1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for C++ lambda expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 #include "clang/Sema/DeclSpec.h"
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTLambda.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/TargetInfo.h"
17 #include "clang/Sema/Initialization.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/Sema/Scope.h"
20 #include "clang/Sema/ScopeInfo.h"
21 #include "clang/Sema/SemaInternal.h"
22 #include "clang/Sema/SemaLambda.h"
23 #include "llvm/ADT/STLExtras.h"
24 using namespace clang;
25 using namespace sema;
26
27 /// Examines the FunctionScopeInfo stack to determine the nearest
28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for
29 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
30 /// If successful, returns the index into Sema's FunctionScopeInfo stack
31 /// of the capture-ready lambda's LambdaScopeInfo.
32 ///
33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
34 /// lambda - is on top) to determine the index of the nearest enclosing/outer
35 /// lambda that is ready to capture the \p VarToCapture being referenced in
36 /// the current lambda.
37 /// As we climb down the stack, we want the index of the first such lambda -
38 /// that is the lambda with the highest index that is 'capture-ready'.
39 ///
40 /// A lambda 'L' is capture-ready for 'V' (var or this) if:
41 /// - its enclosing context is non-dependent
42 /// - and if the chain of lambdas between L and the lambda in which
43 /// V is potentially used (i.e. the lambda at the top of the scope info
44 /// stack), can all capture or have already captured V.
45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'.
46 ///
47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked
48 /// for whether it is 'capture-capable' (see
49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
50 /// capture.
51 ///
52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
53 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
54 /// is at the top of the stack and has the highest index.
55 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
56 ///
57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
59 /// which is capture-ready. If the return value evaluates to 'false' then
60 /// no lambda is capture-ready for \p VarToCapture.
61
62 static inline Optional<unsigned>
getStackIndexOfNearestEnclosingCaptureReadyLambda(ArrayRef<const clang::sema::FunctionScopeInfo * > FunctionScopes,VarDecl * VarToCapture)63 getStackIndexOfNearestEnclosingCaptureReadyLambda(
64 ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes,
65 VarDecl *VarToCapture) {
66 // Label failure to capture.
67 const Optional<unsigned> NoLambdaIsCaptureReady;
68
69 // Ignore all inner captured regions.
70 unsigned CurScopeIndex = FunctionScopes.size() - 1;
71 while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>(
72 FunctionScopes[CurScopeIndex]))
73 --CurScopeIndex;
74 assert(
75 isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) &&
76 "The function on the top of sema's function-info stack must be a lambda");
77
78 // If VarToCapture is null, we are attempting to capture 'this'.
79 const bool IsCapturingThis = !VarToCapture;
80 const bool IsCapturingVariable = !IsCapturingThis;
81
82 // Start with the current lambda at the top of the stack (highest index).
83 DeclContext *EnclosingDC =
84 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
85
86 do {
87 const clang::sema::LambdaScopeInfo *LSI =
88 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
89 // IF we have climbed down to an intervening enclosing lambda that contains
90 // the variable declaration - it obviously can/must not capture the
91 // variable.
92 // Since its enclosing DC is dependent, all the lambdas between it and the
93 // innermost nested lambda are dependent (otherwise we wouldn't have
94 // arrived here) - so we don't yet have a lambda that can capture the
95 // variable.
96 if (IsCapturingVariable &&
97 VarToCapture->getDeclContext()->Equals(EnclosingDC))
98 return NoLambdaIsCaptureReady;
99
100 // For an enclosing lambda to be capture ready for an entity, all
101 // intervening lambda's have to be able to capture that entity. If even
102 // one of the intervening lambda's is not capable of capturing the entity
103 // then no enclosing lambda can ever capture that entity.
104 // For e.g.
105 // const int x = 10;
106 // [=](auto a) { #1
107 // [](auto b) { #2 <-- an intervening lambda that can never capture 'x'
108 // [=](auto c) { #3
109 // f(x, c); <-- can not lead to x's speculative capture by #1 or #2
110 // }; }; };
111 // If they do not have a default implicit capture, check to see
112 // if the entity has already been explicitly captured.
113 // If even a single dependent enclosing lambda lacks the capability
114 // to ever capture this variable, there is no further enclosing
115 // non-dependent lambda that can capture this variable.
116 if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) {
117 if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
118 return NoLambdaIsCaptureReady;
119 if (IsCapturingThis && !LSI->isCXXThisCaptured())
120 return NoLambdaIsCaptureReady;
121 }
122 EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
123
124 assert(CurScopeIndex);
125 --CurScopeIndex;
126 } while (!EnclosingDC->isTranslationUnit() &&
127 EnclosingDC->isDependentContext() &&
128 isLambdaCallOperator(EnclosingDC));
129
130 assert(CurScopeIndex < (FunctionScopes.size() - 1));
131 // If the enclosingDC is not dependent, then the immediately nested lambda
132 // (one index above) is capture-ready.
133 if (!EnclosingDC->isDependentContext())
134 return CurScopeIndex + 1;
135 return NoLambdaIsCaptureReady;
136 }
137
138 /// Examines the FunctionScopeInfo stack to determine the nearest
139 /// enclosing lambda (to the current lambda) that is 'capture-capable' for
140 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
141 /// If successful, returns the index into Sema's FunctionScopeInfo stack
142 /// of the capture-capable lambda's LambdaScopeInfo.
143 ///
144 /// Given the current stack of lambdas being processed by Sema and
145 /// the variable of interest, to identify the nearest enclosing lambda (to the
146 /// current lambda at the top of the stack) that can truly capture
147 /// a variable, it has to have the following two properties:
148 /// a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
149 /// - climb down the stack (i.e. starting from the innermost and examining
150 /// each outer lambda step by step) checking if each enclosing
151 /// lambda can either implicitly or explicitly capture the variable.
152 /// Record the first such lambda that is enclosed in a non-dependent
153 /// context. If no such lambda currently exists return failure.
154 /// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
155 /// capture the variable by checking all its enclosing lambdas:
156 /// - check if all outer lambdas enclosing the 'capture-ready' lambda
157 /// identified above in 'a' can also capture the variable (this is done
158 /// via tryCaptureVariable for variables and CheckCXXThisCapture for
159 /// 'this' by passing in the index of the Lambda identified in step 'a')
160 ///
161 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
162 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
163 /// is at the top of the stack.
164 ///
165 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
166 ///
167 ///
168 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
169 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
170 /// which is capture-capable. If the return value evaluates to 'false' then
171 /// no lambda is capture-capable for \p VarToCapture.
172
getStackIndexOfNearestEnclosingCaptureCapableLambda(ArrayRef<const sema::FunctionScopeInfo * > FunctionScopes,VarDecl * VarToCapture,Sema & S)173 Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda(
174 ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes,
175 VarDecl *VarToCapture, Sema &S) {
176
177 const Optional<unsigned> NoLambdaIsCaptureCapable;
178
179 const Optional<unsigned> OptionalStackIndex =
180 getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes,
181 VarToCapture);
182 if (!OptionalStackIndex)
183 return NoLambdaIsCaptureCapable;
184
185 const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue();
186 assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
187 S.getCurGenericLambda()) &&
188 "The capture ready lambda for a potential capture can only be the "
189 "current lambda if it is a generic lambda");
190
191 const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
192 cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
193
194 // If VarToCapture is null, we are attempting to capture 'this'
195 const bool IsCapturingThis = !VarToCapture;
196 const bool IsCapturingVariable = !IsCapturingThis;
197
198 if (IsCapturingVariable) {
199 // Check if the capture-ready lambda can truly capture the variable, by
200 // checking whether all enclosing lambdas of the capture-ready lambda allow
201 // the capture - i.e. make sure it is capture-capable.
202 QualType CaptureType, DeclRefType;
203 const bool CanCaptureVariable =
204 !S.tryCaptureVariable(VarToCapture,
205 /*ExprVarIsUsedInLoc*/ SourceLocation(),
206 clang::Sema::TryCapture_Implicit,
207 /*EllipsisLoc*/ SourceLocation(),
208 /*BuildAndDiagnose*/ false, CaptureType,
209 DeclRefType, &IndexOfCaptureReadyLambda);
210 if (!CanCaptureVariable)
211 return NoLambdaIsCaptureCapable;
212 } else {
213 // Check if the capture-ready lambda can truly capture 'this' by checking
214 // whether all enclosing lambdas of the capture-ready lambda can capture
215 // 'this'.
216 const bool CanCaptureThis =
217 !S.CheckCXXThisCapture(
218 CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
219 /*Explicit*/ false, /*BuildAndDiagnose*/ false,
220 &IndexOfCaptureReadyLambda);
221 if (!CanCaptureThis)
222 return NoLambdaIsCaptureCapable;
223 }
224 return IndexOfCaptureReadyLambda;
225 }
226
227 static inline TemplateParameterList *
getGenericLambdaTemplateParameterList(LambdaScopeInfo * LSI,Sema & SemaRef)228 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) {
229 if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) {
230 LSI->GLTemplateParameterList = TemplateParameterList::Create(
231 SemaRef.Context,
232 /*Template kw loc*/ SourceLocation(),
233 /*L angle loc*/ LSI->ExplicitTemplateParamsRange.getBegin(),
234 LSI->TemplateParams,
235 /*R angle loc*/LSI->ExplicitTemplateParamsRange.getEnd(),
236 LSI->RequiresClause.get());
237 }
238 return LSI->GLTemplateParameterList;
239 }
240
createLambdaClosureType(SourceRange IntroducerRange,TypeSourceInfo * Info,bool KnownDependent,LambdaCaptureDefault CaptureDefault)241 CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange,
242 TypeSourceInfo *Info,
243 bool KnownDependent,
244 LambdaCaptureDefault CaptureDefault) {
245 DeclContext *DC = CurContext;
246 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
247 DC = DC->getParent();
248 bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
249 *this);
250 // Start constructing the lambda class.
251 CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info,
252 IntroducerRange.getBegin(),
253 KnownDependent,
254 IsGenericLambda,
255 CaptureDefault);
256 DC->addDecl(Class);
257
258 return Class;
259 }
260
261 /// Determine whether the given context is or is enclosed in an inline
262 /// function.
isInInlineFunction(const DeclContext * DC)263 static bool isInInlineFunction(const DeclContext *DC) {
264 while (!DC->isFileContext()) {
265 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
266 if (FD->isInlined())
267 return true;
268
269 DC = DC->getLexicalParent();
270 }
271
272 return false;
273 }
274
275 std::tuple<MangleNumberingContext *, Decl *>
getCurrentMangleNumberContext(const DeclContext * DC)276 Sema::getCurrentMangleNumberContext(const DeclContext *DC) {
277 // Compute the context for allocating mangling numbers in the current
278 // expression, if the ABI requires them.
279 Decl *ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
280
281 enum ContextKind {
282 Normal,
283 DefaultArgument,
284 DataMember,
285 StaticDataMember,
286 InlineVariable,
287 VariableTemplate
288 } Kind = Normal;
289
290 // Default arguments of member function parameters that appear in a class
291 // definition, as well as the initializers of data members, receive special
292 // treatment. Identify them.
293 if (ManglingContextDecl) {
294 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
295 if (const DeclContext *LexicalDC
296 = Param->getDeclContext()->getLexicalParent())
297 if (LexicalDC->isRecord())
298 Kind = DefaultArgument;
299 } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
300 if (Var->getDeclContext()->isRecord())
301 Kind = StaticDataMember;
302 else if (Var->getMostRecentDecl()->isInline())
303 Kind = InlineVariable;
304 else if (Var->getDescribedVarTemplate())
305 Kind = VariableTemplate;
306 else if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
307 if (!VTS->isExplicitSpecialization())
308 Kind = VariableTemplate;
309 }
310 } else if (isa<FieldDecl>(ManglingContextDecl)) {
311 Kind = DataMember;
312 }
313 }
314
315 // Itanium ABI [5.1.7]:
316 // In the following contexts [...] the one-definition rule requires closure
317 // types in different translation units to "correspond":
318 bool IsInNonspecializedTemplate =
319 inTemplateInstantiation() || CurContext->isDependentContext();
320 switch (Kind) {
321 case Normal: {
322 // -- the bodies of non-exported nonspecialized template functions
323 // -- the bodies of inline functions
324 if ((IsInNonspecializedTemplate &&
325 !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
326 isInInlineFunction(CurContext)) {
327 while (auto *CD = dyn_cast<CapturedDecl>(DC))
328 DC = CD->getParent();
329 return std::make_tuple(&Context.getManglingNumberContext(DC), nullptr);
330 }
331
332 return std::make_tuple(nullptr, nullptr);
333 }
334
335 case StaticDataMember:
336 // -- the initializers of nonspecialized static members of template classes
337 if (!IsInNonspecializedTemplate)
338 return std::make_tuple(nullptr, ManglingContextDecl);
339 // Fall through to get the current context.
340 LLVM_FALLTHROUGH;
341
342 case DataMember:
343 // -- the in-class initializers of class members
344 case DefaultArgument:
345 // -- default arguments appearing in class definitions
346 case InlineVariable:
347 // -- the initializers of inline variables
348 case VariableTemplate:
349 // -- the initializers of templated variables
350 return std::make_tuple(
351 &Context.getManglingNumberContext(ASTContext::NeedExtraManglingDecl,
352 ManglingContextDecl),
353 ManglingContextDecl);
354 }
355
356 llvm_unreachable("unexpected context");
357 }
358
startLambdaDefinition(CXXRecordDecl * Class,SourceRange IntroducerRange,TypeSourceInfo * MethodTypeInfo,SourceLocation EndLoc,ArrayRef<ParmVarDecl * > Params,ConstexprSpecKind ConstexprKind,Expr * TrailingRequiresClause)359 CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class,
360 SourceRange IntroducerRange,
361 TypeSourceInfo *MethodTypeInfo,
362 SourceLocation EndLoc,
363 ArrayRef<ParmVarDecl *> Params,
364 ConstexprSpecKind ConstexprKind,
365 Expr *TrailingRequiresClause) {
366 QualType MethodType = MethodTypeInfo->getType();
367 TemplateParameterList *TemplateParams =
368 getGenericLambdaTemplateParameterList(getCurLambda(), *this);
369 // If a lambda appears in a dependent context or is a generic lambda (has
370 // template parameters) and has an 'auto' return type, deduce it to a
371 // dependent type.
372 if (Class->isDependentContext() || TemplateParams) {
373 const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
374 QualType Result = FPT->getReturnType();
375 if (Result->isUndeducedType()) {
376 Result = SubstAutoType(Result, Context.DependentTy);
377 MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
378 FPT->getExtProtoInfo());
379 }
380 }
381
382 // C++11 [expr.prim.lambda]p5:
383 // The closure type for a lambda-expression has a public inline function
384 // call operator (13.5.4) whose parameters and return type are described by
385 // the lambda-expression's parameter-declaration-clause and
386 // trailing-return-type respectively.
387 DeclarationName MethodName
388 = Context.DeclarationNames.getCXXOperatorName(OO_Call);
389 DeclarationNameLoc MethodNameLoc;
390 MethodNameLoc.CXXOperatorName.BeginOpNameLoc
391 = IntroducerRange.getBegin().getRawEncoding();
392 MethodNameLoc.CXXOperatorName.EndOpNameLoc
393 = IntroducerRange.getEnd().getRawEncoding();
394 CXXMethodDecl *Method = CXXMethodDecl::Create(
395 Context, Class, EndLoc,
396 DeclarationNameInfo(MethodName, IntroducerRange.getBegin(),
397 MethodNameLoc),
398 MethodType, MethodTypeInfo, SC_None,
399 /*isInline=*/true, ConstexprKind, EndLoc, TrailingRequiresClause);
400 Method->setAccess(AS_public);
401 if (!TemplateParams)
402 Class->addDecl(Method);
403
404 // Temporarily set the lexical declaration context to the current
405 // context, so that the Scope stack matches the lexical nesting.
406 Method->setLexicalDeclContext(CurContext);
407 // Create a function template if we have a template parameter list
408 FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
409 FunctionTemplateDecl::Create(Context, Class,
410 Method->getLocation(), MethodName,
411 TemplateParams,
412 Method) : nullptr;
413 if (TemplateMethod) {
414 TemplateMethod->setAccess(AS_public);
415 Method->setDescribedFunctionTemplate(TemplateMethod);
416 Class->addDecl(TemplateMethod);
417 TemplateMethod->setLexicalDeclContext(CurContext);
418 }
419
420 // Add parameters.
421 if (!Params.empty()) {
422 Method->setParams(Params);
423 CheckParmsForFunctionDef(Params,
424 /*CheckParameterNames=*/false);
425
426 for (auto P : Method->parameters())
427 P->setOwningFunction(Method);
428 }
429
430 return Method;
431 }
432
handleLambdaNumbering(CXXRecordDecl * Class,CXXMethodDecl * Method,Optional<std::tuple<unsigned,bool,Decl * >> Mangling)433 void Sema::handleLambdaNumbering(
434 CXXRecordDecl *Class, CXXMethodDecl *Method,
435 Optional<std::tuple<unsigned, bool, Decl *>> Mangling) {
436 if (Mangling) {
437 unsigned ManglingNumber;
438 bool HasKnownInternalLinkage;
439 Decl *ManglingContextDecl;
440 std::tie(ManglingNumber, HasKnownInternalLinkage, ManglingContextDecl) =
441 Mangling.getValue();
442 Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
443 HasKnownInternalLinkage);
444 return;
445 }
446
447 auto getMangleNumberingContext =
448 [this](CXXRecordDecl *Class,
449 Decl *ManglingContextDecl) -> MangleNumberingContext * {
450 // Get mangle numbering context if there's any extra decl context.
451 if (ManglingContextDecl)
452 return &Context.getManglingNumberContext(
453 ASTContext::NeedExtraManglingDecl, ManglingContextDecl);
454 // Otherwise, from that lambda's decl context.
455 auto DC = Class->getDeclContext();
456 while (auto *CD = dyn_cast<CapturedDecl>(DC))
457 DC = CD->getParent();
458 return &Context.getManglingNumberContext(DC);
459 };
460
461 MangleNumberingContext *MCtx;
462 Decl *ManglingContextDecl;
463 std::tie(MCtx, ManglingContextDecl) =
464 getCurrentMangleNumberContext(Class->getDeclContext());
465 bool HasKnownInternalLinkage = false;
466 if (!MCtx && getLangOpts().CUDA) {
467 // Force lambda numbering in CUDA/HIP as we need to name lambdas following
468 // ODR. Both device- and host-compilation need to have a consistent naming
469 // on kernel functions. As lambdas are potential part of these `__global__`
470 // function names, they needs numbering following ODR.
471 MCtx = getMangleNumberingContext(Class, ManglingContextDecl);
472 assert(MCtx && "Retrieving mangle numbering context failed!");
473 HasKnownInternalLinkage = true;
474 }
475 if (MCtx) {
476 unsigned ManglingNumber = MCtx->getManglingNumber(Method);
477 Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
478 HasKnownInternalLinkage);
479 }
480 }
481
buildLambdaScope(LambdaScopeInfo * LSI,CXXMethodDecl * CallOperator,SourceRange IntroducerRange,LambdaCaptureDefault CaptureDefault,SourceLocation CaptureDefaultLoc,bool ExplicitParams,bool ExplicitResultType,bool Mutable)482 void Sema::buildLambdaScope(LambdaScopeInfo *LSI,
483 CXXMethodDecl *CallOperator,
484 SourceRange IntroducerRange,
485 LambdaCaptureDefault CaptureDefault,
486 SourceLocation CaptureDefaultLoc,
487 bool ExplicitParams,
488 bool ExplicitResultType,
489 bool Mutable) {
490 LSI->CallOperator = CallOperator;
491 CXXRecordDecl *LambdaClass = CallOperator->getParent();
492 LSI->Lambda = LambdaClass;
493 if (CaptureDefault == LCD_ByCopy)
494 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
495 else if (CaptureDefault == LCD_ByRef)
496 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
497 LSI->CaptureDefaultLoc = CaptureDefaultLoc;
498 LSI->IntroducerRange = IntroducerRange;
499 LSI->ExplicitParams = ExplicitParams;
500 LSI->Mutable = Mutable;
501
502 if (ExplicitResultType) {
503 LSI->ReturnType = CallOperator->getReturnType();
504
505 if (!LSI->ReturnType->isDependentType() &&
506 !LSI->ReturnType->isVoidType()) {
507 if (RequireCompleteType(CallOperator->getBeginLoc(), LSI->ReturnType,
508 diag::err_lambda_incomplete_result)) {
509 // Do nothing.
510 }
511 }
512 } else {
513 LSI->HasImplicitReturnType = true;
514 }
515 }
516
finishLambdaExplicitCaptures(LambdaScopeInfo * LSI)517 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
518 LSI->finishedExplicitCaptures();
519 }
520
ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc,ArrayRef<NamedDecl * > TParams,SourceLocation RAngleLoc,ExprResult RequiresClause)521 void Sema::ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc,
522 ArrayRef<NamedDecl *> TParams,
523 SourceLocation RAngleLoc,
524 ExprResult RequiresClause) {
525 LambdaScopeInfo *LSI = getCurLambda();
526 assert(LSI && "Expected a lambda scope");
527 assert(LSI->NumExplicitTemplateParams == 0 &&
528 "Already acted on explicit template parameters");
529 assert(LSI->TemplateParams.empty() &&
530 "Explicit template parameters should come "
531 "before invented (auto) ones");
532 assert(!TParams.empty() &&
533 "No template parameters to act on");
534 LSI->TemplateParams.append(TParams.begin(), TParams.end());
535 LSI->NumExplicitTemplateParams = TParams.size();
536 LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc};
537 LSI->RequiresClause = RequiresClause;
538 }
539
addLambdaParameters(ArrayRef<LambdaIntroducer::LambdaCapture> Captures,CXXMethodDecl * CallOperator,Scope * CurScope)540 void Sema::addLambdaParameters(
541 ArrayRef<LambdaIntroducer::LambdaCapture> Captures,
542 CXXMethodDecl *CallOperator, Scope *CurScope) {
543 // Introduce our parameters into the function scope
544 for (unsigned p = 0, NumParams = CallOperator->getNumParams();
545 p < NumParams; ++p) {
546 ParmVarDecl *Param = CallOperator->getParamDecl(p);
547
548 // If this has an identifier, add it to the scope stack.
549 if (CurScope && Param->getIdentifier()) {
550 bool Error = false;
551 // Resolution of CWG 2211 in C++17 renders shadowing ill-formed, but we
552 // retroactively apply it.
553 for (const auto &Capture : Captures) {
554 if (Capture.Id == Param->getIdentifier()) {
555 Error = true;
556 Diag(Param->getLocation(), diag::err_parameter_shadow_capture);
557 Diag(Capture.Loc, diag::note_var_explicitly_captured_here)
558 << Capture.Id << true;
559 }
560 }
561 if (!Error)
562 CheckShadow(CurScope, Param);
563
564 PushOnScopeChains(Param, CurScope);
565 }
566 }
567 }
568
569 /// If this expression is an enumerator-like expression of some type
570 /// T, return the type T; otherwise, return null.
571 ///
572 /// Pointer comparisons on the result here should always work because
573 /// it's derived from either the parent of an EnumConstantDecl
574 /// (i.e. the definition) or the declaration returned by
575 /// EnumType::getDecl() (i.e. the definition).
findEnumForBlockReturn(Expr * E)576 static EnumDecl *findEnumForBlockReturn(Expr *E) {
577 // An expression is an enumerator-like expression of type T if,
578 // ignoring parens and parens-like expressions:
579 E = E->IgnoreParens();
580
581 // - it is an enumerator whose enum type is T or
582 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
583 if (EnumConstantDecl *D
584 = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
585 return cast<EnumDecl>(D->getDeclContext());
586 }
587 return nullptr;
588 }
589
590 // - it is a comma expression whose RHS is an enumerator-like
591 // expression of type T or
592 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
593 if (BO->getOpcode() == BO_Comma)
594 return findEnumForBlockReturn(BO->getRHS());
595 return nullptr;
596 }
597
598 // - it is a statement-expression whose value expression is an
599 // enumerator-like expression of type T or
600 if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
601 if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
602 return findEnumForBlockReturn(last);
603 return nullptr;
604 }
605
606 // - it is a ternary conditional operator (not the GNU ?:
607 // extension) whose second and third operands are
608 // enumerator-like expressions of type T or
609 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
610 if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
611 if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
612 return ED;
613 return nullptr;
614 }
615
616 // (implicitly:)
617 // - it is an implicit integral conversion applied to an
618 // enumerator-like expression of type T or
619 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
620 // We can sometimes see integral conversions in valid
621 // enumerator-like expressions.
622 if (ICE->getCastKind() == CK_IntegralCast)
623 return findEnumForBlockReturn(ICE->getSubExpr());
624
625 // Otherwise, just rely on the type.
626 }
627
628 // - it is an expression of that formal enum type.
629 if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
630 return ET->getDecl();
631 }
632
633 // Otherwise, nope.
634 return nullptr;
635 }
636
637 /// Attempt to find a type T for which the returned expression of the
638 /// given statement is an enumerator-like expression of that type.
findEnumForBlockReturn(ReturnStmt * ret)639 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) {
640 if (Expr *retValue = ret->getRetValue())
641 return findEnumForBlockReturn(retValue);
642 return nullptr;
643 }
644
645 /// Attempt to find a common type T for which all of the returned
646 /// expressions in a block are enumerator-like expressions of that
647 /// type.
findCommonEnumForBlockReturns(ArrayRef<ReturnStmt * > returns)648 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) {
649 ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
650
651 // Try to find one for the first return.
652 EnumDecl *ED = findEnumForBlockReturn(*i);
653 if (!ED) return nullptr;
654
655 // Check that the rest of the returns have the same enum.
656 for (++i; i != e; ++i) {
657 if (findEnumForBlockReturn(*i) != ED)
658 return nullptr;
659 }
660
661 // Never infer an anonymous enum type.
662 if (!ED->hasNameForLinkage()) return nullptr;
663
664 return ED;
665 }
666
667 /// Adjust the given return statements so that they formally return
668 /// the given type. It should require, at most, an IntegralCast.
adjustBlockReturnsToEnum(Sema & S,ArrayRef<ReturnStmt * > returns,QualType returnType)669 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns,
670 QualType returnType) {
671 for (ArrayRef<ReturnStmt*>::iterator
672 i = returns.begin(), e = returns.end(); i != e; ++i) {
673 ReturnStmt *ret = *i;
674 Expr *retValue = ret->getRetValue();
675 if (S.Context.hasSameType(retValue->getType(), returnType))
676 continue;
677
678 // Right now we only support integral fixup casts.
679 assert(returnType->isIntegralOrUnscopedEnumerationType());
680 assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
681
682 ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
683
684 Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
685 E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast, E,
686 /*base path*/ nullptr, VK_RValue,
687 FPOptionsOverride());
688 if (cleanups) {
689 cleanups->setSubExpr(E);
690 } else {
691 ret->setRetValue(E);
692 }
693 }
694 }
695
deduceClosureReturnType(CapturingScopeInfo & CSI)696 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
697 assert(CSI.HasImplicitReturnType);
698 // If it was ever a placeholder, it had to been deduced to DependentTy.
699 assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
700 assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) &&
701 "lambda expressions use auto deduction in C++14 onwards");
702
703 // C++ core issue 975:
704 // If a lambda-expression does not include a trailing-return-type,
705 // it is as if the trailing-return-type denotes the following type:
706 // - if there are no return statements in the compound-statement,
707 // or all return statements return either an expression of type
708 // void or no expression or braced-init-list, the type void;
709 // - otherwise, if all return statements return an expression
710 // and the types of the returned expressions after
711 // lvalue-to-rvalue conversion (4.1 [conv.lval]),
712 // array-to-pointer conversion (4.2 [conv.array]), and
713 // function-to-pointer conversion (4.3 [conv.func]) are the
714 // same, that common type;
715 // - otherwise, the program is ill-formed.
716 //
717 // C++ core issue 1048 additionally removes top-level cv-qualifiers
718 // from the types of returned expressions to match the C++14 auto
719 // deduction rules.
720 //
721 // In addition, in blocks in non-C++ modes, if all of the return
722 // statements are enumerator-like expressions of some type T, where
723 // T has a name for linkage, then we infer the return type of the
724 // block to be that type.
725
726 // First case: no return statements, implicit void return type.
727 ASTContext &Ctx = getASTContext();
728 if (CSI.Returns.empty()) {
729 // It's possible there were simply no /valid/ return statements.
730 // In this case, the first one we found may have at least given us a type.
731 if (CSI.ReturnType.isNull())
732 CSI.ReturnType = Ctx.VoidTy;
733 return;
734 }
735
736 // Second case: at least one return statement has dependent type.
737 // Delay type checking until instantiation.
738 assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
739 if (CSI.ReturnType->isDependentType())
740 return;
741
742 // Try to apply the enum-fuzz rule.
743 if (!getLangOpts().CPlusPlus) {
744 assert(isa<BlockScopeInfo>(CSI));
745 const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns);
746 if (ED) {
747 CSI.ReturnType = Context.getTypeDeclType(ED);
748 adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType);
749 return;
750 }
751 }
752
753 // Third case: only one return statement. Don't bother doing extra work!
754 if (CSI.Returns.size() == 1)
755 return;
756
757 // General case: many return statements.
758 // Check that they all have compatible return types.
759
760 // We require the return types to strictly match here.
761 // Note that we've already done the required promotions as part of
762 // processing the return statement.
763 for (const ReturnStmt *RS : CSI.Returns) {
764 const Expr *RetE = RS->getRetValue();
765
766 QualType ReturnType =
767 (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
768 if (Context.getCanonicalFunctionResultType(ReturnType) ==
769 Context.getCanonicalFunctionResultType(CSI.ReturnType)) {
770 // Use the return type with the strictest possible nullability annotation.
771 auto RetTyNullability = ReturnType->getNullability(Ctx);
772 auto BlockNullability = CSI.ReturnType->getNullability(Ctx);
773 if (BlockNullability &&
774 (!RetTyNullability ||
775 hasWeakerNullability(*RetTyNullability, *BlockNullability)))
776 CSI.ReturnType = ReturnType;
777 continue;
778 }
779
780 // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
781 // TODO: It's possible that the *first* return is the divergent one.
782 Diag(RS->getBeginLoc(),
783 diag::err_typecheck_missing_return_type_incompatible)
784 << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(CSI);
785 // Continue iterating so that we keep emitting diagnostics.
786 }
787 }
788
buildLambdaInitCaptureInitialization(SourceLocation Loc,bool ByRef,SourceLocation EllipsisLoc,Optional<unsigned> NumExpansions,IdentifierInfo * Id,bool IsDirectInit,Expr * & Init)789 QualType Sema::buildLambdaInitCaptureInitialization(
790 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
791 Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool IsDirectInit,
792 Expr *&Init) {
793 // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
794 // deduce against.
795 QualType DeductType = Context.getAutoDeductType();
796 TypeLocBuilder TLB;
797 AutoTypeLoc TL = TLB.push<AutoTypeLoc>(DeductType);
798 TL.setNameLoc(Loc);
799 if (ByRef) {
800 DeductType = BuildReferenceType(DeductType, true, Loc, Id);
801 assert(!DeductType.isNull() && "can't build reference to auto");
802 TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
803 }
804 if (EllipsisLoc.isValid()) {
805 if (Init->containsUnexpandedParameterPack()) {
806 Diag(EllipsisLoc, getLangOpts().CPlusPlus20
807 ? diag::warn_cxx17_compat_init_capture_pack
808 : diag::ext_init_capture_pack);
809 DeductType = Context.getPackExpansionType(DeductType, NumExpansions,
810 /*ExpectPackInType=*/false);
811 TLB.push<PackExpansionTypeLoc>(DeductType).setEllipsisLoc(EllipsisLoc);
812 } else {
813 // Just ignore the ellipsis for now and form a non-pack variable. We'll
814 // diagnose this later when we try to capture it.
815 }
816 }
817 TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
818
819 // Deduce the type of the init capture.
820 QualType DeducedType = deduceVarTypeFromInitializer(
821 /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI,
822 SourceRange(Loc, Loc), IsDirectInit, Init);
823 if (DeducedType.isNull())
824 return QualType();
825
826 // Are we a non-list direct initialization?
827 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
828
829 // Perform initialization analysis and ensure any implicit conversions
830 // (such as lvalue-to-rvalue) are enforced.
831 InitializedEntity Entity =
832 InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
833 InitializationKind Kind =
834 IsDirectInit
835 ? (CXXDirectInit ? InitializationKind::CreateDirect(
836 Loc, Init->getBeginLoc(), Init->getEndLoc())
837 : InitializationKind::CreateDirectList(Loc))
838 : InitializationKind::CreateCopy(Loc, Init->getBeginLoc());
839
840 MultiExprArg Args = Init;
841 if (CXXDirectInit)
842 Args =
843 MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
844 QualType DclT;
845 InitializationSequence InitSeq(*this, Entity, Kind, Args);
846 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
847
848 if (Result.isInvalid())
849 return QualType();
850
851 Init = Result.getAs<Expr>();
852 return DeducedType;
853 }
854
createLambdaInitCaptureVarDecl(SourceLocation Loc,QualType InitCaptureType,SourceLocation EllipsisLoc,IdentifierInfo * Id,unsigned InitStyle,Expr * Init)855 VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc,
856 QualType InitCaptureType,
857 SourceLocation EllipsisLoc,
858 IdentifierInfo *Id,
859 unsigned InitStyle, Expr *Init) {
860 // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization
861 // rather than reconstructing it here.
862 TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, Loc);
863 if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>())
864 PETL.setEllipsisLoc(EllipsisLoc);
865
866 // Create a dummy variable representing the init-capture. This is not actually
867 // used as a variable, and only exists as a way to name and refer to the
868 // init-capture.
869 // FIXME: Pass in separate source locations for '&' and identifier.
870 VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
871 Loc, Id, InitCaptureType, TSI, SC_Auto);
872 NewVD->setInitCapture(true);
873 NewVD->setReferenced(true);
874 // FIXME: Pass in a VarDecl::InitializationStyle.
875 NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle));
876 NewVD->markUsed(Context);
877 NewVD->setInit(Init);
878 if (NewVD->isParameterPack())
879 getCurLambda()->LocalPacks.push_back(NewVD);
880 return NewVD;
881 }
882
addInitCapture(LambdaScopeInfo * LSI,VarDecl * Var)883 void Sema::addInitCapture(LambdaScopeInfo *LSI, VarDecl *Var) {
884 assert(Var->isInitCapture() && "init capture flag should be set");
885 LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
886 /*isNested*/false, Var->getLocation(), SourceLocation(),
887 Var->getType(), /*Invalid*/false);
888 }
889
ActOnStartOfLambdaDefinition(LambdaIntroducer & Intro,Declarator & ParamInfo,Scope * CurScope)890 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
891 Declarator &ParamInfo,
892 Scope *CurScope) {
893 LambdaScopeInfo *const LSI = getCurLambda();
894 assert(LSI && "LambdaScopeInfo should be on stack!");
895
896 // Determine if we're within a context where we know that the lambda will
897 // be dependent, because there are template parameters in scope.
898 bool KnownDependent;
899 if (LSI->NumExplicitTemplateParams > 0) {
900 auto *TemplateParamScope = CurScope->getTemplateParamParent();
901 assert(TemplateParamScope &&
902 "Lambda with explicit template param list should establish a "
903 "template param scope");
904 assert(TemplateParamScope->getParent());
905 KnownDependent = TemplateParamScope->getParent()
906 ->getTemplateParamParent() != nullptr;
907 } else {
908 KnownDependent = CurScope->getTemplateParamParent() != nullptr;
909 }
910
911 // Determine the signature of the call operator.
912 TypeSourceInfo *MethodTyInfo;
913 bool ExplicitParams = true;
914 bool ExplicitResultType = true;
915 bool ContainsUnexpandedParameterPack = false;
916 SourceLocation EndLoc;
917 SmallVector<ParmVarDecl *, 8> Params;
918 if (ParamInfo.getNumTypeObjects() == 0) {
919 // C++11 [expr.prim.lambda]p4:
920 // If a lambda-expression does not include a lambda-declarator, it is as
921 // if the lambda-declarator were ().
922 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
923 /*IsVariadic=*/false, /*IsCXXMethod=*/true));
924 EPI.HasTrailingReturn = true;
925 EPI.TypeQuals.addConst();
926 LangAS AS = getDefaultCXXMethodAddrSpace();
927 if (AS != LangAS::Default)
928 EPI.TypeQuals.addAddressSpace(AS);
929
930 // C++1y [expr.prim.lambda]:
931 // The lambda return type is 'auto', which is replaced by the
932 // trailing-return type if provided and/or deduced from 'return'
933 // statements
934 // We don't do this before C++1y, because we don't support deduced return
935 // types there.
936 QualType DefaultTypeForNoTrailingReturn =
937 getLangOpts().CPlusPlus14 ? Context.getAutoDeductType()
938 : Context.DependentTy;
939 QualType MethodTy =
940 Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
941 MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
942 ExplicitParams = false;
943 ExplicitResultType = false;
944 EndLoc = Intro.Range.getEnd();
945 } else {
946 assert(ParamInfo.isFunctionDeclarator() &&
947 "lambda-declarator is a function");
948 DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo();
949
950 // C++11 [expr.prim.lambda]p5:
951 // This function call operator is declared const (9.3.1) if and only if
952 // the lambda-expression's parameter-declaration-clause is not followed
953 // by mutable. It is neither virtual nor declared volatile. [...]
954 if (!FTI.hasMutableQualifier()) {
955 FTI.getOrCreateMethodQualifiers().SetTypeQual(DeclSpec::TQ_const,
956 SourceLocation());
957 }
958
959 MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
960 assert(MethodTyInfo && "no type from lambda-declarator");
961 EndLoc = ParamInfo.getSourceRange().getEnd();
962
963 ExplicitResultType = FTI.hasTrailingReturnType();
964
965 if (FTIHasNonVoidParameters(FTI)) {
966 Params.reserve(FTI.NumParams);
967 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
968 Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
969 }
970
971 // Check for unexpanded parameter packs in the method type.
972 if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
973 DiagnoseUnexpandedParameterPack(Intro.Range.getBegin(), MethodTyInfo,
974 UPPC_DeclarationType);
975 }
976
977 CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo,
978 KnownDependent, Intro.Default);
979 CXXMethodDecl *Method =
980 startLambdaDefinition(Class, Intro.Range, MethodTyInfo, EndLoc, Params,
981 ParamInfo.getDeclSpec().getConstexprSpecifier(),
982 ParamInfo.getTrailingRequiresClause());
983 if (ExplicitParams)
984 CheckCXXDefaultArguments(Method);
985
986 // This represents the function body for the lambda function, check if we
987 // have to apply optnone due to a pragma.
988 AddRangeBasedOptnone(Method);
989
990 // code_seg attribute on lambda apply to the method.
991 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true))
992 Method->addAttr(A);
993
994 // Attributes on the lambda apply to the method.
995 ProcessDeclAttributes(CurScope, Method, ParamInfo);
996
997 // CUDA lambdas get implicit host and device attributes.
998 if (getLangOpts().CUDA)
999 CUDASetLambdaAttrs(Method);
1000
1001 // Number the lambda for linkage purposes if necessary.
1002 handleLambdaNumbering(Class, Method);
1003
1004 // Introduce the function call operator as the current declaration context.
1005 PushDeclContext(CurScope, Method);
1006
1007 // Build the lambda scope.
1008 buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc,
1009 ExplicitParams, ExplicitResultType, !Method->isConst());
1010
1011 // C++11 [expr.prim.lambda]p9:
1012 // A lambda-expression whose smallest enclosing scope is a block scope is a
1013 // local lambda expression; any other lambda expression shall not have a
1014 // capture-default or simple-capture in its lambda-introducer.
1015 //
1016 // For simple-captures, this is covered by the check below that any named
1017 // entity is a variable that can be captured.
1018 //
1019 // For DR1632, we also allow a capture-default in any context where we can
1020 // odr-use 'this' (in particular, in a default initializer for a non-static
1021 // data member).
1022 if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
1023 (getCurrentThisType().isNull() ||
1024 CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
1025 /*BuildAndDiagnose*/false)))
1026 Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
1027
1028 // Distinct capture names, for diagnostics.
1029 llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
1030
1031 // Handle explicit captures.
1032 SourceLocation PrevCaptureLoc
1033 = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
1034 for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
1035 PrevCaptureLoc = C->Loc, ++C) {
1036 if (C->Kind == LCK_This || C->Kind == LCK_StarThis) {
1037 if (C->Kind == LCK_StarThis)
1038 Diag(C->Loc, !getLangOpts().CPlusPlus17
1039 ? diag::ext_star_this_lambda_capture_cxx17
1040 : diag::warn_cxx14_compat_star_this_lambda_capture);
1041
1042 // C++11 [expr.prim.lambda]p8:
1043 // An identifier or this shall not appear more than once in a
1044 // lambda-capture.
1045 if (LSI->isCXXThisCaptured()) {
1046 Diag(C->Loc, diag::err_capture_more_than_once)
1047 << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
1048 << FixItHint::CreateRemoval(
1049 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1050 continue;
1051 }
1052
1053 // C++2a [expr.prim.lambda]p8:
1054 // If a lambda-capture includes a capture-default that is =,
1055 // each simple-capture of that lambda-capture shall be of the form
1056 // "&identifier", "this", or "* this". [ Note: The form [&,this] is
1057 // redundant but accepted for compatibility with ISO C++14. --end note ]
1058 if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis)
1059 Diag(C->Loc, !getLangOpts().CPlusPlus20
1060 ? diag::ext_equals_this_lambda_capture_cxx20
1061 : diag::warn_cxx17_compat_equals_this_lambda_capture);
1062
1063 // C++11 [expr.prim.lambda]p12:
1064 // If this is captured by a local lambda expression, its nearest
1065 // enclosing function shall be a non-static member function.
1066 QualType ThisCaptureType = getCurrentThisType();
1067 if (ThisCaptureType.isNull()) {
1068 Diag(C->Loc, diag::err_this_capture) << true;
1069 continue;
1070 }
1071
1072 CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true,
1073 /*FunctionScopeIndexToStopAtPtr*/ nullptr,
1074 C->Kind == LCK_StarThis);
1075 if (!LSI->Captures.empty())
1076 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1077 continue;
1078 }
1079
1080 assert(C->Id && "missing identifier for capture");
1081
1082 if (C->Init.isInvalid())
1083 continue;
1084
1085 VarDecl *Var = nullptr;
1086 if (C->Init.isUsable()) {
1087 Diag(C->Loc, getLangOpts().CPlusPlus14
1088 ? diag::warn_cxx11_compat_init_capture
1089 : diag::ext_init_capture);
1090
1091 // If the initializer expression is usable, but the InitCaptureType
1092 // is not, then an error has occurred - so ignore the capture for now.
1093 // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
1094 // FIXME: we should create the init capture variable and mark it invalid
1095 // in this case.
1096 if (C->InitCaptureType.get().isNull())
1097 continue;
1098
1099 if (C->Init.get()->containsUnexpandedParameterPack() &&
1100 !C->InitCaptureType.get()->getAs<PackExpansionType>())
1101 DiagnoseUnexpandedParameterPack(C->Init.get(), UPPC_Initializer);
1102
1103 unsigned InitStyle;
1104 switch (C->InitKind) {
1105 case LambdaCaptureInitKind::NoInit:
1106 llvm_unreachable("not an init-capture?");
1107 case LambdaCaptureInitKind::CopyInit:
1108 InitStyle = VarDecl::CInit;
1109 break;
1110 case LambdaCaptureInitKind::DirectInit:
1111 InitStyle = VarDecl::CallInit;
1112 break;
1113 case LambdaCaptureInitKind::ListInit:
1114 InitStyle = VarDecl::ListInit;
1115 break;
1116 }
1117 Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
1118 C->EllipsisLoc, C->Id, InitStyle,
1119 C->Init.get());
1120 // C++1y [expr.prim.lambda]p11:
1121 // An init-capture behaves as if it declares and explicitly
1122 // captures a variable [...] whose declarative region is the
1123 // lambda-expression's compound-statement
1124 if (Var)
1125 PushOnScopeChains(Var, CurScope, false);
1126 } else {
1127 assert(C->InitKind == LambdaCaptureInitKind::NoInit &&
1128 "init capture has valid but null init?");
1129
1130 // C++11 [expr.prim.lambda]p8:
1131 // If a lambda-capture includes a capture-default that is &, the
1132 // identifiers in the lambda-capture shall not be preceded by &.
1133 // If a lambda-capture includes a capture-default that is =, [...]
1134 // each identifier it contains shall be preceded by &.
1135 if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
1136 Diag(C->Loc, diag::err_reference_capture_with_reference_default)
1137 << FixItHint::CreateRemoval(
1138 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1139 continue;
1140 } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
1141 Diag(C->Loc, diag::err_copy_capture_with_copy_default)
1142 << FixItHint::CreateRemoval(
1143 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1144 continue;
1145 }
1146
1147 // C++11 [expr.prim.lambda]p10:
1148 // The identifiers in a capture-list are looked up using the usual
1149 // rules for unqualified name lookup (3.4.1)
1150 DeclarationNameInfo Name(C->Id, C->Loc);
1151 LookupResult R(*this, Name, LookupOrdinaryName);
1152 LookupName(R, CurScope);
1153 if (R.isAmbiguous())
1154 continue;
1155 if (R.empty()) {
1156 // FIXME: Disable corrections that would add qualification?
1157 CXXScopeSpec ScopeSpec;
1158 DeclFilterCCC<VarDecl> Validator{};
1159 if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator))
1160 continue;
1161 }
1162
1163 Var = R.getAsSingle<VarDecl>();
1164 if (Var && DiagnoseUseOfDecl(Var, C->Loc))
1165 continue;
1166 }
1167
1168 // C++11 [expr.prim.lambda]p8:
1169 // An identifier or this shall not appear more than once in a
1170 // lambda-capture.
1171 if (!CaptureNames.insert(C->Id).second) {
1172 if (Var && LSI->isCaptured(Var)) {
1173 Diag(C->Loc, diag::err_capture_more_than_once)
1174 << C->Id << SourceRange(LSI->getCapture(Var).getLocation())
1175 << FixItHint::CreateRemoval(
1176 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1177 } else
1178 // Previous capture captured something different (one or both was
1179 // an init-cpature): no fixit.
1180 Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
1181 continue;
1182 }
1183
1184 // C++11 [expr.prim.lambda]p10:
1185 // [...] each such lookup shall find a variable with automatic storage
1186 // duration declared in the reaching scope of the local lambda expression.
1187 // Note that the 'reaching scope' check happens in tryCaptureVariable().
1188 if (!Var) {
1189 Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
1190 continue;
1191 }
1192
1193 // Ignore invalid decls; they'll just confuse the code later.
1194 if (Var->isInvalidDecl())
1195 continue;
1196
1197 if (!Var->hasLocalStorage()) {
1198 Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
1199 Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
1200 continue;
1201 }
1202
1203 // C++11 [expr.prim.lambda]p23:
1204 // A capture followed by an ellipsis is a pack expansion (14.5.3).
1205 SourceLocation EllipsisLoc;
1206 if (C->EllipsisLoc.isValid()) {
1207 if (Var->isParameterPack()) {
1208 EllipsisLoc = C->EllipsisLoc;
1209 } else {
1210 Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1211 << (C->Init.isUsable() ? C->Init.get()->getSourceRange()
1212 : SourceRange(C->Loc));
1213
1214 // Just ignore the ellipsis.
1215 }
1216 } else if (Var->isParameterPack()) {
1217 ContainsUnexpandedParameterPack = true;
1218 }
1219
1220 if (C->Init.isUsable()) {
1221 addInitCapture(LSI, Var);
1222 } else {
1223 TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
1224 TryCapture_ExplicitByVal;
1225 tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
1226 }
1227 if (!LSI->Captures.empty())
1228 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1229 }
1230 finishLambdaExplicitCaptures(LSI);
1231
1232 LSI->ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
1233
1234 // Add lambda parameters into scope.
1235 addLambdaParameters(Intro.Captures, Method, CurScope);
1236
1237 // Enter a new evaluation context to insulate the lambda from any
1238 // cleanups from the enclosing full-expression.
1239 PushExpressionEvaluationContext(
1240 LSI->CallOperator->isConsteval()
1241 ? ExpressionEvaluationContext::ConstantEvaluated
1242 : ExpressionEvaluationContext::PotentiallyEvaluated);
1243 }
1244
ActOnLambdaError(SourceLocation StartLoc,Scope * CurScope,bool IsInstantiation)1245 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
1246 bool IsInstantiation) {
1247 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back());
1248
1249 // Leave the expression-evaluation context.
1250 DiscardCleanupsInEvaluationContext();
1251 PopExpressionEvaluationContext();
1252
1253 // Leave the context of the lambda.
1254 if (!IsInstantiation)
1255 PopDeclContext();
1256
1257 // Finalize the lambda.
1258 CXXRecordDecl *Class = LSI->Lambda;
1259 Class->setInvalidDecl();
1260 SmallVector<Decl*, 4> Fields(Class->fields());
1261 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1262 SourceLocation(), ParsedAttributesView());
1263 CheckCompletedCXXClass(nullptr, Class);
1264
1265 PopFunctionScopeInfo();
1266 }
1267
1268 template <typename Func>
repeatForLambdaConversionFunctionCallingConvs(Sema & S,const FunctionProtoType & CallOpProto,Func F)1269 static void repeatForLambdaConversionFunctionCallingConvs(
1270 Sema &S, const FunctionProtoType &CallOpProto, Func F) {
1271 CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
1272 CallOpProto.isVariadic(), /*IsCXXMethod=*/false);
1273 CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
1274 CallOpProto.isVariadic(), /*IsCXXMethod=*/true);
1275 CallingConv CallOpCC = CallOpProto.getCallConv();
1276
1277 /// Implement emitting a version of the operator for many of the calling
1278 /// conventions for MSVC, as described here:
1279 /// https://devblogs.microsoft.com/oldnewthing/20150220-00/?p=44623.
1280 /// Experimentally, we determined that cdecl, stdcall, fastcall, and
1281 /// vectorcall are generated by MSVC when it is supported by the target.
1282 /// Additionally, we are ensuring that the default-free/default-member and
1283 /// call-operator calling convention are generated as well.
1284 /// NOTE: We intentionally generate a 'thiscall' on Win32 implicitly from the
1285 /// 'member default', despite MSVC not doing so. We do this in order to ensure
1286 /// that someone who intentionally places 'thiscall' on the lambda call
1287 /// operator will still get that overload, since we don't have the a way of
1288 /// detecting the attribute by the time we get here.
1289 if (S.getLangOpts().MSVCCompat) {
1290 CallingConv Convs[] = {
1291 CC_C, CC_X86StdCall, CC_X86FastCall, CC_X86VectorCall,
1292 DefaultFree, DefaultMember, CallOpCC};
1293 llvm::sort(Convs);
1294 llvm::iterator_range<CallingConv *> Range(
1295 std::begin(Convs), std::unique(std::begin(Convs), std::end(Convs)));
1296 const TargetInfo &TI = S.getASTContext().getTargetInfo();
1297
1298 for (CallingConv C : Range) {
1299 if (TI.checkCallingConvention(C) == TargetInfo::CCCR_OK)
1300 F(C);
1301 }
1302 return;
1303 }
1304
1305 if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) {
1306 F(DefaultFree);
1307 F(DefaultMember);
1308 } else {
1309 F(CallOpCC);
1310 }
1311 }
1312
1313 // Returns the 'standard' calling convention to be used for the lambda
1314 // conversion function, that is, the 'free' function calling convention unless
1315 // it is overridden by a non-default calling convention attribute.
1316 static CallingConv
getLambdaConversionFunctionCallConv(Sema & S,const FunctionProtoType * CallOpProto)1317 getLambdaConversionFunctionCallConv(Sema &S,
1318 const FunctionProtoType *CallOpProto) {
1319 CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
1320 CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
1321 CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
1322 CallOpProto->isVariadic(), /*IsCXXMethod=*/true);
1323 CallingConv CallOpCC = CallOpProto->getCallConv();
1324
1325 // If the call-operator hasn't been changed, return both the 'free' and
1326 // 'member' function calling convention.
1327 if (CallOpCC == DefaultMember && DefaultMember != DefaultFree)
1328 return DefaultFree;
1329 return CallOpCC;
1330 }
1331
getLambdaConversionFunctionResultType(const FunctionProtoType * CallOpProto,CallingConv CC)1332 QualType Sema::getLambdaConversionFunctionResultType(
1333 const FunctionProtoType *CallOpProto, CallingConv CC) {
1334 const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
1335 CallOpProto->getExtProtoInfo();
1336 FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
1337 InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
1338 InvokerExtInfo.TypeQuals = Qualifiers();
1339 assert(InvokerExtInfo.RefQualifier == RQ_None &&
1340 "Lambda's call operator should not have a reference qualifier");
1341 return Context.getFunctionType(CallOpProto->getReturnType(),
1342 CallOpProto->getParamTypes(), InvokerExtInfo);
1343 }
1344
1345 /// Add a lambda's conversion to function pointer, as described in
1346 /// C++11 [expr.prim.lambda]p6.
addFunctionPointerConversion(Sema & S,SourceRange IntroducerRange,CXXRecordDecl * Class,CXXMethodDecl * CallOperator,QualType InvokerFunctionTy)1347 static void addFunctionPointerConversion(Sema &S, SourceRange IntroducerRange,
1348 CXXRecordDecl *Class,
1349 CXXMethodDecl *CallOperator,
1350 QualType InvokerFunctionTy) {
1351 // This conversion is explicitly disabled if the lambda's function has
1352 // pass_object_size attributes on any of its parameters.
1353 auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) {
1354 return P->hasAttr<PassObjectSizeAttr>();
1355 };
1356 if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr))
1357 return;
1358
1359 // Add the conversion to function pointer.
1360 QualType PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
1361
1362 // Create the type of the conversion function.
1363 FunctionProtoType::ExtProtoInfo ConvExtInfo(
1364 S.Context.getDefaultCallingConvention(
1365 /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1366 // The conversion function is always const and noexcept.
1367 ConvExtInfo.TypeQuals = Qualifiers();
1368 ConvExtInfo.TypeQuals.addConst();
1369 ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept;
1370 QualType ConvTy =
1371 S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);
1372
1373 SourceLocation Loc = IntroducerRange.getBegin();
1374 DeclarationName ConversionName
1375 = S.Context.DeclarationNames.getCXXConversionFunctionName(
1376 S.Context.getCanonicalType(PtrToFunctionTy));
1377 DeclarationNameLoc ConvNameLoc;
1378 // Construct a TypeSourceInfo for the conversion function, and wire
1379 // all the parameters appropriately for the FunctionProtoTypeLoc
1380 // so that everything works during transformation/instantiation of
1381 // generic lambdas.
1382 // The main reason for wiring up the parameters of the conversion
1383 // function with that of the call operator is so that constructs
1384 // like the following work:
1385 // auto L = [](auto b) { <-- 1
1386 // return [](auto a) -> decltype(a) { <-- 2
1387 // return a;
1388 // };
1389 // };
1390 // int (*fp)(int) = L(5);
1391 // Because the trailing return type can contain DeclRefExprs that refer
1392 // to the original call operator's variables, we hijack the call
1393 // operators ParmVarDecls below.
1394 TypeSourceInfo *ConvNamePtrToFunctionTSI =
1395 S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
1396 ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI;
1397
1398 // The conversion function is a conversion to a pointer-to-function.
1399 TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
1400 FunctionProtoTypeLoc ConvTL =
1401 ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
1402 // Get the result of the conversion function which is a pointer-to-function.
1403 PointerTypeLoc PtrToFunctionTL =
1404 ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
1405 // Do the same for the TypeSourceInfo that is used to name the conversion
1406 // operator.
1407 PointerTypeLoc ConvNamePtrToFunctionTL =
1408 ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
1409
1410 // Get the underlying function types that the conversion function will
1411 // be converting to (should match the type of the call operator).
1412 FunctionProtoTypeLoc CallOpConvTL =
1413 PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1414 FunctionProtoTypeLoc CallOpConvNameTL =
1415 ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1416
1417 // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
1418 // These parameter's are essentially used to transform the name and
1419 // the type of the conversion operator. By using the same parameters
1420 // as the call operator's we don't have to fix any back references that
1421 // the trailing return type of the call operator's uses (such as
1422 // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
1423 // - we can simply use the return type of the call operator, and
1424 // everything should work.
1425 SmallVector<ParmVarDecl *, 4> InvokerParams;
1426 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1427 ParmVarDecl *From = CallOperator->getParamDecl(I);
1428
1429 InvokerParams.push_back(ParmVarDecl::Create(
1430 S.Context,
1431 // Temporarily add to the TU. This is set to the invoker below.
1432 S.Context.getTranslationUnitDecl(), From->getBeginLoc(),
1433 From->getLocation(), From->getIdentifier(), From->getType(),
1434 From->getTypeSourceInfo(), From->getStorageClass(),
1435 /*DefArg=*/nullptr));
1436 CallOpConvTL.setParam(I, From);
1437 CallOpConvNameTL.setParam(I, From);
1438 }
1439
1440 CXXConversionDecl *Conversion = CXXConversionDecl::Create(
1441 S.Context, Class, Loc,
1442 DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), ConvTy, ConvTSI,
1443 /*isInline=*/true, ExplicitSpecifier(),
1444 S.getLangOpts().CPlusPlus17 ? ConstexprSpecKind::Constexpr
1445 : ConstexprSpecKind::Unspecified,
1446 CallOperator->getBody()->getEndLoc());
1447 Conversion->setAccess(AS_public);
1448 Conversion->setImplicit(true);
1449
1450 if (Class->isGenericLambda()) {
1451 // Create a template version of the conversion operator, using the template
1452 // parameter list of the function call operator.
1453 FunctionTemplateDecl *TemplateCallOperator =
1454 CallOperator->getDescribedFunctionTemplate();
1455 FunctionTemplateDecl *ConversionTemplate =
1456 FunctionTemplateDecl::Create(S.Context, Class,
1457 Loc, ConversionName,
1458 TemplateCallOperator->getTemplateParameters(),
1459 Conversion);
1460 ConversionTemplate->setAccess(AS_public);
1461 ConversionTemplate->setImplicit(true);
1462 Conversion->setDescribedFunctionTemplate(ConversionTemplate);
1463 Class->addDecl(ConversionTemplate);
1464 } else
1465 Class->addDecl(Conversion);
1466 // Add a non-static member function that will be the result of
1467 // the conversion with a certain unique ID.
1468 DeclarationName InvokerName = &S.Context.Idents.get(
1469 getLambdaStaticInvokerName());
1470 // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
1471 // we should get a prebuilt TrivialTypeSourceInfo from Context
1472 // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
1473 // then rewire the parameters accordingly, by hoisting up the InvokeParams
1474 // loop below and then use its Params to set Invoke->setParams(...) below.
1475 // This would avoid the 'const' qualifier of the calloperator from
1476 // contaminating the type of the invoker, which is currently adjusted
1477 // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the
1478 // trailing return type of the invoker would require a visitor to rebuild
1479 // the trailing return type and adjusting all back DeclRefExpr's to refer
1480 // to the new static invoker parameters - not the call operator's.
1481 CXXMethodDecl *Invoke = CXXMethodDecl::Create(
1482 S.Context, Class, Loc, DeclarationNameInfo(InvokerName, Loc),
1483 InvokerFunctionTy, CallOperator->getTypeSourceInfo(), SC_Static,
1484 /*isInline=*/true, ConstexprSpecKind::Unspecified,
1485 CallOperator->getBody()->getEndLoc());
1486 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
1487 InvokerParams[I]->setOwningFunction(Invoke);
1488 Invoke->setParams(InvokerParams);
1489 Invoke->setAccess(AS_private);
1490 Invoke->setImplicit(true);
1491 if (Class->isGenericLambda()) {
1492 FunctionTemplateDecl *TemplateCallOperator =
1493 CallOperator->getDescribedFunctionTemplate();
1494 FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
1495 S.Context, Class, Loc, InvokerName,
1496 TemplateCallOperator->getTemplateParameters(),
1497 Invoke);
1498 StaticInvokerTemplate->setAccess(AS_private);
1499 StaticInvokerTemplate->setImplicit(true);
1500 Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
1501 Class->addDecl(StaticInvokerTemplate);
1502 } else
1503 Class->addDecl(Invoke);
1504 }
1505
1506 /// Add a lambda's conversion to function pointers, as described in
1507 /// C++11 [expr.prim.lambda]p6. Note that in most cases, this should emit only a
1508 /// single pointer conversion. In the event that the default calling convention
1509 /// for free and member functions is different, it will emit both conventions.
addFunctionPointerConversions(Sema & S,SourceRange IntroducerRange,CXXRecordDecl * Class,CXXMethodDecl * CallOperator)1510 static void addFunctionPointerConversions(Sema &S, SourceRange IntroducerRange,
1511 CXXRecordDecl *Class,
1512 CXXMethodDecl *CallOperator) {
1513 const FunctionProtoType *CallOpProto =
1514 CallOperator->getType()->castAs<FunctionProtoType>();
1515
1516 repeatForLambdaConversionFunctionCallingConvs(
1517 S, *CallOpProto, [&](CallingConv CC) {
1518 QualType InvokerFunctionTy =
1519 S.getLambdaConversionFunctionResultType(CallOpProto, CC);
1520 addFunctionPointerConversion(S, IntroducerRange, Class, CallOperator,
1521 InvokerFunctionTy);
1522 });
1523 }
1524
1525 /// Add a lambda's conversion to block pointer.
addBlockPointerConversion(Sema & S,SourceRange IntroducerRange,CXXRecordDecl * Class,CXXMethodDecl * CallOperator)1526 static void addBlockPointerConversion(Sema &S,
1527 SourceRange IntroducerRange,
1528 CXXRecordDecl *Class,
1529 CXXMethodDecl *CallOperator) {
1530 const FunctionProtoType *CallOpProto =
1531 CallOperator->getType()->castAs<FunctionProtoType>();
1532 QualType FunctionTy = S.getLambdaConversionFunctionResultType(
1533 CallOpProto, getLambdaConversionFunctionCallConv(S, CallOpProto));
1534 QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
1535
1536 FunctionProtoType::ExtProtoInfo ConversionEPI(
1537 S.Context.getDefaultCallingConvention(
1538 /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1539 ConversionEPI.TypeQuals = Qualifiers();
1540 ConversionEPI.TypeQuals.addConst();
1541 QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI);
1542
1543 SourceLocation Loc = IntroducerRange.getBegin();
1544 DeclarationName Name
1545 = S.Context.DeclarationNames.getCXXConversionFunctionName(
1546 S.Context.getCanonicalType(BlockPtrTy));
1547 DeclarationNameLoc NameLoc;
1548 NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc);
1549 CXXConversionDecl *Conversion = CXXConversionDecl::Create(
1550 S.Context, Class, Loc, DeclarationNameInfo(Name, Loc, NameLoc), ConvTy,
1551 S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
1552 /*isInline=*/true, ExplicitSpecifier(), ConstexprSpecKind::Unspecified,
1553 CallOperator->getBody()->getEndLoc());
1554 Conversion->setAccess(AS_public);
1555 Conversion->setImplicit(true);
1556 Class->addDecl(Conversion);
1557 }
1558
BuildCaptureInit(const Capture & Cap,SourceLocation ImplicitCaptureLoc,bool IsOpenMPMapping)1559 ExprResult Sema::BuildCaptureInit(const Capture &Cap,
1560 SourceLocation ImplicitCaptureLoc,
1561 bool IsOpenMPMapping) {
1562 // VLA captures don't have a stored initialization expression.
1563 if (Cap.isVLATypeCapture())
1564 return ExprResult();
1565
1566 // An init-capture is initialized directly from its stored initializer.
1567 if (Cap.isInitCapture())
1568 return Cap.getVariable()->getInit();
1569
1570 // For anything else, build an initialization expression. For an implicit
1571 // capture, the capture notionally happens at the capture-default, so use
1572 // that location here.
1573 SourceLocation Loc =
1574 ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation();
1575
1576 // C++11 [expr.prim.lambda]p21:
1577 // When the lambda-expression is evaluated, the entities that
1578 // are captured by copy are used to direct-initialize each
1579 // corresponding non-static data member of the resulting closure
1580 // object. (For array members, the array elements are
1581 // direct-initialized in increasing subscript order.) These
1582 // initializations are performed in the (unspecified) order in
1583 // which the non-static data members are declared.
1584
1585 // C++ [expr.prim.lambda]p12:
1586 // An entity captured by a lambda-expression is odr-used (3.2) in
1587 // the scope containing the lambda-expression.
1588 ExprResult Init;
1589 IdentifierInfo *Name = nullptr;
1590 if (Cap.isThisCapture()) {
1591 QualType ThisTy = getCurrentThisType();
1592 Expr *This = BuildCXXThisExpr(Loc, ThisTy, ImplicitCaptureLoc.isValid());
1593 if (Cap.isCopyCapture())
1594 Init = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
1595 else
1596 Init = This;
1597 } else {
1598 assert(Cap.isVariableCapture() && "unknown kind of capture");
1599 VarDecl *Var = Cap.getVariable();
1600 Name = Var->getIdentifier();
1601 Init = BuildDeclarationNameExpr(
1602 CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
1603 }
1604
1605 // In OpenMP, the capture kind doesn't actually describe how to capture:
1606 // variables are "mapped" onto the device in a process that does not formally
1607 // make a copy, even for a "copy capture".
1608 if (IsOpenMPMapping)
1609 return Init;
1610
1611 if (Init.isInvalid())
1612 return ExprError();
1613
1614 Expr *InitExpr = Init.get();
1615 InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture(
1616 Name, Cap.getCaptureType(), Loc);
1617 InitializationKind InitKind =
1618 InitializationKind::CreateDirect(Loc, Loc, Loc);
1619 InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr);
1620 return InitSeq.Perform(*this, Entity, InitKind, InitExpr);
1621 }
1622
ActOnLambdaExpr(SourceLocation StartLoc,Stmt * Body,Scope * CurScope)1623 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
1624 Scope *CurScope) {
1625 LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back());
1626 ActOnFinishFunctionBody(LSI.CallOperator, Body);
1627 return BuildLambdaExpr(StartLoc, Body->getEndLoc(), &LSI);
1628 }
1629
1630 static LambdaCaptureDefault
mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS)1631 mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) {
1632 switch (ICS) {
1633 case CapturingScopeInfo::ImpCap_None:
1634 return LCD_None;
1635 case CapturingScopeInfo::ImpCap_LambdaByval:
1636 return LCD_ByCopy;
1637 case CapturingScopeInfo::ImpCap_CapturedRegion:
1638 case CapturingScopeInfo::ImpCap_LambdaByref:
1639 return LCD_ByRef;
1640 case CapturingScopeInfo::ImpCap_Block:
1641 llvm_unreachable("block capture in lambda");
1642 }
1643 llvm_unreachable("Unknown implicit capture style");
1644 }
1645
CaptureHasSideEffects(const Capture & From)1646 bool Sema::CaptureHasSideEffects(const Capture &From) {
1647 if (From.isInitCapture()) {
1648 Expr *Init = From.getVariable()->getInit();
1649 if (Init && Init->HasSideEffects(Context))
1650 return true;
1651 }
1652
1653 if (!From.isCopyCapture())
1654 return false;
1655
1656 const QualType T = From.isThisCapture()
1657 ? getCurrentThisType()->getPointeeType()
1658 : From.getCaptureType();
1659
1660 if (T.isVolatileQualified())
1661 return true;
1662
1663 const Type *BaseT = T->getBaseElementTypeUnsafe();
1664 if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl())
1665 return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() ||
1666 !RD->hasTrivialDestructor();
1667
1668 return false;
1669 }
1670
DiagnoseUnusedLambdaCapture(SourceRange CaptureRange,const Capture & From)1671 bool Sema::DiagnoseUnusedLambdaCapture(SourceRange CaptureRange,
1672 const Capture &From) {
1673 if (CaptureHasSideEffects(From))
1674 return false;
1675
1676 if (From.isVLATypeCapture())
1677 return false;
1678
1679 auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture);
1680 if (From.isThisCapture())
1681 diag << "'this'";
1682 else
1683 diag << From.getVariable();
1684 diag << From.isNonODRUsed();
1685 diag << FixItHint::CreateRemoval(CaptureRange);
1686 return true;
1687 }
1688
1689 /// Create a field within the lambda class or captured statement record for the
1690 /// given capture.
BuildCaptureField(RecordDecl * RD,const sema::Capture & Capture)1691 FieldDecl *Sema::BuildCaptureField(RecordDecl *RD,
1692 const sema::Capture &Capture) {
1693 SourceLocation Loc = Capture.getLocation();
1694 QualType FieldType = Capture.getCaptureType();
1695
1696 TypeSourceInfo *TSI = nullptr;
1697 if (Capture.isVariableCapture()) {
1698 auto *Var = Capture.getVariable();
1699 if (Var->isInitCapture())
1700 TSI = Capture.getVariable()->getTypeSourceInfo();
1701 }
1702
1703 // FIXME: Should we really be doing this? A null TypeSourceInfo seems more
1704 // appropriate, at least for an implicit capture.
1705 if (!TSI)
1706 TSI = Context.getTrivialTypeSourceInfo(FieldType, Loc);
1707
1708 // Build the non-static data member.
1709 FieldDecl *Field =
1710 FieldDecl::Create(Context, RD, /*StartLoc=*/Loc, /*IdLoc=*/Loc,
1711 /*Id=*/nullptr, FieldType, TSI, /*BW=*/nullptr,
1712 /*Mutable=*/false, ICIS_NoInit);
1713 // If the variable being captured has an invalid type, mark the class as
1714 // invalid as well.
1715 if (!FieldType->isDependentType()) {
1716 if (RequireCompleteSizedType(Loc, FieldType,
1717 diag::err_field_incomplete_or_sizeless)) {
1718 RD->setInvalidDecl();
1719 Field->setInvalidDecl();
1720 } else {
1721 NamedDecl *Def;
1722 FieldType->isIncompleteType(&Def);
1723 if (Def && Def->isInvalidDecl()) {
1724 RD->setInvalidDecl();
1725 Field->setInvalidDecl();
1726 }
1727 }
1728 }
1729 Field->setImplicit(true);
1730 Field->setAccess(AS_private);
1731 RD->addDecl(Field);
1732
1733 if (Capture.isVLATypeCapture())
1734 Field->setCapturedVLAType(Capture.getCapturedVLAType());
1735
1736 return Field;
1737 }
1738
BuildLambdaExpr(SourceLocation StartLoc,SourceLocation EndLoc,LambdaScopeInfo * LSI)1739 ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
1740 LambdaScopeInfo *LSI) {
1741 // Collect information from the lambda scope.
1742 SmallVector<LambdaCapture, 4> Captures;
1743 SmallVector<Expr *, 4> CaptureInits;
1744 SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc;
1745 LambdaCaptureDefault CaptureDefault =
1746 mapImplicitCaptureStyle(LSI->ImpCaptureStyle);
1747 CXXRecordDecl *Class;
1748 CXXMethodDecl *CallOperator;
1749 SourceRange IntroducerRange;
1750 bool ExplicitParams;
1751 bool ExplicitResultType;
1752 CleanupInfo LambdaCleanup;
1753 bool ContainsUnexpandedParameterPack;
1754 bool IsGenericLambda;
1755 {
1756 CallOperator = LSI->CallOperator;
1757 Class = LSI->Lambda;
1758 IntroducerRange = LSI->IntroducerRange;
1759 ExplicitParams = LSI->ExplicitParams;
1760 ExplicitResultType = !LSI->HasImplicitReturnType;
1761 LambdaCleanup = LSI->Cleanup;
1762 ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
1763 IsGenericLambda = Class->isGenericLambda();
1764
1765 CallOperator->setLexicalDeclContext(Class);
1766 Decl *TemplateOrNonTemplateCallOperatorDecl =
1767 CallOperator->getDescribedFunctionTemplate()
1768 ? CallOperator->getDescribedFunctionTemplate()
1769 : cast<Decl>(CallOperator);
1770
1771 // FIXME: Is this really the best choice? Keeping the lexical decl context
1772 // set as CurContext seems more faithful to the source.
1773 TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
1774
1775 PopExpressionEvaluationContext();
1776
1777 // True if the current capture has a used capture or default before it.
1778 bool CurHasPreviousCapture = CaptureDefault != LCD_None;
1779 SourceLocation PrevCaptureLoc = CurHasPreviousCapture ?
1780 CaptureDefaultLoc : IntroducerRange.getBegin();
1781
1782 for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) {
1783 const Capture &From = LSI->Captures[I];
1784
1785 if (From.isInvalid())
1786 return ExprError();
1787
1788 assert(!From.isBlockCapture() && "Cannot capture __block variables");
1789 bool IsImplicit = I >= LSI->NumExplicitCaptures;
1790 SourceLocation ImplicitCaptureLoc =
1791 IsImplicit ? CaptureDefaultLoc : SourceLocation();
1792
1793 // Use source ranges of explicit captures for fixits where available.
1794 SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I];
1795
1796 // Warn about unused explicit captures.
1797 bool IsCaptureUsed = true;
1798 if (!CurContext->isDependentContext() && !IsImplicit &&
1799 !From.isODRUsed()) {
1800 // Initialized captures that are non-ODR used may not be eliminated.
1801 // FIXME: Where did the IsGenericLambda here come from?
1802 bool NonODRUsedInitCapture =
1803 IsGenericLambda && From.isNonODRUsed() && From.isInitCapture();
1804 if (!NonODRUsedInitCapture) {
1805 bool IsLast = (I + 1) == LSI->NumExplicitCaptures;
1806 SourceRange FixItRange;
1807 if (CaptureRange.isValid()) {
1808 if (!CurHasPreviousCapture && !IsLast) {
1809 // If there are no captures preceding this capture, remove the
1810 // following comma.
1811 FixItRange = SourceRange(CaptureRange.getBegin(),
1812 getLocForEndOfToken(CaptureRange.getEnd()));
1813 } else {
1814 // Otherwise, remove the comma since the last used capture.
1815 FixItRange = SourceRange(getLocForEndOfToken(PrevCaptureLoc),
1816 CaptureRange.getEnd());
1817 }
1818 }
1819
1820 IsCaptureUsed = !DiagnoseUnusedLambdaCapture(FixItRange, From);
1821 }
1822 }
1823
1824 if (CaptureRange.isValid()) {
1825 CurHasPreviousCapture |= IsCaptureUsed;
1826 PrevCaptureLoc = CaptureRange.getEnd();
1827 }
1828
1829 // Map the capture to our AST representation.
1830 LambdaCapture Capture = [&] {
1831 if (From.isThisCapture()) {
1832 // Capturing 'this' implicitly with a default of '[=]' is deprecated,
1833 // because it results in a reference capture. Don't warn prior to
1834 // C++2a; there's nothing that can be done about it before then.
1835 if (getLangOpts().CPlusPlus20 && IsImplicit &&
1836 CaptureDefault == LCD_ByCopy) {
1837 Diag(From.getLocation(), diag::warn_deprecated_this_capture);
1838 Diag(CaptureDefaultLoc, diag::note_deprecated_this_capture)
1839 << FixItHint::CreateInsertion(
1840 getLocForEndOfToken(CaptureDefaultLoc), ", this");
1841 }
1842 return LambdaCapture(From.getLocation(), IsImplicit,
1843 From.isCopyCapture() ? LCK_StarThis : LCK_This);
1844 } else if (From.isVLATypeCapture()) {
1845 return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType);
1846 } else {
1847 assert(From.isVariableCapture() && "unknown kind of capture");
1848 VarDecl *Var = From.getVariable();
1849 LambdaCaptureKind Kind =
1850 From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef;
1851 return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var,
1852 From.getEllipsisLoc());
1853 }
1854 }();
1855
1856 // Form the initializer for the capture field.
1857 ExprResult Init = BuildCaptureInit(From, ImplicitCaptureLoc);
1858
1859 // FIXME: Skip this capture if the capture is not used, the initializer
1860 // has no side-effects, the type of the capture is trivial, and the
1861 // lambda is not externally visible.
1862
1863 // Add a FieldDecl for the capture and form its initializer.
1864 BuildCaptureField(Class, From);
1865 Captures.push_back(Capture);
1866 CaptureInits.push_back(Init.get());
1867
1868 if (LangOpts.CUDA)
1869 CUDACheckLambdaCapture(CallOperator, From);
1870 }
1871
1872 Class->setCaptures(Context, Captures);
1873
1874 // C++11 [expr.prim.lambda]p6:
1875 // The closure type for a lambda-expression with no lambda-capture
1876 // has a public non-virtual non-explicit const conversion function
1877 // to pointer to function having the same parameter and return
1878 // types as the closure type's function call operator.
1879 if (Captures.empty() && CaptureDefault == LCD_None)
1880 addFunctionPointerConversions(*this, IntroducerRange, Class,
1881 CallOperator);
1882
1883 // Objective-C++:
1884 // The closure type for a lambda-expression has a public non-virtual
1885 // non-explicit const conversion function to a block pointer having the
1886 // same parameter and return types as the closure type's function call
1887 // operator.
1888 // FIXME: Fix generic lambda to block conversions.
1889 if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda)
1890 addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
1891
1892 // Finalize the lambda class.
1893 SmallVector<Decl*, 4> Fields(Class->fields());
1894 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1895 SourceLocation(), ParsedAttributesView());
1896 CheckCompletedCXXClass(nullptr, Class);
1897 }
1898
1899 Cleanup.mergeFrom(LambdaCleanup);
1900
1901 LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
1902 CaptureDefault, CaptureDefaultLoc,
1903 ExplicitParams, ExplicitResultType,
1904 CaptureInits, EndLoc,
1905 ContainsUnexpandedParameterPack);
1906 // If the lambda expression's call operator is not explicitly marked constexpr
1907 // and we are not in a dependent context, analyze the call operator to infer
1908 // its constexpr-ness, suppressing diagnostics while doing so.
1909 if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() &&
1910 !CallOperator->isConstexpr() &&
1911 !isa<CoroutineBodyStmt>(CallOperator->getBody()) &&
1912 !Class->getDeclContext()->isDependentContext()) {
1913 CallOperator->setConstexprKind(
1914 CheckConstexprFunctionDefinition(CallOperator,
1915 CheckConstexprKind::CheckValid)
1916 ? ConstexprSpecKind::Constexpr
1917 : ConstexprSpecKind::Unspecified);
1918 }
1919
1920 // Emit delayed shadowing warnings now that the full capture list is known.
1921 DiagnoseShadowingLambdaDecls(LSI);
1922
1923 if (!CurContext->isDependentContext()) {
1924 switch (ExprEvalContexts.back().Context) {
1925 // C++11 [expr.prim.lambda]p2:
1926 // A lambda-expression shall not appear in an unevaluated operand
1927 // (Clause 5).
1928 case ExpressionEvaluationContext::Unevaluated:
1929 case ExpressionEvaluationContext::UnevaluatedList:
1930 case ExpressionEvaluationContext::UnevaluatedAbstract:
1931 // C++1y [expr.const]p2:
1932 // A conditional-expression e is a core constant expression unless the
1933 // evaluation of e, following the rules of the abstract machine, would
1934 // evaluate [...] a lambda-expression.
1935 //
1936 // This is technically incorrect, there are some constant evaluated contexts
1937 // where this should be allowed. We should probably fix this when DR1607 is
1938 // ratified, it lays out the exact set of conditions where we shouldn't
1939 // allow a lambda-expression.
1940 case ExpressionEvaluationContext::ConstantEvaluated:
1941 // We don't actually diagnose this case immediately, because we
1942 // could be within a context where we might find out later that
1943 // the expression is potentially evaluated (e.g., for typeid).
1944 ExprEvalContexts.back().Lambdas.push_back(Lambda);
1945 break;
1946
1947 case ExpressionEvaluationContext::DiscardedStatement:
1948 case ExpressionEvaluationContext::PotentiallyEvaluated:
1949 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
1950 break;
1951 }
1952 }
1953
1954 return MaybeBindToTemporary(Lambda);
1955 }
1956
BuildBlockForLambdaConversion(SourceLocation CurrentLocation,SourceLocation ConvLocation,CXXConversionDecl * Conv,Expr * Src)1957 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
1958 SourceLocation ConvLocation,
1959 CXXConversionDecl *Conv,
1960 Expr *Src) {
1961 // Make sure that the lambda call operator is marked used.
1962 CXXRecordDecl *Lambda = Conv->getParent();
1963 CXXMethodDecl *CallOperator
1964 = cast<CXXMethodDecl>(
1965 Lambda->lookup(
1966 Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
1967 CallOperator->setReferenced();
1968 CallOperator->markUsed(Context);
1969
1970 ExprResult Init = PerformCopyInitialization(
1971 InitializedEntity::InitializeLambdaToBlock(ConvLocation, Src->getType(),
1972 /*NRVO=*/false),
1973 CurrentLocation, Src);
1974 if (!Init.isInvalid())
1975 Init = ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false);
1976
1977 if (Init.isInvalid())
1978 return ExprError();
1979
1980 // Create the new block to be returned.
1981 BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
1982
1983 // Set the type information.
1984 Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
1985 Block->setIsVariadic(CallOperator->isVariadic());
1986 Block->setBlockMissingReturnType(false);
1987
1988 // Add parameters.
1989 SmallVector<ParmVarDecl *, 4> BlockParams;
1990 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1991 ParmVarDecl *From = CallOperator->getParamDecl(I);
1992 BlockParams.push_back(ParmVarDecl::Create(
1993 Context, Block, From->getBeginLoc(), From->getLocation(),
1994 From->getIdentifier(), From->getType(), From->getTypeSourceInfo(),
1995 From->getStorageClass(),
1996 /*DefArg=*/nullptr));
1997 }
1998 Block->setParams(BlockParams);
1999
2000 Block->setIsConversionFromLambda(true);
2001
2002 // Add capture. The capture uses a fake variable, which doesn't correspond
2003 // to any actual memory location. However, the initializer copy-initializes
2004 // the lambda object.
2005 TypeSourceInfo *CapVarTSI =
2006 Context.getTrivialTypeSourceInfo(Src->getType());
2007 VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
2008 ConvLocation, nullptr,
2009 Src->getType(), CapVarTSI,
2010 SC_None);
2011 BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false,
2012 /*nested=*/false, /*copy=*/Init.get());
2013 Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false);
2014
2015 // Add a fake function body to the block. IR generation is responsible
2016 // for filling in the actual body, which cannot be expressed as an AST.
2017 Block->setBody(new (Context) CompoundStmt(ConvLocation));
2018
2019 // Create the block literal expression.
2020 Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
2021 ExprCleanupObjects.push_back(Block);
2022 Cleanup.setExprNeedsCleanups(true);
2023
2024 return BuildBlock;
2025 }
2026