 const VarDecl *D) {
6674 if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
6675 const Expr *copyExpr = getBlockVarCopyInit(D).getCopyExpr();
6676 if (!copyExpr && record->hasTrivialDestructor()) return false;
6677
6678 return true;
6679 }
6680
6681 // The block needs copy/destroy helpers if Ty is non-trivial to destructively
6682 // move or destroy.
6683 if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType())
6684 return true;
6685
6686 if (!Ty->isObjCRetainableType()) return false;
6687
6688 Qualifiers qs = Ty.getQualifiers();
6689
6690 // If we have lifetime, that dominates.
6691 if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
6692 switch (lifetime) {
6693 case Qualifiers::OCL_None: llvm_unreachable("impossible");
6694
6695 // These are just bits as far as the runtime is concerned.
6696 case Qualifiers::OCL_ExplicitNone:
6697 case Qualifiers::OCL_Autoreleasing:
6698 return false;
6699
6700 // These cases should have been taken care of when checking the type's
6701 // non-triviality.
6702 case Qualifiers::OCL_Weak:
6703 case Qualifiers::OCL_Strong:
6704 llvm_unreachable("impossible");
6705 }
6706 llvm_unreachable("fell out of lifetime switch!");
6707 }
6708 return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
6709 Ty->isObjCObjectPointerType());
6710 }
6711
getByrefLifetime(QualType Ty,Qualifiers::ObjCLifetime & LifeTime,bool & HasByrefExtendedLayout) const6712 bool ASTContext::getByrefLifetime(QualType Ty,
6713 Qualifiers::ObjCLifetime &LifeTime,
6714 bool &HasByrefExtendedLayout) const {
6715 if (!getLangOpts().ObjC ||
6716 getLangOpts().getGC() != LangOptions::NonGC)
6717 return false;
6718
6719 HasByrefExtendedLayout = false;
6720 if (Ty->isRecordType()) {
6721 HasByrefExtendedLayout = true;
6722 LifeTime = Qualifiers::OCL_None;
6723 } else if ((LifeTime = Ty.getObjCLifetime())) {
6724 // Honor the ARC qualifiers.
6725 } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) {
6726 // The MRR rule.
6727 LifeTime = Qualifiers::OCL_ExplicitNone;
6728 } else {
6729 LifeTime = Qualifiers::OCL_None;
6730 }
6731 return true;
6732 }
6733
getNSUIntegerType() const6734 CanQualType ASTContext::getNSUIntegerType() const {
6735 assert(Target && "Expected target to be initialized");
6736 const llvm::Triple &T = Target->getTriple();
6737 // Windows is LLP64 rather than LP64
6738 if (T.isOSWindows() && T.isArch64Bit())
6739 return UnsignedLongLongTy;
6740 return UnsignedLongTy;
6741 }
6742
getNSIntegerType() const6743 CanQualType ASTContext::getNSIntegerType() const {
6744 assert(Target && "Expected target to be initialized");
6745 const llvm::Triple &T = Target->getTriple();
6746 // Windows is LLP64 rather than LP64
6747 if (T.isOSWindows() && T.isArch64Bit())
6748 return LongLongTy;
6749 return LongTy;
6750 }
6751
getObjCInstanceTypeDecl()6752 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
6753 if (!ObjCInstanceTypeDecl)
6754 ObjCInstanceTypeDecl =
6755 buildImplicitTypedef(getObjCIdType(), "instancetype");
6756 return ObjCInstanceTypeDecl;
6757 }
6758
6759 // This returns true if a type has been typedefed to BOOL:
6760 // typedef <type> BOOL;
isTypeTypedefedAsBOOL(QualType T)6761 static bool isTypeTypedefedAsBOOL(QualType T) {
6762 if (const auto *TT = dyn_cast<TypedefType>(T))
6763 if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
6764 return II->isStr("BOOL");
6765
6766 return false;
6767 }
6768
6769 /// getObjCEncodingTypeSize returns size of type for objective-c encoding
6770 /// purpose.
getObjCEncodingTypeSize(QualType type) const6771 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
6772 if (!type->isIncompleteArrayType() && type->isIncompleteType())
6773 return CharUnits::Zero();
6774
6775 CharUnits sz = getTypeSizeInChars(type);
6776
6777 // Make all integer and enum types at least as large as an int
6778 if (sz.isPositive() && type->isIntegralOrEnumerationType())
6779 sz = std::max(sz, getTypeSizeInChars(IntTy));
6780 // Treat arrays as pointers, since that's how they're passed in.
6781 else if (type->isArrayType())
6782 sz = getTypeSizeInChars(VoidPtrTy);
6783 return sz;
6784 }
6785
isMSStaticDataMemberInlineDefinition(const VarDecl * VD) const6786 bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
6787 return getTargetInfo().getCXXABI().isMicrosoft() &&
6788 VD->isStaticDataMember() &&
6789 VD->getType()->isIntegralOrEnumerationType() &&
6790 !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
6791 }
6792
6793 ASTContext::InlineVariableDefinitionKind
getInlineVariableDefinitionKind(const VarDecl * VD) const6794 ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const {
6795 if (!VD->isInline())
6796 return InlineVariableDefinitionKind::None;
6797
6798 // In almost all cases, it's a weak definition.
6799 auto *First = VD->getFirstDecl();
6800 if (First->isInlineSpecified() || !First->isStaticDataMember())
6801 return InlineVariableDefinitionKind::Weak;
6802
6803 // If there's a file-context declaration in this translation unit, it's a
6804 // non-discardable definition.
6805 for (auto *D : VD->redecls())
6806 if (D->getLexicalDeclContext()->isFileContext() &&
6807 !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr()))
6808 return InlineVariableDefinitionKind::Strong;
6809
6810 // If we've not seen one yet, we don't know.
6811 return InlineVariableDefinitionKind::WeakUnknown;
6812 }
6813
charUnitsToString(const CharUnits & CU)6814 static std::string charUnitsToString(const CharUnits &CU) {
6815 return llvm::itostr(CU.getQuantity());
6816 }
6817
6818 /// getObjCEncodingForBlock - Return the encoded type for this block
6819 /// declaration.
getObjCEncodingForBlock(const BlockExpr * Expr) const6820 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
6821 std::string S;
6822
6823 const BlockDecl *Decl = Expr->getBlockDecl();
6824 QualType BlockTy =
6825 Expr->getType()->castAs<BlockPointerType>()->getPointeeType();
6826 QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType();
6827 // Encode result type.
6828 if (getLangOpts().EncodeExtendedBlockSig)
6829 getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, BlockReturnTy, S,
6830 true /*Extended*/);
6831 else
6832 getObjCEncodingForType(BlockReturnTy, S);
6833 // Compute size of all parameters.
6834 // Start with computing size of a pointer in number of bytes.
6835 // FIXME: There might(should) be a better way of doing this computation!
6836 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
6837 CharUnits ParmOffset = PtrSize;
6838 for (auto PI : Decl->parameters()) {
6839 QualType PType = PI->getType();
6840 CharUnits sz = getObjCEncodingTypeSize(PType);
6841 if (sz.isZero())
6842 continue;
6843 assert(sz.isPositive() && "BlockExpr - Incomplete param type");
6844 ParmOffset += sz;
6845 }
6846 // Size of the argument frame
6847 S += charUnitsToString(ParmOffset);
6848 // Block pointer and offset.
6849 S += "@?0";
6850
6851 // Argument types.
6852 ParmOffset = PtrSize;
6853 for (auto PVDecl : Decl->parameters()) {
6854 QualType PType = PVDecl->getOriginalType();
6855 if (const auto *AT =
6856 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
6857 // Use array's original type only if it has known number of
6858 // elements.
6859 if (!isa<ConstantArrayType>(AT))
6860 PType = PVDecl->getType();
6861 } else if (PType->isFunctionType())
6862 PType = PVDecl->getType();
6863 if (getLangOpts().EncodeExtendedBlockSig)
6864 getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
6865 S, true /*Extended*/);
6866 else
6867 getObjCEncodingForType(PType, S);
6868 S += charUnitsToString(ParmOffset);
6869 ParmOffset += getObjCEncodingTypeSize(PType);
6870 }
6871
6872 return S;
6873 }
6874
6875 std::string
getObjCEncodingForFunctionDecl(const FunctionDecl * Decl) const6876 ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const {
6877 std::string S;
6878 // Encode result type.
6879 getObjCEncodingForType(Decl->getReturnType(), S);
6880 CharUnits ParmOffset;
6881 // Compute size of all parameters.
6882 for (auto PI : Decl->parameters()) {
6883 QualType PType = PI->getType();
6884 CharUnits sz = getObjCEncodingTypeSize(PType);
6885 if (sz.isZero())
6886 continue;
6887
6888 assert(sz.isPositive() &&
6889 "getObjCEncodingForFunctionDecl - Incomplete param type");
6890 ParmOffset += sz;
6891 }
6892 S += charUnitsToString(ParmOffset);
6893 ParmOffset = CharUnits::Zero();
6894
6895 // Argument types.
6896 for (auto PVDecl : Decl->parameters()) {
6897 QualType PType = PVDecl->getOriginalType();
6898 if (const auto *AT =
6899 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
6900 // Use array's original type only if it has known number of
6901 // elements.
6902 if (!isa<ConstantArrayType>(AT))
6903 PType = PVDecl->getType();
6904 } else if (PType->isFunctionType())
6905 PType = PVDecl->getType();
6906 getObjCEncodingForType(PType, S);
6907 S += charUnitsToString(ParmOffset);
6908 ParmOffset += getObjCEncodingTypeSize(PType);
6909 }
6910
6911 return S;
6912 }
6913
6914 /// getObjCEncodingForMethodParameter - Return the encoded type for a single
6915 /// method parameter or return type. If Extended, include class names and
6916 /// block object types.
getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,QualType T,std::string & S,bool Extended) const6917 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
6918 QualType T, std::string& S,
6919 bool Extended) const {
6920 // Encode type qualifer, 'in', 'inout', etc. for the parameter.
6921 getObjCEncodingForTypeQualifier(QT, S);
6922 // Encode parameter type.
6923 ObjCEncOptions Options = ObjCEncOptions()
6924 .setExpandPointedToStructures()
6925 .setExpandStructures()
6926 .setIsOutermostType();
6927 if (Extended)
6928 Options.setEncodeBlockParameters().setEncodeClassNames();
6929 getObjCEncodingForTypeImpl(T, S, Options, /*Field=*/nullptr);
6930 }
6931
6932 /// getObjCEncodingForMethodDecl - Return the encoded type for this method
6933 /// declaration.
getObjCEncodingForMethodDecl(const ObjCMethodDecl * Decl,bool Extended) const6934 std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
6935 bool Extended) const {
6936 // FIXME: This is not very efficient.
6937 // Encode return type.
6938 std::string S;
6939 getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
6940 Decl->getReturnType(), S, Extended);
6941 // Compute size of all parameters.
6942 // Start with computing size of a pointer in number of bytes.
6943 // FIXME: There might(should) be a better way of doing this computation!
6944 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
6945 // The first two arguments (self and _cmd) are pointers; account for
6946 // their size.
6947 CharUnits ParmOffset = 2 * PtrSize;
6948 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
6949 E = Decl->sel_param_end(); PI != E; ++PI) {
6950 QualType PType = (*PI)->getType();
6951 CharUnits sz = getObjCEncodingTypeSize(PType);
6952 if (sz.isZero())
6953 continue;
6954
6955 assert(sz.isPositive() &&
6956 "getObjCEncodingForMethodDecl - Incomplete param type");
6957 ParmOffset += sz;
6958 }
6959 S += charUnitsToString(ParmOffset);
6960 S += "@0:";
6961 S += charUnitsToString(PtrSize);
6962
6963 // Argument types.
6964 ParmOffset = 2 * PtrSize;
6965 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
6966 E = Decl->sel_param_end(); PI != E; ++PI) {
6967 const ParmVarDecl *PVDecl = *PI;
6968 QualType PType = PVDecl->getOriginalType();
6969 if (const auto *AT =
6970 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
6971 // Use array's original type only if it has known number of
6972 // elements.
6973 if (!isa<ConstantArrayType>(AT))
6974 PType = PVDecl->getType();
6975 } else if (PType->isFunctionType())
6976 PType = PVDecl->getType();
6977 getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
6978 PType, S, Extended);
6979 S += charUnitsToString(ParmOffset);
6980 ParmOffset += getObjCEncodingTypeSize(PType);
6981 }
6982
6983 return S;
6984 }
6985
6986 ObjCPropertyImplDecl *
getObjCPropertyImplDeclForPropertyDecl(const ObjCPropertyDecl * PD,const Decl * Container) const6987 ASTContext::getObjCPropertyImplDeclForPropertyDecl(
6988 const ObjCPropertyDecl *PD,
6989 const Decl *Container) const {
6990 if (!Container)
6991 return nullptr;
6992 if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) {
6993 for (auto *PID : CID->property_impls())
6994 if (PID->getPropertyDecl() == PD)
6995 return PID;
6996 } else {
6997 const auto *OID = cast<ObjCImplementationDecl>(Container);
6998 for (auto *PID : OID->property_impls())
6999 if (PID->getPropertyDecl() == PD)
7000 return PID;
7001 }
7002 return nullptr;
7003 }
7004
7005 /// getObjCEncodingForPropertyDecl - Return the encoded type for this
7006 /// property declaration. If non-NULL, Container must be either an
7007 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
7008 /// NULL when getting encodings for protocol properties.
7009 /// Property attributes are stored as a comma-delimited C string. The simple
7010 /// attributes readonly and bycopy are encoded as single characters. The
7011 /// parametrized attributes, getter=name, setter=name, and ivar=name, are
7012 /// encoded as single characters, followed by an identifier. Property types
7013 /// are also encoded as a parametrized attribute. The characters used to encode
7014 /// these attributes are defined by the following enumeration:
7015 /// @code
7016 /// enum PropertyAttributes {
7017 /// kPropertyReadOnly = 'R', // property is read-only.
7018 /// kPropertyBycopy = 'C', // property is a copy of the value last assigned
7019 /// kPropertyByref = '&', // property is a reference to the value last assigned
7020 /// kPropertyDynamic = 'D', // property is dynamic
7021 /// kPropertyGetter = 'G', // followed by getter selector name
7022 /// kPropertySetter = 'S', // followed by setter selector name
7023 /// kPropertyInstanceVariable = 'V' // followed by instance variable name
7024 /// kPropertyType = 'T' // followed by old-style type encoding.
7025 /// kPropertyWeak = 'W' // 'weak' property
7026 /// kPropertyStrong = 'P' // property GC'able
7027 /// kPropertyNonAtomic = 'N' // property non-atomic
7028 /// };
7029 /// @endcode
7030 std::string
getObjCEncodingForPropertyDecl(const ObjCPropertyDecl * PD,const Decl * Container) const7031 ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
7032 const Decl *Container) const {
7033 // Collect information from the property implementation decl(s).
7034 bool Dynamic = false;
7035 ObjCPropertyImplDecl *SynthesizePID = nullptr;
7036
7037 if (ObjCPropertyImplDecl *PropertyImpDecl =
7038 getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
7039 if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
7040 Dynamic = true;
7041 else
7042 SynthesizePID = PropertyImpDecl;
7043 }
7044
7045 // FIXME: This is not very efficient.
7046 std::string S = "T";
7047
7048 // Encode result type.
7049 // GCC has some special rules regarding encoding of properties which
7050 // closely resembles encoding of ivars.
7051 getObjCEncodingForPropertyType(PD->getType(), S);
7052
7053 if (PD->isReadOnly()) {
7054 S += ",R";
7055 if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_copy)
7056 S += ",C";
7057 if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_retain)
7058 S += ",&";
7059 if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak)
7060 S += ",W";
7061 } else {
7062 switch (PD->getSetterKind()) {
7063 case ObjCPropertyDecl::Assign: break;
7064 case ObjCPropertyDecl::Copy: S += ",C"; break;
7065 case ObjCPropertyDecl::Retain: S += ",&"; break;
7066 case ObjCPropertyDecl::Weak: S += ",W"; break;
7067 }
7068 }
7069
7070 // It really isn't clear at all what this means, since properties
7071 // are "dynamic by default".
7072 if (Dynamic)
7073 S += ",D";
7074
7075 if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_nonatomic)
7076 S += ",N";
7077
7078 if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_getter) {
7079 S += ",G";
7080 S += PD->getGetterName().getAsString();
7081 }
7082
7083 if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_setter) {
7084 S += ",S";
7085 S += PD->getSetterName().getAsString();
7086 }
7087
7088 if (SynthesizePID) {
7089 const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
7090 S += ",V";
7091 S += OID->getNameAsString();
7092 }
7093
7094 // FIXME: OBJCGC: weak & strong
7095 return S;
7096 }
7097
7098 /// getLegacyIntegralTypeEncoding -
7099 /// Another legacy compatibility encoding: 32-bit longs are encoded as
7100 /// 'l' or 'L' , but not always. For typedefs, we need to use
7101 /// 'i' or 'I' instead if encoding a struct field, or a pointer!
getLegacyIntegralTypeEncoding(QualType & PointeeTy) const7102 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
7103 if (isa<TypedefType>(PointeeTy.getTypePtr())) {
7104 if (const auto *BT = PointeeTy->getAs<BuiltinType>()) {
7105 if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
7106 PointeeTy = UnsignedIntTy;
7107 else
7108 if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
7109 PointeeTy = IntTy;
7110 }
7111 }
7112 }
7113
getObjCEncodingForType(QualType T,std::string & S,const FieldDecl * Field,QualType * NotEncodedT) const7114 void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
7115 const FieldDecl *Field,
7116 QualType *NotEncodedT) const {
7117 // We follow the behavior of gcc, expanding structures which are
7118 // directly pointed to, and expanding embedded structures. Note that
7119 // these rules are sufficient to prevent recursive encoding of the
7120 // same type.
7121 getObjCEncodingForTypeImpl(T, S,
7122 ObjCEncOptions()
7123 .setExpandPointedToStructures()
7124 .setExpandStructures()
7125 .setIsOutermostType(),
7126 Field, NotEncodedT);
7127 }
7128
getObjCEncodingForPropertyType(QualType T,std::string & S) const7129 void ASTContext::getObjCEncodingForPropertyType(QualType T,
7130 std::string& S) const {
7131 // Encode result type.
7132 // GCC has some special rules regarding encoding of properties which
7133 // closely resembles encoding of ivars.
7134 getObjCEncodingForTypeImpl(T, S,
7135 ObjCEncOptions()
7136 .setExpandPointedToStructures()
7137 .setExpandStructures()
7138 .setIsOutermostType()
7139 .setEncodingProperty(),
7140 /*Field=*/nullptr);
7141 }
7142
getObjCEncodingForPrimitiveType(const ASTContext * C,const BuiltinType * BT)7143 static char getObjCEncodingForPrimitiveType(const ASTContext *C,
7144 const BuiltinType *BT) {
7145 BuiltinType::Kind kind = BT->getKind();
7146 switch (kind) {
7147 case BuiltinType::Void: return 'v';
7148 case BuiltinType::Bool: return 'B';
7149 case BuiltinType::Char8:
7150 case BuiltinType::Char_U:
7151 case BuiltinType::UChar: return 'C';
7152 case BuiltinType::Char16:
7153 case BuiltinType::UShort: return 'S';
7154 case BuiltinType::Char32:
7155 case BuiltinType::UInt: return 'I';
7156 case BuiltinType::ULong:
7157 return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
7158 case BuiltinType::UInt128: return 'T';
7159 case BuiltinType::ULongLong: return 'Q';
7160 case BuiltinType::Char_S:
7161 case BuiltinType::SChar: return 'c';
7162 case BuiltinType::Short: return 's';
7163 case BuiltinType::WChar_S:
7164 case BuiltinType::WChar_U:
7165 case BuiltinType::Int: return 'i';
7166 case BuiltinType::Long:
7167 return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
7168 case BuiltinType::LongLong: return 'q';
7169 case BuiltinType::Int128: return 't';
7170 case BuiltinType::Float: return 'f';
7171 case BuiltinType::Double: return 'd';
7172 case BuiltinType::LongDouble: return 'D';
7173 case BuiltinType::NullPtr: return '*'; // like char*
7174
7175 case BuiltinType::BFloat16:
7176 case BuiltinType::Float16:
7177 case BuiltinType::Float128:
7178 case BuiltinType::Half:
7179 case BuiltinType::ShortAccum:
7180 case BuiltinType::Accum:
7181 case BuiltinType::LongAccum:
7182 case BuiltinType::UShortAccum:
7183 case BuiltinType::UAccum:
7184 case BuiltinType::ULongAccum:
7185 case BuiltinType::ShortFract:
7186 case BuiltinType::Fract:
7187 case BuiltinType::LongFract:
7188 case BuiltinType::UShortFract:
7189 case BuiltinType::UFract:
7190 case BuiltinType::ULongFract:
7191 case BuiltinType::SatShortAccum:
7192 case BuiltinType::SatAccum:
7193 case BuiltinType::SatLongAccum:
7194 case BuiltinType::SatUShortAccum:
7195 case BuiltinType::SatUAccum:
7196 case BuiltinType::SatULongAccum:
7197 case BuiltinType::SatShortFract:
7198 case BuiltinType::SatFract:
7199 case BuiltinType::SatLongFract:
7200 case BuiltinType::SatUShortFract:
7201 case BuiltinType::SatUFract:
7202 case BuiltinType::SatULongFract:
7203 // FIXME: potentially need @encodes for these!
7204 return ' ';
7205
7206 #define SVE_TYPE(Name, Id, SingletonId) \
7207 case BuiltinType::Id:
7208 #include "clang/Basic/AArch64SVEACLETypes.def"
7209 {
7210 DiagnosticsEngine &Diags = C->getDiagnostics();
7211 unsigned DiagID = Diags.getCustomDiagID(
7212 DiagnosticsEngine::Error, "cannot yet @encode type %0");
7213 Diags.Report(DiagID) << BT->getName(C->getPrintingPolicy());
7214 return ' ';
7215 }
7216
7217 case BuiltinType::ObjCId:
7218 case BuiltinType::ObjCClass:
7219 case BuiltinType::ObjCSel:
7220 llvm_unreachable("@encoding ObjC primitive type");
7221
7222 // OpenCL and placeholder types don't need @encodings.
7223 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
7224 case BuiltinType::Id:
7225 #include "clang/Basic/OpenCLImageTypes.def"
7226 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
7227 case BuiltinType::Id:
7228 #include "clang/Basic/OpenCLExtensionTypes.def"
7229 case BuiltinType::OCLEvent:
7230 case BuiltinType::OCLClkEvent:
7231 case BuiltinType::OCLQueue:
7232 case BuiltinType::OCLReserveID:
7233 case BuiltinType::OCLSampler:
7234 case BuiltinType::Dependent:
7235 #define PPC_MMA_VECTOR_TYPE(Name, Id, Size) \
7236 case BuiltinType::Id:
7237 #include "clang/Basic/PPCTypes.def"
7238 #define BUILTIN_TYPE(KIND, ID)
7239 #define PLACEHOLDER_TYPE(KIND, ID) \
7240 case BuiltinType::KIND:
7241 #include "clang/AST/BuiltinTypes.def"
7242 llvm_unreachable("invalid builtin type for @encode");
7243 }
7244 llvm_unreachable("invalid BuiltinType::Kind value");
7245 }
7246
ObjCEncodingForEnumType(const ASTContext * C,const EnumType * ET)7247 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
7248 EnumDecl *Enum = ET->getDecl();
7249
7250 // The encoding of an non-fixed enum type is always 'i', regardless of size.
7251 if (!Enum->isFixed())
7252 return 'i';
7253
7254 // The encoding of a fixed enum type matches its fixed underlying type.
7255 const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>();
7256 return getObjCEncodingForPrimitiveType(C, BT);
7257 }
7258
EncodeBitField(const ASTContext * Ctx,std::string & S,QualType T,const FieldDecl * FD)7259 static void EncodeBitField(const ASTContext *Ctx, std::string& S,
7260 QualType T, const FieldDecl *FD) {
7261 assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
7262 S += 'b';
7263 // The NeXT runtime encodes bit fields as b followed by the number of bits.
7264 // The GNU runtime requires more information; bitfields are encoded as b,
7265 // then the offset (in bits) of the first element, then the type of the
7266 // bitfield, then the size in bits. For example, in this structure:
7267 //
7268 // struct
7269 // {
7270 // int integer;
7271 // int flags:2;
7272 // };
7273 // On a 32-bit system, the encoding for flags would be b2 for the NeXT
7274 // runtime, but b32i2 for the GNU runtime. The reason for this extra
7275 // information is not especially sensible, but we're stuck with it for
7276 // compatibility with GCC, although providing it breaks anything that
7277 // actually uses runtime introspection and wants to work on both runtimes...
7278 if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
7279 uint64_t Offset;
7280
7281 if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) {
7282 Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr,
7283 IVD);
7284 } else {
7285 const RecordDecl *RD = FD->getParent();
7286 const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
7287 Offset = RL.getFieldOffset(FD->getFieldIndex());
7288 }
7289
7290 S += llvm::utostr(Offset);
7291
7292 if (const auto *ET = T->getAs<EnumType>())
7293 S += ObjCEncodingForEnumType(Ctx, ET);
7294 else {
7295 const auto *BT = T->castAs<BuiltinType>();
7296 S += getObjCEncodingForPrimitiveType(Ctx, BT);
7297 }
7298 }
7299 S += llvm::utostr(FD->getBitWidthValue(*Ctx));
7300 }
7301
7302 // FIXME: Use SmallString for accumulating string.
getObjCEncodingForTypeImpl(QualType T,std::string & S,const ObjCEncOptions Options,const FieldDecl * FD,QualType * NotEncodedT) const7303 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S,
7304 const ObjCEncOptions Options,
7305 const FieldDecl *FD,
7306 QualType *NotEncodedT) const {
7307 CanQualType CT = getCanonicalType(T);
7308 switch (CT->getTypeClass()) {
7309 case Type::Builtin:
7310 case Type::Enum:
7311 if (FD && FD->isBitField())
7312 return EncodeBitField(this, S, T, FD);
7313 if (const auto *BT = dyn_cast<BuiltinType>(CT))
7314 S += getObjCEncodingForPrimitiveType(this, BT);
7315 else
7316 S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
7317 return;
7318
7319 case Type::Complex:
7320 S += 'j';
7321 getObjCEncodingForTypeImpl(T->castAs<ComplexType>()->getElementType(), S,
7322 ObjCEncOptions(),
7323 /*Field=*/nullptr);
7324 return;
7325
7326 case Type::Atomic:
7327 S += 'A';
7328 getObjCEncodingForTypeImpl(T->castAs<AtomicType>()->getValueType(), S,
7329 ObjCEncOptions(),
7330 /*Field=*/nullptr);
7331 return;
7332
7333 // encoding for pointer or reference types.
7334 case Type::Pointer:
7335 case Type::LValueReference:
7336 case Type::RValueReference: {
7337 QualType PointeeTy;
7338 if (isa<PointerType>(CT)) {
7339 const auto *PT = T->castAs<PointerType>();
7340 if (PT->isObjCSelType()) {
7341 S += ':';
7342 return;
7343 }
7344 PointeeTy = PT->getPointeeType();
7345 } else {
7346 PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
7347 }
7348
7349 bool isReadOnly = false;
7350 // For historical/compatibility reasons, the read-only qualifier of the
7351 // pointee gets emitted _before_ the '^'. The read-only qualifier of
7352 // the pointer itself gets ignored, _unless_ we are looking at a typedef!
7353 // Also, do not emit the 'r' for anything but the outermost type!
7354 if (isa<TypedefType>(T.getTypePtr())) {
7355 if (Options.IsOutermostType() && T.isConstQualified()) {
7356 isReadOnly = true;
7357 S += 'r';
7358 }
7359 } else if (Options.IsOutermostType()) {
7360 QualType P = PointeeTy;
7361 while (auto PT = P->getAs<PointerType>())
7362 P = PT->getPointeeType();
7363 if (P.isConstQualified()) {
7364 isReadOnly = true;
7365 S += 'r';
7366 }
7367 }
7368 if (isReadOnly) {
7369 // Another legacy compatibility encoding. Some ObjC qualifier and type
7370 // combinations need to be rearranged.
7371 // Rewrite "in const" from "nr" to "rn"
7372 if (StringRef(S).endswith("nr"))
7373 S.replace(S.end()-2, S.end(), "rn");
7374 }
7375
7376 if (PointeeTy->isCharType()) {
7377 // char pointer types should be encoded as '*' unless it is a
7378 // type that has been typedef'd to 'BOOL'.
7379 if (!isTypeTypedefedAsBOOL(PointeeTy)) {
7380 S += '*';
7381 return;
7382 }
7383 } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) {
7384 // GCC binary compat: Need to convert "struct objc_class *" to "#".
7385 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
7386 S += '#';
7387 return;
7388 }
7389 // GCC binary compat: Need to convert "struct objc_object *" to "@".
7390 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
7391 S += '@';
7392 return;
7393 }
7394 // fall through...
7395 }
7396 S += '^';
7397 getLegacyIntegralTypeEncoding(PointeeTy);
7398
7399 ObjCEncOptions NewOptions;
7400 if (Options.ExpandPointedToStructures())
7401 NewOptions.setExpandStructures();
7402 getObjCEncodingForTypeImpl(PointeeTy, S, NewOptions,
7403 /*Field=*/nullptr, NotEncodedT);
7404 return;
7405 }
7406
7407 case Type::ConstantArray:
7408 case Type::IncompleteArray:
7409 case Type::VariableArray: {
7410 const auto *AT = cast<ArrayType>(CT);
7411
7412 if (isa<IncompleteArrayType>(AT) && !Options.IsStructField()) {
7413 // Incomplete arrays are encoded as a pointer to the array element.
7414 S += '^';
7415
7416 getObjCEncodingForTypeImpl(
7417 AT->getElementType(), S,
7418 Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD);
7419 } else {
7420 S += '[';
7421
7422 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
7423 S += llvm::utostr(CAT->getSize().getZExtValue());
7424 else {
7425 //Variable length arrays are encoded as a regular array with 0 elements.
7426 assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
7427 "Unknown array type!");
7428 S += '0';
7429 }
7430
7431 getObjCEncodingForTypeImpl(
7432 AT->getElementType(), S,
7433 Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD,
7434 NotEncodedT);
7435 S += ']';
7436 }
7437 return;
7438 }
7439
7440 case Type::FunctionNoProto:
7441 case Type::FunctionProto:
7442 S += '?';
7443 return;
7444
7445 case Type::Record: {
7446 RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
7447 S += RDecl->isUnion() ? '(' : '{';
7448 // Anonymous structures print as '?'
7449 if (const IdentifierInfo *II = RDecl->getIdentifier()) {
7450 S += II->getName();
7451 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
7452 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
7453 llvm::raw_string_ostream OS(S);
7454 printTemplateArgumentList(OS, TemplateArgs.asArray(),
7455 getPrintingPolicy());
7456 }
7457 } else {
7458 S += '?';
7459 }
7460 if (Options.ExpandStructures()) {
7461 S += '=';
7462 if (!RDecl->isUnion()) {
7463 getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
7464 } else {
7465 for (const auto *Field : RDecl->fields()) {
7466 if (FD) {
7467 S += '"';
7468 S += Field->getNameAsString();
7469 S += '"';
7470 }
7471
7472 // Special case bit-fields.
7473 if (Field->isBitField()) {
7474 getObjCEncodingForTypeImpl(Field->getType(), S,
7475 ObjCEncOptions().setExpandStructures(),
7476 Field);
7477 } else {
7478 QualType qt = Field->getType();
7479 getLegacyIntegralTypeEncoding(qt);
7480 getObjCEncodingForTypeImpl(
7481 qt, S,
7482 ObjCEncOptions().setExpandStructures().setIsStructField(), FD,
7483 NotEncodedT);
7484 }
7485 }
7486 }
7487 }
7488 S += RDecl->isUnion() ? ')' : '}';
7489 return;
7490 }
7491
7492 case Type::BlockPointer: {
7493 const auto *BT = T->castAs<BlockPointerType>();
7494 S += "@?"; // Unlike a pointer-to-function, which is "^?".
7495 if (Options.EncodeBlockParameters()) {
7496 const auto *FT = BT->getPointeeType()->castAs<FunctionType>();
7497
7498 S += '<';
7499 // Block return type
7500 getObjCEncodingForTypeImpl(FT->getReturnType(), S,
7501 Options.forComponentType(), FD, NotEncodedT);
7502 // Block self
7503 S += "@?";
7504 // Block parameters
7505 if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) {
7506 for (const auto &I : FPT->param_types())
7507 getObjCEncodingForTypeImpl(I, S, Options.forComponentType(), FD,
7508 NotEncodedT);
7509 }
7510 S += '>';
7511 }
7512 return;
7513 }
7514
7515 case Type::ObjCObject: {
7516 // hack to match legacy encoding of *id and *Class
7517 QualType Ty = getObjCObjectPointerType(CT);
7518 if (Ty->isObjCIdType()) {
7519 S += "{objc_object=}";
7520 return;
7521 }
7522 else if (Ty->isObjCClassType()) {
7523 S += "{objc_class=}";
7524 return;
7525 }
7526 // TODO: Double check to make sure this intentionally falls through.
7527 LLVM_FALLTHROUGH;
7528 }
7529
7530 case Type::ObjCInterface: {
7531 // Ignore protocol qualifiers when mangling at this level.
7532 // @encode(class_name)
7533 ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface();
7534 S += '{';
7535 S += OI->getObjCRuntimeNameAsString();
7536 if (Options.ExpandStructures()) {
7537 S += '=';
7538 SmallVector<const ObjCIvarDecl*, 32> Ivars;
7539 DeepCollectObjCIvars(OI, true, Ivars);
7540 for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
7541 const FieldDecl *Field = Ivars[i];
7542 if (Field->isBitField())
7543 getObjCEncodingForTypeImpl(Field->getType(), S,
7544 ObjCEncOptions().setExpandStructures(),
7545 Field);
7546 else
7547 getObjCEncodingForTypeImpl(Field->getType(), S,
7548 ObjCEncOptions().setExpandStructures(), FD,
7549 NotEncodedT);
7550 }
7551 }
7552 S += '}';
7553 return;
7554 }
7555
7556 case Type::ObjCObjectPointer: {
7557 const auto *OPT = T->castAs<ObjCObjectPointerType>();
7558 if (OPT->isObjCIdType()) {
7559 S += '@';
7560 return;
7561 }
7562
7563 if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
7564 // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
7565 // Since this is a binary compatibility issue, need to consult with
7566 // runtime folks. Fortunately, this is a *very* obscure construct.
7567 S += '#';
7568 return;
7569 }
7570
7571 if (OPT->isObjCQualifiedIdType()) {
7572 getObjCEncodingForTypeImpl(
7573 getObjCIdType(), S,
7574 Options.keepingOnly(ObjCEncOptions()
7575 .setExpandPointedToStructures()
7576 .setExpandStructures()),
7577 FD);
7578 if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) {
7579 // Note that we do extended encoding of protocol qualifer list
7580 // Only when doing ivar or property encoding.
7581 S += '"';
7582 for (const auto *I : OPT->quals()) {
7583 S += '<';
7584 S += I->getObjCRuntimeNameAsString();
7585 S += '>';
7586 }
7587 S += '"';
7588 }
7589 return;
7590 }
7591
7592 S += '@';
7593 if (OPT->getInterfaceDecl() &&
7594 (FD || Options.EncodingProperty() || Options.EncodeClassNames())) {
7595 S += '"';
7596 S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString();
7597 for (const auto *I : OPT->quals()) {
7598 S += '<';
7599 S += I->getObjCRuntimeNameAsString();
7600 S += '>';
7601 }
7602 S += '"';
7603 }
7604 return;
7605 }
7606
7607 // gcc just blithely ignores member pointers.
7608 // FIXME: we should do better than that. 'M' is available.
7609 case Type::MemberPointer:
7610 // This matches gcc's encoding, even though technically it is insufficient.
7611 //FIXME. We should do a better job than gcc.
7612 case Type::Vector:
7613 case Type::ExtVector:
7614 // Until we have a coherent encoding of these three types, issue warning.
7615 if (NotEncodedT)
7616 *NotEncodedT = T;
7617 return;
7618
7619 case Type::ConstantMatrix:
7620 if (NotEncodedT)
7621 *NotEncodedT = T;
7622 return;
7623
7624 // We could see an undeduced auto type here during error recovery.
7625 // Just ignore it.
7626 case Type::Auto:
7627 case Type::DeducedTemplateSpecialization:
7628 return;
7629
7630 case Type::Pipe:
7631 case Type::ExtInt:
7632 #define ABSTRACT_TYPE(KIND, BASE)
7633 #define TYPE(KIND, BASE)
7634 #define DEPENDENT_TYPE(KIND, BASE) \
7635 case Type::KIND:
7636 #define NON_CANONICAL_TYPE(KIND, BASE) \
7637 case Type::KIND:
7638 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
7639 case Type::KIND:
7640 #include "clang/AST/TypeNodes.inc"
7641 llvm_unreachable("@encode for dependent type!");
7642 }
7643 llvm_unreachable("bad type kind!");
7644 }
7645
getObjCEncodingForStructureImpl(RecordDecl * RDecl,std::string & S,const FieldDecl * FD,bool includeVBases,QualType * NotEncodedT) const7646 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
7647 std::string &S,
7648 const FieldDecl *FD,
7649 bool includeVBases,
7650 QualType *NotEncodedT) const {
7651 assert(RDecl && "Expected non-null RecordDecl");
7652 assert(!RDecl->isUnion() && "Should not be called for unions");
7653 if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl())
7654 return;
7655
7656 const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
7657 std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
7658 const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
7659
7660 if (CXXRec) {
7661 for (const auto &BI : CXXRec->bases()) {
7662 if (!BI.isVirtual()) {
7663 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
7664 if (base->isEmpty())
7665 continue;
7666 uint64_t offs = toBits(layout.getBaseClassOffset(base));
7667 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7668 std::make_pair(offs, base));
7669 }
7670 }
7671 }
7672
7673 unsigned i = 0;
7674 for (FieldDecl *Field : RDecl->fields()) {
7675 if (!Field->isZeroLengthBitField(*this) && Field->isZeroSize(*this))
7676 continue;
7677 uint64_t offs = layout.getFieldOffset(i);
7678 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7679 std::make_pair(offs, Field));
7680 ++i;
7681 }
7682
7683 if (CXXRec && includeVBases) {
7684 for (const auto &BI : CXXRec->vbases()) {
7685 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
7686 if (base->isEmpty())
7687 continue;
7688 uint64_t offs = toBits(layout.getVBaseClassOffset(base));
7689 if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
7690 FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
7691 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
7692 std::make_pair(offs, base));
7693 }
7694 }
7695
7696 CharUnits size;
7697 if (CXXRec) {
7698 size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
7699 } else {
7700 size = layout.getSize();
7701 }
7702
7703 #ifndef NDEBUG
7704 uint64_t CurOffs = 0;
7705 #endif
7706 std::multimap<uint64_t, NamedDecl *>::iterator
7707 CurLayObj = FieldOrBaseOffsets.begin();
7708
7709 if (CXXRec && CXXRec->isDynamicClass() &&
7710 (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
7711 if (FD) {
7712 S += "\"_vptr$";
7713 std::string recname = CXXRec->getNameAsString();
7714 if (recname.empty()) recname = "?";
7715 S += recname;
7716 S += '"';
7717 }
7718 S += "^^?";
7719 #ifndef NDEBUG
7720 CurOffs += getTypeSize(VoidPtrTy);
7721 #endif
7722 }
7723
7724 if (!RDecl->hasFlexibleArrayMember()) {
7725 // Mark the end of the structure.
7726 uint64_t offs = toBits(size);
7727 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7728 std::make_pair(offs, nullptr));
7729 }
7730
7731 for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
7732 #ifndef NDEBUG
7733 assert(CurOffs <= CurLayObj->first);
7734 if (CurOffs < CurLayObj->first) {
7735 uint64_t padding = CurLayObj->first - CurOffs;
7736 // FIXME: There doesn't seem to be a way to indicate in the encoding that
7737 // packing/alignment of members is different that normal, in which case
7738 // the encoding will be out-of-sync with the real layout.
7739 // If the runtime switches to just consider the size of types without
7740 // taking into account alignment, we could make padding explicit in the
7741 // encoding (e.g. using arrays of chars). The encoding strings would be
7742 // longer then though.
7743 CurOffs += padding;
7744 }
7745 #endif
7746
7747 NamedDecl *dcl = CurLayObj->second;
7748 if (!dcl)
7749 break; // reached end of structure.
7750
7751 if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) {
7752 // We expand the bases without their virtual bases since those are going
7753 // in the initial structure. Note that this differs from gcc which
7754 // expands virtual bases each time one is encountered in the hierarchy,
7755 // making the encoding type bigger than it really is.
7756 getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
7757 NotEncodedT);
7758 assert(!base->isEmpty());
7759 #ifndef NDEBUG
7760 CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
7761 #endif
7762 } else {
7763 const auto *field = cast<FieldDecl>(dcl);
7764 if (FD) {
7765 S += '"';
7766 S += field->getNameAsString();
7767 S += '"';
7768 }
7769
7770 if (field->isBitField()) {
7771 EncodeBitField(this, S, field->getType(), field);
7772 #ifndef NDEBUG
7773 CurOffs += field->getBitWidthValue(*this);
7774 #endif
7775 } else {
7776 QualType qt = field->getType();
7777 getLegacyIntegralTypeEncoding(qt);
7778 getObjCEncodingForTypeImpl(
7779 qt, S, ObjCEncOptions().setExpandStructures().setIsStructField(),
7780 FD, NotEncodedT);
7781 #ifndef NDEBUG
7782 CurOffs += getTypeSize(field->getType());
7783 #endif
7784 }
7785 }
7786 }
7787 }
7788
getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,std::string & S) const7789 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
7790 std::string& S) const {
7791 if (QT & Decl::OBJC_TQ_In)
7792 S += 'n';
7793 if (QT & Decl::OBJC_TQ_Inout)
7794 S += 'N';
7795 if (QT & Decl::OBJC_TQ_Out)
7796 S += 'o';
7797 if (QT & Decl::OBJC_TQ_Bycopy)
7798 S += 'O';
7799 if (QT & Decl::OBJC_TQ_Byref)
7800 S += 'R';
7801 if (QT & Decl::OBJC_TQ_Oneway)
7802 S += 'V';
7803 }
7804
getObjCIdDecl() const7805 TypedefDecl *ASTContext::getObjCIdDecl() const {
7806 if (!ObjCIdDecl) {
7807 QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {});
7808 T = getObjCObjectPointerType(T);
7809 ObjCIdDecl = buildImplicitTypedef(T, "id");
7810 }
7811 return ObjCIdDecl;
7812 }
7813
getObjCSelDecl() const7814 TypedefDecl *ASTContext::getObjCSelDecl() const {
7815 if (!ObjCSelDecl) {
7816 QualType T = getPointerType(ObjCBuiltinSelTy);
7817 ObjCSelDecl = buildImplicitTypedef(T, "SEL");
7818 }
7819 return ObjCSelDecl;
7820 }
7821
getObjCClassDecl() const7822 TypedefDecl *ASTContext::getObjCClassDecl() const {
7823 if (!ObjCClassDecl) {
7824 QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {});
7825 T = getObjCObjectPointerType(T);
7826 ObjCClassDecl = buildImplicitTypedef(T, "Class");
7827 }
7828 return ObjCClassDecl;
7829 }
7830
getObjCProtocolDecl() const7831 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
7832 if (!ObjCProtocolClassDecl) {
7833 ObjCProtocolClassDecl
7834 = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
7835 SourceLocation(),
7836 &Idents.get("Protocol"),
7837 /*typeParamList=*/nullptr,
7838 /*PrevDecl=*/nullptr,
7839 SourceLocation(), true);
7840 }
7841
7842 return ObjCProtocolClassDecl;
7843 }
7844
7845 //===----------------------------------------------------------------------===//
7846 // __builtin_va_list Construction Functions
7847 //===----------------------------------------------------------------------===//
7848
CreateCharPtrNamedVaListDecl(const ASTContext * Context,StringRef Name)7849 static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context,
7850 StringRef Name) {
7851 // typedef char* __builtin[_ms]_va_list;
7852 QualType T = Context->getPointerType(Context->CharTy);
7853 return Context->buildImplicitTypedef(T, Name);
7854 }
7855
CreateMSVaListDecl(const ASTContext * Context)7856 static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) {
7857 return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list");
7858 }
7859
CreateCharPtrBuiltinVaListDecl(const ASTContext * Context)7860 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
7861 return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list");
7862 }
7863
CreateVoidPtrBuiltinVaListDecl(const ASTContext * Context)7864 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
7865 // typedef void* __builtin_va_list;
7866 QualType T = Context->getPointerType(Context->VoidTy);
7867 return Context->buildImplicitTypedef(T, "__builtin_va_list");
7868 }
7869
7870 static TypedefDecl *
CreateAArch64ABIBuiltinVaListDecl(const ASTContext * Context)7871 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
7872 // struct __va_list
7873 RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
7874 if (Context->getLangOpts().CPlusPlus) {
7875 // namespace std { struct __va_list {
7876 NamespaceDecl *NS;
7877 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
7878 Context->getTranslationUnitDecl(),
7879 /*Inline*/ false, SourceLocation(),
7880 SourceLocation(), &Context->Idents.get("std"),
7881 /*PrevDecl*/ nullptr);
7882 NS->setImplicit();
7883 VaListTagDecl->setDeclContext(NS);
7884 }
7885
7886 VaListTagDecl->startDefinition();
7887
7888 const size_t NumFields = 5;
7889 QualType FieldTypes[NumFields];
7890 const char *FieldNames[NumFields];
7891
7892 // void *__stack;
7893 FieldTypes[0] = Context->getPointerType(Context->VoidTy);
7894 FieldNames[0] = "__stack";
7895
7896 // void *__gr_top;
7897 FieldTypes[1] = Context->getPointerType(Context->VoidTy);
7898 FieldNames[1] = "__gr_top";
7899
7900 // void *__vr_top;
7901 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
7902 FieldNames[2] = "__vr_top";
7903
7904 // int __gr_offs;
7905 FieldTypes[3] = Context->IntTy;
7906 FieldNames[3] = "__gr_offs";
7907
7908 // int __vr_offs;
7909 FieldTypes[4] = Context->IntTy;
7910 FieldNames[4] = "__vr_offs";
7911
7912 // Create fields
7913 for (unsigned i = 0; i < NumFields; ++i) {
7914 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
7915 VaListTagDecl,
7916 SourceLocation(),
7917 SourceLocation(),
7918 &Context->Idents.get(FieldNames[i]),
7919 FieldTypes[i], /*TInfo=*/nullptr,
7920 /*BitWidth=*/nullptr,
7921 /*Mutable=*/false,
7922 ICIS_NoInit);
7923 Field->setAccess(AS_public);
7924 VaListTagDecl->addDecl(Field);
7925 }
7926 VaListTagDecl->completeDefinition();
7927 Context->VaListTagDecl = VaListTagDecl;
7928 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
7929
7930 // } __builtin_va_list;
7931 return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
7932 }
7933
CreatePowerABIBuiltinVaListDecl(const ASTContext * Context)7934 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
7935 // typedef struct __va_list_tag {
7936 RecordDecl *VaListTagDecl;
7937
7938 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
7939 VaListTagDecl->startDefinition();
7940
7941 const size_t NumFields = 5;
7942 QualType FieldTypes[NumFields];
7943 const char *FieldNames[NumFields];
7944
7945 // unsigned char gpr;
7946 FieldTypes[0] = Context->UnsignedCharTy;
7947 FieldNames[0] = "gpr";
7948
7949 // unsigned char fpr;
7950 FieldTypes[1] = Context->UnsignedCharTy;
7951 FieldNames[1] = "fpr";
7952
7953 // unsigned short reserved;
7954 FieldTypes[2] = Context->UnsignedShortTy;
7955 FieldNames[2] = "reserved";
7956
7957 // void* overflow_arg_area;
7958 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
7959 FieldNames[3] = "overflow_arg_area";
7960
7961 // void* reg_save_area;
7962 FieldTypes[4] = Context->getPointerType(Context->VoidTy);
7963 FieldNames[4] = "reg_save_area";
7964
7965 // Create fields
7966 for (unsigned i = 0; i < NumFields; ++i) {
7967 FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
7968 SourceLocation(),
7969 SourceLocation(),
7970 &Context->Idents.get(FieldNames[i]),
7971 FieldTypes[i], /*TInfo=*/nullptr,
7972 /*BitWidth=*/nullptr,
7973 /*Mutable=*/false,
7974 ICIS_NoInit);
7975 Field->setAccess(AS_public);
7976 VaListTagDecl->addDecl(Field);
7977 }
7978 VaListTagDecl->completeDefinition();
7979 Context->VaListTagDecl = VaListTagDecl;
7980 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
7981
7982 // } __va_list_tag;
7983 TypedefDecl *VaListTagTypedefDecl =
7984 Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
7985
7986 QualType VaListTagTypedefType =
7987 Context->getTypedefType(VaListTagTypedefDecl);
7988
7989 // typedef __va_list_tag __builtin_va_list[1];
7990 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
7991 QualType VaListTagArrayType
7992 = Context->getConstantArrayType(VaListTagTypedefType,
7993 Size, nullptr, ArrayType::Normal, 0);
7994 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
7995 }
7996
7997 static TypedefDecl *
CreateX86_64ABIBuiltinVaListDecl(const ASTContext * Context)7998 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
7999 // struct __va_list_tag {
8000 RecordDecl *VaListTagDecl;
8001 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8002 VaListTagDecl->startDefinition();
8003
8004 const size_t NumFields = 4;
8005 QualType FieldTypes[NumFields];
8006 const char *FieldNames[NumFields];
8007
8008 // unsigned gp_offset;
8009 FieldTypes[0] = Context->UnsignedIntTy;
8010 FieldNames[0] = "gp_offset";
8011
8012 // unsigned fp_offset;
8013 FieldTypes[1] = Context->UnsignedIntTy;
8014 FieldNames[1] = "fp_offset";
8015
8016 // void* overflow_arg_area;
8017 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8018 FieldNames[2] = "overflow_arg_area";
8019
8020 // void* reg_save_area;
8021 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8022 FieldNames[3] = "reg_save_area";
8023
8024 // Create fields
8025 for (unsigned i = 0; i < NumFields; ++i) {
8026 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8027 VaListTagDecl,
8028 SourceLocation(),
8029 SourceLocation(),
8030 &Context->Idents.get(FieldNames[i]),
8031 FieldTypes[i], /*TInfo=*/nullptr,
8032 /*BitWidth=*/nullptr,
8033 /*Mutable=*/false,
8034 ICIS_NoInit);
8035 Field->setAccess(AS_public);
8036 VaListTagDecl->addDecl(Field);
8037 }
8038 VaListTagDecl->completeDefinition();
8039 Context->VaListTagDecl = VaListTagDecl;
8040 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8041
8042 // };
8043
8044 // typedef struct __va_list_tag __builtin_va_list[1];
8045 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8046 QualType VaListTagArrayType = Context->getConstantArrayType(
8047 VaListTagType, Size, nullptr, ArrayType::Normal, 0);
8048 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8049 }
8050
CreatePNaClABIBuiltinVaListDecl(const ASTContext * Context)8051 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
8052 // typedef int __builtin_va_list[4];
8053 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
8054 QualType IntArrayType = Context->getConstantArrayType(
8055 Context->IntTy, Size, nullptr, ArrayType::Normal, 0);
8056 return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
8057 }
8058
8059 static TypedefDecl *
CreateAAPCSABIBuiltinVaListDecl(const ASTContext * Context)8060 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
8061 // struct __va_list
8062 RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
8063 if (Context->getLangOpts().CPlusPlus) {
8064 // namespace std { struct __va_list {
8065 NamespaceDecl *NS;
8066 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
8067 Context->getTranslationUnitDecl(),
8068 /*Inline*/false, SourceLocation(),
8069 SourceLocation(), &Context->Idents.get("std"),
8070 /*PrevDecl*/ nullptr);
8071 NS->setImplicit();
8072 VaListDecl->setDeclContext(NS);
8073 }
8074
8075 VaListDecl->startDefinition();
8076
8077 // void * __ap;
8078 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8079 VaListDecl,
8080 SourceLocation(),
8081 SourceLocation(),
8082 &Context->Idents.get("__ap"),
8083 Context->getPointerType(Context->VoidTy),
8084 /*TInfo=*/nullptr,
8085 /*BitWidth=*/nullptr,
8086 /*Mutable=*/false,
8087 ICIS_NoInit);
8088 Field->setAccess(AS_public);
8089 VaListDecl->addDecl(Field);
8090
8091 // };
8092 VaListDecl->completeDefinition();
8093 Context->VaListTagDecl = VaListDecl;
8094
8095 // typedef struct __va_list __builtin_va_list;
8096 QualType T = Context->getRecordType(VaListDecl);
8097 return Context->buildImplicitTypedef(T, "__builtin_va_list");
8098 }
8099
8100 static TypedefDecl *
CreateSystemZBuiltinVaListDecl(const ASTContext * Context)8101 CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
8102 // struct __va_list_tag {
8103 RecordDecl *VaListTagDecl;
8104 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8105 VaListTagDecl->startDefinition();
8106
8107 const size_t NumFields = 4;
8108 QualType FieldTypes[NumFields];
8109 const char *FieldNames[NumFields];
8110
8111 // long __gpr;
8112 FieldTypes[0] = Context->LongTy;
8113 FieldNames[0] = "__gpr";
8114
8115 // long __fpr;
8116 FieldTypes[1] = Context->LongTy;
8117 FieldNames[1] = "__fpr";
8118
8119 // void *__overflow_arg_area;
8120 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8121 FieldNames[2] = "__overflow_arg_area";
8122
8123 // void *__reg_save_area;
8124 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8125 FieldNames[3] = "__reg_save_area";
8126
8127 // Create fields
8128 for (unsigned i = 0; i < NumFields; ++i) {
8129 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8130 VaListTagDecl,
8131 SourceLocation(),
8132 SourceLocation(),
8133 &Context->Idents.get(FieldNames[i]),
8134 FieldTypes[i], /*TInfo=*/nullptr,
8135 /*BitWidth=*/nullptr,
8136 /*Mutable=*/false,
8137 ICIS_NoInit);
8138 Field->setAccess(AS_public);
8139 VaListTagDecl->addDecl(Field);
8140 }
8141 VaListTagDecl->completeDefinition();
8142 Context->VaListTagDecl = VaListTagDecl;
8143 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8144
8145 // };
8146
8147 // typedef __va_list_tag __builtin_va_list[1];
8148 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8149 QualType VaListTagArrayType = Context->getConstantArrayType(
8150 VaListTagType, Size, nullptr, ArrayType::Normal, 0);
8151
8152 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8153 }
8154
CreateHexagonBuiltinVaListDecl(const ASTContext * Context)8155 static TypedefDecl *CreateHexagonBuiltinVaListDecl(const ASTContext *Context) {
8156 // typedef struct __va_list_tag {
8157 RecordDecl *VaListTagDecl;
8158 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8159 VaListTagDecl->startDefinition();
8160
8161 const size_t NumFields = 3;
8162 QualType FieldTypes[NumFields];
8163 const char *FieldNames[NumFields];
8164
8165 // void *CurrentSavedRegisterArea;
8166 FieldTypes[0] = Context->getPointerType(Context->VoidTy);
8167 FieldNames[0] = "__current_saved_reg_area_pointer";
8168
8169 // void *SavedRegAreaEnd;
8170 FieldTypes[1] = Context->getPointerType(Context->VoidTy);
8171 FieldNames[1] = "__saved_reg_area_end_pointer";
8172
8173 // void *OverflowArea;
8174 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8175 FieldNames[2] = "__overflow_area_pointer";
8176
8177 // Create fields
8178 for (unsigned i = 0; i < NumFields; ++i) {
8179 FieldDecl *Field = FieldDecl::Create(
8180 const_cast<ASTContext &>(*Context), VaListTagDecl, SourceLocation(),
8181 SourceLocation(), &Context->Idents.get(FieldNames[i]), FieldTypes[i],
8182 /*TInfo=*/0,
8183 /*BitWidth=*/0,
8184 /*Mutable=*/false, ICIS_NoInit);
8185 Field->setAccess(AS_public);
8186 VaListTagDecl->addDecl(Field);
8187 }
8188 VaListTagDecl->completeDefinition();
8189 Context->VaListTagDecl = VaListTagDecl;
8190 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8191
8192 // } __va_list_tag;
8193 TypedefDecl *VaListTagTypedefDecl =
8194 Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
8195
8196 QualType VaListTagTypedefType = Context->getTypedefType(VaListTagTypedefDecl);
8197
8198 // typedef __va_list_tag __builtin_va_list[1];
8199 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8200 QualType VaListTagArrayType = Context->getConstantArrayType(
8201 VaListTagTypedefType, Size, nullptr, ArrayType::Normal, 0);
8202
8203 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8204 }
8205
CreateVaListDecl(const ASTContext * Context,TargetInfo::BuiltinVaListKind Kind)8206 static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
8207 TargetInfo::BuiltinVaListKind Kind) {
8208 switch (Kind) {
8209 case TargetInfo::CharPtrBuiltinVaList:
8210 return CreateCharPtrBuiltinVaListDecl(Context);
8211 case TargetInfo::VoidPtrBuiltinVaList:
8212 return CreateVoidPtrBuiltinVaListDecl(Context);
8213 case TargetInfo::AArch64ABIBuiltinVaList:
8214 return CreateAArch64ABIBuiltinVaListDecl(Context);
8215 case TargetInfo::PowerABIBuiltinVaList:
8216 return CreatePowerABIBuiltinVaListDecl(Context);
8217 case TargetInfo::X86_64ABIBuiltinVaList:
8218 return CreateX86_64ABIBuiltinVaListDecl(Context);
8219 case TargetInfo::PNaClABIBuiltinVaList:
8220 return CreatePNaClABIBuiltinVaListDecl(Context);
8221 case TargetInfo::AAPCSABIBuiltinVaList:
8222 return CreateAAPCSABIBuiltinVaListDecl(Context);
8223 case TargetInfo::SystemZBuiltinVaList:
8224 return CreateSystemZBuiltinVaListDecl(Context);
8225 case TargetInfo::HexagonBuiltinVaList:
8226 return CreateHexagonBuiltinVaListDecl(Context);
8227 }
8228
8229 llvm_unreachable("Unhandled __builtin_va_list type kind");
8230 }
8231
getBuiltinVaListDecl() const8232 TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
8233 if (!BuiltinVaListDecl) {
8234 BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
8235 assert(BuiltinVaListDecl->isImplicit());
8236 }
8237
8238 return BuiltinVaListDecl;
8239 }
8240
getVaListTagDecl() const8241 Decl *ASTContext::getVaListTagDecl() const {
8242 // Force the creation of VaListTagDecl by building the __builtin_va_list
8243 // declaration.
8244 if (!VaListTagDecl)
8245 (void)getBuiltinVaListDecl();
8246
8247 return VaListTagDecl;
8248 }
8249
getBuiltinMSVaListDecl() const8250 TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const {
8251 if (!BuiltinMSVaListDecl)
8252 BuiltinMSVaListDecl = CreateMSVaListDecl(this);
8253
8254 return BuiltinMSVaListDecl;
8255 }
8256
canBuiltinBeRedeclared(const FunctionDecl * FD) const8257 bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const {
8258 return BuiltinInfo.canBeRedeclared(FD->getBuiltinID());
8259 }
8260
setObjCConstantStringInterface(ObjCInterfaceDecl * Decl)8261 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
8262 assert(ObjCConstantStringType.isNull() &&
8263 "'NSConstantString' type already set!");
8264
8265 ObjCConstantStringType = getObjCInterfaceType(Decl);
8266 }
8267
8268 /// Retrieve the template name that corresponds to a non-empty
8269 /// lookup.
8270 TemplateName
getOverloadedTemplateName(UnresolvedSetIterator Begin,UnresolvedSetIterator End) const8271 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
8272 UnresolvedSetIterator End) const {
8273 unsigned size = End - Begin;
8274 assert(size > 1 && "set is not overloaded!");
8275
8276 void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
8277 size * sizeof(FunctionTemplateDecl*));
8278 auto *OT = new (memory) OverloadedTemplateStorage(size);
8279
8280 NamedDecl **Storage = OT->getStorage();
8281 for (UnresolvedSetIterator I = Begin; I != End; ++I) {
8282 NamedDecl *D = *I;
8283 assert(isa<FunctionTemplateDecl>(D) ||
8284 isa<UnresolvedUsingValueDecl>(D) ||
8285 (isa<UsingShadowDecl>(D) &&
8286 isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
8287 *Storage++ = D;
8288 }
8289
8290 return TemplateName(OT);
8291 }
8292
8293 /// Retrieve a template name representing an unqualified-id that has been
8294 /// assumed to name a template for ADL purposes.
getAssumedTemplateName(DeclarationName Name) const8295 TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const {
8296 auto *OT = new (*this) AssumedTemplateStorage(Name);
8297 return TemplateName(OT);
8298 }
8299
8300 /// Retrieve the template name that represents a qualified
8301 /// template name such as \c std::vector.
8302 TemplateName
getQualifiedTemplateName(NestedNameSpecifier * NNS,bool TemplateKeyword,TemplateDecl * Template) const8303 ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
8304 bool TemplateKeyword,
8305 TemplateDecl *Template) const {
8306 assert(NNS && "Missing nested-name-specifier in qualified template name");
8307
8308 // FIXME: Canonicalization?
8309 llvm::FoldingSetNodeID ID;
8310 QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
8311
8312 void *InsertPos = nullptr;
8313 QualifiedTemplateName *QTN =
8314 QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8315 if (!QTN) {
8316 QTN = new (*this, alignof(QualifiedTemplateName))
8317 QualifiedTemplateName(NNS, TemplateKeyword, Template);
8318 QualifiedTemplateNames.InsertNode(QTN, InsertPos);
8319 }
8320
8321 return TemplateName(QTN);
8322 }
8323
8324 /// Retrieve the template name that represents a dependent
8325 /// template name such as \c MetaFun::template apply.
8326 TemplateName
getDependentTemplateName(NestedNameSpecifier * NNS,const IdentifierInfo * Name) const8327 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
8328 const IdentifierInfo *Name) const {
8329 assert((!NNS || NNS->isDependent()) &&
8330 "Nested name specifier must be dependent");
8331
8332 llvm::FoldingSetNodeID ID;
8333 DependentTemplateName::Profile(ID, NNS, Name);
8334
8335 void *InsertPos = nullptr;
8336 DependentTemplateName *QTN =
8337 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8338
8339 if (QTN)
8340 return TemplateName(QTN);
8341
8342 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
8343 if (CanonNNS == NNS) {
8344 QTN = new (*this, alignof(DependentTemplateName))
8345 DependentTemplateName(NNS, Name);
8346 } else {
8347 TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
8348 QTN = new (*this, alignof(DependentTemplateName))
8349 DependentTemplateName(NNS, Name, Canon);
8350 DependentTemplateName *CheckQTN =
8351 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8352 assert(!CheckQTN && "Dependent type name canonicalization broken");
8353 (void)CheckQTN;
8354 }
8355
8356 DependentTemplateNames.InsertNode(QTN, InsertPos);
8357 return TemplateName(QTN);
8358 }
8359
8360 /// Retrieve the template name that represents a dependent
8361 /// template name such as \c MetaFun::template operator+.
8362 TemplateName
getDependentTemplateName(NestedNameSpecifier * NNS,OverloadedOperatorKind Operator) const8363 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
8364 OverloadedOperatorKind Operator) const {
8365 assert((!NNS || NNS->isDependent()) &&
8366 "Nested name specifier must be dependent");
8367
8368 llvm::FoldingSetNodeID ID;
8369 DependentTemplateName::Profile(ID, NNS, Operator);
8370
8371 void *InsertPos = nullptr;
8372 DependentTemplateName *QTN
8373 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8374
8375 if (QTN)
8376 return TemplateName(QTN);
8377
8378 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
8379 if (CanonNNS == NNS) {
8380 QTN = new (*this, alignof(DependentTemplateName))
8381 DependentTemplateName(NNS, Operator);
8382 } else {
8383 TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
8384 QTN = new (*this, alignof(DependentTemplateName))
8385 DependentTemplateName(NNS, Operator, Canon);
8386
8387 DependentTemplateName *CheckQTN
8388 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8389 assert(!CheckQTN && "Dependent template name canonicalization broken");
8390 (void)CheckQTN;
8391 }
8392
8393 DependentTemplateNames.InsertNode(QTN, InsertPos);
8394 return TemplateName(QTN);
8395 }
8396
8397 TemplateName
getSubstTemplateTemplateParm(TemplateTemplateParmDecl * param,TemplateName replacement) const8398 ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
8399 TemplateName replacement) const {
8400 llvm::FoldingSetNodeID ID;
8401 SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
8402
8403 void *insertPos = nullptr;
8404 SubstTemplateTemplateParmStorage *subst
8405 = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
8406
8407 if (!subst) {
8408 subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
8409 SubstTemplateTemplateParms.InsertNode(subst, insertPos);
8410 }
8411
8412 return TemplateName(subst);
8413 }
8414
8415 TemplateName
getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl * Param,const TemplateArgument & ArgPack) const8416 ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
8417 const TemplateArgument &ArgPack) const {
8418 auto &Self = const_cast<ASTContext &>(*this);
8419 llvm::FoldingSetNodeID ID;
8420 SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
8421
8422 void *InsertPos = nullptr;
8423 SubstTemplateTemplateParmPackStorage *Subst
8424 = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
8425
8426 if (!Subst) {
8427 Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
8428 ArgPack.pack_size(),
8429 ArgPack.pack_begin());
8430 SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
8431 }
8432
8433 return TemplateName(Subst);
8434 }
8435
8436 /// getFromTargetType - Given one of the integer types provided by
8437 /// TargetInfo, produce the corresponding type. The unsigned @p Type
8438 /// is actually a value of type @c TargetInfo::IntType.
getFromTargetType(unsigned Type) const8439 CanQualType ASTContext::getFromTargetType(unsigned Type) const {
8440 switch (Type) {
8441 case TargetInfo::NoInt: return {};
8442 case TargetInfo::SignedChar: return SignedCharTy;
8443 case TargetInfo::UnsignedChar: return UnsignedCharTy;
8444 case TargetInfo::SignedShort: return ShortTy;
8445 case TargetInfo::UnsignedShort: return UnsignedShortTy;
8446 case TargetInfo::SignedInt: return IntTy;
8447 case TargetInfo::UnsignedInt: return UnsignedIntTy;
8448 case TargetInfo::SignedLong: return LongTy;
8449 case TargetInfo::UnsignedLong: return UnsignedLongTy;
8450 case TargetInfo::SignedLongLong: return LongLongTy;
8451 case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
8452 }
8453
8454 llvm_unreachable("Unhandled TargetInfo::IntType value");
8455 }
8456
8457 //===----------------------------------------------------------------------===//
8458 // Type Predicates.
8459 //===----------------------------------------------------------------------===//
8460
8461 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
8462 /// garbage collection attribute.
8463 ///
getObjCGCAttrKind(QualType Ty) const8464 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
8465 if (getLangOpts().getGC() == LangOptions::NonGC)
8466 return Qualifiers::GCNone;
8467
8468 assert(getLangOpts().ObjC);
8469 Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
8470
8471 // Default behaviour under objective-C's gc is for ObjC pointers
8472 // (or pointers to them) be treated as though they were declared
8473 // as __strong.
8474 if (GCAttrs == Qualifiers::GCNone) {
8475 if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
8476 return Qualifiers::Strong;
8477 else if (Ty->isPointerType())
8478 return getObjCGCAttrKind(Ty->castAs<PointerType>()->getPointeeType());
8479 } else {
8480 // It's not valid to set GC attributes on anything that isn't a
8481 // pointer.
8482 #ifndef NDEBUG
8483 QualType CT = Ty->getCanonicalTypeInternal();
8484 while (const auto *AT = dyn_cast<ArrayType>(CT))
8485 CT = AT->getElementType();
8486 assert(CT->isAnyPointerType() || CT->isBlockPointerType());
8487 #endif
8488 }
8489 return GCAttrs;
8490 }
8491
8492 //===----------------------------------------------------------------------===//
8493 // Type Compatibility Testing
8494 //===----------------------------------------------------------------------===//
8495
8496 /// areCompatVectorTypes - Return true if the two specified vector types are
8497 /// compatible.
areCompatVectorTypes(const VectorType * LHS,const VectorType * RHS)8498 static bool areCompatVectorTypes(const VectorType *LHS,
8499 const VectorType *RHS) {
8500 assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
8501 return LHS->getElementType() == RHS->getElementType() &&
8502 LHS->getNumElements() == RHS->getNumElements();
8503 }
8504
8505 /// areCompatMatrixTypes - Return true if the two specified matrix types are
8506 /// compatible.
areCompatMatrixTypes(const ConstantMatrixType * LHS,const ConstantMatrixType * RHS)8507 static bool areCompatMatrixTypes(const ConstantMatrixType *LHS,
8508 const ConstantMatrixType *RHS) {
8509 assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
8510 return LHS->getElementType() == RHS->getElementType() &&
8511 LHS->getNumRows() == RHS->getNumRows() &&
8512 LHS->getNumColumns() == RHS->getNumColumns();
8513 }
8514
areCompatibleVectorTypes(QualType FirstVec,QualType SecondVec)8515 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
8516 QualType SecondVec) {
8517 assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
8518 assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
8519
8520 if (hasSameUnqualifiedType(FirstVec, SecondVec))
8521 return true;
8522
8523 // Treat Neon vector types and most AltiVec vector types as if they are the
8524 // equivalent GCC vector types.
8525 const auto *First = FirstVec->castAs<VectorType>();
8526 const auto *Second = SecondVec->castAs<VectorType>();
8527 if (First->getNumElements() == Second->getNumElements() &&
8528 hasSameType(First->getElementType(), Second->getElementType()) &&
8529 First->getVectorKind() != VectorType::AltiVecPixel &&
8530 First->getVectorKind() != VectorType::AltiVecBool &&
8531 Second->getVectorKind() != VectorType::AltiVecPixel &&
8532 Second->getVectorKind() != VectorType::AltiVecBool &&
8533 First->getVectorKind() != VectorType::SveFixedLengthDataVector &&
8534 First->getVectorKind() != VectorType::SveFixedLengthPredicateVector &&
8535 Second->getVectorKind() != VectorType::SveFixedLengthDataVector &&
8536 Second->getVectorKind() != VectorType::SveFixedLengthPredicateVector)
8537 return true;
8538
8539 return false;
8540 }
8541
areCompatibleSveTypes(QualType FirstType,QualType SecondType)8542 bool ASTContext::areCompatibleSveTypes(QualType FirstType,
8543 QualType SecondType) {
8544 assert(((FirstType->isSizelessBuiltinType() && SecondType->isVectorType()) ||
8545 (FirstType->isVectorType() && SecondType->isSizelessBuiltinType())) &&
8546 "Expected SVE builtin type and vector type!");
8547
8548 auto IsValidCast = [this](QualType FirstType, QualType SecondType) {
8549 if (const auto *BT = FirstType->getAs<BuiltinType>()) {
8550 if (const auto *VT = SecondType->getAs<VectorType>()) {
8551 // Predicates have the same representation as uint8 so we also have to
8552 // check the kind to make these types incompatible.
8553 if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
8554 return BT->getKind() == BuiltinType::SveBool;
8555 else if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector)
8556 return VT->getElementType().getCanonicalType() ==
8557 FirstType->getSveEltType(*this);
8558 else if (VT->getVectorKind() == VectorType::GenericVector)
8559 return getTypeSize(SecondType) == getLangOpts().ArmSveVectorBits &&
8560 hasSameType(VT->getElementType(),
8561 getBuiltinVectorTypeInfo(BT).ElementType);
8562 }
8563 }
8564 return false;
8565 };
8566
8567 return IsValidCast(FirstType, SecondType) ||
8568 IsValidCast(SecondType, FirstType);
8569 }
8570
areLaxCompatibleSveTypes(QualType FirstType,QualType SecondType)8571 bool ASTContext::areLaxCompatibleSveTypes(QualType FirstType,
8572 QualType SecondType) {
8573 assert(((FirstType->isSizelessBuiltinType() && SecondType->isVectorType()) ||
8574 (FirstType->isVectorType() && SecondType->isSizelessBuiltinType())) &&
8575 "Expected SVE builtin type and vector type!");
8576
8577 auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) {
8578 if (!FirstType->getAs<BuiltinType>())
8579 return false;
8580
8581 const auto *VecTy = SecondType->getAs<VectorType>();
8582 if (VecTy &&
8583 (VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector ||
8584 VecTy->getVectorKind() == VectorType::GenericVector)) {
8585 const LangOptions::LaxVectorConversionKind LVCKind =
8586 getLangOpts().getLaxVectorConversions();
8587
8588 // If __ARM_FEATURE_SVE_BITS != N do not allow GNU vector lax conversion.
8589 // "Whenever __ARM_FEATURE_SVE_BITS==N, GNUT implicitly
8590 // converts to VLAT and VLAT implicitly converts to GNUT."
8591 // ACLE Spec Version 00bet6, 3.7.3.2. Behavior common to vectors and
8592 // predicates.
8593 if (VecTy->getVectorKind() == VectorType::GenericVector &&
8594 getTypeSize(SecondType) != getLangOpts().ArmSveVectorBits)
8595 return false;
8596
8597 // If -flax-vector-conversions=all is specified, the types are
8598 // certainly compatible.
8599 if (LVCKind == LangOptions::LaxVectorConversionKind::All)
8600 return true;
8601
8602 // If -flax-vector-conversions=integer is specified, the types are
8603 // compatible if the elements are integer types.
8604 if (LVCKind == LangOptions::LaxVectorConversionKind::Integer)
8605 return VecTy->getElementType().getCanonicalType()->isIntegerType() &&
8606 FirstType->getSveEltType(*this)->isIntegerType();
8607 }
8608
8609 return false;
8610 };
8611
8612 return IsLaxCompatible(FirstType, SecondType) ||
8613 IsLaxCompatible(SecondType, FirstType);
8614 }
8615
hasDirectOwnershipQualifier(QualType Ty) const8616 bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const {
8617 while (true) {
8618 // __strong id
8619 if (const AttributedType *Attr = dyn_cast<AttributedType>(Ty)) {
8620 if (Attr->getAttrKind() == attr::ObjCOwnership)
8621 return true;
8622
8623 Ty = Attr->getModifiedType();
8624
8625 // X *__strong (...)
8626 } else if (const ParenType *Paren = dyn_cast<ParenType>(Ty)) {
8627 Ty = Paren->getInnerType();
8628
8629 // We do not want to look through typedefs, typeof(expr),
8630 // typeof(type), or any other way that the type is somehow
8631 // abstracted.
8632 } else {
8633 return false;
8634 }
8635 }
8636 }
8637
8638 //===----------------------------------------------------------------------===//
8639 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
8640 //===----------------------------------------------------------------------===//
8641
8642 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
8643 /// inheritance hierarchy of 'rProto'.
8644 bool
ProtocolCompatibleWithProtocol(ObjCProtocolDecl * lProto,ObjCProtocolDecl * rProto) const8645 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
8646 ObjCProtocolDecl *rProto) const {
8647 if (declaresSameEntity(lProto, rProto))
8648 return true;
8649 for (auto *PI : rProto->protocols())
8650 if (ProtocolCompatibleWithProtocol(lProto, PI))
8651 return true;
8652 return false;
8653 }
8654
8655 /// ObjCQualifiedClassTypesAreCompatible - compare Class<pr,...> and
8656 /// Class<pr1, ...>.
ObjCQualifiedClassTypesAreCompatible(const ObjCObjectPointerType * lhs,const ObjCObjectPointerType * rhs)8657 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(
8658 const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) {
8659 for (auto *lhsProto : lhs->quals()) {
8660 bool match = false;
8661 for (auto *rhsProto : rhs->quals()) {
8662 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
8663 match = true;
8664 break;
8665 }
8666 }
8667 if (!match)
8668 return false;
8669 }
8670 return true;
8671 }
8672
8673 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
8674 /// ObjCQualifiedIDType.
ObjCQualifiedIdTypesAreCompatible(const ObjCObjectPointerType * lhs,const ObjCObjectPointerType * rhs,bool compare)8675 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(
8676 const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs,
8677 bool compare) {
8678 // Allow id<P..> and an 'id' in all cases.
8679 if (lhs->isObjCIdType() || rhs->isObjCIdType())
8680 return true;
8681
8682 // Don't allow id<P..> to convert to Class or Class<P..> in either direction.
8683 if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() ||
8684 rhs->isObjCClassType() || rhs->isObjCQualifiedClassType())
8685 return false;
8686
8687 if (lhs->isObjCQualifiedIdType()) {
8688 if (rhs->qual_empty()) {
8689 // If the RHS is a unqualified interface pointer "NSString*",
8690 // make sure we check the class hierarchy.
8691 if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
8692 for (auto *I : lhs->quals()) {
8693 // when comparing an id<P> on lhs with a static type on rhs,
8694 // see if static class implements all of id's protocols, directly or
8695 // through its super class and categories.
8696 if (!rhsID->ClassImplementsProtocol(I, true))
8697 return false;
8698 }
8699 }
8700 // If there are no qualifiers and no interface, we have an 'id'.
8701 return true;
8702 }
8703 // Both the right and left sides have qualifiers.
8704 for (auto *lhsProto : lhs->quals()) {
8705 bool match = false;
8706
8707 // when comparing an id<P> on lhs with a static type on rhs,
8708 // see if static class implements all of id's protocols, directly or
8709 // through its super class and categories.
8710 for (auto *rhsProto : rhs->quals()) {
8711 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
8712 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
8713 match = true;
8714 break;
8715 }
8716 }
8717 // If the RHS is a qualified interface pointer "NSString<P>*",
8718 // make sure we check the class hierarchy.
8719 if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
8720 for (auto *I : lhs->quals()) {
8721 // when comparing an id<P> on lhs with a static type on rhs,
8722 // see if static class implements all of id's protocols, directly or
8723 // through its super class and categories.
8724 if (rhsID->ClassImplementsProtocol(I, true)) {
8725 match = true;
8726 break;
8727 }
8728 }
8729 }
8730 if (!match)
8731 return false;
8732 }
8733
8734 return true;
8735 }
8736
8737 assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>");
8738
8739 if (lhs->getInterfaceType()) {
8740 // If both the right and left sides have qualifiers.
8741 for (auto *lhsProto : lhs->quals()) {
8742 bool match = false;
8743
8744 // when comparing an id<P> on rhs with a static type on lhs,
8745 // see if static class implements all of id's protocols, directly or
8746 // through its super class and categories.
8747 // First, lhs protocols in the qualifier list must be found, direct
8748 // or indirect in rhs's qualifier list or it is a mismatch.
8749 for (auto *rhsProto : rhs->quals()) {
8750 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
8751 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
8752 match = true;
8753 break;
8754 }
8755 }
8756 if (!match)
8757 return false;
8758 }
8759
8760 // Static class's protocols, or its super class or category protocols
8761 // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
8762 if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) {
8763 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
8764 CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
8765 // This is rather dubious but matches gcc's behavior. If lhs has
8766 // no type qualifier and its class has no static protocol(s)
8767 // assume that it is mismatch.
8768 if (LHSInheritedProtocols.empty() && lhs->qual_empty())
8769 return false;
8770 for (auto *lhsProto : LHSInheritedProtocols) {
8771 bool match = false;
8772 for (auto *rhsProto : rhs->quals()) {
8773 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
8774 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
8775 match = true;
8776 break;
8777 }
8778 }
8779 if (!match)
8780 return false;
8781 }
8782 }
8783 return true;
8784 }
8785 return false;
8786 }
8787
8788 /// canAssignObjCInterfaces - Return true if the two interface types are
8789 /// compatible for assignment from RHS to LHS. This handles validation of any
8790 /// protocol qualifiers on the LHS or RHS.
canAssignObjCInterfaces(const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT)8791 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
8792 const ObjCObjectPointerType *RHSOPT) {
8793 const ObjCObjectType* LHS = LHSOPT->getObjectType();
8794 const ObjCObjectType* RHS = RHSOPT->getObjectType();
8795
8796 // If either type represents the built-in 'id' type, return true.
8797 if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId())
8798 return true;
8799
8800 // Function object that propagates a successful result or handles
8801 // __kindof types.
8802 auto finish = [&](bool succeeded) -> bool {
8803 if (succeeded)
8804 return true;
8805
8806 if (!RHS->isKindOfType())
8807 return false;
8808
8809 // Strip off __kindof and protocol qualifiers, then check whether
8810 // we can assign the other way.
8811 return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this),
8812 LHSOPT->stripObjCKindOfTypeAndQuals(*this));
8813 };
8814
8815 // Casts from or to id<P> are allowed when the other side has compatible
8816 // protocols.
8817 if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) {
8818 return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false));
8819 }
8820
8821 // Verify protocol compatibility for casts from Class<P1> to Class<P2>.
8822 if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) {
8823 return finish(ObjCQualifiedClassTypesAreCompatible(LHSOPT, RHSOPT));
8824 }
8825
8826 // Casts from Class to Class<Foo>, or vice-versa, are allowed.
8827 if (LHS->isObjCClass() && RHS->isObjCClass()) {
8828 return true;
8829 }
8830
8831 // If we have 2 user-defined types, fall into that path.
8832 if (LHS->getInterface() && RHS->getInterface()) {
8833 return finish(canAssignObjCInterfaces(LHS, RHS));
8834 }
8835
8836 return false;
8837 }
8838
8839 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
8840 /// for providing type-safety for objective-c pointers used to pass/return
8841 /// arguments in block literals. When passed as arguments, passing 'A*' where
8842 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
8843 /// not OK. For the return type, the opposite is not OK.
canAssignObjCInterfacesInBlockPointer(const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT,bool BlockReturnType)8844 bool ASTContext::canAssignObjCInterfacesInBlockPointer(
8845 const ObjCObjectPointerType *LHSOPT,
8846 const ObjCObjectPointerType *RHSOPT,
8847 bool BlockReturnType) {
8848
8849 // Function object that propagates a successful result or handles
8850 // __kindof types.
8851 auto finish = [&](bool succeeded) -> bool {
8852 if (succeeded)
8853 return true;
8854
8855 const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT;
8856 if (!Expected->isKindOfType())
8857 return false;
8858
8859 // Strip off __kindof and protocol qualifiers, then check whether
8860 // we can assign the other way.
8861 return canAssignObjCInterfacesInBlockPointer(
8862 RHSOPT->stripObjCKindOfTypeAndQuals(*this),
8863 LHSOPT->stripObjCKindOfTypeAndQuals(*this),
8864 BlockReturnType);
8865 };
8866
8867 if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
8868 return true;
8869
8870 if (LHSOPT->isObjCBuiltinType()) {
8871 return finish(RHSOPT->isObjCBuiltinType() ||
8872 RHSOPT->isObjCQualifiedIdType());
8873 }
8874
8875 if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) {
8876 if (getLangOpts().CompatibilityQualifiedIdBlockParamTypeChecking)
8877 // Use for block parameters previous type checking for compatibility.
8878 return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false) ||
8879 // Or corrected type checking as in non-compat mode.
8880 (!BlockReturnType &&
8881 ObjCQualifiedIdTypesAreCompatible(RHSOPT, LHSOPT, false)));
8882 else
8883 return finish(ObjCQualifiedIdTypesAreCompatible(
8884 (BlockReturnType ? LHSOPT : RHSOPT),
8885 (BlockReturnType ? RHSOPT : LHSOPT), false));
8886 }
8887
8888 const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
8889 const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
8890 if (LHS && RHS) { // We have 2 user-defined types.
8891 if (LHS != RHS) {
8892 if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
8893 return finish(BlockReturnType);
8894 if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
8895 return finish(!BlockReturnType);
8896 }
8897 else
8898 return true;
8899 }
8900 return false;
8901 }
8902
8903 /// Comparison routine for Objective-C protocols to be used with
8904 /// llvm::array_pod_sort.
compareObjCProtocolsByName(ObjCProtocolDecl * const * lhs,ObjCProtocolDecl * const * rhs)8905 static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs,
8906 ObjCProtocolDecl * const *rhs) {
8907 return (*lhs)->getName().compare((*rhs)->getName());
8908 }
8909
8910 /// getIntersectionOfProtocols - This routine finds the intersection of set
8911 /// of protocols inherited from two distinct objective-c pointer objects with
8912 /// the given common base.
8913 /// It is used to build composite qualifier list of the composite type of
8914 /// the conditional expression involving two objective-c pointer objects.
8915 static
getIntersectionOfProtocols(ASTContext & Context,const ObjCInterfaceDecl * CommonBase,const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT,SmallVectorImpl<ObjCProtocolDecl * > & IntersectionSet)8916 void getIntersectionOfProtocols(ASTContext &Context,
8917 const ObjCInterfaceDecl *CommonBase,
8918 const ObjCObjectPointerType *LHSOPT,
8919 const ObjCObjectPointerType *RHSOPT,
8920 SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) {
8921
8922 const ObjCObjectType* LHS = LHSOPT->getObjectType();
8923 const ObjCObjectType* RHS = RHSOPT->getObjectType();
8924 assert(LHS->getInterface() && "LHS must have an interface base");
8925 assert(RHS->getInterface() && "RHS must have an interface base");
8926
8927 // Add all of the protocols for the LHS.
8928 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet;
8929
8930 // Start with the protocol qualifiers.
8931 for (auto proto : LHS->quals()) {
8932 Context.CollectInheritedProtocols(proto, LHSProtocolSet);
8933 }
8934
8935 // Also add the protocols associated with the LHS interface.
8936 Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet);
8937
8938 // Add all of the protocols for the RHS.
8939 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet;
8940
8941 // Start with the protocol qualifiers.
8942 for (auto proto : RHS->quals()) {
8943 Context.CollectInheritedProtocols(proto, RHSProtocolSet);
8944 }
8945
8946 // Also add the protocols associated with the RHS interface.
8947 Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet);
8948
8949 // Compute the intersection of the collected protocol sets.
8950 for (auto proto : LHSProtocolSet) {
8951 if (RHSProtocolSet.count(proto))
8952 IntersectionSet.push_back(proto);
8953 }
8954
8955 // Compute the set of protocols that is implied by either the common type or
8956 // the protocols within the intersection.
8957 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols;
8958 Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols);
8959
8960 // Remove any implied protocols from the list of inherited protocols.
8961 if (!ImpliedProtocols.empty()) {
8962 IntersectionSet.erase(
8963 std::remove_if(IntersectionSet.begin(),
8964 IntersectionSet.end(),
8965 [&](ObjCProtocolDecl *proto) -> bool {
8966 return ImpliedProtocols.count(proto) > 0;
8967 }),
8968 IntersectionSet.end());
8969 }
8970
8971 // Sort the remaining protocols by name.
8972 llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(),
8973 compareObjCProtocolsByName);
8974 }
8975
8976 /// Determine whether the first type is a subtype of the second.
canAssignObjCObjectTypes(ASTContext & ctx,QualType lhs,QualType rhs)8977 static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs,
8978 QualType rhs) {
8979 // Common case: two object pointers.
8980 const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>();
8981 const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
8982 if (lhsOPT && rhsOPT)
8983 return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT);
8984
8985 // Two block pointers.
8986 const auto *lhsBlock = lhs->getAs<BlockPointerType>();
8987 const auto *rhsBlock = rhs->getAs<BlockPointerType>();
8988 if (lhsBlock && rhsBlock)
8989 return ctx.typesAreBlockPointerCompatible(lhs, rhs);
8990
8991 // If either is an unqualified 'id' and the other is a block, it's
8992 // acceptable.
8993 if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) ||
8994 (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock))
8995 return true;
8996
8997 return false;
8998 }
8999
9000 // Check that the given Objective-C type argument lists are equivalent.
sameObjCTypeArgs(ASTContext & ctx,const ObjCInterfaceDecl * iface,ArrayRef<QualType> lhsArgs,ArrayRef<QualType> rhsArgs,bool stripKindOf)9001 static bool sameObjCTypeArgs(ASTContext &ctx,
9002 const ObjCInterfaceDecl *iface,
9003 ArrayRef<QualType> lhsArgs,
9004 ArrayRef<QualType> rhsArgs,
9005 bool stripKindOf) {
9006 if (lhsArgs.size() != rhsArgs.size())
9007 return false;
9008
9009 ObjCTypeParamList *typeParams = iface->getTypeParamList();
9010 for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) {
9011 if (ctx.hasSameType(lhsArgs[i], rhsArgs[i]))
9012 continue;
9013
9014 switch (typeParams->begin()[i]->getVariance()) {
9015 case ObjCTypeParamVariance::Invariant:
9016 if (!stripKindOf ||
9017 !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx),
9018 rhsArgs[i].stripObjCKindOfType(ctx))) {
9019 return false;
9020 }
9021 break;
9022
9023 case ObjCTypeParamVariance::Covariant:
9024 if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i]))
9025 return false;
9026 break;
9027
9028 case ObjCTypeParamVariance::Contravariant:
9029 if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i]))
9030 return false;
9031 break;
9032 }
9033 }
9034
9035 return true;
9036 }
9037
areCommonBaseCompatible(const ObjCObjectPointerType * Lptr,const ObjCObjectPointerType * Rptr)9038 QualType ASTContext::areCommonBaseCompatible(
9039 const ObjCObjectPointerType *Lptr,
9040 const ObjCObjectPointerType *Rptr) {
9041 const ObjCObjectType *LHS = Lptr->getObjectType();
9042 const ObjCObjectType *RHS = Rptr->getObjectType();
9043 const ObjCInterfaceDecl* LDecl = LHS->getInterface();
9044 const ObjCInterfaceDecl* RDecl = RHS->getInterface();
9045
9046 if (!LDecl || !RDecl)
9047 return {};
9048
9049 // When either LHS or RHS is a kindof type, we should return a kindof type.
9050 // For example, for common base of kindof(ASub1) and kindof(ASub2), we return
9051 // kindof(A).
9052 bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType();
9053
9054 // Follow the left-hand side up the class hierarchy until we either hit a
9055 // root or find the RHS. Record the ancestors in case we don't find it.
9056 llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4>
9057 LHSAncestors;
9058 while (true) {
9059 // Record this ancestor. We'll need this if the common type isn't in the
9060 // path from the LHS to the root.
9061 LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS;
9062
9063 if (declaresSameEntity(LHS->getInterface(), RDecl)) {
9064 // Get the type arguments.
9065 ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten();
9066 bool anyChanges = false;
9067 if (LHS->isSpecialized() && RHS->isSpecialized()) {
9068 // Both have type arguments, compare them.
9069 if (!sameObjCTypeArgs(*this, LHS->getInterface(),
9070 LHS->getTypeArgs(), RHS->getTypeArgs(),
9071 /*stripKindOf=*/true))
9072 return {};
9073 } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
9074 // If only one has type arguments, the result will not have type
9075 // arguments.
9076 LHSTypeArgs = {};
9077 anyChanges = true;
9078 }
9079
9080 // Compute the intersection of protocols.
9081 SmallVector<ObjCProtocolDecl *, 8> Protocols;
9082 getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr,
9083 Protocols);
9084 if (!Protocols.empty())
9085 anyChanges = true;
9086
9087 // If anything in the LHS will have changed, build a new result type.
9088 // If we need to return a kindof type but LHS is not a kindof type, we
9089 // build a new result type.
9090 if (anyChanges || LHS->isKindOfType() != anyKindOf) {
9091 QualType Result = getObjCInterfaceType(LHS->getInterface());
9092 Result = getObjCObjectType(Result, LHSTypeArgs, Protocols,
9093 anyKindOf || LHS->isKindOfType());
9094 return getObjCObjectPointerType(Result);
9095 }
9096
9097 return getObjCObjectPointerType(QualType(LHS, 0));
9098 }
9099
9100 // Find the superclass.
9101 QualType LHSSuperType = LHS->getSuperClassType();
9102 if (LHSSuperType.isNull())
9103 break;
9104
9105 LHS = LHSSuperType->castAs<ObjCObjectType>();
9106 }
9107
9108 // We didn't find anything by following the LHS to its root; now check
9109 // the RHS against the cached set of ancestors.
9110 while (true) {
9111 auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl());
9112 if (KnownLHS != LHSAncestors.end()) {
9113 LHS = KnownLHS->second;
9114
9115 // Get the type arguments.
9116 ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten();
9117 bool anyChanges = false;
9118 if (LHS->isSpecialized() && RHS->isSpecialized()) {
9119 // Both have type arguments, compare them.
9120 if (!sameObjCTypeArgs(*this, LHS->getInterface(),
9121 LHS->getTypeArgs(), RHS->getTypeArgs(),
9122 /*stripKindOf=*/true))
9123 return {};
9124 } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
9125 // If only one has type arguments, the result will not have type
9126 // arguments.
9127 RHSTypeArgs = {};
9128 anyChanges = true;
9129 }
9130
9131 // Compute the intersection of protocols.
9132 SmallVector<ObjCProtocolDecl *, 8> Protocols;
9133 getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr,
9134 Protocols);
9135 if (!Protocols.empty())
9136 anyChanges = true;
9137
9138 // If we need to return a kindof type but RHS is not a kindof type, we
9139 // build a new result type.
9140 if (anyChanges || RHS->isKindOfType() != anyKindOf) {
9141 QualType Result = getObjCInterfaceType(RHS->getInterface());
9142 Result = getObjCObjectType(Result, RHSTypeArgs, Protocols,
9143 anyKindOf || RHS->isKindOfType());
9144 return getObjCObjectPointerType(Result);
9145 }
9146
9147 return getObjCObjectPointerType(QualType(RHS, 0));
9148 }
9149
9150 // Find the superclass of the RHS.
9151 QualType RHSSuperType = RHS->getSuperClassType();
9152 if (RHSSuperType.isNull())
9153 break;
9154
9155 RHS = RHSSuperType->castAs<ObjCObjectType>();
9156 }
9157
9158 return {};
9159 }
9160
canAssignObjCInterfaces(const ObjCObjectType * LHS,const ObjCObjectType * RHS)9161 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
9162 const ObjCObjectType *RHS) {
9163 assert(LHS->getInterface() && "LHS is not an interface type");
9164 assert(RHS->getInterface() && "RHS is not an interface type");
9165
9166 // Verify that the base decls are compatible: the RHS must be a subclass of
9167 // the LHS.
9168 ObjCInterfaceDecl *LHSInterface = LHS->getInterface();
9169 bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface());
9170 if (!IsSuperClass)
9171 return false;
9172
9173 // If the LHS has protocol qualifiers, determine whether all of them are
9174 // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the
9175 // LHS).
9176 if (LHS->getNumProtocols() > 0) {
9177 // OK if conversion of LHS to SuperClass results in narrowing of types
9178 // ; i.e., SuperClass may implement at least one of the protocols
9179 // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
9180 // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
9181 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
9182 CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
9183 // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
9184 // qualifiers.
9185 for (auto *RHSPI : RHS->quals())
9186 CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols);
9187 // If there is no protocols associated with RHS, it is not a match.
9188 if (SuperClassInheritedProtocols.empty())
9189 return false;
9190
9191 for (const auto *LHSProto : LHS->quals()) {
9192 bool SuperImplementsProtocol = false;
9193 for (auto *SuperClassProto : SuperClassInheritedProtocols)
9194 if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
9195 SuperImplementsProtocol = true;
9196 break;
9197 }
9198 if (!SuperImplementsProtocol)
9199 return false;
9200 }
9201 }
9202
9203 // If the LHS is specialized, we may need to check type arguments.
9204 if (LHS->isSpecialized()) {
9205 // Follow the superclass chain until we've matched the LHS class in the
9206 // hierarchy. This substitutes type arguments through.
9207 const ObjCObjectType *RHSSuper = RHS;
9208 while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface))
9209 RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>();
9210
9211 // If the RHS is specializd, compare type arguments.
9212 if (RHSSuper->isSpecialized() &&
9213 !sameObjCTypeArgs(*this, LHS->getInterface(),
9214 LHS->getTypeArgs(), RHSSuper->getTypeArgs(),
9215 /*stripKindOf=*/true)) {
9216 return false;
9217 }
9218 }
9219
9220 return true;
9221 }
9222
areComparableObjCPointerTypes(QualType LHS,QualType RHS)9223 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
9224 // get the "pointed to" types
9225 const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
9226 const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
9227
9228 if (!LHSOPT || !RHSOPT)
9229 return false;
9230
9231 return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
9232 canAssignObjCInterfaces(RHSOPT, LHSOPT);
9233 }
9234
canBindObjCObjectType(QualType To,QualType From)9235 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
9236 return canAssignObjCInterfaces(
9237 getObjCObjectPointerType(To)->castAs<ObjCObjectPointerType>(),
9238 getObjCObjectPointerType(From)->castAs<ObjCObjectPointerType>());
9239 }
9240
9241 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
9242 /// both shall have the identically qualified version of a compatible type.
9243 /// C99 6.2.7p1: Two types have compatible types if their types are the
9244 /// same. See 6.7.[2,3,5] for additional rules.
typesAreCompatible(QualType LHS,QualType RHS,bool CompareUnqualified)9245 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
9246 bool CompareUnqualified) {
9247 if (getLangOpts().CPlusPlus)
9248 return hasSameType(LHS, RHS);
9249
9250 return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
9251 }
9252
propertyTypesAreCompatible(QualType LHS,QualType RHS)9253 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
9254 return typesAreCompatible(LHS, RHS);
9255 }
9256
typesAreBlockPointerCompatible(QualType LHS,QualType RHS)9257 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
9258 return !mergeTypes(LHS, RHS, true).isNull();
9259 }
9260
9261 /// mergeTransparentUnionType - if T is a transparent union type and a member
9262 /// of T is compatible with SubType, return the merged type, else return
9263 /// QualType()
mergeTransparentUnionType(QualType T,QualType SubType,bool OfBlockPointer,bool Unqualified)9264 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
9265 bool OfBlockPointer,
9266 bool Unqualified) {
9267 if (const RecordType *UT = T->getAsUnionType()) {
9268 RecordDecl *UD = UT->getDecl();
9269 if (UD->hasAttr<TransparentUnionAttr>()) {
9270 for (const auto *I : UD->fields()) {
9271 QualType ET = I->getType().getUnqualifiedType();
9272 QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
9273 if (!MT.isNull())
9274 return MT;
9275 }
9276 }
9277 }
9278
9279 return {};
9280 }
9281
9282 /// mergeFunctionParameterTypes - merge two types which appear as function
9283 /// parameter types
mergeFunctionParameterTypes(QualType lhs,QualType rhs,bool OfBlockPointer,bool Unqualified)9284 QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
9285 bool OfBlockPointer,
9286 bool Unqualified) {
9287 // GNU extension: two types are compatible if they appear as a function
9288 // argument, one of the types is a transparent union type and the other
9289 // type is compatible with a union member
9290 QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
9291 Unqualified);
9292 if (!lmerge.isNull())
9293 return lmerge;
9294
9295 QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
9296 Unqualified);
9297 if (!rmerge.isNull())
9298 return rmerge;
9299
9300 return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
9301 }
9302
mergeFunctionTypes(QualType lhs,QualType rhs,bool OfBlockPointer,bool Unqualified,bool AllowCXX)9303 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
9304 bool OfBlockPointer, bool Unqualified,
9305 bool AllowCXX) {
9306 const auto *lbase = lhs->castAs<FunctionType>();
9307 const auto *rbase = rhs->castAs<FunctionType>();
9308 const auto *lproto = dyn_cast<FunctionProtoType>(lbase);
9309 const auto *rproto = dyn_cast<FunctionProtoType>(rbase);
9310 bool allLTypes = true;
9311 bool allRTypes = true;
9312
9313 // Check return type
9314 QualType retType;
9315 if (OfBlockPointer) {
9316 QualType RHS = rbase->getReturnType();
9317 QualType LHS = lbase->getReturnType();
9318 bool UnqualifiedResult = Unqualified;
9319 if (!UnqualifiedResult)
9320 UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
9321 retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
9322 }
9323 else
9324 retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
9325 Unqualified);
9326 if (retType.isNull())
9327 return {};
9328
9329 if (Unqualified)
9330 retType = retType.getUnqualifiedType();
9331
9332 CanQualType LRetType = getCanonicalType(lbase->getReturnType());
9333 CanQualType RRetType = getCanonicalType(rbase->getReturnType());
9334 if (Unqualified) {
9335 LRetType = LRetType.getUnqualifiedType();
9336 RRetType = RRetType.getUnqualifiedType();
9337 }
9338
9339 if (getCanonicalType(retType) != LRetType)
9340 allLTypes = false;
9341 if (getCanonicalType(retType) != RRetType)
9342 allRTypes = false;
9343
9344 // FIXME: double check this
9345 // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
9346 // rbase->getRegParmAttr() != 0 &&
9347 // lbase->getRegParmAttr() != rbase->getRegParmAttr()?
9348 FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
9349 FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
9350
9351 // Compatible functions must have compatible calling conventions
9352 if (lbaseInfo.getCC() != rbaseInfo.getCC())
9353 return {};
9354
9355 // Regparm is part of the calling convention.
9356 if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
9357 return {};
9358 if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
9359 return {};
9360
9361 if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
9362 return {};
9363 if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs())
9364 return {};
9365 if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck())
9366 return {};
9367
9368 // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
9369 bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
9370
9371 if (lbaseInfo.getNoReturn() != NoReturn)
9372 allLTypes = false;
9373 if (rbaseInfo.getNoReturn() != NoReturn)
9374 allRTypes = false;
9375
9376 FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
9377
9378 if (lproto && rproto) { // two C99 style function prototypes
9379 assert((AllowCXX ||
9380 (!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec())) &&
9381 "C++ shouldn't be here");
9382 // Compatible functions must have the same number of parameters
9383 if (lproto->getNumParams() != rproto->getNumParams())
9384 return {};
9385
9386 // Variadic and non-variadic functions aren't compatible
9387 if (lproto->isVariadic() != rproto->isVariadic())
9388 return {};
9389
9390 if (lproto->getMethodQuals() != rproto->getMethodQuals())
9391 return {};
9392
9393 SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos;
9394 bool canUseLeft, canUseRight;
9395 if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight,
9396 newParamInfos))
9397 return {};
9398
9399 if (!canUseLeft)
9400 allLTypes = false;
9401 if (!canUseRight)
9402 allRTypes = false;
9403
9404 // Check parameter type compatibility
9405 SmallVector<QualType, 10> types;
9406 for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
9407 QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
9408 QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
9409 QualType paramType = mergeFunctionParameterTypes(
9410 lParamType, rParamType, OfBlockPointer, Unqualified);
9411 if (paramType.isNull())
9412 return {};
9413
9414 if (Unqualified)
9415 paramType = paramType.getUnqualifiedType();
9416
9417 types.push_back(paramType);
9418 if (Unqualified) {
9419 lParamType = lParamType.getUnqualifiedType();
9420 rParamType = rParamType.getUnqualifiedType();
9421 }
9422
9423 if (getCanonicalType(paramType) != getCanonicalType(lParamType))
9424 allLTypes = false;
9425 if (getCanonicalType(paramType) != getCanonicalType(rParamType))
9426 allRTypes = false;
9427 }
9428
9429 if (allLTypes) return lhs;
9430 if (allRTypes) return rhs;
9431
9432 FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
9433 EPI.ExtInfo = einfo;
9434 EPI.ExtParameterInfos =
9435 newParamInfos.empty() ? nullptr : newParamInfos.data();
9436 return getFunctionType(retType, types, EPI);
9437 }
9438
9439 if (lproto) allRTypes = false;
9440 if (rproto) allLTypes = false;
9441
9442 const FunctionProtoType *proto = lproto ? lproto : rproto;
9443 if (proto) {
9444 assert((AllowCXX || !proto->hasExceptionSpec()) && "C++ shouldn't be here");
9445 if (proto->isVariadic())
9446 return {};
9447 // Check that the types are compatible with the types that
9448 // would result from default argument promotions (C99 6.7.5.3p15).
9449 // The only types actually affected are promotable integer
9450 // types and floats, which would be passed as a different
9451 // type depending on whether the prototype is visible.
9452 for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
9453 QualType paramTy = proto->getParamType(i);
9454
9455 // Look at the converted type of enum types, since that is the type used
9456 // to pass enum values.
9457 if (const auto *Enum = paramTy->getAs<EnumType>()) {
9458 paramTy = Enum->getDecl()->getIntegerType();
9459 if (paramTy.isNull())
9460 return {};
9461 }
9462
9463 if (paramTy->isPromotableIntegerType() ||
9464 getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
9465 return {};
9466 }
9467
9468 if (allLTypes) return lhs;
9469 if (allRTypes) return rhs;
9470
9471 FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
9472 EPI.ExtInfo = einfo;
9473 return getFunctionType(retType, proto->getParamTypes(), EPI);
9474 }
9475
9476 if (allLTypes) return lhs;
9477 if (allRTypes) return rhs;
9478 return getFunctionNoProtoType(retType, einfo);
9479 }
9480
9481 /// Given that we have an enum type and a non-enum type, try to merge them.
mergeEnumWithInteger(ASTContext & Context,const EnumType * ET,QualType other,bool isBlockReturnType)9482 static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
9483 QualType other, bool isBlockReturnType) {
9484 // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
9485 // a signed integer type, or an unsigned integer type.
9486 // Compatibility is based on the underlying type, not the promotion
9487 // type.
9488 QualType underlyingType = ET->getDecl()->getIntegerType();
9489 if (underlyingType.isNull())
9490 return {};
9491 if (Context.hasSameType(underlyingType, other))
9492 return other;
9493
9494 // In block return types, we're more permissive and accept any
9495 // integral type of the same size.
9496 if (isBlockReturnType && other->isIntegerType() &&
9497 Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
9498 return other;
9499
9500 return {};
9501 }
9502
mergeTypes(QualType LHS,QualType RHS,bool OfBlockPointer,bool Unqualified,bool BlockReturnType)9503 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
9504 bool OfBlockPointer,
9505 bool Unqualified, bool BlockReturnType) {
9506 // C++ [expr]: If an expression initially has the type "reference to T", the
9507 // type is adjusted to "T" prior to any further analysis, the expression
9508 // designates the object or function denoted by the reference, and the
9509 // expression is an lvalue unless the reference is an rvalue reference and
9510 // the expression is a function call (possibly inside parentheses).
9511 if (LHS->getAs<ReferenceType>() || RHS->getAs<ReferenceType>())
9512 return {};
9513
9514 if (Unqualified) {
9515 LHS = LHS.getUnqualifiedType();
9516 RHS = RHS.getUnqualifiedType();
9517 }
9518
9519 QualType LHSCan = getCanonicalType(LHS),
9520 RHSCan = getCanonicalType(RHS);
9521
9522 // If two types are identical, they are compatible.
9523 if (LHSCan == RHSCan)
9524 return LHS;
9525
9526 // If the qualifiers are different, the types aren't compatible... mostly.
9527 Qualifiers LQuals = LHSCan.getLocalQualifiers();
9528 Qualifiers RQuals = RHSCan.getLocalQualifiers();
9529 if (LQuals != RQuals) {
9530 // If any of these qualifiers are different, we have a type
9531 // mismatch.
9532 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
9533 LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
9534 LQuals.getObjCLifetime() != RQuals.getObjCLifetime() ||
9535 LQuals.hasUnaligned() != RQuals.hasUnaligned())
9536 return {};
9537
9538 // Exactly one GC qualifier difference is allowed: __strong is
9539 // okay if the other type has no GC qualifier but is an Objective
9540 // C object pointer (i.e. implicitly strong by default). We fix
9541 // this by pretending that the unqualified type was actually
9542 // qualified __strong.
9543 Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
9544 Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
9545 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
9546
9547 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
9548 return {};
9549
9550 if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
9551 return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
9552 }
9553 if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
9554 return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
9555 }
9556 return {};
9557 }
9558
9559 // Okay, qualifiers are equal.
9560
9561 Type::TypeClass LHSClass = LHSCan->getTypeClass();
9562 Type::TypeClass RHSClass = RHSCan->getTypeClass();
9563
9564 // We want to consider the two function types to be the same for these
9565 // comparisons, just force one to the other.
9566 if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
9567 if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
9568
9569 // Same as above for arrays
9570 if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
9571 LHSClass = Type::ConstantArray;
9572 if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
9573 RHSClass = Type::ConstantArray;
9574
9575 // ObjCInterfaces are just specialized ObjCObjects.
9576 if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
9577 if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
9578
9579 // Canonicalize ExtVector -> Vector.
9580 if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
9581 if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
9582
9583 // If the canonical type classes don't match.
9584 if (LHSClass != RHSClass) {
9585 // Note that we only have special rules for turning block enum
9586 // returns into block int returns, not vice-versa.
9587 if (const auto *ETy = LHS->getAs<EnumType>()) {
9588 return mergeEnumWithInteger(*this, ETy, RHS, false);
9589 }
9590 if (const EnumType* ETy = RHS->getAs<EnumType>()) {
9591 return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
9592 }
9593 // allow block pointer type to match an 'id' type.
9594 if (OfBlockPointer && !BlockReturnType) {
9595 if (LHS->isObjCIdType() && RHS->isBlockPointerType())
9596 return LHS;
9597 if (RHS->isObjCIdType() && LHS->isBlockPointerType())
9598 return RHS;
9599 }
9600
9601 return {};
9602 }
9603
9604 // The canonical type classes match.
9605 switch (LHSClass) {
9606 #define TYPE(Class, Base)
9607 #define ABSTRACT_TYPE(Class, Base)
9608 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
9609 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
9610 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
9611 #include "clang/AST/TypeNodes.inc"
9612 llvm_unreachable("Non-canonical and dependent types shouldn't get here");
9613
9614 case Type::Auto:
9615 case Type::DeducedTemplateSpecialization:
9616 case Type::LValueReference:
9617 case Type::RValueReference:
9618 case Type::MemberPointer:
9619 llvm_unreachable("C++ should never be in mergeTypes");
9620
9621 case Type::ObjCInterface:
9622 case Type::IncompleteArray:
9623 case Type::VariableArray:
9624 case Type::FunctionProto:
9625 case Type::ExtVector:
9626 llvm_unreachable("Types are eliminated above");
9627
9628 case Type::Pointer:
9629 {
9630 // Merge two pointer types, while trying to preserve typedef info
9631 QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType();
9632 QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType();
9633 if (Unqualified) {
9634 LHSPointee = LHSPointee.getUnqualifiedType();
9635 RHSPointee = RHSPointee.getUnqualifiedType();
9636 }
9637 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
9638 Unqualified);
9639 if (ResultType.isNull())
9640 return {};
9641 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
9642 return LHS;
9643 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
9644 return RHS;
9645 return getPointerType(ResultType);
9646 }
9647 case Type::BlockPointer:
9648 {
9649 // Merge two block pointer types, while trying to preserve typedef info
9650 QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType();
9651 QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType();
9652 if (Unqualified) {
9653 LHSPointee = LHSPointee.getUnqualifiedType();
9654 RHSPointee = RHSPointee.getUnqualifiedType();
9655 }
9656 if (getLangOpts().OpenCL) {
9657 Qualifiers LHSPteeQual = LHSPointee.getQualifiers();
9658 Qualifiers RHSPteeQual = RHSPointee.getQualifiers();
9659 // Blocks can't be an expression in a ternary operator (OpenCL v2.0
9660 // 6.12.5) thus the following check is asymmetric.
9661 if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual))
9662 return {};
9663 LHSPteeQual.removeAddressSpace();
9664 RHSPteeQual.removeAddressSpace();
9665 LHSPointee =
9666 QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue());
9667 RHSPointee =
9668 QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue());
9669 }
9670 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
9671 Unqualified);
9672 if (ResultType.isNull())
9673 return {};
9674 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
9675 return LHS;
9676 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
9677 return RHS;
9678 return getBlockPointerType(ResultType);
9679 }
9680 case Type::Atomic:
9681 {
9682 // Merge two pointer types, while trying to preserve typedef info
9683 QualType LHSValue = LHS->castAs<AtomicType>()->getValueType();
9684 QualType RHSValue = RHS->castAs<AtomicType>()->getValueType();
9685 if (Unqualified) {
9686 LHSValue = LHSValue.getUnqualifiedType();
9687 RHSValue = RHSValue.getUnqualifiedType();
9688 }
9689 QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
9690 Unqualified);
9691 if (ResultType.isNull())
9692 return {};
9693 if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
9694 return LHS;
9695 if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
9696 return RHS;
9697 return getAtomicType(ResultType);
9698 }
9699 case Type::ConstantArray:
9700 {
9701 const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
9702 const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
9703 if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
9704 return {};
9705
9706 QualType LHSElem = getAsArrayType(LHS)->getElementType();
9707 QualType RHSElem = getAsArrayType(RHS)->getElementType();
9708 if (Unqualified) {
9709 LHSElem = LHSElem.getUnqualifiedType();
9710 RHSElem = RHSElem.getUnqualifiedType();
9711 }
9712
9713 QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
9714 if (ResultType.isNull())
9715 return {};
9716
9717 const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
9718 const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
9719
9720 // If either side is a variable array, and both are complete, check whether
9721 // the current dimension is definite.
9722 if (LVAT || RVAT) {
9723 auto SizeFetch = [this](const VariableArrayType* VAT,
9724 const ConstantArrayType* CAT)
9725 -> std::pair<bool,llvm::APInt> {
9726 if (VAT) {
9727 Optional<llvm::APSInt> TheInt;
9728 Expr *E = VAT->getSizeExpr();
9729 if (E && (TheInt = E->getIntegerConstantExpr(*this)))
9730 return std::make_pair(true, *TheInt);
9731 return std::make_pair(false, llvm::APSInt());
9732 }
9733 if (CAT)
9734 return std::make_pair(true, CAT->getSize());
9735 return std::make_pair(false, llvm::APInt());
9736 };
9737
9738 bool HaveLSize, HaveRSize;
9739 llvm::APInt LSize, RSize;
9740 std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT);
9741 std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT);
9742 if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize))
9743 return {}; // Definite, but unequal, array dimension
9744 }
9745
9746 if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
9747 return LHS;
9748 if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
9749 return RHS;
9750 if (LCAT)
9751 return getConstantArrayType(ResultType, LCAT->getSize(),
9752 LCAT->getSizeExpr(),
9753 ArrayType::ArraySizeModifier(), 0);
9754 if (RCAT)
9755 return getConstantArrayType(ResultType, RCAT->getSize(),
9756 RCAT->getSizeExpr(),
9757 ArrayType::ArraySizeModifier(), 0);
9758 if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
9759 return LHS;
9760 if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
9761 return RHS;
9762 if (LVAT) {
9763 // FIXME: This isn't correct! But tricky to implement because
9764 // the array's size has to be the size of LHS, but the type
9765 // has to be different.
9766 return LHS;
9767 }
9768 if (RVAT) {
9769 // FIXME: This isn't correct! But tricky to implement because
9770 // the array's size has to be the size of RHS, but the type
9771 // has to be different.
9772 return RHS;
9773 }
9774 if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
9775 if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
9776 return getIncompleteArrayType(ResultType,
9777 ArrayType::ArraySizeModifier(), 0);
9778 }
9779 case Type::FunctionNoProto:
9780 return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
9781 case Type::Record:
9782 case Type::Enum:
9783 return {};
9784 case Type::Builtin:
9785 // Only exactly equal builtin types are compatible, which is tested above.
9786 return {};
9787 case Type::Complex:
9788 // Distinct complex types are incompatible.
9789 return {};
9790 case Type::Vector:
9791 // FIXME: The merged type should be an ExtVector!
9792 if (areCompatVectorTypes(LHSCan->castAs<VectorType>(),
9793 RHSCan->castAs<VectorType>()))
9794 return LHS;
9795 return {};
9796 case Type::ConstantMatrix:
9797 if (areCompatMatrixTypes(LHSCan->castAs<ConstantMatrixType>(),
9798 RHSCan->castAs<ConstantMatrixType>()))
9799 return LHS;
9800 return {};
9801 case Type::ObjCObject: {
9802 // Check if the types are assignment compatible.
9803 // FIXME: This should be type compatibility, e.g. whether
9804 // "LHS x; RHS x;" at global scope is legal.
9805 if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectType>(),
9806 RHS->castAs<ObjCObjectType>()))
9807 return LHS;
9808 return {};
9809 }
9810 case Type::ObjCObjectPointer:
9811 if (OfBlockPointer) {
9812 if (canAssignObjCInterfacesInBlockPointer(
9813 LHS->castAs<ObjCObjectPointerType>(),
9814 RHS->castAs<ObjCObjectPointerType>(), BlockReturnType))
9815 return LHS;
9816 return {};
9817 }
9818 if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectPointerType>(),
9819 RHS->castAs<ObjCObjectPointerType>()))
9820 return LHS;
9821 return {};
9822 case Type::Pipe:
9823 assert(LHS != RHS &&
9824 "Equivalent pipe types should have already been handled!");
9825 return {};
9826 case Type::ExtInt: {
9827 // Merge two ext-int types, while trying to preserve typedef info.
9828 bool LHSUnsigned = LHS->castAs<ExtIntType>()->isUnsigned();
9829 bool RHSUnsigned = RHS->castAs<ExtIntType>()->isUnsigned();
9830 unsigned LHSBits = LHS->castAs<ExtIntType>()->getNumBits();
9831 unsigned RHSBits = RHS->castAs<ExtIntType>()->getNumBits();
9832
9833 // Like unsigned/int, shouldn't have a type if they dont match.
9834 if (LHSUnsigned != RHSUnsigned)
9835 return {};
9836
9837 if (LHSBits != RHSBits)
9838 return {};
9839 return LHS;
9840 }
9841 }
9842
9843 llvm_unreachable("Invalid Type::Class!");
9844 }
9845
mergeExtParameterInfo(const FunctionProtoType * FirstFnType,const FunctionProtoType * SecondFnType,bool & CanUseFirst,bool & CanUseSecond,SmallVectorImpl<FunctionProtoType::ExtParameterInfo> & NewParamInfos)9846 bool ASTContext::mergeExtParameterInfo(
9847 const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType,
9848 bool &CanUseFirst, bool &CanUseSecond,
9849 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) {
9850 assert(NewParamInfos.empty() && "param info list not empty");
9851 CanUseFirst = CanUseSecond = true;
9852 bool FirstHasInfo = FirstFnType->hasExtParameterInfos();
9853 bool SecondHasInfo = SecondFnType->hasExtParameterInfos();
9854
9855 // Fast path: if the first type doesn't have ext parameter infos,
9856 // we match if and only if the second type also doesn't have them.
9857 if (!FirstHasInfo && !SecondHasInfo)
9858 return true;
9859
9860 bool NeedParamInfo = false;
9861 size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size()
9862 : SecondFnType->getExtParameterInfos().size();
9863
9864 for (size_t I = 0; I < E; ++I) {
9865 FunctionProtoType::ExtParameterInfo FirstParam, SecondParam;
9866 if (FirstHasInfo)
9867 FirstParam = FirstFnType->getExtParameterInfo(I);
9868 if (SecondHasInfo)
9869 SecondParam = SecondFnType->getExtParameterInfo(I);
9870
9871 // Cannot merge unless everything except the noescape flag matches.
9872 if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false))
9873 return false;
9874
9875 bool FirstNoEscape = FirstParam.isNoEscape();
9876 bool SecondNoEscape = SecondParam.isNoEscape();
9877 bool IsNoEscape = FirstNoEscape && SecondNoEscape;
9878 NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape));
9879 if (NewParamInfos.back().getOpaqueValue())
9880 NeedParamInfo = true;
9881 if (FirstNoEscape != IsNoEscape)
9882 CanUseFirst = false;
9883 if (SecondNoEscape != IsNoEscape)
9884 CanUseSecond = false;
9885 }
9886
9887 if (!NeedParamInfo)
9888 NewParamInfos.clear();
9889
9890 return true;
9891 }
9892
ResetObjCLayout(const ObjCContainerDecl * CD)9893 void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) {
9894 ObjCLayouts[CD] = nullptr;
9895 }
9896
9897 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
9898 /// 'RHS' attributes and returns the merged version; including for function
9899 /// return types.
mergeObjCGCQualifiers(QualType LHS,QualType RHS)9900 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
9901 QualType LHSCan = getCanonicalType(LHS),
9902 RHSCan = getCanonicalType(RHS);
9903 // If two types are identical, they are compatible.
9904 if (LHSCan == RHSCan)
9905 return LHS;
9906 if (RHSCan->isFunctionType()) {
9907 if (!LHSCan->isFunctionType())
9908 return {};
9909 QualType OldReturnType =
9910 cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
9911 QualType NewReturnType =
9912 cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
9913 QualType ResReturnType =
9914 mergeObjCGCQualifiers(NewReturnType, OldReturnType);
9915 if (ResReturnType.isNull())
9916 return {};
9917 if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
9918 // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
9919 // In either case, use OldReturnType to build the new function type.
9920 const auto *F = LHS->castAs<FunctionType>();
9921 if (const auto *FPT = cast<FunctionProtoType>(F)) {
9922 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9923 EPI.ExtInfo = getFunctionExtInfo(LHS);
9924 QualType ResultType =
9925 getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
9926 return ResultType;
9927 }
9928 }
9929 return {};
9930 }
9931
9932 // If the qualifiers are different, the types can still be merged.
9933 Qualifiers LQuals = LHSCan.getLocalQualifiers();
9934 Qualifiers RQuals = RHSCan.getLocalQualifiers();
9935 if (LQuals != RQuals) {
9936 // If any of these qualifiers are different, we have a type mismatch.
9937 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
9938 LQuals.getAddressSpace() != RQuals.getAddressSpace())
9939 return {};
9940
9941 // Exactly one GC qualifier difference is allowed: __strong is
9942 // okay if the other type has no GC qualifier but is an Objective
9943 // C object pointer (i.e. implicitly strong by default). We fix
9944 // this by pretending that the unqualified type was actually
9945 // qualified __strong.
9946 Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
9947 Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
9948 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
9949
9950 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
9951 return {};
9952
9953 if (GC_L == Qualifiers::Strong)
9954 return LHS;
9955 if (GC_R == Qualifiers::Strong)
9956 return RHS;
9957 return {};
9958 }
9959
9960 if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
9961 QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType();
9962 QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType();
9963 QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
9964 if (ResQT == LHSBaseQT)
9965 return LHS;
9966 if (ResQT == RHSBaseQT)
9967 return RHS;
9968 }
9969 return {};
9970 }
9971
9972 //===----------------------------------------------------------------------===//
9973 // Integer Predicates
9974 //===----------------------------------------------------------------------===//
9975
getIntWidth(QualType T) const9976 unsigned ASTContext::getIntWidth(QualType T) const {
9977 if (const auto *ET = T->getAs<EnumType>())
9978 T = ET->getDecl()->getIntegerType();
9979 if (T->isBooleanType())
9980 return 1;
9981 if(const auto *EIT = T->getAs<ExtIntType>())
9982 return EIT->getNumBits();
9983 // For builtin types, just use the standard type sizing method
9984 return (unsigned)getTypeSize(T);
9985 }
9986
getCorrespondingUnsignedType(QualType T) const9987 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
9988 assert((T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) &&
9989 "Unexpected type");
9990
9991 // Turn <4 x signed int> -> <4 x unsigned int>
9992 if (const auto *VTy = T->getAs<VectorType>())
9993 return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
9994 VTy->getNumElements(), VTy->getVectorKind());
9995
9996 // For enums, we return the unsigned version of the base type.
9997 if (const auto *ETy = T->getAs<EnumType>())
9998 T = ETy->getDecl()->getIntegerType();
9999
10000 switch (T->castAs<BuiltinType>()->getKind()) {
10001 case BuiltinType::Char_S:
10002 case BuiltinType::SChar:
10003 return UnsignedCharTy;
10004 case BuiltinType::Short:
10005 return UnsignedShortTy;
10006 case BuiltinType::Int:
10007 return UnsignedIntTy;
10008 case BuiltinType::Long:
10009 return UnsignedLongTy;
10010 case BuiltinType::LongLong:
10011 return UnsignedLongLongTy;
10012 case BuiltinType::Int128:
10013 return UnsignedInt128Ty;
10014 // wchar_t is special. It is either signed or not, but when it's signed,
10015 // there's no matching "unsigned wchar_t". Therefore we return the unsigned
10016 // version of it's underlying type instead.
10017 case BuiltinType::WChar_S:
10018 return getUnsignedWCharType();
10019
10020 case BuiltinType::ShortAccum:
10021 return UnsignedShortAccumTy;
10022 case BuiltinType::Accum:
10023 return UnsignedAccumTy;
10024 case BuiltinType::LongAccum:
10025 return UnsignedLongAccumTy;
10026 case BuiltinType::SatShortAccum:
10027 return SatUnsignedShortAccumTy;
10028 case BuiltinType::SatAccum:
10029 return SatUnsignedAccumTy;
10030 case BuiltinType::SatLongAccum:
10031 return SatUnsignedLongAccumTy;
10032 case BuiltinType::ShortFract:
10033 return UnsignedShortFractTy;
10034 case BuiltinType::Fract:
10035 return UnsignedFractTy;
10036 case BuiltinType::LongFract:
10037 return UnsignedLongFractTy;
10038 case BuiltinType::SatShortFract:
10039 return SatUnsignedShortFractTy;
10040 case BuiltinType::SatFract:
10041 return SatUnsignedFractTy;
10042 case BuiltinType::SatLongFract:
10043 return SatUnsignedLongFractTy;
10044 default:
10045 llvm_unreachable("Unexpected signed integer or fixed point type");
10046 }
10047 }
10048
10049 ASTMutationListener::~ASTMutationListener() = default;
10050
DeducedReturnType(const FunctionDecl * FD,QualType ReturnType)10051 void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
10052 QualType ReturnType) {}
10053
10054 //===----------------------------------------------------------------------===//
10055 // Builtin Type Computation
10056 //===----------------------------------------------------------------------===//
10057
10058 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
10059 /// pointer over the consumed characters. This returns the resultant type. If
10060 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic
10061 /// types. This allows "v2i*" to be parsed as a pointer to a v2i instead of
10062 /// a vector of "i*".
10063 ///
10064 /// RequiresICE is filled in on return to indicate whether the value is required
10065 /// to be an Integer Constant Expression.
DecodeTypeFromStr(const char * & Str,const ASTContext & Context,ASTContext::GetBuiltinTypeError & Error,bool & RequiresICE,bool AllowTypeModifiers)10066 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
10067 ASTContext::GetBuiltinTypeError &Error,
10068 bool &RequiresICE,
10069 bool AllowTypeModifiers) {
10070 // Modifiers.
10071 int HowLong = 0;
10072 bool Signed = false, Unsigned = false;
10073 RequiresICE = false;
10074
10075 // Read the prefixed modifiers first.
10076 bool Done = false;
10077 #ifndef NDEBUG
10078 bool IsSpecial = false;
10079 #endif
10080 while (!Done) {
10081 switch (*Str++) {
10082 default: Done = true; --Str; break;
10083 case 'I':
10084 RequiresICE = true;
10085 break;
10086 case 'S':
10087 assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
10088 assert(!Signed && "Can't use 'S' modifier multiple times!");
10089 Signed = true;
10090 break;
10091 case 'U':
10092 assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
10093 assert(!Unsigned && "Can't use 'U' modifier multiple times!");
10094 Unsigned = true;
10095 break;
10096 case 'L':
10097 assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers");
10098 assert(HowLong <= 2 && "Can't have LLLL modifier");
10099 ++HowLong;
10100 break;
10101 case 'N':
10102 // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise.
10103 assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10104 assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!");
10105 #ifndef NDEBUG
10106 IsSpecial = true;
10107 #endif
10108 if (Context.getTargetInfo().getLongWidth() == 32)
10109 ++HowLong;
10110 break;
10111 case 'W':
10112 // This modifier represents int64 type.
10113 assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10114 assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
10115 #ifndef NDEBUG
10116 IsSpecial = true;
10117 #endif
10118 switch (Context.getTargetInfo().getInt64Type()) {
10119 default:
10120 llvm_unreachable("Unexpected integer type");
10121 case TargetInfo::SignedLong:
10122 HowLong = 1;
10123 break;
10124 case TargetInfo::SignedLongLong:
10125 HowLong = 2;
10126 break;
10127 }
10128 break;
10129 case 'Z':
10130 // This modifier represents int32 type.
10131 assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10132 assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!");
10133 #ifndef NDEBUG
10134 IsSpecial = true;
10135 #endif
10136 switch (Context.getTargetInfo().getIntTypeByWidth(32, true)) {
10137 default:
10138 llvm_unreachable("Unexpected integer type");
10139 case TargetInfo::SignedInt:
10140 HowLong = 0;
10141 break;
10142 case TargetInfo::SignedLong:
10143 HowLong = 1;
10144 break;
10145 case TargetInfo::SignedLongLong:
10146 HowLong = 2;
10147 break;
10148 }
10149 break;
10150 case 'O':
10151 assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10152 assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!");
10153 #ifndef NDEBUG
10154 IsSpecial = true;
10155 #endif
10156 if (Context.getLangOpts().OpenCL)
10157 HowLong = 1;
10158 else
10159 HowLong = 2;
10160 break;
10161 }
10162 }
10163
10164 QualType Type;
10165
10166 // Read the base type.
10167 switch (*Str++) {
10168 default: llvm_unreachable("Unknown builtin type letter!");
10169 case 'y':
10170 assert(HowLong == 0 && !Signed && !Unsigned &&
10171 "Bad modifiers used with 'y'!");
10172 Type = Context.BFloat16Ty;
10173 break;
10174 case 'v':
10175 assert(HowLong == 0 && !Signed && !Unsigned &&
10176 "Bad modifiers used with 'v'!");
10177 Type = Context.VoidTy;
10178 break;
10179 case 'h':
10180 assert(HowLong == 0 && !Signed && !Unsigned &&
10181 "Bad modifiers used with 'h'!");
10182 Type = Context.HalfTy;
10183 break;
10184 case 'f':
10185 assert(HowLong == 0 && !Signed && !Unsigned &&
10186 "Bad modifiers used with 'f'!");
10187 Type = Context.FloatTy;
10188 break;
10189 case 'd':
10190 assert(HowLong < 3 && !Signed && !Unsigned &&
10191 "Bad modifiers used with 'd'!");
10192 if (HowLong == 1)
10193 Type = Context.LongDoubleTy;
10194 else if (HowLong == 2)
10195 Type = Context.Float128Ty;
10196 else
10197 Type = Context.DoubleTy;
10198 break;
10199 case 's':
10200 assert(HowLong == 0 && "Bad modifiers used with 's'!");
10201 if (Unsigned)
10202 Type = Context.UnsignedShortTy;
10203 else
10204 Type = Context.ShortTy;
10205 break;
10206 case 'i':
10207 if (HowLong == 3)
10208 Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
10209 else if (HowLong == 2)
10210 Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
10211 else if (HowLong == 1)
10212 Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
10213 else
10214 Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
10215 break;
10216 case 'c':
10217 assert(HowLong == 0 && "Bad modifiers used with 'c'!");
10218 if (Signed)
10219 Type = Context.SignedCharTy;
10220 else if (Unsigned)
10221 Type = Context.UnsignedCharTy;
10222 else
10223 Type = Context.CharTy;
10224 break;
10225 case 'b': // boolean
10226 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
10227 Type = Context.BoolTy;
10228 break;
10229 case 'z': // size_t.
10230 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
10231 Type = Context.getSizeType();
10232 break;
10233 case 'w': // wchar_t.
10234 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!");
10235 Type = Context.getWideCharType();
10236 break;
10237 case 'F':
10238 Type = Context.getCFConstantStringType();
10239 break;
10240 case 'G':
10241 Type = Context.getObjCIdType();
10242 break;
10243 case 'H':
10244 Type = Context.getObjCSelType();
10245 break;
10246 case 'M':
10247 Type = Context.getObjCSuperType();
10248 break;
10249 case 'a':
10250 Type = Context.getBuiltinVaListType();
10251 assert(!Type.isNull() && "builtin va list type not initialized!");
10252 break;
10253 case 'A':
10254 // This is a "reference" to a va_list; however, what exactly
10255 // this means depends on how va_list is defined. There are two
10256 // different kinds of va_list: ones passed by value, and ones
10257 // passed by reference. An example of a by-value va_list is
10258 // x86, where va_list is a char*. An example of by-ref va_list
10259 // is x86-64, where va_list is a __va_list_tag[1]. For x86,
10260 // we want this argument to be a char*&; for x86-64, we want
10261 // it to be a __va_list_tag*.
10262 Type = Context.getBuiltinVaListType();
10263 assert(!Type.isNull() && "builtin va list type not initialized!");
10264 if (Type->isArrayType())
10265 Type = Context.getArrayDecayedType(Type);
10266 else
10267 Type = Context.getLValueReferenceType(Type);
10268 break;
10269 case 'q': {
10270 char *End;
10271 unsigned NumElements = strtoul(Str, &End, 10);
10272 assert(End != Str && "Missing vector size");
10273 Str = End;
10274
10275 QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
10276 RequiresICE, false);
10277 assert(!RequiresICE && "Can't require vector ICE");
10278
10279 Type = Context.getScalableVectorType(ElementType, NumElements);
10280 break;
10281 }
10282 case 'V': {
10283 char *End;
10284 unsigned NumElements = strtoul(Str, &End, 10);
10285 assert(End != Str && "Missing vector size");
10286 Str = End;
10287
10288 QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
10289 RequiresICE, false);
10290 assert(!RequiresICE && "Can't require vector ICE");
10291
10292 // TODO: No way to make AltiVec vectors in builtins yet.
10293 Type = Context.getVectorType(ElementType, NumElements,
10294 VectorType::GenericVector);
10295 break;
10296 }
10297 case 'E': {
10298 char *End;
10299
10300 unsigned NumElements = strtoul(Str, &End, 10);
10301 assert(End != Str && "Missing vector size");
10302
10303 Str = End;
10304
10305 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
10306 false);
10307 Type = Context.getExtVectorType(ElementType, NumElements);
10308 break;
10309 }
10310 case 'X': {
10311 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
10312 false);
10313 assert(!RequiresICE && "Can't require complex ICE");
10314 Type = Context.getComplexType(ElementType);
10315 break;
10316 }
10317 case 'Y':
10318 Type = Context.getPointerDiffType();
10319 break;
10320 case 'P':
10321 Type = Context.getFILEType();
10322 if (Type.isNull()) {
10323 Error = ASTContext::GE_Missing_stdio;
10324 return {};
10325 }
10326 break;
10327 case 'J':
10328 if (Signed)
10329 Type = Context.getsigjmp_bufType();
10330 else
10331 Type = Context.getjmp_bufType();
10332
10333 if (Type.isNull()) {
10334 Error = ASTContext::GE_Missing_setjmp;
10335 return {};
10336 }
10337 break;
10338 case 'K':
10339 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
10340 Type = Context.getucontext_tType();
10341
10342 if (Type.isNull()) {
10343 Error = ASTContext::GE_Missing_ucontext;
10344 return {};
10345 }
10346 break;
10347 case 'p':
10348 Type = Context.getProcessIDType();
10349 break;
10350 }
10351
10352 // If there are modifiers and if we're allowed to parse them, go for it.
10353 Done = !AllowTypeModifiers;
10354 while (!Done) {
10355 switch (char c = *Str++) {
10356 default: Done = true; --Str; break;
10357 case '*':
10358 case '&': {
10359 // Both pointers and references can have their pointee types
10360 // qualified with an address space.
10361 char *End;
10362 unsigned AddrSpace = strtoul(Str, &End, 10);
10363 if (End != Str) {
10364 // Note AddrSpace == 0 is not the same as an unspecified address space.
10365 Type = Context.getAddrSpaceQualType(
10366 Type,
10367 Context.getLangASForBuiltinAddressSpace(AddrSpace));
10368 Str = End;
10369 }
10370 if (c == '*')
10371 Type = Context.getPointerType(Type);
10372 else
10373 Type = Context.getLValueReferenceType(Type);
10374 break;
10375 }
10376 // FIXME: There's no way to have a built-in with an rvalue ref arg.
10377 case 'C':
10378 Type = Type.withConst();
10379 break;
10380 case 'D':
10381 Type = Context.getVolatileType(Type);
10382 break;
10383 case 'R':
10384 Type = Type.withRestrict();
10385 break;
10386 }
10387 }
10388
10389 assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
10390 "Integer constant 'I' type must be an integer");
10391
10392 return Type;
10393 }
10394
10395 // On some targets such as PowerPC, some of the builtins are defined with custom
10396 // type decriptors for target-dependent types. These descriptors are decoded in
10397 // other functions, but it may be useful to be able to fall back to default
10398 // descriptor decoding to define builtins mixing target-dependent and target-
10399 // independent types. This function allows decoding one type descriptor with
10400 // default decoding.
DecodeTypeStr(const char * & Str,const ASTContext & Context,GetBuiltinTypeError & Error,bool & RequireICE,bool AllowTypeModifiers) const10401 QualType ASTContext::DecodeTypeStr(const char *&Str, const ASTContext &Context,
10402 GetBuiltinTypeError &Error, bool &RequireICE,
10403 bool AllowTypeModifiers) const {
10404 return DecodeTypeFromStr(Str, Context, Error, RequireICE, AllowTypeModifiers);
10405 }
10406
10407 /// GetBuiltinType - Return the type for the specified builtin.
GetBuiltinType(unsigned Id,GetBuiltinTypeError & Error,unsigned * IntegerConstantArgs) const10408 QualType ASTContext::GetBuiltinType(unsigned Id,
10409 GetBuiltinTypeError &Error,
10410 unsigned *IntegerConstantArgs) const {
10411 const char *TypeStr = BuiltinInfo.getTypeString(Id);
10412 if (TypeStr[0] == '\0') {
10413 Error = GE_Missing_type;
10414 return {};
10415 }
10416
10417 SmallVector<QualType, 8> ArgTypes;
10418
10419 bool RequiresICE = false;
10420 Error = GE_None;
10421 QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
10422 RequiresICE, true);
10423 if (Error != GE_None)
10424 return {};
10425
10426 assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
10427
10428 while (TypeStr[0] && TypeStr[0] != '.') {
10429 QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
10430 if (Error != GE_None)
10431 return {};
10432
10433 // If this argument is required to be an IntegerConstantExpression and the
10434 // caller cares, fill in the bitmask we return.
10435 if (RequiresICE && IntegerConstantArgs)
10436 *IntegerConstantArgs |= 1 << ArgTypes.size();
10437
10438 // Do array -> pointer decay. The builtin should use the decayed type.
10439 if (Ty->isArrayType())
10440 Ty = getArrayDecayedType(Ty);
10441
10442 ArgTypes.push_back(Ty);
10443 }
10444
10445 if (Id == Builtin::BI__GetExceptionInfo)
10446 return {};
10447
10448 assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
10449 "'.' should only occur at end of builtin type list!");
10450
10451 bool Variadic = (TypeStr[0] == '.');
10452
10453 FunctionType::ExtInfo EI(getDefaultCallingConvention(
10454 Variadic, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
10455 if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
10456
10457
10458 // We really shouldn't be making a no-proto type here.
10459 if (ArgTypes.empty() && Variadic && !getLangOpts().CPlusPlus)
10460 return getFunctionNoProtoType(ResType, EI);
10461
10462 FunctionProtoType::ExtProtoInfo EPI;
10463 EPI.ExtInfo = EI;
10464 EPI.Variadic = Variadic;
10465 if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id))
10466 EPI.ExceptionSpec.Type =
10467 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
10468
10469 return getFunctionType(ResType, ArgTypes, EPI);
10470 }
10471
basicGVALinkageForFunction(const ASTContext & Context,const FunctionDecl * FD)10472 static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
10473 const FunctionDecl *FD) {
10474 if (!FD->isExternallyVisible())
10475 return GVA_Internal;
10476
10477 // Non-user-provided functions get emitted as weak definitions with every
10478 // use, no matter whether they've been explicitly instantiated etc.
10479 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
10480 if (!MD->isUserProvided())
10481 return GVA_DiscardableODR;
10482
10483 GVALinkage External;
10484 switch (FD->getTemplateSpecializationKind()) {
10485 case TSK_Undeclared:
10486 case TSK_ExplicitSpecialization:
10487 External = GVA_StrongExternal;
10488 break;
10489
10490 case TSK_ExplicitInstantiationDefinition:
10491 return GVA_StrongODR;
10492
10493 // C++11 [temp.explicit]p10:
10494 // [ Note: The intent is that an inline function that is the subject of
10495 // an explicit instantiation declaration will still be implicitly
10496 // instantiated when used so that the body can be considered for
10497 // inlining, but that no out-of-line copy of the inline function would be
10498 // generated in the translation unit. -- end note ]
10499 case TSK_ExplicitInstantiationDeclaration:
10500 return GVA_AvailableExternally;
10501
10502 case TSK_ImplicitInstantiation:
10503 External = GVA_DiscardableODR;
10504 break;
10505 }
10506
10507 if (!FD->isInlined())
10508 return External;
10509
10510 if ((!Context.getLangOpts().CPlusPlus &&
10511 !Context.getTargetInfo().getCXXABI().isMicrosoft() &&
10512 !FD->hasAttr<DLLExportAttr>()) ||
10513 FD->hasAttr<GNUInlineAttr>()) {
10514 // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
10515
10516 // GNU or C99 inline semantics. Determine whether this symbol should be
10517 // externally visible.
10518 if (FD->isInlineDefinitionExternallyVisible())
10519 return External;
10520
10521 // C99 inline semantics, where the symbol is not externally visible.
10522 return GVA_AvailableExternally;
10523 }
10524
10525 // Functions specified with extern and inline in -fms-compatibility mode
10526 // forcibly get emitted. While the body of the function cannot be later
10527 // replaced, the function definition cannot be discarded.
10528 if (FD->isMSExternInline())
10529 return GVA_StrongODR;
10530
10531 return GVA_DiscardableODR;
10532 }
10533
adjustGVALinkageForAttributes(const ASTContext & Context,const Decl * D,GVALinkage L)10534 static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context,
10535 const Decl *D, GVALinkage L) {
10536 // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
10537 // dllexport/dllimport on inline functions.
10538 if (D->hasAttr<DLLImportAttr>()) {
10539 if (L == GVA_DiscardableODR || L == GVA_StrongODR)
10540 return GVA_AvailableExternally;
10541 } else if (D->hasAttr<DLLExportAttr>()) {
10542 if (L == GVA_DiscardableODR)
10543 return GVA_StrongODR;
10544 } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) {
10545 // Device-side functions with __global__ attribute must always be
10546 // visible externally so they can be launched from host.
10547 if (D->hasAttr<CUDAGlobalAttr>() &&
10548 (L == GVA_DiscardableODR || L == GVA_Internal))
10549 return GVA_StrongODR;
10550 // Single source offloading languages like CUDA/HIP need to be able to
10551 // access static device variables from host code of the same compilation
10552 // unit. This is done by externalizing the static variable.
10553 if (Context.shouldExternalizeStaticVar(D))
10554 return GVA_StrongExternal;
10555 }
10556 return L;
10557 }
10558
10559 /// Adjust the GVALinkage for a declaration based on what an external AST source
10560 /// knows about whether there can be other definitions of this declaration.
10561 static GVALinkage
adjustGVALinkageForExternalDefinitionKind(const ASTContext & Ctx,const Decl * D,GVALinkage L)10562 adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D,
10563 GVALinkage L) {
10564 ExternalASTSource *Source = Ctx.getExternalSource();
10565 if (!Source)
10566 return L;
10567
10568 switch (Source->hasExternalDefinitions(D)) {
10569 case ExternalASTSource::EK_Never:
10570 // Other translation units rely on us to provide the definition.
10571 if (L == GVA_DiscardableODR)
10572 return GVA_StrongODR;
10573 break;
10574
10575 case ExternalASTSource::EK_Always:
10576 return GVA_AvailableExternally;
10577
10578 case ExternalASTSource::EK_ReplyHazy:
10579 break;
10580 }
10581 return L;
10582 }
10583
GetGVALinkageForFunction(const FunctionDecl * FD) const10584 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
10585 return adjustGVALinkageForExternalDefinitionKind(*this, FD,
10586 adjustGVALinkageForAttributes(*this, FD,
10587 basicGVALinkageForFunction(*this, FD)));
10588 }
10589
basicGVALinkageForVariable(const ASTContext & Context,const VarDecl * VD)10590 static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
10591 const VarDecl *VD) {
10592 if (!VD->isExternallyVisible())
10593 return GVA_Internal;
10594
10595 if (VD->isStaticLocal()) {
10596 const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
10597 while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
10598 LexicalContext = LexicalContext->getLexicalParent();
10599
10600 // ObjC Blocks can create local variables that don't have a FunctionDecl
10601 // LexicalContext.
10602 if (!LexicalContext)
10603 return GVA_DiscardableODR;
10604
10605 // Otherwise, let the static local variable inherit its linkage from the
10606 // nearest enclosing function.
10607 auto StaticLocalLinkage =
10608 Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
10609
10610 // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must
10611 // be emitted in any object with references to the symbol for the object it
10612 // contains, whether inline or out-of-line."
10613 // Similar behavior is observed with MSVC. An alternative ABI could use
10614 // StrongODR/AvailableExternally to match the function, but none are
10615 // known/supported currently.
10616 if (StaticLocalLinkage == GVA_StrongODR ||
10617 StaticLocalLinkage == GVA_AvailableExternally)
10618 return GVA_DiscardableODR;
10619 return StaticLocalLinkage;
10620 }
10621
10622 // MSVC treats in-class initialized static data members as definitions.
10623 // By giving them non-strong linkage, out-of-line definitions won't
10624 // cause link errors.
10625 if (Context.isMSStaticDataMemberInlineDefinition(VD))
10626 return GVA_DiscardableODR;
10627
10628 // Most non-template variables have strong linkage; inline variables are
10629 // linkonce_odr or (occasionally, for compatibility) weak_odr.
10630 GVALinkage StrongLinkage;
10631 switch (Context.getInlineVariableDefinitionKind(VD)) {
10632 case ASTContext::InlineVariableDefinitionKind::None:
10633 StrongLinkage = GVA_StrongExternal;
10634 break;
10635 case ASTContext::InlineVariableDefinitionKind::Weak:
10636 case ASTContext::InlineVariableDefinitionKind::WeakUnknown:
10637 StrongLinkage = GVA_DiscardableODR;
10638 break;
10639 case ASTContext::InlineVariableDefinitionKind::Strong:
10640 StrongLinkage = GVA_StrongODR;
10641 break;
10642 }
10643
10644 switch (VD->getTemplateSpecializationKind()) {
10645 case TSK_Undeclared:
10646 return StrongLinkage;
10647
10648 case TSK_ExplicitSpecialization:
10649 return Context.getTargetInfo().getCXXABI().isMicrosoft() &&
10650 VD->isStaticDataMember()
10651 ? GVA_StrongODR
10652 : StrongLinkage;
10653
10654 case TSK_ExplicitInstantiationDefinition:
10655 return GVA_StrongODR;
10656
10657 case TSK_ExplicitInstantiationDeclaration:
10658 return GVA_AvailableExternally;
10659
10660 case TSK_ImplicitInstantiation:
10661 return GVA_DiscardableODR;
10662 }
10663
10664 llvm_unreachable("Invalid Linkage!");
10665 }
10666
GetGVALinkageForVariable(const VarDecl * VD)10667 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
10668 return adjustGVALinkageForExternalDefinitionKind(*this, VD,
10669 adjustGVALinkageForAttributes(*this, VD,
10670 basicGVALinkageForVariable(*this, VD)));
10671 }
10672
DeclMustBeEmitted(const Decl * D)10673 bool ASTContext::DeclMustBeEmitted(const Decl *D) {
10674 if (const auto *VD = dyn_cast<VarDecl>(D)) {
10675 if (!VD->isFileVarDecl())
10676 return false;
10677 // Global named register variables (GNU extension) are never emitted.
10678 if (VD->getStorageClass() == SC_Register)
10679 return false;
10680 if (VD->getDescribedVarTemplate() ||
10681 isa<VarTemplatePartialSpecializationDecl>(VD))
10682 return false;
10683 } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
10684 // We never need to emit an uninstantiated function template.
10685 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
10686 return false;
10687 } else if (isa<PragmaCommentDecl>(D))
10688 return true;
10689 else if (isa<PragmaDetectMismatchDecl>(D))
10690 return true;
10691 else if (isa<OMPRequiresDecl>(D))
10692 return true;
10693 else if (isa<OMPThreadPrivateDecl>(D))
10694 return !D->getDeclContext()->isDependentContext();
10695 else if (isa<OMPAllocateDecl>(D))
10696 return !D->getDeclContext()->isDependentContext();
10697 else if (isa<OMPDeclareReductionDecl>(D) || isa<OMPDeclareMapperDecl>(D))
10698 return !D->getDeclContext()->isDependentContext();
10699 else if (isa<ImportDecl>(D))
10700 return true;
10701 else
10702 return false;
10703
10704 // If this is a member of a class template, we do not need to emit it.
10705 if (D->getDeclContext()->isDependentContext())
10706 return false;
10707
10708 // Weak references don't produce any output by themselves.
10709 if (D->hasAttr<WeakRefAttr>())
10710 return false;
10711
10712 // Aliases and used decls are required.
10713 if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
10714 return true;
10715
10716 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
10717 // Forward declarations aren't required.
10718 if (!FD->doesThisDeclarationHaveABody())
10719 return FD->doesDeclarationForceExternallyVisibleDefinition();
10720
10721 // Constructors and destructors are required.
10722 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
10723 return true;
10724
10725 // The key function for a class is required. This rule only comes
10726 // into play when inline functions can be key functions, though.
10727 if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
10728 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
10729 const CXXRecordDecl *RD = MD->getParent();
10730 if (MD->isOutOfLine() && RD->isDynamicClass()) {
10731 const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
10732 if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
10733 return true;
10734 }
10735 }
10736 }
10737
10738 GVALinkage Linkage = GetGVALinkageForFunction(FD);
10739
10740 // static, static inline, always_inline, and extern inline functions can
10741 // always be deferred. Normal inline functions can be deferred in C99/C++.
10742 // Implicit template instantiations can also be deferred in C++.
10743 return !isDiscardableGVALinkage(Linkage);
10744 }
10745
10746 const auto *VD = cast<VarDecl>(D);
10747 assert(VD->isFileVarDecl() && "Expected file scoped var");
10748
10749 // If the decl is marked as `declare target to`, it should be emitted for the
10750 // host and for the device.
10751 if (LangOpts.OpenMP &&
10752 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
10753 return true;
10754
10755 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
10756 !isMSStaticDataMemberInlineDefinition(VD))
10757 return false;
10758
10759 // Variables that can be needed in other TUs are required.
10760 auto Linkage = GetGVALinkageForVariable(VD);
10761 if (!isDiscardableGVALinkage(Linkage))
10762 return true;
10763
10764 // We never need to emit a variable that is available in another TU.
10765 if (Linkage == GVA_AvailableExternally)
10766 return false;
10767
10768 // Variables that have destruction with side-effects are required.
10769 if (VD->needsDestruction(*this))
10770 return true;
10771
10772 // Variables that have initialization with side-effects are required.
10773 if (VD->getInit() && VD->getInit()->HasSideEffects(*this) &&
10774 // We can get a value-dependent initializer during error recovery.
10775 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
10776 return true;
10777
10778 // Likewise, variables with tuple-like bindings are required if their
10779 // bindings have side-effects.
10780 if (const auto *DD = dyn_cast<DecompositionDecl>(VD))
10781 for (const auto *BD : DD->bindings())
10782 if (const auto *BindingVD = BD->getHoldingVar())
10783 if (DeclMustBeEmitted(BindingVD))
10784 return true;
10785
10786 return false;
10787 }
10788
forEachMultiversionedFunctionVersion(const FunctionDecl * FD,llvm::function_ref<void (FunctionDecl *)> Pred) const10789 void ASTContext::forEachMultiversionedFunctionVersion(
10790 const FunctionDecl *FD,
10791 llvm::function_ref<void(FunctionDecl *)> Pred) const {
10792 assert(FD->isMultiVersion() && "Only valid for multiversioned functions");
10793 llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls;
10794 FD = FD->getMostRecentDecl();
10795 for (auto *CurDecl :
10796 FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) {
10797 FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl();
10798 if (CurFD && hasSameType(CurFD->getType(), FD->getType()) &&
10799 std::end(SeenDecls) == llvm::find(SeenDecls, CurFD)) {
10800 SeenDecls.insert(CurFD);
10801 Pred(CurFD);
10802 }
10803 }
10804 }
10805
getDefaultCallingConvention(bool IsVariadic,bool IsCXXMethod,bool IsBuiltin) const10806 CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
10807 bool IsCXXMethod,
10808 bool IsBuiltin) const {
10809 // Pass through to the C++ ABI object
10810 if (IsCXXMethod)
10811 return ABI->getDefaultMethodCallConv(IsVariadic);
10812
10813 // Builtins ignore user-specified default calling convention and remain the
10814 // Target's default calling convention.
10815 if (!IsBuiltin) {
10816 switch (LangOpts.getDefaultCallingConv()) {
10817 case LangOptions::DCC_None:
10818 break;
10819 case LangOptions::DCC_CDecl:
10820 return CC_C;
10821 case LangOptions::DCC_FastCall:
10822 if (getTargetInfo().hasFeature("sse2") && !IsVariadic)
10823 return CC_X86FastCall;
10824 break;
10825 case LangOptions::DCC_StdCall:
10826 if (!IsVariadic)
10827 return CC_X86StdCall;
10828 break;
10829 case LangOptions::DCC_VectorCall:
10830 // __vectorcall cannot be applied to variadic functions.
10831 if (!IsVariadic)
10832 return CC_X86VectorCall;
10833 break;
10834 case LangOptions::DCC_RegCall:
10835 // __regcall cannot be applied to variadic functions.
10836 if (!IsVariadic)
10837 return CC_X86RegCall;
10838 break;
10839 }
10840 }
10841 return Target->getDefaultCallingConv();
10842 }
10843
isNearlyEmpty(const CXXRecordDecl * RD) const10844 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
10845 // Pass through to the C++ ABI object
10846 return ABI->isNearlyEmpty(RD);
10847 }
10848
getVTableContext()10849 VTableContextBase *ASTContext::getVTableContext() {
10850 if (!VTContext.get()) {
10851 auto ABI = Target->getCXXABI();
10852 if (ABI.isMicrosoft())
10853 VTContext.reset(new MicrosoftVTableContext(*this));
10854 else {
10855 auto ComponentLayout = getLangOpts().RelativeCXXABIVTables
10856 ? ItaniumVTableContext::Relative
10857 : ItaniumVTableContext::Pointer;
10858 VTContext.reset(new ItaniumVTableContext(*this, ComponentLayout));
10859 }
10860 }
10861 return VTContext.get();
10862 }
10863
createMangleContext(const TargetInfo * T)10864 MangleContext *ASTContext::createMangleContext(const TargetInfo *T) {
10865 if (!T)
10866 T = Target;
10867 switch (T->getCXXABI().getKind()) {
10868 case TargetCXXABI::AppleARM64:
10869 case TargetCXXABI::Fuchsia:
10870 case TargetCXXABI::GenericAArch64:
10871 case TargetCXXABI::GenericItanium:
10872 case TargetCXXABI::GenericARM:
10873 case TargetCXXABI::GenericMIPS:
10874 case TargetCXXABI::iOS:
10875 case TargetCXXABI::WebAssembly:
10876 case TargetCXXABI::WatchOS:
10877 case TargetCXXABI::XL:
10878 return ItaniumMangleContext::create(*this, getDiagnostics());
10879 case TargetCXXABI::Microsoft:
10880 return MicrosoftMangleContext::create(*this, getDiagnostics());
10881 }
10882 llvm_unreachable("Unsupported ABI");
10883 }
10884
10885 CXXABI::~CXXABI() = default;
10886
getSideTableAllocatedMemory() const10887 size_t ASTContext::getSideTableAllocatedMemory() const {
10888 return ASTRecordLayouts.getMemorySize() +
10889 llvm::capacity_in_bytes(ObjCLayouts) +
10890 llvm::capacity_in_bytes(KeyFunctions) +
10891 llvm::capacity_in_bytes(ObjCImpls) +
10892 llvm::capacity_in_bytes(BlockVarCopyInits) +
10893 llvm::capacity_in_bytes(DeclAttrs) +
10894 llvm::capacity_in_bytes(TemplateOrInstantiation) +
10895 llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
10896 llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
10897 llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
10898 llvm::capacity_in_bytes(OverriddenMethods) +
10899 llvm::capacity_in_bytes(Types) +
10900 llvm::capacity_in_bytes(VariableArrayTypes);
10901 }
10902
10903 /// getIntTypeForBitwidth -
10904 /// sets integer QualTy according to specified details:
10905 /// bitwidth, signed/unsigned.
10906 /// Returns empty type if there is no appropriate target types.
getIntTypeForBitwidth(unsigned DestWidth,unsigned Signed) const10907 QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
10908 unsigned Signed) const {
10909 TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
10910 CanQualType QualTy = getFromTargetType(Ty);
10911 if (!QualTy && DestWidth == 128)
10912 return Signed ? Int128Ty : UnsignedInt128Ty;
10913 return QualTy;
10914 }
10915
10916 /// getRealTypeForBitwidth -
10917 /// sets floating point QualTy according to specified bitwidth.
10918 /// Returns empty type if there is no appropriate target types.
getRealTypeForBitwidth(unsigned DestWidth,bool ExplicitIEEE) const10919 QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth,
10920 bool ExplicitIEEE) const {
10921 TargetInfo::RealType Ty =
10922 getTargetInfo().getRealTypeByWidth(DestWidth, ExplicitIEEE);
10923 switch (Ty) {
10924 case TargetInfo::Float:
10925 return FloatTy;
10926 case TargetInfo::Double:
10927 return DoubleTy;
10928 case TargetInfo::LongDouble:
10929 return LongDoubleTy;
10930 case TargetInfo::Float128:
10931 return Float128Ty;
10932 case TargetInfo::NoFloat:
10933 return {};
10934 }
10935
10936 llvm_unreachable("Unhandled TargetInfo::RealType value");
10937 }
10938
setManglingNumber(const NamedDecl * ND,unsigned Number)10939 void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
10940 if (Number > 1)
10941 MangleNumbers[ND] = Number;
10942 }
10943
getManglingNumber(const NamedDecl * ND) const10944 unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
10945 auto I = MangleNumbers.find(ND);
10946 return I != MangleNumbers.end() ? I->second : 1;
10947 }
10948
setStaticLocalNumber(const VarDecl * VD,unsigned Number)10949 void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
10950 if (Number > 1)
10951 StaticLocalNumbers[VD] = Number;
10952 }
10953
getStaticLocalNumber(const VarDecl * VD) const10954 unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
10955 auto I = StaticLocalNumbers.find(VD);
10956 return I != StaticLocalNumbers.end() ? I->second : 1;
10957 }
10958
10959 MangleNumberingContext &
getManglingNumberContext(const DeclContext * DC)10960 ASTContext::getManglingNumberContext(const DeclContext *DC) {
10961 assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
10962 std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC];
10963 if (!MCtx)
10964 MCtx = createMangleNumberingContext();
10965 return *MCtx;
10966 }
10967
10968 MangleNumberingContext &
getManglingNumberContext(NeedExtraManglingDecl_t,const Decl * D)10969 ASTContext::getManglingNumberContext(NeedExtraManglingDecl_t, const Decl *D) {
10970 assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
10971 std::unique_ptr<MangleNumberingContext> &MCtx =
10972 ExtraMangleNumberingContexts[D];
10973 if (!MCtx)
10974 MCtx = createMangleNumberingContext();
10975 return *MCtx;
10976 }
10977
10978 std::unique_ptr<MangleNumberingContext>
createMangleNumberingContext() const10979 ASTContext::createMangleNumberingContext() const {
10980 return ABI->createMangleNumberingContext();
10981 }
10982
10983 const CXXConstructorDecl *
getCopyConstructorForExceptionObject(CXXRecordDecl * RD)10984 ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
10985 return ABI->getCopyConstructorForExceptionObject(
10986 cast<CXXRecordDecl>(RD->getFirstDecl()));
10987 }
10988
addCopyConstructorForExceptionObject(CXXRecordDecl * RD,CXXConstructorDecl * CD)10989 void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
10990 CXXConstructorDecl *CD) {
10991 return ABI->addCopyConstructorForExceptionObject(
10992 cast<CXXRecordDecl>(RD->getFirstDecl()),
10993 cast<CXXConstructorDecl>(CD->getFirstDecl()));
10994 }
10995
addTypedefNameForUnnamedTagDecl(TagDecl * TD,TypedefNameDecl * DD)10996 void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD,
10997 TypedefNameDecl *DD) {
10998 return ABI->addTypedefNameForUnnamedTagDecl(TD, DD);
10999 }
11000
11001 TypedefNameDecl *
getTypedefNameForUnnamedTagDecl(const TagDecl * TD)11002 ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) {
11003 return ABI->getTypedefNameForUnnamedTagDecl(TD);
11004 }
11005
addDeclaratorForUnnamedTagDecl(TagDecl * TD,DeclaratorDecl * DD)11006 void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD,
11007 DeclaratorDecl *DD) {
11008 return ABI->addDeclaratorForUnnamedTagDecl(TD, DD);
11009 }
11010
getDeclaratorForUnnamedTagDecl(const TagDecl * TD)11011 DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) {
11012 return ABI->getDeclaratorForUnnamedTagDecl(TD);
11013 }
11014
setParameterIndex(const ParmVarDecl * D,unsigned int index)11015 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
11016 ParamIndices[D] = index;
11017 }
11018
getParameterIndex(const ParmVarDecl * D) const11019 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
11020 ParameterIndexTable::const_iterator I = ParamIndices.find(D);
11021 assert(I != ParamIndices.end() &&
11022 "ParmIndices lacks entry set by ParmVarDecl");
11023 return I->second;
11024 }
11025
getStringLiteralArrayType(QualType EltTy,unsigned Length) const11026 QualType ASTContext::getStringLiteralArrayType(QualType EltTy,
11027 unsigned Length) const {
11028 // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
11029 if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
11030 EltTy = EltTy.withConst();
11031
11032 EltTy = adjustStringLiteralBaseType(EltTy);
11033
11034 // Get an array type for the string, according to C99 6.4.5. This includes
11035 // the null terminator character.
11036 return getConstantArrayType(EltTy, llvm::APInt(32, Length + 1), nullptr,
11037 ArrayType::Normal, /*IndexTypeQuals*/ 0);
11038 }
11039
11040 StringLiteral *
getPredefinedStringLiteralFromCache(StringRef Key) const11041 ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const {
11042 StringLiteral *&Result = StringLiteralCache[Key];
11043 if (!Result)
11044 Result = StringLiteral::Create(
11045 *this, Key, StringLiteral::Ascii,
11046 /*Pascal*/ false, getStringLiteralArrayType(CharTy, Key.size()),
11047 SourceLocation());
11048 return Result;
11049 }
11050
11051 MSGuidDecl *
getMSGuidDecl(MSGuidDecl::Parts Parts) const11052 ASTContext::getMSGuidDecl(MSGuidDecl::Parts Parts) const {
11053 assert(MSGuidTagDecl && "building MS GUID without MS extensions?");
11054
11055 llvm::FoldingSetNodeID ID;
11056 MSGuidDecl::Profile(ID, Parts);
11057
11058 void *InsertPos;
11059 if (MSGuidDecl *Existing = MSGuidDecls.FindNodeOrInsertPos(ID, InsertPos))
11060 return Existing;
11061
11062 QualType GUIDType = getMSGuidType().withConst();
11063 MSGuidDecl *New = MSGuidDecl::Create(*this, GUIDType, Parts);
11064 MSGuidDecls.InsertNode(New, InsertPos);
11065 return New;
11066 }
11067
11068 TemplateParamObjectDecl *
getTemplateParamObjectDecl(QualType T,const APValue & V) const11069 ASTContext::getTemplateParamObjectDecl(QualType T, const APValue &V) const {
11070 assert(T->isRecordType() && "template param object of unexpected type");
11071
11072 // C++ [temp.param]p8:
11073 // [...] a static storage duration object of type 'const T' [...]
11074 T.addConst();
11075
11076 llvm::FoldingSetNodeID ID;
11077 TemplateParamObjectDecl::Profile(ID, T, V);
11078
11079 void *InsertPos;
11080 if (TemplateParamObjectDecl *Existing =
11081 TemplateParamObjectDecls.FindNodeOrInsertPos(ID, InsertPos))
11082 return Existing;
11083
11084 TemplateParamObjectDecl *New = TemplateParamObjectDecl::Create(*this, T, V);
11085 TemplateParamObjectDecls.InsertNode(New, InsertPos);
11086 return New;
11087 }
11088
AtomicUsesUnsupportedLibcall(const AtomicExpr * E) const11089 bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
11090 const llvm::Triple &T = getTargetInfo().getTriple();
11091 if (!T.isOSDarwin())
11092 return false;
11093
11094 if (!(T.isiOS() && T.isOSVersionLT(7)) &&
11095 !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
11096 return false;
11097
11098 QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
11099 CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
11100 uint64_t Size = sizeChars.getQuantity();
11101 CharUnits alignChars = getTypeAlignInChars(AtomicTy);
11102 unsigned Align = alignChars.getQuantity();
11103 unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
11104 return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
11105 }
11106
11107 bool
ObjCMethodsAreEqual(const ObjCMethodDecl * MethodDecl,const ObjCMethodDecl * MethodImpl)11108 ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
11109 const ObjCMethodDecl *MethodImpl) {
11110 // No point trying to match an unavailable/deprecated mothod.
11111 if (MethodDecl->hasAttr<UnavailableAttr>()
11112 || MethodDecl->hasAttr<DeprecatedAttr>())
11113 return false;
11114 if (MethodDecl->getObjCDeclQualifier() !=
11115 MethodImpl->getObjCDeclQualifier())
11116 return false;
11117 if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
11118 return false;
11119
11120 if (MethodDecl->param_size() != MethodImpl->param_size())
11121 return false;
11122
11123 for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
11124 IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
11125 EF = MethodDecl->param_end();
11126 IM != EM && IF != EF; ++IM, ++IF) {
11127 const ParmVarDecl *DeclVar = (*IF);
11128 const ParmVarDecl *ImplVar = (*IM);
11129 if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
11130 return false;
11131 if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
11132 return false;
11133 }
11134
11135 return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
11136 }
11137
getTargetNullPointerValue(QualType QT) const11138 uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const {
11139 LangAS AS;
11140 if (QT->getUnqualifiedDesugaredType()->isNullPtrType())
11141 AS = LangAS::Default;
11142 else
11143 AS = QT->getPointeeType().getAddressSpace();
11144
11145 return getTargetInfo().getNullPointerValue(AS);
11146 }
11147
getTargetAddressSpace(LangAS AS) const11148 unsigned ASTContext::getTargetAddressSpace(LangAS AS) const {
11149 if (isTargetAddressSpace(AS))
11150 return toTargetAddressSpace(AS);
11151 else
11152 return (*AddrSpaceMap)[(unsigned)AS];
11153 }
11154
getCorrespondingSaturatedType(QualType Ty) const11155 QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const {
11156 assert(Ty->isFixedPointType());
11157
11158 if (Ty->isSaturatedFixedPointType()) return Ty;
11159
11160 switch (Ty->castAs<BuiltinType>()->getKind()) {
11161 default:
11162 llvm_unreachable("Not a fixed point type!");
11163 case BuiltinType::ShortAccum:
11164 return SatShortAccumTy;
11165 case BuiltinType::Accum:
11166 return SatAccumTy;
11167 case BuiltinType::LongAccum:
11168 return SatLongAccumTy;
11169 case BuiltinType::UShortAccum:
11170 return SatUnsignedShortAccumTy;
11171 case BuiltinType::UAccum:
11172 return SatUnsignedAccumTy;
11173 case BuiltinType::ULongAccum:
11174 return SatUnsignedLongAccumTy;
11175 case BuiltinType::ShortFract:
11176 return SatShortFractTy;
11177 case BuiltinType::Fract:
11178 return SatFractTy;
11179 case BuiltinType::LongFract:
11180 return SatLongFractTy;
11181 case BuiltinType::UShortFract:
11182 return SatUnsignedShortFractTy;
11183 case BuiltinType::UFract:
11184 return SatUnsignedFractTy;
11185 case BuiltinType::ULongFract:
11186 return SatUnsignedLongFractTy;
11187 }
11188 }
11189
getLangASForBuiltinAddressSpace(unsigned AS) const11190 LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const {
11191 if (LangOpts.OpenCL)
11192 return getTargetInfo().getOpenCLBuiltinAddressSpace(AS);
11193
11194 if (LangOpts.CUDA)
11195 return getTargetInfo().getCUDABuiltinAddressSpace(AS);
11196
11197 return getLangASFromTargetAS(AS);
11198 }
11199
11200 // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
11201 // doesn't include ASTContext.h
11202 template
11203 clang::LazyGenerationalUpdatePtr<
11204 const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
11205 clang::LazyGenerationalUpdatePtr<
11206 const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
11207 const clang::ASTContext &Ctx, Decl *Value);
11208
getFixedPointScale(QualType Ty) const11209 unsigned char ASTContext::getFixedPointScale(QualType Ty) const {
11210 assert(Ty->isFixedPointType());
11211
11212 const TargetInfo &Target = getTargetInfo();
11213 switch (Ty->castAs<BuiltinType>()->getKind()) {
11214 default:
11215 llvm_unreachable("Not a fixed point type!");
11216 case BuiltinType::ShortAccum:
11217 case BuiltinType::SatShortAccum:
11218 return Target.getShortAccumScale();
11219 case BuiltinType::Accum:
11220 case BuiltinType::SatAccum:
11221 return Target.getAccumScale();
11222 case BuiltinType::LongAccum:
11223 case BuiltinType::SatLongAccum:
11224 return Target.getLongAccumScale();
11225 case BuiltinType::UShortAccum:
11226 case BuiltinType::SatUShortAccum:
11227 return Target.getUnsignedShortAccumScale();
11228 case BuiltinType::UAccum:
11229 case BuiltinType::SatUAccum:
11230 return Target.getUnsignedAccumScale();
11231 case BuiltinType::ULongAccum:
11232 case BuiltinType::SatULongAccum:
11233 return Target.getUnsignedLongAccumScale();
11234 case BuiltinType::ShortFract:
11235 case BuiltinType::SatShortFract:
11236 return Target.getShortFractScale();
11237 case BuiltinType::Fract:
11238 case BuiltinType::SatFract:
11239 return Target.getFractScale();
11240 case BuiltinType::LongFract:
11241 case BuiltinType::SatLongFract:
11242 return Target.getLongFractScale();
11243 case BuiltinType::UShortFract:
11244 case BuiltinType::SatUShortFract:
11245 return Target.getUnsignedShortFractScale();
11246 case BuiltinType::UFract:
11247 case BuiltinType::SatUFract:
11248 return Target.getUnsignedFractScale();
11249 case BuiltinType::ULongFract:
11250 case BuiltinType::SatULongFract:
11251 return Target.getUnsignedLongFractScale();
11252 }
11253 }
11254
getFixedPointIBits(QualType Ty) const11255 unsigned char ASTContext::getFixedPointIBits(QualType Ty) const {
11256 assert(Ty->isFixedPointType());
11257
11258 const TargetInfo &Target = getTargetInfo();
11259 switch (Ty->castAs<BuiltinType>()->getKind()) {
11260 default:
11261 llvm_unreachable("Not a fixed point type!");
11262 case BuiltinType::ShortAccum:
11263 case BuiltinType::SatShortAccum:
11264 return Target.getShortAccumIBits();
11265 case BuiltinType::Accum:
11266 case BuiltinType::SatAccum:
11267 return Target.getAccumIBits();
11268 case BuiltinType::LongAccum:
11269 case BuiltinType::SatLongAccum:
11270 return Target.getLongAccumIBits();
11271 case BuiltinType::UShortAccum:
11272 case BuiltinType::SatUShortAccum:
11273 return Target.getUnsignedShortAccumIBits();
11274 case BuiltinType::UAccum:
11275 case BuiltinType::SatUAccum:
11276 return Target.getUnsignedAccumIBits();
11277 case BuiltinType::ULongAccum:
11278 case BuiltinType::SatULongAccum:
11279 return Target.getUnsignedLongAccumIBits();
11280 case BuiltinType::ShortFract:
11281 case BuiltinType::SatShortFract:
11282 case BuiltinType::Fract:
11283 case BuiltinType::SatFract:
11284 case BuiltinType::LongFract:
11285 case BuiltinType::SatLongFract:
11286 case BuiltinType::UShortFract:
11287 case BuiltinType::SatUShortFract:
11288 case BuiltinType::UFract:
11289 case BuiltinType::SatUFract:
11290 case BuiltinType::ULongFract:
11291 case BuiltinType::SatULongFract:
11292 return 0;
11293 }
11294 }
11295
11296 llvm::FixedPointSemantics
getFixedPointSemantics(QualType Ty) const11297 ASTContext::getFixedPointSemantics(QualType Ty) const {
11298 assert((Ty->isFixedPointType() || Ty->isIntegerType()) &&
11299 "Can only get the fixed point semantics for a "
11300 "fixed point or integer type.");
11301 if (Ty->isIntegerType())
11302 return llvm::FixedPointSemantics::GetIntegerSemantics(
11303 getIntWidth(Ty), Ty->isSignedIntegerType());
11304
11305 bool isSigned = Ty->isSignedFixedPointType();
11306 return llvm::FixedPointSemantics(
11307 static_cast<unsigned>(getTypeSize(Ty)), getFixedPointScale(Ty), isSigned,
11308 Ty->isSaturatedFixedPointType(),
11309 !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding());
11310 }
11311
getFixedPointMax(QualType Ty) const11312 llvm::APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const {
11313 assert(Ty->isFixedPointType());
11314 return llvm::APFixedPoint::getMax(getFixedPointSemantics(Ty));
11315 }
11316
getFixedPointMin(QualType Ty) const11317 llvm::APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const {
11318 assert(Ty->isFixedPointType());
11319 return llvm::APFixedPoint::getMin(getFixedPointSemantics(Ty));
11320 }
11321
getCorrespondingSignedFixedPointType(QualType Ty) const11322 QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const {
11323 assert(Ty->isUnsignedFixedPointType() &&
11324 "Expected unsigned fixed point type");
11325
11326 switch (Ty->castAs<BuiltinType>()->getKind()) {
11327 case BuiltinType::UShortAccum:
11328 return ShortAccumTy;
11329 case BuiltinType::UAccum:
11330 return AccumTy;
11331 case BuiltinType::ULongAccum:
11332 return LongAccumTy;
11333 case BuiltinType::SatUShortAccum:
11334 return SatShortAccumTy;
11335 case BuiltinType::SatUAccum:
11336 return SatAccumTy;
11337 case BuiltinType::SatULongAccum:
11338 return SatLongAccumTy;
11339 case BuiltinType::UShortFract:
11340 return ShortFractTy;
11341 case BuiltinType::UFract:
11342 return FractTy;
11343 case BuiltinType::ULongFract:
11344 return LongFractTy;
11345 case BuiltinType::SatUShortFract:
11346 return SatShortFractTy;
11347 case BuiltinType::SatUFract:
11348 return SatFractTy;
11349 case BuiltinType::SatULongFract:
11350 return SatLongFractTy;
11351 default:
11352 llvm_unreachable("Unexpected unsigned fixed point type");
11353 }
11354 }
11355
11356 ParsedTargetAttr
filterFunctionTargetAttrs(const TargetAttr * TD) const11357 ASTContext::filterFunctionTargetAttrs(const TargetAttr *TD) const {
11358 assert(TD != nullptr);
11359 ParsedTargetAttr ParsedAttr = TD->parse();
11360
11361 ParsedAttr.Features.erase(
11362 llvm::remove_if(ParsedAttr.Features,
11363 [&](const std::string &Feat) {
11364 return !Target->isValidFeatureName(
11365 StringRef{Feat}.substr(1));
11366 }),
11367 ParsedAttr.Features.end());
11368 return ParsedAttr;
11369 }
11370
getFunctionFeatureMap(llvm::StringMap<bool> & FeatureMap,const FunctionDecl * FD) const11371 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
11372 const FunctionDecl *FD) const {
11373 if (FD)
11374 getFunctionFeatureMap(FeatureMap, GlobalDecl().getWithDecl(FD));
11375 else
11376 Target->initFeatureMap(FeatureMap, getDiagnostics(),
11377 Target->getTargetOpts().CPU,
11378 Target->getTargetOpts().Features);
11379 }
11380
11381 // Fills in the supplied string map with the set of target features for the
11382 // passed in function.
getFunctionFeatureMap(llvm::StringMap<bool> & FeatureMap,GlobalDecl GD) const11383 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
11384 GlobalDecl GD) const {
11385 StringRef TargetCPU = Target->getTargetOpts().CPU;
11386 const FunctionDecl *FD = GD.getDecl()->getAsFunction();
11387 if (const auto *TD = FD->getAttr<TargetAttr>()) {
11388 ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
11389
11390 // Make a copy of the features as passed on the command line into the
11391 // beginning of the additional features from the function to override.
11392 ParsedAttr.Features.insert(
11393 ParsedAttr.Features.begin(),
11394 Target->getTargetOpts().FeaturesAsWritten.begin(),
11395 Target->getTargetOpts().FeaturesAsWritten.end());
11396
11397 if (ParsedAttr.Architecture != "" &&
11398 Target->isValidCPUName(ParsedAttr.Architecture))
11399 TargetCPU = ParsedAttr.Architecture;
11400
11401 // Now populate the feature map, first with the TargetCPU which is either
11402 // the default or a new one from the target attribute string. Then we'll use
11403 // the passed in features (FeaturesAsWritten) along with the new ones from
11404 // the attribute.
11405 Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU,
11406 ParsedAttr.Features);
11407 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
11408 llvm::SmallVector<StringRef, 32> FeaturesTmp;
11409 Target->getCPUSpecificCPUDispatchFeatures(
11410 SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
11411 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
11412 Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features);
11413 } else {
11414 FeatureMap = Target->getTargetOpts().FeatureMap;
11415 }
11416 }
11417
getNewOMPTraitInfo()11418 OMPTraitInfo &ASTContext::getNewOMPTraitInfo() {
11419 OMPTraitInfoVector.emplace_back(new OMPTraitInfo());
11420 return *OMPTraitInfoVector.back();
11421 }
11422
11423 const StreamingDiagnostic &clang::
operator <<(const StreamingDiagnostic & DB,const ASTContext::SectionInfo & Section)11424 operator<<(const StreamingDiagnostic &DB,
11425 const ASTContext::SectionInfo &Section) {
11426 if (Section.Decl)
11427 return DB << Section.Decl;
11428 return DB << "a prior #pragma section";
11429 }
11430
mayExternalizeStaticVar(const Decl * D) const11431 bool ASTContext::mayExternalizeStaticVar(const Decl *D) const {
11432 return !getLangOpts().GPURelocatableDeviceCode &&
11433 ((D->hasAttr<CUDADeviceAttr>() &&
11434 !D->getAttr<CUDADeviceAttr>()->isImplicit()) ||
11435 (D->hasAttr<CUDAConstantAttr>() &&
11436 !D->getAttr<CUDAConstantAttr>()->isImplicit())) &&
11437 isa<VarDecl>(D) && cast<VarDecl>(D)->isFileVarDecl() &&
11438 cast<VarDecl>(D)->getStorageClass() == SC_Static;
11439 }
11440
shouldExternalizeStaticVar(const Decl * D) const11441 bool ASTContext::shouldExternalizeStaticVar(const Decl *D) const {
11442 return mayExternalizeStaticVar(D) &&
11443 CUDAStaticDeviceVarReferencedByHost.count(cast<VarDecl>(D));
11444 }
11445