• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TreeTransform.h"
14 #include "UsedDeclVisitor.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/ExprObjC.h"
26 #include "clang/AST/ExprOpenMP.h"
27 #include "clang/AST/OperationKinds.h"
28 #include "clang/AST/RecursiveASTVisitor.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/PartialDiagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Lex/LiteralSupport.h"
35 #include "clang/Lex/Preprocessor.h"
36 #include "clang/Sema/AnalysisBasedWarnings.h"
37 #include "clang/Sema/DeclSpec.h"
38 #include "clang/Sema/DelayedDiagnostic.h"
39 #include "clang/Sema/Designator.h"
40 #include "clang/Sema/Initialization.h"
41 #include "clang/Sema/Lookup.h"
42 #include "clang/Sema/Overload.h"
43 #include "clang/Sema/ParsedTemplate.h"
44 #include "clang/Sema/Scope.h"
45 #include "clang/Sema/ScopeInfo.h"
46 #include "clang/Sema/SemaFixItUtils.h"
47 #include "clang/Sema/SemaInternal.h"
48 #include "clang/Sema/Template.h"
49 #include "llvm/Support/ConvertUTF.h"
50 #include "llvm/Support/SaveAndRestore.h"
51 using namespace clang;
52 using namespace sema;
53 using llvm::RoundingMode;
54 
55 /// Determine whether the use of this declaration is valid, without
56 /// emitting diagnostics.
CanUseDecl(NamedDecl * D,bool TreatUnavailableAsInvalid)57 bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
58   // See if this is an auto-typed variable whose initializer we are parsing.
59   if (ParsingInitForAutoVars.count(D))
60     return false;
61 
62   // See if this is a deleted function.
63   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
64     if (FD->isDeleted())
65       return false;
66 
67     // If the function has a deduced return type, and we can't deduce it,
68     // then we can't use it either.
69     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
70         DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
71       return false;
72 
73     // See if this is an aligned allocation/deallocation function that is
74     // unavailable.
75     if (TreatUnavailableAsInvalid &&
76         isUnavailableAlignedAllocationFunction(*FD))
77       return false;
78   }
79 
80   // See if this function is unavailable.
81   if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
82       cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
83     return false;
84 
85   return true;
86 }
87 
DiagnoseUnusedOfDecl(Sema & S,NamedDecl * D,SourceLocation Loc)88 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
89   // Warn if this is used but marked unused.
90   if (const auto *A = D->getAttr<UnusedAttr>()) {
91     // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
92     // should diagnose them.
93     if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
94         A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) {
95       const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
96       if (DC && !DC->hasAttr<UnusedAttr>())
97         S.Diag(Loc, diag::warn_used_but_marked_unused) << D;
98     }
99   }
100 }
101 
102 /// Emit a note explaining that this function is deleted.
NoteDeletedFunction(FunctionDecl * Decl)103 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
104   assert(Decl && Decl->isDeleted());
105 
106   if (Decl->isDefaulted()) {
107     // If the method was explicitly defaulted, point at that declaration.
108     if (!Decl->isImplicit())
109       Diag(Decl->getLocation(), diag::note_implicitly_deleted);
110 
111     // Try to diagnose why this special member function was implicitly
112     // deleted. This might fail, if that reason no longer applies.
113     DiagnoseDeletedDefaultedFunction(Decl);
114     return;
115   }
116 
117   auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
118   if (Ctor && Ctor->isInheritingConstructor())
119     return NoteDeletedInheritingConstructor(Ctor);
120 
121   Diag(Decl->getLocation(), diag::note_availability_specified_here)
122     << Decl << 1;
123 }
124 
125 /// Determine whether a FunctionDecl was ever declared with an
126 /// explicit storage class.
hasAnyExplicitStorageClass(const FunctionDecl * D)127 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
128   for (auto I : D->redecls()) {
129     if (I->getStorageClass() != SC_None)
130       return true;
131   }
132   return false;
133 }
134 
135 /// Check whether we're in an extern inline function and referring to a
136 /// variable or function with internal linkage (C11 6.7.4p3).
137 ///
138 /// This is only a warning because we used to silently accept this code, but
139 /// in many cases it will not behave correctly. This is not enabled in C++ mode
140 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
141 /// and so while there may still be user mistakes, most of the time we can't
142 /// prove that there are errors.
diagnoseUseOfInternalDeclInInlineFunction(Sema & S,const NamedDecl * D,SourceLocation Loc)143 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
144                                                       const NamedDecl *D,
145                                                       SourceLocation Loc) {
146   // This is disabled under C++; there are too many ways for this to fire in
147   // contexts where the warning is a false positive, or where it is technically
148   // correct but benign.
149   if (S.getLangOpts().CPlusPlus)
150     return;
151 
152   // Check if this is an inlined function or method.
153   FunctionDecl *Current = S.getCurFunctionDecl();
154   if (!Current)
155     return;
156   if (!Current->isInlined())
157     return;
158   if (!Current->isExternallyVisible())
159     return;
160 
161   // Check if the decl has internal linkage.
162   if (D->getFormalLinkage() != InternalLinkage)
163     return;
164 
165   // Downgrade from ExtWarn to Extension if
166   //  (1) the supposedly external inline function is in the main file,
167   //      and probably won't be included anywhere else.
168   //  (2) the thing we're referencing is a pure function.
169   //  (3) the thing we're referencing is another inline function.
170   // This last can give us false negatives, but it's better than warning on
171   // wrappers for simple C library functions.
172   const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
173   bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
174   if (!DowngradeWarning && UsedFn)
175     DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
176 
177   S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
178                                : diag::ext_internal_in_extern_inline)
179     << /*IsVar=*/!UsedFn << D;
180 
181   S.MaybeSuggestAddingStaticToDecl(Current);
182 
183   S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
184       << D;
185 }
186 
MaybeSuggestAddingStaticToDecl(const FunctionDecl * Cur)187 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
188   const FunctionDecl *First = Cur->getFirstDecl();
189 
190   // Suggest "static" on the function, if possible.
191   if (!hasAnyExplicitStorageClass(First)) {
192     SourceLocation DeclBegin = First->getSourceRange().getBegin();
193     Diag(DeclBegin, diag::note_convert_inline_to_static)
194       << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
195   }
196 }
197 
198 /// Determine whether the use of this declaration is valid, and
199 /// emit any corresponding diagnostics.
200 ///
201 /// This routine diagnoses various problems with referencing
202 /// declarations that can occur when using a declaration. For example,
203 /// it might warn if a deprecated or unavailable declaration is being
204 /// used, or produce an error (and return true) if a C++0x deleted
205 /// function is being used.
206 ///
207 /// \returns true if there was an error (this declaration cannot be
208 /// referenced), false otherwise.
209 ///
DiagnoseUseOfDecl(NamedDecl * D,ArrayRef<SourceLocation> Locs,const ObjCInterfaceDecl * UnknownObjCClass,bool ObjCPropertyAccess,bool AvoidPartialAvailabilityChecks,ObjCInterfaceDecl * ClassReceiver)210 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
211                              const ObjCInterfaceDecl *UnknownObjCClass,
212                              bool ObjCPropertyAccess,
213                              bool AvoidPartialAvailabilityChecks,
214                              ObjCInterfaceDecl *ClassReceiver) {
215   SourceLocation Loc = Locs.front();
216   if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
217     // If there were any diagnostics suppressed by template argument deduction,
218     // emit them now.
219     auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
220     if (Pos != SuppressedDiagnostics.end()) {
221       for (const PartialDiagnosticAt &Suppressed : Pos->second)
222         Diag(Suppressed.first, Suppressed.second);
223 
224       // Clear out the list of suppressed diagnostics, so that we don't emit
225       // them again for this specialization. However, we don't obsolete this
226       // entry from the table, because we want to avoid ever emitting these
227       // diagnostics again.
228       Pos->second.clear();
229     }
230 
231     // C++ [basic.start.main]p3:
232     //   The function 'main' shall not be used within a program.
233     if (cast<FunctionDecl>(D)->isMain())
234       Diag(Loc, diag::ext_main_used);
235 
236     diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
237   }
238 
239   // See if this is an auto-typed variable whose initializer we are parsing.
240   if (ParsingInitForAutoVars.count(D)) {
241     if (isa<BindingDecl>(D)) {
242       Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
243         << D->getDeclName();
244     } else {
245       Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
246         << D->getDeclName() << cast<VarDecl>(D)->getType();
247     }
248     return true;
249   }
250 
251   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
252     // See if this is a deleted function.
253     if (FD->isDeleted()) {
254       auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
255       if (Ctor && Ctor->isInheritingConstructor())
256         Diag(Loc, diag::err_deleted_inherited_ctor_use)
257             << Ctor->getParent()
258             << Ctor->getInheritedConstructor().getConstructor()->getParent();
259       else
260         Diag(Loc, diag::err_deleted_function_use);
261       NoteDeletedFunction(FD);
262       return true;
263     }
264 
265     // [expr.prim.id]p4
266     //   A program that refers explicitly or implicitly to a function with a
267     //   trailing requires-clause whose constraint-expression is not satisfied,
268     //   other than to declare it, is ill-formed. [...]
269     //
270     // See if this is a function with constraints that need to be satisfied.
271     // Check this before deducing the return type, as it might instantiate the
272     // definition.
273     if (FD->getTrailingRequiresClause()) {
274       ConstraintSatisfaction Satisfaction;
275       if (CheckFunctionConstraints(FD, Satisfaction, Loc))
276         // A diagnostic will have already been generated (non-constant
277         // constraint expression, for example)
278         return true;
279       if (!Satisfaction.IsSatisfied) {
280         Diag(Loc,
281              diag::err_reference_to_function_with_unsatisfied_constraints)
282             << D;
283         DiagnoseUnsatisfiedConstraint(Satisfaction);
284         return true;
285       }
286     }
287 
288     // If the function has a deduced return type, and we can't deduce it,
289     // then we can't use it either.
290     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
291         DeduceReturnType(FD, Loc))
292       return true;
293 
294     if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
295       return true;
296 
297     if (getLangOpts().SYCLIsDevice && !checkSYCLDeviceFunction(Loc, FD))
298       return true;
299   }
300 
301   if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
302     // Lambdas are only default-constructible or assignable in C++2a onwards.
303     if (MD->getParent()->isLambda() &&
304         ((isa<CXXConstructorDecl>(MD) &&
305           cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
306          MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
307       Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
308         << !isa<CXXConstructorDecl>(MD);
309     }
310   }
311 
312   auto getReferencedObjCProp = [](const NamedDecl *D) ->
313                                       const ObjCPropertyDecl * {
314     if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
315       return MD->findPropertyDecl();
316     return nullptr;
317   };
318   if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
319     if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
320       return true;
321   } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
322       return true;
323   }
324 
325   // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
326   // Only the variables omp_in and omp_out are allowed in the combiner.
327   // Only the variables omp_priv and omp_orig are allowed in the
328   // initializer-clause.
329   auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
330   if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
331       isa<VarDecl>(D)) {
332     Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
333         << getCurFunction()->HasOMPDeclareReductionCombiner;
334     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
335     return true;
336   }
337 
338   // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
339   //  List-items in map clauses on this construct may only refer to the declared
340   //  variable var and entities that could be referenced by a procedure defined
341   //  at the same location
342   if (LangOpts.OpenMP && isa<VarDecl>(D) &&
343       !isOpenMPDeclareMapperVarDeclAllowed(cast<VarDecl>(D))) {
344     Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
345         << getOpenMPDeclareMapperVarName();
346     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
347     return true;
348   }
349 
350   DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
351                              AvoidPartialAvailabilityChecks, ClassReceiver);
352 
353   DiagnoseUnusedOfDecl(*this, D, Loc);
354 
355   diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
356 
357   // CUDA/HIP: Diagnose invalid references of host global variables in device
358   // functions. Reference of device global variables in host functions is
359   // allowed through shadow variables therefore it is not diagnosed.
360   if (LangOpts.CUDAIsDevice) {
361     auto *FD = dyn_cast_or_null<FunctionDecl>(CurContext);
362     auto Target = IdentifyCUDATarget(FD);
363     if (FD && Target != CFT_Host) {
364       const auto *VD = dyn_cast<VarDecl>(D);
365       if (VD && VD->hasGlobalStorage() && !VD->hasAttr<CUDADeviceAttr>() &&
366           !VD->hasAttr<CUDAConstantAttr>() && !VD->hasAttr<CUDASharedAttr>() &&
367           !VD->getType()->isCUDADeviceBuiltinSurfaceType() &&
368           !VD->getType()->isCUDADeviceBuiltinTextureType() &&
369           !VD->isConstexpr() && !VD->getType().isConstQualified())
370         targetDiag(*Locs.begin(), diag::err_ref_bad_target)
371             << /*host*/ 2 << /*variable*/ 1 << VD << Target;
372     }
373   }
374 
375   if (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)) {
376     if (const auto *VD = dyn_cast<ValueDecl>(D))
377       checkDeviceDecl(VD, Loc);
378 
379     if (!Context.getTargetInfo().isTLSSupported())
380       if (const auto *VD = dyn_cast<VarDecl>(D))
381         if (VD->getTLSKind() != VarDecl::TLS_None)
382           targetDiag(*Locs.begin(), diag::err_thread_unsupported);
383   }
384 
385   if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) &&
386       !isUnevaluatedContext()) {
387     // C++ [expr.prim.req.nested] p3
388     //   A local parameter shall only appear as an unevaluated operand
389     //   (Clause 8) within the constraint-expression.
390     Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context)
391         << D;
392     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
393     return true;
394   }
395 
396   return false;
397 }
398 
399 /// DiagnoseSentinelCalls - This routine checks whether a call or
400 /// message-send is to a declaration with the sentinel attribute, and
401 /// if so, it checks that the requirements of the sentinel are
402 /// satisfied.
DiagnoseSentinelCalls(NamedDecl * D,SourceLocation Loc,ArrayRef<Expr * > Args)403 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
404                                  ArrayRef<Expr *> Args) {
405   const SentinelAttr *attr = D->getAttr<SentinelAttr>();
406   if (!attr)
407     return;
408 
409   // The number of formal parameters of the declaration.
410   unsigned numFormalParams;
411 
412   // The kind of declaration.  This is also an index into a %select in
413   // the diagnostic.
414   enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
415 
416   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
417     numFormalParams = MD->param_size();
418     calleeType = CT_Method;
419   } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
420     numFormalParams = FD->param_size();
421     calleeType = CT_Function;
422   } else if (isa<VarDecl>(D)) {
423     QualType type = cast<ValueDecl>(D)->getType();
424     const FunctionType *fn = nullptr;
425     if (const PointerType *ptr = type->getAs<PointerType>()) {
426       fn = ptr->getPointeeType()->getAs<FunctionType>();
427       if (!fn) return;
428       calleeType = CT_Function;
429     } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
430       fn = ptr->getPointeeType()->castAs<FunctionType>();
431       calleeType = CT_Block;
432     } else {
433       return;
434     }
435 
436     if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
437       numFormalParams = proto->getNumParams();
438     } else {
439       numFormalParams = 0;
440     }
441   } else {
442     return;
443   }
444 
445   // "nullPos" is the number of formal parameters at the end which
446   // effectively count as part of the variadic arguments.  This is
447   // useful if you would prefer to not have *any* formal parameters,
448   // but the language forces you to have at least one.
449   unsigned nullPos = attr->getNullPos();
450   assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
451   numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
452 
453   // The number of arguments which should follow the sentinel.
454   unsigned numArgsAfterSentinel = attr->getSentinel();
455 
456   // If there aren't enough arguments for all the formal parameters,
457   // the sentinel, and the args after the sentinel, complain.
458   if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
459     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
460     Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
461     return;
462   }
463 
464   // Otherwise, find the sentinel expression.
465   Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
466   if (!sentinelExpr) return;
467   if (sentinelExpr->isValueDependent()) return;
468   if (Context.isSentinelNullExpr(sentinelExpr)) return;
469 
470   // Pick a reasonable string to insert.  Optimistically use 'nil', 'nullptr',
471   // or 'NULL' if those are actually defined in the context.  Only use
472   // 'nil' for ObjC methods, where it's much more likely that the
473   // variadic arguments form a list of object pointers.
474   SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc());
475   std::string NullValue;
476   if (calleeType == CT_Method && PP.isMacroDefined("nil"))
477     NullValue = "nil";
478   else if (getLangOpts().CPlusPlus11)
479     NullValue = "nullptr";
480   else if (PP.isMacroDefined("NULL"))
481     NullValue = "NULL";
482   else
483     NullValue = "(void*) 0";
484 
485   if (MissingNilLoc.isInvalid())
486     Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
487   else
488     Diag(MissingNilLoc, diag::warn_missing_sentinel)
489       << int(calleeType)
490       << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
491   Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
492 }
493 
getExprRange(Expr * E) const494 SourceRange Sema::getExprRange(Expr *E) const {
495   return E ? E->getSourceRange() : SourceRange();
496 }
497 
498 //===----------------------------------------------------------------------===//
499 //  Standard Promotions and Conversions
500 //===----------------------------------------------------------------------===//
501 
502 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
DefaultFunctionArrayConversion(Expr * E,bool Diagnose)503 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
504   // Handle any placeholder expressions which made it here.
505   if (E->getType()->isPlaceholderType()) {
506     ExprResult result = CheckPlaceholderExpr(E);
507     if (result.isInvalid()) return ExprError();
508     E = result.get();
509   }
510 
511   QualType Ty = E->getType();
512   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
513 
514   if (Ty->isFunctionType()) {
515     if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
516       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
517         if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
518           return ExprError();
519 
520     E = ImpCastExprToType(E, Context.getPointerType(Ty),
521                           CK_FunctionToPointerDecay).get();
522   } else if (Ty->isArrayType()) {
523     // In C90 mode, arrays only promote to pointers if the array expression is
524     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
525     // type 'array of type' is converted to an expression that has type 'pointer
526     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
527     // that has type 'array of type' ...".  The relevant change is "an lvalue"
528     // (C90) to "an expression" (C99).
529     //
530     // C++ 4.2p1:
531     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
532     // T" can be converted to an rvalue of type "pointer to T".
533     //
534     if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
535       E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
536                             CK_ArrayToPointerDecay).get();
537   }
538   return E;
539 }
540 
CheckForNullPointerDereference(Sema & S,Expr * E)541 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
542   // Check to see if we are dereferencing a null pointer.  If so,
543   // and if not volatile-qualified, this is undefined behavior that the
544   // optimizer will delete, so warn about it.  People sometimes try to use this
545   // to get a deterministic trap and are surprised by clang's behavior.  This
546   // only handles the pattern "*null", which is a very syntactic check.
547   const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts());
548   if (UO && UO->getOpcode() == UO_Deref &&
549       UO->getSubExpr()->getType()->isPointerType()) {
550     const LangAS AS =
551         UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
552     if ((!isTargetAddressSpace(AS) ||
553          (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
554         UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
555             S.Context, Expr::NPC_ValueDependentIsNotNull) &&
556         !UO->getType().isVolatileQualified()) {
557       S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
558                             S.PDiag(diag::warn_indirection_through_null)
559                                 << UO->getSubExpr()->getSourceRange());
560       S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
561                             S.PDiag(diag::note_indirection_through_null));
562     }
563   }
564 }
565 
DiagnoseDirectIsaAccess(Sema & S,const ObjCIvarRefExpr * OIRE,SourceLocation AssignLoc,const Expr * RHS)566 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
567                                     SourceLocation AssignLoc,
568                                     const Expr* RHS) {
569   const ObjCIvarDecl *IV = OIRE->getDecl();
570   if (!IV)
571     return;
572 
573   DeclarationName MemberName = IV->getDeclName();
574   IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
575   if (!Member || !Member->isStr("isa"))
576     return;
577 
578   const Expr *Base = OIRE->getBase();
579   QualType BaseType = Base->getType();
580   if (OIRE->isArrow())
581     BaseType = BaseType->getPointeeType();
582   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
583     if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
584       ObjCInterfaceDecl *ClassDeclared = nullptr;
585       ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
586       if (!ClassDeclared->getSuperClass()
587           && (*ClassDeclared->ivar_begin()) == IV) {
588         if (RHS) {
589           NamedDecl *ObjectSetClass =
590             S.LookupSingleName(S.TUScope,
591                                &S.Context.Idents.get("object_setClass"),
592                                SourceLocation(), S.LookupOrdinaryName);
593           if (ObjectSetClass) {
594             SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
595             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
596                 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
597                                               "object_setClass(")
598                 << FixItHint::CreateReplacement(
599                        SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
600                 << FixItHint::CreateInsertion(RHSLocEnd, ")");
601           }
602           else
603             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
604         } else {
605           NamedDecl *ObjectGetClass =
606             S.LookupSingleName(S.TUScope,
607                                &S.Context.Idents.get("object_getClass"),
608                                SourceLocation(), S.LookupOrdinaryName);
609           if (ObjectGetClass)
610             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
611                 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
612                                               "object_getClass(")
613                 << FixItHint::CreateReplacement(
614                        SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
615           else
616             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
617         }
618         S.Diag(IV->getLocation(), diag::note_ivar_decl);
619       }
620     }
621 }
622 
DefaultLvalueConversion(Expr * E)623 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
624   // Handle any placeholder expressions which made it here.
625   if (E->getType()->isPlaceholderType()) {
626     ExprResult result = CheckPlaceholderExpr(E);
627     if (result.isInvalid()) return ExprError();
628     E = result.get();
629   }
630 
631   // C++ [conv.lval]p1:
632   //   A glvalue of a non-function, non-array type T can be
633   //   converted to a prvalue.
634   if (!E->isGLValue()) return E;
635 
636   QualType T = E->getType();
637   assert(!T.isNull() && "r-value conversion on typeless expression?");
638 
639   // lvalue-to-rvalue conversion cannot be applied to function or array types.
640   if (T->isFunctionType() || T->isArrayType())
641     return E;
642 
643   // We don't want to throw lvalue-to-rvalue casts on top of
644   // expressions of certain types in C++.
645   if (getLangOpts().CPlusPlus &&
646       (E->getType() == Context.OverloadTy ||
647        T->isDependentType() ||
648        T->isRecordType()))
649     return E;
650 
651   // The C standard is actually really unclear on this point, and
652   // DR106 tells us what the result should be but not why.  It's
653   // generally best to say that void types just doesn't undergo
654   // lvalue-to-rvalue at all.  Note that expressions of unqualified
655   // 'void' type are never l-values, but qualified void can be.
656   if (T->isVoidType())
657     return E;
658 
659   // OpenCL usually rejects direct accesses to values of 'half' type.
660   if (getLangOpts().OpenCL && !getOpenCLOptions().isEnabled("cl_khr_fp16") &&
661       T->isHalfType()) {
662     Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
663       << 0 << T;
664     return ExprError();
665   }
666 
667   CheckForNullPointerDereference(*this, E);
668   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
669     NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
670                                      &Context.Idents.get("object_getClass"),
671                                      SourceLocation(), LookupOrdinaryName);
672     if (ObjectGetClass)
673       Diag(E->getExprLoc(), diag::warn_objc_isa_use)
674           << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
675           << FixItHint::CreateReplacement(
676                  SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
677     else
678       Diag(E->getExprLoc(), diag::warn_objc_isa_use);
679   }
680   else if (const ObjCIvarRefExpr *OIRE =
681             dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
682     DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
683 
684   // C++ [conv.lval]p1:
685   //   [...] If T is a non-class type, the type of the prvalue is the
686   //   cv-unqualified version of T. Otherwise, the type of the
687   //   rvalue is T.
688   //
689   // C99 6.3.2.1p2:
690   //   If the lvalue has qualified type, the value has the unqualified
691   //   version of the type of the lvalue; otherwise, the value has the
692   //   type of the lvalue.
693   if (T.hasQualifiers())
694     T = T.getUnqualifiedType();
695 
696   // Under the MS ABI, lock down the inheritance model now.
697   if (T->isMemberPointerType() &&
698       Context.getTargetInfo().getCXXABI().isMicrosoft())
699     (void)isCompleteType(E->getExprLoc(), T);
700 
701   ExprResult Res = CheckLValueToRValueConversionOperand(E);
702   if (Res.isInvalid())
703     return Res;
704   E = Res.get();
705 
706   // Loading a __weak object implicitly retains the value, so we need a cleanup to
707   // balance that.
708   if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
709     Cleanup.setExprNeedsCleanups(true);
710 
711   if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
712     Cleanup.setExprNeedsCleanups(true);
713 
714   // C++ [conv.lval]p3:
715   //   If T is cv std::nullptr_t, the result is a null pointer constant.
716   CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
717   Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_RValue,
718                                  CurFPFeatureOverrides());
719 
720   // C11 6.3.2.1p2:
721   //   ... if the lvalue has atomic type, the value has the non-atomic version
722   //   of the type of the lvalue ...
723   if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
724     T = Atomic->getValueType().getUnqualifiedType();
725     Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
726                                    nullptr, VK_RValue, FPOptionsOverride());
727   }
728 
729   return Res;
730 }
731 
DefaultFunctionArrayLvalueConversion(Expr * E,bool Diagnose)732 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
733   ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
734   if (Res.isInvalid())
735     return ExprError();
736   Res = DefaultLvalueConversion(Res.get());
737   if (Res.isInvalid())
738     return ExprError();
739   return Res;
740 }
741 
742 /// CallExprUnaryConversions - a special case of an unary conversion
743 /// performed on a function designator of a call expression.
CallExprUnaryConversions(Expr * E)744 ExprResult Sema::CallExprUnaryConversions(Expr *E) {
745   QualType Ty = E->getType();
746   ExprResult Res = E;
747   // Only do implicit cast for a function type, but not for a pointer
748   // to function type.
749   if (Ty->isFunctionType()) {
750     Res = ImpCastExprToType(E, Context.getPointerType(Ty),
751                             CK_FunctionToPointerDecay);
752     if (Res.isInvalid())
753       return ExprError();
754   }
755   Res = DefaultLvalueConversion(Res.get());
756   if (Res.isInvalid())
757     return ExprError();
758   return Res.get();
759 }
760 
761 /// UsualUnaryConversions - Performs various conversions that are common to most
762 /// operators (C99 6.3). The conversions of array and function types are
763 /// sometimes suppressed. For example, the array->pointer conversion doesn't
764 /// apply if the array is an argument to the sizeof or address (&) operators.
765 /// In these instances, this routine should *not* be called.
UsualUnaryConversions(Expr * E)766 ExprResult Sema::UsualUnaryConversions(Expr *E) {
767   // First, convert to an r-value.
768   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
769   if (Res.isInvalid())
770     return ExprError();
771   E = Res.get();
772 
773   QualType Ty = E->getType();
774   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
775 
776   // Half FP have to be promoted to float unless it is natively supported
777   if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
778     return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
779 
780   // Try to perform integral promotions if the object has a theoretically
781   // promotable type.
782   if (Ty->isIntegralOrUnscopedEnumerationType()) {
783     // C99 6.3.1.1p2:
784     //
785     //   The following may be used in an expression wherever an int or
786     //   unsigned int may be used:
787     //     - an object or expression with an integer type whose integer
788     //       conversion rank is less than or equal to the rank of int
789     //       and unsigned int.
790     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
791     //
792     //   If an int can represent all values of the original type, the
793     //   value is converted to an int; otherwise, it is converted to an
794     //   unsigned int. These are called the integer promotions. All
795     //   other types are unchanged by the integer promotions.
796 
797     QualType PTy = Context.isPromotableBitField(E);
798     if (!PTy.isNull()) {
799       E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
800       return E;
801     }
802     if (Ty->isPromotableIntegerType()) {
803       QualType PT = Context.getPromotedIntegerType(Ty);
804       E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
805       return E;
806     }
807   }
808   return E;
809 }
810 
811 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
812 /// do not have a prototype. Arguments that have type float or __fp16
813 /// are promoted to double. All other argument types are converted by
814 /// UsualUnaryConversions().
DefaultArgumentPromotion(Expr * E)815 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
816   QualType Ty = E->getType();
817   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
818 
819   ExprResult Res = UsualUnaryConversions(E);
820   if (Res.isInvalid())
821     return ExprError();
822   E = Res.get();
823 
824   // If this is a 'float'  or '__fp16' (CVR qualified or typedef)
825   // promote to double.
826   // Note that default argument promotion applies only to float (and
827   // half/fp16); it does not apply to _Float16.
828   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
829   if (BTy && (BTy->getKind() == BuiltinType::Half ||
830               BTy->getKind() == BuiltinType::Float)) {
831     if (getLangOpts().OpenCL &&
832         !getOpenCLOptions().isEnabled("cl_khr_fp64")) {
833         if (BTy->getKind() == BuiltinType::Half) {
834             E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
835         }
836     } else {
837       E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
838     }
839   }
840 
841   // C++ performs lvalue-to-rvalue conversion as a default argument
842   // promotion, even on class types, but note:
843   //   C++11 [conv.lval]p2:
844   //     When an lvalue-to-rvalue conversion occurs in an unevaluated
845   //     operand or a subexpression thereof the value contained in the
846   //     referenced object is not accessed. Otherwise, if the glvalue
847   //     has a class type, the conversion copy-initializes a temporary
848   //     of type T from the glvalue and the result of the conversion
849   //     is a prvalue for the temporary.
850   // FIXME: add some way to gate this entire thing for correctness in
851   // potentially potentially evaluated contexts.
852   if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
853     ExprResult Temp = PerformCopyInitialization(
854                        InitializedEntity::InitializeTemporary(E->getType()),
855                                                 E->getExprLoc(), E);
856     if (Temp.isInvalid())
857       return ExprError();
858     E = Temp.get();
859   }
860 
861   return E;
862 }
863 
864 /// Determine the degree of POD-ness for an expression.
865 /// Incomplete types are considered POD, since this check can be performed
866 /// when we're in an unevaluated context.
isValidVarArgType(const QualType & Ty)867 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
868   if (Ty->isIncompleteType()) {
869     // C++11 [expr.call]p7:
870     //   After these conversions, if the argument does not have arithmetic,
871     //   enumeration, pointer, pointer to member, or class type, the program
872     //   is ill-formed.
873     //
874     // Since we've already performed array-to-pointer and function-to-pointer
875     // decay, the only such type in C++ is cv void. This also handles
876     // initializer lists as variadic arguments.
877     if (Ty->isVoidType())
878       return VAK_Invalid;
879 
880     if (Ty->isObjCObjectType())
881       return VAK_Invalid;
882     return VAK_Valid;
883   }
884 
885   if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
886     return VAK_Invalid;
887 
888   if (Ty.isCXX98PODType(Context))
889     return VAK_Valid;
890 
891   // C++11 [expr.call]p7:
892   //   Passing a potentially-evaluated argument of class type (Clause 9)
893   //   having a non-trivial copy constructor, a non-trivial move constructor,
894   //   or a non-trivial destructor, with no corresponding parameter,
895   //   is conditionally-supported with implementation-defined semantics.
896   if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
897     if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
898       if (!Record->hasNonTrivialCopyConstructor() &&
899           !Record->hasNonTrivialMoveConstructor() &&
900           !Record->hasNonTrivialDestructor())
901         return VAK_ValidInCXX11;
902 
903   if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
904     return VAK_Valid;
905 
906   if (Ty->isObjCObjectType())
907     return VAK_Invalid;
908 
909   if (getLangOpts().MSVCCompat)
910     return VAK_MSVCUndefined;
911 
912   // FIXME: In C++11, these cases are conditionally-supported, meaning we're
913   // permitted to reject them. We should consider doing so.
914   return VAK_Undefined;
915 }
916 
checkVariadicArgument(const Expr * E,VariadicCallType CT)917 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
918   // Don't allow one to pass an Objective-C interface to a vararg.
919   const QualType &Ty = E->getType();
920   VarArgKind VAK = isValidVarArgType(Ty);
921 
922   // Complain about passing non-POD types through varargs.
923   switch (VAK) {
924   case VAK_ValidInCXX11:
925     DiagRuntimeBehavior(
926         E->getBeginLoc(), nullptr,
927         PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
928     LLVM_FALLTHROUGH;
929   case VAK_Valid:
930     if (Ty->isRecordType()) {
931       // This is unlikely to be what the user intended. If the class has a
932       // 'c_str' member function, the user probably meant to call that.
933       DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
934                           PDiag(diag::warn_pass_class_arg_to_vararg)
935                               << Ty << CT << hasCStrMethod(E) << ".c_str()");
936     }
937     break;
938 
939   case VAK_Undefined:
940   case VAK_MSVCUndefined:
941     DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
942                         PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
943                             << getLangOpts().CPlusPlus11 << Ty << CT);
944     break;
945 
946   case VAK_Invalid:
947     if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
948       Diag(E->getBeginLoc(),
949            diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
950           << Ty << CT;
951     else if (Ty->isObjCObjectType())
952       DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
953                           PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
954                               << Ty << CT);
955     else
956       Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
957           << isa<InitListExpr>(E) << Ty << CT;
958     break;
959   }
960 }
961 
962 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
963 /// will create a trap if the resulting type is not a POD type.
DefaultVariadicArgumentPromotion(Expr * E,VariadicCallType CT,FunctionDecl * FDecl)964 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
965                                                   FunctionDecl *FDecl) {
966   if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
967     // Strip the unbridged-cast placeholder expression off, if applicable.
968     if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
969         (CT == VariadicMethod ||
970          (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
971       E = stripARCUnbridgedCast(E);
972 
973     // Otherwise, do normal placeholder checking.
974     } else {
975       ExprResult ExprRes = CheckPlaceholderExpr(E);
976       if (ExprRes.isInvalid())
977         return ExprError();
978       E = ExprRes.get();
979     }
980   }
981 
982   ExprResult ExprRes = DefaultArgumentPromotion(E);
983   if (ExprRes.isInvalid())
984     return ExprError();
985 
986   // Copy blocks to the heap.
987   if (ExprRes.get()->getType()->isBlockPointerType())
988     maybeExtendBlockObject(ExprRes);
989 
990   E = ExprRes.get();
991 
992   // Diagnostics regarding non-POD argument types are
993   // emitted along with format string checking in Sema::CheckFunctionCall().
994   if (isValidVarArgType(E->getType()) == VAK_Undefined) {
995     // Turn this into a trap.
996     CXXScopeSpec SS;
997     SourceLocation TemplateKWLoc;
998     UnqualifiedId Name;
999     Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
1000                        E->getBeginLoc());
1001     ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
1002                                           /*HasTrailingLParen=*/true,
1003                                           /*IsAddressOfOperand=*/false);
1004     if (TrapFn.isInvalid())
1005       return ExprError();
1006 
1007     ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(),
1008                                     None, E->getEndLoc());
1009     if (Call.isInvalid())
1010       return ExprError();
1011 
1012     ExprResult Comma =
1013         ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
1014     if (Comma.isInvalid())
1015       return ExprError();
1016     return Comma.get();
1017   }
1018 
1019   if (!getLangOpts().CPlusPlus &&
1020       RequireCompleteType(E->getExprLoc(), E->getType(),
1021                           diag::err_call_incomplete_argument))
1022     return ExprError();
1023 
1024   return E;
1025 }
1026 
1027 /// Converts an integer to complex float type.  Helper function of
1028 /// UsualArithmeticConversions()
1029 ///
1030 /// \return false if the integer expression is an integer type and is
1031 /// successfully converted to the complex type.
handleIntegerToComplexFloatConversion(Sema & S,ExprResult & IntExpr,ExprResult & ComplexExpr,QualType IntTy,QualType ComplexTy,bool SkipCast)1032 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
1033                                                   ExprResult &ComplexExpr,
1034                                                   QualType IntTy,
1035                                                   QualType ComplexTy,
1036                                                   bool SkipCast) {
1037   if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
1038   if (SkipCast) return false;
1039   if (IntTy->isIntegerType()) {
1040     QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
1041     IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
1042     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1043                                   CK_FloatingRealToComplex);
1044   } else {
1045     assert(IntTy->isComplexIntegerType());
1046     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1047                                   CK_IntegralComplexToFloatingComplex);
1048   }
1049   return false;
1050 }
1051 
1052 /// Handle arithmetic conversion with complex types.  Helper function of
1053 /// UsualArithmeticConversions()
handleComplexFloatConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)1054 static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
1055                                              ExprResult &RHS, QualType LHSType,
1056                                              QualType RHSType,
1057                                              bool IsCompAssign) {
1058   // if we have an integer operand, the result is the complex type.
1059   if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
1060                                              /*skipCast*/false))
1061     return LHSType;
1062   if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
1063                                              /*skipCast*/IsCompAssign))
1064     return RHSType;
1065 
1066   // This handles complex/complex, complex/float, or float/complex.
1067   // When both operands are complex, the shorter operand is converted to the
1068   // type of the longer, and that is the type of the result. This corresponds
1069   // to what is done when combining two real floating-point operands.
1070   // The fun begins when size promotion occur across type domains.
1071   // From H&S 6.3.4: When one operand is complex and the other is a real
1072   // floating-point type, the less precise type is converted, within it's
1073   // real or complex domain, to the precision of the other type. For example,
1074   // when combining a "long double" with a "double _Complex", the
1075   // "double _Complex" is promoted to "long double _Complex".
1076 
1077   // Compute the rank of the two types, regardless of whether they are complex.
1078   int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1079 
1080   auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
1081   auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
1082   QualType LHSElementType =
1083       LHSComplexType ? LHSComplexType->getElementType() : LHSType;
1084   QualType RHSElementType =
1085       RHSComplexType ? RHSComplexType->getElementType() : RHSType;
1086 
1087   QualType ResultType = S.Context.getComplexType(LHSElementType);
1088   if (Order < 0) {
1089     // Promote the precision of the LHS if not an assignment.
1090     ResultType = S.Context.getComplexType(RHSElementType);
1091     if (!IsCompAssign) {
1092       if (LHSComplexType)
1093         LHS =
1094             S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
1095       else
1096         LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
1097     }
1098   } else if (Order > 0) {
1099     // Promote the precision of the RHS.
1100     if (RHSComplexType)
1101       RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
1102     else
1103       RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
1104   }
1105   return ResultType;
1106 }
1107 
1108 /// Handle arithmetic conversion from integer to float.  Helper function
1109 /// of UsualArithmeticConversions()
handleIntToFloatConversion(Sema & S,ExprResult & FloatExpr,ExprResult & IntExpr,QualType FloatTy,QualType IntTy,bool ConvertFloat,bool ConvertInt)1110 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1111                                            ExprResult &IntExpr,
1112                                            QualType FloatTy, QualType IntTy,
1113                                            bool ConvertFloat, bool ConvertInt) {
1114   if (IntTy->isIntegerType()) {
1115     if (ConvertInt)
1116       // Convert intExpr to the lhs floating point type.
1117       IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1118                                     CK_IntegralToFloating);
1119     return FloatTy;
1120   }
1121 
1122   // Convert both sides to the appropriate complex float.
1123   assert(IntTy->isComplexIntegerType());
1124   QualType result = S.Context.getComplexType(FloatTy);
1125 
1126   // _Complex int -> _Complex float
1127   if (ConvertInt)
1128     IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1129                                   CK_IntegralComplexToFloatingComplex);
1130 
1131   // float -> _Complex float
1132   if (ConvertFloat)
1133     FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1134                                     CK_FloatingRealToComplex);
1135 
1136   return result;
1137 }
1138 
1139 /// Handle arithmethic conversion with floating point types.  Helper
1140 /// function of UsualArithmeticConversions()
handleFloatConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)1141 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1142                                       ExprResult &RHS, QualType LHSType,
1143                                       QualType RHSType, bool IsCompAssign) {
1144   bool LHSFloat = LHSType->isRealFloatingType();
1145   bool RHSFloat = RHSType->isRealFloatingType();
1146 
1147   // N1169 4.1.4: If one of the operands has a floating type and the other
1148   //              operand has a fixed-point type, the fixed-point operand
1149   //              is converted to the floating type [...]
1150   if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) {
1151     if (LHSFloat)
1152       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FixedPointToFloating);
1153     else if (!IsCompAssign)
1154       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FixedPointToFloating);
1155     return LHSFloat ? LHSType : RHSType;
1156   }
1157 
1158   // If we have two real floating types, convert the smaller operand
1159   // to the bigger result.
1160   if (LHSFloat && RHSFloat) {
1161     int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1162     if (order > 0) {
1163       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1164       return LHSType;
1165     }
1166 
1167     assert(order < 0 && "illegal float comparison");
1168     if (!IsCompAssign)
1169       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1170     return RHSType;
1171   }
1172 
1173   if (LHSFloat) {
1174     // Half FP has to be promoted to float unless it is natively supported
1175     if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1176       LHSType = S.Context.FloatTy;
1177 
1178     return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1179                                       /*ConvertFloat=*/!IsCompAssign,
1180                                       /*ConvertInt=*/ true);
1181   }
1182   assert(RHSFloat);
1183   return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1184                                     /*ConvertFloat=*/ true,
1185                                     /*ConvertInt=*/!IsCompAssign);
1186 }
1187 
1188 /// Diagnose attempts to convert between __float128 and long double if
1189 /// there is no support for such conversion. Helper function of
1190 /// UsualArithmeticConversions().
unsupportedTypeConversion(const Sema & S,QualType LHSType,QualType RHSType)1191 static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1192                                       QualType RHSType) {
1193   /*  No issue converting if at least one of the types is not a floating point
1194       type or the two types have the same rank.
1195   */
1196   if (!LHSType->isFloatingType() || !RHSType->isFloatingType() ||
1197       S.Context.getFloatingTypeOrder(LHSType, RHSType) == 0)
1198     return false;
1199 
1200   assert(LHSType->isFloatingType() && RHSType->isFloatingType() &&
1201          "The remaining types must be floating point types.");
1202 
1203   auto *LHSComplex = LHSType->getAs<ComplexType>();
1204   auto *RHSComplex = RHSType->getAs<ComplexType>();
1205 
1206   QualType LHSElemType = LHSComplex ?
1207     LHSComplex->getElementType() : LHSType;
1208   QualType RHSElemType = RHSComplex ?
1209     RHSComplex->getElementType() : RHSType;
1210 
1211   // No issue if the two types have the same representation
1212   if (&S.Context.getFloatTypeSemantics(LHSElemType) ==
1213       &S.Context.getFloatTypeSemantics(RHSElemType))
1214     return false;
1215 
1216   bool Float128AndLongDouble = (LHSElemType == S.Context.Float128Ty &&
1217                                 RHSElemType == S.Context.LongDoubleTy);
1218   Float128AndLongDouble |= (LHSElemType == S.Context.LongDoubleTy &&
1219                             RHSElemType == S.Context.Float128Ty);
1220 
1221   // We've handled the situation where __float128 and long double have the same
1222   // representation. We allow all conversions for all possible long double types
1223   // except PPC's double double.
1224   return Float128AndLongDouble &&
1225     (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
1226      &llvm::APFloat::PPCDoubleDouble());
1227 }
1228 
1229 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1230 
1231 namespace {
1232 /// These helper callbacks are placed in an anonymous namespace to
1233 /// permit their use as function template parameters.
doIntegralCast(Sema & S,Expr * op,QualType toType)1234 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1235   return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1236 }
1237 
doComplexIntegralCast(Sema & S,Expr * op,QualType toType)1238 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1239   return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1240                              CK_IntegralComplexCast);
1241 }
1242 }
1243 
1244 /// Handle integer arithmetic conversions.  Helper function of
1245 /// UsualArithmeticConversions()
1246 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
handleIntegerConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)1247 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1248                                         ExprResult &RHS, QualType LHSType,
1249                                         QualType RHSType, bool IsCompAssign) {
1250   // The rules for this case are in C99 6.3.1.8
1251   int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1252   bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1253   bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1254   if (LHSSigned == RHSSigned) {
1255     // Same signedness; use the higher-ranked type
1256     if (order >= 0) {
1257       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1258       return LHSType;
1259     } else if (!IsCompAssign)
1260       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1261     return RHSType;
1262   } else if (order != (LHSSigned ? 1 : -1)) {
1263     // The unsigned type has greater than or equal rank to the
1264     // signed type, so use the unsigned type
1265     if (RHSSigned) {
1266       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1267       return LHSType;
1268     } else if (!IsCompAssign)
1269       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1270     return RHSType;
1271   } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1272     // The two types are different widths; if we are here, that
1273     // means the signed type is larger than the unsigned type, so
1274     // use the signed type.
1275     if (LHSSigned) {
1276       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1277       return LHSType;
1278     } else if (!IsCompAssign)
1279       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1280     return RHSType;
1281   } else {
1282     // The signed type is higher-ranked than the unsigned type,
1283     // but isn't actually any bigger (like unsigned int and long
1284     // on most 32-bit systems).  Use the unsigned type corresponding
1285     // to the signed type.
1286     QualType result =
1287       S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1288     RHS = (*doRHSCast)(S, RHS.get(), result);
1289     if (!IsCompAssign)
1290       LHS = (*doLHSCast)(S, LHS.get(), result);
1291     return result;
1292   }
1293 }
1294 
1295 /// Handle conversions with GCC complex int extension.  Helper function
1296 /// of UsualArithmeticConversions()
handleComplexIntConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)1297 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1298                                            ExprResult &RHS, QualType LHSType,
1299                                            QualType RHSType,
1300                                            bool IsCompAssign) {
1301   const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1302   const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1303 
1304   if (LHSComplexInt && RHSComplexInt) {
1305     QualType LHSEltType = LHSComplexInt->getElementType();
1306     QualType RHSEltType = RHSComplexInt->getElementType();
1307     QualType ScalarType =
1308       handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1309         (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1310 
1311     return S.Context.getComplexType(ScalarType);
1312   }
1313 
1314   if (LHSComplexInt) {
1315     QualType LHSEltType = LHSComplexInt->getElementType();
1316     QualType ScalarType =
1317       handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1318         (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1319     QualType ComplexType = S.Context.getComplexType(ScalarType);
1320     RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1321                               CK_IntegralRealToComplex);
1322 
1323     return ComplexType;
1324   }
1325 
1326   assert(RHSComplexInt);
1327 
1328   QualType RHSEltType = RHSComplexInt->getElementType();
1329   QualType ScalarType =
1330     handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1331       (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1332   QualType ComplexType = S.Context.getComplexType(ScalarType);
1333 
1334   if (!IsCompAssign)
1335     LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1336                               CK_IntegralRealToComplex);
1337   return ComplexType;
1338 }
1339 
1340 /// Return the rank of a given fixed point or integer type. The value itself
1341 /// doesn't matter, but the values must be increasing with proper increasing
1342 /// rank as described in N1169 4.1.1.
GetFixedPointRank(QualType Ty)1343 static unsigned GetFixedPointRank(QualType Ty) {
1344   const auto *BTy = Ty->getAs<BuiltinType>();
1345   assert(BTy && "Expected a builtin type.");
1346 
1347   switch (BTy->getKind()) {
1348   case BuiltinType::ShortFract:
1349   case BuiltinType::UShortFract:
1350   case BuiltinType::SatShortFract:
1351   case BuiltinType::SatUShortFract:
1352     return 1;
1353   case BuiltinType::Fract:
1354   case BuiltinType::UFract:
1355   case BuiltinType::SatFract:
1356   case BuiltinType::SatUFract:
1357     return 2;
1358   case BuiltinType::LongFract:
1359   case BuiltinType::ULongFract:
1360   case BuiltinType::SatLongFract:
1361   case BuiltinType::SatULongFract:
1362     return 3;
1363   case BuiltinType::ShortAccum:
1364   case BuiltinType::UShortAccum:
1365   case BuiltinType::SatShortAccum:
1366   case BuiltinType::SatUShortAccum:
1367     return 4;
1368   case BuiltinType::Accum:
1369   case BuiltinType::UAccum:
1370   case BuiltinType::SatAccum:
1371   case BuiltinType::SatUAccum:
1372     return 5;
1373   case BuiltinType::LongAccum:
1374   case BuiltinType::ULongAccum:
1375   case BuiltinType::SatLongAccum:
1376   case BuiltinType::SatULongAccum:
1377     return 6;
1378   default:
1379     if (BTy->isInteger())
1380       return 0;
1381     llvm_unreachable("Unexpected fixed point or integer type");
1382   }
1383 }
1384 
1385 /// handleFixedPointConversion - Fixed point operations between fixed
1386 /// point types and integers or other fixed point types do not fall under
1387 /// usual arithmetic conversion since these conversions could result in loss
1388 /// of precsision (N1169 4.1.4). These operations should be calculated with
1389 /// the full precision of their result type (N1169 4.1.6.2.1).
handleFixedPointConversion(Sema & S,QualType LHSTy,QualType RHSTy)1390 static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
1391                                            QualType RHSTy) {
1392   assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&
1393          "Expected at least one of the operands to be a fixed point type");
1394   assert((LHSTy->isFixedPointOrIntegerType() ||
1395           RHSTy->isFixedPointOrIntegerType()) &&
1396          "Special fixed point arithmetic operation conversions are only "
1397          "applied to ints or other fixed point types");
1398 
1399   // If one operand has signed fixed-point type and the other operand has
1400   // unsigned fixed-point type, then the unsigned fixed-point operand is
1401   // converted to its corresponding signed fixed-point type and the resulting
1402   // type is the type of the converted operand.
1403   if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
1404     LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
1405   else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
1406     RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
1407 
1408   // The result type is the type with the highest rank, whereby a fixed-point
1409   // conversion rank is always greater than an integer conversion rank; if the
1410   // type of either of the operands is a saturating fixedpoint type, the result
1411   // type shall be the saturating fixed-point type corresponding to the type
1412   // with the highest rank; the resulting value is converted (taking into
1413   // account rounding and overflow) to the precision of the resulting type.
1414   // Same ranks between signed and unsigned types are resolved earlier, so both
1415   // types are either signed or both unsigned at this point.
1416   unsigned LHSTyRank = GetFixedPointRank(LHSTy);
1417   unsigned RHSTyRank = GetFixedPointRank(RHSTy);
1418 
1419   QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
1420 
1421   if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
1422     ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
1423 
1424   return ResultTy;
1425 }
1426 
1427 /// Check that the usual arithmetic conversions can be performed on this pair of
1428 /// expressions that might be of enumeration type.
checkEnumArithmeticConversions(Sema & S,Expr * LHS,Expr * RHS,SourceLocation Loc,Sema::ArithConvKind ACK)1429 static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS,
1430                                            SourceLocation Loc,
1431                                            Sema::ArithConvKind ACK) {
1432   // C++2a [expr.arith.conv]p1:
1433   //   If one operand is of enumeration type and the other operand is of a
1434   //   different enumeration type or a floating-point type, this behavior is
1435   //   deprecated ([depr.arith.conv.enum]).
1436   //
1437   // Warn on this in all language modes. Produce a deprecation warning in C++20.
1438   // Eventually we will presumably reject these cases (in C++23 onwards?).
1439   QualType L = LHS->getType(), R = RHS->getType();
1440   bool LEnum = L->isUnscopedEnumerationType(),
1441        REnum = R->isUnscopedEnumerationType();
1442   bool IsCompAssign = ACK == Sema::ACK_CompAssign;
1443   if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
1444       (REnum && L->isFloatingType())) {
1445     S.Diag(Loc, S.getLangOpts().CPlusPlus20
1446                     ? diag::warn_arith_conv_enum_float_cxx20
1447                     : diag::warn_arith_conv_enum_float)
1448         << LHS->getSourceRange() << RHS->getSourceRange()
1449         << (int)ACK << LEnum << L << R;
1450   } else if (!IsCompAssign && LEnum && REnum &&
1451              !S.Context.hasSameUnqualifiedType(L, R)) {
1452     unsigned DiagID;
1453     if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
1454         !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
1455       // If either enumeration type is unnamed, it's less likely that the
1456       // user cares about this, but this situation is still deprecated in
1457       // C++2a. Use a different warning group.
1458       DiagID = S.getLangOpts().CPlusPlus20
1459                     ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
1460                     : diag::warn_arith_conv_mixed_anon_enum_types;
1461     } else if (ACK == Sema::ACK_Conditional) {
1462       // Conditional expressions are separated out because they have
1463       // historically had a different warning flag.
1464       DiagID = S.getLangOpts().CPlusPlus20
1465                    ? diag::warn_conditional_mixed_enum_types_cxx20
1466                    : diag::warn_conditional_mixed_enum_types;
1467     } else if (ACK == Sema::ACK_Comparison) {
1468       // Comparison expressions are separated out because they have
1469       // historically had a different warning flag.
1470       DiagID = S.getLangOpts().CPlusPlus20
1471                    ? diag::warn_comparison_mixed_enum_types_cxx20
1472                    : diag::warn_comparison_mixed_enum_types;
1473     } else {
1474       DiagID = S.getLangOpts().CPlusPlus20
1475                    ? diag::warn_arith_conv_mixed_enum_types_cxx20
1476                    : diag::warn_arith_conv_mixed_enum_types;
1477     }
1478     S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
1479                         << (int)ACK << L << R;
1480   }
1481 }
1482 
1483 /// UsualArithmeticConversions - Performs various conversions that are common to
1484 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1485 /// routine returns the first non-arithmetic type found. The client is
1486 /// responsible for emitting appropriate error diagnostics.
UsualArithmeticConversions(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,ArithConvKind ACK)1487 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1488                                           SourceLocation Loc,
1489                                           ArithConvKind ACK) {
1490   checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK);
1491 
1492   if (ACK != ACK_CompAssign) {
1493     LHS = UsualUnaryConversions(LHS.get());
1494     if (LHS.isInvalid())
1495       return QualType();
1496   }
1497 
1498   RHS = UsualUnaryConversions(RHS.get());
1499   if (RHS.isInvalid())
1500     return QualType();
1501 
1502   // For conversion purposes, we ignore any qualifiers.
1503   // For example, "const float" and "float" are equivalent.
1504   QualType LHSType =
1505     Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1506   QualType RHSType =
1507     Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1508 
1509   // For conversion purposes, we ignore any atomic qualifier on the LHS.
1510   if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1511     LHSType = AtomicLHS->getValueType();
1512 
1513   // If both types are identical, no conversion is needed.
1514   if (LHSType == RHSType)
1515     return LHSType;
1516 
1517   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1518   // The caller can deal with this (e.g. pointer + int).
1519   if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1520     return QualType();
1521 
1522   // Apply unary and bitfield promotions to the LHS's type.
1523   QualType LHSUnpromotedType = LHSType;
1524   if (LHSType->isPromotableIntegerType())
1525     LHSType = Context.getPromotedIntegerType(LHSType);
1526   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1527   if (!LHSBitfieldPromoteTy.isNull())
1528     LHSType = LHSBitfieldPromoteTy;
1529   if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign)
1530     LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1531 
1532   // If both types are identical, no conversion is needed.
1533   if (LHSType == RHSType)
1534     return LHSType;
1535 
1536   // ExtInt types aren't subject to conversions between them or normal integers,
1537   // so this fails.
1538   if(LHSType->isExtIntType() || RHSType->isExtIntType())
1539     return QualType();
1540 
1541   // At this point, we have two different arithmetic types.
1542 
1543   // Diagnose attempts to convert between __float128 and long double where
1544   // such conversions currently can't be handled.
1545   if (unsupportedTypeConversion(*this, LHSType, RHSType))
1546     return QualType();
1547 
1548   // Handle complex types first (C99 6.3.1.8p1).
1549   if (LHSType->isComplexType() || RHSType->isComplexType())
1550     return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1551                                         ACK == ACK_CompAssign);
1552 
1553   // Now handle "real" floating types (i.e. float, double, long double).
1554   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1555     return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1556                                  ACK == ACK_CompAssign);
1557 
1558   // Handle GCC complex int extension.
1559   if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1560     return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1561                                       ACK == ACK_CompAssign);
1562 
1563   if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
1564     return handleFixedPointConversion(*this, LHSType, RHSType);
1565 
1566   // Finally, we have two differing integer types.
1567   return handleIntegerConversion<doIntegralCast, doIntegralCast>
1568            (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign);
1569 }
1570 
1571 //===----------------------------------------------------------------------===//
1572 //  Semantic Analysis for various Expression Types
1573 //===----------------------------------------------------------------------===//
1574 
1575 
1576 ExprResult
ActOnGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,ArrayRef<ParsedType> ArgTypes,ArrayRef<Expr * > ArgExprs)1577 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1578                                 SourceLocation DefaultLoc,
1579                                 SourceLocation RParenLoc,
1580                                 Expr *ControllingExpr,
1581                                 ArrayRef<ParsedType> ArgTypes,
1582                                 ArrayRef<Expr *> ArgExprs) {
1583   unsigned NumAssocs = ArgTypes.size();
1584   assert(NumAssocs == ArgExprs.size());
1585 
1586   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1587   for (unsigned i = 0; i < NumAssocs; ++i) {
1588     if (ArgTypes[i])
1589       (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1590     else
1591       Types[i] = nullptr;
1592   }
1593 
1594   ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1595                                              ControllingExpr,
1596                                              llvm::makeArrayRef(Types, NumAssocs),
1597                                              ArgExprs);
1598   delete [] Types;
1599   return ER;
1600 }
1601 
1602 ExprResult
CreateGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > Types,ArrayRef<Expr * > Exprs)1603 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1604                                  SourceLocation DefaultLoc,
1605                                  SourceLocation RParenLoc,
1606                                  Expr *ControllingExpr,
1607                                  ArrayRef<TypeSourceInfo *> Types,
1608                                  ArrayRef<Expr *> Exprs) {
1609   unsigned NumAssocs = Types.size();
1610   assert(NumAssocs == Exprs.size());
1611 
1612   // Decay and strip qualifiers for the controlling expression type, and handle
1613   // placeholder type replacement. See committee discussion from WG14 DR423.
1614   {
1615     EnterExpressionEvaluationContext Unevaluated(
1616         *this, Sema::ExpressionEvaluationContext::Unevaluated);
1617     ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr);
1618     if (R.isInvalid())
1619       return ExprError();
1620     ControllingExpr = R.get();
1621   }
1622 
1623   // The controlling expression is an unevaluated operand, so side effects are
1624   // likely unintended.
1625   if (!inTemplateInstantiation() &&
1626       ControllingExpr->HasSideEffects(Context, false))
1627     Diag(ControllingExpr->getExprLoc(),
1628          diag::warn_side_effects_unevaluated_context);
1629 
1630   bool TypeErrorFound = false,
1631        IsResultDependent = ControllingExpr->isTypeDependent(),
1632        ContainsUnexpandedParameterPack
1633          = ControllingExpr->containsUnexpandedParameterPack();
1634 
1635   for (unsigned i = 0; i < NumAssocs; ++i) {
1636     if (Exprs[i]->containsUnexpandedParameterPack())
1637       ContainsUnexpandedParameterPack = true;
1638 
1639     if (Types[i]) {
1640       if (Types[i]->getType()->containsUnexpandedParameterPack())
1641         ContainsUnexpandedParameterPack = true;
1642 
1643       if (Types[i]->getType()->isDependentType()) {
1644         IsResultDependent = true;
1645       } else {
1646         // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1647         // complete object type other than a variably modified type."
1648         unsigned D = 0;
1649         if (Types[i]->getType()->isIncompleteType())
1650           D = diag::err_assoc_type_incomplete;
1651         else if (!Types[i]->getType()->isObjectType())
1652           D = diag::err_assoc_type_nonobject;
1653         else if (Types[i]->getType()->isVariablyModifiedType())
1654           D = diag::err_assoc_type_variably_modified;
1655 
1656         if (D != 0) {
1657           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1658             << Types[i]->getTypeLoc().getSourceRange()
1659             << Types[i]->getType();
1660           TypeErrorFound = true;
1661         }
1662 
1663         // C11 6.5.1.1p2 "No two generic associations in the same generic
1664         // selection shall specify compatible types."
1665         for (unsigned j = i+1; j < NumAssocs; ++j)
1666           if (Types[j] && !Types[j]->getType()->isDependentType() &&
1667               Context.typesAreCompatible(Types[i]->getType(),
1668                                          Types[j]->getType())) {
1669             Diag(Types[j]->getTypeLoc().getBeginLoc(),
1670                  diag::err_assoc_compatible_types)
1671               << Types[j]->getTypeLoc().getSourceRange()
1672               << Types[j]->getType()
1673               << Types[i]->getType();
1674             Diag(Types[i]->getTypeLoc().getBeginLoc(),
1675                  diag::note_compat_assoc)
1676               << Types[i]->getTypeLoc().getSourceRange()
1677               << Types[i]->getType();
1678             TypeErrorFound = true;
1679           }
1680       }
1681     }
1682   }
1683   if (TypeErrorFound)
1684     return ExprError();
1685 
1686   // If we determined that the generic selection is result-dependent, don't
1687   // try to compute the result expression.
1688   if (IsResultDependent)
1689     return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr, Types,
1690                                         Exprs, DefaultLoc, RParenLoc,
1691                                         ContainsUnexpandedParameterPack);
1692 
1693   SmallVector<unsigned, 1> CompatIndices;
1694   unsigned DefaultIndex = -1U;
1695   for (unsigned i = 0; i < NumAssocs; ++i) {
1696     if (!Types[i])
1697       DefaultIndex = i;
1698     else if (Context.typesAreCompatible(ControllingExpr->getType(),
1699                                         Types[i]->getType()))
1700       CompatIndices.push_back(i);
1701   }
1702 
1703   // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1704   // type compatible with at most one of the types named in its generic
1705   // association list."
1706   if (CompatIndices.size() > 1) {
1707     // We strip parens here because the controlling expression is typically
1708     // parenthesized in macro definitions.
1709     ControllingExpr = ControllingExpr->IgnoreParens();
1710     Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_multi_match)
1711         << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1712         << (unsigned)CompatIndices.size();
1713     for (unsigned I : CompatIndices) {
1714       Diag(Types[I]->getTypeLoc().getBeginLoc(),
1715            diag::note_compat_assoc)
1716         << Types[I]->getTypeLoc().getSourceRange()
1717         << Types[I]->getType();
1718     }
1719     return ExprError();
1720   }
1721 
1722   // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1723   // its controlling expression shall have type compatible with exactly one of
1724   // the types named in its generic association list."
1725   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1726     // We strip parens here because the controlling expression is typically
1727     // parenthesized in macro definitions.
1728     ControllingExpr = ControllingExpr->IgnoreParens();
1729     Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_no_match)
1730         << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1731     return ExprError();
1732   }
1733 
1734   // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1735   // type name that is compatible with the type of the controlling expression,
1736   // then the result expression of the generic selection is the expression
1737   // in that generic association. Otherwise, the result expression of the
1738   // generic selection is the expression in the default generic association."
1739   unsigned ResultIndex =
1740     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1741 
1742   return GenericSelectionExpr::Create(
1743       Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1744       ContainsUnexpandedParameterPack, ResultIndex);
1745 }
1746 
1747 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1748 /// location of the token and the offset of the ud-suffix within it.
getUDSuffixLoc(Sema & S,SourceLocation TokLoc,unsigned Offset)1749 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1750                                      unsigned Offset) {
1751   return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1752                                         S.getLangOpts());
1753 }
1754 
1755 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1756 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
BuildCookedLiteralOperatorCall(Sema & S,Scope * Scope,IdentifierInfo * UDSuffix,SourceLocation UDSuffixLoc,ArrayRef<Expr * > Args,SourceLocation LitEndLoc)1757 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1758                                                  IdentifierInfo *UDSuffix,
1759                                                  SourceLocation UDSuffixLoc,
1760                                                  ArrayRef<Expr*> Args,
1761                                                  SourceLocation LitEndLoc) {
1762   assert(Args.size() <= 2 && "too many arguments for literal operator");
1763 
1764   QualType ArgTy[2];
1765   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1766     ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1767     if (ArgTy[ArgIdx]->isArrayType())
1768       ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1769   }
1770 
1771   DeclarationName OpName =
1772     S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1773   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1774   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1775 
1776   LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1777   if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1778                               /*AllowRaw*/ false, /*AllowTemplate*/ false,
1779                               /*AllowStringTemplatePack*/ false,
1780                               /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
1781     return ExprError();
1782 
1783   return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1784 }
1785 
1786 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
1787 /// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
1788 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1789 /// multiple tokens.  However, the common case is that StringToks points to one
1790 /// string.
1791 ///
1792 ExprResult
ActOnStringLiteral(ArrayRef<Token> StringToks,Scope * UDLScope)1793 Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
1794   assert(!StringToks.empty() && "Must have at least one string!");
1795 
1796   StringLiteralParser Literal(StringToks, PP);
1797   if (Literal.hadError)
1798     return ExprError();
1799 
1800   SmallVector<SourceLocation, 4> StringTokLocs;
1801   for (const Token &Tok : StringToks)
1802     StringTokLocs.push_back(Tok.getLocation());
1803 
1804   QualType CharTy = Context.CharTy;
1805   StringLiteral::StringKind Kind = StringLiteral::Ascii;
1806   if (Literal.isWide()) {
1807     CharTy = Context.getWideCharType();
1808     Kind = StringLiteral::Wide;
1809   } else if (Literal.isUTF8()) {
1810     if (getLangOpts().Char8)
1811       CharTy = Context.Char8Ty;
1812     Kind = StringLiteral::UTF8;
1813   } else if (Literal.isUTF16()) {
1814     CharTy = Context.Char16Ty;
1815     Kind = StringLiteral::UTF16;
1816   } else if (Literal.isUTF32()) {
1817     CharTy = Context.Char32Ty;
1818     Kind = StringLiteral::UTF32;
1819   } else if (Literal.isPascal()) {
1820     CharTy = Context.UnsignedCharTy;
1821   }
1822 
1823   // Warn on initializing an array of char from a u8 string literal; this
1824   // becomes ill-formed in C++2a.
1825   if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus20 &&
1826       !getLangOpts().Char8 && Kind == StringLiteral::UTF8) {
1827     Diag(StringTokLocs.front(), diag::warn_cxx20_compat_utf8_string);
1828 
1829     // Create removals for all 'u8' prefixes in the string literal(s). This
1830     // ensures C++2a compatibility (but may change the program behavior when
1831     // built by non-Clang compilers for which the execution character set is
1832     // not always UTF-8).
1833     auto RemovalDiag = PDiag(diag::note_cxx20_compat_utf8_string_remove_u8);
1834     SourceLocation RemovalDiagLoc;
1835     for (const Token &Tok : StringToks) {
1836       if (Tok.getKind() == tok::utf8_string_literal) {
1837         if (RemovalDiagLoc.isInvalid())
1838           RemovalDiagLoc = Tok.getLocation();
1839         RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
1840             Tok.getLocation(),
1841             Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
1842                                            getSourceManager(), getLangOpts())));
1843       }
1844     }
1845     Diag(RemovalDiagLoc, RemovalDiag);
1846   }
1847 
1848   QualType StrTy =
1849       Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
1850 
1851   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1852   StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1853                                              Kind, Literal.Pascal, StrTy,
1854                                              &StringTokLocs[0],
1855                                              StringTokLocs.size());
1856   if (Literal.getUDSuffix().empty())
1857     return Lit;
1858 
1859   // We're building a user-defined literal.
1860   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1861   SourceLocation UDSuffixLoc =
1862     getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1863                    Literal.getUDSuffixOffset());
1864 
1865   // Make sure we're allowed user-defined literals here.
1866   if (!UDLScope)
1867     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1868 
1869   // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1870   //   operator "" X (str, len)
1871   QualType SizeType = Context.getSizeType();
1872 
1873   DeclarationName OpName =
1874     Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1875   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1876   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1877 
1878   QualType ArgTy[] = {
1879     Context.getArrayDecayedType(StrTy), SizeType
1880   };
1881 
1882   LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
1883   switch (LookupLiteralOperator(UDLScope, R, ArgTy,
1884                                 /*AllowRaw*/ false, /*AllowTemplate*/ true,
1885                                 /*AllowStringTemplatePack*/ true,
1886                                 /*DiagnoseMissing*/ true, Lit)) {
1887 
1888   case LOLR_Cooked: {
1889     llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1890     IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1891                                                     StringTokLocs[0]);
1892     Expr *Args[] = { Lit, LenArg };
1893 
1894     return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
1895   }
1896 
1897   case LOLR_Template: {
1898     TemplateArgumentListInfo ExplicitArgs;
1899     TemplateArgument Arg(Lit);
1900     TemplateArgumentLocInfo ArgInfo(Lit);
1901     ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1902     return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1903                                     &ExplicitArgs);
1904   }
1905 
1906   case LOLR_StringTemplatePack: {
1907     TemplateArgumentListInfo ExplicitArgs;
1908 
1909     unsigned CharBits = Context.getIntWidth(CharTy);
1910     bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
1911     llvm::APSInt Value(CharBits, CharIsUnsigned);
1912 
1913     TemplateArgument TypeArg(CharTy);
1914     TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
1915     ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
1916 
1917     for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
1918       Value = Lit->getCodeUnit(I);
1919       TemplateArgument Arg(Context, Value, CharTy);
1920       TemplateArgumentLocInfo ArgInfo;
1921       ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1922     }
1923     return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1924                                     &ExplicitArgs);
1925   }
1926   case LOLR_Raw:
1927   case LOLR_ErrorNoDiagnostic:
1928     llvm_unreachable("unexpected literal operator lookup result");
1929   case LOLR_Error:
1930     return ExprError();
1931   }
1932   llvm_unreachable("unexpected literal operator lookup result");
1933 }
1934 
1935 DeclRefExpr *
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,SourceLocation Loc,const CXXScopeSpec * SS)1936 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1937                        SourceLocation Loc,
1938                        const CXXScopeSpec *SS) {
1939   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1940   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1941 }
1942 
1943 DeclRefExpr *
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,const DeclarationNameInfo & NameInfo,const CXXScopeSpec * SS,NamedDecl * FoundD,SourceLocation TemplateKWLoc,const TemplateArgumentListInfo * TemplateArgs)1944 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1945                        const DeclarationNameInfo &NameInfo,
1946                        const CXXScopeSpec *SS, NamedDecl *FoundD,
1947                        SourceLocation TemplateKWLoc,
1948                        const TemplateArgumentListInfo *TemplateArgs) {
1949   NestedNameSpecifierLoc NNS =
1950       SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
1951   return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
1952                           TemplateArgs);
1953 }
1954 
1955 // CUDA/HIP: Check whether a captured reference variable is referencing a
1956 // host variable in a device or host device lambda.
isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema & S,VarDecl * VD)1957 static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S,
1958                                                             VarDecl *VD) {
1959   if (!S.getLangOpts().CUDA || !VD->hasInit())
1960     return false;
1961   assert(VD->getType()->isReferenceType());
1962 
1963   // Check whether the reference variable is referencing a host variable.
1964   auto *DRE = dyn_cast<DeclRefExpr>(VD->getInit());
1965   if (!DRE)
1966     return false;
1967   auto *Referee = dyn_cast<VarDecl>(DRE->getDecl());
1968   if (!Referee || !Referee->hasGlobalStorage() ||
1969       Referee->hasAttr<CUDADeviceAttr>())
1970     return false;
1971 
1972   // Check whether the current function is a device or host device lambda.
1973   // Check whether the reference variable is a capture by getDeclContext()
1974   // since refersToEnclosingVariableOrCapture() is not ready at this point.
1975   auto *MD = dyn_cast_or_null<CXXMethodDecl>(S.CurContext);
1976   if (MD && MD->getParent()->isLambda() &&
1977       MD->getOverloadedOperator() == OO_Call && MD->hasAttr<CUDADeviceAttr>() &&
1978       VD->getDeclContext() != MD)
1979     return true;
1980 
1981   return false;
1982 }
1983 
getNonOdrUseReasonInCurrentContext(ValueDecl * D)1984 NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
1985   // A declaration named in an unevaluated operand never constitutes an odr-use.
1986   if (isUnevaluatedContext())
1987     return NOUR_Unevaluated;
1988 
1989   // C++2a [basic.def.odr]p4:
1990   //   A variable x whose name appears as a potentially-evaluated expression e
1991   //   is odr-used by e unless [...] x is a reference that is usable in
1992   //   constant expressions.
1993   // CUDA/HIP:
1994   //   If a reference variable referencing a host variable is captured in a
1995   //   device or host device lambda, the value of the referee must be copied
1996   //   to the capture and the reference variable must be treated as odr-use
1997   //   since the value of the referee is not known at compile time and must
1998   //   be loaded from the captured.
1999   if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
2000     if (VD->getType()->isReferenceType() &&
2001         !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) &&
2002         !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD) &&
2003         VD->isUsableInConstantExpressions(Context))
2004       return NOUR_Constant;
2005   }
2006 
2007   // All remaining non-variable cases constitute an odr-use. For variables, we
2008   // need to wait and see how the expression is used.
2009   return NOUR_None;
2010 }
2011 
2012 /// BuildDeclRefExpr - Build an expression that references a
2013 /// declaration that does not require a closure capture.
2014 DeclRefExpr *
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,const DeclarationNameInfo & NameInfo,NestedNameSpecifierLoc NNS,NamedDecl * FoundD,SourceLocation TemplateKWLoc,const TemplateArgumentListInfo * TemplateArgs)2015 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2016                        const DeclarationNameInfo &NameInfo,
2017                        NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
2018                        SourceLocation TemplateKWLoc,
2019                        const TemplateArgumentListInfo *TemplateArgs) {
2020   bool RefersToCapturedVariable =
2021       isa<VarDecl>(D) &&
2022       NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());
2023 
2024   DeclRefExpr *E = DeclRefExpr::Create(
2025       Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
2026       VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
2027   MarkDeclRefReferenced(E);
2028 
2029   // C++ [except.spec]p17:
2030   //   An exception-specification is considered to be needed when:
2031   //   - in an expression, the function is the unique lookup result or
2032   //     the selected member of a set of overloaded functions.
2033   //
2034   // We delay doing this until after we've built the function reference and
2035   // marked it as used so that:
2036   //  a) if the function is defaulted, we get errors from defining it before /
2037   //     instead of errors from computing its exception specification, and
2038   //  b) if the function is a defaulted comparison, we can use the body we
2039   //     build when defining it as input to the exception specification
2040   //     computation rather than computing a new body.
2041   if (auto *FPT = Ty->getAs<FunctionProtoType>()) {
2042     if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
2043       if (auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT))
2044         E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
2045     }
2046   }
2047 
2048   if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
2049       Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
2050       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
2051     getCurFunction()->recordUseOfWeak(E);
2052 
2053   FieldDecl *FD = dyn_cast<FieldDecl>(D);
2054   if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
2055     FD = IFD->getAnonField();
2056   if (FD) {
2057     UnusedPrivateFields.remove(FD);
2058     // Just in case we're building an illegal pointer-to-member.
2059     if (FD->isBitField())
2060       E->setObjectKind(OK_BitField);
2061   }
2062 
2063   // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
2064   // designates a bit-field.
2065   if (auto *BD = dyn_cast<BindingDecl>(D))
2066     if (auto *BE = BD->getBinding())
2067       E->setObjectKind(BE->getObjectKind());
2068 
2069   return E;
2070 }
2071 
2072 /// Decomposes the given name into a DeclarationNameInfo, its location, and
2073 /// possibly a list of template arguments.
2074 ///
2075 /// If this produces template arguments, it is permitted to call
2076 /// DecomposeTemplateName.
2077 ///
2078 /// This actually loses a lot of source location information for
2079 /// non-standard name kinds; we should consider preserving that in
2080 /// some way.
2081 void
DecomposeUnqualifiedId(const UnqualifiedId & Id,TemplateArgumentListInfo & Buffer,DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * & TemplateArgs)2082 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
2083                              TemplateArgumentListInfo &Buffer,
2084                              DeclarationNameInfo &NameInfo,
2085                              const TemplateArgumentListInfo *&TemplateArgs) {
2086   if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
2087     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
2088     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
2089 
2090     ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
2091                                        Id.TemplateId->NumArgs);
2092     translateTemplateArguments(TemplateArgsPtr, Buffer);
2093 
2094     TemplateName TName = Id.TemplateId->Template.get();
2095     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
2096     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
2097     TemplateArgs = &Buffer;
2098   } else {
2099     NameInfo = GetNameFromUnqualifiedId(Id);
2100     TemplateArgs = nullptr;
2101   }
2102 }
2103 
emitEmptyLookupTypoDiagnostic(const TypoCorrection & TC,Sema & SemaRef,const CXXScopeSpec & SS,DeclarationName Typo,SourceLocation TypoLoc,ArrayRef<Expr * > Args,unsigned DiagnosticID,unsigned DiagnosticSuggestID)2104 static void emitEmptyLookupTypoDiagnostic(
2105     const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
2106     DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
2107     unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
2108   DeclContext *Ctx =
2109       SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
2110   if (!TC) {
2111     // Emit a special diagnostic for failed member lookups.
2112     // FIXME: computing the declaration context might fail here (?)
2113     if (Ctx)
2114       SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
2115                                                  << SS.getRange();
2116     else
2117       SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
2118     return;
2119   }
2120 
2121   std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
2122   bool DroppedSpecifier =
2123       TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
2124   unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
2125                         ? diag::note_implicit_param_decl
2126                         : diag::note_previous_decl;
2127   if (!Ctx)
2128     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
2129                          SemaRef.PDiag(NoteID));
2130   else
2131     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
2132                                  << Typo << Ctx << DroppedSpecifier
2133                                  << SS.getRange(),
2134                          SemaRef.PDiag(NoteID));
2135 }
2136 
2137 /// Diagnose a lookup that found results in an enclosing class during error
2138 /// recovery. This usually indicates that the results were found in a dependent
2139 /// base class that could not be searched as part of a template definition.
2140 /// Always issues a diagnostic (though this may be only a warning in MS
2141 /// compatibility mode).
2142 ///
2143 /// Return \c true if the error is unrecoverable, or \c false if the caller
2144 /// should attempt to recover using these lookup results.
DiagnoseDependentMemberLookup(LookupResult & R)2145 bool Sema::DiagnoseDependentMemberLookup(LookupResult &R) {
2146   // During a default argument instantiation the CurContext points
2147   // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
2148   // function parameter list, hence add an explicit check.
2149   bool isDefaultArgument =
2150       !CodeSynthesisContexts.empty() &&
2151       CodeSynthesisContexts.back().Kind ==
2152           CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
2153   CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
2154   bool isInstance = CurMethod && CurMethod->isInstance() &&
2155                     R.getNamingClass() == CurMethod->getParent() &&
2156                     !isDefaultArgument;
2157 
2158   // There are two ways we can find a class-scope declaration during template
2159   // instantiation that we did not find in the template definition: if it is a
2160   // member of a dependent base class, or if it is declared after the point of
2161   // use in the same class. Distinguish these by comparing the class in which
2162   // the member was found to the naming class of the lookup.
2163   unsigned DiagID = diag::err_found_in_dependent_base;
2164   unsigned NoteID = diag::note_member_declared_at;
2165   if (R.getRepresentativeDecl()->getDeclContext()->Equals(R.getNamingClass())) {
2166     DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class
2167                                       : diag::err_found_later_in_class;
2168   } else if (getLangOpts().MSVCCompat) {
2169     DiagID = diag::ext_found_in_dependent_base;
2170     NoteID = diag::note_dependent_member_use;
2171   }
2172 
2173   if (isInstance) {
2174     // Give a code modification hint to insert 'this->'.
2175     Diag(R.getNameLoc(), DiagID)
2176         << R.getLookupName()
2177         << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
2178     CheckCXXThisCapture(R.getNameLoc());
2179   } else {
2180     // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming
2181     // they're not shadowed).
2182     Diag(R.getNameLoc(), DiagID) << R.getLookupName();
2183   }
2184 
2185   for (NamedDecl *D : R)
2186     Diag(D->getLocation(), NoteID);
2187 
2188   // Return true if we are inside a default argument instantiation
2189   // and the found name refers to an instance member function, otherwise
2190   // the caller will try to create an implicit member call and this is wrong
2191   // for default arguments.
2192   //
2193   // FIXME: Is this special case necessary? We could allow the caller to
2194   // diagnose this.
2195   if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
2196     Diag(R.getNameLoc(), diag::err_member_call_without_object);
2197     return true;
2198   }
2199 
2200   // Tell the callee to try to recover.
2201   return false;
2202 }
2203 
2204 /// Diagnose an empty lookup.
2205 ///
2206 /// \return false if new lookup candidates were found
DiagnoseEmptyLookup(Scope * S,CXXScopeSpec & SS,LookupResult & R,CorrectionCandidateCallback & CCC,TemplateArgumentListInfo * ExplicitTemplateArgs,ArrayRef<Expr * > Args,TypoExpr ** Out)2207 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
2208                                CorrectionCandidateCallback &CCC,
2209                                TemplateArgumentListInfo *ExplicitTemplateArgs,
2210                                ArrayRef<Expr *> Args, TypoExpr **Out) {
2211   DeclarationName Name = R.getLookupName();
2212 
2213   unsigned diagnostic = diag::err_undeclared_var_use;
2214   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
2215   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
2216       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
2217       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2218     diagnostic = diag::err_undeclared_use;
2219     diagnostic_suggest = diag::err_undeclared_use_suggest;
2220   }
2221 
2222   // If the original lookup was an unqualified lookup, fake an
2223   // unqualified lookup.  This is useful when (for example) the
2224   // original lookup would not have found something because it was a
2225   // dependent name.
2226   DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
2227   while (DC) {
2228     if (isa<CXXRecordDecl>(DC)) {
2229       LookupQualifiedName(R, DC);
2230 
2231       if (!R.empty()) {
2232         // Don't give errors about ambiguities in this lookup.
2233         R.suppressDiagnostics();
2234 
2235         // If there's a best viable function among the results, only mention
2236         // that one in the notes.
2237         OverloadCandidateSet Candidates(R.getNameLoc(),
2238                                         OverloadCandidateSet::CSK_Normal);
2239         AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, Candidates);
2240         OverloadCandidateSet::iterator Best;
2241         if (Candidates.BestViableFunction(*this, R.getNameLoc(), Best) ==
2242             OR_Success) {
2243           R.clear();
2244           R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
2245           R.resolveKind();
2246         }
2247 
2248         return DiagnoseDependentMemberLookup(R);
2249       }
2250 
2251       R.clear();
2252     }
2253 
2254     DC = DC->getLookupParent();
2255   }
2256 
2257   // We didn't find anything, so try to correct for a typo.
2258   TypoCorrection Corrected;
2259   if (S && Out) {
2260     SourceLocation TypoLoc = R.getNameLoc();
2261     assert(!ExplicitTemplateArgs &&
2262            "Diagnosing an empty lookup with explicit template args!");
2263     *Out = CorrectTypoDelayed(
2264         R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
2265         [=](const TypoCorrection &TC) {
2266           emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
2267                                         diagnostic, diagnostic_suggest);
2268         },
2269         nullptr, CTK_ErrorRecovery);
2270     if (*Out)
2271       return true;
2272   } else if (S &&
2273              (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
2274                                       S, &SS, CCC, CTK_ErrorRecovery))) {
2275     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
2276     bool DroppedSpecifier =
2277         Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
2278     R.setLookupName(Corrected.getCorrection());
2279 
2280     bool AcceptableWithRecovery = false;
2281     bool AcceptableWithoutRecovery = false;
2282     NamedDecl *ND = Corrected.getFoundDecl();
2283     if (ND) {
2284       if (Corrected.isOverloaded()) {
2285         OverloadCandidateSet OCS(R.getNameLoc(),
2286                                  OverloadCandidateSet::CSK_Normal);
2287         OverloadCandidateSet::iterator Best;
2288         for (NamedDecl *CD : Corrected) {
2289           if (FunctionTemplateDecl *FTD =
2290                    dyn_cast<FunctionTemplateDecl>(CD))
2291             AddTemplateOverloadCandidate(
2292                 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
2293                 Args, OCS);
2294           else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
2295             if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
2296               AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
2297                                    Args, OCS);
2298         }
2299         switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
2300         case OR_Success:
2301           ND = Best->FoundDecl;
2302           Corrected.setCorrectionDecl(ND);
2303           break;
2304         default:
2305           // FIXME: Arbitrarily pick the first declaration for the note.
2306           Corrected.setCorrectionDecl(ND);
2307           break;
2308         }
2309       }
2310       R.addDecl(ND);
2311       if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2312         CXXRecordDecl *Record = nullptr;
2313         if (Corrected.getCorrectionSpecifier()) {
2314           const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2315           Record = Ty->getAsCXXRecordDecl();
2316         }
2317         if (!Record)
2318           Record = cast<CXXRecordDecl>(
2319               ND->getDeclContext()->getRedeclContext());
2320         R.setNamingClass(Record);
2321       }
2322 
2323       auto *UnderlyingND = ND->getUnderlyingDecl();
2324       AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
2325                                isa<FunctionTemplateDecl>(UnderlyingND);
2326       // FIXME: If we ended up with a typo for a type name or
2327       // Objective-C class name, we're in trouble because the parser
2328       // is in the wrong place to recover. Suggest the typo
2329       // correction, but don't make it a fix-it since we're not going
2330       // to recover well anyway.
2331       AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
2332                                   getAsTypeTemplateDecl(UnderlyingND) ||
2333                                   isa<ObjCInterfaceDecl>(UnderlyingND);
2334     } else {
2335       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2336       // because we aren't able to recover.
2337       AcceptableWithoutRecovery = true;
2338     }
2339 
2340     if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2341       unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2342                             ? diag::note_implicit_param_decl
2343                             : diag::note_previous_decl;
2344       if (SS.isEmpty())
2345         diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
2346                      PDiag(NoteID), AcceptableWithRecovery);
2347       else
2348         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
2349                                   << Name << computeDeclContext(SS, false)
2350                                   << DroppedSpecifier << SS.getRange(),
2351                      PDiag(NoteID), AcceptableWithRecovery);
2352 
2353       // Tell the callee whether to try to recover.
2354       return !AcceptableWithRecovery;
2355     }
2356   }
2357   R.clear();
2358 
2359   // Emit a special diagnostic for failed member lookups.
2360   // FIXME: computing the declaration context might fail here (?)
2361   if (!SS.isEmpty()) {
2362     Diag(R.getNameLoc(), diag::err_no_member)
2363       << Name << computeDeclContext(SS, false)
2364       << SS.getRange();
2365     return true;
2366   }
2367 
2368   // Give up, we can't recover.
2369   Diag(R.getNameLoc(), diagnostic) << Name;
2370   return true;
2371 }
2372 
2373 /// In Microsoft mode, if we are inside a template class whose parent class has
2374 /// dependent base classes, and we can't resolve an unqualified identifier, then
2375 /// assume the identifier is a member of a dependent base class.  We can only
2376 /// recover successfully in static methods, instance methods, and other contexts
2377 /// where 'this' is available.  This doesn't precisely match MSVC's
2378 /// instantiation model, but it's close enough.
2379 static Expr *
recoverFromMSUnqualifiedLookup(Sema & S,ASTContext & Context,DeclarationNameInfo & NameInfo,SourceLocation TemplateKWLoc,const TemplateArgumentListInfo * TemplateArgs)2380 recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2381                                DeclarationNameInfo &NameInfo,
2382                                SourceLocation TemplateKWLoc,
2383                                const TemplateArgumentListInfo *TemplateArgs) {
2384   // Only try to recover from lookup into dependent bases in static methods or
2385   // contexts where 'this' is available.
2386   QualType ThisType = S.getCurrentThisType();
2387   const CXXRecordDecl *RD = nullptr;
2388   if (!ThisType.isNull())
2389     RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2390   else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2391     RD = MD->getParent();
2392   if (!RD || !RD->hasAnyDependentBases())
2393     return nullptr;
2394 
2395   // Diagnose this as unqualified lookup into a dependent base class.  If 'this'
2396   // is available, suggest inserting 'this->' as a fixit.
2397   SourceLocation Loc = NameInfo.getLoc();
2398   auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2399   DB << NameInfo.getName() << RD;
2400 
2401   if (!ThisType.isNull()) {
2402     DB << FixItHint::CreateInsertion(Loc, "this->");
2403     return CXXDependentScopeMemberExpr::Create(
2404         Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2405         /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2406         /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
2407   }
2408 
2409   // Synthesize a fake NNS that points to the derived class.  This will
2410   // perform name lookup during template instantiation.
2411   CXXScopeSpec SS;
2412   auto *NNS =
2413       NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2414   SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2415   return DependentScopeDeclRefExpr::Create(
2416       Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2417       TemplateArgs);
2418 }
2419 
2420 ExprResult
ActOnIdExpression(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Id,bool HasTrailingLParen,bool IsAddressOfOperand,CorrectionCandidateCallback * CCC,bool IsInlineAsmIdentifier,Token * KeywordReplacement)2421 Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2422                         SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2423                         bool HasTrailingLParen, bool IsAddressOfOperand,
2424                         CorrectionCandidateCallback *CCC,
2425                         bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2426   assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2427          "cannot be direct & operand and have a trailing lparen");
2428   if (SS.isInvalid())
2429     return ExprError();
2430 
2431   TemplateArgumentListInfo TemplateArgsBuffer;
2432 
2433   // Decompose the UnqualifiedId into the following data.
2434   DeclarationNameInfo NameInfo;
2435   const TemplateArgumentListInfo *TemplateArgs;
2436   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2437 
2438   DeclarationName Name = NameInfo.getName();
2439   IdentifierInfo *II = Name.getAsIdentifierInfo();
2440   SourceLocation NameLoc = NameInfo.getLoc();
2441 
2442   if (II && II->isEditorPlaceholder()) {
2443     // FIXME: When typed placeholders are supported we can create a typed
2444     // placeholder expression node.
2445     return ExprError();
2446   }
2447 
2448   // C++ [temp.dep.expr]p3:
2449   //   An id-expression is type-dependent if it contains:
2450   //     -- an identifier that was declared with a dependent type,
2451   //        (note: handled after lookup)
2452   //     -- a template-id that is dependent,
2453   //        (note: handled in BuildTemplateIdExpr)
2454   //     -- a conversion-function-id that specifies a dependent type,
2455   //     -- a nested-name-specifier that contains a class-name that
2456   //        names a dependent type.
2457   // Determine whether this is a member of an unknown specialization;
2458   // we need to handle these differently.
2459   bool DependentID = false;
2460   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2461       Name.getCXXNameType()->isDependentType()) {
2462     DependentID = true;
2463   } else if (SS.isSet()) {
2464     if (DeclContext *DC = computeDeclContext(SS, false)) {
2465       if (RequireCompleteDeclContext(SS, DC))
2466         return ExprError();
2467     } else {
2468       DependentID = true;
2469     }
2470   }
2471 
2472   if (DependentID)
2473     return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2474                                       IsAddressOfOperand, TemplateArgs);
2475 
2476   // Perform the required lookup.
2477   LookupResult R(*this, NameInfo,
2478                  (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
2479                      ? LookupObjCImplicitSelfParam
2480                      : LookupOrdinaryName);
2481   if (TemplateKWLoc.isValid() || TemplateArgs) {
2482     // Lookup the template name again to correctly establish the context in
2483     // which it was found. This is really unfortunate as we already did the
2484     // lookup to determine that it was a template name in the first place. If
2485     // this becomes a performance hit, we can work harder to preserve those
2486     // results until we get here but it's likely not worth it.
2487     bool MemberOfUnknownSpecialization;
2488     AssumedTemplateKind AssumedTemplate;
2489     if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
2490                            MemberOfUnknownSpecialization, TemplateKWLoc,
2491                            &AssumedTemplate))
2492       return ExprError();
2493 
2494     if (MemberOfUnknownSpecialization ||
2495         (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
2496       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2497                                         IsAddressOfOperand, TemplateArgs);
2498   } else {
2499     bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2500     LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
2501 
2502     // If the result might be in a dependent base class, this is a dependent
2503     // id-expression.
2504     if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2505       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2506                                         IsAddressOfOperand, TemplateArgs);
2507 
2508     // If this reference is in an Objective-C method, then we need to do
2509     // some special Objective-C lookup, too.
2510     if (IvarLookupFollowUp) {
2511       ExprResult E(LookupInObjCMethod(R, S, II, true));
2512       if (E.isInvalid())
2513         return ExprError();
2514 
2515       if (Expr *Ex = E.getAs<Expr>())
2516         return Ex;
2517     }
2518   }
2519 
2520   if (R.isAmbiguous())
2521     return ExprError();
2522 
2523   // This could be an implicitly declared function reference (legal in C90,
2524   // extension in C99, forbidden in C++).
2525   if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
2526     NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2527     if (D) R.addDecl(D);
2528   }
2529 
2530   // Determine whether this name might be a candidate for
2531   // argument-dependent lookup.
2532   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2533 
2534   if (R.empty() && !ADL) {
2535     if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2536       if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2537                                                    TemplateKWLoc, TemplateArgs))
2538         return E;
2539     }
2540 
2541     // Don't diagnose an empty lookup for inline assembly.
2542     if (IsInlineAsmIdentifier)
2543       return ExprError();
2544 
2545     // If this name wasn't predeclared and if this is not a function
2546     // call, diagnose the problem.
2547     TypoExpr *TE = nullptr;
2548     DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
2549                                                        : nullptr);
2550     DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
2551     assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2552            "Typo correction callback misconfigured");
2553     if (CCC) {
2554       // Make sure the callback knows what the typo being diagnosed is.
2555       CCC->setTypoName(II);
2556       if (SS.isValid())
2557         CCC->setTypoNNS(SS.getScopeRep());
2558     }
2559     // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2560     // a template name, but we happen to have always already looked up the name
2561     // before we get here if it must be a template name.
2562     if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
2563                             None, &TE)) {
2564       if (TE && KeywordReplacement) {
2565         auto &State = getTypoExprState(TE);
2566         auto BestTC = State.Consumer->getNextCorrection();
2567         if (BestTC.isKeyword()) {
2568           auto *II = BestTC.getCorrectionAsIdentifierInfo();
2569           if (State.DiagHandler)
2570             State.DiagHandler(BestTC);
2571           KeywordReplacement->startToken();
2572           KeywordReplacement->setKind(II->getTokenID());
2573           KeywordReplacement->setIdentifierInfo(II);
2574           KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2575           // Clean up the state associated with the TypoExpr, since it has
2576           // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2577           clearDelayedTypo(TE);
2578           // Signal that a correction to a keyword was performed by returning a
2579           // valid-but-null ExprResult.
2580           return (Expr*)nullptr;
2581         }
2582         State.Consumer->resetCorrectionStream();
2583       }
2584       return TE ? TE : ExprError();
2585     }
2586 
2587     assert(!R.empty() &&
2588            "DiagnoseEmptyLookup returned false but added no results");
2589 
2590     // If we found an Objective-C instance variable, let
2591     // LookupInObjCMethod build the appropriate expression to
2592     // reference the ivar.
2593     if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2594       R.clear();
2595       ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2596       // In a hopelessly buggy code, Objective-C instance variable
2597       // lookup fails and no expression will be built to reference it.
2598       if (!E.isInvalid() && !E.get())
2599         return ExprError();
2600       return E;
2601     }
2602   }
2603 
2604   // This is guaranteed from this point on.
2605   assert(!R.empty() || ADL);
2606 
2607   // Check whether this might be a C++ implicit instance member access.
2608   // C++ [class.mfct.non-static]p3:
2609   //   When an id-expression that is not part of a class member access
2610   //   syntax and not used to form a pointer to member is used in the
2611   //   body of a non-static member function of class X, if name lookup
2612   //   resolves the name in the id-expression to a non-static non-type
2613   //   member of some class C, the id-expression is transformed into a
2614   //   class member access expression using (*this) as the
2615   //   postfix-expression to the left of the . operator.
2616   //
2617   // But we don't actually need to do this for '&' operands if R
2618   // resolved to a function or overloaded function set, because the
2619   // expression is ill-formed if it actually works out to be a
2620   // non-static member function:
2621   //
2622   // C++ [expr.ref]p4:
2623   //   Otherwise, if E1.E2 refers to a non-static member function. . .
2624   //   [t]he expression can be used only as the left-hand operand of a
2625   //   member function call.
2626   //
2627   // There are other safeguards against such uses, but it's important
2628   // to get this right here so that we don't end up making a
2629   // spuriously dependent expression if we're inside a dependent
2630   // instance method.
2631   if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2632     bool MightBeImplicitMember;
2633     if (!IsAddressOfOperand)
2634       MightBeImplicitMember = true;
2635     else if (!SS.isEmpty())
2636       MightBeImplicitMember = false;
2637     else if (R.isOverloadedResult())
2638       MightBeImplicitMember = false;
2639     else if (R.isUnresolvableResult())
2640       MightBeImplicitMember = true;
2641     else
2642       MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2643                               isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2644                               isa<MSPropertyDecl>(R.getFoundDecl());
2645 
2646     if (MightBeImplicitMember)
2647       return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2648                                              R, TemplateArgs, S);
2649   }
2650 
2651   if (TemplateArgs || TemplateKWLoc.isValid()) {
2652 
2653     // In C++1y, if this is a variable template id, then check it
2654     // in BuildTemplateIdExpr().
2655     // The single lookup result must be a variable template declaration.
2656     if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
2657         Id.TemplateId->Kind == TNK_Var_template) {
2658       assert(R.getAsSingle<VarTemplateDecl>() &&
2659              "There should only be one declaration found.");
2660     }
2661 
2662     return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2663   }
2664 
2665   return BuildDeclarationNameExpr(SS, R, ADL);
2666 }
2667 
2668 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2669 /// declaration name, generally during template instantiation.
2670 /// There's a large number of things which don't need to be done along
2671 /// this path.
BuildQualifiedDeclarationNameExpr(CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,bool IsAddressOfOperand,const Scope * S,TypeSourceInfo ** RecoveryTSI)2672 ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2673     CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2674     bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
2675   DeclContext *DC = computeDeclContext(SS, false);
2676   if (!DC)
2677     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2678                                      NameInfo, /*TemplateArgs=*/nullptr);
2679 
2680   if (RequireCompleteDeclContext(SS, DC))
2681     return ExprError();
2682 
2683   LookupResult R(*this, NameInfo, LookupOrdinaryName);
2684   LookupQualifiedName(R, DC);
2685 
2686   if (R.isAmbiguous())
2687     return ExprError();
2688 
2689   if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2690     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2691                                      NameInfo, /*TemplateArgs=*/nullptr);
2692 
2693   if (R.empty()) {
2694     // Don't diagnose problems with invalid record decl, the secondary no_member
2695     // diagnostic during template instantiation is likely bogus, e.g. if a class
2696     // is invalid because it's derived from an invalid base class, then missing
2697     // members were likely supposed to be inherited.
2698     if (const auto *CD = dyn_cast<CXXRecordDecl>(DC))
2699       if (CD->isInvalidDecl())
2700         return ExprError();
2701     Diag(NameInfo.getLoc(), diag::err_no_member)
2702       << NameInfo.getName() << DC << SS.getRange();
2703     return ExprError();
2704   }
2705 
2706   if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2707     // Diagnose a missing typename if this resolved unambiguously to a type in
2708     // a dependent context.  If we can recover with a type, downgrade this to
2709     // a warning in Microsoft compatibility mode.
2710     unsigned DiagID = diag::err_typename_missing;
2711     if (RecoveryTSI && getLangOpts().MSVCCompat)
2712       DiagID = diag::ext_typename_missing;
2713     SourceLocation Loc = SS.getBeginLoc();
2714     auto D = Diag(Loc, DiagID);
2715     D << SS.getScopeRep() << NameInfo.getName().getAsString()
2716       << SourceRange(Loc, NameInfo.getEndLoc());
2717 
2718     // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2719     // context.
2720     if (!RecoveryTSI)
2721       return ExprError();
2722 
2723     // Only issue the fixit if we're prepared to recover.
2724     D << FixItHint::CreateInsertion(Loc, "typename ");
2725 
2726     // Recover by pretending this was an elaborated type.
2727     QualType Ty = Context.getTypeDeclType(TD);
2728     TypeLocBuilder TLB;
2729     TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2730 
2731     QualType ET = getElaboratedType(ETK_None, SS, Ty);
2732     ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
2733     QTL.setElaboratedKeywordLoc(SourceLocation());
2734     QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2735 
2736     *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
2737 
2738     return ExprEmpty();
2739   }
2740 
2741   // Defend against this resolving to an implicit member access. We usually
2742   // won't get here if this might be a legitimate a class member (we end up in
2743   // BuildMemberReferenceExpr instead), but this can be valid if we're forming
2744   // a pointer-to-member or in an unevaluated context in C++11.
2745   if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
2746     return BuildPossibleImplicitMemberExpr(SS,
2747                                            /*TemplateKWLoc=*/SourceLocation(),
2748                                            R, /*TemplateArgs=*/nullptr, S);
2749 
2750   return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
2751 }
2752 
2753 /// The parser has read a name in, and Sema has detected that we're currently
2754 /// inside an ObjC method. Perform some additional checks and determine if we
2755 /// should form a reference to an ivar.
2756 ///
2757 /// Ideally, most of this would be done by lookup, but there's
2758 /// actually quite a lot of extra work involved.
LookupIvarInObjCMethod(LookupResult & Lookup,Scope * S,IdentifierInfo * II)2759 DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
2760                                         IdentifierInfo *II) {
2761   SourceLocation Loc = Lookup.getNameLoc();
2762   ObjCMethodDecl *CurMethod = getCurMethodDecl();
2763 
2764   // Check for error condition which is already reported.
2765   if (!CurMethod)
2766     return DeclResult(true);
2767 
2768   // There are two cases to handle here.  1) scoped lookup could have failed,
2769   // in which case we should look for an ivar.  2) scoped lookup could have
2770   // found a decl, but that decl is outside the current instance method (i.e.
2771   // a global variable).  In these two cases, we do a lookup for an ivar with
2772   // this name, if the lookup sucedes, we replace it our current decl.
2773 
2774   // If we're in a class method, we don't normally want to look for
2775   // ivars.  But if we don't find anything else, and there's an
2776   // ivar, that's an error.
2777   bool IsClassMethod = CurMethod->isClassMethod();
2778 
2779   bool LookForIvars;
2780   if (Lookup.empty())
2781     LookForIvars = true;
2782   else if (IsClassMethod)
2783     LookForIvars = false;
2784   else
2785     LookForIvars = (Lookup.isSingleResult() &&
2786                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2787   ObjCInterfaceDecl *IFace = nullptr;
2788   if (LookForIvars) {
2789     IFace = CurMethod->getClassInterface();
2790     ObjCInterfaceDecl *ClassDeclared;
2791     ObjCIvarDecl *IV = nullptr;
2792     if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
2793       // Diagnose using an ivar in a class method.
2794       if (IsClassMethod) {
2795         Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2796         return DeclResult(true);
2797       }
2798 
2799       // Diagnose the use of an ivar outside of the declaring class.
2800       if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2801           !declaresSameEntity(ClassDeclared, IFace) &&
2802           !getLangOpts().DebuggerSupport)
2803         Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName();
2804 
2805       // Success.
2806       return IV;
2807     }
2808   } else if (CurMethod->isInstanceMethod()) {
2809     // We should warn if a local variable hides an ivar.
2810     if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2811       ObjCInterfaceDecl *ClassDeclared;
2812       if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2813         if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2814             declaresSameEntity(IFace, ClassDeclared))
2815           Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2816       }
2817     }
2818   } else if (Lookup.isSingleResult() &&
2819              Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2820     // If accessing a stand-alone ivar in a class method, this is an error.
2821     if (const ObjCIvarDecl *IV =
2822             dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) {
2823       Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2824       return DeclResult(true);
2825     }
2826   }
2827 
2828   // Didn't encounter an error, didn't find an ivar.
2829   return DeclResult(false);
2830 }
2831 
BuildIvarRefExpr(Scope * S,SourceLocation Loc,ObjCIvarDecl * IV)2832 ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc,
2833                                   ObjCIvarDecl *IV) {
2834   ObjCMethodDecl *CurMethod = getCurMethodDecl();
2835   assert(CurMethod && CurMethod->isInstanceMethod() &&
2836          "should not reference ivar from this context");
2837 
2838   ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
2839   assert(IFace && "should not reference ivar from this context");
2840 
2841   // If we're referencing an invalid decl, just return this as a silent
2842   // error node.  The error diagnostic was already emitted on the decl.
2843   if (IV->isInvalidDecl())
2844     return ExprError();
2845 
2846   // Check if referencing a field with __attribute__((deprecated)).
2847   if (DiagnoseUseOfDecl(IV, Loc))
2848     return ExprError();
2849 
2850   // FIXME: This should use a new expr for a direct reference, don't
2851   // turn this into Self->ivar, just return a BareIVarExpr or something.
2852   IdentifierInfo &II = Context.Idents.get("self");
2853   UnqualifiedId SelfName;
2854   SelfName.setIdentifier(&II, SourceLocation());
2855   SelfName.setKind(UnqualifiedIdKind::IK_ImplicitSelfParam);
2856   CXXScopeSpec SelfScopeSpec;
2857   SourceLocation TemplateKWLoc;
2858   ExprResult SelfExpr =
2859       ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName,
2860                         /*HasTrailingLParen=*/false,
2861                         /*IsAddressOfOperand=*/false);
2862   if (SelfExpr.isInvalid())
2863     return ExprError();
2864 
2865   SelfExpr = DefaultLvalueConversion(SelfExpr.get());
2866   if (SelfExpr.isInvalid())
2867     return ExprError();
2868 
2869   MarkAnyDeclReferenced(Loc, IV, true);
2870 
2871   ObjCMethodFamily MF = CurMethod->getMethodFamily();
2872   if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
2873       !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
2874     Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
2875 
2876   ObjCIvarRefExpr *Result = new (Context)
2877       ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
2878                       IV->getLocation(), SelfExpr.get(), true, true);
2879 
2880   if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
2881     if (!isUnevaluatedContext() &&
2882         !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
2883       getCurFunction()->recordUseOfWeak(Result);
2884   }
2885   if (getLangOpts().ObjCAutoRefCount)
2886     if (const BlockDecl *BD = CurContext->getInnermostBlockDecl())
2887       ImplicitlyRetainedSelfLocs.push_back({Loc, BD});
2888 
2889   return Result;
2890 }
2891 
2892 /// The parser has read a name in, and Sema has detected that we're currently
2893 /// inside an ObjC method. Perform some additional checks and determine if we
2894 /// should form a reference to an ivar. If so, build an expression referencing
2895 /// that ivar.
2896 ExprResult
LookupInObjCMethod(LookupResult & Lookup,Scope * S,IdentifierInfo * II,bool AllowBuiltinCreation)2897 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
2898                          IdentifierInfo *II, bool AllowBuiltinCreation) {
2899   // FIXME: Integrate this lookup step into LookupParsedName.
2900   DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II);
2901   if (Ivar.isInvalid())
2902     return ExprError();
2903   if (Ivar.isUsable())
2904     return BuildIvarRefExpr(S, Lookup.getNameLoc(),
2905                             cast<ObjCIvarDecl>(Ivar.get()));
2906 
2907   if (Lookup.empty() && II && AllowBuiltinCreation)
2908     LookupBuiltin(Lookup);
2909 
2910   // Sentinel value saying that we didn't do anything special.
2911   return ExprResult(false);
2912 }
2913 
2914 /// Cast a base object to a member's actual type.
2915 ///
2916 /// There are two relevant checks:
2917 ///
2918 /// C++ [class.access.base]p7:
2919 ///
2920 ///   If a class member access operator [...] is used to access a non-static
2921 ///   data member or non-static member function, the reference is ill-formed if
2922 ///   the left operand [...] cannot be implicitly converted to a pointer to the
2923 ///   naming class of the right operand.
2924 ///
2925 /// C++ [expr.ref]p7:
2926 ///
2927 ///   If E2 is a non-static data member or a non-static member function, the
2928 ///   program is ill-formed if the class of which E2 is directly a member is an
2929 ///   ambiguous base (11.8) of the naming class (11.9.3) of E2.
2930 ///
2931 /// Note that the latter check does not consider access; the access of the
2932 /// "real" base class is checked as appropriate when checking the access of the
2933 /// member name.
2934 ExprResult
PerformObjectMemberConversion(Expr * From,NestedNameSpecifier * Qualifier,NamedDecl * FoundDecl,NamedDecl * Member)2935 Sema::PerformObjectMemberConversion(Expr *From,
2936                                     NestedNameSpecifier *Qualifier,
2937                                     NamedDecl *FoundDecl,
2938                                     NamedDecl *Member) {
2939   CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2940   if (!RD)
2941     return From;
2942 
2943   QualType DestRecordType;
2944   QualType DestType;
2945   QualType FromRecordType;
2946   QualType FromType = From->getType();
2947   bool PointerConversions = false;
2948   if (isa<FieldDecl>(Member)) {
2949     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2950     auto FromPtrType = FromType->getAs<PointerType>();
2951     DestRecordType = Context.getAddrSpaceQualType(
2952         DestRecordType, FromPtrType
2953                             ? FromType->getPointeeType().getAddressSpace()
2954                             : FromType.getAddressSpace());
2955 
2956     if (FromPtrType) {
2957       DestType = Context.getPointerType(DestRecordType);
2958       FromRecordType = FromPtrType->getPointeeType();
2959       PointerConversions = true;
2960     } else {
2961       DestType = DestRecordType;
2962       FromRecordType = FromType;
2963     }
2964   } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2965     if (Method->isStatic())
2966       return From;
2967 
2968     DestType = Method->getThisType();
2969     DestRecordType = DestType->getPointeeType();
2970 
2971     if (FromType->getAs<PointerType>()) {
2972       FromRecordType = FromType->getPointeeType();
2973       PointerConversions = true;
2974     } else {
2975       FromRecordType = FromType;
2976       DestType = DestRecordType;
2977     }
2978 
2979     LangAS FromAS = FromRecordType.getAddressSpace();
2980     LangAS DestAS = DestRecordType.getAddressSpace();
2981     if (FromAS != DestAS) {
2982       QualType FromRecordTypeWithoutAS =
2983           Context.removeAddrSpaceQualType(FromRecordType);
2984       QualType FromTypeWithDestAS =
2985           Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS);
2986       if (PointerConversions)
2987         FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS);
2988       From = ImpCastExprToType(From, FromTypeWithDestAS,
2989                                CK_AddressSpaceConversion, From->getValueKind())
2990                  .get();
2991     }
2992   } else {
2993     // No conversion necessary.
2994     return From;
2995   }
2996 
2997   if (DestType->isDependentType() || FromType->isDependentType())
2998     return From;
2999 
3000   // If the unqualified types are the same, no conversion is necessary.
3001   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3002     return From;
3003 
3004   SourceRange FromRange = From->getSourceRange();
3005   SourceLocation FromLoc = FromRange.getBegin();
3006 
3007   ExprValueKind VK = From->getValueKind();
3008 
3009   // C++ [class.member.lookup]p8:
3010   //   [...] Ambiguities can often be resolved by qualifying a name with its
3011   //   class name.
3012   //
3013   // If the member was a qualified name and the qualified referred to a
3014   // specific base subobject type, we'll cast to that intermediate type
3015   // first and then to the object in which the member is declared. That allows
3016   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
3017   //
3018   //   class Base { public: int x; };
3019   //   class Derived1 : public Base { };
3020   //   class Derived2 : public Base { };
3021   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
3022   //
3023   //   void VeryDerived::f() {
3024   //     x = 17; // error: ambiguous base subobjects
3025   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
3026   //   }
3027   if (Qualifier && Qualifier->getAsType()) {
3028     QualType QType = QualType(Qualifier->getAsType(), 0);
3029     assert(QType->isRecordType() && "lookup done with non-record type");
3030 
3031     QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
3032 
3033     // In C++98, the qualifier type doesn't actually have to be a base
3034     // type of the object type, in which case we just ignore it.
3035     // Otherwise build the appropriate casts.
3036     if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
3037       CXXCastPath BasePath;
3038       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
3039                                        FromLoc, FromRange, &BasePath))
3040         return ExprError();
3041 
3042       if (PointerConversions)
3043         QType = Context.getPointerType(QType);
3044       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
3045                                VK, &BasePath).get();
3046 
3047       FromType = QType;
3048       FromRecordType = QRecordType;
3049 
3050       // If the qualifier type was the same as the destination type,
3051       // we're done.
3052       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3053         return From;
3054     }
3055   }
3056 
3057   CXXCastPath BasePath;
3058   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
3059                                    FromLoc, FromRange, &BasePath,
3060                                    /*IgnoreAccess=*/true))
3061     return ExprError();
3062 
3063   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
3064                            VK, &BasePath);
3065 }
3066 
UseArgumentDependentLookup(const CXXScopeSpec & SS,const LookupResult & R,bool HasTrailingLParen)3067 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
3068                                       const LookupResult &R,
3069                                       bool HasTrailingLParen) {
3070   // Only when used directly as the postfix-expression of a call.
3071   if (!HasTrailingLParen)
3072     return false;
3073 
3074   // Never if a scope specifier was provided.
3075   if (SS.isSet())
3076     return false;
3077 
3078   // Only in C++ or ObjC++.
3079   if (!getLangOpts().CPlusPlus)
3080     return false;
3081 
3082   // Turn off ADL when we find certain kinds of declarations during
3083   // normal lookup:
3084   for (NamedDecl *D : R) {
3085     // C++0x [basic.lookup.argdep]p3:
3086     //     -- a declaration of a class member
3087     // Since using decls preserve this property, we check this on the
3088     // original decl.
3089     if (D->isCXXClassMember())
3090       return false;
3091 
3092     // C++0x [basic.lookup.argdep]p3:
3093     //     -- a block-scope function declaration that is not a
3094     //        using-declaration
3095     // NOTE: we also trigger this for function templates (in fact, we
3096     // don't check the decl type at all, since all other decl types
3097     // turn off ADL anyway).
3098     if (isa<UsingShadowDecl>(D))
3099       D = cast<UsingShadowDecl>(D)->getTargetDecl();
3100     else if (D->getLexicalDeclContext()->isFunctionOrMethod())
3101       return false;
3102 
3103     // C++0x [basic.lookup.argdep]p3:
3104     //     -- a declaration that is neither a function or a function
3105     //        template
3106     // And also for builtin functions.
3107     if (isa<FunctionDecl>(D)) {
3108       FunctionDecl *FDecl = cast<FunctionDecl>(D);
3109 
3110       // But also builtin functions.
3111       if (FDecl->getBuiltinID() && FDecl->isImplicit())
3112         return false;
3113     } else if (!isa<FunctionTemplateDecl>(D))
3114       return false;
3115   }
3116 
3117   return true;
3118 }
3119 
3120 
3121 /// Diagnoses obvious problems with the use of the given declaration
3122 /// as an expression.  This is only actually called for lookups that
3123 /// were not overloaded, and it doesn't promise that the declaration
3124 /// will in fact be used.
CheckDeclInExpr(Sema & S,SourceLocation Loc,NamedDecl * D)3125 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
3126   if (D->isInvalidDecl())
3127     return true;
3128 
3129   if (isa<TypedefNameDecl>(D)) {
3130     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
3131     return true;
3132   }
3133 
3134   if (isa<ObjCInterfaceDecl>(D)) {
3135     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
3136     return true;
3137   }
3138 
3139   if (isa<NamespaceDecl>(D)) {
3140     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
3141     return true;
3142   }
3143 
3144   return false;
3145 }
3146 
3147 // Certain multiversion types should be treated as overloaded even when there is
3148 // only one result.
ShouldLookupResultBeMultiVersionOverload(const LookupResult & R)3149 static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
3150   assert(R.isSingleResult() && "Expected only a single result");
3151   const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
3152   return FD &&
3153          (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
3154 }
3155 
BuildDeclarationNameExpr(const CXXScopeSpec & SS,LookupResult & R,bool NeedsADL,bool AcceptInvalidDecl)3156 ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
3157                                           LookupResult &R, bool NeedsADL,
3158                                           bool AcceptInvalidDecl) {
3159   // If this is a single, fully-resolved result and we don't need ADL,
3160   // just build an ordinary singleton decl ref.
3161   if (!NeedsADL && R.isSingleResult() &&
3162       !R.getAsSingle<FunctionTemplateDecl>() &&
3163       !ShouldLookupResultBeMultiVersionOverload(R))
3164     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
3165                                     R.getRepresentativeDecl(), nullptr,
3166                                     AcceptInvalidDecl);
3167 
3168   // We only need to check the declaration if there's exactly one
3169   // result, because in the overloaded case the results can only be
3170   // functions and function templates.
3171   if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
3172       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
3173     return ExprError();
3174 
3175   // Otherwise, just build an unresolved lookup expression.  Suppress
3176   // any lookup-related diagnostics; we'll hash these out later, when
3177   // we've picked a target.
3178   R.suppressDiagnostics();
3179 
3180   UnresolvedLookupExpr *ULE
3181     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
3182                                    SS.getWithLocInContext(Context),
3183                                    R.getLookupNameInfo(),
3184                                    NeedsADL, R.isOverloadedResult(),
3185                                    R.begin(), R.end());
3186 
3187   return ULE;
3188 }
3189 
3190 static void
3191 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
3192                                    ValueDecl *var, DeclContext *DC);
3193 
3194 /// Complete semantic analysis for a reference to the given declaration.
BuildDeclarationNameExpr(const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,NamedDecl * D,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs,bool AcceptInvalidDecl)3195 ExprResult Sema::BuildDeclarationNameExpr(
3196     const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
3197     NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
3198     bool AcceptInvalidDecl) {
3199   assert(D && "Cannot refer to a NULL declaration");
3200   assert(!isa<FunctionTemplateDecl>(D) &&
3201          "Cannot refer unambiguously to a function template");
3202 
3203   SourceLocation Loc = NameInfo.getLoc();
3204   if (CheckDeclInExpr(*this, Loc, D))
3205     return ExprError();
3206 
3207   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
3208     // Specifically diagnose references to class templates that are missing
3209     // a template argument list.
3210     diagnoseMissingTemplateArguments(TemplateName(Template), Loc);
3211     return ExprError();
3212   }
3213 
3214   // Make sure that we're referring to a value.
3215   ValueDecl *VD = dyn_cast<ValueDecl>(D);
3216   if (!VD) {
3217     Diag(Loc, diag::err_ref_non_value)
3218       << D << SS.getRange();
3219     Diag(D->getLocation(), diag::note_declared_at);
3220     return ExprError();
3221   }
3222 
3223   // Check whether this declaration can be used. Note that we suppress
3224   // this check when we're going to perform argument-dependent lookup
3225   // on this function name, because this might not be the function
3226   // that overload resolution actually selects.
3227   if (DiagnoseUseOfDecl(VD, Loc))
3228     return ExprError();
3229 
3230   // Only create DeclRefExpr's for valid Decl's.
3231   if (VD->isInvalidDecl() && !AcceptInvalidDecl)
3232     return ExprError();
3233 
3234   // Handle members of anonymous structs and unions.  If we got here,
3235   // and the reference is to a class member indirect field, then this
3236   // must be the subject of a pointer-to-member expression.
3237   if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
3238     if (!indirectField->isCXXClassMember())
3239       return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
3240                                                       indirectField);
3241 
3242   {
3243     QualType type = VD->getType();
3244     if (type.isNull())
3245       return ExprError();
3246     ExprValueKind valueKind = VK_RValue;
3247 
3248     // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
3249     // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
3250     // is expanded by some outer '...' in the context of the use.
3251     type = type.getNonPackExpansionType();
3252 
3253     switch (D->getKind()) {
3254     // Ignore all the non-ValueDecl kinds.
3255 #define ABSTRACT_DECL(kind)
3256 #define VALUE(type, base)
3257 #define DECL(type, base) \
3258     case Decl::type:
3259 #include "clang/AST/DeclNodes.inc"
3260       llvm_unreachable("invalid value decl kind");
3261 
3262     // These shouldn't make it here.
3263     case Decl::ObjCAtDefsField:
3264       llvm_unreachable("forming non-member reference to ivar?");
3265 
3266     // Enum constants are always r-values and never references.
3267     // Unresolved using declarations are dependent.
3268     case Decl::EnumConstant:
3269     case Decl::UnresolvedUsingValue:
3270     case Decl::OMPDeclareReduction:
3271     case Decl::OMPDeclareMapper:
3272       valueKind = VK_RValue;
3273       break;
3274 
3275     // Fields and indirect fields that got here must be for
3276     // pointer-to-member expressions; we just call them l-values for
3277     // internal consistency, because this subexpression doesn't really
3278     // exist in the high-level semantics.
3279     case Decl::Field:
3280     case Decl::IndirectField:
3281     case Decl::ObjCIvar:
3282       assert(getLangOpts().CPlusPlus &&
3283              "building reference to field in C?");
3284 
3285       // These can't have reference type in well-formed programs, but
3286       // for internal consistency we do this anyway.
3287       type = type.getNonReferenceType();
3288       valueKind = VK_LValue;
3289       break;
3290 
3291     // Non-type template parameters are either l-values or r-values
3292     // depending on the type.
3293     case Decl::NonTypeTemplateParm: {
3294       if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
3295         type = reftype->getPointeeType();
3296         valueKind = VK_LValue; // even if the parameter is an r-value reference
3297         break;
3298       }
3299 
3300       // [expr.prim.id.unqual]p2:
3301       //   If the entity is a template parameter object for a template
3302       //   parameter of type T, the type of the expression is const T.
3303       //   [...] The expression is an lvalue if the entity is a [...] template
3304       //   parameter object.
3305       if (type->isRecordType()) {
3306         type = type.getUnqualifiedType().withConst();
3307         valueKind = VK_LValue;
3308         break;
3309       }
3310 
3311       // For non-references, we need to strip qualifiers just in case
3312       // the template parameter was declared as 'const int' or whatever.
3313       valueKind = VK_RValue;
3314       type = type.getUnqualifiedType();
3315       break;
3316     }
3317 
3318     case Decl::Var:
3319     case Decl::VarTemplateSpecialization:
3320     case Decl::VarTemplatePartialSpecialization:
3321     case Decl::Decomposition:
3322     case Decl::OMPCapturedExpr:
3323       // In C, "extern void blah;" is valid and is an r-value.
3324       if (!getLangOpts().CPlusPlus &&
3325           !type.hasQualifiers() &&
3326           type->isVoidType()) {
3327         valueKind = VK_RValue;
3328         break;
3329       }
3330       LLVM_FALLTHROUGH;
3331 
3332     case Decl::ImplicitParam:
3333     case Decl::ParmVar: {
3334       // These are always l-values.
3335       valueKind = VK_LValue;
3336       type = type.getNonReferenceType();
3337 
3338       // FIXME: Does the addition of const really only apply in
3339       // potentially-evaluated contexts? Since the variable isn't actually
3340       // captured in an unevaluated context, it seems that the answer is no.
3341       if (!isUnevaluatedContext()) {
3342         QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
3343         if (!CapturedType.isNull())
3344           type = CapturedType;
3345       }
3346 
3347       break;
3348     }
3349 
3350     case Decl::Binding: {
3351       // These are always lvalues.
3352       valueKind = VK_LValue;
3353       type = type.getNonReferenceType();
3354       // FIXME: Support lambda-capture of BindingDecls, once CWG actually
3355       // decides how that's supposed to work.
3356       auto *BD = cast<BindingDecl>(VD);
3357       if (BD->getDeclContext() != CurContext) {
3358         auto *DD = dyn_cast_or_null<VarDecl>(BD->getDecomposedDecl());
3359         if (DD && DD->hasLocalStorage())
3360           diagnoseUncapturableValueReference(*this, Loc, BD, CurContext);
3361       }
3362       break;
3363     }
3364 
3365     case Decl::Function: {
3366       if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
3367         if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
3368           type = Context.BuiltinFnTy;
3369           valueKind = VK_RValue;
3370           break;
3371         }
3372       }
3373 
3374       const FunctionType *fty = type->castAs<FunctionType>();
3375 
3376       // If we're referring to a function with an __unknown_anytype
3377       // result type, make the entire expression __unknown_anytype.
3378       if (fty->getReturnType() == Context.UnknownAnyTy) {
3379         type = Context.UnknownAnyTy;
3380         valueKind = VK_RValue;
3381         break;
3382       }
3383 
3384       // Functions are l-values in C++.
3385       if (getLangOpts().CPlusPlus) {
3386         valueKind = VK_LValue;
3387         break;
3388       }
3389 
3390       // C99 DR 316 says that, if a function type comes from a
3391       // function definition (without a prototype), that type is only
3392       // used for checking compatibility. Therefore, when referencing
3393       // the function, we pretend that we don't have the full function
3394       // type.
3395       if (!cast<FunctionDecl>(VD)->hasPrototype() &&
3396           isa<FunctionProtoType>(fty))
3397         type = Context.getFunctionNoProtoType(fty->getReturnType(),
3398                                               fty->getExtInfo());
3399 
3400       // Functions are r-values in C.
3401       valueKind = VK_RValue;
3402       break;
3403     }
3404 
3405     case Decl::CXXDeductionGuide:
3406       llvm_unreachable("building reference to deduction guide");
3407 
3408     case Decl::MSProperty:
3409     case Decl::MSGuid:
3410     case Decl::TemplateParamObject:
3411       // FIXME: Should MSGuidDecl and template parameter objects be subject to
3412       // capture in OpenMP, or duplicated between host and device?
3413       valueKind = VK_LValue;
3414       break;
3415 
3416     case Decl::CXXMethod:
3417       // If we're referring to a method with an __unknown_anytype
3418       // result type, make the entire expression __unknown_anytype.
3419       // This should only be possible with a type written directly.
3420       if (const FunctionProtoType *proto
3421             = dyn_cast<FunctionProtoType>(VD->getType()))
3422         if (proto->getReturnType() == Context.UnknownAnyTy) {
3423           type = Context.UnknownAnyTy;
3424           valueKind = VK_RValue;
3425           break;
3426         }
3427 
3428       // C++ methods are l-values if static, r-values if non-static.
3429       if (cast<CXXMethodDecl>(VD)->isStatic()) {
3430         valueKind = VK_LValue;
3431         break;
3432       }
3433       LLVM_FALLTHROUGH;
3434 
3435     case Decl::CXXConversion:
3436     case Decl::CXXDestructor:
3437     case Decl::CXXConstructor:
3438       valueKind = VK_RValue;
3439       break;
3440     }
3441 
3442     return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
3443                             /*FIXME: TemplateKWLoc*/ SourceLocation(),
3444                             TemplateArgs);
3445   }
3446 }
3447 
ConvertUTF8ToWideString(unsigned CharByteWidth,StringRef Source,SmallString<32> & Target)3448 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3449                                     SmallString<32> &Target) {
3450   Target.resize(CharByteWidth * (Source.size() + 1));
3451   char *ResultPtr = &Target[0];
3452   const llvm::UTF8 *ErrorPtr;
3453   bool success =
3454       llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
3455   (void)success;
3456   assert(success);
3457   Target.resize(ResultPtr - &Target[0]);
3458 }
3459 
BuildPredefinedExpr(SourceLocation Loc,PredefinedExpr::IdentKind IK)3460 ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3461                                      PredefinedExpr::IdentKind IK) {
3462   // Pick the current block, lambda, captured statement or function.
3463   Decl *currentDecl = nullptr;
3464   if (const BlockScopeInfo *BSI = getCurBlock())
3465     currentDecl = BSI->TheDecl;
3466   else if (const LambdaScopeInfo *LSI = getCurLambda())
3467     currentDecl = LSI->CallOperator;
3468   else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
3469     currentDecl = CSI->TheCapturedDecl;
3470   else
3471     currentDecl = getCurFunctionOrMethodDecl();
3472 
3473   if (!currentDecl) {
3474     Diag(Loc, diag::ext_predef_outside_function);
3475     currentDecl = Context.getTranslationUnitDecl();
3476   }
3477 
3478   QualType ResTy;
3479   StringLiteral *SL = nullptr;
3480   if (cast<DeclContext>(currentDecl)->isDependentContext())
3481     ResTy = Context.DependentTy;
3482   else {
3483     // Pre-defined identifiers are of type char[x], where x is the length of
3484     // the string.
3485     auto Str = PredefinedExpr::ComputeName(IK, currentDecl);
3486     unsigned Length = Str.length();
3487 
3488     llvm::APInt LengthI(32, Length + 1);
3489     if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) {
3490       ResTy =
3491           Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
3492       SmallString<32> RawChars;
3493       ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3494                               Str, RawChars);
3495       ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3496                                            ArrayType::Normal,
3497                                            /*IndexTypeQuals*/ 0);
3498       SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
3499                                  /*Pascal*/ false, ResTy, Loc);
3500     } else {
3501       ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
3502       ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3503                                            ArrayType::Normal,
3504                                            /*IndexTypeQuals*/ 0);
3505       SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
3506                                  /*Pascal*/ false, ResTy, Loc);
3507     }
3508   }
3509 
3510   return PredefinedExpr::Create(Context, Loc, ResTy, IK, SL);
3511 }
3512 
ActOnPredefinedExpr(SourceLocation Loc,tok::TokenKind Kind)3513 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3514   PredefinedExpr::IdentKind IK;
3515 
3516   switch (Kind) {
3517   default: llvm_unreachable("Unknown simple primary expr!");
3518   case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2]
3519   case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break;
3520   case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS]
3521   case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS]
3522   case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS]
3523   case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS]
3524   case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break;
3525   }
3526 
3527   return BuildPredefinedExpr(Loc, IK);
3528 }
3529 
ActOnCharacterConstant(const Token & Tok,Scope * UDLScope)3530 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3531   SmallString<16> CharBuffer;
3532   bool Invalid = false;
3533   StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3534   if (Invalid)
3535     return ExprError();
3536 
3537   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3538                             PP, Tok.getKind());
3539   if (Literal.hadError())
3540     return ExprError();
3541 
3542   QualType Ty;
3543   if (Literal.isWide())
3544     Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3545   else if (Literal.isUTF8() && getLangOpts().Char8)
3546     Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
3547   else if (Literal.isUTF16())
3548     Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3549   else if (Literal.isUTF32())
3550     Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3551   else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3552     Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
3553   else
3554     Ty = Context.CharTy;  // 'x' -> char in C++
3555 
3556   CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
3557   if (Literal.isWide())
3558     Kind = CharacterLiteral::Wide;
3559   else if (Literal.isUTF16())
3560     Kind = CharacterLiteral::UTF16;
3561   else if (Literal.isUTF32())
3562     Kind = CharacterLiteral::UTF32;
3563   else if (Literal.isUTF8())
3564     Kind = CharacterLiteral::UTF8;
3565 
3566   Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3567                                              Tok.getLocation());
3568 
3569   if (Literal.getUDSuffix().empty())
3570     return Lit;
3571 
3572   // We're building a user-defined literal.
3573   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3574   SourceLocation UDSuffixLoc =
3575     getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3576 
3577   // Make sure we're allowed user-defined literals here.
3578   if (!UDLScope)
3579     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3580 
3581   // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3582   //   operator "" X (ch)
3583   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3584                                         Lit, Tok.getLocation());
3585 }
3586 
ActOnIntegerConstant(SourceLocation Loc,uint64_t Val)3587 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3588   unsigned IntSize = Context.getTargetInfo().getIntWidth();
3589   return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3590                                 Context.IntTy, Loc);
3591 }
3592 
BuildFloatingLiteral(Sema & S,NumericLiteralParser & Literal,QualType Ty,SourceLocation Loc)3593 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3594                                   QualType Ty, SourceLocation Loc) {
3595   const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3596 
3597   using llvm::APFloat;
3598   APFloat Val(Format);
3599 
3600   APFloat::opStatus result = Literal.GetFloatValue(Val);
3601 
3602   // Overflow is always an error, but underflow is only an error if
3603   // we underflowed to zero (APFloat reports denormals as underflow).
3604   if ((result & APFloat::opOverflow) ||
3605       ((result & APFloat::opUnderflow) && Val.isZero())) {
3606     unsigned diagnostic;
3607     SmallString<20> buffer;
3608     if (result & APFloat::opOverflow) {
3609       diagnostic = diag::warn_float_overflow;
3610       APFloat::getLargest(Format).toString(buffer);
3611     } else {
3612       diagnostic = diag::warn_float_underflow;
3613       APFloat::getSmallest(Format).toString(buffer);
3614     }
3615 
3616     S.Diag(Loc, diagnostic)
3617       << Ty
3618       << StringRef(buffer.data(), buffer.size());
3619   }
3620 
3621   bool isExact = (result == APFloat::opOK);
3622   return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3623 }
3624 
CheckLoopHintExpr(Expr * E,SourceLocation Loc)3625 bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
3626   assert(E && "Invalid expression");
3627 
3628   if (E->isValueDependent())
3629     return false;
3630 
3631   QualType QT = E->getType();
3632   if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3633     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3634     return true;
3635   }
3636 
3637   llvm::APSInt ValueAPS;
3638   ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3639 
3640   if (R.isInvalid())
3641     return true;
3642 
3643   bool ValueIsPositive = ValueAPS.isStrictlyPositive();
3644   if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3645     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
3646         << ValueAPS.toString(10) << ValueIsPositive;
3647     return true;
3648   }
3649 
3650   return false;
3651 }
3652 
ActOnNumericConstant(const Token & Tok,Scope * UDLScope)3653 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3654   // Fast path for a single digit (which is quite common).  A single digit
3655   // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3656   if (Tok.getLength() == 1) {
3657     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3658     return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
3659   }
3660 
3661   SmallString<128> SpellingBuffer;
3662   // NumericLiteralParser wants to overread by one character.  Add padding to
3663   // the buffer in case the token is copied to the buffer.  If getSpelling()
3664   // returns a StringRef to the memory buffer, it should have a null char at
3665   // the EOF, so it is also safe.
3666   SpellingBuffer.resize(Tok.getLength() + 1);
3667 
3668   // Get the spelling of the token, which eliminates trigraphs, etc.
3669   bool Invalid = false;
3670   StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3671   if (Invalid)
3672     return ExprError();
3673 
3674   NumericLiteralParser Literal(TokSpelling, Tok.getLocation(),
3675                                PP.getSourceManager(), PP.getLangOpts(),
3676                                PP.getTargetInfo(), PP.getDiagnostics());
3677   if (Literal.hadError)
3678     return ExprError();
3679 
3680   if (Literal.hasUDSuffix()) {
3681     // We're building a user-defined literal.
3682     IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3683     SourceLocation UDSuffixLoc =
3684       getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3685 
3686     // Make sure we're allowed user-defined literals here.
3687     if (!UDLScope)
3688       return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3689 
3690     QualType CookedTy;
3691     if (Literal.isFloatingLiteral()) {
3692       // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3693       // long double, the literal is treated as a call of the form
3694       //   operator "" X (f L)
3695       CookedTy = Context.LongDoubleTy;
3696     } else {
3697       // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3698       // unsigned long long, the literal is treated as a call of the form
3699       //   operator "" X (n ULL)
3700       CookedTy = Context.UnsignedLongLongTy;
3701     }
3702 
3703     DeclarationName OpName =
3704       Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3705     DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3706     OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3707 
3708     SourceLocation TokLoc = Tok.getLocation();
3709 
3710     // Perform literal operator lookup to determine if we're building a raw
3711     // literal or a cooked one.
3712     LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3713     switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3714                                   /*AllowRaw*/ true, /*AllowTemplate*/ true,
3715                                   /*AllowStringTemplatePack*/ false,
3716                                   /*DiagnoseMissing*/ !Literal.isImaginary)) {
3717     case LOLR_ErrorNoDiagnostic:
3718       // Lookup failure for imaginary constants isn't fatal, there's still the
3719       // GNU extension producing _Complex types.
3720       break;
3721     case LOLR_Error:
3722       return ExprError();
3723     case LOLR_Cooked: {
3724       Expr *Lit;
3725       if (Literal.isFloatingLiteral()) {
3726         Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3727       } else {
3728         llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3729         if (Literal.GetIntegerValue(ResultVal))
3730           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3731               << /* Unsigned */ 1;
3732         Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3733                                      Tok.getLocation());
3734       }
3735       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3736     }
3737 
3738     case LOLR_Raw: {
3739       // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3740       // literal is treated as a call of the form
3741       //   operator "" X ("n")
3742       unsigned Length = Literal.getUDSuffixOffset();
3743       QualType StrTy = Context.getConstantArrayType(
3744           Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
3745           llvm::APInt(32, Length + 1), nullptr, ArrayType::Normal, 0);
3746       Expr *Lit = StringLiteral::Create(
3747           Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
3748           /*Pascal*/false, StrTy, &TokLoc, 1);
3749       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3750     }
3751 
3752     case LOLR_Template: {
3753       // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3754       // template), L is treated as a call fo the form
3755       //   operator "" X <'c1', 'c2', ... 'ck'>()
3756       // where n is the source character sequence c1 c2 ... ck.
3757       TemplateArgumentListInfo ExplicitArgs;
3758       unsigned CharBits = Context.getIntWidth(Context.CharTy);
3759       bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3760       llvm::APSInt Value(CharBits, CharIsUnsigned);
3761       for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3762         Value = TokSpelling[I];
3763         TemplateArgument Arg(Context, Value, Context.CharTy);
3764         TemplateArgumentLocInfo ArgInfo;
3765         ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3766       }
3767       return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
3768                                       &ExplicitArgs);
3769     }
3770     case LOLR_StringTemplatePack:
3771       llvm_unreachable("unexpected literal operator lookup result");
3772     }
3773   }
3774 
3775   Expr *Res;
3776 
3777   if (Literal.isFixedPointLiteral()) {
3778     QualType Ty;
3779 
3780     if (Literal.isAccum) {
3781       if (Literal.isHalf) {
3782         Ty = Context.ShortAccumTy;
3783       } else if (Literal.isLong) {
3784         Ty = Context.LongAccumTy;
3785       } else {
3786         Ty = Context.AccumTy;
3787       }
3788     } else if (Literal.isFract) {
3789       if (Literal.isHalf) {
3790         Ty = Context.ShortFractTy;
3791       } else if (Literal.isLong) {
3792         Ty = Context.LongFractTy;
3793       } else {
3794         Ty = Context.FractTy;
3795       }
3796     }
3797 
3798     if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
3799 
3800     bool isSigned = !Literal.isUnsigned;
3801     unsigned scale = Context.getFixedPointScale(Ty);
3802     unsigned bit_width = Context.getTypeInfo(Ty).Width;
3803 
3804     llvm::APInt Val(bit_width, 0, isSigned);
3805     bool Overflowed = Literal.GetFixedPointValue(Val, scale);
3806     bool ValIsZero = Val.isNullValue() && !Overflowed;
3807 
3808     auto MaxVal = Context.getFixedPointMax(Ty).getValue();
3809     if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
3810       // Clause 6.4.4 - The value of a constant shall be in the range of
3811       // representable values for its type, with exception for constants of a
3812       // fract type with a value of exactly 1; such a constant shall denote
3813       // the maximal value for the type.
3814       --Val;
3815     else if (Val.ugt(MaxVal) || Overflowed)
3816       Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
3817 
3818     Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
3819                                               Tok.getLocation(), scale);
3820   } else if (Literal.isFloatingLiteral()) {
3821     QualType Ty;
3822     if (Literal.isHalf){
3823       if (getOpenCLOptions().isEnabled("cl_khr_fp16"))
3824         Ty = Context.HalfTy;
3825       else {
3826         Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
3827         return ExprError();
3828       }
3829     } else if (Literal.isFloat)
3830       Ty = Context.FloatTy;
3831     else if (Literal.isLong)
3832       Ty = Context.LongDoubleTy;
3833     else if (Literal.isFloat16)
3834       Ty = Context.Float16Ty;
3835     else if (Literal.isFloat128)
3836       Ty = Context.Float128Ty;
3837     else
3838       Ty = Context.DoubleTy;
3839 
3840     Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
3841 
3842     if (Ty == Context.DoubleTy) {
3843       if (getLangOpts().SinglePrecisionConstants) {
3844         if (Ty->castAs<BuiltinType>()->getKind() != BuiltinType::Float) {
3845           Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3846         }
3847       } else if (getLangOpts().OpenCL &&
3848                  !getOpenCLOptions().isEnabled("cl_khr_fp64")) {
3849         // Impose single-precision float type when cl_khr_fp64 is not enabled.
3850         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
3851         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3852       }
3853     }
3854   } else if (!Literal.isIntegerLiteral()) {
3855     return ExprError();
3856   } else {
3857     QualType Ty;
3858 
3859     // 'long long' is a C99 or C++11 feature.
3860     if (!getLangOpts().C99 && Literal.isLongLong) {
3861       if (getLangOpts().CPlusPlus)
3862         Diag(Tok.getLocation(),
3863              getLangOpts().CPlusPlus11 ?
3864              diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
3865       else
3866         Diag(Tok.getLocation(), diag::ext_c99_longlong);
3867     }
3868 
3869     // Get the value in the widest-possible width.
3870     unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
3871     llvm::APInt ResultVal(MaxWidth, 0);
3872 
3873     if (Literal.GetIntegerValue(ResultVal)) {
3874       // If this value didn't fit into uintmax_t, error and force to ull.
3875       Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3876           << /* Unsigned */ 1;
3877       Ty = Context.UnsignedLongLongTy;
3878       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
3879              "long long is not intmax_t?");
3880     } else {
3881       // If this value fits into a ULL, try to figure out what else it fits into
3882       // according to the rules of C99 6.4.4.1p5.
3883 
3884       // Octal, Hexadecimal, and integers with a U suffix are allowed to
3885       // be an unsigned int.
3886       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
3887 
3888       // Check from smallest to largest, picking the smallest type we can.
3889       unsigned Width = 0;
3890 
3891       // Microsoft specific integer suffixes are explicitly sized.
3892       if (Literal.MicrosoftInteger) {
3893         if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
3894           Width = 8;
3895           Ty = Context.CharTy;
3896         } else {
3897           Width = Literal.MicrosoftInteger;
3898           Ty = Context.getIntTypeForBitwidth(Width,
3899                                              /*Signed=*/!Literal.isUnsigned);
3900         }
3901       }
3902 
3903       if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong) {
3904         // Are int/unsigned possibilities?
3905         unsigned IntSize = Context.getTargetInfo().getIntWidth();
3906 
3907         // Does it fit in a unsigned int?
3908         if (ResultVal.isIntN(IntSize)) {
3909           // Does it fit in a signed int?
3910           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
3911             Ty = Context.IntTy;
3912           else if (AllowUnsigned)
3913             Ty = Context.UnsignedIntTy;
3914           Width = IntSize;
3915         }
3916       }
3917 
3918       // Are long/unsigned long possibilities?
3919       if (Ty.isNull() && !Literal.isLongLong) {
3920         unsigned LongSize = Context.getTargetInfo().getLongWidth();
3921 
3922         // Does it fit in a unsigned long?
3923         if (ResultVal.isIntN(LongSize)) {
3924           // Does it fit in a signed long?
3925           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
3926             Ty = Context.LongTy;
3927           else if (AllowUnsigned)
3928             Ty = Context.UnsignedLongTy;
3929           // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
3930           // is compatible.
3931           else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
3932             const unsigned LongLongSize =
3933                 Context.getTargetInfo().getLongLongWidth();
3934             Diag(Tok.getLocation(),
3935                  getLangOpts().CPlusPlus
3936                      ? Literal.isLong
3937                            ? diag::warn_old_implicitly_unsigned_long_cxx
3938                            : /*C++98 UB*/ diag::
3939                                  ext_old_implicitly_unsigned_long_cxx
3940                      : diag::warn_old_implicitly_unsigned_long)
3941                 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
3942                                             : /*will be ill-formed*/ 1);
3943             Ty = Context.UnsignedLongTy;
3944           }
3945           Width = LongSize;
3946         }
3947       }
3948 
3949       // Check long long if needed.
3950       if (Ty.isNull()) {
3951         unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
3952 
3953         // Does it fit in a unsigned long long?
3954         if (ResultVal.isIntN(LongLongSize)) {
3955           // Does it fit in a signed long long?
3956           // To be compatible with MSVC, hex integer literals ending with the
3957           // LL or i64 suffix are always signed in Microsoft mode.
3958           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
3959               (getLangOpts().MSVCCompat && Literal.isLongLong)))
3960             Ty = Context.LongLongTy;
3961           else if (AllowUnsigned)
3962             Ty = Context.UnsignedLongLongTy;
3963           Width = LongLongSize;
3964         }
3965       }
3966 
3967       // If we still couldn't decide a type, we probably have something that
3968       // does not fit in a signed long long, but has no U suffix.
3969       if (Ty.isNull()) {
3970         Diag(Tok.getLocation(), diag::ext_integer_literal_too_large_for_signed);
3971         Ty = Context.UnsignedLongLongTy;
3972         Width = Context.getTargetInfo().getLongLongWidth();
3973       }
3974 
3975       if (ResultVal.getBitWidth() != Width)
3976         ResultVal = ResultVal.trunc(Width);
3977     }
3978     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
3979   }
3980 
3981   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
3982   if (Literal.isImaginary) {
3983     Res = new (Context) ImaginaryLiteral(Res,
3984                                         Context.getComplexType(Res->getType()));
3985 
3986     Diag(Tok.getLocation(), diag::ext_imaginary_constant);
3987   }
3988   return Res;
3989 }
3990 
ActOnParenExpr(SourceLocation L,SourceLocation R,Expr * E)3991 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
3992   assert(E && "ActOnParenExpr() missing expr");
3993   return new (Context) ParenExpr(L, R, E);
3994 }
3995 
CheckVecStepTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange)3996 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
3997                                          SourceLocation Loc,
3998                                          SourceRange ArgRange) {
3999   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
4000   // scalar or vector data type argument..."
4001   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
4002   // type (C99 6.2.5p18) or void.
4003   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
4004     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
4005       << T << ArgRange;
4006     return true;
4007   }
4008 
4009   assert((T->isVoidType() || !T->isIncompleteType()) &&
4010          "Scalar types should always be complete");
4011   return false;
4012 }
4013 
CheckExtensionTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange,UnaryExprOrTypeTrait TraitKind)4014 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
4015                                            SourceLocation Loc,
4016                                            SourceRange ArgRange,
4017                                            UnaryExprOrTypeTrait TraitKind) {
4018   // Invalid types must be hard errors for SFINAE in C++.
4019   if (S.LangOpts.CPlusPlus)
4020     return true;
4021 
4022   // C99 6.5.3.4p1:
4023   if (T->isFunctionType() &&
4024       (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
4025        TraitKind == UETT_PreferredAlignOf)) {
4026     // sizeof(function)/alignof(function) is allowed as an extension.
4027     S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
4028         << getTraitSpelling(TraitKind) << ArgRange;
4029     return false;
4030   }
4031 
4032   // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
4033   // this is an error (OpenCL v1.1 s6.3.k)
4034   if (T->isVoidType()) {
4035     unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
4036                                         : diag::ext_sizeof_alignof_void_type;
4037     S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange;
4038     return false;
4039   }
4040 
4041   return true;
4042 }
4043 
CheckObjCTraitOperandConstraints(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange,UnaryExprOrTypeTrait TraitKind)4044 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
4045                                              SourceLocation Loc,
4046                                              SourceRange ArgRange,
4047                                              UnaryExprOrTypeTrait TraitKind) {
4048   // Reject sizeof(interface) and sizeof(interface<proto>) if the
4049   // runtime doesn't allow it.
4050   if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
4051     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
4052       << T << (TraitKind == UETT_SizeOf)
4053       << ArgRange;
4054     return true;
4055   }
4056 
4057   return false;
4058 }
4059 
4060 /// Check whether E is a pointer from a decayed array type (the decayed
4061 /// pointer type is equal to T) and emit a warning if it is.
warnOnSizeofOnArrayDecay(Sema & S,SourceLocation Loc,QualType T,Expr * E)4062 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
4063                                      Expr *E) {
4064   // Don't warn if the operation changed the type.
4065   if (T != E->getType())
4066     return;
4067 
4068   // Now look for array decays.
4069   ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
4070   if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
4071     return;
4072 
4073   S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
4074                                              << ICE->getType()
4075                                              << ICE->getSubExpr()->getType();
4076 }
4077 
4078 /// Check the constraints on expression operands to unary type expression
4079 /// and type traits.
4080 ///
4081 /// Completes any types necessary and validates the constraints on the operand
4082 /// expression. The logic mostly mirrors the type-based overload, but may modify
4083 /// the expression as it completes the type for that expression through template
4084 /// instantiation, etc.
CheckUnaryExprOrTypeTraitOperand(Expr * E,UnaryExprOrTypeTrait ExprKind)4085 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
4086                                             UnaryExprOrTypeTrait ExprKind) {
4087   QualType ExprTy = E->getType();
4088   assert(!ExprTy->isReferenceType());
4089 
4090   bool IsUnevaluatedOperand =
4091       (ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf ||
4092        ExprKind == UETT_PreferredAlignOf);
4093   if (IsUnevaluatedOperand) {
4094     ExprResult Result = CheckUnevaluatedOperand(E);
4095     if (Result.isInvalid())
4096       return true;
4097     E = Result.get();
4098   }
4099 
4100   if (ExprKind == UETT_VecStep)
4101     return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
4102                                         E->getSourceRange());
4103 
4104   // Explicitly list some types as extensions.
4105   if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
4106                                       E->getSourceRange(), ExprKind))
4107     return false;
4108 
4109   // 'alignof' applied to an expression only requires the base element type of
4110   // the expression to be complete. 'sizeof' requires the expression's type to
4111   // be complete (and will attempt to complete it if it's an array of unknown
4112   // bound).
4113   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4114     if (RequireCompleteSizedType(
4115             E->getExprLoc(), Context.getBaseElementType(E->getType()),
4116             diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4117             getTraitSpelling(ExprKind), E->getSourceRange()))
4118       return true;
4119   } else {
4120     if (RequireCompleteSizedExprType(
4121             E, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4122             getTraitSpelling(ExprKind), E->getSourceRange()))
4123       return true;
4124   }
4125 
4126   // Completing the expression's type may have changed it.
4127   ExprTy = E->getType();
4128   assert(!ExprTy->isReferenceType());
4129 
4130   if (ExprTy->isFunctionType()) {
4131     Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
4132         << getTraitSpelling(ExprKind) << E->getSourceRange();
4133     return true;
4134   }
4135 
4136   // The operand for sizeof and alignof is in an unevaluated expression context,
4137   // so side effects could result in unintended consequences.
4138   if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
4139       E->HasSideEffects(Context, false))
4140     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
4141 
4142   if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
4143                                        E->getSourceRange(), ExprKind))
4144     return true;
4145 
4146   if (ExprKind == UETT_SizeOf) {
4147     if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4148       if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
4149         QualType OType = PVD->getOriginalType();
4150         QualType Type = PVD->getType();
4151         if (Type->isPointerType() && OType->isArrayType()) {
4152           Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
4153             << Type << OType;
4154           Diag(PVD->getLocation(), diag::note_declared_at);
4155         }
4156       }
4157     }
4158 
4159     // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
4160     // decays into a pointer and returns an unintended result. This is most
4161     // likely a typo for "sizeof(array) op x".
4162     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
4163       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4164                                BO->getLHS());
4165       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4166                                BO->getRHS());
4167     }
4168   }
4169 
4170   return false;
4171 }
4172 
4173 /// Check the constraints on operands to unary expression and type
4174 /// traits.
4175 ///
4176 /// This will complete any types necessary, and validate the various constraints
4177 /// on those operands.
4178 ///
4179 /// The UsualUnaryConversions() function is *not* called by this routine.
4180 /// C99 6.3.2.1p[2-4] all state:
4181 ///   Except when it is the operand of the sizeof operator ...
4182 ///
4183 /// C++ [expr.sizeof]p4
4184 ///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
4185 ///   standard conversions are not applied to the operand of sizeof.
4186 ///
4187 /// This policy is followed for all of the unary trait expressions.
CheckUnaryExprOrTypeTraitOperand(QualType ExprType,SourceLocation OpLoc,SourceRange ExprRange,UnaryExprOrTypeTrait ExprKind)4188 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
4189                                             SourceLocation OpLoc,
4190                                             SourceRange ExprRange,
4191                                             UnaryExprOrTypeTrait ExprKind) {
4192   if (ExprType->isDependentType())
4193     return false;
4194 
4195   // C++ [expr.sizeof]p2:
4196   //     When applied to a reference or a reference type, the result
4197   //     is the size of the referenced type.
4198   // C++11 [expr.alignof]p3:
4199   //     When alignof is applied to a reference type, the result
4200   //     shall be the alignment of the referenced type.
4201   if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
4202     ExprType = Ref->getPointeeType();
4203 
4204   // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
4205   //   When alignof or _Alignof is applied to an array type, the result
4206   //   is the alignment of the element type.
4207   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4208       ExprKind == UETT_OpenMPRequiredSimdAlign)
4209     ExprType = Context.getBaseElementType(ExprType);
4210 
4211   if (ExprKind == UETT_VecStep)
4212     return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
4213 
4214   // Explicitly list some types as extensions.
4215   if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
4216                                       ExprKind))
4217     return false;
4218 
4219   if (RequireCompleteSizedType(
4220           OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4221           getTraitSpelling(ExprKind), ExprRange))
4222     return true;
4223 
4224   if (ExprType->isFunctionType()) {
4225     Diag(OpLoc, diag::err_sizeof_alignof_function_type)
4226         << getTraitSpelling(ExprKind) << ExprRange;
4227     return true;
4228   }
4229 
4230   if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
4231                                        ExprKind))
4232     return true;
4233 
4234   return false;
4235 }
4236 
CheckAlignOfExpr(Sema & S,Expr * E,UnaryExprOrTypeTrait ExprKind)4237 static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
4238   // Cannot know anything else if the expression is dependent.
4239   if (E->isTypeDependent())
4240     return false;
4241 
4242   if (E->getObjectKind() == OK_BitField) {
4243     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
4244        << 1 << E->getSourceRange();
4245     return true;
4246   }
4247 
4248   ValueDecl *D = nullptr;
4249   Expr *Inner = E->IgnoreParens();
4250   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) {
4251     D = DRE->getDecl();
4252   } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) {
4253     D = ME->getMemberDecl();
4254   }
4255 
4256   // If it's a field, require the containing struct to have a
4257   // complete definition so that we can compute the layout.
4258   //
4259   // This can happen in C++11 onwards, either by naming the member
4260   // in a way that is not transformed into a member access expression
4261   // (in an unevaluated operand, for instance), or by naming the member
4262   // in a trailing-return-type.
4263   //
4264   // For the record, since __alignof__ on expressions is a GCC
4265   // extension, GCC seems to permit this but always gives the
4266   // nonsensical answer 0.
4267   //
4268   // We don't really need the layout here --- we could instead just
4269   // directly check for all the appropriate alignment-lowing
4270   // attributes --- but that would require duplicating a lot of
4271   // logic that just isn't worth duplicating for such a marginal
4272   // use-case.
4273   if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
4274     // Fast path this check, since we at least know the record has a
4275     // definition if we can find a member of it.
4276     if (!FD->getParent()->isCompleteDefinition()) {
4277       S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
4278         << E->getSourceRange();
4279       return true;
4280     }
4281 
4282     // Otherwise, if it's a field, and the field doesn't have
4283     // reference type, then it must have a complete type (or be a
4284     // flexible array member, which we explicitly want to
4285     // white-list anyway), which makes the following checks trivial.
4286     if (!FD->getType()->isReferenceType())
4287       return false;
4288   }
4289 
4290   return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4291 }
4292 
CheckVecStepExpr(Expr * E)4293 bool Sema::CheckVecStepExpr(Expr *E) {
4294   E = E->IgnoreParens();
4295 
4296   // Cannot know anything else if the expression is dependent.
4297   if (E->isTypeDependent())
4298     return false;
4299 
4300   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
4301 }
4302 
captureVariablyModifiedType(ASTContext & Context,QualType T,CapturingScopeInfo * CSI)4303 static void captureVariablyModifiedType(ASTContext &Context, QualType T,
4304                                         CapturingScopeInfo *CSI) {
4305   assert(T->isVariablyModifiedType());
4306   assert(CSI != nullptr);
4307 
4308   // We're going to walk down into the type and look for VLA expressions.
4309   do {
4310     const Type *Ty = T.getTypePtr();
4311     switch (Ty->getTypeClass()) {
4312 #define TYPE(Class, Base)
4313 #define ABSTRACT_TYPE(Class, Base)
4314 #define NON_CANONICAL_TYPE(Class, Base)
4315 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
4316 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4317 #include "clang/AST/TypeNodes.inc"
4318       T = QualType();
4319       break;
4320     // These types are never variably-modified.
4321     case Type::Builtin:
4322     case Type::Complex:
4323     case Type::Vector:
4324     case Type::ExtVector:
4325     case Type::ConstantMatrix:
4326     case Type::Record:
4327     case Type::Enum:
4328     case Type::Elaborated:
4329     case Type::TemplateSpecialization:
4330     case Type::ObjCObject:
4331     case Type::ObjCInterface:
4332     case Type::ObjCObjectPointer:
4333     case Type::ObjCTypeParam:
4334     case Type::Pipe:
4335     case Type::ExtInt:
4336       llvm_unreachable("type class is never variably-modified!");
4337     case Type::Adjusted:
4338       T = cast<AdjustedType>(Ty)->getOriginalType();
4339       break;
4340     case Type::Decayed:
4341       T = cast<DecayedType>(Ty)->getPointeeType();
4342       break;
4343     case Type::Pointer:
4344       T = cast<PointerType>(Ty)->getPointeeType();
4345       break;
4346     case Type::BlockPointer:
4347       T = cast<BlockPointerType>(Ty)->getPointeeType();
4348       break;
4349     case Type::LValueReference:
4350     case Type::RValueReference:
4351       T = cast<ReferenceType>(Ty)->getPointeeType();
4352       break;
4353     case Type::MemberPointer:
4354       T = cast<MemberPointerType>(Ty)->getPointeeType();
4355       break;
4356     case Type::ConstantArray:
4357     case Type::IncompleteArray:
4358       // Losing element qualification here is fine.
4359       T = cast<ArrayType>(Ty)->getElementType();
4360       break;
4361     case Type::VariableArray: {
4362       // Losing element qualification here is fine.
4363       const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
4364 
4365       // Unknown size indication requires no size computation.
4366       // Otherwise, evaluate and record it.
4367       auto Size = VAT->getSizeExpr();
4368       if (Size && !CSI->isVLATypeCaptured(VAT) &&
4369           (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
4370         CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());
4371 
4372       T = VAT->getElementType();
4373       break;
4374     }
4375     case Type::FunctionProto:
4376     case Type::FunctionNoProto:
4377       T = cast<FunctionType>(Ty)->getReturnType();
4378       break;
4379     case Type::Paren:
4380     case Type::TypeOf:
4381     case Type::UnaryTransform:
4382     case Type::Attributed:
4383     case Type::SubstTemplateTypeParm:
4384     case Type::MacroQualified:
4385       // Keep walking after single level desugaring.
4386       T = T.getSingleStepDesugaredType(Context);
4387       break;
4388     case Type::Typedef:
4389       T = cast<TypedefType>(Ty)->desugar();
4390       break;
4391     case Type::Decltype:
4392       T = cast<DecltypeType>(Ty)->desugar();
4393       break;
4394     case Type::Auto:
4395     case Type::DeducedTemplateSpecialization:
4396       T = cast<DeducedType>(Ty)->getDeducedType();
4397       break;
4398     case Type::TypeOfExpr:
4399       T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
4400       break;
4401     case Type::Atomic:
4402       T = cast<AtomicType>(Ty)->getValueType();
4403       break;
4404     }
4405   } while (!T.isNull() && T->isVariablyModifiedType());
4406 }
4407 
4408 /// Build a sizeof or alignof expression given a type operand.
4409 ExprResult
CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo * TInfo,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,SourceRange R)4410 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
4411                                      SourceLocation OpLoc,
4412                                      UnaryExprOrTypeTrait ExprKind,
4413                                      SourceRange R) {
4414   if (!TInfo)
4415     return ExprError();
4416 
4417   QualType T = TInfo->getType();
4418 
4419   if (!T->isDependentType() &&
4420       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
4421     return ExprError();
4422 
4423   if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) {
4424     if (auto *TT = T->getAs<TypedefType>()) {
4425       for (auto I = FunctionScopes.rbegin(),
4426                 E = std::prev(FunctionScopes.rend());
4427            I != E; ++I) {
4428         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4429         if (CSI == nullptr)
4430           break;
4431         DeclContext *DC = nullptr;
4432         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4433           DC = LSI->CallOperator;
4434         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4435           DC = CRSI->TheCapturedDecl;
4436         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4437           DC = BSI->TheDecl;
4438         if (DC) {
4439           if (DC->containsDecl(TT->getDecl()))
4440             break;
4441           captureVariablyModifiedType(Context, T, CSI);
4442         }
4443       }
4444     }
4445   }
4446 
4447   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4448   return new (Context) UnaryExprOrTypeTraitExpr(
4449       ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4450 }
4451 
4452 /// Build a sizeof or alignof expression given an expression
4453 /// operand.
4454 ExprResult
CreateUnaryExprOrTypeTraitExpr(Expr * E,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind)4455 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4456                                      UnaryExprOrTypeTrait ExprKind) {
4457   ExprResult PE = CheckPlaceholderExpr(E);
4458   if (PE.isInvalid())
4459     return ExprError();
4460 
4461   E = PE.get();
4462 
4463   // Verify that the operand is valid.
4464   bool isInvalid = false;
4465   if (E->isTypeDependent()) {
4466     // Delay type-checking for type-dependent expressions.
4467   } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4468     isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
4469   } else if (ExprKind == UETT_VecStep) {
4470     isInvalid = CheckVecStepExpr(E);
4471   } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4472       Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
4473       isInvalid = true;
4474   } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
4475     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
4476     isInvalid = true;
4477   } else {
4478     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
4479   }
4480 
4481   if (isInvalid)
4482     return ExprError();
4483 
4484   if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
4485     PE = TransformToPotentiallyEvaluated(E);
4486     if (PE.isInvalid()) return ExprError();
4487     E = PE.get();
4488   }
4489 
4490   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4491   return new (Context) UnaryExprOrTypeTraitExpr(
4492       ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4493 }
4494 
4495 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
4496 /// expr and the same for @c alignof and @c __alignof
4497 /// Note that the ArgRange is invalid if isType is false.
4498 ExprResult
ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,bool IsType,void * TyOrEx,SourceRange ArgRange)4499 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4500                                     UnaryExprOrTypeTrait ExprKind, bool IsType,
4501                                     void *TyOrEx, SourceRange ArgRange) {
4502   // If error parsing type, ignore.
4503   if (!TyOrEx) return ExprError();
4504 
4505   if (IsType) {
4506     TypeSourceInfo *TInfo;
4507     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
4508     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
4509   }
4510 
4511   Expr *ArgEx = (Expr *)TyOrEx;
4512   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
4513   return Result;
4514 }
4515 
CheckRealImagOperand(Sema & S,ExprResult & V,SourceLocation Loc,bool IsReal)4516 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4517                                      bool IsReal) {
4518   if (V.get()->isTypeDependent())
4519     return S.Context.DependentTy;
4520 
4521   // _Real and _Imag are only l-values for normal l-values.
4522   if (V.get()->getObjectKind() != OK_Ordinary) {
4523     V = S.DefaultLvalueConversion(V.get());
4524     if (V.isInvalid())
4525       return QualType();
4526   }
4527 
4528   // These operators return the element type of a complex type.
4529   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4530     return CT->getElementType();
4531 
4532   // Otherwise they pass through real integer and floating point types here.
4533   if (V.get()->getType()->isArithmeticType())
4534     return V.get()->getType();
4535 
4536   // Test for placeholders.
4537   ExprResult PR = S.CheckPlaceholderExpr(V.get());
4538   if (PR.isInvalid()) return QualType();
4539   if (PR.get() != V.get()) {
4540     V = PR;
4541     return CheckRealImagOperand(S, V, Loc, IsReal);
4542   }
4543 
4544   // Reject anything else.
4545   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
4546     << (IsReal ? "__real" : "__imag");
4547   return QualType();
4548 }
4549 
4550 
4551 
4552 ExprResult
ActOnPostfixUnaryOp(Scope * S,SourceLocation OpLoc,tok::TokenKind Kind,Expr * Input)4553 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4554                           tok::TokenKind Kind, Expr *Input) {
4555   UnaryOperatorKind Opc;
4556   switch (Kind) {
4557   default: llvm_unreachable("Unknown unary op!");
4558   case tok::plusplus:   Opc = UO_PostInc; break;
4559   case tok::minusminus: Opc = UO_PostDec; break;
4560   }
4561 
4562   // Since this might is a postfix expression, get rid of ParenListExprs.
4563   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
4564   if (Result.isInvalid()) return ExprError();
4565   Input = Result.get();
4566 
4567   return BuildUnaryOp(S, OpLoc, Opc, Input);
4568 }
4569 
4570 /// Diagnose if arithmetic on the given ObjC pointer is illegal.
4571 ///
4572 /// \return true on error
checkArithmeticOnObjCPointer(Sema & S,SourceLocation opLoc,Expr * op)4573 static bool checkArithmeticOnObjCPointer(Sema &S,
4574                                          SourceLocation opLoc,
4575                                          Expr *op) {
4576   assert(op->getType()->isObjCObjectPointerType());
4577   if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
4578       !S.LangOpts.ObjCSubscriptingLegacyRuntime)
4579     return false;
4580 
4581   S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
4582     << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
4583     << op->getSourceRange();
4584   return true;
4585 }
4586 
isMSPropertySubscriptExpr(Sema & S,Expr * Base)4587 static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
4588   auto *BaseNoParens = Base->IgnoreParens();
4589   if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
4590     return MSProp->getPropertyDecl()->getType()->isArrayType();
4591   return isa<MSPropertySubscriptExpr>(BaseNoParens);
4592 }
4593 
4594 ExprResult
ActOnArraySubscriptExpr(Scope * S,Expr * base,SourceLocation lbLoc,Expr * idx,SourceLocation rbLoc)4595 Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
4596                               Expr *idx, SourceLocation rbLoc) {
4597   if (base && !base->getType().isNull() &&
4598       base->getType()->isSpecificPlaceholderType(BuiltinType::OMPArraySection))
4599     return ActOnOMPArraySectionExpr(base, lbLoc, idx, SourceLocation(),
4600                                     SourceLocation(), /*Length*/ nullptr,
4601                                     /*Stride=*/nullptr, rbLoc);
4602 
4603   // Since this might be a postfix expression, get rid of ParenListExprs.
4604   if (isa<ParenListExpr>(base)) {
4605     ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
4606     if (result.isInvalid()) return ExprError();
4607     base = result.get();
4608   }
4609 
4610   // Check if base and idx form a MatrixSubscriptExpr.
4611   //
4612   // Helper to check for comma expressions, which are not allowed as indices for
4613   // matrix subscript expressions.
4614   auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) {
4615     if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isCommaOp()) {
4616       Diag(E->getExprLoc(), diag::err_matrix_subscript_comma)
4617           << SourceRange(base->getBeginLoc(), rbLoc);
4618       return true;
4619     }
4620     return false;
4621   };
4622   // The matrix subscript operator ([][])is considered a single operator.
4623   // Separating the index expressions by parenthesis is not allowed.
4624   if (base->getType()->isSpecificPlaceholderType(
4625           BuiltinType::IncompleteMatrixIdx) &&
4626       !isa<MatrixSubscriptExpr>(base)) {
4627     Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index)
4628         << SourceRange(base->getBeginLoc(), rbLoc);
4629     return ExprError();
4630   }
4631   // If the base is a MatrixSubscriptExpr, try to create a new
4632   // MatrixSubscriptExpr.
4633   auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(base);
4634   if (matSubscriptE) {
4635     if (CheckAndReportCommaError(idx))
4636       return ExprError();
4637 
4638     assert(matSubscriptE->isIncomplete() &&
4639            "base has to be an incomplete matrix subscript");
4640     return CreateBuiltinMatrixSubscriptExpr(
4641         matSubscriptE->getBase(), matSubscriptE->getRowIdx(), idx, rbLoc);
4642   }
4643 
4644   // Handle any non-overload placeholder types in the base and index
4645   // expressions.  We can't handle overloads here because the other
4646   // operand might be an overloadable type, in which case the overload
4647   // resolution for the operator overload should get the first crack
4648   // at the overload.
4649   bool IsMSPropertySubscript = false;
4650   if (base->getType()->isNonOverloadPlaceholderType()) {
4651     IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
4652     if (!IsMSPropertySubscript) {
4653       ExprResult result = CheckPlaceholderExpr(base);
4654       if (result.isInvalid())
4655         return ExprError();
4656       base = result.get();
4657     }
4658   }
4659 
4660   // If the base is a matrix type, try to create a new MatrixSubscriptExpr.
4661   if (base->getType()->isMatrixType()) {
4662     if (CheckAndReportCommaError(idx))
4663       return ExprError();
4664 
4665     return CreateBuiltinMatrixSubscriptExpr(base, idx, nullptr, rbLoc);
4666   }
4667 
4668   // A comma-expression as the index is deprecated in C++2a onwards.
4669   if (getLangOpts().CPlusPlus20 &&
4670       ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) ||
4671        (isa<CXXOperatorCallExpr>(idx) &&
4672         cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma))) {
4673     Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
4674         << SourceRange(base->getBeginLoc(), rbLoc);
4675   }
4676 
4677   if (idx->getType()->isNonOverloadPlaceholderType()) {
4678     ExprResult result = CheckPlaceholderExpr(idx);
4679     if (result.isInvalid()) return ExprError();
4680     idx = result.get();
4681   }
4682 
4683   // Build an unanalyzed expression if either operand is type-dependent.
4684   if (getLangOpts().CPlusPlus &&
4685       (base->isTypeDependent() || idx->isTypeDependent())) {
4686     return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy,
4687                                             VK_LValue, OK_Ordinary, rbLoc);
4688   }
4689 
4690   // MSDN, property (C++)
4691   // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
4692   // This attribute can also be used in the declaration of an empty array in a
4693   // class or structure definition. For example:
4694   // __declspec(property(get=GetX, put=PutX)) int x[];
4695   // The above statement indicates that x[] can be used with one or more array
4696   // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
4697   // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
4698   if (IsMSPropertySubscript) {
4699     // Build MS property subscript expression if base is MS property reference
4700     // or MS property subscript.
4701     return new (Context) MSPropertySubscriptExpr(
4702         base, idx, Context.PseudoObjectTy, VK_LValue, OK_Ordinary, rbLoc);
4703   }
4704 
4705   // Use C++ overloaded-operator rules if either operand has record
4706   // type.  The spec says to do this if either type is *overloadable*,
4707   // but enum types can't declare subscript operators or conversion
4708   // operators, so there's nothing interesting for overload resolution
4709   // to do if there aren't any record types involved.
4710   //
4711   // ObjC pointers have their own subscripting logic that is not tied
4712   // to overload resolution and so should not take this path.
4713   if (getLangOpts().CPlusPlus &&
4714       (base->getType()->isRecordType() ||
4715        (!base->getType()->isObjCObjectPointerType() &&
4716         idx->getType()->isRecordType()))) {
4717     return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
4718   }
4719 
4720   ExprResult Res = CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
4721 
4722   if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
4723     CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
4724 
4725   return Res;
4726 }
4727 
tryConvertExprToType(Expr * E,QualType Ty)4728 ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) {
4729   InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty);
4730   InitializationKind Kind =
4731       InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation());
4732   InitializationSequence InitSeq(*this, Entity, Kind, E);
4733   return InitSeq.Perform(*this, Entity, Kind, E);
4734 }
4735 
CreateBuiltinMatrixSubscriptExpr(Expr * Base,Expr * RowIdx,Expr * ColumnIdx,SourceLocation RBLoc)4736 ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
4737                                                   Expr *ColumnIdx,
4738                                                   SourceLocation RBLoc) {
4739   ExprResult BaseR = CheckPlaceholderExpr(Base);
4740   if (BaseR.isInvalid())
4741     return BaseR;
4742   Base = BaseR.get();
4743 
4744   ExprResult RowR = CheckPlaceholderExpr(RowIdx);
4745   if (RowR.isInvalid())
4746     return RowR;
4747   RowIdx = RowR.get();
4748 
4749   if (!ColumnIdx)
4750     return new (Context) MatrixSubscriptExpr(
4751         Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc);
4752 
4753   // Build an unanalyzed expression if any of the operands is type-dependent.
4754   if (Base->isTypeDependent() || RowIdx->isTypeDependent() ||
4755       ColumnIdx->isTypeDependent())
4756     return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
4757                                              Context.DependentTy, RBLoc);
4758 
4759   ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx);
4760   if (ColumnR.isInvalid())
4761     return ColumnR;
4762   ColumnIdx = ColumnR.get();
4763 
4764   // Check that IndexExpr is an integer expression. If it is a constant
4765   // expression, check that it is less than Dim (= the number of elements in the
4766   // corresponding dimension).
4767   auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim,
4768                           bool IsColumnIdx) -> Expr * {
4769     if (!IndexExpr->getType()->isIntegerType() &&
4770         !IndexExpr->isTypeDependent()) {
4771       Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer)
4772           << IsColumnIdx;
4773       return nullptr;
4774     }
4775 
4776     if (Optional<llvm::APSInt> Idx =
4777             IndexExpr->getIntegerConstantExpr(Context)) {
4778       if ((*Idx < 0 || *Idx >= Dim)) {
4779         Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range)
4780             << IsColumnIdx << Dim;
4781         return nullptr;
4782       }
4783     }
4784 
4785     ExprResult ConvExpr =
4786         tryConvertExprToType(IndexExpr, Context.getSizeType());
4787     assert(!ConvExpr.isInvalid() &&
4788            "should be able to convert any integer type to size type");
4789     return ConvExpr.get();
4790   };
4791 
4792   auto *MTy = Base->getType()->getAs<ConstantMatrixType>();
4793   RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false);
4794   ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true);
4795   if (!RowIdx || !ColumnIdx)
4796     return ExprError();
4797 
4798   return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
4799                                            MTy->getElementType(), RBLoc);
4800 }
4801 
CheckAddressOfNoDeref(const Expr * E)4802 void Sema::CheckAddressOfNoDeref(const Expr *E) {
4803   ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
4804   const Expr *StrippedExpr = E->IgnoreParenImpCasts();
4805 
4806   // For expressions like `&(*s).b`, the base is recorded and what should be
4807   // checked.
4808   const MemberExpr *Member = nullptr;
4809   while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
4810     StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
4811 
4812   LastRecord.PossibleDerefs.erase(StrippedExpr);
4813 }
4814 
CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr * E)4815 void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
4816   if (isUnevaluatedContext())
4817     return;
4818 
4819   QualType ResultTy = E->getType();
4820   ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
4821 
4822   // Bail if the element is an array since it is not memory access.
4823   if (isa<ArrayType>(ResultTy))
4824     return;
4825 
4826   if (ResultTy->hasAttr(attr::NoDeref)) {
4827     LastRecord.PossibleDerefs.insert(E);
4828     return;
4829   }
4830 
4831   // Check if the base type is a pointer to a member access of a struct
4832   // marked with noderef.
4833   const Expr *Base = E->getBase();
4834   QualType BaseTy = Base->getType();
4835   if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
4836     // Not a pointer access
4837     return;
4838 
4839   const MemberExpr *Member = nullptr;
4840   while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
4841          Member->isArrow())
4842     Base = Member->getBase();
4843 
4844   if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
4845     if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
4846       LastRecord.PossibleDerefs.insert(E);
4847   }
4848 }
4849 
ActOnOMPArraySectionExpr(Expr * Base,SourceLocation LBLoc,Expr * LowerBound,SourceLocation ColonLocFirst,SourceLocation ColonLocSecond,Expr * Length,Expr * Stride,SourceLocation RBLoc)4850 ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
4851                                           Expr *LowerBound,
4852                                           SourceLocation ColonLocFirst,
4853                                           SourceLocation ColonLocSecond,
4854                                           Expr *Length, Expr *Stride,
4855                                           SourceLocation RBLoc) {
4856   if (Base->getType()->isPlaceholderType() &&
4857       !Base->getType()->isSpecificPlaceholderType(
4858           BuiltinType::OMPArraySection)) {
4859     ExprResult Result = CheckPlaceholderExpr(Base);
4860     if (Result.isInvalid())
4861       return ExprError();
4862     Base = Result.get();
4863   }
4864   if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
4865     ExprResult Result = CheckPlaceholderExpr(LowerBound);
4866     if (Result.isInvalid())
4867       return ExprError();
4868     Result = DefaultLvalueConversion(Result.get());
4869     if (Result.isInvalid())
4870       return ExprError();
4871     LowerBound = Result.get();
4872   }
4873   if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
4874     ExprResult Result = CheckPlaceholderExpr(Length);
4875     if (Result.isInvalid())
4876       return ExprError();
4877     Result = DefaultLvalueConversion(Result.get());
4878     if (Result.isInvalid())
4879       return ExprError();
4880     Length = Result.get();
4881   }
4882   if (Stride && Stride->getType()->isNonOverloadPlaceholderType()) {
4883     ExprResult Result = CheckPlaceholderExpr(Stride);
4884     if (Result.isInvalid())
4885       return ExprError();
4886     Result = DefaultLvalueConversion(Result.get());
4887     if (Result.isInvalid())
4888       return ExprError();
4889     Stride = Result.get();
4890   }
4891 
4892   // Build an unanalyzed expression if either operand is type-dependent.
4893   if (Base->isTypeDependent() ||
4894       (LowerBound &&
4895        (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
4896       (Length && (Length->isTypeDependent() || Length->isValueDependent())) ||
4897       (Stride && (Stride->isTypeDependent() || Stride->isValueDependent()))) {
4898     return new (Context) OMPArraySectionExpr(
4899         Base, LowerBound, Length, Stride, Context.DependentTy, VK_LValue,
4900         OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
4901   }
4902 
4903   // Perform default conversions.
4904   QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
4905   QualType ResultTy;
4906   if (OriginalTy->isAnyPointerType()) {
4907     ResultTy = OriginalTy->getPointeeType();
4908   } else if (OriginalTy->isArrayType()) {
4909     ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
4910   } else {
4911     return ExprError(
4912         Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
4913         << Base->getSourceRange());
4914   }
4915   // C99 6.5.2.1p1
4916   if (LowerBound) {
4917     auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
4918                                                       LowerBound);
4919     if (Res.isInvalid())
4920       return ExprError(Diag(LowerBound->getExprLoc(),
4921                             diag::err_omp_typecheck_section_not_integer)
4922                        << 0 << LowerBound->getSourceRange());
4923     LowerBound = Res.get();
4924 
4925     if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4926         LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4927       Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
4928           << 0 << LowerBound->getSourceRange();
4929   }
4930   if (Length) {
4931     auto Res =
4932         PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
4933     if (Res.isInvalid())
4934       return ExprError(Diag(Length->getExprLoc(),
4935                             diag::err_omp_typecheck_section_not_integer)
4936                        << 1 << Length->getSourceRange());
4937     Length = Res.get();
4938 
4939     if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4940         Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4941       Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
4942           << 1 << Length->getSourceRange();
4943   }
4944   if (Stride) {
4945     ExprResult Res =
4946         PerformOpenMPImplicitIntegerConversion(Stride->getExprLoc(), Stride);
4947     if (Res.isInvalid())
4948       return ExprError(Diag(Stride->getExprLoc(),
4949                             diag::err_omp_typecheck_section_not_integer)
4950                        << 1 << Stride->getSourceRange());
4951     Stride = Res.get();
4952 
4953     if (Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4954         Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4955       Diag(Stride->getExprLoc(), diag::warn_omp_section_is_char)
4956           << 1 << Stride->getSourceRange();
4957   }
4958 
4959   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
4960   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
4961   // type. Note that functions are not objects, and that (in C99 parlance)
4962   // incomplete types are not object types.
4963   if (ResultTy->isFunctionType()) {
4964     Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
4965         << ResultTy << Base->getSourceRange();
4966     return ExprError();
4967   }
4968 
4969   if (RequireCompleteType(Base->getExprLoc(), ResultTy,
4970                           diag::err_omp_section_incomplete_type, Base))
4971     return ExprError();
4972 
4973   if (LowerBound && !OriginalTy->isAnyPointerType()) {
4974     Expr::EvalResult Result;
4975     if (LowerBound->EvaluateAsInt(Result, Context)) {
4976       // OpenMP 5.0, [2.1.5 Array Sections]
4977       // The array section must be a subset of the original array.
4978       llvm::APSInt LowerBoundValue = Result.Val.getInt();
4979       if (LowerBoundValue.isNegative()) {
4980         Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array)
4981             << LowerBound->getSourceRange();
4982         return ExprError();
4983       }
4984     }
4985   }
4986 
4987   if (Length) {
4988     Expr::EvalResult Result;
4989     if (Length->EvaluateAsInt(Result, Context)) {
4990       // OpenMP 5.0, [2.1.5 Array Sections]
4991       // The length must evaluate to non-negative integers.
4992       llvm::APSInt LengthValue = Result.Val.getInt();
4993       if (LengthValue.isNegative()) {
4994         Diag(Length->getExprLoc(), diag::err_omp_section_length_negative)
4995             << LengthValue.toString(/*Radix=*/10, /*Signed=*/true)
4996             << Length->getSourceRange();
4997         return ExprError();
4998       }
4999     }
5000   } else if (ColonLocFirst.isValid() &&
5001              (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
5002                                       !OriginalTy->isVariableArrayType()))) {
5003     // OpenMP 5.0, [2.1.5 Array Sections]
5004     // When the size of the array dimension is not known, the length must be
5005     // specified explicitly.
5006     Diag(ColonLocFirst, diag::err_omp_section_length_undefined)
5007         << (!OriginalTy.isNull() && OriginalTy->isArrayType());
5008     return ExprError();
5009   }
5010 
5011   if (Stride) {
5012     Expr::EvalResult Result;
5013     if (Stride->EvaluateAsInt(Result, Context)) {
5014       // OpenMP 5.0, [2.1.5 Array Sections]
5015       // The stride must evaluate to a positive integer.
5016       llvm::APSInt StrideValue = Result.Val.getInt();
5017       if (!StrideValue.isStrictlyPositive()) {
5018         Diag(Stride->getExprLoc(), diag::err_omp_section_stride_non_positive)
5019             << StrideValue.toString(/*Radix=*/10, /*Signed=*/true)
5020             << Stride->getSourceRange();
5021         return ExprError();
5022       }
5023     }
5024   }
5025 
5026   if (!Base->getType()->isSpecificPlaceholderType(
5027           BuiltinType::OMPArraySection)) {
5028     ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
5029     if (Result.isInvalid())
5030       return ExprError();
5031     Base = Result.get();
5032   }
5033   return new (Context) OMPArraySectionExpr(
5034       Base, LowerBound, Length, Stride, Context.OMPArraySectionTy, VK_LValue,
5035       OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
5036 }
5037 
ActOnOMPArrayShapingExpr(Expr * Base,SourceLocation LParenLoc,SourceLocation RParenLoc,ArrayRef<Expr * > Dims,ArrayRef<SourceRange> Brackets)5038 ExprResult Sema::ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
5039                                           SourceLocation RParenLoc,
5040                                           ArrayRef<Expr *> Dims,
5041                                           ArrayRef<SourceRange> Brackets) {
5042   if (Base->getType()->isPlaceholderType()) {
5043     ExprResult Result = CheckPlaceholderExpr(Base);
5044     if (Result.isInvalid())
5045       return ExprError();
5046     Result = DefaultLvalueConversion(Result.get());
5047     if (Result.isInvalid())
5048       return ExprError();
5049     Base = Result.get();
5050   }
5051   QualType BaseTy = Base->getType();
5052   // Delay analysis of the types/expressions if instantiation/specialization is
5053   // required.
5054   if (!BaseTy->isPointerType() && Base->isTypeDependent())
5055     return OMPArrayShapingExpr::Create(Context, Context.DependentTy, Base,
5056                                        LParenLoc, RParenLoc, Dims, Brackets);
5057   if (!BaseTy->isPointerType() ||
5058       (!Base->isTypeDependent() &&
5059        BaseTy->getPointeeType()->isIncompleteType()))
5060     return ExprError(Diag(Base->getExprLoc(),
5061                           diag::err_omp_non_pointer_type_array_shaping_base)
5062                      << Base->getSourceRange());
5063 
5064   SmallVector<Expr *, 4> NewDims;
5065   bool ErrorFound = false;
5066   for (Expr *Dim : Dims) {
5067     if (Dim->getType()->isPlaceholderType()) {
5068       ExprResult Result = CheckPlaceholderExpr(Dim);
5069       if (Result.isInvalid()) {
5070         ErrorFound = true;
5071         continue;
5072       }
5073       Result = DefaultLvalueConversion(Result.get());
5074       if (Result.isInvalid()) {
5075         ErrorFound = true;
5076         continue;
5077       }
5078       Dim = Result.get();
5079     }
5080     if (!Dim->isTypeDependent()) {
5081       ExprResult Result =
5082           PerformOpenMPImplicitIntegerConversion(Dim->getExprLoc(), Dim);
5083       if (Result.isInvalid()) {
5084         ErrorFound = true;
5085         Diag(Dim->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer)
5086             << Dim->getSourceRange();
5087         continue;
5088       }
5089       Dim = Result.get();
5090       Expr::EvalResult EvResult;
5091       if (!Dim->isValueDependent() && Dim->EvaluateAsInt(EvResult, Context)) {
5092         // OpenMP 5.0, [2.1.4 Array Shaping]
5093         // Each si is an integral type expression that must evaluate to a
5094         // positive integer.
5095         llvm::APSInt Value = EvResult.Val.getInt();
5096         if (!Value.isStrictlyPositive()) {
5097           Diag(Dim->getExprLoc(), diag::err_omp_shaping_dimension_not_positive)
5098               << Value.toString(/*Radix=*/10, /*Signed=*/true)
5099               << Dim->getSourceRange();
5100           ErrorFound = true;
5101           continue;
5102         }
5103       }
5104     }
5105     NewDims.push_back(Dim);
5106   }
5107   if (ErrorFound)
5108     return ExprError();
5109   return OMPArrayShapingExpr::Create(Context, Context.OMPArrayShapingTy, Base,
5110                                      LParenLoc, RParenLoc, NewDims, Brackets);
5111 }
5112 
ActOnOMPIteratorExpr(Scope * S,SourceLocation IteratorKwLoc,SourceLocation LLoc,SourceLocation RLoc,ArrayRef<OMPIteratorData> Data)5113 ExprResult Sema::ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc,
5114                                       SourceLocation LLoc, SourceLocation RLoc,
5115                                       ArrayRef<OMPIteratorData> Data) {
5116   SmallVector<OMPIteratorExpr::IteratorDefinition, 4> ID;
5117   bool IsCorrect = true;
5118   for (const OMPIteratorData &D : Data) {
5119     TypeSourceInfo *TInfo = nullptr;
5120     SourceLocation StartLoc;
5121     QualType DeclTy;
5122     if (!D.Type.getAsOpaquePtr()) {
5123       // OpenMP 5.0, 2.1.6 Iterators
5124       // In an iterator-specifier, if the iterator-type is not specified then
5125       // the type of that iterator is of int type.
5126       DeclTy = Context.IntTy;
5127       StartLoc = D.DeclIdentLoc;
5128     } else {
5129       DeclTy = GetTypeFromParser(D.Type, &TInfo);
5130       StartLoc = TInfo->getTypeLoc().getBeginLoc();
5131     }
5132 
5133     bool IsDeclTyDependent = DeclTy->isDependentType() ||
5134                              DeclTy->containsUnexpandedParameterPack() ||
5135                              DeclTy->isInstantiationDependentType();
5136     if (!IsDeclTyDependent) {
5137       if (!DeclTy->isIntegralType(Context) && !DeclTy->isAnyPointerType()) {
5138         // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5139         // The iterator-type must be an integral or pointer type.
5140         Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5141             << DeclTy;
5142         IsCorrect = false;
5143         continue;
5144       }
5145       if (DeclTy.isConstant(Context)) {
5146         // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5147         // The iterator-type must not be const qualified.
5148         Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5149             << DeclTy;
5150         IsCorrect = false;
5151         continue;
5152       }
5153     }
5154 
5155     // Iterator declaration.
5156     assert(D.DeclIdent && "Identifier expected.");
5157     // Always try to create iterator declarator to avoid extra error messages
5158     // about unknown declarations use.
5159     auto *VD = VarDecl::Create(Context, CurContext, StartLoc, D.DeclIdentLoc,
5160                                D.DeclIdent, DeclTy, TInfo, SC_None);
5161     VD->setImplicit();
5162     if (S) {
5163       // Check for conflicting previous declaration.
5164       DeclarationNameInfo NameInfo(VD->getDeclName(), D.DeclIdentLoc);
5165       LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5166                             ForVisibleRedeclaration);
5167       Previous.suppressDiagnostics();
5168       LookupName(Previous, S);
5169 
5170       FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false,
5171                            /*AllowInlineNamespace=*/false);
5172       if (!Previous.empty()) {
5173         NamedDecl *Old = Previous.getRepresentativeDecl();
5174         Diag(D.DeclIdentLoc, diag::err_redefinition) << VD->getDeclName();
5175         Diag(Old->getLocation(), diag::note_previous_definition);
5176       } else {
5177         PushOnScopeChains(VD, S);
5178       }
5179     } else {
5180       CurContext->addDecl(VD);
5181     }
5182     Expr *Begin = D.Range.Begin;
5183     if (!IsDeclTyDependent && Begin && !Begin->isTypeDependent()) {
5184       ExprResult BeginRes =
5185           PerformImplicitConversion(Begin, DeclTy, AA_Converting);
5186       Begin = BeginRes.get();
5187     }
5188     Expr *End = D.Range.End;
5189     if (!IsDeclTyDependent && End && !End->isTypeDependent()) {
5190       ExprResult EndRes = PerformImplicitConversion(End, DeclTy, AA_Converting);
5191       End = EndRes.get();
5192     }
5193     Expr *Step = D.Range.Step;
5194     if (!IsDeclTyDependent && Step && !Step->isTypeDependent()) {
5195       if (!Step->getType()->isIntegralType(Context)) {
5196         Diag(Step->getExprLoc(), diag::err_omp_iterator_step_not_integral)
5197             << Step << Step->getSourceRange();
5198         IsCorrect = false;
5199         continue;
5200       }
5201       Optional<llvm::APSInt> Result = Step->getIntegerConstantExpr(Context);
5202       // OpenMP 5.0, 2.1.6 Iterators, Restrictions
5203       // If the step expression of a range-specification equals zero, the
5204       // behavior is unspecified.
5205       if (Result && Result->isNullValue()) {
5206         Diag(Step->getExprLoc(), diag::err_omp_iterator_step_constant_zero)
5207             << Step << Step->getSourceRange();
5208         IsCorrect = false;
5209         continue;
5210       }
5211     }
5212     if (!Begin || !End || !IsCorrect) {
5213       IsCorrect = false;
5214       continue;
5215     }
5216     OMPIteratorExpr::IteratorDefinition &IDElem = ID.emplace_back();
5217     IDElem.IteratorDecl = VD;
5218     IDElem.AssignmentLoc = D.AssignLoc;
5219     IDElem.Range.Begin = Begin;
5220     IDElem.Range.End = End;
5221     IDElem.Range.Step = Step;
5222     IDElem.ColonLoc = D.ColonLoc;
5223     IDElem.SecondColonLoc = D.SecColonLoc;
5224   }
5225   if (!IsCorrect) {
5226     // Invalidate all created iterator declarations if error is found.
5227     for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5228       if (Decl *ID = D.IteratorDecl)
5229         ID->setInvalidDecl();
5230     }
5231     return ExprError();
5232   }
5233   SmallVector<OMPIteratorHelperData, 4> Helpers;
5234   if (!CurContext->isDependentContext()) {
5235     // Build number of ityeration for each iteration range.
5236     // Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) :
5237     // ((Begini-Stepi-1-Endi) / -Stepi);
5238     for (OMPIteratorExpr::IteratorDefinition &D : ID) {
5239       // (Endi - Begini)
5240       ExprResult Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, D.Range.End,
5241                                           D.Range.Begin);
5242       if(!Res.isUsable()) {
5243         IsCorrect = false;
5244         continue;
5245       }
5246       ExprResult St, St1;
5247       if (D.Range.Step) {
5248         St = D.Range.Step;
5249         // (Endi - Begini) + Stepi
5250         Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res.get(), St.get());
5251         if (!Res.isUsable()) {
5252           IsCorrect = false;
5253           continue;
5254         }
5255         // (Endi - Begini) + Stepi - 1
5256         Res =
5257             CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res.get(),
5258                                ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5259         if (!Res.isUsable()) {
5260           IsCorrect = false;
5261           continue;
5262         }
5263         // ((Endi - Begini) + Stepi - 1) / Stepi
5264         Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res.get(), St.get());
5265         if (!Res.isUsable()) {
5266           IsCorrect = false;
5267           continue;
5268         }
5269         St1 = CreateBuiltinUnaryOp(D.AssignmentLoc, UO_Minus, D.Range.Step);
5270         // (Begini - Endi)
5271         ExprResult Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub,
5272                                              D.Range.Begin, D.Range.End);
5273         if (!Res1.isUsable()) {
5274           IsCorrect = false;
5275           continue;
5276         }
5277         // (Begini - Endi) - Stepi
5278         Res1 =
5279             CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res1.get(), St1.get());
5280         if (!Res1.isUsable()) {
5281           IsCorrect = false;
5282           continue;
5283         }
5284         // (Begini - Endi) - Stepi - 1
5285         Res1 =
5286             CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res1.get(),
5287                                ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5288         if (!Res1.isUsable()) {
5289           IsCorrect = false;
5290           continue;
5291         }
5292         // ((Begini - Endi) - Stepi - 1) / (-Stepi)
5293         Res1 =
5294             CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res1.get(), St1.get());
5295         if (!Res1.isUsable()) {
5296           IsCorrect = false;
5297           continue;
5298         }
5299         // Stepi > 0.
5300         ExprResult CmpRes =
5301             CreateBuiltinBinOp(D.AssignmentLoc, BO_GT, D.Range.Step,
5302                                ActOnIntegerConstant(D.AssignmentLoc, 0).get());
5303         if (!CmpRes.isUsable()) {
5304           IsCorrect = false;
5305           continue;
5306         }
5307         Res = ActOnConditionalOp(D.AssignmentLoc, D.AssignmentLoc, CmpRes.get(),
5308                                  Res.get(), Res1.get());
5309         if (!Res.isUsable()) {
5310           IsCorrect = false;
5311           continue;
5312         }
5313       }
5314       Res = ActOnFinishFullExpr(Res.get(), /*DiscardedValue=*/false);
5315       if (!Res.isUsable()) {
5316         IsCorrect = false;
5317         continue;
5318       }
5319 
5320       // Build counter update.
5321       // Build counter.
5322       auto *CounterVD =
5323           VarDecl::Create(Context, CurContext, D.IteratorDecl->getBeginLoc(),
5324                           D.IteratorDecl->getBeginLoc(), nullptr,
5325                           Res.get()->getType(), nullptr, SC_None);
5326       CounterVD->setImplicit();
5327       ExprResult RefRes =
5328           BuildDeclRefExpr(CounterVD, CounterVD->getType(), VK_LValue,
5329                            D.IteratorDecl->getBeginLoc());
5330       // Build counter update.
5331       // I = Begini + counter * Stepi;
5332       ExprResult UpdateRes;
5333       if (D.Range.Step) {
5334         UpdateRes = CreateBuiltinBinOp(
5335             D.AssignmentLoc, BO_Mul,
5336             DefaultLvalueConversion(RefRes.get()).get(), St.get());
5337       } else {
5338         UpdateRes = DefaultLvalueConversion(RefRes.get());
5339       }
5340       if (!UpdateRes.isUsable()) {
5341         IsCorrect = false;
5342         continue;
5343       }
5344       UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, D.Range.Begin,
5345                                      UpdateRes.get());
5346       if (!UpdateRes.isUsable()) {
5347         IsCorrect = false;
5348         continue;
5349       }
5350       ExprResult VDRes =
5351           BuildDeclRefExpr(cast<VarDecl>(D.IteratorDecl),
5352                            cast<VarDecl>(D.IteratorDecl)->getType(), VK_LValue,
5353                            D.IteratorDecl->getBeginLoc());
5354       UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Assign, VDRes.get(),
5355                                      UpdateRes.get());
5356       if (!UpdateRes.isUsable()) {
5357         IsCorrect = false;
5358         continue;
5359       }
5360       UpdateRes =
5361           ActOnFinishFullExpr(UpdateRes.get(), /*DiscardedValue=*/true);
5362       if (!UpdateRes.isUsable()) {
5363         IsCorrect = false;
5364         continue;
5365       }
5366       ExprResult CounterUpdateRes =
5367           CreateBuiltinUnaryOp(D.AssignmentLoc, UO_PreInc, RefRes.get());
5368       if (!CounterUpdateRes.isUsable()) {
5369         IsCorrect = false;
5370         continue;
5371       }
5372       CounterUpdateRes =
5373           ActOnFinishFullExpr(CounterUpdateRes.get(), /*DiscardedValue=*/true);
5374       if (!CounterUpdateRes.isUsable()) {
5375         IsCorrect = false;
5376         continue;
5377       }
5378       OMPIteratorHelperData &HD = Helpers.emplace_back();
5379       HD.CounterVD = CounterVD;
5380       HD.Upper = Res.get();
5381       HD.Update = UpdateRes.get();
5382       HD.CounterUpdate = CounterUpdateRes.get();
5383     }
5384   } else {
5385     Helpers.assign(ID.size(), {});
5386   }
5387   if (!IsCorrect) {
5388     // Invalidate all created iterator declarations if error is found.
5389     for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5390       if (Decl *ID = D.IteratorDecl)
5391         ID->setInvalidDecl();
5392     }
5393     return ExprError();
5394   }
5395   return OMPIteratorExpr::Create(Context, Context.OMPIteratorTy, IteratorKwLoc,
5396                                  LLoc, RLoc, ID, Helpers);
5397 }
5398 
5399 ExprResult
CreateBuiltinArraySubscriptExpr(Expr * Base,SourceLocation LLoc,Expr * Idx,SourceLocation RLoc)5400 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5401                                       Expr *Idx, SourceLocation RLoc) {
5402   Expr *LHSExp = Base;
5403   Expr *RHSExp = Idx;
5404 
5405   ExprValueKind VK = VK_LValue;
5406   ExprObjectKind OK = OK_Ordinary;
5407 
5408   // Per C++ core issue 1213, the result is an xvalue if either operand is
5409   // a non-lvalue array, and an lvalue otherwise.
5410   if (getLangOpts().CPlusPlus11) {
5411     for (auto *Op : {LHSExp, RHSExp}) {
5412       Op = Op->IgnoreImplicit();
5413       if (Op->getType()->isArrayType() && !Op->isLValue())
5414         VK = VK_XValue;
5415     }
5416   }
5417 
5418   // Perform default conversions.
5419   if (!LHSExp->getType()->getAs<VectorType>()) {
5420     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
5421     if (Result.isInvalid())
5422       return ExprError();
5423     LHSExp = Result.get();
5424   }
5425   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
5426   if (Result.isInvalid())
5427     return ExprError();
5428   RHSExp = Result.get();
5429 
5430   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
5431 
5432   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
5433   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
5434   // in the subscript position. As a result, we need to derive the array base
5435   // and index from the expression types.
5436   Expr *BaseExpr, *IndexExpr;
5437   QualType ResultType;
5438   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
5439     BaseExpr = LHSExp;
5440     IndexExpr = RHSExp;
5441     ResultType = Context.DependentTy;
5442   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
5443     BaseExpr = LHSExp;
5444     IndexExpr = RHSExp;
5445     ResultType = PTy->getPointeeType();
5446   } else if (const ObjCObjectPointerType *PTy =
5447                LHSTy->getAs<ObjCObjectPointerType>()) {
5448     BaseExpr = LHSExp;
5449     IndexExpr = RHSExp;
5450 
5451     // Use custom logic if this should be the pseudo-object subscript
5452     // expression.
5453     if (!LangOpts.isSubscriptPointerArithmetic())
5454       return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
5455                                           nullptr);
5456 
5457     ResultType = PTy->getPointeeType();
5458   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
5459      // Handle the uncommon case of "123[Ptr]".
5460     BaseExpr = RHSExp;
5461     IndexExpr = LHSExp;
5462     ResultType = PTy->getPointeeType();
5463   } else if (const ObjCObjectPointerType *PTy =
5464                RHSTy->getAs<ObjCObjectPointerType>()) {
5465      // Handle the uncommon case of "123[Ptr]".
5466     BaseExpr = RHSExp;
5467     IndexExpr = LHSExp;
5468     ResultType = PTy->getPointeeType();
5469     if (!LangOpts.isSubscriptPointerArithmetic()) {
5470       Diag(LLoc, diag::err_subscript_nonfragile_interface)
5471         << ResultType << BaseExpr->getSourceRange();
5472       return ExprError();
5473     }
5474   } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
5475     BaseExpr = LHSExp;    // vectors: V[123]
5476     IndexExpr = RHSExp;
5477     // We apply C++ DR1213 to vector subscripting too.
5478     if (getLangOpts().CPlusPlus11 && LHSExp->getValueKind() == VK_RValue) {
5479       ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
5480       if (Materialized.isInvalid())
5481         return ExprError();
5482       LHSExp = Materialized.get();
5483     }
5484     VK = LHSExp->getValueKind();
5485     if (VK != VK_RValue)
5486       OK = OK_VectorComponent;
5487 
5488     ResultType = VTy->getElementType();
5489     QualType BaseType = BaseExpr->getType();
5490     Qualifiers BaseQuals = BaseType.getQualifiers();
5491     Qualifiers MemberQuals = ResultType.getQualifiers();
5492     Qualifiers Combined = BaseQuals + MemberQuals;
5493     if (Combined != MemberQuals)
5494       ResultType = Context.getQualifiedType(ResultType, Combined);
5495   } else if (LHSTy->isArrayType()) {
5496     // If we see an array that wasn't promoted by
5497     // DefaultFunctionArrayLvalueConversion, it must be an array that
5498     // wasn't promoted because of the C90 rule that doesn't
5499     // allow promoting non-lvalue arrays.  Warn, then
5500     // force the promotion here.
5501     Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5502         << LHSExp->getSourceRange();
5503     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
5504                                CK_ArrayToPointerDecay).get();
5505     LHSTy = LHSExp->getType();
5506 
5507     BaseExpr = LHSExp;
5508     IndexExpr = RHSExp;
5509     ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
5510   } else if (RHSTy->isArrayType()) {
5511     // Same as previous, except for 123[f().a] case
5512     Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5513         << RHSExp->getSourceRange();
5514     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
5515                                CK_ArrayToPointerDecay).get();
5516     RHSTy = RHSExp->getType();
5517 
5518     BaseExpr = RHSExp;
5519     IndexExpr = LHSExp;
5520     ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
5521   } else {
5522     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
5523        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5524   }
5525   // C99 6.5.2.1p1
5526   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
5527     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
5528                      << IndexExpr->getSourceRange());
5529 
5530   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5531        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5532          && !IndexExpr->isTypeDependent())
5533     Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
5534 
5535   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5536   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5537   // type. Note that Functions are not objects, and that (in C99 parlance)
5538   // incomplete types are not object types.
5539   if (ResultType->isFunctionType()) {
5540     Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
5541         << ResultType << BaseExpr->getSourceRange();
5542     return ExprError();
5543   }
5544 
5545   if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
5546     // GNU extension: subscripting on pointer to void
5547     Diag(LLoc, diag::ext_gnu_subscript_void_type)
5548       << BaseExpr->getSourceRange();
5549 
5550     // C forbids expressions of unqualified void type from being l-values.
5551     // See IsCForbiddenLValueType.
5552     if (!ResultType.hasQualifiers()) VK = VK_RValue;
5553   } else if (!ResultType->isDependentType() &&
5554              RequireCompleteSizedType(
5555                  LLoc, ResultType,
5556                  diag::err_subscript_incomplete_or_sizeless_type, BaseExpr))
5557     return ExprError();
5558 
5559   assert(VK == VK_RValue || LangOpts.CPlusPlus ||
5560          !ResultType.isCForbiddenLValueType());
5561 
5562   if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
5563       FunctionScopes.size() > 1) {
5564     if (auto *TT =
5565             LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
5566       for (auto I = FunctionScopes.rbegin(),
5567                 E = std::prev(FunctionScopes.rend());
5568            I != E; ++I) {
5569         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
5570         if (CSI == nullptr)
5571           break;
5572         DeclContext *DC = nullptr;
5573         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
5574           DC = LSI->CallOperator;
5575         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
5576           DC = CRSI->TheCapturedDecl;
5577         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
5578           DC = BSI->TheDecl;
5579         if (DC) {
5580           if (DC->containsDecl(TT->getDecl()))
5581             break;
5582           captureVariablyModifiedType(
5583               Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
5584         }
5585       }
5586     }
5587   }
5588 
5589   return new (Context)
5590       ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
5591 }
5592 
CheckCXXDefaultArgExpr(SourceLocation CallLoc,FunctionDecl * FD,ParmVarDecl * Param)5593 bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
5594                                   ParmVarDecl *Param) {
5595   if (Param->hasUnparsedDefaultArg()) {
5596     // If we've already cleared out the location for the default argument,
5597     // that means we're parsing it right now.
5598     if (!UnparsedDefaultArgLocs.count(Param)) {
5599       Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
5600       Diag(CallLoc, diag::note_recursive_default_argument_used_here);
5601       Param->setInvalidDecl();
5602       return true;
5603     }
5604 
5605     Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later)
5606         << FD << cast<CXXRecordDecl>(FD->getDeclContext());
5607     Diag(UnparsedDefaultArgLocs[Param],
5608          diag::note_default_argument_declared_here);
5609     return true;
5610   }
5611 
5612   if (Param->hasUninstantiatedDefaultArg() &&
5613       InstantiateDefaultArgument(CallLoc, FD, Param))
5614     return true;
5615 
5616   assert(Param->hasInit() && "default argument but no initializer?");
5617 
5618   // If the default expression creates temporaries, we need to
5619   // push them to the current stack of expression temporaries so they'll
5620   // be properly destroyed.
5621   // FIXME: We should really be rebuilding the default argument with new
5622   // bound temporaries; see the comment in PR5810.
5623   // We don't need to do that with block decls, though, because
5624   // blocks in default argument expression can never capture anything.
5625   if (auto Init = dyn_cast<ExprWithCleanups>(Param->getInit())) {
5626     // Set the "needs cleanups" bit regardless of whether there are
5627     // any explicit objects.
5628     Cleanup.setExprNeedsCleanups(Init->cleanupsHaveSideEffects());
5629 
5630     // Append all the objects to the cleanup list.  Right now, this
5631     // should always be a no-op, because blocks in default argument
5632     // expressions should never be able to capture anything.
5633     assert(!Init->getNumObjects() &&
5634            "default argument expression has capturing blocks?");
5635   }
5636 
5637   // We already type-checked the argument, so we know it works.
5638   // Just mark all of the declarations in this potentially-evaluated expression
5639   // as being "referenced".
5640   EnterExpressionEvaluationContext EvalContext(
5641       *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
5642   MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
5643                                    /*SkipLocalVariables=*/true);
5644   return false;
5645 }
5646 
BuildCXXDefaultArgExpr(SourceLocation CallLoc,FunctionDecl * FD,ParmVarDecl * Param)5647 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
5648                                         FunctionDecl *FD, ParmVarDecl *Param) {
5649   assert(Param->hasDefaultArg() && "can't build nonexistent default arg");
5650   if (CheckCXXDefaultArgExpr(CallLoc, FD, Param))
5651     return ExprError();
5652   return CXXDefaultArgExpr::Create(Context, CallLoc, Param, CurContext);
5653 }
5654 
5655 Sema::VariadicCallType
getVariadicCallType(FunctionDecl * FDecl,const FunctionProtoType * Proto,Expr * Fn)5656 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
5657                           Expr *Fn) {
5658   if (Proto && Proto->isVariadic()) {
5659     if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
5660       return VariadicConstructor;
5661     else if (Fn && Fn->getType()->isBlockPointerType())
5662       return VariadicBlock;
5663     else if (FDecl) {
5664       if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
5665         if (Method->isInstance())
5666           return VariadicMethod;
5667     } else if (Fn && Fn->getType() == Context.BoundMemberTy)
5668       return VariadicMethod;
5669     return VariadicFunction;
5670   }
5671   return VariadicDoesNotApply;
5672 }
5673 
5674 namespace {
5675 class FunctionCallCCC final : public FunctionCallFilterCCC {
5676 public:
FunctionCallCCC(Sema & SemaRef,const IdentifierInfo * FuncName,unsigned NumArgs,MemberExpr * ME)5677   FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
5678                   unsigned NumArgs, MemberExpr *ME)
5679       : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
5680         FunctionName(FuncName) {}
5681 
ValidateCandidate(const TypoCorrection & candidate)5682   bool ValidateCandidate(const TypoCorrection &candidate) override {
5683     if (!candidate.getCorrectionSpecifier() ||
5684         candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
5685       return false;
5686     }
5687 
5688     return FunctionCallFilterCCC::ValidateCandidate(candidate);
5689   }
5690 
clone()5691   std::unique_ptr<CorrectionCandidateCallback> clone() override {
5692     return std::make_unique<FunctionCallCCC>(*this);
5693   }
5694 
5695 private:
5696   const IdentifierInfo *const FunctionName;
5697 };
5698 }
5699 
TryTypoCorrectionForCall(Sema & S,Expr * Fn,FunctionDecl * FDecl,ArrayRef<Expr * > Args)5700 static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
5701                                                FunctionDecl *FDecl,
5702                                                ArrayRef<Expr *> Args) {
5703   MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
5704   DeclarationName FuncName = FDecl->getDeclName();
5705   SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
5706 
5707   FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
5708   if (TypoCorrection Corrected = S.CorrectTypo(
5709           DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
5710           S.getScopeForContext(S.CurContext), nullptr, CCC,
5711           Sema::CTK_ErrorRecovery)) {
5712     if (NamedDecl *ND = Corrected.getFoundDecl()) {
5713       if (Corrected.isOverloaded()) {
5714         OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
5715         OverloadCandidateSet::iterator Best;
5716         for (NamedDecl *CD : Corrected) {
5717           if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
5718             S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
5719                                    OCS);
5720         }
5721         switch (OCS.BestViableFunction(S, NameLoc, Best)) {
5722         case OR_Success:
5723           ND = Best->FoundDecl;
5724           Corrected.setCorrectionDecl(ND);
5725           break;
5726         default:
5727           break;
5728         }
5729       }
5730       ND = ND->getUnderlyingDecl();
5731       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
5732         return Corrected;
5733     }
5734   }
5735   return TypoCorrection();
5736 }
5737 
5738 /// ConvertArgumentsForCall - Converts the arguments specified in
5739 /// Args/NumArgs to the parameter types of the function FDecl with
5740 /// function prototype Proto. Call is the call expression itself, and
5741 /// Fn is the function expression. For a C++ member function, this
5742 /// routine does not attempt to convert the object argument. Returns
5743 /// true if the call is ill-formed.
5744 bool
ConvertArgumentsForCall(CallExpr * Call,Expr * Fn,FunctionDecl * FDecl,const FunctionProtoType * Proto,ArrayRef<Expr * > Args,SourceLocation RParenLoc,bool IsExecConfig)5745 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
5746                               FunctionDecl *FDecl,
5747                               const FunctionProtoType *Proto,
5748                               ArrayRef<Expr *> Args,
5749                               SourceLocation RParenLoc,
5750                               bool IsExecConfig) {
5751   // Bail out early if calling a builtin with custom typechecking.
5752   if (FDecl)
5753     if (unsigned ID = FDecl->getBuiltinID())
5754       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
5755         return false;
5756 
5757   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
5758   // assignment, to the types of the corresponding parameter, ...
5759   unsigned NumParams = Proto->getNumParams();
5760   bool Invalid = false;
5761   unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
5762   unsigned FnKind = Fn->getType()->isBlockPointerType()
5763                        ? 1 /* block */
5764                        : (IsExecConfig ? 3 /* kernel function (exec config) */
5765                                        : 0 /* function */);
5766 
5767   // If too few arguments are available (and we don't have default
5768   // arguments for the remaining parameters), don't make the call.
5769   if (Args.size() < NumParams) {
5770     if (Args.size() < MinArgs) {
5771       TypoCorrection TC;
5772       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5773         unsigned diag_id =
5774             MinArgs == NumParams && !Proto->isVariadic()
5775                 ? diag::err_typecheck_call_too_few_args_suggest
5776                 : diag::err_typecheck_call_too_few_args_at_least_suggest;
5777         diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
5778                                         << static_cast<unsigned>(Args.size())
5779                                         << TC.getCorrectionRange());
5780       } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
5781         Diag(RParenLoc,
5782              MinArgs == NumParams && !Proto->isVariadic()
5783                  ? diag::err_typecheck_call_too_few_args_one
5784                  : diag::err_typecheck_call_too_few_args_at_least_one)
5785             << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
5786       else
5787         Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
5788                             ? diag::err_typecheck_call_too_few_args
5789                             : diag::err_typecheck_call_too_few_args_at_least)
5790             << FnKind << MinArgs << static_cast<unsigned>(Args.size())
5791             << Fn->getSourceRange();
5792 
5793       // Emit the location of the prototype.
5794       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5795         Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
5796 
5797       return true;
5798     }
5799     // We reserve space for the default arguments when we create
5800     // the call expression, before calling ConvertArgumentsForCall.
5801     assert((Call->getNumArgs() == NumParams) &&
5802            "We should have reserved space for the default arguments before!");
5803   }
5804 
5805   // If too many are passed and not variadic, error on the extras and drop
5806   // them.
5807   if (Args.size() > NumParams) {
5808     if (!Proto->isVariadic()) {
5809       TypoCorrection TC;
5810       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5811         unsigned diag_id =
5812             MinArgs == NumParams && !Proto->isVariadic()
5813                 ? diag::err_typecheck_call_too_many_args_suggest
5814                 : diag::err_typecheck_call_too_many_args_at_most_suggest;
5815         diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
5816                                         << static_cast<unsigned>(Args.size())
5817                                         << TC.getCorrectionRange());
5818       } else if (NumParams == 1 && FDecl &&
5819                  FDecl->getParamDecl(0)->getDeclName())
5820         Diag(Args[NumParams]->getBeginLoc(),
5821              MinArgs == NumParams
5822                  ? diag::err_typecheck_call_too_many_args_one
5823                  : diag::err_typecheck_call_too_many_args_at_most_one)
5824             << FnKind << FDecl->getParamDecl(0)
5825             << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
5826             << SourceRange(Args[NumParams]->getBeginLoc(),
5827                            Args.back()->getEndLoc());
5828       else
5829         Diag(Args[NumParams]->getBeginLoc(),
5830              MinArgs == NumParams
5831                  ? diag::err_typecheck_call_too_many_args
5832                  : diag::err_typecheck_call_too_many_args_at_most)
5833             << FnKind << NumParams << static_cast<unsigned>(Args.size())
5834             << Fn->getSourceRange()
5835             << SourceRange(Args[NumParams]->getBeginLoc(),
5836                            Args.back()->getEndLoc());
5837 
5838       // Emit the location of the prototype.
5839       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5840         Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
5841 
5842       // This deletes the extra arguments.
5843       Call->shrinkNumArgs(NumParams);
5844       return true;
5845     }
5846   }
5847   SmallVector<Expr *, 8> AllArgs;
5848   VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
5849 
5850   Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
5851                                    AllArgs, CallType);
5852   if (Invalid)
5853     return true;
5854   unsigned TotalNumArgs = AllArgs.size();
5855   for (unsigned i = 0; i < TotalNumArgs; ++i)
5856     Call->setArg(i, AllArgs[i]);
5857 
5858   return false;
5859 }
5860 
GatherArgumentsForCall(SourceLocation CallLoc,FunctionDecl * FDecl,const FunctionProtoType * Proto,unsigned FirstParam,ArrayRef<Expr * > Args,SmallVectorImpl<Expr * > & AllArgs,VariadicCallType CallType,bool AllowExplicit,bool IsListInitialization)5861 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
5862                                   const FunctionProtoType *Proto,
5863                                   unsigned FirstParam, ArrayRef<Expr *> Args,
5864                                   SmallVectorImpl<Expr *> &AllArgs,
5865                                   VariadicCallType CallType, bool AllowExplicit,
5866                                   bool IsListInitialization) {
5867   unsigned NumParams = Proto->getNumParams();
5868   bool Invalid = false;
5869   size_t ArgIx = 0;
5870   // Continue to check argument types (even if we have too few/many args).
5871   for (unsigned i = FirstParam; i < NumParams; i++) {
5872     QualType ProtoArgType = Proto->getParamType(i);
5873 
5874     Expr *Arg;
5875     ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
5876     if (ArgIx < Args.size()) {
5877       Arg = Args[ArgIx++];
5878 
5879       if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
5880                               diag::err_call_incomplete_argument, Arg))
5881         return true;
5882 
5883       // Strip the unbridged-cast placeholder expression off, if applicable.
5884       bool CFAudited = false;
5885       if (Arg->getType() == Context.ARCUnbridgedCastTy &&
5886           FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5887           (!Param || !Param->hasAttr<CFConsumedAttr>()))
5888         Arg = stripARCUnbridgedCast(Arg);
5889       else if (getLangOpts().ObjCAutoRefCount &&
5890                FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5891                (!Param || !Param->hasAttr<CFConsumedAttr>()))
5892         CFAudited = true;
5893 
5894       if (Proto->getExtParameterInfo(i).isNoEscape())
5895         if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
5896           BE->getBlockDecl()->setDoesNotEscape();
5897 
5898       InitializedEntity Entity =
5899           Param ? InitializedEntity::InitializeParameter(Context, Param,
5900                                                          ProtoArgType)
5901                 : InitializedEntity::InitializeParameter(
5902                       Context, ProtoArgType, Proto->isParamConsumed(i));
5903 
5904       // Remember that parameter belongs to a CF audited API.
5905       if (CFAudited)
5906         Entity.setParameterCFAudited();
5907 
5908       ExprResult ArgE = PerformCopyInitialization(
5909           Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
5910       if (ArgE.isInvalid())
5911         return true;
5912 
5913       Arg = ArgE.getAs<Expr>();
5914     } else {
5915       assert(Param && "can't use default arguments without a known callee");
5916 
5917       ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
5918       if (ArgExpr.isInvalid())
5919         return true;
5920 
5921       Arg = ArgExpr.getAs<Expr>();
5922     }
5923 
5924     // Check for array bounds violations for each argument to the call. This
5925     // check only triggers warnings when the argument isn't a more complex Expr
5926     // with its own checking, such as a BinaryOperator.
5927     CheckArrayAccess(Arg);
5928 
5929     // Check for violations of C99 static array rules (C99 6.7.5.3p7).
5930     CheckStaticArrayArgument(CallLoc, Param, Arg);
5931 
5932     AllArgs.push_back(Arg);
5933   }
5934 
5935   // If this is a variadic call, handle args passed through "...".
5936   if (CallType != VariadicDoesNotApply) {
5937     // Assume that extern "C" functions with variadic arguments that
5938     // return __unknown_anytype aren't *really* variadic.
5939     if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
5940         FDecl->isExternC()) {
5941       for (Expr *A : Args.slice(ArgIx)) {
5942         QualType paramType; // ignored
5943         ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
5944         Invalid |= arg.isInvalid();
5945         AllArgs.push_back(arg.get());
5946       }
5947 
5948     // Otherwise do argument promotion, (C99 6.5.2.2p7).
5949     } else {
5950       for (Expr *A : Args.slice(ArgIx)) {
5951         ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
5952         Invalid |= Arg.isInvalid();
5953         AllArgs.push_back(Arg.get());
5954       }
5955     }
5956 
5957     // Check for array bounds violations.
5958     for (Expr *A : Args.slice(ArgIx))
5959       CheckArrayAccess(A);
5960   }
5961   return Invalid;
5962 }
5963 
DiagnoseCalleeStaticArrayParam(Sema & S,ParmVarDecl * PVD)5964 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
5965   TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
5966   if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
5967     TL = DTL.getOriginalLoc();
5968   if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
5969     S.Diag(PVD->getLocation(), diag::note_callee_static_array)
5970       << ATL.getLocalSourceRange();
5971 }
5972 
5973 /// CheckStaticArrayArgument - If the given argument corresponds to a static
5974 /// array parameter, check that it is non-null, and that if it is formed by
5975 /// array-to-pointer decay, the underlying array is sufficiently large.
5976 ///
5977 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
5978 /// array type derivation, then for each call to the function, the value of the
5979 /// corresponding actual argument shall provide access to the first element of
5980 /// an array with at least as many elements as specified by the size expression.
5981 void
CheckStaticArrayArgument(SourceLocation CallLoc,ParmVarDecl * Param,const Expr * ArgExpr)5982 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
5983                                ParmVarDecl *Param,
5984                                const Expr *ArgExpr) {
5985   // Static array parameters are not supported in C++.
5986   if (!Param || getLangOpts().CPlusPlus)
5987     return;
5988 
5989   QualType OrigTy = Param->getOriginalType();
5990 
5991   const ArrayType *AT = Context.getAsArrayType(OrigTy);
5992   if (!AT || AT->getSizeModifier() != ArrayType::Static)
5993     return;
5994 
5995   if (ArgExpr->isNullPointerConstant(Context,
5996                                      Expr::NPC_NeverValueDependent)) {
5997     Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
5998     DiagnoseCalleeStaticArrayParam(*this, Param);
5999     return;
6000   }
6001 
6002   const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
6003   if (!CAT)
6004     return;
6005 
6006   const ConstantArrayType *ArgCAT =
6007     Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
6008   if (!ArgCAT)
6009     return;
6010 
6011   if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
6012                                              ArgCAT->getElementType())) {
6013     if (ArgCAT->getSize().ult(CAT->getSize())) {
6014       Diag(CallLoc, diag::warn_static_array_too_small)
6015           << ArgExpr->getSourceRange()
6016           << (unsigned)ArgCAT->getSize().getZExtValue()
6017           << (unsigned)CAT->getSize().getZExtValue() << 0;
6018       DiagnoseCalleeStaticArrayParam(*this, Param);
6019     }
6020     return;
6021   }
6022 
6023   Optional<CharUnits> ArgSize =
6024       getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
6025   Optional<CharUnits> ParmSize = getASTContext().getTypeSizeInCharsIfKnown(CAT);
6026   if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
6027     Diag(CallLoc, diag::warn_static_array_too_small)
6028         << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
6029         << (unsigned)ParmSize->getQuantity() << 1;
6030     DiagnoseCalleeStaticArrayParam(*this, Param);
6031   }
6032 }
6033 
6034 /// Given a function expression of unknown-any type, try to rebuild it
6035 /// to have a function type.
6036 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
6037 
6038 /// Is the given type a placeholder that we need to lower out
6039 /// immediately during argument processing?
isPlaceholderToRemoveAsArg(QualType type)6040 static bool isPlaceholderToRemoveAsArg(QualType type) {
6041   // Placeholders are never sugared.
6042   const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
6043   if (!placeholder) return false;
6044 
6045   switch (placeholder->getKind()) {
6046   // Ignore all the non-placeholder types.
6047 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6048   case BuiltinType::Id:
6049 #include "clang/Basic/OpenCLImageTypes.def"
6050 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6051   case BuiltinType::Id:
6052 #include "clang/Basic/OpenCLExtensionTypes.def"
6053   // In practice we'll never use this, since all SVE types are sugared
6054   // via TypedefTypes rather than exposed directly as BuiltinTypes.
6055 #define SVE_TYPE(Name, Id, SingletonId) \
6056   case BuiltinType::Id:
6057 #include "clang/Basic/AArch64SVEACLETypes.def"
6058 #define PPC_MMA_VECTOR_TYPE(Name, Id, Size) \
6059   case BuiltinType::Id:
6060 #include "clang/Basic/PPCTypes.def"
6061 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
6062 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
6063 #include "clang/AST/BuiltinTypes.def"
6064     return false;
6065 
6066   // We cannot lower out overload sets; they might validly be resolved
6067   // by the call machinery.
6068   case BuiltinType::Overload:
6069     return false;
6070 
6071   // Unbridged casts in ARC can be handled in some call positions and
6072   // should be left in place.
6073   case BuiltinType::ARCUnbridgedCast:
6074     return false;
6075 
6076   // Pseudo-objects should be converted as soon as possible.
6077   case BuiltinType::PseudoObject:
6078     return true;
6079 
6080   // The debugger mode could theoretically but currently does not try
6081   // to resolve unknown-typed arguments based on known parameter types.
6082   case BuiltinType::UnknownAny:
6083     return true;
6084 
6085   // These are always invalid as call arguments and should be reported.
6086   case BuiltinType::BoundMember:
6087   case BuiltinType::BuiltinFn:
6088   case BuiltinType::IncompleteMatrixIdx:
6089   case BuiltinType::OMPArraySection:
6090   case BuiltinType::OMPArrayShaping:
6091   case BuiltinType::OMPIterator:
6092     return true;
6093 
6094   }
6095   llvm_unreachable("bad builtin type kind");
6096 }
6097 
6098 /// Check an argument list for placeholders that we won't try to
6099 /// handle later.
checkArgsForPlaceholders(Sema & S,MultiExprArg args)6100 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
6101   // Apply this processing to all the arguments at once instead of
6102   // dying at the first failure.
6103   bool hasInvalid = false;
6104   for (size_t i = 0, e = args.size(); i != e; i++) {
6105     if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
6106       ExprResult result = S.CheckPlaceholderExpr(args[i]);
6107       if (result.isInvalid()) hasInvalid = true;
6108       else args[i] = result.get();
6109     }
6110   }
6111   return hasInvalid;
6112 }
6113 
6114 /// If a builtin function has a pointer argument with no explicit address
6115 /// space, then it should be able to accept a pointer to any address
6116 /// space as input.  In order to do this, we need to replace the
6117 /// standard builtin declaration with one that uses the same address space
6118 /// as the call.
6119 ///
6120 /// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
6121 ///                  it does not contain any pointer arguments without
6122 ///                  an address space qualifer.  Otherwise the rewritten
6123 ///                  FunctionDecl is returned.
6124 /// TODO: Handle pointer return types.
rewriteBuiltinFunctionDecl(Sema * Sema,ASTContext & Context,FunctionDecl * FDecl,MultiExprArg ArgExprs)6125 static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
6126                                                 FunctionDecl *FDecl,
6127                                                 MultiExprArg ArgExprs) {
6128 
6129   QualType DeclType = FDecl->getType();
6130   const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
6131 
6132   if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT ||
6133       ArgExprs.size() < FT->getNumParams())
6134     return nullptr;
6135 
6136   bool NeedsNewDecl = false;
6137   unsigned i = 0;
6138   SmallVector<QualType, 8> OverloadParams;
6139 
6140   for (QualType ParamType : FT->param_types()) {
6141 
6142     // Convert array arguments to pointer to simplify type lookup.
6143     ExprResult ArgRes =
6144         Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
6145     if (ArgRes.isInvalid())
6146       return nullptr;
6147     Expr *Arg = ArgRes.get();
6148     QualType ArgType = Arg->getType();
6149     if (!ParamType->isPointerType() ||
6150         ParamType.hasAddressSpace() ||
6151         !ArgType->isPointerType() ||
6152         !ArgType->getPointeeType().hasAddressSpace()) {
6153       OverloadParams.push_back(ParamType);
6154       continue;
6155     }
6156 
6157     QualType PointeeType = ParamType->getPointeeType();
6158     if (PointeeType.hasAddressSpace())
6159       continue;
6160 
6161     NeedsNewDecl = true;
6162     LangAS AS = ArgType->getPointeeType().getAddressSpace();
6163 
6164     PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
6165     OverloadParams.push_back(Context.getPointerType(PointeeType));
6166   }
6167 
6168   if (!NeedsNewDecl)
6169     return nullptr;
6170 
6171   FunctionProtoType::ExtProtoInfo EPI;
6172   EPI.Variadic = FT->isVariadic();
6173   QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
6174                                                 OverloadParams, EPI);
6175   DeclContext *Parent = FDecl->getParent();
6176   FunctionDecl *OverloadDecl = FunctionDecl::Create(Context, Parent,
6177                                                     FDecl->getLocation(),
6178                                                     FDecl->getLocation(),
6179                                                     FDecl->getIdentifier(),
6180                                                     OverloadTy,
6181                                                     /*TInfo=*/nullptr,
6182                                                     SC_Extern, false,
6183                                                     /*hasPrototype=*/true);
6184   SmallVector<ParmVarDecl*, 16> Params;
6185   FT = cast<FunctionProtoType>(OverloadTy);
6186   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
6187     QualType ParamType = FT->getParamType(i);
6188     ParmVarDecl *Parm =
6189         ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
6190                                 SourceLocation(), nullptr, ParamType,
6191                                 /*TInfo=*/nullptr, SC_None, nullptr);
6192     Parm->setScopeInfo(0, i);
6193     Params.push_back(Parm);
6194   }
6195   OverloadDecl->setParams(Params);
6196   Sema->mergeDeclAttributes(OverloadDecl, FDecl);
6197   return OverloadDecl;
6198 }
6199 
checkDirectCallValidity(Sema & S,const Expr * Fn,FunctionDecl * Callee,MultiExprArg ArgExprs)6200 static void checkDirectCallValidity(Sema &S, const Expr *Fn,
6201                                     FunctionDecl *Callee,
6202                                     MultiExprArg ArgExprs) {
6203   // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
6204   // similar attributes) really don't like it when functions are called with an
6205   // invalid number of args.
6206   if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
6207                          /*PartialOverloading=*/false) &&
6208       !Callee->isVariadic())
6209     return;
6210   if (Callee->getMinRequiredArguments() > ArgExprs.size())
6211     return;
6212 
6213   if (const EnableIfAttr *Attr =
6214           S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) {
6215     S.Diag(Fn->getBeginLoc(),
6216            isa<CXXMethodDecl>(Callee)
6217                ? diag::err_ovl_no_viable_member_function_in_call
6218                : diag::err_ovl_no_viable_function_in_call)
6219         << Callee << Callee->getSourceRange();
6220     S.Diag(Callee->getLocation(),
6221            diag::note_ovl_candidate_disabled_by_function_cond_attr)
6222         << Attr->getCond()->getSourceRange() << Attr->getMessage();
6223     return;
6224   }
6225 }
6226 
enclosingClassIsRelatedToClassInWhichMembersWereFound(const UnresolvedMemberExpr * const UME,Sema & S)6227 static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
6228     const UnresolvedMemberExpr *const UME, Sema &S) {
6229 
6230   const auto GetFunctionLevelDCIfCXXClass =
6231       [](Sema &S) -> const CXXRecordDecl * {
6232     const DeclContext *const DC = S.getFunctionLevelDeclContext();
6233     if (!DC || !DC->getParent())
6234       return nullptr;
6235 
6236     // If the call to some member function was made from within a member
6237     // function body 'M' return return 'M's parent.
6238     if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
6239       return MD->getParent()->getCanonicalDecl();
6240     // else the call was made from within a default member initializer of a
6241     // class, so return the class.
6242     if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
6243       return RD->getCanonicalDecl();
6244     return nullptr;
6245   };
6246   // If our DeclContext is neither a member function nor a class (in the
6247   // case of a lambda in a default member initializer), we can't have an
6248   // enclosing 'this'.
6249 
6250   const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
6251   if (!CurParentClass)
6252     return false;
6253 
6254   // The naming class for implicit member functions call is the class in which
6255   // name lookup starts.
6256   const CXXRecordDecl *const NamingClass =
6257       UME->getNamingClass()->getCanonicalDecl();
6258   assert(NamingClass && "Must have naming class even for implicit access");
6259 
6260   // If the unresolved member functions were found in a 'naming class' that is
6261   // related (either the same or derived from) to the class that contains the
6262   // member function that itself contained the implicit member access.
6263 
6264   return CurParentClass == NamingClass ||
6265          CurParentClass->isDerivedFrom(NamingClass);
6266 }
6267 
6268 static void
tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(Sema & S,const UnresolvedMemberExpr * const UME,SourceLocation CallLoc)6269 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6270     Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
6271 
6272   if (!UME)
6273     return;
6274 
6275   LambdaScopeInfo *const CurLSI = S.getCurLambda();
6276   // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
6277   // already been captured, or if this is an implicit member function call (if
6278   // it isn't, an attempt to capture 'this' should already have been made).
6279   if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
6280       !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
6281     return;
6282 
6283   // Check if the naming class in which the unresolved members were found is
6284   // related (same as or is a base of) to the enclosing class.
6285 
6286   if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
6287     return;
6288 
6289 
6290   DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
6291   // If the enclosing function is not dependent, then this lambda is
6292   // capture ready, so if we can capture this, do so.
6293   if (!EnclosingFunctionCtx->isDependentContext()) {
6294     // If the current lambda and all enclosing lambdas can capture 'this' -
6295     // then go ahead and capture 'this' (since our unresolved overload set
6296     // contains at least one non-static member function).
6297     if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
6298       S.CheckCXXThisCapture(CallLoc);
6299   } else if (S.CurContext->isDependentContext()) {
6300     // ... since this is an implicit member reference, that might potentially
6301     // involve a 'this' capture, mark 'this' for potential capture in
6302     // enclosing lambdas.
6303     if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
6304       CurLSI->addPotentialThisCapture(CallLoc);
6305   }
6306 }
6307 
ActOnCallExpr(Scope * Scope,Expr * Fn,SourceLocation LParenLoc,MultiExprArg ArgExprs,SourceLocation RParenLoc,Expr * ExecConfig)6308 ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6309                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
6310                                Expr *ExecConfig) {
6311   ExprResult Call =
6312       BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig);
6313   if (Call.isInvalid())
6314     return Call;
6315 
6316   // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
6317   // language modes.
6318   if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn)) {
6319     if (ULE->hasExplicitTemplateArgs() &&
6320         ULE->decls_begin() == ULE->decls_end()) {
6321       Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20
6322                                  ? diag::warn_cxx17_compat_adl_only_template_id
6323                                  : diag::ext_adl_only_template_id)
6324           << ULE->getName();
6325     }
6326   }
6327 
6328   if (LangOpts.OpenMP)
6329     Call = ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc,
6330                            ExecConfig);
6331 
6332   return Call;
6333 }
6334 
6335 /// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
6336 /// This provides the location of the left/right parens and a list of comma
6337 /// locations.
BuildCallExpr(Scope * Scope,Expr * Fn,SourceLocation LParenLoc,MultiExprArg ArgExprs,SourceLocation RParenLoc,Expr * ExecConfig,bool IsExecConfig)6338 ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6339                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
6340                                Expr *ExecConfig, bool IsExecConfig) {
6341   // Since this might be a postfix expression, get rid of ParenListExprs.
6342   ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
6343   if (Result.isInvalid()) return ExprError();
6344   Fn = Result.get();
6345 
6346   if (checkArgsForPlaceholders(*this, ArgExprs))
6347     return ExprError();
6348 
6349   if (getLangOpts().CPlusPlus) {
6350     // If this is a pseudo-destructor expression, build the call immediately.
6351     if (isa<CXXPseudoDestructorExpr>(Fn)) {
6352       if (!ArgExprs.empty()) {
6353         // Pseudo-destructor calls should not have any arguments.
6354         Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
6355             << FixItHint::CreateRemoval(
6356                    SourceRange(ArgExprs.front()->getBeginLoc(),
6357                                ArgExprs.back()->getEndLoc()));
6358       }
6359 
6360       return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
6361                               VK_RValue, RParenLoc, CurFPFeatureOverrides());
6362     }
6363     if (Fn->getType() == Context.PseudoObjectTy) {
6364       ExprResult result = CheckPlaceholderExpr(Fn);
6365       if (result.isInvalid()) return ExprError();
6366       Fn = result.get();
6367     }
6368 
6369     // Determine whether this is a dependent call inside a C++ template,
6370     // in which case we won't do any semantic analysis now.
6371     if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
6372       if (ExecConfig) {
6373         return CUDAKernelCallExpr::Create(
6374             Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
6375             Context.DependentTy, VK_RValue, RParenLoc, CurFPFeatureOverrides());
6376       } else {
6377 
6378         tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6379             *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
6380             Fn->getBeginLoc());
6381 
6382         return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6383                                 VK_RValue, RParenLoc, CurFPFeatureOverrides());
6384       }
6385     }
6386 
6387     // Determine whether this is a call to an object (C++ [over.call.object]).
6388     if (Fn->getType()->isRecordType())
6389       return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
6390                                           RParenLoc);
6391 
6392     if (Fn->getType() == Context.UnknownAnyTy) {
6393       ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6394       if (result.isInvalid()) return ExprError();
6395       Fn = result.get();
6396     }
6397 
6398     if (Fn->getType() == Context.BoundMemberTy) {
6399       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6400                                        RParenLoc);
6401     }
6402   }
6403 
6404   // Check for overloaded calls.  This can happen even in C due to extensions.
6405   if (Fn->getType() == Context.OverloadTy) {
6406     OverloadExpr::FindResult find = OverloadExpr::find(Fn);
6407 
6408     // We aren't supposed to apply this logic if there's an '&' involved.
6409     if (!find.HasFormOfMemberPointer) {
6410       if (Expr::hasAnyTypeDependentArguments(ArgExprs))
6411         return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6412                                 VK_RValue, RParenLoc, CurFPFeatureOverrides());
6413       OverloadExpr *ovl = find.Expression;
6414       if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
6415         return BuildOverloadedCallExpr(
6416             Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6417             /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
6418       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6419                                        RParenLoc);
6420     }
6421   }
6422 
6423   // If we're directly calling a function, get the appropriate declaration.
6424   if (Fn->getType() == Context.UnknownAnyTy) {
6425     ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6426     if (result.isInvalid()) return ExprError();
6427     Fn = result.get();
6428   }
6429 
6430   Expr *NakedFn = Fn->IgnoreParens();
6431 
6432   bool CallingNDeclIndirectly = false;
6433   NamedDecl *NDecl = nullptr;
6434   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
6435     if (UnOp->getOpcode() == UO_AddrOf) {
6436       CallingNDeclIndirectly = true;
6437       NakedFn = UnOp->getSubExpr()->IgnoreParens();
6438     }
6439   }
6440 
6441   if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
6442     NDecl = DRE->getDecl();
6443 
6444     FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
6445     if (FDecl && FDecl->getBuiltinID()) {
6446       // Rewrite the function decl for this builtin by replacing parameters
6447       // with no explicit address space with the address space of the arguments
6448       // in ArgExprs.
6449       if ((FDecl =
6450                rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
6451         NDecl = FDecl;
6452         Fn = DeclRefExpr::Create(
6453             Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
6454             SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
6455             nullptr, DRE->isNonOdrUse());
6456       }
6457     }
6458   } else if (isa<MemberExpr>(NakedFn))
6459     NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
6460 
6461   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
6462     if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
6463                                       FD, /*Complain=*/true, Fn->getBeginLoc()))
6464       return ExprError();
6465 
6466     if (getLangOpts().OpenCL && checkOpenCLDisabledDecl(*FD, *Fn))
6467       return ExprError();
6468 
6469     checkDirectCallValidity(*this, Fn, FD, ArgExprs);
6470   }
6471 
6472   if (Context.isDependenceAllowed() &&
6473       (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs))) {
6474     assert(!getLangOpts().CPlusPlus);
6475     assert((Fn->containsErrors() ||
6476             llvm::any_of(ArgExprs,
6477                          [](clang::Expr *E) { return E->containsErrors(); })) &&
6478            "should only occur in error-recovery path.");
6479     QualType ReturnType =
6480         llvm::isa_and_nonnull<FunctionDecl>(NDecl)
6481             ? dyn_cast<FunctionDecl>(NDecl)->getCallResultType()
6482             : Context.DependentTy;
6483     return CallExpr::Create(Context, Fn, ArgExprs, ReturnType,
6484                             Expr::getValueKindForType(ReturnType), RParenLoc,
6485                             CurFPFeatureOverrides());
6486   }
6487   return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
6488                                ExecConfig, IsExecConfig);
6489 }
6490 
6491 /// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
6492 ///
6493 /// __builtin_astype( value, dst type )
6494 ///
ActOnAsTypeExpr(Expr * E,ParsedType ParsedDestTy,SourceLocation BuiltinLoc,SourceLocation RParenLoc)6495 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
6496                                  SourceLocation BuiltinLoc,
6497                                  SourceLocation RParenLoc) {
6498   ExprValueKind VK = VK_RValue;
6499   ExprObjectKind OK = OK_Ordinary;
6500   QualType DstTy = GetTypeFromParser(ParsedDestTy);
6501   QualType SrcTy = E->getType();
6502   if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
6503     return ExprError(Diag(BuiltinLoc,
6504                           diag::err_invalid_astype_of_different_size)
6505                      << DstTy
6506                      << SrcTy
6507                      << E->getSourceRange());
6508   return new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc, RParenLoc);
6509 }
6510 
6511 /// ActOnConvertVectorExpr - create a new convert-vector expression from the
6512 /// provided arguments.
6513 ///
6514 /// __builtin_convertvector( value, dst type )
6515 ///
ActOnConvertVectorExpr(Expr * E,ParsedType ParsedDestTy,SourceLocation BuiltinLoc,SourceLocation RParenLoc)6516 ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
6517                                         SourceLocation BuiltinLoc,
6518                                         SourceLocation RParenLoc) {
6519   TypeSourceInfo *TInfo;
6520   GetTypeFromParser(ParsedDestTy, &TInfo);
6521   return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
6522 }
6523 
6524 /// BuildResolvedCallExpr - Build a call to a resolved expression,
6525 /// i.e. an expression not of \p OverloadTy.  The expression should
6526 /// unary-convert to an expression of function-pointer or
6527 /// block-pointer type.
6528 ///
6529 /// \param NDecl the declaration being called, if available
BuildResolvedCallExpr(Expr * Fn,NamedDecl * NDecl,SourceLocation LParenLoc,ArrayRef<Expr * > Args,SourceLocation RParenLoc,Expr * Config,bool IsExecConfig,ADLCallKind UsesADL)6530 ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
6531                                        SourceLocation LParenLoc,
6532                                        ArrayRef<Expr *> Args,
6533                                        SourceLocation RParenLoc, Expr *Config,
6534                                        bool IsExecConfig, ADLCallKind UsesADL) {
6535   FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
6536   unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
6537 
6538   // Functions with 'interrupt' attribute cannot be called directly.
6539   if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) {
6540     Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
6541     return ExprError();
6542   }
6543 
6544   // Interrupt handlers don't save off the VFP regs automatically on ARM,
6545   // so there's some risk when calling out to non-interrupt handler functions
6546   // that the callee might not preserve them. This is easy to diagnose here,
6547   // but can be very challenging to debug.
6548   if (auto *Caller = getCurFunctionDecl())
6549     if (Caller->hasAttr<ARMInterruptAttr>()) {
6550       bool VFP = Context.getTargetInfo().hasFeature("vfp");
6551       if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>()))
6552         Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention);
6553     }
6554 
6555   // Promote the function operand.
6556   // We special-case function promotion here because we only allow promoting
6557   // builtin functions to function pointers in the callee of a call.
6558   ExprResult Result;
6559   QualType ResultTy;
6560   if (BuiltinID &&
6561       Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
6562     // Extract the return type from the (builtin) function pointer type.
6563     // FIXME Several builtins still have setType in
6564     // Sema::CheckBuiltinFunctionCall. One should review their definitions in
6565     // Builtins.def to ensure they are correct before removing setType calls.
6566     QualType FnPtrTy = Context.getPointerType(FDecl->getType());
6567     Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
6568     ResultTy = FDecl->getCallResultType();
6569   } else {
6570     Result = CallExprUnaryConversions(Fn);
6571     ResultTy = Context.BoolTy;
6572   }
6573   if (Result.isInvalid())
6574     return ExprError();
6575   Fn = Result.get();
6576 
6577   // Check for a valid function type, but only if it is not a builtin which
6578   // requires custom type checking. These will be handled by
6579   // CheckBuiltinFunctionCall below just after creation of the call expression.
6580   const FunctionType *FuncT = nullptr;
6581   if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
6582   retry:
6583     if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
6584       // C99 6.5.2.2p1 - "The expression that denotes the called function shall
6585       // have type pointer to function".
6586       FuncT = PT->getPointeeType()->getAs<FunctionType>();
6587       if (!FuncT)
6588         return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
6589                          << Fn->getType() << Fn->getSourceRange());
6590     } else if (const BlockPointerType *BPT =
6591                    Fn->getType()->getAs<BlockPointerType>()) {
6592       FuncT = BPT->getPointeeType()->castAs<FunctionType>();
6593     } else {
6594       // Handle calls to expressions of unknown-any type.
6595       if (Fn->getType() == Context.UnknownAnyTy) {
6596         ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
6597         if (rewrite.isInvalid())
6598           return ExprError();
6599         Fn = rewrite.get();
6600         goto retry;
6601       }
6602 
6603       return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
6604                        << Fn->getType() << Fn->getSourceRange());
6605     }
6606   }
6607 
6608   // Get the number of parameters in the function prototype, if any.
6609   // We will allocate space for max(Args.size(), NumParams) arguments
6610   // in the call expression.
6611   const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
6612   unsigned NumParams = Proto ? Proto->getNumParams() : 0;
6613 
6614   CallExpr *TheCall;
6615   if (Config) {
6616     assert(UsesADL == ADLCallKind::NotADL &&
6617            "CUDAKernelCallExpr should not use ADL");
6618     TheCall = CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config),
6619                                          Args, ResultTy, VK_RValue, RParenLoc,
6620                                          CurFPFeatureOverrides(), NumParams);
6621   } else {
6622     TheCall =
6623         CallExpr::Create(Context, Fn, Args, ResultTy, VK_RValue, RParenLoc,
6624                          CurFPFeatureOverrides(), NumParams, UsesADL);
6625   }
6626 
6627   if (!Context.isDependenceAllowed()) {
6628     // Forget about the nulled arguments since typo correction
6629     // do not handle them well.
6630     TheCall->shrinkNumArgs(Args.size());
6631     // C cannot always handle TypoExpr nodes in builtin calls and direct
6632     // function calls as their argument checking don't necessarily handle
6633     // dependent types properly, so make sure any TypoExprs have been
6634     // dealt with.
6635     ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
6636     if (!Result.isUsable()) return ExprError();
6637     CallExpr *TheOldCall = TheCall;
6638     TheCall = dyn_cast<CallExpr>(Result.get());
6639     bool CorrectedTypos = TheCall != TheOldCall;
6640     if (!TheCall) return Result;
6641     Args = llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
6642 
6643     // A new call expression node was created if some typos were corrected.
6644     // However it may not have been constructed with enough storage. In this
6645     // case, rebuild the node with enough storage. The waste of space is
6646     // immaterial since this only happens when some typos were corrected.
6647     if (CorrectedTypos && Args.size() < NumParams) {
6648       if (Config)
6649         TheCall = CUDAKernelCallExpr::Create(
6650             Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_RValue,
6651             RParenLoc, CurFPFeatureOverrides(), NumParams);
6652       else
6653         TheCall =
6654             CallExpr::Create(Context, Fn, Args, ResultTy, VK_RValue, RParenLoc,
6655                              CurFPFeatureOverrides(), NumParams, UsesADL);
6656     }
6657     // We can now handle the nulled arguments for the default arguments.
6658     TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
6659   }
6660 
6661   // Bail out early if calling a builtin with custom type checking.
6662   if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
6663     return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
6664 
6665   if (getLangOpts().CUDA) {
6666     if (Config) {
6667       // CUDA: Kernel calls must be to global functions
6668       if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
6669         return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
6670             << FDecl << Fn->getSourceRange());
6671 
6672       // CUDA: Kernel function must have 'void' return type
6673       if (!FuncT->getReturnType()->isVoidType() &&
6674           !FuncT->getReturnType()->getAs<AutoType>() &&
6675           !FuncT->getReturnType()->isInstantiationDependentType())
6676         return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
6677             << Fn->getType() << Fn->getSourceRange());
6678     } else {
6679       // CUDA: Calls to global functions must be configured
6680       if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
6681         return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
6682             << FDecl << Fn->getSourceRange());
6683     }
6684   }
6685 
6686   // Check for a valid return type
6687   if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
6688                           FDecl))
6689     return ExprError();
6690 
6691   // We know the result type of the call, set it.
6692   TheCall->setType(FuncT->getCallResultType(Context));
6693   TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
6694 
6695   if (Proto) {
6696     if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
6697                                 IsExecConfig))
6698       return ExprError();
6699   } else {
6700     assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
6701 
6702     if (FDecl) {
6703       // Check if we have too few/too many template arguments, based
6704       // on our knowledge of the function definition.
6705       const FunctionDecl *Def = nullptr;
6706       if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
6707         Proto = Def->getType()->getAs<FunctionProtoType>();
6708        if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
6709           Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
6710           << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
6711       }
6712 
6713       // If the function we're calling isn't a function prototype, but we have
6714       // a function prototype from a prior declaratiom, use that prototype.
6715       if (!FDecl->hasPrototype())
6716         Proto = FDecl->getType()->getAs<FunctionProtoType>();
6717     }
6718 
6719     // Promote the arguments (C99 6.5.2.2p6).
6720     for (unsigned i = 0, e = Args.size(); i != e; i++) {
6721       Expr *Arg = Args[i];
6722 
6723       if (Proto && i < Proto->getNumParams()) {
6724         InitializedEntity Entity = InitializedEntity::InitializeParameter(
6725             Context, Proto->getParamType(i), Proto->isParamConsumed(i));
6726         ExprResult ArgE =
6727             PerformCopyInitialization(Entity, SourceLocation(), Arg);
6728         if (ArgE.isInvalid())
6729           return true;
6730 
6731         Arg = ArgE.getAs<Expr>();
6732 
6733       } else {
6734         ExprResult ArgE = DefaultArgumentPromotion(Arg);
6735 
6736         if (ArgE.isInvalid())
6737           return true;
6738 
6739         Arg = ArgE.getAs<Expr>();
6740       }
6741 
6742       if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
6743                               diag::err_call_incomplete_argument, Arg))
6744         return ExprError();
6745 
6746       TheCall->setArg(i, Arg);
6747     }
6748   }
6749 
6750   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
6751     if (!Method->isStatic())
6752       return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
6753         << Fn->getSourceRange());
6754 
6755   // Check for sentinels
6756   if (NDecl)
6757     DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
6758 
6759   // Warn for unions passing across security boundary (CMSE).
6760   if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) {
6761     for (unsigned i = 0, e = Args.size(); i != e; i++) {
6762       if (const auto *RT =
6763               dyn_cast<RecordType>(Args[i]->getType().getCanonicalType())) {
6764         if (RT->getDecl()->isOrContainsUnion())
6765           Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union)
6766               << 0 << i;
6767       }
6768     }
6769   }
6770 
6771   // Do special checking on direct calls to functions.
6772   if (FDecl) {
6773     if (CheckFunctionCall(FDecl, TheCall, Proto))
6774       return ExprError();
6775 
6776     checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);
6777 
6778     if (BuiltinID)
6779       return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
6780   } else if (NDecl) {
6781     if (CheckPointerCall(NDecl, TheCall, Proto))
6782       return ExprError();
6783   } else {
6784     if (CheckOtherCall(TheCall, Proto))
6785       return ExprError();
6786   }
6787 
6788   return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl);
6789 }
6790 
6791 ExprResult
ActOnCompoundLiteral(SourceLocation LParenLoc,ParsedType Ty,SourceLocation RParenLoc,Expr * InitExpr)6792 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
6793                            SourceLocation RParenLoc, Expr *InitExpr) {
6794   assert(Ty && "ActOnCompoundLiteral(): missing type");
6795   assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
6796 
6797   TypeSourceInfo *TInfo;
6798   QualType literalType = GetTypeFromParser(Ty, &TInfo);
6799   if (!TInfo)
6800     TInfo = Context.getTrivialTypeSourceInfo(literalType);
6801 
6802   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
6803 }
6804 
6805 ExprResult
BuildCompoundLiteralExpr(SourceLocation LParenLoc,TypeSourceInfo * TInfo,SourceLocation RParenLoc,Expr * LiteralExpr)6806 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
6807                                SourceLocation RParenLoc, Expr *LiteralExpr) {
6808   QualType literalType = TInfo->getType();
6809 
6810   if (literalType->isArrayType()) {
6811     if (RequireCompleteSizedType(
6812             LParenLoc, Context.getBaseElementType(literalType),
6813             diag::err_array_incomplete_or_sizeless_type,
6814             SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
6815       return ExprError();
6816     if (literalType->isVariableArrayType())
6817       return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
6818         << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
6819   } else if (!literalType->isDependentType() &&
6820              RequireCompleteType(LParenLoc, literalType,
6821                diag::err_typecheck_decl_incomplete_type,
6822                SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
6823     return ExprError();
6824 
6825   InitializedEntity Entity
6826     = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
6827   InitializationKind Kind
6828     = InitializationKind::CreateCStyleCast(LParenLoc,
6829                                            SourceRange(LParenLoc, RParenLoc),
6830                                            /*InitList=*/true);
6831   InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
6832   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
6833                                       &literalType);
6834   if (Result.isInvalid())
6835     return ExprError();
6836   LiteralExpr = Result.get();
6837 
6838   bool isFileScope = !CurContext->isFunctionOrMethod();
6839 
6840   // In C, compound literals are l-values for some reason.
6841   // For GCC compatibility, in C++, file-scope array compound literals with
6842   // constant initializers are also l-values, and compound literals are
6843   // otherwise prvalues.
6844   //
6845   // (GCC also treats C++ list-initialized file-scope array prvalues with
6846   // constant initializers as l-values, but that's non-conforming, so we don't
6847   // follow it there.)
6848   //
6849   // FIXME: It would be better to handle the lvalue cases as materializing and
6850   // lifetime-extending a temporary object, but our materialized temporaries
6851   // representation only supports lifetime extension from a variable, not "out
6852   // of thin air".
6853   // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
6854   // is bound to the result of applying array-to-pointer decay to the compound
6855   // literal.
6856   // FIXME: GCC supports compound literals of reference type, which should
6857   // obviously have a value kind derived from the kind of reference involved.
6858   ExprValueKind VK =
6859       (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
6860           ? VK_RValue
6861           : VK_LValue;
6862 
6863   if (isFileScope)
6864     if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
6865       for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
6866         Expr *Init = ILE->getInit(i);
6867         ILE->setInit(i, ConstantExpr::Create(Context, Init));
6868       }
6869 
6870   auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
6871                                               VK, LiteralExpr, isFileScope);
6872   if (isFileScope) {
6873     if (!LiteralExpr->isTypeDependent() &&
6874         !LiteralExpr->isValueDependent() &&
6875         !literalType->isDependentType()) // C99 6.5.2.5p3
6876       if (CheckForConstantInitializer(LiteralExpr, literalType))
6877         return ExprError();
6878   } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
6879              literalType.getAddressSpace() != LangAS::Default) {
6880     // Embedded-C extensions to C99 6.5.2.5:
6881     //   "If the compound literal occurs inside the body of a function, the
6882     //   type name shall not be qualified by an address-space qualifier."
6883     Diag(LParenLoc, diag::err_compound_literal_with_address_space)
6884       << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
6885     return ExprError();
6886   }
6887 
6888   if (!isFileScope && !getLangOpts().CPlusPlus) {
6889     // Compound literals that have automatic storage duration are destroyed at
6890     // the end of the scope in C; in C++, they're just temporaries.
6891 
6892     // Emit diagnostics if it is or contains a C union type that is non-trivial
6893     // to destruct.
6894     if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
6895       checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
6896                             NTCUC_CompoundLiteral, NTCUK_Destruct);
6897 
6898     // Diagnose jumps that enter or exit the lifetime of the compound literal.
6899     if (literalType.isDestructedType()) {
6900       Cleanup.setExprNeedsCleanups(true);
6901       ExprCleanupObjects.push_back(E);
6902       getCurFunction()->setHasBranchProtectedScope();
6903     }
6904   }
6905 
6906   if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
6907       E->getType().hasNonTrivialToPrimitiveCopyCUnion())
6908     checkNonTrivialCUnionInInitializer(E->getInitializer(),
6909                                        E->getInitializer()->getExprLoc());
6910 
6911   return MaybeBindToTemporary(E);
6912 }
6913 
6914 ExprResult
ActOnInitList(SourceLocation LBraceLoc,MultiExprArg InitArgList,SourceLocation RBraceLoc)6915 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
6916                     SourceLocation RBraceLoc) {
6917   // Only produce each kind of designated initialization diagnostic once.
6918   SourceLocation FirstDesignator;
6919   bool DiagnosedArrayDesignator = false;
6920   bool DiagnosedNestedDesignator = false;
6921   bool DiagnosedMixedDesignator = false;
6922 
6923   // Check that any designated initializers are syntactically valid in the
6924   // current language mode.
6925   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
6926     if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) {
6927       if (FirstDesignator.isInvalid())
6928         FirstDesignator = DIE->getBeginLoc();
6929 
6930       if (!getLangOpts().CPlusPlus)
6931         break;
6932 
6933       if (!DiagnosedNestedDesignator && DIE->size() > 1) {
6934         DiagnosedNestedDesignator = true;
6935         Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested)
6936           << DIE->getDesignatorsSourceRange();
6937       }
6938 
6939       for (auto &Desig : DIE->designators()) {
6940         if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
6941           DiagnosedArrayDesignator = true;
6942           Diag(Desig.getBeginLoc(), diag::ext_designated_init_array)
6943             << Desig.getSourceRange();
6944         }
6945       }
6946 
6947       if (!DiagnosedMixedDesignator &&
6948           !isa<DesignatedInitExpr>(InitArgList[0])) {
6949         DiagnosedMixedDesignator = true;
6950         Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
6951           << DIE->getSourceRange();
6952         Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed)
6953           << InitArgList[0]->getSourceRange();
6954       }
6955     } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
6956                isa<DesignatedInitExpr>(InitArgList[0])) {
6957       DiagnosedMixedDesignator = true;
6958       auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]);
6959       Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
6960         << DIE->getSourceRange();
6961       Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed)
6962         << InitArgList[I]->getSourceRange();
6963     }
6964   }
6965 
6966   if (FirstDesignator.isValid()) {
6967     // Only diagnose designated initiaization as a C++20 extension if we didn't
6968     // already diagnose use of (non-C++20) C99 designator syntax.
6969     if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
6970         !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
6971       Diag(FirstDesignator, getLangOpts().CPlusPlus20
6972                                 ? diag::warn_cxx17_compat_designated_init
6973                                 : diag::ext_cxx_designated_init);
6974     } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
6975       Diag(FirstDesignator, diag::ext_designated_init);
6976     }
6977   }
6978 
6979   return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
6980 }
6981 
6982 ExprResult
BuildInitList(SourceLocation LBraceLoc,MultiExprArg InitArgList,SourceLocation RBraceLoc)6983 Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
6984                     SourceLocation RBraceLoc) {
6985   // Semantic analysis for initializers is done by ActOnDeclarator() and
6986   // CheckInitializer() - it requires knowledge of the object being initialized.
6987 
6988   // Immediately handle non-overload placeholders.  Overloads can be
6989   // resolved contextually, but everything else here can't.
6990   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
6991     if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
6992       ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
6993 
6994       // Ignore failures; dropping the entire initializer list because
6995       // of one failure would be terrible for indexing/etc.
6996       if (result.isInvalid()) continue;
6997 
6998       InitArgList[I] = result.get();
6999     }
7000   }
7001 
7002   InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
7003                                                RBraceLoc);
7004   E->setType(Context.VoidTy); // FIXME: just a place holder for now.
7005   return E;
7006 }
7007 
7008 /// Do an explicit extend of the given block pointer if we're in ARC.
maybeExtendBlockObject(ExprResult & E)7009 void Sema::maybeExtendBlockObject(ExprResult &E) {
7010   assert(E.get()->getType()->isBlockPointerType());
7011   assert(E.get()->isRValue());
7012 
7013   // Only do this in an r-value context.
7014   if (!getLangOpts().ObjCAutoRefCount) return;
7015 
7016   E = ImplicitCastExpr::Create(
7017       Context, E.get()->getType(), CK_ARCExtendBlockObject, E.get(),
7018       /*base path*/ nullptr, VK_RValue, FPOptionsOverride());
7019   Cleanup.setExprNeedsCleanups(true);
7020 }
7021 
7022 /// Prepare a conversion of the given expression to an ObjC object
7023 /// pointer type.
PrepareCastToObjCObjectPointer(ExprResult & E)7024 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
7025   QualType type = E.get()->getType();
7026   if (type->isObjCObjectPointerType()) {
7027     return CK_BitCast;
7028   } else if (type->isBlockPointerType()) {
7029     maybeExtendBlockObject(E);
7030     return CK_BlockPointerToObjCPointerCast;
7031   } else {
7032     assert(type->isPointerType());
7033     return CK_CPointerToObjCPointerCast;
7034   }
7035 }
7036 
7037 /// Prepares for a scalar cast, performing all the necessary stages
7038 /// except the final cast and returning the kind required.
PrepareScalarCast(ExprResult & Src,QualType DestTy)7039 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
7040   // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
7041   // Also, callers should have filtered out the invalid cases with
7042   // pointers.  Everything else should be possible.
7043 
7044   QualType SrcTy = Src.get()->getType();
7045   if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
7046     return CK_NoOp;
7047 
7048   switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
7049   case Type::STK_MemberPointer:
7050     llvm_unreachable("member pointer type in C");
7051 
7052   case Type::STK_CPointer:
7053   case Type::STK_BlockPointer:
7054   case Type::STK_ObjCObjectPointer:
7055     switch (DestTy->getScalarTypeKind()) {
7056     case Type::STK_CPointer: {
7057       LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
7058       LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
7059       if (SrcAS != DestAS)
7060         return CK_AddressSpaceConversion;
7061       if (Context.hasCvrSimilarType(SrcTy, DestTy))
7062         return CK_NoOp;
7063       return CK_BitCast;
7064     }
7065     case Type::STK_BlockPointer:
7066       return (SrcKind == Type::STK_BlockPointer
7067                 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
7068     case Type::STK_ObjCObjectPointer:
7069       if (SrcKind == Type::STK_ObjCObjectPointer)
7070         return CK_BitCast;
7071       if (SrcKind == Type::STK_CPointer)
7072         return CK_CPointerToObjCPointerCast;
7073       maybeExtendBlockObject(Src);
7074       return CK_BlockPointerToObjCPointerCast;
7075     case Type::STK_Bool:
7076       return CK_PointerToBoolean;
7077     case Type::STK_Integral:
7078       return CK_PointerToIntegral;
7079     case Type::STK_Floating:
7080     case Type::STK_FloatingComplex:
7081     case Type::STK_IntegralComplex:
7082     case Type::STK_MemberPointer:
7083     case Type::STK_FixedPoint:
7084       llvm_unreachable("illegal cast from pointer");
7085     }
7086     llvm_unreachable("Should have returned before this");
7087 
7088   case Type::STK_FixedPoint:
7089     switch (DestTy->getScalarTypeKind()) {
7090     case Type::STK_FixedPoint:
7091       return CK_FixedPointCast;
7092     case Type::STK_Bool:
7093       return CK_FixedPointToBoolean;
7094     case Type::STK_Integral:
7095       return CK_FixedPointToIntegral;
7096     case Type::STK_Floating:
7097       return CK_FixedPointToFloating;
7098     case Type::STK_IntegralComplex:
7099     case Type::STK_FloatingComplex:
7100       Diag(Src.get()->getExprLoc(),
7101            diag::err_unimplemented_conversion_with_fixed_point_type)
7102           << DestTy;
7103       return CK_IntegralCast;
7104     case Type::STK_CPointer:
7105     case Type::STK_ObjCObjectPointer:
7106     case Type::STK_BlockPointer:
7107     case Type::STK_MemberPointer:
7108       llvm_unreachable("illegal cast to pointer type");
7109     }
7110     llvm_unreachable("Should have returned before this");
7111 
7112   case Type::STK_Bool: // casting from bool is like casting from an integer
7113   case Type::STK_Integral:
7114     switch (DestTy->getScalarTypeKind()) {
7115     case Type::STK_CPointer:
7116     case Type::STK_ObjCObjectPointer:
7117     case Type::STK_BlockPointer:
7118       if (Src.get()->isNullPointerConstant(Context,
7119                                            Expr::NPC_ValueDependentIsNull))
7120         return CK_NullToPointer;
7121       return CK_IntegralToPointer;
7122     case Type::STK_Bool:
7123       return CK_IntegralToBoolean;
7124     case Type::STK_Integral:
7125       return CK_IntegralCast;
7126     case Type::STK_Floating:
7127       return CK_IntegralToFloating;
7128     case Type::STK_IntegralComplex:
7129       Src = ImpCastExprToType(Src.get(),
7130                       DestTy->castAs<ComplexType>()->getElementType(),
7131                       CK_IntegralCast);
7132       return CK_IntegralRealToComplex;
7133     case Type::STK_FloatingComplex:
7134       Src = ImpCastExprToType(Src.get(),
7135                       DestTy->castAs<ComplexType>()->getElementType(),
7136                       CK_IntegralToFloating);
7137       return CK_FloatingRealToComplex;
7138     case Type::STK_MemberPointer:
7139       llvm_unreachable("member pointer type in C");
7140     case Type::STK_FixedPoint:
7141       return CK_IntegralToFixedPoint;
7142     }
7143     llvm_unreachable("Should have returned before this");
7144 
7145   case Type::STK_Floating:
7146     switch (DestTy->getScalarTypeKind()) {
7147     case Type::STK_Floating:
7148       return CK_FloatingCast;
7149     case Type::STK_Bool:
7150       return CK_FloatingToBoolean;
7151     case Type::STK_Integral:
7152       return CK_FloatingToIntegral;
7153     case Type::STK_FloatingComplex:
7154       Src = ImpCastExprToType(Src.get(),
7155                               DestTy->castAs<ComplexType>()->getElementType(),
7156                               CK_FloatingCast);
7157       return CK_FloatingRealToComplex;
7158     case Type::STK_IntegralComplex:
7159       Src = ImpCastExprToType(Src.get(),
7160                               DestTy->castAs<ComplexType>()->getElementType(),
7161                               CK_FloatingToIntegral);
7162       return CK_IntegralRealToComplex;
7163     case Type::STK_CPointer:
7164     case Type::STK_ObjCObjectPointer:
7165     case Type::STK_BlockPointer:
7166       llvm_unreachable("valid float->pointer cast?");
7167     case Type::STK_MemberPointer:
7168       llvm_unreachable("member pointer type in C");
7169     case Type::STK_FixedPoint:
7170       return CK_FloatingToFixedPoint;
7171     }
7172     llvm_unreachable("Should have returned before this");
7173 
7174   case Type::STK_FloatingComplex:
7175     switch (DestTy->getScalarTypeKind()) {
7176     case Type::STK_FloatingComplex:
7177       return CK_FloatingComplexCast;
7178     case Type::STK_IntegralComplex:
7179       return CK_FloatingComplexToIntegralComplex;
7180     case Type::STK_Floating: {
7181       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7182       if (Context.hasSameType(ET, DestTy))
7183         return CK_FloatingComplexToReal;
7184       Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
7185       return CK_FloatingCast;
7186     }
7187     case Type::STK_Bool:
7188       return CK_FloatingComplexToBoolean;
7189     case Type::STK_Integral:
7190       Src = ImpCastExprToType(Src.get(),
7191                               SrcTy->castAs<ComplexType>()->getElementType(),
7192                               CK_FloatingComplexToReal);
7193       return CK_FloatingToIntegral;
7194     case Type::STK_CPointer:
7195     case Type::STK_ObjCObjectPointer:
7196     case Type::STK_BlockPointer:
7197       llvm_unreachable("valid complex float->pointer cast?");
7198     case Type::STK_MemberPointer:
7199       llvm_unreachable("member pointer type in C");
7200     case Type::STK_FixedPoint:
7201       Diag(Src.get()->getExprLoc(),
7202            diag::err_unimplemented_conversion_with_fixed_point_type)
7203           << SrcTy;
7204       return CK_IntegralCast;
7205     }
7206     llvm_unreachable("Should have returned before this");
7207 
7208   case Type::STK_IntegralComplex:
7209     switch (DestTy->getScalarTypeKind()) {
7210     case Type::STK_FloatingComplex:
7211       return CK_IntegralComplexToFloatingComplex;
7212     case Type::STK_IntegralComplex:
7213       return CK_IntegralComplexCast;
7214     case Type::STK_Integral: {
7215       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7216       if (Context.hasSameType(ET, DestTy))
7217         return CK_IntegralComplexToReal;
7218       Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
7219       return CK_IntegralCast;
7220     }
7221     case Type::STK_Bool:
7222       return CK_IntegralComplexToBoolean;
7223     case Type::STK_Floating:
7224       Src = ImpCastExprToType(Src.get(),
7225                               SrcTy->castAs<ComplexType>()->getElementType(),
7226                               CK_IntegralComplexToReal);
7227       return CK_IntegralToFloating;
7228     case Type::STK_CPointer:
7229     case Type::STK_ObjCObjectPointer:
7230     case Type::STK_BlockPointer:
7231       llvm_unreachable("valid complex int->pointer cast?");
7232     case Type::STK_MemberPointer:
7233       llvm_unreachable("member pointer type in C");
7234     case Type::STK_FixedPoint:
7235       Diag(Src.get()->getExprLoc(),
7236            diag::err_unimplemented_conversion_with_fixed_point_type)
7237           << SrcTy;
7238       return CK_IntegralCast;
7239     }
7240     llvm_unreachable("Should have returned before this");
7241   }
7242 
7243   llvm_unreachable("Unhandled scalar cast");
7244 }
7245 
breakDownVectorType(QualType type,uint64_t & len,QualType & eltType)7246 static bool breakDownVectorType(QualType type, uint64_t &len,
7247                                 QualType &eltType) {
7248   // Vectors are simple.
7249   if (const VectorType *vecType = type->getAs<VectorType>()) {
7250     len = vecType->getNumElements();
7251     eltType = vecType->getElementType();
7252     assert(eltType->isScalarType());
7253     return true;
7254   }
7255 
7256   // We allow lax conversion to and from non-vector types, but only if
7257   // they're real types (i.e. non-complex, non-pointer scalar types).
7258   if (!type->isRealType()) return false;
7259 
7260   len = 1;
7261   eltType = type;
7262   return true;
7263 }
7264 
7265 /// Are the two types SVE-bitcast-compatible types? I.e. is bitcasting from the
7266 /// first SVE type (e.g. an SVE VLAT) to the second type (e.g. an SVE VLST)
7267 /// allowed?
7268 ///
7269 /// This will also return false if the two given types do not make sense from
7270 /// the perspective of SVE bitcasts.
isValidSveBitcast(QualType srcTy,QualType destTy)7271 bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) {
7272   assert(srcTy->isVectorType() || destTy->isVectorType());
7273 
7274   auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
7275     if (!FirstType->isSizelessBuiltinType())
7276       return false;
7277 
7278     const auto *VecTy = SecondType->getAs<VectorType>();
7279     return VecTy &&
7280            VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector;
7281   };
7282 
7283   return ValidScalableConversion(srcTy, destTy) ||
7284          ValidScalableConversion(destTy, srcTy);
7285 }
7286 
7287 /// Are the two types lax-compatible vector types?  That is, given
7288 /// that one of them is a vector, do they have equal storage sizes,
7289 /// where the storage size is the number of elements times the element
7290 /// size?
7291 ///
7292 /// This will also return false if either of the types is neither a
7293 /// vector nor a real type.
areLaxCompatibleVectorTypes(QualType srcTy,QualType destTy)7294 bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
7295   assert(destTy->isVectorType() || srcTy->isVectorType());
7296 
7297   // Disallow lax conversions between scalars and ExtVectors (these
7298   // conversions are allowed for other vector types because common headers
7299   // depend on them).  Most scalar OP ExtVector cases are handled by the
7300   // splat path anyway, which does what we want (convert, not bitcast).
7301   // What this rules out for ExtVectors is crazy things like char4*float.
7302   if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
7303   if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
7304 
7305   uint64_t srcLen, destLen;
7306   QualType srcEltTy, destEltTy;
7307   if (!breakDownVectorType(srcTy, srcLen, srcEltTy)) return false;
7308   if (!breakDownVectorType(destTy, destLen, destEltTy)) return false;
7309 
7310   // ASTContext::getTypeSize will return the size rounded up to a
7311   // power of 2, so instead of using that, we need to use the raw
7312   // element size multiplied by the element count.
7313   uint64_t srcEltSize = Context.getTypeSize(srcEltTy);
7314   uint64_t destEltSize = Context.getTypeSize(destEltTy);
7315 
7316   return (srcLen * srcEltSize == destLen * destEltSize);
7317 }
7318 
7319 /// Is this a legal conversion between two types, one of which is
7320 /// known to be a vector type?
isLaxVectorConversion(QualType srcTy,QualType destTy)7321 bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
7322   assert(destTy->isVectorType() || srcTy->isVectorType());
7323 
7324   switch (Context.getLangOpts().getLaxVectorConversions()) {
7325   case LangOptions::LaxVectorConversionKind::None:
7326     return false;
7327 
7328   case LangOptions::LaxVectorConversionKind::Integer:
7329     if (!srcTy->isIntegralOrEnumerationType()) {
7330       auto *Vec = srcTy->getAs<VectorType>();
7331       if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7332         return false;
7333     }
7334     if (!destTy->isIntegralOrEnumerationType()) {
7335       auto *Vec = destTy->getAs<VectorType>();
7336       if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7337         return false;
7338     }
7339     // OK, integer (vector) -> integer (vector) bitcast.
7340     break;
7341 
7342     case LangOptions::LaxVectorConversionKind::All:
7343     break;
7344   }
7345 
7346   return areLaxCompatibleVectorTypes(srcTy, destTy);
7347 }
7348 
CheckVectorCast(SourceRange R,QualType VectorTy,QualType Ty,CastKind & Kind)7349 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
7350                            CastKind &Kind) {
7351   assert(VectorTy->isVectorType() && "Not a vector type!");
7352 
7353   if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
7354     if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
7355       return Diag(R.getBegin(),
7356                   Ty->isVectorType() ?
7357                   diag::err_invalid_conversion_between_vectors :
7358                   diag::err_invalid_conversion_between_vector_and_integer)
7359         << VectorTy << Ty << R;
7360   } else
7361     return Diag(R.getBegin(),
7362                 diag::err_invalid_conversion_between_vector_and_scalar)
7363       << VectorTy << Ty << R;
7364 
7365   Kind = CK_BitCast;
7366   return false;
7367 }
7368 
prepareVectorSplat(QualType VectorTy,Expr * SplattedExpr)7369 ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
7370   QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
7371 
7372   if (DestElemTy == SplattedExpr->getType())
7373     return SplattedExpr;
7374 
7375   assert(DestElemTy->isFloatingType() ||
7376          DestElemTy->isIntegralOrEnumerationType());
7377 
7378   CastKind CK;
7379   if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
7380     // OpenCL requires that we convert `true` boolean expressions to -1, but
7381     // only when splatting vectors.
7382     if (DestElemTy->isFloatingType()) {
7383       // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
7384       // in two steps: boolean to signed integral, then to floating.
7385       ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
7386                                                  CK_BooleanToSignedIntegral);
7387       SplattedExpr = CastExprRes.get();
7388       CK = CK_IntegralToFloating;
7389     } else {
7390       CK = CK_BooleanToSignedIntegral;
7391     }
7392   } else {
7393     ExprResult CastExprRes = SplattedExpr;
7394     CK = PrepareScalarCast(CastExprRes, DestElemTy);
7395     if (CastExprRes.isInvalid())
7396       return ExprError();
7397     SplattedExpr = CastExprRes.get();
7398   }
7399   return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
7400 }
7401 
CheckExtVectorCast(SourceRange R,QualType DestTy,Expr * CastExpr,CastKind & Kind)7402 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
7403                                     Expr *CastExpr, CastKind &Kind) {
7404   assert(DestTy->isExtVectorType() && "Not an extended vector type!");
7405 
7406   QualType SrcTy = CastExpr->getType();
7407 
7408   // If SrcTy is a VectorType, the total size must match to explicitly cast to
7409   // an ExtVectorType.
7410   // In OpenCL, casts between vectors of different types are not allowed.
7411   // (See OpenCL 6.2).
7412   if (SrcTy->isVectorType()) {
7413     if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
7414         (getLangOpts().OpenCL &&
7415          !Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
7416       Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
7417         << DestTy << SrcTy << R;
7418       return ExprError();
7419     }
7420     Kind = CK_BitCast;
7421     return CastExpr;
7422   }
7423 
7424   // All non-pointer scalars can be cast to ExtVector type.  The appropriate
7425   // conversion will take place first from scalar to elt type, and then
7426   // splat from elt type to vector.
7427   if (SrcTy->isPointerType())
7428     return Diag(R.getBegin(),
7429                 diag::err_invalid_conversion_between_vector_and_scalar)
7430       << DestTy << SrcTy << R;
7431 
7432   Kind = CK_VectorSplat;
7433   return prepareVectorSplat(DestTy, CastExpr);
7434 }
7435 
7436 ExprResult
ActOnCastExpr(Scope * S,SourceLocation LParenLoc,Declarator & D,ParsedType & Ty,SourceLocation RParenLoc,Expr * CastExpr)7437 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
7438                     Declarator &D, ParsedType &Ty,
7439                     SourceLocation RParenLoc, Expr *CastExpr) {
7440   assert(!D.isInvalidType() && (CastExpr != nullptr) &&
7441          "ActOnCastExpr(): missing type or expr");
7442 
7443   TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
7444   if (D.isInvalidType())
7445     return ExprError();
7446 
7447   if (getLangOpts().CPlusPlus) {
7448     // Check that there are no default arguments (C++ only).
7449     CheckExtraCXXDefaultArguments(D);
7450   } else {
7451     // Make sure any TypoExprs have been dealt with.
7452     ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
7453     if (!Res.isUsable())
7454       return ExprError();
7455     CastExpr = Res.get();
7456   }
7457 
7458   checkUnusedDeclAttributes(D);
7459 
7460   QualType castType = castTInfo->getType();
7461   Ty = CreateParsedType(castType, castTInfo);
7462 
7463   bool isVectorLiteral = false;
7464 
7465   // Check for an altivec or OpenCL literal,
7466   // i.e. all the elements are integer constants.
7467   ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
7468   ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
7469   if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
7470        && castType->isVectorType() && (PE || PLE)) {
7471     if (PLE && PLE->getNumExprs() == 0) {
7472       Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
7473       return ExprError();
7474     }
7475     if (PE || PLE->getNumExprs() == 1) {
7476       Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
7477       if (!E->isTypeDependent() && !E->getType()->isVectorType())
7478         isVectorLiteral = true;
7479     }
7480     else
7481       isVectorLiteral = true;
7482   }
7483 
7484   // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
7485   // then handle it as such.
7486   if (isVectorLiteral)
7487     return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
7488 
7489   // If the Expr being casted is a ParenListExpr, handle it specially.
7490   // This is not an AltiVec-style cast, so turn the ParenListExpr into a
7491   // sequence of BinOp comma operators.
7492   if (isa<ParenListExpr>(CastExpr)) {
7493     ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
7494     if (Result.isInvalid()) return ExprError();
7495     CastExpr = Result.get();
7496   }
7497 
7498   if (getLangOpts().CPlusPlus && !castType->isVoidType() &&
7499       !getSourceManager().isInSystemMacro(LParenLoc))
7500     Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
7501 
7502   CheckTollFreeBridgeCast(castType, CastExpr);
7503 
7504   CheckObjCBridgeRelatedCast(castType, CastExpr);
7505 
7506   DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
7507 
7508   return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
7509 }
7510 
BuildVectorLiteral(SourceLocation LParenLoc,SourceLocation RParenLoc,Expr * E,TypeSourceInfo * TInfo)7511 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
7512                                     SourceLocation RParenLoc, Expr *E,
7513                                     TypeSourceInfo *TInfo) {
7514   assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
7515          "Expected paren or paren list expression");
7516 
7517   Expr **exprs;
7518   unsigned numExprs;
7519   Expr *subExpr;
7520   SourceLocation LiteralLParenLoc, LiteralRParenLoc;
7521   if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
7522     LiteralLParenLoc = PE->getLParenLoc();
7523     LiteralRParenLoc = PE->getRParenLoc();
7524     exprs = PE->getExprs();
7525     numExprs = PE->getNumExprs();
7526   } else { // isa<ParenExpr> by assertion at function entrance
7527     LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
7528     LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
7529     subExpr = cast<ParenExpr>(E)->getSubExpr();
7530     exprs = &subExpr;
7531     numExprs = 1;
7532   }
7533 
7534   QualType Ty = TInfo->getType();
7535   assert(Ty->isVectorType() && "Expected vector type");
7536 
7537   SmallVector<Expr *, 8> initExprs;
7538   const VectorType *VTy = Ty->castAs<VectorType>();
7539   unsigned numElems = VTy->getNumElements();
7540 
7541   // '(...)' form of vector initialization in AltiVec: the number of
7542   // initializers must be one or must match the size of the vector.
7543   // If a single value is specified in the initializer then it will be
7544   // replicated to all the components of the vector
7545   if (VTy->getVectorKind() == VectorType::AltiVecVector) {
7546     // The number of initializers must be one or must match the size of the
7547     // vector. If a single value is specified in the initializer then it will
7548     // be replicated to all the components of the vector
7549     if (numExprs == 1) {
7550       QualType ElemTy = VTy->getElementType();
7551       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
7552       if (Literal.isInvalid())
7553         return ExprError();
7554       Literal = ImpCastExprToType(Literal.get(), ElemTy,
7555                                   PrepareScalarCast(Literal, ElemTy));
7556       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
7557     }
7558     else if (numExprs < numElems) {
7559       Diag(E->getExprLoc(),
7560            diag::err_incorrect_number_of_vector_initializers);
7561       return ExprError();
7562     }
7563     else
7564       initExprs.append(exprs, exprs + numExprs);
7565   }
7566   else {
7567     // For OpenCL, when the number of initializers is a single value,
7568     // it will be replicated to all components of the vector.
7569     if (getLangOpts().OpenCL &&
7570         VTy->getVectorKind() == VectorType::GenericVector &&
7571         numExprs == 1) {
7572         QualType ElemTy = VTy->getElementType();
7573         ExprResult Literal = DefaultLvalueConversion(exprs[0]);
7574         if (Literal.isInvalid())
7575           return ExprError();
7576         Literal = ImpCastExprToType(Literal.get(), ElemTy,
7577                                     PrepareScalarCast(Literal, ElemTy));
7578         return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
7579     }
7580 
7581     initExprs.append(exprs, exprs + numExprs);
7582   }
7583   // FIXME: This means that pretty-printing the final AST will produce curly
7584   // braces instead of the original commas.
7585   InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
7586                                                    initExprs, LiteralRParenLoc);
7587   initE->setType(Ty);
7588   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
7589 }
7590 
7591 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
7592 /// the ParenListExpr into a sequence of comma binary operators.
7593 ExprResult
MaybeConvertParenListExprToParenExpr(Scope * S,Expr * OrigExpr)7594 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
7595   ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
7596   if (!E)
7597     return OrigExpr;
7598 
7599   ExprResult Result(E->getExpr(0));
7600 
7601   for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
7602     Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
7603                         E->getExpr(i));
7604 
7605   if (Result.isInvalid()) return ExprError();
7606 
7607   return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
7608 }
7609 
ActOnParenListExpr(SourceLocation L,SourceLocation R,MultiExprArg Val)7610 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
7611                                     SourceLocation R,
7612                                     MultiExprArg Val) {
7613   return ParenListExpr::Create(Context, L, Val, R);
7614 }
7615 
7616 /// Emit a specialized diagnostic when one expression is a null pointer
7617 /// constant and the other is not a pointer.  Returns true if a diagnostic is
7618 /// emitted.
DiagnoseConditionalForNull(Expr * LHSExpr,Expr * RHSExpr,SourceLocation QuestionLoc)7619 bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
7620                                       SourceLocation QuestionLoc) {
7621   Expr *NullExpr = LHSExpr;
7622   Expr *NonPointerExpr = RHSExpr;
7623   Expr::NullPointerConstantKind NullKind =
7624       NullExpr->isNullPointerConstant(Context,
7625                                       Expr::NPC_ValueDependentIsNotNull);
7626 
7627   if (NullKind == Expr::NPCK_NotNull) {
7628     NullExpr = RHSExpr;
7629     NonPointerExpr = LHSExpr;
7630     NullKind =
7631         NullExpr->isNullPointerConstant(Context,
7632                                         Expr::NPC_ValueDependentIsNotNull);
7633   }
7634 
7635   if (NullKind == Expr::NPCK_NotNull)
7636     return false;
7637 
7638   if (NullKind == Expr::NPCK_ZeroExpression)
7639     return false;
7640 
7641   if (NullKind == Expr::NPCK_ZeroLiteral) {
7642     // In this case, check to make sure that we got here from a "NULL"
7643     // string in the source code.
7644     NullExpr = NullExpr->IgnoreParenImpCasts();
7645     SourceLocation loc = NullExpr->getExprLoc();
7646     if (!findMacroSpelling(loc, "NULL"))
7647       return false;
7648   }
7649 
7650   int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
7651   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
7652       << NonPointerExpr->getType() << DiagType
7653       << NonPointerExpr->getSourceRange();
7654   return true;
7655 }
7656 
7657 /// Return false if the condition expression is valid, true otherwise.
checkCondition(Sema & S,Expr * Cond,SourceLocation QuestionLoc)7658 static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
7659   QualType CondTy = Cond->getType();
7660 
7661   // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
7662   if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
7663     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
7664       << CondTy << Cond->getSourceRange();
7665     return true;
7666   }
7667 
7668   // C99 6.5.15p2
7669   if (CondTy->isScalarType()) return false;
7670 
7671   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
7672     << CondTy << Cond->getSourceRange();
7673   return true;
7674 }
7675 
7676 /// Handle when one or both operands are void type.
checkConditionalVoidType(Sema & S,ExprResult & LHS,ExprResult & RHS)7677 static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
7678                                          ExprResult &RHS) {
7679     Expr *LHSExpr = LHS.get();
7680     Expr *RHSExpr = RHS.get();
7681 
7682     if (!LHSExpr->getType()->isVoidType())
7683       S.Diag(RHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
7684           << RHSExpr->getSourceRange();
7685     if (!RHSExpr->getType()->isVoidType())
7686       S.Diag(LHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
7687           << LHSExpr->getSourceRange();
7688     LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid);
7689     RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid);
7690     return S.Context.VoidTy;
7691 }
7692 
7693 /// Return false if the NullExpr can be promoted to PointerTy,
7694 /// true otherwise.
checkConditionalNullPointer(Sema & S,ExprResult & NullExpr,QualType PointerTy)7695 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
7696                                         QualType PointerTy) {
7697   if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
7698       !NullExpr.get()->isNullPointerConstant(S.Context,
7699                                             Expr::NPC_ValueDependentIsNull))
7700     return true;
7701 
7702   NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
7703   return false;
7704 }
7705 
7706 /// Checks compatibility between two pointers and return the resulting
7707 /// type.
checkConditionalPointerCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)7708 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
7709                                                      ExprResult &RHS,
7710                                                      SourceLocation Loc) {
7711   QualType LHSTy = LHS.get()->getType();
7712   QualType RHSTy = RHS.get()->getType();
7713 
7714   if (S.Context.hasSameType(LHSTy, RHSTy)) {
7715     // Two identical pointers types are always compatible.
7716     return LHSTy;
7717   }
7718 
7719   QualType lhptee, rhptee;
7720 
7721   // Get the pointee types.
7722   bool IsBlockPointer = false;
7723   if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
7724     lhptee = LHSBTy->getPointeeType();
7725     rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
7726     IsBlockPointer = true;
7727   } else {
7728     lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
7729     rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
7730   }
7731 
7732   // C99 6.5.15p6: If both operands are pointers to compatible types or to
7733   // differently qualified versions of compatible types, the result type is
7734   // a pointer to an appropriately qualified version of the composite
7735   // type.
7736 
7737   // Only CVR-qualifiers exist in the standard, and the differently-qualified
7738   // clause doesn't make sense for our extensions. E.g. address space 2 should
7739   // be incompatible with address space 3: they may live on different devices or
7740   // anything.
7741   Qualifiers lhQual = lhptee.getQualifiers();
7742   Qualifiers rhQual = rhptee.getQualifiers();
7743 
7744   LangAS ResultAddrSpace = LangAS::Default;
7745   LangAS LAddrSpace = lhQual.getAddressSpace();
7746   LangAS RAddrSpace = rhQual.getAddressSpace();
7747 
7748   // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
7749   // spaces is disallowed.
7750   if (lhQual.isAddressSpaceSupersetOf(rhQual))
7751     ResultAddrSpace = LAddrSpace;
7752   else if (rhQual.isAddressSpaceSupersetOf(lhQual))
7753     ResultAddrSpace = RAddrSpace;
7754   else {
7755     S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
7756         << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
7757         << RHS.get()->getSourceRange();
7758     return QualType();
7759   }
7760 
7761   unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
7762   auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
7763   lhQual.removeCVRQualifiers();
7764   rhQual.removeCVRQualifiers();
7765 
7766   // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
7767   // (C99 6.7.3) for address spaces. We assume that the check should behave in
7768   // the same manner as it's defined for CVR qualifiers, so for OpenCL two
7769   // qual types are compatible iff
7770   //  * corresponded types are compatible
7771   //  * CVR qualifiers are equal
7772   //  * address spaces are equal
7773   // Thus for conditional operator we merge CVR and address space unqualified
7774   // pointees and if there is a composite type we return a pointer to it with
7775   // merged qualifiers.
7776   LHSCastKind =
7777       LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
7778   RHSCastKind =
7779       RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
7780   lhQual.removeAddressSpace();
7781   rhQual.removeAddressSpace();
7782 
7783   lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
7784   rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
7785 
7786   QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
7787 
7788   if (CompositeTy.isNull()) {
7789     // In this situation, we assume void* type. No especially good
7790     // reason, but this is what gcc does, and we do have to pick
7791     // to get a consistent AST.
7792     QualType incompatTy;
7793     incompatTy = S.Context.getPointerType(
7794         S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
7795     LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
7796     RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);
7797 
7798     // FIXME: For OpenCL the warning emission and cast to void* leaves a room
7799     // for casts between types with incompatible address space qualifiers.
7800     // For the following code the compiler produces casts between global and
7801     // local address spaces of the corresponded innermost pointees:
7802     // local int *global *a;
7803     // global int *global *b;
7804     // a = (0 ? a : b); // see C99 6.5.16.1.p1.
7805     S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
7806         << LHSTy << RHSTy << LHS.get()->getSourceRange()
7807         << RHS.get()->getSourceRange();
7808 
7809     return incompatTy;
7810   }
7811 
7812   // The pointer types are compatible.
7813   // In case of OpenCL ResultTy should have the address space qualifier
7814   // which is a superset of address spaces of both the 2nd and the 3rd
7815   // operands of the conditional operator.
7816   QualType ResultTy = [&, ResultAddrSpace]() {
7817     if (S.getLangOpts().OpenCL) {
7818       Qualifiers CompositeQuals = CompositeTy.getQualifiers();
7819       CompositeQuals.setAddressSpace(ResultAddrSpace);
7820       return S.Context
7821           .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
7822           .withCVRQualifiers(MergedCVRQual);
7823     }
7824     return CompositeTy.withCVRQualifiers(MergedCVRQual);
7825   }();
7826   if (IsBlockPointer)
7827     ResultTy = S.Context.getBlockPointerType(ResultTy);
7828   else
7829     ResultTy = S.Context.getPointerType(ResultTy);
7830 
7831   LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
7832   RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
7833   return ResultTy;
7834 }
7835 
7836 /// Return the resulting type when the operands are both block pointers.
checkConditionalBlockPointerCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)7837 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
7838                                                           ExprResult &LHS,
7839                                                           ExprResult &RHS,
7840                                                           SourceLocation Loc) {
7841   QualType LHSTy = LHS.get()->getType();
7842   QualType RHSTy = RHS.get()->getType();
7843 
7844   if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
7845     if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
7846       QualType destType = S.Context.getPointerType(S.Context.VoidTy);
7847       LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
7848       RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
7849       return destType;
7850     }
7851     S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
7852       << LHSTy << RHSTy << LHS.get()->getSourceRange()
7853       << RHS.get()->getSourceRange();
7854     return QualType();
7855   }
7856 
7857   // We have 2 block pointer types.
7858   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
7859 }
7860 
7861 /// Return the resulting type when the operands are both pointers.
7862 static QualType
checkConditionalObjectPointersCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)7863 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
7864                                             ExprResult &RHS,
7865                                             SourceLocation Loc) {
7866   // get the pointer types
7867   QualType LHSTy = LHS.get()->getType();
7868   QualType RHSTy = RHS.get()->getType();
7869 
7870   // get the "pointed to" types
7871   QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
7872   QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
7873 
7874   // ignore qualifiers on void (C99 6.5.15p3, clause 6)
7875   if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
7876     // Figure out necessary qualifiers (C99 6.5.15p6)
7877     QualType destPointee
7878       = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
7879     QualType destType = S.Context.getPointerType(destPointee);
7880     // Add qualifiers if necessary.
7881     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
7882     // Promote to void*.
7883     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
7884     return destType;
7885   }
7886   if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
7887     QualType destPointee
7888       = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
7889     QualType destType = S.Context.getPointerType(destPointee);
7890     // Add qualifiers if necessary.
7891     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
7892     // Promote to void*.
7893     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
7894     return destType;
7895   }
7896 
7897   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
7898 }
7899 
7900 /// Return false if the first expression is not an integer and the second
7901 /// expression is not a pointer, true otherwise.
checkPointerIntegerMismatch(Sema & S,ExprResult & Int,Expr * PointerExpr,SourceLocation Loc,bool IsIntFirstExpr)7902 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
7903                                         Expr* PointerExpr, SourceLocation Loc,
7904                                         bool IsIntFirstExpr) {
7905   if (!PointerExpr->getType()->isPointerType() ||
7906       !Int.get()->getType()->isIntegerType())
7907     return false;
7908 
7909   Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
7910   Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
7911 
7912   S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
7913     << Expr1->getType() << Expr2->getType()
7914     << Expr1->getSourceRange() << Expr2->getSourceRange();
7915   Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
7916                             CK_IntegralToPointer);
7917   return true;
7918 }
7919 
7920 /// Simple conversion between integer and floating point types.
7921 ///
7922 /// Used when handling the OpenCL conditional operator where the
7923 /// condition is a vector while the other operands are scalar.
7924 ///
7925 /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
7926 /// types are either integer or floating type. Between the two
7927 /// operands, the type with the higher rank is defined as the "result
7928 /// type". The other operand needs to be promoted to the same type. No
7929 /// other type promotion is allowed. We cannot use
7930 /// UsualArithmeticConversions() for this purpose, since it always
7931 /// promotes promotable types.
OpenCLArithmeticConversions(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)7932 static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
7933                                             ExprResult &RHS,
7934                                             SourceLocation QuestionLoc) {
7935   LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
7936   if (LHS.isInvalid())
7937     return QualType();
7938   RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
7939   if (RHS.isInvalid())
7940     return QualType();
7941 
7942   // For conversion purposes, we ignore any qualifiers.
7943   // For example, "const float" and "float" are equivalent.
7944   QualType LHSType =
7945     S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
7946   QualType RHSType =
7947     S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
7948 
7949   if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
7950     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
7951       << LHSType << LHS.get()->getSourceRange();
7952     return QualType();
7953   }
7954 
7955   if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
7956     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
7957       << RHSType << RHS.get()->getSourceRange();
7958     return QualType();
7959   }
7960 
7961   // If both types are identical, no conversion is needed.
7962   if (LHSType == RHSType)
7963     return LHSType;
7964 
7965   // Now handle "real" floating types (i.e. float, double, long double).
7966   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
7967     return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
7968                                  /*IsCompAssign = */ false);
7969 
7970   // Finally, we have two differing integer types.
7971   return handleIntegerConversion<doIntegralCast, doIntegralCast>
7972   (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
7973 }
7974 
7975 /// Convert scalar operands to a vector that matches the
7976 ///        condition in length.
7977 ///
7978 /// Used when handling the OpenCL conditional operator where the
7979 /// condition is a vector while the other operands are scalar.
7980 ///
7981 /// We first compute the "result type" for the scalar operands
7982 /// according to OpenCL v1.1 s6.3.i. Both operands are then converted
7983 /// into a vector of that type where the length matches the condition
7984 /// vector type. s6.11.6 requires that the element types of the result
7985 /// and the condition must have the same number of bits.
7986 static QualType
OpenCLConvertScalarsToVectors(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType CondTy,SourceLocation QuestionLoc)7987 OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
7988                               QualType CondTy, SourceLocation QuestionLoc) {
7989   QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
7990   if (ResTy.isNull()) return QualType();
7991 
7992   const VectorType *CV = CondTy->getAs<VectorType>();
7993   assert(CV);
7994 
7995   // Determine the vector result type
7996   unsigned NumElements = CV->getNumElements();
7997   QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
7998 
7999   // Ensure that all types have the same number of bits
8000   if (S.Context.getTypeSize(CV->getElementType())
8001       != S.Context.getTypeSize(ResTy)) {
8002     // Since VectorTy is created internally, it does not pretty print
8003     // with an OpenCL name. Instead, we just print a description.
8004     std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
8005     SmallString<64> Str;
8006     llvm::raw_svector_ostream OS(Str);
8007     OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
8008     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8009       << CondTy << OS.str();
8010     return QualType();
8011   }
8012 
8013   // Convert operands to the vector result type
8014   LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
8015   RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
8016 
8017   return VectorTy;
8018 }
8019 
8020 /// Return false if this is a valid OpenCL condition vector
checkOpenCLConditionVector(Sema & S,Expr * Cond,SourceLocation QuestionLoc)8021 static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
8022                                        SourceLocation QuestionLoc) {
8023   // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
8024   // integral type.
8025   const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
8026   assert(CondTy);
8027   QualType EleTy = CondTy->getElementType();
8028   if (EleTy->isIntegerType()) return false;
8029 
8030   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
8031     << Cond->getType() << Cond->getSourceRange();
8032   return true;
8033 }
8034 
8035 /// Return false if the vector condition type and the vector
8036 ///        result type are compatible.
8037 ///
8038 /// OpenCL v1.1 s6.11.6 requires that both vector types have the same
8039 /// number of elements, and their element types have the same number
8040 /// of bits.
checkVectorResult(Sema & S,QualType CondTy,QualType VecResTy,SourceLocation QuestionLoc)8041 static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
8042                               SourceLocation QuestionLoc) {
8043   const VectorType *CV = CondTy->getAs<VectorType>();
8044   const VectorType *RV = VecResTy->getAs<VectorType>();
8045   assert(CV && RV);
8046 
8047   if (CV->getNumElements() != RV->getNumElements()) {
8048     S.Diag(QuestionLoc, diag::err_conditional_vector_size)
8049       << CondTy << VecResTy;
8050     return true;
8051   }
8052 
8053   QualType CVE = CV->getElementType();
8054   QualType RVE = RV->getElementType();
8055 
8056   if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
8057     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8058       << CondTy << VecResTy;
8059     return true;
8060   }
8061 
8062   return false;
8063 }
8064 
8065 /// Return the resulting type for the conditional operator in
8066 ///        OpenCL (aka "ternary selection operator", OpenCL v1.1
8067 ///        s6.3.i) when the condition is a vector type.
8068 static QualType
OpenCLCheckVectorConditional(Sema & S,ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)8069 OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
8070                              ExprResult &LHS, ExprResult &RHS,
8071                              SourceLocation QuestionLoc) {
8072   Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
8073   if (Cond.isInvalid())
8074     return QualType();
8075   QualType CondTy = Cond.get()->getType();
8076 
8077   if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
8078     return QualType();
8079 
8080   // If either operand is a vector then find the vector type of the
8081   // result as specified in OpenCL v1.1 s6.3.i.
8082   if (LHS.get()->getType()->isVectorType() ||
8083       RHS.get()->getType()->isVectorType()) {
8084     QualType VecResTy = S.CheckVectorOperands(LHS, RHS, QuestionLoc,
8085                                               /*isCompAssign*/false,
8086                                               /*AllowBothBool*/true,
8087                                               /*AllowBoolConversions*/false);
8088     if (VecResTy.isNull()) return QualType();
8089     // The result type must match the condition type as specified in
8090     // OpenCL v1.1 s6.11.6.
8091     if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
8092       return QualType();
8093     return VecResTy;
8094   }
8095 
8096   // Both operands are scalar.
8097   return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
8098 }
8099 
8100 /// Return true if the Expr is block type
checkBlockType(Sema & S,const Expr * E)8101 static bool checkBlockType(Sema &S, const Expr *E) {
8102   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
8103     QualType Ty = CE->getCallee()->getType();
8104     if (Ty->isBlockPointerType()) {
8105       S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
8106       return true;
8107     }
8108   }
8109   return false;
8110 }
8111 
8112 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
8113 /// In that case, LHS = cond.
8114 /// C99 6.5.15
CheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)8115 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
8116                                         ExprResult &RHS, ExprValueKind &VK,
8117                                         ExprObjectKind &OK,
8118                                         SourceLocation QuestionLoc) {
8119 
8120   ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
8121   if (!LHSResult.isUsable()) return QualType();
8122   LHS = LHSResult;
8123 
8124   ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
8125   if (!RHSResult.isUsable()) return QualType();
8126   RHS = RHSResult;
8127 
8128   // C++ is sufficiently different to merit its own checker.
8129   if (getLangOpts().CPlusPlus)
8130     return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
8131 
8132   VK = VK_RValue;
8133   OK = OK_Ordinary;
8134 
8135   if (Context.isDependenceAllowed() &&
8136       (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() ||
8137        RHS.get()->isTypeDependent())) {
8138     assert(!getLangOpts().CPlusPlus);
8139     assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() ||
8140             RHS.get()->containsErrors()) &&
8141            "should only occur in error-recovery path.");
8142     return Context.DependentTy;
8143   }
8144 
8145   // The OpenCL operator with a vector condition is sufficiently
8146   // different to merit its own checker.
8147   if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) ||
8148       Cond.get()->getType()->isExtVectorType())
8149     return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
8150 
8151   // First, check the condition.
8152   Cond = UsualUnaryConversions(Cond.get());
8153   if (Cond.isInvalid())
8154     return QualType();
8155   if (checkCondition(*this, Cond.get(), QuestionLoc))
8156     return QualType();
8157 
8158   // Now check the two expressions.
8159   if (LHS.get()->getType()->isVectorType() ||
8160       RHS.get()->getType()->isVectorType())
8161     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
8162                                /*AllowBothBool*/true,
8163                                /*AllowBoolConversions*/false);
8164 
8165   QualType ResTy =
8166       UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
8167   if (LHS.isInvalid() || RHS.isInvalid())
8168     return QualType();
8169 
8170   QualType LHSTy = LHS.get()->getType();
8171   QualType RHSTy = RHS.get()->getType();
8172 
8173   // Diagnose attempts to convert between __float128 and long double where
8174   // such conversions currently can't be handled.
8175   if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
8176     Diag(QuestionLoc,
8177          diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
8178       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8179     return QualType();
8180   }
8181 
8182   // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
8183   // selection operator (?:).
8184   if (getLangOpts().OpenCL &&
8185       (checkBlockType(*this, LHS.get()) | checkBlockType(*this, RHS.get()))) {
8186     return QualType();
8187   }
8188 
8189   // If both operands have arithmetic type, do the usual arithmetic conversions
8190   // to find a common type: C99 6.5.15p3,5.
8191   if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
8192     // Disallow invalid arithmetic conversions, such as those between ExtInts of
8193     // different sizes, or between ExtInts and other types.
8194     if (ResTy.isNull() && (LHSTy->isExtIntType() || RHSTy->isExtIntType())) {
8195       Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8196           << LHSTy << RHSTy << LHS.get()->getSourceRange()
8197           << RHS.get()->getSourceRange();
8198       return QualType();
8199     }
8200 
8201     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
8202     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
8203 
8204     return ResTy;
8205   }
8206 
8207   // And if they're both bfloat (which isn't arithmetic), that's fine too.
8208   if (LHSTy->isBFloat16Type() && RHSTy->isBFloat16Type()) {
8209     return LHSTy;
8210   }
8211 
8212   // If both operands are the same structure or union type, the result is that
8213   // type.
8214   if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
8215     if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
8216       if (LHSRT->getDecl() == RHSRT->getDecl())
8217         // "If both the operands have structure or union type, the result has
8218         // that type."  This implies that CV qualifiers are dropped.
8219         return LHSTy.getUnqualifiedType();
8220     // FIXME: Type of conditional expression must be complete in C mode.
8221   }
8222 
8223   // C99 6.5.15p5: "If both operands have void type, the result has void type."
8224   // The following || allows only one side to be void (a GCC-ism).
8225   if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
8226     return checkConditionalVoidType(*this, LHS, RHS);
8227   }
8228 
8229   // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
8230   // the type of the other operand."
8231   if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
8232   if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
8233 
8234   // All objective-c pointer type analysis is done here.
8235   QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
8236                                                         QuestionLoc);
8237   if (LHS.isInvalid() || RHS.isInvalid())
8238     return QualType();
8239   if (!compositeType.isNull())
8240     return compositeType;
8241 
8242 
8243   // Handle block pointer types.
8244   if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
8245     return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
8246                                                      QuestionLoc);
8247 
8248   // Check constraints for C object pointers types (C99 6.5.15p3,6).
8249   if (LHSTy->isPointerType() && RHSTy->isPointerType())
8250     return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
8251                                                        QuestionLoc);
8252 
8253   // GCC compatibility: soften pointer/integer mismatch.  Note that
8254   // null pointers have been filtered out by this point.
8255   if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
8256       /*IsIntFirstExpr=*/true))
8257     return RHSTy;
8258   if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
8259       /*IsIntFirstExpr=*/false))
8260     return LHSTy;
8261 
8262   // Allow ?: operations in which both operands have the same
8263   // built-in sizeless type.
8264   if (LHSTy->isSizelessBuiltinType() && LHSTy == RHSTy)
8265     return LHSTy;
8266 
8267   // Emit a better diagnostic if one of the expressions is a null pointer
8268   // constant and the other is not a pointer type. In this case, the user most
8269   // likely forgot to take the address of the other expression.
8270   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
8271     return QualType();
8272 
8273   // Otherwise, the operands are not compatible.
8274   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8275     << LHSTy << RHSTy << LHS.get()->getSourceRange()
8276     << RHS.get()->getSourceRange();
8277   return QualType();
8278 }
8279 
8280 /// FindCompositeObjCPointerType - Helper method to find composite type of
8281 /// two objective-c pointer types of the two input expressions.
FindCompositeObjCPointerType(ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)8282 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
8283                                             SourceLocation QuestionLoc) {
8284   QualType LHSTy = LHS.get()->getType();
8285   QualType RHSTy = RHS.get()->getType();
8286 
8287   // Handle things like Class and struct objc_class*.  Here we case the result
8288   // to the pseudo-builtin, because that will be implicitly cast back to the
8289   // redefinition type if an attempt is made to access its fields.
8290   if (LHSTy->isObjCClassType() &&
8291       (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
8292     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
8293     return LHSTy;
8294   }
8295   if (RHSTy->isObjCClassType() &&
8296       (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
8297     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
8298     return RHSTy;
8299   }
8300   // And the same for struct objc_object* / id
8301   if (LHSTy->isObjCIdType() &&
8302       (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
8303     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
8304     return LHSTy;
8305   }
8306   if (RHSTy->isObjCIdType() &&
8307       (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
8308     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
8309     return RHSTy;
8310   }
8311   // And the same for struct objc_selector* / SEL
8312   if (Context.isObjCSelType(LHSTy) &&
8313       (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
8314     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
8315     return LHSTy;
8316   }
8317   if (Context.isObjCSelType(RHSTy) &&
8318       (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
8319     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
8320     return RHSTy;
8321   }
8322   // Check constraints for Objective-C object pointers types.
8323   if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
8324 
8325     if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
8326       // Two identical object pointer types are always compatible.
8327       return LHSTy;
8328     }
8329     const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
8330     const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
8331     QualType compositeType = LHSTy;
8332 
8333     // If both operands are interfaces and either operand can be
8334     // assigned to the other, use that type as the composite
8335     // type. This allows
8336     //   xxx ? (A*) a : (B*) b
8337     // where B is a subclass of A.
8338     //
8339     // Additionally, as for assignment, if either type is 'id'
8340     // allow silent coercion. Finally, if the types are
8341     // incompatible then make sure to use 'id' as the composite
8342     // type so the result is acceptable for sending messages to.
8343 
8344     // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
8345     // It could return the composite type.
8346     if (!(compositeType =
8347           Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
8348       // Nothing more to do.
8349     } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
8350       compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
8351     } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
8352       compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
8353     } else if ((LHSOPT->isObjCQualifiedIdType() ||
8354                 RHSOPT->isObjCQualifiedIdType()) &&
8355                Context.ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT,
8356                                                          true)) {
8357       // Need to handle "id<xx>" explicitly.
8358       // GCC allows qualified id and any Objective-C type to devolve to
8359       // id. Currently localizing to here until clear this should be
8360       // part of ObjCQualifiedIdTypesAreCompatible.
8361       compositeType = Context.getObjCIdType();
8362     } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
8363       compositeType = Context.getObjCIdType();
8364     } else {
8365       Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
8366       << LHSTy << RHSTy
8367       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8368       QualType incompatTy = Context.getObjCIdType();
8369       LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
8370       RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
8371       return incompatTy;
8372     }
8373     // The object pointer types are compatible.
8374     LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
8375     RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
8376     return compositeType;
8377   }
8378   // Check Objective-C object pointer types and 'void *'
8379   if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
8380     if (getLangOpts().ObjCAutoRefCount) {
8381       // ARC forbids the implicit conversion of object pointers to 'void *',
8382       // so these types are not compatible.
8383       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
8384           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8385       LHS = RHS = true;
8386       return QualType();
8387     }
8388     QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8389     QualType rhptee = RHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
8390     QualType destPointee
8391     = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
8392     QualType destType = Context.getPointerType(destPointee);
8393     // Add qualifiers if necessary.
8394     LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
8395     // Promote to void*.
8396     RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8397     return destType;
8398   }
8399   if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
8400     if (getLangOpts().ObjCAutoRefCount) {
8401       // ARC forbids the implicit conversion of object pointers to 'void *',
8402       // so these types are not compatible.
8403       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
8404           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8405       LHS = RHS = true;
8406       return QualType();
8407     }
8408     QualType lhptee = LHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
8409     QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8410     QualType destPointee
8411     = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
8412     QualType destType = Context.getPointerType(destPointee);
8413     // Add qualifiers if necessary.
8414     RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
8415     // Promote to void*.
8416     LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8417     return destType;
8418   }
8419   return QualType();
8420 }
8421 
8422 /// SuggestParentheses - Emit a note with a fixit hint that wraps
8423 /// ParenRange in parentheses.
SuggestParentheses(Sema & Self,SourceLocation Loc,const PartialDiagnostic & Note,SourceRange ParenRange)8424 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
8425                                const PartialDiagnostic &Note,
8426                                SourceRange ParenRange) {
8427   SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
8428   if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
8429       EndLoc.isValid()) {
8430     Self.Diag(Loc, Note)
8431       << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
8432       << FixItHint::CreateInsertion(EndLoc, ")");
8433   } else {
8434     // We can't display the parentheses, so just show the bare note.
8435     Self.Diag(Loc, Note) << ParenRange;
8436   }
8437 }
8438 
IsArithmeticOp(BinaryOperatorKind Opc)8439 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
8440   return BinaryOperator::isAdditiveOp(Opc) ||
8441          BinaryOperator::isMultiplicativeOp(Opc) ||
8442          BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
8443   // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
8444   // not any of the logical operators.  Bitwise-xor is commonly used as a
8445   // logical-xor because there is no logical-xor operator.  The logical
8446   // operators, including uses of xor, have a high false positive rate for
8447   // precedence warnings.
8448 }
8449 
8450 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
8451 /// expression, either using a built-in or overloaded operator,
8452 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
8453 /// expression.
IsArithmeticBinaryExpr(Expr * E,BinaryOperatorKind * Opcode,Expr ** RHSExprs)8454 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
8455                                    Expr **RHSExprs) {
8456   // Don't strip parenthesis: we should not warn if E is in parenthesis.
8457   E = E->IgnoreImpCasts();
8458   E = E->IgnoreConversionOperatorSingleStep();
8459   E = E->IgnoreImpCasts();
8460   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
8461     E = MTE->getSubExpr();
8462     E = E->IgnoreImpCasts();
8463   }
8464 
8465   // Built-in binary operator.
8466   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
8467     if (IsArithmeticOp(OP->getOpcode())) {
8468       *Opcode = OP->getOpcode();
8469       *RHSExprs = OP->getRHS();
8470       return true;
8471     }
8472   }
8473 
8474   // Overloaded operator.
8475   if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
8476     if (Call->getNumArgs() != 2)
8477       return false;
8478 
8479     // Make sure this is really a binary operator that is safe to pass into
8480     // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
8481     OverloadedOperatorKind OO = Call->getOperator();
8482     if (OO < OO_Plus || OO > OO_Arrow ||
8483         OO == OO_PlusPlus || OO == OO_MinusMinus)
8484       return false;
8485 
8486     BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
8487     if (IsArithmeticOp(OpKind)) {
8488       *Opcode = OpKind;
8489       *RHSExprs = Call->getArg(1);
8490       return true;
8491     }
8492   }
8493 
8494   return false;
8495 }
8496 
8497 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
8498 /// or is a logical expression such as (x==y) which has int type, but is
8499 /// commonly interpreted as boolean.
ExprLooksBoolean(Expr * E)8500 static bool ExprLooksBoolean(Expr *E) {
8501   E = E->IgnoreParenImpCasts();
8502 
8503   if (E->getType()->isBooleanType())
8504     return true;
8505   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
8506     return OP->isComparisonOp() || OP->isLogicalOp();
8507   if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
8508     return OP->getOpcode() == UO_LNot;
8509   if (E->getType()->isPointerType())
8510     return true;
8511   // FIXME: What about overloaded operator calls returning "unspecified boolean
8512   // type"s (commonly pointer-to-members)?
8513 
8514   return false;
8515 }
8516 
8517 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
8518 /// and binary operator are mixed in a way that suggests the programmer assumed
8519 /// the conditional operator has higher precedence, for example:
8520 /// "int x = a + someBinaryCondition ? 1 : 2".
DiagnoseConditionalPrecedence(Sema & Self,SourceLocation OpLoc,Expr * Condition,Expr * LHSExpr,Expr * RHSExpr)8521 static void DiagnoseConditionalPrecedence(Sema &Self,
8522                                           SourceLocation OpLoc,
8523                                           Expr *Condition,
8524                                           Expr *LHSExpr,
8525                                           Expr *RHSExpr) {
8526   BinaryOperatorKind CondOpcode;
8527   Expr *CondRHS;
8528 
8529   if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
8530     return;
8531   if (!ExprLooksBoolean(CondRHS))
8532     return;
8533 
8534   // The condition is an arithmetic binary expression, with a right-
8535   // hand side that looks boolean, so warn.
8536 
8537   unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode)
8538                         ? diag::warn_precedence_bitwise_conditional
8539                         : diag::warn_precedence_conditional;
8540 
8541   Self.Diag(OpLoc, DiagID)
8542       << Condition->getSourceRange()
8543       << BinaryOperator::getOpcodeStr(CondOpcode);
8544 
8545   SuggestParentheses(
8546       Self, OpLoc,
8547       Self.PDiag(diag::note_precedence_silence)
8548           << BinaryOperator::getOpcodeStr(CondOpcode),
8549       SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
8550 
8551   SuggestParentheses(Self, OpLoc,
8552                      Self.PDiag(diag::note_precedence_conditional_first),
8553                      SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
8554 }
8555 
8556 /// Compute the nullability of a conditional expression.
computeConditionalNullability(QualType ResTy,bool IsBin,QualType LHSTy,QualType RHSTy,ASTContext & Ctx)8557 static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
8558                                               QualType LHSTy, QualType RHSTy,
8559                                               ASTContext &Ctx) {
8560   if (!ResTy->isAnyPointerType())
8561     return ResTy;
8562 
8563   auto GetNullability = [&Ctx](QualType Ty) {
8564     Optional<NullabilityKind> Kind = Ty->getNullability(Ctx);
8565     if (Kind) {
8566       // For our purposes, treat _Nullable_result as _Nullable.
8567       if (*Kind == NullabilityKind::NullableResult)
8568         return NullabilityKind::Nullable;
8569       return *Kind;
8570     }
8571     return NullabilityKind::Unspecified;
8572   };
8573 
8574   auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
8575   NullabilityKind MergedKind;
8576 
8577   // Compute nullability of a binary conditional expression.
8578   if (IsBin) {
8579     if (LHSKind == NullabilityKind::NonNull)
8580       MergedKind = NullabilityKind::NonNull;
8581     else
8582       MergedKind = RHSKind;
8583   // Compute nullability of a normal conditional expression.
8584   } else {
8585     if (LHSKind == NullabilityKind::Nullable ||
8586         RHSKind == NullabilityKind::Nullable)
8587       MergedKind = NullabilityKind::Nullable;
8588     else if (LHSKind == NullabilityKind::NonNull)
8589       MergedKind = RHSKind;
8590     else if (RHSKind == NullabilityKind::NonNull)
8591       MergedKind = LHSKind;
8592     else
8593       MergedKind = NullabilityKind::Unspecified;
8594   }
8595 
8596   // Return if ResTy already has the correct nullability.
8597   if (GetNullability(ResTy) == MergedKind)
8598     return ResTy;
8599 
8600   // Strip all nullability from ResTy.
8601   while (ResTy->getNullability(Ctx))
8602     ResTy = ResTy.getSingleStepDesugaredType(Ctx);
8603 
8604   // Create a new AttributedType with the new nullability kind.
8605   auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
8606   return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
8607 }
8608 
8609 /// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
8610 /// in the case of a the GNU conditional expr extension.
ActOnConditionalOp(SourceLocation QuestionLoc,SourceLocation ColonLoc,Expr * CondExpr,Expr * LHSExpr,Expr * RHSExpr)8611 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
8612                                     SourceLocation ColonLoc,
8613                                     Expr *CondExpr, Expr *LHSExpr,
8614                                     Expr *RHSExpr) {
8615   if (!Context.isDependenceAllowed()) {
8616     // C cannot handle TypoExpr nodes in the condition because it
8617     // doesn't handle dependent types properly, so make sure any TypoExprs have
8618     // been dealt with before checking the operands.
8619     ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
8620     ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
8621     ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
8622 
8623     if (!CondResult.isUsable())
8624       return ExprError();
8625 
8626     if (LHSExpr) {
8627       if (!LHSResult.isUsable())
8628         return ExprError();
8629     }
8630 
8631     if (!RHSResult.isUsable())
8632       return ExprError();
8633 
8634     CondExpr = CondResult.get();
8635     LHSExpr = LHSResult.get();
8636     RHSExpr = RHSResult.get();
8637   }
8638 
8639   // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
8640   // was the condition.
8641   OpaqueValueExpr *opaqueValue = nullptr;
8642   Expr *commonExpr = nullptr;
8643   if (!LHSExpr) {
8644     commonExpr = CondExpr;
8645     // Lower out placeholder types first.  This is important so that we don't
8646     // try to capture a placeholder. This happens in few cases in C++; such
8647     // as Objective-C++'s dictionary subscripting syntax.
8648     if (commonExpr->hasPlaceholderType()) {
8649       ExprResult result = CheckPlaceholderExpr(commonExpr);
8650       if (!result.isUsable()) return ExprError();
8651       commonExpr = result.get();
8652     }
8653     // We usually want to apply unary conversions *before* saving, except
8654     // in the special case of a C++ l-value conditional.
8655     if (!(getLangOpts().CPlusPlus
8656           && !commonExpr->isTypeDependent()
8657           && commonExpr->getValueKind() == RHSExpr->getValueKind()
8658           && commonExpr->isGLValue()
8659           && commonExpr->isOrdinaryOrBitFieldObject()
8660           && RHSExpr->isOrdinaryOrBitFieldObject()
8661           && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
8662       ExprResult commonRes = UsualUnaryConversions(commonExpr);
8663       if (commonRes.isInvalid())
8664         return ExprError();
8665       commonExpr = commonRes.get();
8666     }
8667 
8668     // If the common expression is a class or array prvalue, materialize it
8669     // so that we can safely refer to it multiple times.
8670     if (commonExpr->isRValue() && (commonExpr->getType()->isRecordType() ||
8671                                    commonExpr->getType()->isArrayType())) {
8672       ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
8673       if (MatExpr.isInvalid())
8674         return ExprError();
8675       commonExpr = MatExpr.get();
8676     }
8677 
8678     opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
8679                                                 commonExpr->getType(),
8680                                                 commonExpr->getValueKind(),
8681                                                 commonExpr->getObjectKind(),
8682                                                 commonExpr);
8683     LHSExpr = CondExpr = opaqueValue;
8684   }
8685 
8686   QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
8687   ExprValueKind VK = VK_RValue;
8688   ExprObjectKind OK = OK_Ordinary;
8689   ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
8690   QualType result = CheckConditionalOperands(Cond, LHS, RHS,
8691                                              VK, OK, QuestionLoc);
8692   if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
8693       RHS.isInvalid())
8694     return ExprError();
8695 
8696   DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
8697                                 RHS.get());
8698 
8699   CheckBoolLikeConversion(Cond.get(), QuestionLoc);
8700 
8701   result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
8702                                          Context);
8703 
8704   if (!commonExpr)
8705     return new (Context)
8706         ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
8707                             RHS.get(), result, VK, OK);
8708 
8709   return new (Context) BinaryConditionalOperator(
8710       commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
8711       ColonLoc, result, VK, OK);
8712 }
8713 
8714 // Check if we have a conversion between incompatible cmse function pointer
8715 // types, that is, a conversion between a function pointer with the
8716 // cmse_nonsecure_call attribute and one without.
IsInvalidCmseNSCallConversion(Sema & S,QualType FromType,QualType ToType)8717 static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType,
8718                                           QualType ToType) {
8719   if (const auto *ToFn =
8720           dyn_cast<FunctionType>(S.Context.getCanonicalType(ToType))) {
8721     if (const auto *FromFn =
8722             dyn_cast<FunctionType>(S.Context.getCanonicalType(FromType))) {
8723       FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
8724       FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
8725 
8726       return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall();
8727     }
8728   }
8729   return false;
8730 }
8731 
8732 // checkPointerTypesForAssignment - This is a very tricky routine (despite
8733 // being closely modeled after the C99 spec:-). The odd characteristic of this
8734 // routine is it effectively iqnores the qualifiers on the top level pointee.
8735 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
8736 // FIXME: add a couple examples in this comment.
8737 static Sema::AssignConvertType
checkPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)8738 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
8739   assert(LHSType.isCanonical() && "LHS not canonicalized!");
8740   assert(RHSType.isCanonical() && "RHS not canonicalized!");
8741 
8742   // get the "pointed to" type (ignoring qualifiers at the top level)
8743   const Type *lhptee, *rhptee;
8744   Qualifiers lhq, rhq;
8745   std::tie(lhptee, lhq) =
8746       cast<PointerType>(LHSType)->getPointeeType().split().asPair();
8747   std::tie(rhptee, rhq) =
8748       cast<PointerType>(RHSType)->getPointeeType().split().asPair();
8749 
8750   Sema::AssignConvertType ConvTy = Sema::Compatible;
8751 
8752   // C99 6.5.16.1p1: This following citation is common to constraints
8753   // 3 & 4 (below). ...and the type *pointed to* by the left has all the
8754   // qualifiers of the type *pointed to* by the right;
8755 
8756   // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
8757   if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
8758       lhq.compatiblyIncludesObjCLifetime(rhq)) {
8759     // Ignore lifetime for further calculation.
8760     lhq.removeObjCLifetime();
8761     rhq.removeObjCLifetime();
8762   }
8763 
8764   if (!lhq.compatiblyIncludes(rhq)) {
8765     // Treat address-space mismatches as fatal.
8766     if (!lhq.isAddressSpaceSupersetOf(rhq))
8767       return Sema::IncompatiblePointerDiscardsQualifiers;
8768 
8769     // It's okay to add or remove GC or lifetime qualifiers when converting to
8770     // and from void*.
8771     else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
8772                         .compatiblyIncludes(
8773                                 rhq.withoutObjCGCAttr().withoutObjCLifetime())
8774              && (lhptee->isVoidType() || rhptee->isVoidType()))
8775       ; // keep old
8776 
8777     // Treat lifetime mismatches as fatal.
8778     else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
8779       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
8780 
8781     // For GCC/MS compatibility, other qualifier mismatches are treated
8782     // as still compatible in C.
8783     else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
8784   }
8785 
8786   // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
8787   // incomplete type and the other is a pointer to a qualified or unqualified
8788   // version of void...
8789   if (lhptee->isVoidType()) {
8790     if (rhptee->isIncompleteOrObjectType())
8791       return ConvTy;
8792 
8793     // As an extension, we allow cast to/from void* to function pointer.
8794     assert(rhptee->isFunctionType());
8795     return Sema::FunctionVoidPointer;
8796   }
8797 
8798   if (rhptee->isVoidType()) {
8799     if (lhptee->isIncompleteOrObjectType())
8800       return ConvTy;
8801 
8802     // As an extension, we allow cast to/from void* to function pointer.
8803     assert(lhptee->isFunctionType());
8804     return Sema::FunctionVoidPointer;
8805   }
8806 
8807   // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
8808   // unqualified versions of compatible types, ...
8809   QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
8810   if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
8811     // Check if the pointee types are compatible ignoring the sign.
8812     // We explicitly check for char so that we catch "char" vs
8813     // "unsigned char" on systems where "char" is unsigned.
8814     if (lhptee->isCharType())
8815       ltrans = S.Context.UnsignedCharTy;
8816     else if (lhptee->hasSignedIntegerRepresentation())
8817       ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
8818 
8819     if (rhptee->isCharType())
8820       rtrans = S.Context.UnsignedCharTy;
8821     else if (rhptee->hasSignedIntegerRepresentation())
8822       rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
8823 
8824     if (ltrans == rtrans) {
8825       // Types are compatible ignoring the sign. Qualifier incompatibility
8826       // takes priority over sign incompatibility because the sign
8827       // warning can be disabled.
8828       if (ConvTy != Sema::Compatible)
8829         return ConvTy;
8830 
8831       return Sema::IncompatiblePointerSign;
8832     }
8833 
8834     // If we are a multi-level pointer, it's possible that our issue is simply
8835     // one of qualification - e.g. char ** -> const char ** is not allowed. If
8836     // the eventual target type is the same and the pointers have the same
8837     // level of indirection, this must be the issue.
8838     if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
8839       do {
8840         std::tie(lhptee, lhq) =
8841           cast<PointerType>(lhptee)->getPointeeType().split().asPair();
8842         std::tie(rhptee, rhq) =
8843           cast<PointerType>(rhptee)->getPointeeType().split().asPair();
8844 
8845         // Inconsistent address spaces at this point is invalid, even if the
8846         // address spaces would be compatible.
8847         // FIXME: This doesn't catch address space mismatches for pointers of
8848         // different nesting levels, like:
8849         //   __local int *** a;
8850         //   int ** b = a;
8851         // It's not clear how to actually determine when such pointers are
8852         // invalidly incompatible.
8853         if (lhq.getAddressSpace() != rhq.getAddressSpace())
8854           return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
8855 
8856       } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
8857 
8858       if (lhptee == rhptee)
8859         return Sema::IncompatibleNestedPointerQualifiers;
8860     }
8861 
8862     // General pointer incompatibility takes priority over qualifiers.
8863     if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType())
8864       return Sema::IncompatibleFunctionPointer;
8865     return Sema::IncompatiblePointer;
8866   }
8867   if (!S.getLangOpts().CPlusPlus &&
8868       S.IsFunctionConversion(ltrans, rtrans, ltrans))
8869     return Sema::IncompatibleFunctionPointer;
8870   if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans))
8871     return Sema::IncompatibleFunctionPointer;
8872   return ConvTy;
8873 }
8874 
8875 /// checkBlockPointerTypesForAssignment - This routine determines whether two
8876 /// block pointer types are compatible or whether a block and normal pointer
8877 /// are compatible. It is more restrict than comparing two function pointer
8878 // types.
8879 static Sema::AssignConvertType
checkBlockPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)8880 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
8881                                     QualType RHSType) {
8882   assert(LHSType.isCanonical() && "LHS not canonicalized!");
8883   assert(RHSType.isCanonical() && "RHS not canonicalized!");
8884 
8885   QualType lhptee, rhptee;
8886 
8887   // get the "pointed to" type (ignoring qualifiers at the top level)
8888   lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
8889   rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
8890 
8891   // In C++, the types have to match exactly.
8892   if (S.getLangOpts().CPlusPlus)
8893     return Sema::IncompatibleBlockPointer;
8894 
8895   Sema::AssignConvertType ConvTy = Sema::Compatible;
8896 
8897   // For blocks we enforce that qualifiers are identical.
8898   Qualifiers LQuals = lhptee.getLocalQualifiers();
8899   Qualifiers RQuals = rhptee.getLocalQualifiers();
8900   if (S.getLangOpts().OpenCL) {
8901     LQuals.removeAddressSpace();
8902     RQuals.removeAddressSpace();
8903   }
8904   if (LQuals != RQuals)
8905     ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
8906 
8907   // FIXME: OpenCL doesn't define the exact compile time semantics for a block
8908   // assignment.
8909   // The current behavior is similar to C++ lambdas. A block might be
8910   // assigned to a variable iff its return type and parameters are compatible
8911   // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
8912   // an assignment. Presumably it should behave in way that a function pointer
8913   // assignment does in C, so for each parameter and return type:
8914   //  * CVR and address space of LHS should be a superset of CVR and address
8915   //  space of RHS.
8916   //  * unqualified types should be compatible.
8917   if (S.getLangOpts().OpenCL) {
8918     if (!S.Context.typesAreBlockPointerCompatible(
8919             S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
8920             S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
8921       return Sema::IncompatibleBlockPointer;
8922   } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
8923     return Sema::IncompatibleBlockPointer;
8924 
8925   return ConvTy;
8926 }
8927 
8928 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
8929 /// for assignment compatibility.
8930 static Sema::AssignConvertType
checkObjCPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)8931 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
8932                                    QualType RHSType) {
8933   assert(LHSType.isCanonical() && "LHS was not canonicalized!");
8934   assert(RHSType.isCanonical() && "RHS was not canonicalized!");
8935 
8936   if (LHSType->isObjCBuiltinType()) {
8937     // Class is not compatible with ObjC object pointers.
8938     if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
8939         !RHSType->isObjCQualifiedClassType())
8940       return Sema::IncompatiblePointer;
8941     return Sema::Compatible;
8942   }
8943   if (RHSType->isObjCBuiltinType()) {
8944     if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
8945         !LHSType->isObjCQualifiedClassType())
8946       return Sema::IncompatiblePointer;
8947     return Sema::Compatible;
8948   }
8949   QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
8950   QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
8951 
8952   if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
8953       // make an exception for id<P>
8954       !LHSType->isObjCQualifiedIdType())
8955     return Sema::CompatiblePointerDiscardsQualifiers;
8956 
8957   if (S.Context.typesAreCompatible(LHSType, RHSType))
8958     return Sema::Compatible;
8959   if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
8960     return Sema::IncompatibleObjCQualifiedId;
8961   return Sema::IncompatiblePointer;
8962 }
8963 
8964 Sema::AssignConvertType
CheckAssignmentConstraints(SourceLocation Loc,QualType LHSType,QualType RHSType)8965 Sema::CheckAssignmentConstraints(SourceLocation Loc,
8966                                  QualType LHSType, QualType RHSType) {
8967   // Fake up an opaque expression.  We don't actually care about what
8968   // cast operations are required, so if CheckAssignmentConstraints
8969   // adds casts to this they'll be wasted, but fortunately that doesn't
8970   // usually happen on valid code.
8971   OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
8972   ExprResult RHSPtr = &RHSExpr;
8973   CastKind K;
8974 
8975   return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
8976 }
8977 
8978 /// This helper function returns true if QT is a vector type that has element
8979 /// type ElementType.
isVector(QualType QT,QualType ElementType)8980 static bool isVector(QualType QT, QualType ElementType) {
8981   if (const VectorType *VT = QT->getAs<VectorType>())
8982     return VT->getElementType().getCanonicalType() == ElementType;
8983   return false;
8984 }
8985 
8986 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
8987 /// has code to accommodate several GCC extensions when type checking
8988 /// pointers. Here are some objectionable examples that GCC considers warnings:
8989 ///
8990 ///  int a, *pint;
8991 ///  short *pshort;
8992 ///  struct foo *pfoo;
8993 ///
8994 ///  pint = pshort; // warning: assignment from incompatible pointer type
8995 ///  a = pint; // warning: assignment makes integer from pointer without a cast
8996 ///  pint = a; // warning: assignment makes pointer from integer without a cast
8997 ///  pint = pfoo; // warning: assignment from incompatible pointer type
8998 ///
8999 /// As a result, the code for dealing with pointers is more complex than the
9000 /// C99 spec dictates.
9001 ///
9002 /// Sets 'Kind' for any result kind except Incompatible.
9003 Sema::AssignConvertType
CheckAssignmentConstraints(QualType LHSType,ExprResult & RHS,CastKind & Kind,bool ConvertRHS)9004 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
9005                                  CastKind &Kind, bool ConvertRHS) {
9006   QualType RHSType = RHS.get()->getType();
9007   QualType OrigLHSType = LHSType;
9008 
9009   // Get canonical types.  We're not formatting these types, just comparing
9010   // them.
9011   LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
9012   RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
9013 
9014   // Common case: no conversion required.
9015   if (LHSType == RHSType) {
9016     Kind = CK_NoOp;
9017     return Compatible;
9018   }
9019 
9020   // If we have an atomic type, try a non-atomic assignment, then just add an
9021   // atomic qualification step.
9022   if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
9023     Sema::AssignConvertType result =
9024       CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
9025     if (result != Compatible)
9026       return result;
9027     if (Kind != CK_NoOp && ConvertRHS)
9028       RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
9029     Kind = CK_NonAtomicToAtomic;
9030     return Compatible;
9031   }
9032 
9033   // If the left-hand side is a reference type, then we are in a
9034   // (rare!) case where we've allowed the use of references in C,
9035   // e.g., as a parameter type in a built-in function. In this case,
9036   // just make sure that the type referenced is compatible with the
9037   // right-hand side type. The caller is responsible for adjusting
9038   // LHSType so that the resulting expression does not have reference
9039   // type.
9040   if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
9041     if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
9042       Kind = CK_LValueBitCast;
9043       return Compatible;
9044     }
9045     return Incompatible;
9046   }
9047 
9048   // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
9049   // to the same ExtVector type.
9050   if (LHSType->isExtVectorType()) {
9051     if (RHSType->isExtVectorType())
9052       return Incompatible;
9053     if (RHSType->isArithmeticType()) {
9054       // CK_VectorSplat does T -> vector T, so first cast to the element type.
9055       if (ConvertRHS)
9056         RHS = prepareVectorSplat(LHSType, RHS.get());
9057       Kind = CK_VectorSplat;
9058       return Compatible;
9059     }
9060   }
9061 
9062   // Conversions to or from vector type.
9063   if (LHSType->isVectorType() || RHSType->isVectorType()) {
9064     if (LHSType->isVectorType() && RHSType->isVectorType()) {
9065       // Allow assignments of an AltiVec vector type to an equivalent GCC
9066       // vector type and vice versa
9067       if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
9068         Kind = CK_BitCast;
9069         return Compatible;
9070       }
9071 
9072       // If we are allowing lax vector conversions, and LHS and RHS are both
9073       // vectors, the total size only needs to be the same. This is a bitcast;
9074       // no bits are changed but the result type is different.
9075       if (isLaxVectorConversion(RHSType, LHSType)) {
9076         Kind = CK_BitCast;
9077         return IncompatibleVectors;
9078       }
9079     }
9080 
9081     // When the RHS comes from another lax conversion (e.g. binops between
9082     // scalars and vectors) the result is canonicalized as a vector. When the
9083     // LHS is also a vector, the lax is allowed by the condition above. Handle
9084     // the case where LHS is a scalar.
9085     if (LHSType->isScalarType()) {
9086       const VectorType *VecType = RHSType->getAs<VectorType>();
9087       if (VecType && VecType->getNumElements() == 1 &&
9088           isLaxVectorConversion(RHSType, LHSType)) {
9089         ExprResult *VecExpr = &RHS;
9090         *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
9091         Kind = CK_BitCast;
9092         return Compatible;
9093       }
9094     }
9095 
9096     // Allow assignments between fixed-length and sizeless SVE vectors.
9097     if ((LHSType->isSizelessBuiltinType() && RHSType->isVectorType()) ||
9098         (LHSType->isVectorType() && RHSType->isSizelessBuiltinType()))
9099       if (Context.areCompatibleSveTypes(LHSType, RHSType) ||
9100           Context.areLaxCompatibleSveTypes(LHSType, RHSType)) {
9101         Kind = CK_BitCast;
9102         return Compatible;
9103       }
9104 
9105     return Incompatible;
9106   }
9107 
9108   // Diagnose attempts to convert between __float128 and long double where
9109   // such conversions currently can't be handled.
9110   if (unsupportedTypeConversion(*this, LHSType, RHSType))
9111     return Incompatible;
9112 
9113   // Disallow assigning a _Complex to a real type in C++ mode since it simply
9114   // discards the imaginary part.
9115   if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
9116       !LHSType->getAs<ComplexType>())
9117     return Incompatible;
9118 
9119   // Arithmetic conversions.
9120   if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
9121       !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
9122     if (ConvertRHS)
9123       Kind = PrepareScalarCast(RHS, LHSType);
9124     return Compatible;
9125   }
9126 
9127   // Conversions to normal pointers.
9128   if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
9129     // U* -> T*
9130     if (isa<PointerType>(RHSType)) {
9131       LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9132       LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
9133       if (AddrSpaceL != AddrSpaceR)
9134         Kind = CK_AddressSpaceConversion;
9135       else if (Context.hasCvrSimilarType(RHSType, LHSType))
9136         Kind = CK_NoOp;
9137       else
9138         Kind = CK_BitCast;
9139       return checkPointerTypesForAssignment(*this, LHSType, RHSType);
9140     }
9141 
9142     // int -> T*
9143     if (RHSType->isIntegerType()) {
9144       Kind = CK_IntegralToPointer; // FIXME: null?
9145       return IntToPointer;
9146     }
9147 
9148     // C pointers are not compatible with ObjC object pointers,
9149     // with two exceptions:
9150     if (isa<ObjCObjectPointerType>(RHSType)) {
9151       //  - conversions to void*
9152       if (LHSPointer->getPointeeType()->isVoidType()) {
9153         Kind = CK_BitCast;
9154         return Compatible;
9155       }
9156 
9157       //  - conversions from 'Class' to the redefinition type
9158       if (RHSType->isObjCClassType() &&
9159           Context.hasSameType(LHSType,
9160                               Context.getObjCClassRedefinitionType())) {
9161         Kind = CK_BitCast;
9162         return Compatible;
9163       }
9164 
9165       Kind = CK_BitCast;
9166       return IncompatiblePointer;
9167     }
9168 
9169     // U^ -> void*
9170     if (RHSType->getAs<BlockPointerType>()) {
9171       if (LHSPointer->getPointeeType()->isVoidType()) {
9172         LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9173         LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9174                                 ->getPointeeType()
9175                                 .getAddressSpace();
9176         Kind =
9177             AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9178         return Compatible;
9179       }
9180     }
9181 
9182     return Incompatible;
9183   }
9184 
9185   // Conversions to block pointers.
9186   if (isa<BlockPointerType>(LHSType)) {
9187     // U^ -> T^
9188     if (RHSType->isBlockPointerType()) {
9189       LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
9190                               ->getPointeeType()
9191                               .getAddressSpace();
9192       LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9193                               ->getPointeeType()
9194                               .getAddressSpace();
9195       Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9196       return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
9197     }
9198 
9199     // int or null -> T^
9200     if (RHSType->isIntegerType()) {
9201       Kind = CK_IntegralToPointer; // FIXME: null
9202       return IntToBlockPointer;
9203     }
9204 
9205     // id -> T^
9206     if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
9207       Kind = CK_AnyPointerToBlockPointerCast;
9208       return Compatible;
9209     }
9210 
9211     // void* -> T^
9212     if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
9213       if (RHSPT->getPointeeType()->isVoidType()) {
9214         Kind = CK_AnyPointerToBlockPointerCast;
9215         return Compatible;
9216       }
9217 
9218     return Incompatible;
9219   }
9220 
9221   // Conversions to Objective-C pointers.
9222   if (isa<ObjCObjectPointerType>(LHSType)) {
9223     // A* -> B*
9224     if (RHSType->isObjCObjectPointerType()) {
9225       Kind = CK_BitCast;
9226       Sema::AssignConvertType result =
9227         checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
9228       if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9229           result == Compatible &&
9230           !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
9231         result = IncompatibleObjCWeakRef;
9232       return result;
9233     }
9234 
9235     // int or null -> A*
9236     if (RHSType->isIntegerType()) {
9237       Kind = CK_IntegralToPointer; // FIXME: null
9238       return IntToPointer;
9239     }
9240 
9241     // In general, C pointers are not compatible with ObjC object pointers,
9242     // with two exceptions:
9243     if (isa<PointerType>(RHSType)) {
9244       Kind = CK_CPointerToObjCPointerCast;
9245 
9246       //  - conversions from 'void*'
9247       if (RHSType->isVoidPointerType()) {
9248         return Compatible;
9249       }
9250 
9251       //  - conversions to 'Class' from its redefinition type
9252       if (LHSType->isObjCClassType() &&
9253           Context.hasSameType(RHSType,
9254                               Context.getObjCClassRedefinitionType())) {
9255         return Compatible;
9256       }
9257 
9258       return IncompatiblePointer;
9259     }
9260 
9261     // Only under strict condition T^ is compatible with an Objective-C pointer.
9262     if (RHSType->isBlockPointerType() &&
9263         LHSType->isBlockCompatibleObjCPointerType(Context)) {
9264       if (ConvertRHS)
9265         maybeExtendBlockObject(RHS);
9266       Kind = CK_BlockPointerToObjCPointerCast;
9267       return Compatible;
9268     }
9269 
9270     return Incompatible;
9271   }
9272 
9273   // Conversions from pointers that are not covered by the above.
9274   if (isa<PointerType>(RHSType)) {
9275     // T* -> _Bool
9276     if (LHSType == Context.BoolTy) {
9277       Kind = CK_PointerToBoolean;
9278       return Compatible;
9279     }
9280 
9281     // T* -> int
9282     if (LHSType->isIntegerType()) {
9283       Kind = CK_PointerToIntegral;
9284       return PointerToInt;
9285     }
9286 
9287     return Incompatible;
9288   }
9289 
9290   // Conversions from Objective-C pointers that are not covered by the above.
9291   if (isa<ObjCObjectPointerType>(RHSType)) {
9292     // T* -> _Bool
9293     if (LHSType == Context.BoolTy) {
9294       Kind = CK_PointerToBoolean;
9295       return Compatible;
9296     }
9297 
9298     // T* -> int
9299     if (LHSType->isIntegerType()) {
9300       Kind = CK_PointerToIntegral;
9301       return PointerToInt;
9302     }
9303 
9304     return Incompatible;
9305   }
9306 
9307   // struct A -> struct B
9308   if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
9309     if (Context.typesAreCompatible(LHSType, RHSType)) {
9310       Kind = CK_NoOp;
9311       return Compatible;
9312     }
9313   }
9314 
9315   if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
9316     Kind = CK_IntToOCLSampler;
9317     return Compatible;
9318   }
9319 
9320   return Incompatible;
9321 }
9322 
9323 /// Constructs a transparent union from an expression that is
9324 /// used to initialize the transparent union.
ConstructTransparentUnion(Sema & S,ASTContext & C,ExprResult & EResult,QualType UnionType,FieldDecl * Field)9325 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
9326                                       ExprResult &EResult, QualType UnionType,
9327                                       FieldDecl *Field) {
9328   // Build an initializer list that designates the appropriate member
9329   // of the transparent union.
9330   Expr *E = EResult.get();
9331   InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
9332                                                    E, SourceLocation());
9333   Initializer->setType(UnionType);
9334   Initializer->setInitializedFieldInUnion(Field);
9335 
9336   // Build a compound literal constructing a value of the transparent
9337   // union type from this initializer list.
9338   TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
9339   EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
9340                                         VK_RValue, Initializer, false);
9341 }
9342 
9343 Sema::AssignConvertType
CheckTransparentUnionArgumentConstraints(QualType ArgType,ExprResult & RHS)9344 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
9345                                                ExprResult &RHS) {
9346   QualType RHSType = RHS.get()->getType();
9347 
9348   // If the ArgType is a Union type, we want to handle a potential
9349   // transparent_union GCC extension.
9350   const RecordType *UT = ArgType->getAsUnionType();
9351   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
9352     return Incompatible;
9353 
9354   // The field to initialize within the transparent union.
9355   RecordDecl *UD = UT->getDecl();
9356   FieldDecl *InitField = nullptr;
9357   // It's compatible if the expression matches any of the fields.
9358   for (auto *it : UD->fields()) {
9359     if (it->getType()->isPointerType()) {
9360       // If the transparent union contains a pointer type, we allow:
9361       // 1) void pointer
9362       // 2) null pointer constant
9363       if (RHSType->isPointerType())
9364         if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
9365           RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
9366           InitField = it;
9367           break;
9368         }
9369 
9370       if (RHS.get()->isNullPointerConstant(Context,
9371                                            Expr::NPC_ValueDependentIsNull)) {
9372         RHS = ImpCastExprToType(RHS.get(), it->getType(),
9373                                 CK_NullToPointer);
9374         InitField = it;
9375         break;
9376       }
9377     }
9378 
9379     CastKind Kind;
9380     if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
9381           == Compatible) {
9382       RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
9383       InitField = it;
9384       break;
9385     }
9386   }
9387 
9388   if (!InitField)
9389     return Incompatible;
9390 
9391   ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
9392   return Compatible;
9393 }
9394 
9395 Sema::AssignConvertType
CheckSingleAssignmentConstraints(QualType LHSType,ExprResult & CallerRHS,bool Diagnose,bool DiagnoseCFAudited,bool ConvertRHS)9396 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
9397                                        bool Diagnose,
9398                                        bool DiagnoseCFAudited,
9399                                        bool ConvertRHS) {
9400   // We need to be able to tell the caller whether we diagnosed a problem, if
9401   // they ask us to issue diagnostics.
9402   assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
9403 
9404   // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
9405   // we can't avoid *all* modifications at the moment, so we need some somewhere
9406   // to put the updated value.
9407   ExprResult LocalRHS = CallerRHS;
9408   ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
9409 
9410   if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
9411     if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
9412       if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
9413           !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
9414         Diag(RHS.get()->getExprLoc(),
9415              diag::warn_noderef_to_dereferenceable_pointer)
9416             << RHS.get()->getSourceRange();
9417       }
9418     }
9419   }
9420 
9421   if (getLangOpts().CPlusPlus) {
9422     if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
9423       // C++ 5.17p3: If the left operand is not of class type, the
9424       // expression is implicitly converted (C++ 4) to the
9425       // cv-unqualified type of the left operand.
9426       QualType RHSType = RHS.get()->getType();
9427       if (Diagnose) {
9428         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9429                                         AA_Assigning);
9430       } else {
9431         ImplicitConversionSequence ICS =
9432             TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9433                                   /*SuppressUserConversions=*/false,
9434                                   AllowedExplicit::None,
9435                                   /*InOverloadResolution=*/false,
9436                                   /*CStyle=*/false,
9437                                   /*AllowObjCWritebackConversion=*/false);
9438         if (ICS.isFailure())
9439           return Incompatible;
9440         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9441                                         ICS, AA_Assigning);
9442       }
9443       if (RHS.isInvalid())
9444         return Incompatible;
9445       Sema::AssignConvertType result = Compatible;
9446       if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9447           !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
9448         result = IncompatibleObjCWeakRef;
9449       return result;
9450     }
9451 
9452     // FIXME: Currently, we fall through and treat C++ classes like C
9453     // structures.
9454     // FIXME: We also fall through for atomics; not sure what should
9455     // happen there, though.
9456   } else if (RHS.get()->getType() == Context.OverloadTy) {
9457     // As a set of extensions to C, we support overloading on functions. These
9458     // functions need to be resolved here.
9459     DeclAccessPair DAP;
9460     if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
9461             RHS.get(), LHSType, /*Complain=*/false, DAP))
9462       RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
9463     else
9464       return Incompatible;
9465   }
9466 
9467   // C99 6.5.16.1p1: the left operand is a pointer and the right is
9468   // a null pointer constant.
9469   if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
9470        LHSType->isBlockPointerType()) &&
9471       RHS.get()->isNullPointerConstant(Context,
9472                                        Expr::NPC_ValueDependentIsNull)) {
9473     if (Diagnose || ConvertRHS) {
9474       CastKind Kind;
9475       CXXCastPath Path;
9476       CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
9477                              /*IgnoreBaseAccess=*/false, Diagnose);
9478       if (ConvertRHS)
9479         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_RValue, &Path);
9480     }
9481     return Compatible;
9482   }
9483 
9484   // OpenCL queue_t type assignment.
9485   if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
9486                                  Context, Expr::NPC_ValueDependentIsNull)) {
9487     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
9488     return Compatible;
9489   }
9490 
9491   // This check seems unnatural, however it is necessary to ensure the proper
9492   // conversion of functions/arrays. If the conversion were done for all
9493   // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
9494   // expressions that suppress this implicit conversion (&, sizeof).
9495   //
9496   // Suppress this for references: C++ 8.5.3p5.
9497   if (!LHSType->isReferenceType()) {
9498     // FIXME: We potentially allocate here even if ConvertRHS is false.
9499     RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
9500     if (RHS.isInvalid())
9501       return Incompatible;
9502   }
9503   CastKind Kind;
9504   Sema::AssignConvertType result =
9505     CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
9506 
9507   // C99 6.5.16.1p2: The value of the right operand is converted to the
9508   // type of the assignment expression.
9509   // CheckAssignmentConstraints allows the left-hand side to be a reference,
9510   // so that we can use references in built-in functions even in C.
9511   // The getNonReferenceType() call makes sure that the resulting expression
9512   // does not have reference type.
9513   if (result != Incompatible && RHS.get()->getType() != LHSType) {
9514     QualType Ty = LHSType.getNonLValueExprType(Context);
9515     Expr *E = RHS.get();
9516 
9517     // Check for various Objective-C errors. If we are not reporting
9518     // diagnostics and just checking for errors, e.g., during overload
9519     // resolution, return Incompatible to indicate the failure.
9520     if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9521         CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
9522                             Diagnose, DiagnoseCFAudited) != ACR_okay) {
9523       if (!Diagnose)
9524         return Incompatible;
9525     }
9526     if (getLangOpts().ObjC &&
9527         (CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
9528                                            E->getType(), E, Diagnose) ||
9529          CheckConversionToObjCLiteral(LHSType, E, Diagnose))) {
9530       if (!Diagnose)
9531         return Incompatible;
9532       // Replace the expression with a corrected version and continue so we
9533       // can find further errors.
9534       RHS = E;
9535       return Compatible;
9536     }
9537 
9538     if (ConvertRHS)
9539       RHS = ImpCastExprToType(E, Ty, Kind);
9540   }
9541 
9542   return result;
9543 }
9544 
9545 namespace {
9546 /// The original operand to an operator, prior to the application of the usual
9547 /// arithmetic conversions and converting the arguments of a builtin operator
9548 /// candidate.
9549 struct OriginalOperand {
OriginalOperand__anona30d30eb0c11::OriginalOperand9550   explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
9551     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
9552       Op = MTE->getSubExpr();
9553     if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
9554       Op = BTE->getSubExpr();
9555     if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
9556       Orig = ICE->getSubExprAsWritten();
9557       Conversion = ICE->getConversionFunction();
9558     }
9559   }
9560 
getType__anona30d30eb0c11::OriginalOperand9561   QualType getType() const { return Orig->getType(); }
9562 
9563   Expr *Orig;
9564   NamedDecl *Conversion;
9565 };
9566 }
9567 
InvalidOperands(SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)9568 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
9569                                ExprResult &RHS) {
9570   OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
9571 
9572   Diag(Loc, diag::err_typecheck_invalid_operands)
9573     << OrigLHS.getType() << OrigRHS.getType()
9574     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9575 
9576   // If a user-defined conversion was applied to either of the operands prior
9577   // to applying the built-in operator rules, tell the user about it.
9578   if (OrigLHS.Conversion) {
9579     Diag(OrigLHS.Conversion->getLocation(),
9580          diag::note_typecheck_invalid_operands_converted)
9581       << 0 << LHS.get()->getType();
9582   }
9583   if (OrigRHS.Conversion) {
9584     Diag(OrigRHS.Conversion->getLocation(),
9585          diag::note_typecheck_invalid_operands_converted)
9586       << 1 << RHS.get()->getType();
9587   }
9588 
9589   return QualType();
9590 }
9591 
9592 // Diagnose cases where a scalar was implicitly converted to a vector and
9593 // diagnose the underlying types. Otherwise, diagnose the error
9594 // as invalid vector logical operands for non-C++ cases.
InvalidLogicalVectorOperands(SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)9595 QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
9596                                             ExprResult &RHS) {
9597   QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
9598   QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
9599 
9600   bool LHSNatVec = LHSType->isVectorType();
9601   bool RHSNatVec = RHSType->isVectorType();
9602 
9603   if (!(LHSNatVec && RHSNatVec)) {
9604     Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
9605     Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
9606     Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
9607         << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
9608         << Vector->getSourceRange();
9609     return QualType();
9610   }
9611 
9612   Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
9613       << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
9614       << RHS.get()->getSourceRange();
9615 
9616   return QualType();
9617 }
9618 
9619 /// Try to convert a value of non-vector type to a vector type by converting
9620 /// the type to the element type of the vector and then performing a splat.
9621 /// If the language is OpenCL, we only use conversions that promote scalar
9622 /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
9623 /// for float->int.
9624 ///
9625 /// OpenCL V2.0 6.2.6.p2:
9626 /// An error shall occur if any scalar operand type has greater rank
9627 /// than the type of the vector element.
9628 ///
9629 /// \param scalar - if non-null, actually perform the conversions
9630 /// \return true if the operation fails (but without diagnosing the failure)
tryVectorConvertAndSplat(Sema & S,ExprResult * scalar,QualType scalarTy,QualType vectorEltTy,QualType vectorTy,unsigned & DiagID)9631 static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
9632                                      QualType scalarTy,
9633                                      QualType vectorEltTy,
9634                                      QualType vectorTy,
9635                                      unsigned &DiagID) {
9636   // The conversion to apply to the scalar before splatting it,
9637   // if necessary.
9638   CastKind scalarCast = CK_NoOp;
9639 
9640   if (vectorEltTy->isIntegralType(S.Context)) {
9641     if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
9642         (scalarTy->isIntegerType() &&
9643          S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
9644       DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
9645       return true;
9646     }
9647     if (!scalarTy->isIntegralType(S.Context))
9648       return true;
9649     scalarCast = CK_IntegralCast;
9650   } else if (vectorEltTy->isRealFloatingType()) {
9651     if (scalarTy->isRealFloatingType()) {
9652       if (S.getLangOpts().OpenCL &&
9653           S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
9654         DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
9655         return true;
9656       }
9657       scalarCast = CK_FloatingCast;
9658     }
9659     else if (scalarTy->isIntegralType(S.Context))
9660       scalarCast = CK_IntegralToFloating;
9661     else
9662       return true;
9663   } else {
9664     return true;
9665   }
9666 
9667   // Adjust scalar if desired.
9668   if (scalar) {
9669     if (scalarCast != CK_NoOp)
9670       *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
9671     *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
9672   }
9673   return false;
9674 }
9675 
9676 /// Convert vector E to a vector with the same number of elements but different
9677 /// element type.
convertVector(Expr * E,QualType ElementType,Sema & S)9678 static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
9679   const auto *VecTy = E->getType()->getAs<VectorType>();
9680   assert(VecTy && "Expression E must be a vector");
9681   QualType NewVecTy = S.Context.getVectorType(ElementType,
9682                                               VecTy->getNumElements(),
9683                                               VecTy->getVectorKind());
9684 
9685   // Look through the implicit cast. Return the subexpression if its type is
9686   // NewVecTy.
9687   if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
9688     if (ICE->getSubExpr()->getType() == NewVecTy)
9689       return ICE->getSubExpr();
9690 
9691   auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
9692   return S.ImpCastExprToType(E, NewVecTy, Cast);
9693 }
9694 
9695 /// Test if a (constant) integer Int can be casted to another integer type
9696 /// IntTy without losing precision.
canConvertIntToOtherIntTy(Sema & S,ExprResult * Int,QualType OtherIntTy)9697 static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
9698                                       QualType OtherIntTy) {
9699   QualType IntTy = Int->get()->getType().getUnqualifiedType();
9700 
9701   // Reject cases where the value of the Int is unknown as that would
9702   // possibly cause truncation, but accept cases where the scalar can be
9703   // demoted without loss of precision.
9704   Expr::EvalResult EVResult;
9705   bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
9706   int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
9707   bool IntSigned = IntTy->hasSignedIntegerRepresentation();
9708   bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
9709 
9710   if (CstInt) {
9711     // If the scalar is constant and is of a higher order and has more active
9712     // bits that the vector element type, reject it.
9713     llvm::APSInt Result = EVResult.Val.getInt();
9714     unsigned NumBits = IntSigned
9715                            ? (Result.isNegative() ? Result.getMinSignedBits()
9716                                                   : Result.getActiveBits())
9717                            : Result.getActiveBits();
9718     if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
9719       return true;
9720 
9721     // If the signedness of the scalar type and the vector element type
9722     // differs and the number of bits is greater than that of the vector
9723     // element reject it.
9724     return (IntSigned != OtherIntSigned &&
9725             NumBits > S.Context.getIntWidth(OtherIntTy));
9726   }
9727 
9728   // Reject cases where the value of the scalar is not constant and it's
9729   // order is greater than that of the vector element type.
9730   return (Order < 0);
9731 }
9732 
9733 /// Test if a (constant) integer Int can be casted to floating point type
9734 /// FloatTy without losing precision.
canConvertIntTyToFloatTy(Sema & S,ExprResult * Int,QualType FloatTy)9735 static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
9736                                      QualType FloatTy) {
9737   QualType IntTy = Int->get()->getType().getUnqualifiedType();
9738 
9739   // Determine if the integer constant can be expressed as a floating point
9740   // number of the appropriate type.
9741   Expr::EvalResult EVResult;
9742   bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
9743 
9744   uint64_t Bits = 0;
9745   if (CstInt) {
9746     // Reject constants that would be truncated if they were converted to
9747     // the floating point type. Test by simple to/from conversion.
9748     // FIXME: Ideally the conversion to an APFloat and from an APFloat
9749     //        could be avoided if there was a convertFromAPInt method
9750     //        which could signal back if implicit truncation occurred.
9751     llvm::APSInt Result = EVResult.Val.getInt();
9752     llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
9753     Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
9754                            llvm::APFloat::rmTowardZero);
9755     llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
9756                              !IntTy->hasSignedIntegerRepresentation());
9757     bool Ignored = false;
9758     Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
9759                            &Ignored);
9760     if (Result != ConvertBack)
9761       return true;
9762   } else {
9763     // Reject types that cannot be fully encoded into the mantissa of
9764     // the float.
9765     Bits = S.Context.getTypeSize(IntTy);
9766     unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
9767         S.Context.getFloatTypeSemantics(FloatTy));
9768     if (Bits > FloatPrec)
9769       return true;
9770   }
9771 
9772   return false;
9773 }
9774 
9775 /// Attempt to convert and splat Scalar into a vector whose types matches
9776 /// Vector following GCC conversion rules. The rule is that implicit
9777 /// conversion can occur when Scalar can be casted to match Vector's element
9778 /// type without causing truncation of Scalar.
tryGCCVectorConvertAndSplat(Sema & S,ExprResult * Scalar,ExprResult * Vector)9779 static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
9780                                         ExprResult *Vector) {
9781   QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
9782   QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
9783   const VectorType *VT = VectorTy->getAs<VectorType>();
9784 
9785   assert(!isa<ExtVectorType>(VT) &&
9786          "ExtVectorTypes should not be handled here!");
9787 
9788   QualType VectorEltTy = VT->getElementType();
9789 
9790   // Reject cases where the vector element type or the scalar element type are
9791   // not integral or floating point types.
9792   if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
9793     return true;
9794 
9795   // The conversion to apply to the scalar before splatting it,
9796   // if necessary.
9797   CastKind ScalarCast = CK_NoOp;
9798 
9799   // Accept cases where the vector elements are integers and the scalar is
9800   // an integer.
9801   // FIXME: Notionally if the scalar was a floating point value with a precise
9802   //        integral representation, we could cast it to an appropriate integer
9803   //        type and then perform the rest of the checks here. GCC will perform
9804   //        this conversion in some cases as determined by the input language.
9805   //        We should accept it on a language independent basis.
9806   if (VectorEltTy->isIntegralType(S.Context) &&
9807       ScalarTy->isIntegralType(S.Context) &&
9808       S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {
9809 
9810     if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
9811       return true;
9812 
9813     ScalarCast = CK_IntegralCast;
9814   } else if (VectorEltTy->isIntegralType(S.Context) &&
9815              ScalarTy->isRealFloatingType()) {
9816     if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy))
9817       ScalarCast = CK_FloatingToIntegral;
9818     else
9819       return true;
9820   } else if (VectorEltTy->isRealFloatingType()) {
9821     if (ScalarTy->isRealFloatingType()) {
9822 
9823       // Reject cases where the scalar type is not a constant and has a higher
9824       // Order than the vector element type.
9825       llvm::APFloat Result(0.0);
9826 
9827       // Determine whether this is a constant scalar. In the event that the
9828       // value is dependent (and thus cannot be evaluated by the constant
9829       // evaluator), skip the evaluation. This will then diagnose once the
9830       // expression is instantiated.
9831       bool CstScalar = Scalar->get()->isValueDependent() ||
9832                        Scalar->get()->EvaluateAsFloat(Result, S.Context);
9833       int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
9834       if (!CstScalar && Order < 0)
9835         return true;
9836 
9837       // If the scalar cannot be safely casted to the vector element type,
9838       // reject it.
9839       if (CstScalar) {
9840         bool Truncated = false;
9841         Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
9842                        llvm::APFloat::rmNearestTiesToEven, &Truncated);
9843         if (Truncated)
9844           return true;
9845       }
9846 
9847       ScalarCast = CK_FloatingCast;
9848     } else if (ScalarTy->isIntegralType(S.Context)) {
9849       if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
9850         return true;
9851 
9852       ScalarCast = CK_IntegralToFloating;
9853     } else
9854       return true;
9855   } else if (ScalarTy->isEnumeralType())
9856     return true;
9857 
9858   // Adjust scalar if desired.
9859   if (Scalar) {
9860     if (ScalarCast != CK_NoOp)
9861       *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
9862     *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
9863   }
9864   return false;
9865 }
9866 
CheckVectorOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign,bool AllowBothBool,bool AllowBoolConversions)9867 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
9868                                    SourceLocation Loc, bool IsCompAssign,
9869                                    bool AllowBothBool,
9870                                    bool AllowBoolConversions) {
9871   if (!IsCompAssign) {
9872     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
9873     if (LHS.isInvalid())
9874       return QualType();
9875   }
9876   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
9877   if (RHS.isInvalid())
9878     return QualType();
9879 
9880   // For conversion purposes, we ignore any qualifiers.
9881   // For example, "const float" and "float" are equivalent.
9882   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
9883   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
9884 
9885   const VectorType *LHSVecType = LHSType->getAs<VectorType>();
9886   const VectorType *RHSVecType = RHSType->getAs<VectorType>();
9887   assert(LHSVecType || RHSVecType);
9888 
9889   if ((LHSVecType && LHSVecType->getElementType()->isBFloat16Type()) ||
9890       (RHSVecType && RHSVecType->getElementType()->isBFloat16Type()))
9891     return InvalidOperands(Loc, LHS, RHS);
9892 
9893   // AltiVec-style "vector bool op vector bool" combinations are allowed
9894   // for some operators but not others.
9895   if (!AllowBothBool &&
9896       LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
9897       RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool)
9898     return InvalidOperands(Loc, LHS, RHS);
9899 
9900   // If the vector types are identical, return.
9901   if (Context.hasSameType(LHSType, RHSType))
9902     return LHSType;
9903 
9904   // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
9905   if (LHSVecType && RHSVecType &&
9906       Context.areCompatibleVectorTypes(LHSType, RHSType)) {
9907     if (isa<ExtVectorType>(LHSVecType)) {
9908       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
9909       return LHSType;
9910     }
9911 
9912     if (!IsCompAssign)
9913       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
9914     return RHSType;
9915   }
9916 
9917   // AllowBoolConversions says that bool and non-bool AltiVec vectors
9918   // can be mixed, with the result being the non-bool type.  The non-bool
9919   // operand must have integer element type.
9920   if (AllowBoolConversions && LHSVecType && RHSVecType &&
9921       LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
9922       (Context.getTypeSize(LHSVecType->getElementType()) ==
9923        Context.getTypeSize(RHSVecType->getElementType()))) {
9924     if (LHSVecType->getVectorKind() == VectorType::AltiVecVector &&
9925         LHSVecType->getElementType()->isIntegerType() &&
9926         RHSVecType->getVectorKind() == VectorType::AltiVecBool) {
9927       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
9928       return LHSType;
9929     }
9930     if (!IsCompAssign &&
9931         LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
9932         RHSVecType->getVectorKind() == VectorType::AltiVecVector &&
9933         RHSVecType->getElementType()->isIntegerType()) {
9934       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
9935       return RHSType;
9936     }
9937   }
9938 
9939   // Expressions containing fixed-length and sizeless SVE vectors are invalid
9940   // since the ambiguity can affect the ABI.
9941   auto IsSveConversion = [](QualType FirstType, QualType SecondType) {
9942     const VectorType *VecType = SecondType->getAs<VectorType>();
9943     return FirstType->isSizelessBuiltinType() && VecType &&
9944            (VecType->getVectorKind() == VectorType::SveFixedLengthDataVector ||
9945             VecType->getVectorKind() ==
9946                 VectorType::SveFixedLengthPredicateVector);
9947   };
9948 
9949   if (IsSveConversion(LHSType, RHSType) || IsSveConversion(RHSType, LHSType)) {
9950     Diag(Loc, diag::err_typecheck_sve_ambiguous) << LHSType << RHSType;
9951     return QualType();
9952   }
9953 
9954   // Expressions containing GNU and SVE (fixed or sizeless) vectors are invalid
9955   // since the ambiguity can affect the ABI.
9956   auto IsSveGnuConversion = [](QualType FirstType, QualType SecondType) {
9957     const VectorType *FirstVecType = FirstType->getAs<VectorType>();
9958     const VectorType *SecondVecType = SecondType->getAs<VectorType>();
9959 
9960     if (FirstVecType && SecondVecType)
9961       return FirstVecType->getVectorKind() == VectorType::GenericVector &&
9962              (SecondVecType->getVectorKind() ==
9963                   VectorType::SveFixedLengthDataVector ||
9964               SecondVecType->getVectorKind() ==
9965                   VectorType::SveFixedLengthPredicateVector);
9966 
9967     return FirstType->isSizelessBuiltinType() && SecondVecType &&
9968            SecondVecType->getVectorKind() == VectorType::GenericVector;
9969   };
9970 
9971   if (IsSveGnuConversion(LHSType, RHSType) ||
9972       IsSveGnuConversion(RHSType, LHSType)) {
9973     Diag(Loc, diag::err_typecheck_sve_gnu_ambiguous) << LHSType << RHSType;
9974     return QualType();
9975   }
9976 
9977   // If there's a vector type and a scalar, try to convert the scalar to
9978   // the vector element type and splat.
9979   unsigned DiagID = diag::err_typecheck_vector_not_convertable;
9980   if (!RHSVecType) {
9981     if (isa<ExtVectorType>(LHSVecType)) {
9982       if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
9983                                     LHSVecType->getElementType(), LHSType,
9984                                     DiagID))
9985         return LHSType;
9986     } else {
9987       if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
9988         return LHSType;
9989     }
9990   }
9991   if (!LHSVecType) {
9992     if (isa<ExtVectorType>(RHSVecType)) {
9993       if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
9994                                     LHSType, RHSVecType->getElementType(),
9995                                     RHSType, DiagID))
9996         return RHSType;
9997     } else {
9998       if (LHS.get()->getValueKind() == VK_LValue ||
9999           !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
10000         return RHSType;
10001     }
10002   }
10003 
10004   // FIXME: The code below also handles conversion between vectors and
10005   // non-scalars, we should break this down into fine grained specific checks
10006   // and emit proper diagnostics.
10007   QualType VecType = LHSVecType ? LHSType : RHSType;
10008   const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
10009   QualType OtherType = LHSVecType ? RHSType : LHSType;
10010   ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
10011   if (isLaxVectorConversion(OtherType, VecType)) {
10012     // If we're allowing lax vector conversions, only the total (data) size
10013     // needs to be the same. For non compound assignment, if one of the types is
10014     // scalar, the result is always the vector type.
10015     if (!IsCompAssign) {
10016       *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
10017       return VecType;
10018     // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
10019     // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
10020     // type. Note that this is already done by non-compound assignments in
10021     // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
10022     // <1 x T> -> T. The result is also a vector type.
10023     } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
10024                (OtherType->isScalarType() && VT->getNumElements() == 1)) {
10025       ExprResult *RHSExpr = &RHS;
10026       *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
10027       return VecType;
10028     }
10029   }
10030 
10031   // Okay, the expression is invalid.
10032 
10033   // If there's a non-vector, non-real operand, diagnose that.
10034   if ((!RHSVecType && !RHSType->isRealType()) ||
10035       (!LHSVecType && !LHSType->isRealType())) {
10036     Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
10037       << LHSType << RHSType
10038       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10039     return QualType();
10040   }
10041 
10042   // OpenCL V1.1 6.2.6.p1:
10043   // If the operands are of more than one vector type, then an error shall
10044   // occur. Implicit conversions between vector types are not permitted, per
10045   // section 6.2.1.
10046   if (getLangOpts().OpenCL &&
10047       RHSVecType && isa<ExtVectorType>(RHSVecType) &&
10048       LHSVecType && isa<ExtVectorType>(LHSVecType)) {
10049     Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
10050                                                            << RHSType;
10051     return QualType();
10052   }
10053 
10054 
10055   // If there is a vector type that is not a ExtVector and a scalar, we reach
10056   // this point if scalar could not be converted to the vector's element type
10057   // without truncation.
10058   if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
10059       (LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
10060     QualType Scalar = LHSVecType ? RHSType : LHSType;
10061     QualType Vector = LHSVecType ? LHSType : RHSType;
10062     unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
10063     Diag(Loc,
10064          diag::err_typecheck_vector_not_convertable_implict_truncation)
10065         << ScalarOrVector << Scalar << Vector;
10066 
10067     return QualType();
10068   }
10069 
10070   // Otherwise, use the generic diagnostic.
10071   Diag(Loc, DiagID)
10072     << LHSType << RHSType
10073     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10074   return QualType();
10075 }
10076 
10077 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
10078 // expression.  These are mainly cases where the null pointer is used as an
10079 // integer instead of a pointer.
checkArithmeticNull(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompare)10080 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
10081                                 SourceLocation Loc, bool IsCompare) {
10082   // The canonical way to check for a GNU null is with isNullPointerConstant,
10083   // but we use a bit of a hack here for speed; this is a relatively
10084   // hot path, and isNullPointerConstant is slow.
10085   bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
10086   bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
10087 
10088   QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
10089 
10090   // Avoid analyzing cases where the result will either be invalid (and
10091   // diagnosed as such) or entirely valid and not something to warn about.
10092   if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
10093       NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
10094     return;
10095 
10096   // Comparison operations would not make sense with a null pointer no matter
10097   // what the other expression is.
10098   if (!IsCompare) {
10099     S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
10100         << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
10101         << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
10102     return;
10103   }
10104 
10105   // The rest of the operations only make sense with a null pointer
10106   // if the other expression is a pointer.
10107   if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
10108       NonNullType->canDecayToPointerType())
10109     return;
10110 
10111   S.Diag(Loc, diag::warn_null_in_comparison_operation)
10112       << LHSNull /* LHS is NULL */ << NonNullType
10113       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10114 }
10115 
DiagnoseDivisionSizeofPointerOrArray(Sema & S,Expr * LHS,Expr * RHS,SourceLocation Loc)10116 static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
10117                                           SourceLocation Loc) {
10118   const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
10119   const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
10120   if (!LUE || !RUE)
10121     return;
10122   if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
10123       RUE->getKind() != UETT_SizeOf)
10124     return;
10125 
10126   const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
10127   QualType LHSTy = LHSArg->getType();
10128   QualType RHSTy;
10129 
10130   if (RUE->isArgumentType())
10131     RHSTy = RUE->getArgumentType().getNonReferenceType();
10132   else
10133     RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
10134 
10135   if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
10136     if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy))
10137       return;
10138 
10139     S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
10140     if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
10141       if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10142         S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here)
10143             << LHSArgDecl;
10144     }
10145   } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) {
10146     QualType ArrayElemTy = ArrayTy->getElementType();
10147     if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) ||
10148         ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
10149         RHSTy->isReferenceType() || ArrayElemTy->isCharType() ||
10150         S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy))
10151       return;
10152     S.Diag(Loc, diag::warn_division_sizeof_array)
10153         << LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
10154     if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
10155       if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10156         S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here)
10157             << LHSArgDecl;
10158     }
10159 
10160     S.Diag(Loc, diag::note_precedence_silence) << RHS;
10161   }
10162 }
10163 
DiagnoseBadDivideOrRemainderValues(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsDiv)10164 static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
10165                                                ExprResult &RHS,
10166                                                SourceLocation Loc, bool IsDiv) {
10167   // Check for division/remainder by zero.
10168   Expr::EvalResult RHSValue;
10169   if (!RHS.get()->isValueDependent() &&
10170       RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
10171       RHSValue.Val.getInt() == 0)
10172     S.DiagRuntimeBehavior(Loc, RHS.get(),
10173                           S.PDiag(diag::warn_remainder_division_by_zero)
10174                             << IsDiv << RHS.get()->getSourceRange());
10175 }
10176 
CheckMultiplyDivideOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign,bool IsDiv)10177 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
10178                                            SourceLocation Loc,
10179                                            bool IsCompAssign, bool IsDiv) {
10180   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10181 
10182   if (LHS.get()->getType()->isVectorType() ||
10183       RHS.get()->getType()->isVectorType())
10184     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10185                                /*AllowBothBool*/getLangOpts().AltiVec,
10186                                /*AllowBoolConversions*/false);
10187   if (!IsDiv && (LHS.get()->getType()->isConstantMatrixType() ||
10188                  RHS.get()->getType()->isConstantMatrixType()))
10189     return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign);
10190 
10191   QualType compType = UsualArithmeticConversions(
10192       LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10193   if (LHS.isInvalid() || RHS.isInvalid())
10194     return QualType();
10195 
10196 
10197   if (compType.isNull() || !compType->isArithmeticType())
10198     return InvalidOperands(Loc, LHS, RHS);
10199   if (IsDiv) {
10200     DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
10201     DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc);
10202   }
10203   return compType;
10204 }
10205 
CheckRemainderOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)10206 QualType Sema::CheckRemainderOperands(
10207   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
10208   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10209 
10210   if (LHS.get()->getType()->isVectorType() ||
10211       RHS.get()->getType()->isVectorType()) {
10212     if (LHS.get()->getType()->hasIntegerRepresentation() &&
10213         RHS.get()->getType()->hasIntegerRepresentation())
10214       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10215                                  /*AllowBothBool*/getLangOpts().AltiVec,
10216                                  /*AllowBoolConversions*/false);
10217     return InvalidOperands(Loc, LHS, RHS);
10218   }
10219 
10220   QualType compType = UsualArithmeticConversions(
10221       LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10222   if (LHS.isInvalid() || RHS.isInvalid())
10223     return QualType();
10224 
10225   if (compType.isNull() || !compType->isIntegerType())
10226     return InvalidOperands(Loc, LHS, RHS);
10227   DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
10228   return compType;
10229 }
10230 
10231 /// Diagnose invalid arithmetic on two void pointers.
diagnoseArithmeticOnTwoVoidPointers(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)10232 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
10233                                                 Expr *LHSExpr, Expr *RHSExpr) {
10234   S.Diag(Loc, S.getLangOpts().CPlusPlus
10235                 ? diag::err_typecheck_pointer_arith_void_type
10236                 : diag::ext_gnu_void_ptr)
10237     << 1 /* two pointers */ << LHSExpr->getSourceRange()
10238                             << RHSExpr->getSourceRange();
10239 }
10240 
10241 /// Diagnose invalid arithmetic on a void pointer.
diagnoseArithmeticOnVoidPointer(Sema & S,SourceLocation Loc,Expr * Pointer)10242 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
10243                                             Expr *Pointer) {
10244   S.Diag(Loc, S.getLangOpts().CPlusPlus
10245                 ? diag::err_typecheck_pointer_arith_void_type
10246                 : diag::ext_gnu_void_ptr)
10247     << 0 /* one pointer */ << Pointer->getSourceRange();
10248 }
10249 
10250 /// Diagnose invalid arithmetic on a null pointer.
10251 ///
10252 /// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
10253 /// idiom, which we recognize as a GNU extension.
10254 ///
diagnoseArithmeticOnNullPointer(Sema & S,SourceLocation Loc,Expr * Pointer,bool IsGNUIdiom)10255 static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
10256                                             Expr *Pointer, bool IsGNUIdiom) {
10257   if (IsGNUIdiom)
10258     S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
10259       << Pointer->getSourceRange();
10260   else
10261     S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
10262       << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
10263 }
10264 
10265 /// Diagnose invalid arithmetic on two function pointers.
diagnoseArithmeticOnTwoFunctionPointers(Sema & S,SourceLocation Loc,Expr * LHS,Expr * RHS)10266 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
10267                                                     Expr *LHS, Expr *RHS) {
10268   assert(LHS->getType()->isAnyPointerType());
10269   assert(RHS->getType()->isAnyPointerType());
10270   S.Diag(Loc, S.getLangOpts().CPlusPlus
10271                 ? diag::err_typecheck_pointer_arith_function_type
10272                 : diag::ext_gnu_ptr_func_arith)
10273     << 1 /* two pointers */ << LHS->getType()->getPointeeType()
10274     // We only show the second type if it differs from the first.
10275     << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
10276                                                    RHS->getType())
10277     << RHS->getType()->getPointeeType()
10278     << LHS->getSourceRange() << RHS->getSourceRange();
10279 }
10280 
10281 /// Diagnose invalid arithmetic on a function pointer.
diagnoseArithmeticOnFunctionPointer(Sema & S,SourceLocation Loc,Expr * Pointer)10282 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
10283                                                 Expr *Pointer) {
10284   assert(Pointer->getType()->isAnyPointerType());
10285   S.Diag(Loc, S.getLangOpts().CPlusPlus
10286                 ? diag::err_typecheck_pointer_arith_function_type
10287                 : diag::ext_gnu_ptr_func_arith)
10288     << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
10289     << 0 /* one pointer, so only one type */
10290     << Pointer->getSourceRange();
10291 }
10292 
10293 /// Emit error if Operand is incomplete pointer type
10294 ///
10295 /// \returns True if pointer has incomplete type
checkArithmeticIncompletePointerType(Sema & S,SourceLocation Loc,Expr * Operand)10296 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
10297                                                  Expr *Operand) {
10298   QualType ResType = Operand->getType();
10299   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10300     ResType = ResAtomicType->getValueType();
10301 
10302   assert(ResType->isAnyPointerType() && !ResType->isDependentType());
10303   QualType PointeeTy = ResType->getPointeeType();
10304   return S.RequireCompleteSizedType(
10305       Loc, PointeeTy,
10306       diag::err_typecheck_arithmetic_incomplete_or_sizeless_type,
10307       Operand->getSourceRange());
10308 }
10309 
10310 /// Check the validity of an arithmetic pointer operand.
10311 ///
10312 /// If the operand has pointer type, this code will check for pointer types
10313 /// which are invalid in arithmetic operations. These will be diagnosed
10314 /// appropriately, including whether or not the use is supported as an
10315 /// extension.
10316 ///
10317 /// \returns True when the operand is valid to use (even if as an extension).
checkArithmeticOpPointerOperand(Sema & S,SourceLocation Loc,Expr * Operand)10318 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
10319                                             Expr *Operand) {
10320   QualType ResType = Operand->getType();
10321   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10322     ResType = ResAtomicType->getValueType();
10323 
10324   if (!ResType->isAnyPointerType()) return true;
10325 
10326   QualType PointeeTy = ResType->getPointeeType();
10327   if (PointeeTy->isVoidType()) {
10328     diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
10329     return !S.getLangOpts().CPlusPlus;
10330   }
10331   if (PointeeTy->isFunctionType()) {
10332     diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
10333     return !S.getLangOpts().CPlusPlus;
10334   }
10335 
10336   if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
10337 
10338   return true;
10339 }
10340 
10341 /// Check the validity of a binary arithmetic operation w.r.t. pointer
10342 /// operands.
10343 ///
10344 /// This routine will diagnose any invalid arithmetic on pointer operands much
10345 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
10346 /// for emitting a single diagnostic even for operations where both LHS and RHS
10347 /// are (potentially problematic) pointers.
10348 ///
10349 /// \returns True when the operand is valid to use (even if as an extension).
checkArithmeticBinOpPointerOperands(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)10350 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
10351                                                 Expr *LHSExpr, Expr *RHSExpr) {
10352   bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
10353   bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
10354   if (!isLHSPointer && !isRHSPointer) return true;
10355 
10356   QualType LHSPointeeTy, RHSPointeeTy;
10357   if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
10358   if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
10359 
10360   // if both are pointers check if operation is valid wrt address spaces
10361   if (isLHSPointer && isRHSPointer) {
10362     if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy)) {
10363       S.Diag(Loc,
10364              diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
10365           << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
10366           << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
10367       return false;
10368     }
10369   }
10370 
10371   // Check for arithmetic on pointers to incomplete types.
10372   bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
10373   bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
10374   if (isLHSVoidPtr || isRHSVoidPtr) {
10375     if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
10376     else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
10377     else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
10378 
10379     return !S.getLangOpts().CPlusPlus;
10380   }
10381 
10382   bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
10383   bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
10384   if (isLHSFuncPtr || isRHSFuncPtr) {
10385     if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
10386     else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
10387                                                                 RHSExpr);
10388     else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
10389 
10390     return !S.getLangOpts().CPlusPlus;
10391   }
10392 
10393   if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
10394     return false;
10395   if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
10396     return false;
10397 
10398   return true;
10399 }
10400 
10401 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
10402 /// literal.
diagnoseStringPlusInt(Sema & Self,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)10403 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
10404                                   Expr *LHSExpr, Expr *RHSExpr) {
10405   StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
10406   Expr* IndexExpr = RHSExpr;
10407   if (!StrExpr) {
10408     StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
10409     IndexExpr = LHSExpr;
10410   }
10411 
10412   bool IsStringPlusInt = StrExpr &&
10413       IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
10414   if (!IsStringPlusInt || IndexExpr->isValueDependent())
10415     return;
10416 
10417   SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
10418   Self.Diag(OpLoc, diag::warn_string_plus_int)
10419       << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
10420 
10421   // Only print a fixit for "str" + int, not for int + "str".
10422   if (IndexExpr == RHSExpr) {
10423     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
10424     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
10425         << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
10426         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
10427         << FixItHint::CreateInsertion(EndLoc, "]");
10428   } else
10429     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
10430 }
10431 
10432 /// Emit a warning when adding a char literal to a string.
diagnoseStringPlusChar(Sema & Self,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)10433 static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
10434                                    Expr *LHSExpr, Expr *RHSExpr) {
10435   const Expr *StringRefExpr = LHSExpr;
10436   const CharacterLiteral *CharExpr =
10437       dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
10438 
10439   if (!CharExpr) {
10440     CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
10441     StringRefExpr = RHSExpr;
10442   }
10443 
10444   if (!CharExpr || !StringRefExpr)
10445     return;
10446 
10447   const QualType StringType = StringRefExpr->getType();
10448 
10449   // Return if not a PointerType.
10450   if (!StringType->isAnyPointerType())
10451     return;
10452 
10453   // Return if not a CharacterType.
10454   if (!StringType->getPointeeType()->isAnyCharacterType())
10455     return;
10456 
10457   ASTContext &Ctx = Self.getASTContext();
10458   SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
10459 
10460   const QualType CharType = CharExpr->getType();
10461   if (!CharType->isAnyCharacterType() &&
10462       CharType->isIntegerType() &&
10463       llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
10464     Self.Diag(OpLoc, diag::warn_string_plus_char)
10465         << DiagRange << Ctx.CharTy;
10466   } else {
10467     Self.Diag(OpLoc, diag::warn_string_plus_char)
10468         << DiagRange << CharExpr->getType();
10469   }
10470 
10471   // Only print a fixit for str + char, not for char + str.
10472   if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
10473     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
10474     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
10475         << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
10476         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
10477         << FixItHint::CreateInsertion(EndLoc, "]");
10478   } else {
10479     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
10480   }
10481 }
10482 
10483 /// Emit error when two pointers are incompatible.
diagnosePointerIncompatibility(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)10484 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
10485                                            Expr *LHSExpr, Expr *RHSExpr) {
10486   assert(LHSExpr->getType()->isAnyPointerType());
10487   assert(RHSExpr->getType()->isAnyPointerType());
10488   S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
10489     << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
10490     << RHSExpr->getSourceRange();
10491 }
10492 
10493 // C99 6.5.6
CheckAdditionOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc,QualType * CompLHSTy)10494 QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
10495                                      SourceLocation Loc, BinaryOperatorKind Opc,
10496                                      QualType* CompLHSTy) {
10497   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10498 
10499   if (LHS.get()->getType()->isVectorType() ||
10500       RHS.get()->getType()->isVectorType()) {
10501     QualType compType = CheckVectorOperands(
10502         LHS, RHS, Loc, CompLHSTy,
10503         /*AllowBothBool*/getLangOpts().AltiVec,
10504         /*AllowBoolConversions*/getLangOpts().ZVector);
10505     if (CompLHSTy) *CompLHSTy = compType;
10506     return compType;
10507   }
10508 
10509   if (LHS.get()->getType()->isConstantMatrixType() ||
10510       RHS.get()->getType()->isConstantMatrixType()) {
10511     return CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
10512   }
10513 
10514   QualType compType = UsualArithmeticConversions(
10515       LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
10516   if (LHS.isInvalid() || RHS.isInvalid())
10517     return QualType();
10518 
10519   // Diagnose "string literal" '+' int and string '+' "char literal".
10520   if (Opc == BO_Add) {
10521     diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
10522     diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
10523   }
10524 
10525   // handle the common case first (both operands are arithmetic).
10526   if (!compType.isNull() && compType->isArithmeticType()) {
10527     if (CompLHSTy) *CompLHSTy = compType;
10528     return compType;
10529   }
10530 
10531   // Type-checking.  Ultimately the pointer's going to be in PExp;
10532   // note that we bias towards the LHS being the pointer.
10533   Expr *PExp = LHS.get(), *IExp = RHS.get();
10534 
10535   bool isObjCPointer;
10536   if (PExp->getType()->isPointerType()) {
10537     isObjCPointer = false;
10538   } else if (PExp->getType()->isObjCObjectPointerType()) {
10539     isObjCPointer = true;
10540   } else {
10541     std::swap(PExp, IExp);
10542     if (PExp->getType()->isPointerType()) {
10543       isObjCPointer = false;
10544     } else if (PExp->getType()->isObjCObjectPointerType()) {
10545       isObjCPointer = true;
10546     } else {
10547       return InvalidOperands(Loc, LHS, RHS);
10548     }
10549   }
10550   assert(PExp->getType()->isAnyPointerType());
10551 
10552   if (!IExp->getType()->isIntegerType())
10553     return InvalidOperands(Loc, LHS, RHS);
10554 
10555   // Adding to a null pointer results in undefined behavior.
10556   if (PExp->IgnoreParenCasts()->isNullPointerConstant(
10557           Context, Expr::NPC_ValueDependentIsNotNull)) {
10558     // In C++ adding zero to a null pointer is defined.
10559     Expr::EvalResult KnownVal;
10560     if (!getLangOpts().CPlusPlus ||
10561         (!IExp->isValueDependent() &&
10562          (!IExp->EvaluateAsInt(KnownVal, Context) ||
10563           KnownVal.Val.getInt() != 0))) {
10564       // Check the conditions to see if this is the 'p = nullptr + n' idiom.
10565       bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
10566           Context, BO_Add, PExp, IExp);
10567       diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
10568     }
10569   }
10570 
10571   if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
10572     return QualType();
10573 
10574   if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
10575     return QualType();
10576 
10577   // Check array bounds for pointer arithemtic
10578   CheckArrayAccess(PExp, IExp);
10579 
10580   if (CompLHSTy) {
10581     QualType LHSTy = Context.isPromotableBitField(LHS.get());
10582     if (LHSTy.isNull()) {
10583       LHSTy = LHS.get()->getType();
10584       if (LHSTy->isPromotableIntegerType())
10585         LHSTy = Context.getPromotedIntegerType(LHSTy);
10586     }
10587     *CompLHSTy = LHSTy;
10588   }
10589 
10590   return PExp->getType();
10591 }
10592 
10593 // C99 6.5.6
CheckSubtractionOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,QualType * CompLHSTy)10594 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
10595                                         SourceLocation Loc,
10596                                         QualType* CompLHSTy) {
10597   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10598 
10599   if (LHS.get()->getType()->isVectorType() ||
10600       RHS.get()->getType()->isVectorType()) {
10601     QualType compType = CheckVectorOperands(
10602         LHS, RHS, Loc, CompLHSTy,
10603         /*AllowBothBool*/getLangOpts().AltiVec,
10604         /*AllowBoolConversions*/getLangOpts().ZVector);
10605     if (CompLHSTy) *CompLHSTy = compType;
10606     return compType;
10607   }
10608 
10609   if (LHS.get()->getType()->isConstantMatrixType() ||
10610       RHS.get()->getType()->isConstantMatrixType()) {
10611     return CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
10612   }
10613 
10614   QualType compType = UsualArithmeticConversions(
10615       LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
10616   if (LHS.isInvalid() || RHS.isInvalid())
10617     return QualType();
10618 
10619   // Enforce type constraints: C99 6.5.6p3.
10620 
10621   // Handle the common case first (both operands are arithmetic).
10622   if (!compType.isNull() && compType->isArithmeticType()) {
10623     if (CompLHSTy) *CompLHSTy = compType;
10624     return compType;
10625   }
10626 
10627   // Either ptr - int   or   ptr - ptr.
10628   if (LHS.get()->getType()->isAnyPointerType()) {
10629     QualType lpointee = LHS.get()->getType()->getPointeeType();
10630 
10631     // Diagnose bad cases where we step over interface counts.
10632     if (LHS.get()->getType()->isObjCObjectPointerType() &&
10633         checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
10634       return QualType();
10635 
10636     // The result type of a pointer-int computation is the pointer type.
10637     if (RHS.get()->getType()->isIntegerType()) {
10638       // Subtracting from a null pointer should produce a warning.
10639       // The last argument to the diagnose call says this doesn't match the
10640       // GNU int-to-pointer idiom.
10641       if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
10642                                            Expr::NPC_ValueDependentIsNotNull)) {
10643         // In C++ adding zero to a null pointer is defined.
10644         Expr::EvalResult KnownVal;
10645         if (!getLangOpts().CPlusPlus ||
10646             (!RHS.get()->isValueDependent() &&
10647              (!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
10648               KnownVal.Val.getInt() != 0))) {
10649           diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
10650         }
10651       }
10652 
10653       if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
10654         return QualType();
10655 
10656       // Check array bounds for pointer arithemtic
10657       CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
10658                        /*AllowOnePastEnd*/true, /*IndexNegated*/true);
10659 
10660       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
10661       return LHS.get()->getType();
10662     }
10663 
10664     // Handle pointer-pointer subtractions.
10665     if (const PointerType *RHSPTy
10666           = RHS.get()->getType()->getAs<PointerType>()) {
10667       QualType rpointee = RHSPTy->getPointeeType();
10668 
10669       if (getLangOpts().CPlusPlus) {
10670         // Pointee types must be the same: C++ [expr.add]
10671         if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
10672           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
10673         }
10674       } else {
10675         // Pointee types must be compatible C99 6.5.6p3
10676         if (!Context.typesAreCompatible(
10677                 Context.getCanonicalType(lpointee).getUnqualifiedType(),
10678                 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
10679           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
10680           return QualType();
10681         }
10682       }
10683 
10684       if (!checkArithmeticBinOpPointerOperands(*this, Loc,
10685                                                LHS.get(), RHS.get()))
10686         return QualType();
10687 
10688       // FIXME: Add warnings for nullptr - ptr.
10689 
10690       // The pointee type may have zero size.  As an extension, a structure or
10691       // union may have zero size or an array may have zero length.  In this
10692       // case subtraction does not make sense.
10693       if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
10694         CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
10695         if (ElementSize.isZero()) {
10696           Diag(Loc,diag::warn_sub_ptr_zero_size_types)
10697             << rpointee.getUnqualifiedType()
10698             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10699         }
10700       }
10701 
10702       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
10703       return Context.getPointerDiffType();
10704     }
10705   }
10706 
10707   return InvalidOperands(Loc, LHS, RHS);
10708 }
10709 
isScopedEnumerationType(QualType T)10710 static bool isScopedEnumerationType(QualType T) {
10711   if (const EnumType *ET = T->getAs<EnumType>())
10712     return ET->getDecl()->isScoped();
10713   return false;
10714 }
10715 
DiagnoseBadShiftValues(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc,QualType LHSType)10716 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
10717                                    SourceLocation Loc, BinaryOperatorKind Opc,
10718                                    QualType LHSType) {
10719   // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
10720   // so skip remaining warnings as we don't want to modify values within Sema.
10721   if (S.getLangOpts().OpenCL)
10722     return;
10723 
10724   // Check right/shifter operand
10725   Expr::EvalResult RHSResult;
10726   if (RHS.get()->isValueDependent() ||
10727       !RHS.get()->EvaluateAsInt(RHSResult, S.Context))
10728     return;
10729   llvm::APSInt Right = RHSResult.Val.getInt();
10730 
10731   if (Right.isNegative()) {
10732     S.DiagRuntimeBehavior(Loc, RHS.get(),
10733                           S.PDiag(diag::warn_shift_negative)
10734                             << RHS.get()->getSourceRange());
10735     return;
10736   }
10737 
10738   QualType LHSExprType = LHS.get()->getType();
10739   uint64_t LeftSize = S.Context.getTypeSize(LHSExprType);
10740   if (LHSExprType->isExtIntType())
10741     LeftSize = S.Context.getIntWidth(LHSExprType);
10742   else if (LHSExprType->isFixedPointType()) {
10743     auto FXSema = S.Context.getFixedPointSemantics(LHSExprType);
10744     LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding();
10745   }
10746   llvm::APInt LeftBits(Right.getBitWidth(), LeftSize);
10747   if (Right.uge(LeftBits)) {
10748     S.DiagRuntimeBehavior(Loc, RHS.get(),
10749                           S.PDiag(diag::warn_shift_gt_typewidth)
10750                             << RHS.get()->getSourceRange());
10751     return;
10752   }
10753 
10754   // FIXME: We probably need to handle fixed point types specially here.
10755   if (Opc != BO_Shl || LHSExprType->isFixedPointType())
10756     return;
10757 
10758   // When left shifting an ICE which is signed, we can check for overflow which
10759   // according to C++ standards prior to C++2a has undefined behavior
10760   // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
10761   // more than the maximum value representable in the result type, so never
10762   // warn for those. (FIXME: Unsigned left-shift overflow in a constant
10763   // expression is still probably a bug.)
10764   Expr::EvalResult LHSResult;
10765   if (LHS.get()->isValueDependent() ||
10766       LHSType->hasUnsignedIntegerRepresentation() ||
10767       !LHS.get()->EvaluateAsInt(LHSResult, S.Context))
10768     return;
10769   llvm::APSInt Left = LHSResult.Val.getInt();
10770 
10771   // If LHS does not have a signed type and non-negative value
10772   // then, the behavior is undefined before C++2a. Warn about it.
10773   if (Left.isNegative() && !S.getLangOpts().isSignedOverflowDefined() &&
10774       !S.getLangOpts().CPlusPlus20) {
10775     S.DiagRuntimeBehavior(Loc, LHS.get(),
10776                           S.PDiag(diag::warn_shift_lhs_negative)
10777                             << LHS.get()->getSourceRange());
10778     return;
10779   }
10780 
10781   llvm::APInt ResultBits =
10782       static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
10783   if (LeftBits.uge(ResultBits))
10784     return;
10785   llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
10786   Result = Result.shl(Right);
10787 
10788   // Print the bit representation of the signed integer as an unsigned
10789   // hexadecimal number.
10790   SmallString<40> HexResult;
10791   Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
10792 
10793   // If we are only missing a sign bit, this is less likely to result in actual
10794   // bugs -- if the result is cast back to an unsigned type, it will have the
10795   // expected value. Thus we place this behind a different warning that can be
10796   // turned off separately if needed.
10797   if (LeftBits == ResultBits - 1) {
10798     S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
10799         << HexResult << LHSType
10800         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10801     return;
10802   }
10803 
10804   S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
10805     << HexResult.str() << Result.getMinSignedBits() << LHSType
10806     << Left.getBitWidth() << LHS.get()->getSourceRange()
10807     << RHS.get()->getSourceRange();
10808 }
10809 
10810 /// Return the resulting type when a vector is shifted
10811 ///        by a scalar or vector shift amount.
checkVectorShift(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)10812 static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
10813                                  SourceLocation Loc, bool IsCompAssign) {
10814   // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
10815   if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
10816       !LHS.get()->getType()->isVectorType()) {
10817     S.Diag(Loc, diag::err_shift_rhs_only_vector)
10818       << RHS.get()->getType() << LHS.get()->getType()
10819       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10820     return QualType();
10821   }
10822 
10823   if (!IsCompAssign) {
10824     LHS = S.UsualUnaryConversions(LHS.get());
10825     if (LHS.isInvalid()) return QualType();
10826   }
10827 
10828   RHS = S.UsualUnaryConversions(RHS.get());
10829   if (RHS.isInvalid()) return QualType();
10830 
10831   QualType LHSType = LHS.get()->getType();
10832   // Note that LHS might be a scalar because the routine calls not only in
10833   // OpenCL case.
10834   const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
10835   QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
10836 
10837   // Note that RHS might not be a vector.
10838   QualType RHSType = RHS.get()->getType();
10839   const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
10840   QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
10841 
10842   // The operands need to be integers.
10843   if (!LHSEleType->isIntegerType()) {
10844     S.Diag(Loc, diag::err_typecheck_expect_int)
10845       << LHS.get()->getType() << LHS.get()->getSourceRange();
10846     return QualType();
10847   }
10848 
10849   if (!RHSEleType->isIntegerType()) {
10850     S.Diag(Loc, diag::err_typecheck_expect_int)
10851       << RHS.get()->getType() << RHS.get()->getSourceRange();
10852     return QualType();
10853   }
10854 
10855   if (!LHSVecTy) {
10856     assert(RHSVecTy);
10857     if (IsCompAssign)
10858       return RHSType;
10859     if (LHSEleType != RHSEleType) {
10860       LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
10861       LHSEleType = RHSEleType;
10862     }
10863     QualType VecTy =
10864         S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
10865     LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
10866     LHSType = VecTy;
10867   } else if (RHSVecTy) {
10868     // OpenCL v1.1 s6.3.j says that for vector types, the operators
10869     // are applied component-wise. So if RHS is a vector, then ensure
10870     // that the number of elements is the same as LHS...
10871     if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
10872       S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
10873         << LHS.get()->getType() << RHS.get()->getType()
10874         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10875       return QualType();
10876     }
10877     if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
10878       const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
10879       const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
10880       if (LHSBT != RHSBT &&
10881           S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
10882         S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
10883             << LHS.get()->getType() << RHS.get()->getType()
10884             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10885       }
10886     }
10887   } else {
10888     // ...else expand RHS to match the number of elements in LHS.
10889     QualType VecTy =
10890       S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
10891     RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
10892   }
10893 
10894   return LHSType;
10895 }
10896 
10897 // C99 6.5.7
CheckShiftOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc,bool IsCompAssign)10898 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
10899                                   SourceLocation Loc, BinaryOperatorKind Opc,
10900                                   bool IsCompAssign) {
10901   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10902 
10903   // Vector shifts promote their scalar inputs to vector type.
10904   if (LHS.get()->getType()->isVectorType() ||
10905       RHS.get()->getType()->isVectorType()) {
10906     if (LangOpts.ZVector) {
10907       // The shift operators for the z vector extensions work basically
10908       // like general shifts, except that neither the LHS nor the RHS is
10909       // allowed to be a "vector bool".
10910       if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
10911         if (LHSVecType->getVectorKind() == VectorType::AltiVecBool)
10912           return InvalidOperands(Loc, LHS, RHS);
10913       if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
10914         if (RHSVecType->getVectorKind() == VectorType::AltiVecBool)
10915           return InvalidOperands(Loc, LHS, RHS);
10916     }
10917     return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
10918   }
10919 
10920   // Shifts don't perform usual arithmetic conversions, they just do integer
10921   // promotions on each operand. C99 6.5.7p3
10922 
10923   // For the LHS, do usual unary conversions, but then reset them away
10924   // if this is a compound assignment.
10925   ExprResult OldLHS = LHS;
10926   LHS = UsualUnaryConversions(LHS.get());
10927   if (LHS.isInvalid())
10928     return QualType();
10929   QualType LHSType = LHS.get()->getType();
10930   if (IsCompAssign) LHS = OldLHS;
10931 
10932   // The RHS is simpler.
10933   RHS = UsualUnaryConversions(RHS.get());
10934   if (RHS.isInvalid())
10935     return QualType();
10936   QualType RHSType = RHS.get()->getType();
10937 
10938   // C99 6.5.7p2: Each of the operands shall have integer type.
10939   // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point.
10940   if ((!LHSType->isFixedPointOrIntegerType() &&
10941        !LHSType->hasIntegerRepresentation()) ||
10942       !RHSType->hasIntegerRepresentation())
10943     return InvalidOperands(Loc, LHS, RHS);
10944 
10945   // C++0x: Don't allow scoped enums. FIXME: Use something better than
10946   // hasIntegerRepresentation() above instead of this.
10947   if (isScopedEnumerationType(LHSType) ||
10948       isScopedEnumerationType(RHSType)) {
10949     return InvalidOperands(Loc, LHS, RHS);
10950   }
10951   // Sanity-check shift operands
10952   DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
10953 
10954   // "The type of the result is that of the promoted left operand."
10955   return LHSType;
10956 }
10957 
10958 /// Diagnose bad pointer comparisons.
diagnoseDistinctPointerComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,bool IsError)10959 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
10960                                               ExprResult &LHS, ExprResult &RHS,
10961                                               bool IsError) {
10962   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
10963                       : diag::ext_typecheck_comparison_of_distinct_pointers)
10964     << LHS.get()->getType() << RHS.get()->getType()
10965     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10966 }
10967 
10968 /// Returns false if the pointers are converted to a composite type,
10969 /// true otherwise.
convertPointersToCompositeType(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)10970 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
10971                                            ExprResult &LHS, ExprResult &RHS) {
10972   // C++ [expr.rel]p2:
10973   //   [...] Pointer conversions (4.10) and qualification
10974   //   conversions (4.4) are performed on pointer operands (or on
10975   //   a pointer operand and a null pointer constant) to bring
10976   //   them to their composite pointer type. [...]
10977   //
10978   // C++ [expr.eq]p1 uses the same notion for (in)equality
10979   // comparisons of pointers.
10980 
10981   QualType LHSType = LHS.get()->getType();
10982   QualType RHSType = RHS.get()->getType();
10983   assert(LHSType->isPointerType() || RHSType->isPointerType() ||
10984          LHSType->isMemberPointerType() || RHSType->isMemberPointerType());
10985 
10986   QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
10987   if (T.isNull()) {
10988     if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
10989         (RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
10990       diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
10991     else
10992       S.InvalidOperands(Loc, LHS, RHS);
10993     return true;
10994   }
10995 
10996   return false;
10997 }
10998 
diagnoseFunctionPointerToVoidComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,bool IsError)10999 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
11000                                                     ExprResult &LHS,
11001                                                     ExprResult &RHS,
11002                                                     bool IsError) {
11003   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
11004                       : diag::ext_typecheck_comparison_of_fptr_to_void)
11005     << LHS.get()->getType() << RHS.get()->getType()
11006     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11007 }
11008 
isObjCObjectLiteral(ExprResult & E)11009 static bool isObjCObjectLiteral(ExprResult &E) {
11010   switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
11011   case Stmt::ObjCArrayLiteralClass:
11012   case Stmt::ObjCDictionaryLiteralClass:
11013   case Stmt::ObjCStringLiteralClass:
11014   case Stmt::ObjCBoxedExprClass:
11015     return true;
11016   default:
11017     // Note that ObjCBoolLiteral is NOT an object literal!
11018     return false;
11019   }
11020 }
11021 
hasIsEqualMethod(Sema & S,const Expr * LHS,const Expr * RHS)11022 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
11023   const ObjCObjectPointerType *Type =
11024     LHS->getType()->getAs<ObjCObjectPointerType>();
11025 
11026   // If this is not actually an Objective-C object, bail out.
11027   if (!Type)
11028     return false;
11029 
11030   // Get the LHS object's interface type.
11031   QualType InterfaceType = Type->getPointeeType();
11032 
11033   // If the RHS isn't an Objective-C object, bail out.
11034   if (!RHS->getType()->isObjCObjectPointerType())
11035     return false;
11036 
11037   // Try to find the -isEqual: method.
11038   Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
11039   ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
11040                                                       InterfaceType,
11041                                                       /*IsInstance=*/true);
11042   if (!Method) {
11043     if (Type->isObjCIdType()) {
11044       // For 'id', just check the global pool.
11045       Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
11046                                                   /*receiverId=*/true);
11047     } else {
11048       // Check protocols.
11049       Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
11050                                              /*IsInstance=*/true);
11051     }
11052   }
11053 
11054   if (!Method)
11055     return false;
11056 
11057   QualType T = Method->parameters()[0]->getType();
11058   if (!T->isObjCObjectPointerType())
11059     return false;
11060 
11061   QualType R = Method->getReturnType();
11062   if (!R->isScalarType())
11063     return false;
11064 
11065   return true;
11066 }
11067 
CheckLiteralKind(Expr * FromE)11068 Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
11069   FromE = FromE->IgnoreParenImpCasts();
11070   switch (FromE->getStmtClass()) {
11071     default:
11072       break;
11073     case Stmt::ObjCStringLiteralClass:
11074       // "string literal"
11075       return LK_String;
11076     case Stmt::ObjCArrayLiteralClass:
11077       // "array literal"
11078       return LK_Array;
11079     case Stmt::ObjCDictionaryLiteralClass:
11080       // "dictionary literal"
11081       return LK_Dictionary;
11082     case Stmt::BlockExprClass:
11083       return LK_Block;
11084     case Stmt::ObjCBoxedExprClass: {
11085       Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
11086       switch (Inner->getStmtClass()) {
11087         case Stmt::IntegerLiteralClass:
11088         case Stmt::FloatingLiteralClass:
11089         case Stmt::CharacterLiteralClass:
11090         case Stmt::ObjCBoolLiteralExprClass:
11091         case Stmt::CXXBoolLiteralExprClass:
11092           // "numeric literal"
11093           return LK_Numeric;
11094         case Stmt::ImplicitCastExprClass: {
11095           CastKind CK = cast<CastExpr>(Inner)->getCastKind();
11096           // Boolean literals can be represented by implicit casts.
11097           if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
11098             return LK_Numeric;
11099           break;
11100         }
11101         default:
11102           break;
11103       }
11104       return LK_Boxed;
11105     }
11106   }
11107   return LK_None;
11108 }
11109 
diagnoseObjCLiteralComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,BinaryOperator::Opcode Opc)11110 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
11111                                           ExprResult &LHS, ExprResult &RHS,
11112                                           BinaryOperator::Opcode Opc){
11113   Expr *Literal;
11114   Expr *Other;
11115   if (isObjCObjectLiteral(LHS)) {
11116     Literal = LHS.get();
11117     Other = RHS.get();
11118   } else {
11119     Literal = RHS.get();
11120     Other = LHS.get();
11121   }
11122 
11123   // Don't warn on comparisons against nil.
11124   Other = Other->IgnoreParenCasts();
11125   if (Other->isNullPointerConstant(S.getASTContext(),
11126                                    Expr::NPC_ValueDependentIsNotNull))
11127     return;
11128 
11129   // This should be kept in sync with warn_objc_literal_comparison.
11130   // LK_String should always be after the other literals, since it has its own
11131   // warning flag.
11132   Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
11133   assert(LiteralKind != Sema::LK_Block);
11134   if (LiteralKind == Sema::LK_None) {
11135     llvm_unreachable("Unknown Objective-C object literal kind");
11136   }
11137 
11138   if (LiteralKind == Sema::LK_String)
11139     S.Diag(Loc, diag::warn_objc_string_literal_comparison)
11140       << Literal->getSourceRange();
11141   else
11142     S.Diag(Loc, diag::warn_objc_literal_comparison)
11143       << LiteralKind << Literal->getSourceRange();
11144 
11145   if (BinaryOperator::isEqualityOp(Opc) &&
11146       hasIsEqualMethod(S, LHS.get(), RHS.get())) {
11147     SourceLocation Start = LHS.get()->getBeginLoc();
11148     SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
11149     CharSourceRange OpRange =
11150       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
11151 
11152     S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
11153       << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
11154       << FixItHint::CreateReplacement(OpRange, " isEqual:")
11155       << FixItHint::CreateInsertion(End, "]");
11156   }
11157 }
11158 
11159 /// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
diagnoseLogicalNotOnLHSofCheck(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)11160 static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
11161                                            ExprResult &RHS, SourceLocation Loc,
11162                                            BinaryOperatorKind Opc) {
11163   // Check that left hand side is !something.
11164   UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
11165   if (!UO || UO->getOpcode() != UO_LNot) return;
11166 
11167   // Only check if the right hand side is non-bool arithmetic type.
11168   if (RHS.get()->isKnownToHaveBooleanValue()) return;
11169 
11170   // Make sure that the something in !something is not bool.
11171   Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
11172   if (SubExpr->isKnownToHaveBooleanValue()) return;
11173 
11174   // Emit warning.
11175   bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
11176   S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
11177       << Loc << IsBitwiseOp;
11178 
11179   // First note suggest !(x < y)
11180   SourceLocation FirstOpen = SubExpr->getBeginLoc();
11181   SourceLocation FirstClose = RHS.get()->getEndLoc();
11182   FirstClose = S.getLocForEndOfToken(FirstClose);
11183   if (FirstClose.isInvalid())
11184     FirstOpen = SourceLocation();
11185   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
11186       << IsBitwiseOp
11187       << FixItHint::CreateInsertion(FirstOpen, "(")
11188       << FixItHint::CreateInsertion(FirstClose, ")");
11189 
11190   // Second note suggests (!x) < y
11191   SourceLocation SecondOpen = LHS.get()->getBeginLoc();
11192   SourceLocation SecondClose = LHS.get()->getEndLoc();
11193   SecondClose = S.getLocForEndOfToken(SecondClose);
11194   if (SecondClose.isInvalid())
11195     SecondOpen = SourceLocation();
11196   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
11197       << FixItHint::CreateInsertion(SecondOpen, "(")
11198       << FixItHint::CreateInsertion(SecondClose, ")");
11199 }
11200 
11201 // Returns true if E refers to a non-weak array.
checkForArray(const Expr * E)11202 static bool checkForArray(const Expr *E) {
11203   const ValueDecl *D = nullptr;
11204   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
11205     D = DR->getDecl();
11206   } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
11207     if (Mem->isImplicitAccess())
11208       D = Mem->getMemberDecl();
11209   }
11210   if (!D)
11211     return false;
11212   return D->getType()->isArrayType() && !D->isWeak();
11213 }
11214 
11215 /// Diagnose some forms of syntactically-obvious tautological comparison.
diagnoseTautologicalComparison(Sema & S,SourceLocation Loc,Expr * LHS,Expr * RHS,BinaryOperatorKind Opc)11216 static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
11217                                            Expr *LHS, Expr *RHS,
11218                                            BinaryOperatorKind Opc) {
11219   Expr *LHSStripped = LHS->IgnoreParenImpCasts();
11220   Expr *RHSStripped = RHS->IgnoreParenImpCasts();
11221 
11222   QualType LHSType = LHS->getType();
11223   QualType RHSType = RHS->getType();
11224   if (LHSType->hasFloatingRepresentation() ||
11225       (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
11226       S.inTemplateInstantiation())
11227     return;
11228 
11229   // Comparisons between two array types are ill-formed for operator<=>, so
11230   // we shouldn't emit any additional warnings about it.
11231   if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
11232     return;
11233 
11234   // For non-floating point types, check for self-comparisons of the form
11235   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
11236   // often indicate logic errors in the program.
11237   //
11238   // NOTE: Don't warn about comparison expressions resulting from macro
11239   // expansion. Also don't warn about comparisons which are only self
11240   // comparisons within a template instantiation. The warnings should catch
11241   // obvious cases in the definition of the template anyways. The idea is to
11242   // warn when the typed comparison operator will always evaluate to the same
11243   // result.
11244 
11245   // Used for indexing into %select in warn_comparison_always
11246   enum {
11247     AlwaysConstant,
11248     AlwaysTrue,
11249     AlwaysFalse,
11250     AlwaysEqual, // std::strong_ordering::equal from operator<=>
11251   };
11252 
11253   // C++2a [depr.array.comp]:
11254   //   Equality and relational comparisons ([expr.eq], [expr.rel]) between two
11255   //   operands of array type are deprecated.
11256   if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() &&
11257       RHSStripped->getType()->isArrayType()) {
11258     S.Diag(Loc, diag::warn_depr_array_comparison)
11259         << LHS->getSourceRange() << RHS->getSourceRange()
11260         << LHSStripped->getType() << RHSStripped->getType();
11261     // Carry on to produce the tautological comparison warning, if this
11262     // expression is potentially-evaluated, we can resolve the array to a
11263     // non-weak declaration, and so on.
11264   }
11265 
11266   if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
11267     if (Expr::isSameComparisonOperand(LHS, RHS)) {
11268       unsigned Result;
11269       switch (Opc) {
11270       case BO_EQ:
11271       case BO_LE:
11272       case BO_GE:
11273         Result = AlwaysTrue;
11274         break;
11275       case BO_NE:
11276       case BO_LT:
11277       case BO_GT:
11278         Result = AlwaysFalse;
11279         break;
11280       case BO_Cmp:
11281         Result = AlwaysEqual;
11282         break;
11283       default:
11284         Result = AlwaysConstant;
11285         break;
11286       }
11287       S.DiagRuntimeBehavior(Loc, nullptr,
11288                             S.PDiag(diag::warn_comparison_always)
11289                                 << 0 /*self-comparison*/
11290                                 << Result);
11291     } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) {
11292       // What is it always going to evaluate to?
11293       unsigned Result;
11294       switch (Opc) {
11295       case BO_EQ: // e.g. array1 == array2
11296         Result = AlwaysFalse;
11297         break;
11298       case BO_NE: // e.g. array1 != array2
11299         Result = AlwaysTrue;
11300         break;
11301       default: // e.g. array1 <= array2
11302         // The best we can say is 'a constant'
11303         Result = AlwaysConstant;
11304         break;
11305       }
11306       S.DiagRuntimeBehavior(Loc, nullptr,
11307                             S.PDiag(diag::warn_comparison_always)
11308                                 << 1 /*array comparison*/
11309                                 << Result);
11310     }
11311   }
11312 
11313   if (isa<CastExpr>(LHSStripped))
11314     LHSStripped = LHSStripped->IgnoreParenCasts();
11315   if (isa<CastExpr>(RHSStripped))
11316     RHSStripped = RHSStripped->IgnoreParenCasts();
11317 
11318   // Warn about comparisons against a string constant (unless the other
11319   // operand is null); the user probably wants string comparison function.
11320   Expr *LiteralString = nullptr;
11321   Expr *LiteralStringStripped = nullptr;
11322   if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
11323       !RHSStripped->isNullPointerConstant(S.Context,
11324                                           Expr::NPC_ValueDependentIsNull)) {
11325     LiteralString = LHS;
11326     LiteralStringStripped = LHSStripped;
11327   } else if ((isa<StringLiteral>(RHSStripped) ||
11328               isa<ObjCEncodeExpr>(RHSStripped)) &&
11329              !LHSStripped->isNullPointerConstant(S.Context,
11330                                           Expr::NPC_ValueDependentIsNull)) {
11331     LiteralString = RHS;
11332     LiteralStringStripped = RHSStripped;
11333   }
11334 
11335   if (LiteralString) {
11336     S.DiagRuntimeBehavior(Loc, nullptr,
11337                           S.PDiag(diag::warn_stringcompare)
11338                               << isa<ObjCEncodeExpr>(LiteralStringStripped)
11339                               << LiteralString->getSourceRange());
11340   }
11341 }
11342 
castKindToImplicitConversionKind(CastKind CK)11343 static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
11344   switch (CK) {
11345   default: {
11346 #ifndef NDEBUG
11347     llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
11348                  << "\n";
11349 #endif
11350     llvm_unreachable("unhandled cast kind");
11351   }
11352   case CK_UserDefinedConversion:
11353     return ICK_Identity;
11354   case CK_LValueToRValue:
11355     return ICK_Lvalue_To_Rvalue;
11356   case CK_ArrayToPointerDecay:
11357     return ICK_Array_To_Pointer;
11358   case CK_FunctionToPointerDecay:
11359     return ICK_Function_To_Pointer;
11360   case CK_IntegralCast:
11361     return ICK_Integral_Conversion;
11362   case CK_FloatingCast:
11363     return ICK_Floating_Conversion;
11364   case CK_IntegralToFloating:
11365   case CK_FloatingToIntegral:
11366     return ICK_Floating_Integral;
11367   case CK_IntegralComplexCast:
11368   case CK_FloatingComplexCast:
11369   case CK_FloatingComplexToIntegralComplex:
11370   case CK_IntegralComplexToFloatingComplex:
11371     return ICK_Complex_Conversion;
11372   case CK_FloatingComplexToReal:
11373   case CK_FloatingRealToComplex:
11374   case CK_IntegralComplexToReal:
11375   case CK_IntegralRealToComplex:
11376     return ICK_Complex_Real;
11377   }
11378 }
11379 
checkThreeWayNarrowingConversion(Sema & S,QualType ToType,Expr * E,QualType FromType,SourceLocation Loc)11380 static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
11381                                              QualType FromType,
11382                                              SourceLocation Loc) {
11383   // Check for a narrowing implicit conversion.
11384   StandardConversionSequence SCS;
11385   SCS.setAsIdentityConversion();
11386   SCS.setToType(0, FromType);
11387   SCS.setToType(1, ToType);
11388   if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
11389     SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
11390 
11391   APValue PreNarrowingValue;
11392   QualType PreNarrowingType;
11393   switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
11394                                PreNarrowingType,
11395                                /*IgnoreFloatToIntegralConversion*/ true)) {
11396   case NK_Dependent_Narrowing:
11397     // Implicit conversion to a narrower type, but the expression is
11398     // value-dependent so we can't tell whether it's actually narrowing.
11399   case NK_Not_Narrowing:
11400     return false;
11401 
11402   case NK_Constant_Narrowing:
11403     // Implicit conversion to a narrower type, and the value is not a constant
11404     // expression.
11405     S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
11406         << /*Constant*/ 1
11407         << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
11408     return true;
11409 
11410   case NK_Variable_Narrowing:
11411     // Implicit conversion to a narrower type, and the value is not a constant
11412     // expression.
11413   case NK_Type_Narrowing:
11414     S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
11415         << /*Constant*/ 0 << FromType << ToType;
11416     // TODO: It's not a constant expression, but what if the user intended it
11417     // to be? Can we produce notes to help them figure out why it isn't?
11418     return true;
11419   }
11420   llvm_unreachable("unhandled case in switch");
11421 }
11422 
checkArithmeticOrEnumeralThreeWayCompare(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)11423 static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
11424                                                          ExprResult &LHS,
11425                                                          ExprResult &RHS,
11426                                                          SourceLocation Loc) {
11427   QualType LHSType = LHS.get()->getType();
11428   QualType RHSType = RHS.get()->getType();
11429   // Dig out the original argument type and expression before implicit casts
11430   // were applied. These are the types/expressions we need to check the
11431   // [expr.spaceship] requirements against.
11432   ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
11433   ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
11434   QualType LHSStrippedType = LHSStripped.get()->getType();
11435   QualType RHSStrippedType = RHSStripped.get()->getType();
11436 
11437   // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
11438   // other is not, the program is ill-formed.
11439   if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
11440     S.InvalidOperands(Loc, LHSStripped, RHSStripped);
11441     return QualType();
11442   }
11443 
11444   // FIXME: Consider combining this with checkEnumArithmeticConversions.
11445   int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
11446                     RHSStrippedType->isEnumeralType();
11447   if (NumEnumArgs == 1) {
11448     bool LHSIsEnum = LHSStrippedType->isEnumeralType();
11449     QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
11450     if (OtherTy->hasFloatingRepresentation()) {
11451       S.InvalidOperands(Loc, LHSStripped, RHSStripped);
11452       return QualType();
11453     }
11454   }
11455   if (NumEnumArgs == 2) {
11456     // C++2a [expr.spaceship]p5: If both operands have the same enumeration
11457     // type E, the operator yields the result of converting the operands
11458     // to the underlying type of E and applying <=> to the converted operands.
11459     if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
11460       S.InvalidOperands(Loc, LHS, RHS);
11461       return QualType();
11462     }
11463     QualType IntType =
11464         LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
11465     assert(IntType->isArithmeticType());
11466 
11467     // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
11468     // promote the boolean type, and all other promotable integer types, to
11469     // avoid this.
11470     if (IntType->isPromotableIntegerType())
11471       IntType = S.Context.getPromotedIntegerType(IntType);
11472 
11473     LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
11474     RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
11475     LHSType = RHSType = IntType;
11476   }
11477 
11478   // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
11479   // usual arithmetic conversions are applied to the operands.
11480   QualType Type =
11481       S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
11482   if (LHS.isInvalid() || RHS.isInvalid())
11483     return QualType();
11484   if (Type.isNull())
11485     return S.InvalidOperands(Loc, LHS, RHS);
11486 
11487   Optional<ComparisonCategoryType> CCT =
11488       getComparisonCategoryForBuiltinCmp(Type);
11489   if (!CCT)
11490     return S.InvalidOperands(Loc, LHS, RHS);
11491 
11492   bool HasNarrowing = checkThreeWayNarrowingConversion(
11493       S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
11494   HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
11495                                                    RHS.get()->getBeginLoc());
11496   if (HasNarrowing)
11497     return QualType();
11498 
11499   assert(!Type.isNull() && "composite type for <=> has not been set");
11500 
11501   return S.CheckComparisonCategoryType(
11502       *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression);
11503 }
11504 
checkArithmeticOrEnumeralCompare(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)11505 static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
11506                                                  ExprResult &RHS,
11507                                                  SourceLocation Loc,
11508                                                  BinaryOperatorKind Opc) {
11509   if (Opc == BO_Cmp)
11510     return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
11511 
11512   // C99 6.5.8p3 / C99 6.5.9p4
11513   QualType Type =
11514       S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
11515   if (LHS.isInvalid() || RHS.isInvalid())
11516     return QualType();
11517   if (Type.isNull())
11518     return S.InvalidOperands(Loc, LHS, RHS);
11519   assert(Type->isArithmeticType() || Type->isEnumeralType());
11520 
11521   if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
11522     return S.InvalidOperands(Loc, LHS, RHS);
11523 
11524   // Check for comparisons of floating point operands using != and ==.
11525   if (Type->hasFloatingRepresentation() && BinaryOperator::isEqualityOp(Opc))
11526     S.CheckFloatComparison(Loc, LHS.get(), RHS.get());
11527 
11528   // The result of comparisons is 'bool' in C++, 'int' in C.
11529   return S.Context.getLogicalOperationType();
11530 }
11531 
CheckPtrComparisonWithNullChar(ExprResult & E,ExprResult & NullE)11532 void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
11533   if (!NullE.get()->getType()->isAnyPointerType())
11534     return;
11535   int NullValue = PP.isMacroDefined("NULL") ? 0 : 1;
11536   if (!E.get()->getType()->isAnyPointerType() &&
11537       E.get()->isNullPointerConstant(Context,
11538                                      Expr::NPC_ValueDependentIsNotNull) ==
11539         Expr::NPCK_ZeroExpression) {
11540     if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) {
11541       if (CL->getValue() == 0)
11542         Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
11543             << NullValue
11544             << FixItHint::CreateReplacement(E.get()->getExprLoc(),
11545                                             NullValue ? "NULL" : "(void *)0");
11546     } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) {
11547         TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
11548         QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType();
11549         if (T == Context.CharTy)
11550           Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
11551               << NullValue
11552               << FixItHint::CreateReplacement(E.get()->getExprLoc(),
11553                                               NullValue ? "NULL" : "(void *)0");
11554       }
11555   }
11556 }
11557 
11558 // C99 6.5.8, C++ [expr.rel]
CheckCompareOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)11559 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
11560                                     SourceLocation Loc,
11561                                     BinaryOperatorKind Opc) {
11562   bool IsRelational = BinaryOperator::isRelationalOp(Opc);
11563   bool IsThreeWay = Opc == BO_Cmp;
11564   bool IsOrdered = IsRelational || IsThreeWay;
11565   auto IsAnyPointerType = [](ExprResult E) {
11566     QualType Ty = E.get()->getType();
11567     return Ty->isPointerType() || Ty->isMemberPointerType();
11568   };
11569 
11570   // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
11571   // type, array-to-pointer, ..., conversions are performed on both operands to
11572   // bring them to their composite type.
11573   // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
11574   // any type-related checks.
11575   if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
11576     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
11577     if (LHS.isInvalid())
11578       return QualType();
11579     RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
11580     if (RHS.isInvalid())
11581       return QualType();
11582   } else {
11583     LHS = DefaultLvalueConversion(LHS.get());
11584     if (LHS.isInvalid())
11585       return QualType();
11586     RHS = DefaultLvalueConversion(RHS.get());
11587     if (RHS.isInvalid())
11588       return QualType();
11589   }
11590 
11591   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true);
11592   if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
11593     CheckPtrComparisonWithNullChar(LHS, RHS);
11594     CheckPtrComparisonWithNullChar(RHS, LHS);
11595   }
11596 
11597   // Handle vector comparisons separately.
11598   if (LHS.get()->getType()->isVectorType() ||
11599       RHS.get()->getType()->isVectorType())
11600     return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
11601 
11602   diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
11603   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
11604 
11605   QualType LHSType = LHS.get()->getType();
11606   QualType RHSType = RHS.get()->getType();
11607   if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
11608       (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
11609     return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);
11610 
11611   const Expr::NullPointerConstantKind LHSNullKind =
11612       LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
11613   const Expr::NullPointerConstantKind RHSNullKind =
11614       RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
11615   bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
11616   bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
11617 
11618   auto computeResultTy = [&]() {
11619     if (Opc != BO_Cmp)
11620       return Context.getLogicalOperationType();
11621     assert(getLangOpts().CPlusPlus);
11622     assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()));
11623 
11624     QualType CompositeTy = LHS.get()->getType();
11625     assert(!CompositeTy->isReferenceType());
11626 
11627     Optional<ComparisonCategoryType> CCT =
11628         getComparisonCategoryForBuiltinCmp(CompositeTy);
11629     if (!CCT)
11630       return InvalidOperands(Loc, LHS, RHS);
11631 
11632     if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
11633       // P0946R0: Comparisons between a null pointer constant and an object
11634       // pointer result in std::strong_equality, which is ill-formed under
11635       // P1959R0.
11636       Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
11637           << (LHSIsNull ? LHS.get()->getSourceRange()
11638                         : RHS.get()->getSourceRange());
11639       return QualType();
11640     }
11641 
11642     return CheckComparisonCategoryType(
11643         *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression);
11644   };
11645 
11646   if (!IsOrdered && LHSIsNull != RHSIsNull) {
11647     bool IsEquality = Opc == BO_EQ;
11648     if (RHSIsNull)
11649       DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
11650                                    RHS.get()->getSourceRange());
11651     else
11652       DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
11653                                    LHS.get()->getSourceRange());
11654   }
11655 
11656   if ((LHSType->isIntegerType() && !LHSIsNull) ||
11657       (RHSType->isIntegerType() && !RHSIsNull)) {
11658     // Skip normal pointer conversion checks in this case; we have better
11659     // diagnostics for this below.
11660   } else if (getLangOpts().CPlusPlus) {
11661     // Equality comparison of a function pointer to a void pointer is invalid,
11662     // but we allow it as an extension.
11663     // FIXME: If we really want to allow this, should it be part of composite
11664     // pointer type computation so it works in conditionals too?
11665     if (!IsOrdered &&
11666         ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
11667          (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
11668       // This is a gcc extension compatibility comparison.
11669       // In a SFINAE context, we treat this as a hard error to maintain
11670       // conformance with the C++ standard.
11671       diagnoseFunctionPointerToVoidComparison(
11672           *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
11673 
11674       if (isSFINAEContext())
11675         return QualType();
11676 
11677       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
11678       return computeResultTy();
11679     }
11680 
11681     // C++ [expr.eq]p2:
11682     //   If at least one operand is a pointer [...] bring them to their
11683     //   composite pointer type.
11684     // C++ [expr.spaceship]p6
11685     //  If at least one of the operands is of pointer type, [...] bring them
11686     //  to their composite pointer type.
11687     // C++ [expr.rel]p2:
11688     //   If both operands are pointers, [...] bring them to their composite
11689     //   pointer type.
11690     // For <=>, the only valid non-pointer types are arrays and functions, and
11691     // we already decayed those, so this is really the same as the relational
11692     // comparison rule.
11693     if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
11694             (IsOrdered ? 2 : 1) &&
11695         (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
11696                                          RHSType->isObjCObjectPointerType()))) {
11697       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
11698         return QualType();
11699       return computeResultTy();
11700     }
11701   } else if (LHSType->isPointerType() &&
11702              RHSType->isPointerType()) { // C99 6.5.8p2
11703     // All of the following pointer-related warnings are GCC extensions, except
11704     // when handling null pointer constants.
11705     QualType LCanPointeeTy =
11706       LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
11707     QualType RCanPointeeTy =
11708       RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
11709 
11710     // C99 6.5.9p2 and C99 6.5.8p2
11711     if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
11712                                    RCanPointeeTy.getUnqualifiedType())) {
11713       if (IsRelational) {
11714         // Pointers both need to point to complete or incomplete types
11715         if ((LCanPointeeTy->isIncompleteType() !=
11716              RCanPointeeTy->isIncompleteType()) &&
11717             !getLangOpts().C11) {
11718           Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers)
11719               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange()
11720               << LHSType << RHSType << LCanPointeeTy->isIncompleteType()
11721               << RCanPointeeTy->isIncompleteType();
11722         }
11723         if (LCanPointeeTy->isFunctionType()) {
11724           // Valid unless a relational comparison of function pointers
11725           Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
11726               << LHSType << RHSType << LHS.get()->getSourceRange()
11727               << RHS.get()->getSourceRange();
11728         }
11729       }
11730     } else if (!IsRelational &&
11731                (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
11732       // Valid unless comparison between non-null pointer and function pointer
11733       if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
11734           && !LHSIsNull && !RHSIsNull)
11735         diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
11736                                                 /*isError*/false);
11737     } else {
11738       // Invalid
11739       diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
11740     }
11741     if (LCanPointeeTy != RCanPointeeTy) {
11742       // Treat NULL constant as a special case in OpenCL.
11743       if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
11744         if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy)) {
11745           Diag(Loc,
11746                diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
11747               << LHSType << RHSType << 0 /* comparison */
11748               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11749         }
11750       }
11751       LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
11752       LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
11753       CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
11754                                                : CK_BitCast;
11755       if (LHSIsNull && !RHSIsNull)
11756         LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
11757       else
11758         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
11759     }
11760     return computeResultTy();
11761   }
11762 
11763   if (getLangOpts().CPlusPlus) {
11764     // C++ [expr.eq]p4:
11765     //   Two operands of type std::nullptr_t or one operand of type
11766     //   std::nullptr_t and the other a null pointer constant compare equal.
11767     if (!IsOrdered && LHSIsNull && RHSIsNull) {
11768       if (LHSType->isNullPtrType()) {
11769         RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
11770         return computeResultTy();
11771       }
11772       if (RHSType->isNullPtrType()) {
11773         LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
11774         return computeResultTy();
11775       }
11776     }
11777 
11778     // Comparison of Objective-C pointers and block pointers against nullptr_t.
11779     // These aren't covered by the composite pointer type rules.
11780     if (!IsOrdered && RHSType->isNullPtrType() &&
11781         (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
11782       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
11783       return computeResultTy();
11784     }
11785     if (!IsOrdered && LHSType->isNullPtrType() &&
11786         (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
11787       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
11788       return computeResultTy();
11789     }
11790 
11791     if (IsRelational &&
11792         ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
11793          (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
11794       // HACK: Relational comparison of nullptr_t against a pointer type is
11795       // invalid per DR583, but we allow it within std::less<> and friends,
11796       // since otherwise common uses of it break.
11797       // FIXME: Consider removing this hack once LWG fixes std::less<> and
11798       // friends to have std::nullptr_t overload candidates.
11799       DeclContext *DC = CurContext;
11800       if (isa<FunctionDecl>(DC))
11801         DC = DC->getParent();
11802       if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
11803         if (CTSD->isInStdNamespace() &&
11804             llvm::StringSwitch<bool>(CTSD->getName())
11805                 .Cases("less", "less_equal", "greater", "greater_equal", true)
11806                 .Default(false)) {
11807           if (RHSType->isNullPtrType())
11808             RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
11809           else
11810             LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
11811           return computeResultTy();
11812         }
11813       }
11814     }
11815 
11816     // C++ [expr.eq]p2:
11817     //   If at least one operand is a pointer to member, [...] bring them to
11818     //   their composite pointer type.
11819     if (!IsOrdered &&
11820         (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
11821       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
11822         return QualType();
11823       else
11824         return computeResultTy();
11825     }
11826   }
11827 
11828   // Handle block pointer types.
11829   if (!IsOrdered && LHSType->isBlockPointerType() &&
11830       RHSType->isBlockPointerType()) {
11831     QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
11832     QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
11833 
11834     if (!LHSIsNull && !RHSIsNull &&
11835         !Context.typesAreCompatible(lpointee, rpointee)) {
11836       Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
11837         << LHSType << RHSType << LHS.get()->getSourceRange()
11838         << RHS.get()->getSourceRange();
11839     }
11840     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
11841     return computeResultTy();
11842   }
11843 
11844   // Allow block pointers to be compared with null pointer constants.
11845   if (!IsOrdered
11846       && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
11847           || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
11848     if (!LHSIsNull && !RHSIsNull) {
11849       if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
11850              ->getPointeeType()->isVoidType())
11851             || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
11852                 ->getPointeeType()->isVoidType())))
11853         Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
11854           << LHSType << RHSType << LHS.get()->getSourceRange()
11855           << RHS.get()->getSourceRange();
11856     }
11857     if (LHSIsNull && !RHSIsNull)
11858       LHS = ImpCastExprToType(LHS.get(), RHSType,
11859                               RHSType->isPointerType() ? CK_BitCast
11860                                 : CK_AnyPointerToBlockPointerCast);
11861     else
11862       RHS = ImpCastExprToType(RHS.get(), LHSType,
11863                               LHSType->isPointerType() ? CK_BitCast
11864                                 : CK_AnyPointerToBlockPointerCast);
11865     return computeResultTy();
11866   }
11867 
11868   if (LHSType->isObjCObjectPointerType() ||
11869       RHSType->isObjCObjectPointerType()) {
11870     const PointerType *LPT = LHSType->getAs<PointerType>();
11871     const PointerType *RPT = RHSType->getAs<PointerType>();
11872     if (LPT || RPT) {
11873       bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
11874       bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
11875 
11876       if (!LPtrToVoid && !RPtrToVoid &&
11877           !Context.typesAreCompatible(LHSType, RHSType)) {
11878         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
11879                                           /*isError*/false);
11880       }
11881       // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
11882       // the RHS, but we have test coverage for this behavior.
11883       // FIXME: Consider using convertPointersToCompositeType in C++.
11884       if (LHSIsNull && !RHSIsNull) {
11885         Expr *E = LHS.get();
11886         if (getLangOpts().ObjCAutoRefCount)
11887           CheckObjCConversion(SourceRange(), RHSType, E,
11888                               CCK_ImplicitConversion);
11889         LHS = ImpCastExprToType(E, RHSType,
11890                                 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
11891       }
11892       else {
11893         Expr *E = RHS.get();
11894         if (getLangOpts().ObjCAutoRefCount)
11895           CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion,
11896                               /*Diagnose=*/true,
11897                               /*DiagnoseCFAudited=*/false, Opc);
11898         RHS = ImpCastExprToType(E, LHSType,
11899                                 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
11900       }
11901       return computeResultTy();
11902     }
11903     if (LHSType->isObjCObjectPointerType() &&
11904         RHSType->isObjCObjectPointerType()) {
11905       if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
11906         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
11907                                           /*isError*/false);
11908       if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
11909         diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
11910 
11911       if (LHSIsNull && !RHSIsNull)
11912         LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
11913       else
11914         RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
11915       return computeResultTy();
11916     }
11917 
11918     if (!IsOrdered && LHSType->isBlockPointerType() &&
11919         RHSType->isBlockCompatibleObjCPointerType(Context)) {
11920       LHS = ImpCastExprToType(LHS.get(), RHSType,
11921                               CK_BlockPointerToObjCPointerCast);
11922       return computeResultTy();
11923     } else if (!IsOrdered &&
11924                LHSType->isBlockCompatibleObjCPointerType(Context) &&
11925                RHSType->isBlockPointerType()) {
11926       RHS = ImpCastExprToType(RHS.get(), LHSType,
11927                               CK_BlockPointerToObjCPointerCast);
11928       return computeResultTy();
11929     }
11930   }
11931   if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
11932       (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
11933     unsigned DiagID = 0;
11934     bool isError = false;
11935     if (LangOpts.DebuggerSupport) {
11936       // Under a debugger, allow the comparison of pointers to integers,
11937       // since users tend to want to compare addresses.
11938     } else if ((LHSIsNull && LHSType->isIntegerType()) ||
11939                (RHSIsNull && RHSType->isIntegerType())) {
11940       if (IsOrdered) {
11941         isError = getLangOpts().CPlusPlus;
11942         DiagID =
11943           isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
11944                   : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
11945       }
11946     } else if (getLangOpts().CPlusPlus) {
11947       DiagID = diag::err_typecheck_comparison_of_pointer_integer;
11948       isError = true;
11949     } else if (IsOrdered)
11950       DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
11951     else
11952       DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
11953 
11954     if (DiagID) {
11955       Diag(Loc, DiagID)
11956         << LHSType << RHSType << LHS.get()->getSourceRange()
11957         << RHS.get()->getSourceRange();
11958       if (isError)
11959         return QualType();
11960     }
11961 
11962     if (LHSType->isIntegerType())
11963       LHS = ImpCastExprToType(LHS.get(), RHSType,
11964                         LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
11965     else
11966       RHS = ImpCastExprToType(RHS.get(), LHSType,
11967                         RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
11968     return computeResultTy();
11969   }
11970 
11971   // Handle block pointers.
11972   if (!IsOrdered && RHSIsNull
11973       && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
11974     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
11975     return computeResultTy();
11976   }
11977   if (!IsOrdered && LHSIsNull
11978       && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
11979     LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
11980     return computeResultTy();
11981   }
11982 
11983   if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) {
11984     if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
11985       return computeResultTy();
11986     }
11987 
11988     if (LHSType->isQueueT() && RHSType->isQueueT()) {
11989       return computeResultTy();
11990     }
11991 
11992     if (LHSIsNull && RHSType->isQueueT()) {
11993       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
11994       return computeResultTy();
11995     }
11996 
11997     if (LHSType->isQueueT() && RHSIsNull) {
11998       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
11999       return computeResultTy();
12000     }
12001   }
12002 
12003   return InvalidOperands(Loc, LHS, RHS);
12004 }
12005 
12006 // Return a signed ext_vector_type that is of identical size and number of
12007 // elements. For floating point vectors, return an integer type of identical
12008 // size and number of elements. In the non ext_vector_type case, search from
12009 // the largest type to the smallest type to avoid cases where long long == long,
12010 // where long gets picked over long long.
GetSignedVectorType(QualType V)12011 QualType Sema::GetSignedVectorType(QualType V) {
12012   const VectorType *VTy = V->castAs<VectorType>();
12013   unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
12014 
12015   if (isa<ExtVectorType>(VTy)) {
12016     if (TypeSize == Context.getTypeSize(Context.CharTy))
12017       return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
12018     else if (TypeSize == Context.getTypeSize(Context.ShortTy))
12019       return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
12020     else if (TypeSize == Context.getTypeSize(Context.IntTy))
12021       return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
12022     else if (TypeSize == Context.getTypeSize(Context.LongTy))
12023       return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
12024     assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
12025            "Unhandled vector element size in vector compare");
12026     return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
12027   }
12028 
12029   if (TypeSize == Context.getTypeSize(Context.LongLongTy))
12030     return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
12031                                  VectorType::GenericVector);
12032   else if (TypeSize == Context.getTypeSize(Context.LongTy))
12033     return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
12034                                  VectorType::GenericVector);
12035   else if (TypeSize == Context.getTypeSize(Context.IntTy))
12036     return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
12037                                  VectorType::GenericVector);
12038   else if (TypeSize == Context.getTypeSize(Context.ShortTy))
12039     return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
12040                                  VectorType::GenericVector);
12041   assert(TypeSize == Context.getTypeSize(Context.CharTy) &&
12042          "Unhandled vector element size in vector compare");
12043   return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
12044                                VectorType::GenericVector);
12045 }
12046 
12047 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
12048 /// operates on extended vector types.  Instead of producing an IntTy result,
12049 /// like a scalar comparison, a vector comparison produces a vector of integer
12050 /// types.
CheckVectorCompareOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)12051 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
12052                                           SourceLocation Loc,
12053                                           BinaryOperatorKind Opc) {
12054   if (Opc == BO_Cmp) {
12055     Diag(Loc, diag::err_three_way_vector_comparison);
12056     return QualType();
12057   }
12058 
12059   // Check to make sure we're operating on vectors of the same type and width,
12060   // Allowing one side to be a scalar of element type.
12061   QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false,
12062                               /*AllowBothBool*/true,
12063                               /*AllowBoolConversions*/getLangOpts().ZVector);
12064   if (vType.isNull())
12065     return vType;
12066 
12067   QualType LHSType = LHS.get()->getType();
12068 
12069   // If AltiVec, the comparison results in a numeric type, i.e.
12070   // bool for C++, int for C
12071   if (getLangOpts().AltiVec &&
12072       vType->castAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
12073     return Context.getLogicalOperationType();
12074 
12075   // For non-floating point types, check for self-comparisons of the form
12076   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
12077   // often indicate logic errors in the program.
12078   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12079 
12080   // Check for comparisons of floating point operands using != and ==.
12081   if (BinaryOperator::isEqualityOp(Opc) &&
12082       LHSType->hasFloatingRepresentation()) {
12083     assert(RHS.get()->getType()->hasFloatingRepresentation());
12084     CheckFloatComparison(Loc, LHS.get(), RHS.get());
12085   }
12086 
12087   // Return a signed type for the vector.
12088   return GetSignedVectorType(vType);
12089 }
12090 
diagnoseXorMisusedAsPow(Sema & S,const ExprResult & XorLHS,const ExprResult & XorRHS,const SourceLocation Loc)12091 static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
12092                                     const ExprResult &XorRHS,
12093                                     const SourceLocation Loc) {
12094   // Do not diagnose macros.
12095   if (Loc.isMacroID())
12096     return;
12097 
12098   bool Negative = false;
12099   bool ExplicitPlus = false;
12100   const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get());
12101   const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get());
12102 
12103   if (!LHSInt)
12104     return;
12105   if (!RHSInt) {
12106     // Check negative literals.
12107     if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) {
12108       UnaryOperatorKind Opc = UO->getOpcode();
12109       if (Opc != UO_Minus && Opc != UO_Plus)
12110         return;
12111       RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr());
12112       if (!RHSInt)
12113         return;
12114       Negative = (Opc == UO_Minus);
12115       ExplicitPlus = !Negative;
12116     } else {
12117       return;
12118     }
12119   }
12120 
12121   const llvm::APInt &LeftSideValue = LHSInt->getValue();
12122   llvm::APInt RightSideValue = RHSInt->getValue();
12123   if (LeftSideValue != 2 && LeftSideValue != 10)
12124     return;
12125 
12126   if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
12127     return;
12128 
12129   CharSourceRange ExprRange = CharSourceRange::getCharRange(
12130       LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation()));
12131   llvm::StringRef ExprStr =
12132       Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts());
12133 
12134   CharSourceRange XorRange =
12135       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
12136   llvm::StringRef XorStr =
12137       Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts());
12138   // Do not diagnose if xor keyword/macro is used.
12139   if (XorStr == "xor")
12140     return;
12141 
12142   std::string LHSStr = std::string(Lexer::getSourceText(
12143       CharSourceRange::getTokenRange(LHSInt->getSourceRange()),
12144       S.getSourceManager(), S.getLangOpts()));
12145   std::string RHSStr = std::string(Lexer::getSourceText(
12146       CharSourceRange::getTokenRange(RHSInt->getSourceRange()),
12147       S.getSourceManager(), S.getLangOpts()));
12148 
12149   if (Negative) {
12150     RightSideValue = -RightSideValue;
12151     RHSStr = "-" + RHSStr;
12152   } else if (ExplicitPlus) {
12153     RHSStr = "+" + RHSStr;
12154   }
12155 
12156   StringRef LHSStrRef = LHSStr;
12157   StringRef RHSStrRef = RHSStr;
12158   // Do not diagnose literals with digit separators, binary, hexadecimal, octal
12159   // literals.
12160   if (LHSStrRef.startswith("0b") || LHSStrRef.startswith("0B") ||
12161       RHSStrRef.startswith("0b") || RHSStrRef.startswith("0B") ||
12162       LHSStrRef.startswith("0x") || LHSStrRef.startswith("0X") ||
12163       RHSStrRef.startswith("0x") || RHSStrRef.startswith("0X") ||
12164       (LHSStrRef.size() > 1 && LHSStrRef.startswith("0")) ||
12165       (RHSStrRef.size() > 1 && RHSStrRef.startswith("0")) ||
12166       LHSStrRef.find('\'') != StringRef::npos ||
12167       RHSStrRef.find('\'') != StringRef::npos)
12168     return;
12169 
12170   bool SuggestXor = S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor");
12171   const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
12172   int64_t RightSideIntValue = RightSideValue.getSExtValue();
12173   if (LeftSideValue == 2 && RightSideIntValue >= 0) {
12174     std::string SuggestedExpr = "1 << " + RHSStr;
12175     bool Overflow = false;
12176     llvm::APInt One = (LeftSideValue - 1);
12177     llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow);
12178     if (Overflow) {
12179       if (RightSideIntValue < 64)
12180         S.Diag(Loc, diag::warn_xor_used_as_pow_base)
12181             << ExprStr << XorValue.toString(10, true) << ("1LL << " + RHSStr)
12182             << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr);
12183       else if (RightSideIntValue == 64)
12184         S.Diag(Loc, diag::warn_xor_used_as_pow) << ExprStr << XorValue.toString(10, true);
12185       else
12186         return;
12187     } else {
12188       S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra)
12189           << ExprStr << XorValue.toString(10, true) << SuggestedExpr
12190           << PowValue.toString(10, true)
12191           << FixItHint::CreateReplacement(
12192                  ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr);
12193     }
12194 
12195     S.Diag(Loc, diag::note_xor_used_as_pow_silence) << ("0x2 ^ " + RHSStr) << SuggestXor;
12196   } else if (LeftSideValue == 10) {
12197     std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue);
12198     S.Diag(Loc, diag::warn_xor_used_as_pow_base)
12199         << ExprStr << XorValue.toString(10, true) << SuggestedValue
12200         << FixItHint::CreateReplacement(ExprRange, SuggestedValue);
12201     S.Diag(Loc, diag::note_xor_used_as_pow_silence) << ("0xA ^ " + RHSStr) << SuggestXor;
12202   }
12203 }
12204 
CheckVectorLogicalOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)12205 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
12206                                           SourceLocation Loc) {
12207   // Ensure that either both operands are of the same vector type, or
12208   // one operand is of a vector type and the other is of its element type.
12209   QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
12210                                        /*AllowBothBool*/true,
12211                                        /*AllowBoolConversions*/false);
12212   if (vType.isNull())
12213     return InvalidOperands(Loc, LHS, RHS);
12214   if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
12215       !getLangOpts().OpenCLCPlusPlus && vType->hasFloatingRepresentation())
12216     return InvalidOperands(Loc, LHS, RHS);
12217   // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
12218   //        usage of the logical operators && and || with vectors in C. This
12219   //        check could be notionally dropped.
12220   if (!getLangOpts().CPlusPlus &&
12221       !(isa<ExtVectorType>(vType->getAs<VectorType>())))
12222     return InvalidLogicalVectorOperands(Loc, LHS, RHS);
12223 
12224   return GetSignedVectorType(LHS.get()->getType());
12225 }
12226 
CheckMatrixElementwiseOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)12227 QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
12228                                               SourceLocation Loc,
12229                                               bool IsCompAssign) {
12230   if (!IsCompAssign) {
12231     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12232     if (LHS.isInvalid())
12233       return QualType();
12234   }
12235   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12236   if (RHS.isInvalid())
12237     return QualType();
12238 
12239   // For conversion purposes, we ignore any qualifiers.
12240   // For example, "const float" and "float" are equivalent.
12241   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
12242   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
12243 
12244   const MatrixType *LHSMatType = LHSType->getAs<MatrixType>();
12245   const MatrixType *RHSMatType = RHSType->getAs<MatrixType>();
12246   assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
12247 
12248   if (Context.hasSameType(LHSType, RHSType))
12249     return LHSType;
12250 
12251   // Type conversion may change LHS/RHS. Keep copies to the original results, in
12252   // case we have to return InvalidOperands.
12253   ExprResult OriginalLHS = LHS;
12254   ExprResult OriginalRHS = RHS;
12255   if (LHSMatType && !RHSMatType) {
12256     RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType());
12257     if (!RHS.isInvalid())
12258       return LHSType;
12259 
12260     return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
12261   }
12262 
12263   if (!LHSMatType && RHSMatType) {
12264     LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType());
12265     if (!LHS.isInvalid())
12266       return RHSType;
12267     return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
12268   }
12269 
12270   return InvalidOperands(Loc, LHS, RHS);
12271 }
12272 
CheckMatrixMultiplyOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)12273 QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
12274                                            SourceLocation Loc,
12275                                            bool IsCompAssign) {
12276   if (!IsCompAssign) {
12277     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12278     if (LHS.isInvalid())
12279       return QualType();
12280   }
12281   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12282   if (RHS.isInvalid())
12283     return QualType();
12284 
12285   auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>();
12286   auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>();
12287   assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
12288 
12289   if (LHSMatType && RHSMatType) {
12290     if (LHSMatType->getNumColumns() != RHSMatType->getNumRows())
12291       return InvalidOperands(Loc, LHS, RHS);
12292 
12293     if (!Context.hasSameType(LHSMatType->getElementType(),
12294                              RHSMatType->getElementType()))
12295       return InvalidOperands(Loc, LHS, RHS);
12296 
12297     return Context.getConstantMatrixType(LHSMatType->getElementType(),
12298                                          LHSMatType->getNumRows(),
12299                                          RHSMatType->getNumColumns());
12300   }
12301   return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
12302 }
12303 
CheckBitwiseOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)12304 inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
12305                                            SourceLocation Loc,
12306                                            BinaryOperatorKind Opc) {
12307   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
12308 
12309   bool IsCompAssign =
12310       Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
12311 
12312   if (LHS.get()->getType()->isVectorType() ||
12313       RHS.get()->getType()->isVectorType()) {
12314     if (LHS.get()->getType()->hasIntegerRepresentation() &&
12315         RHS.get()->getType()->hasIntegerRepresentation())
12316       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
12317                         /*AllowBothBool*/true,
12318                         /*AllowBoolConversions*/getLangOpts().ZVector);
12319     return InvalidOperands(Loc, LHS, RHS);
12320   }
12321 
12322   if (Opc == BO_And)
12323     diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
12324 
12325   if (LHS.get()->getType()->hasFloatingRepresentation() ||
12326       RHS.get()->getType()->hasFloatingRepresentation())
12327     return InvalidOperands(Loc, LHS, RHS);
12328 
12329   ExprResult LHSResult = LHS, RHSResult = RHS;
12330   QualType compType = UsualArithmeticConversions(
12331       LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp);
12332   if (LHSResult.isInvalid() || RHSResult.isInvalid())
12333     return QualType();
12334   LHS = LHSResult.get();
12335   RHS = RHSResult.get();
12336 
12337   if (Opc == BO_Xor)
12338     diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc);
12339 
12340   if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
12341     return compType;
12342   return InvalidOperands(Loc, LHS, RHS);
12343 }
12344 
12345 // C99 6.5.[13,14]
CheckLogicalOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)12346 inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
12347                                            SourceLocation Loc,
12348                                            BinaryOperatorKind Opc) {
12349   // Check vector operands differently.
12350   if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
12351     return CheckVectorLogicalOperands(LHS, RHS, Loc);
12352 
12353   bool EnumConstantInBoolContext = false;
12354   for (const ExprResult &HS : {LHS, RHS}) {
12355     if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) {
12356       const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl());
12357       if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
12358         EnumConstantInBoolContext = true;
12359     }
12360   }
12361 
12362   if (EnumConstantInBoolContext)
12363     Diag(Loc, diag::warn_enum_constant_in_bool_context);
12364 
12365   // Diagnose cases where the user write a logical and/or but probably meant a
12366   // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
12367   // is a constant.
12368   if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
12369       !LHS.get()->getType()->isBooleanType() &&
12370       RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
12371       // Don't warn in macros or template instantiations.
12372       !Loc.isMacroID() && !inTemplateInstantiation()) {
12373     // If the RHS can be constant folded, and if it constant folds to something
12374     // that isn't 0 or 1 (which indicate a potential logical operation that
12375     // happened to fold to true/false) then warn.
12376     // Parens on the RHS are ignored.
12377     Expr::EvalResult EVResult;
12378     if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
12379       llvm::APSInt Result = EVResult.Val.getInt();
12380       if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
12381            !RHS.get()->getExprLoc().isMacroID()) ||
12382           (Result != 0 && Result != 1)) {
12383         Diag(Loc, diag::warn_logical_instead_of_bitwise)
12384           << RHS.get()->getSourceRange()
12385           << (Opc == BO_LAnd ? "&&" : "||");
12386         // Suggest replacing the logical operator with the bitwise version
12387         Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
12388             << (Opc == BO_LAnd ? "&" : "|")
12389             << FixItHint::CreateReplacement(SourceRange(
12390                                                  Loc, getLocForEndOfToken(Loc)),
12391                                             Opc == BO_LAnd ? "&" : "|");
12392         if (Opc == BO_LAnd)
12393           // Suggest replacing "Foo() && kNonZero" with "Foo()"
12394           Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
12395               << FixItHint::CreateRemoval(
12396                      SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
12397                                  RHS.get()->getEndLoc()));
12398       }
12399     }
12400   }
12401 
12402   if (!Context.getLangOpts().CPlusPlus) {
12403     // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
12404     // not operate on the built-in scalar and vector float types.
12405     if (Context.getLangOpts().OpenCL &&
12406         Context.getLangOpts().OpenCLVersion < 120) {
12407       if (LHS.get()->getType()->isFloatingType() ||
12408           RHS.get()->getType()->isFloatingType())
12409         return InvalidOperands(Loc, LHS, RHS);
12410     }
12411 
12412     LHS = UsualUnaryConversions(LHS.get());
12413     if (LHS.isInvalid())
12414       return QualType();
12415 
12416     RHS = UsualUnaryConversions(RHS.get());
12417     if (RHS.isInvalid())
12418       return QualType();
12419 
12420     if (!LHS.get()->getType()->isScalarType() ||
12421         !RHS.get()->getType()->isScalarType())
12422       return InvalidOperands(Loc, LHS, RHS);
12423 
12424     return Context.IntTy;
12425   }
12426 
12427   // The following is safe because we only use this method for
12428   // non-overloadable operands.
12429 
12430   // C++ [expr.log.and]p1
12431   // C++ [expr.log.or]p1
12432   // The operands are both contextually converted to type bool.
12433   ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
12434   if (LHSRes.isInvalid())
12435     return InvalidOperands(Loc, LHS, RHS);
12436   LHS = LHSRes;
12437 
12438   ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
12439   if (RHSRes.isInvalid())
12440     return InvalidOperands(Loc, LHS, RHS);
12441   RHS = RHSRes;
12442 
12443   // C++ [expr.log.and]p2
12444   // C++ [expr.log.or]p2
12445   // The result is a bool.
12446   return Context.BoolTy;
12447 }
12448 
IsReadonlyMessage(Expr * E,Sema & S)12449 static bool IsReadonlyMessage(Expr *E, Sema &S) {
12450   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
12451   if (!ME) return false;
12452   if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
12453   ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
12454       ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
12455   if (!Base) return false;
12456   return Base->getMethodDecl() != nullptr;
12457 }
12458 
12459 /// Is the given expression (which must be 'const') a reference to a
12460 /// variable which was originally non-const, but which has become
12461 /// 'const' due to being captured within a block?
12462 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
isReferenceToNonConstCapture(Sema & S,Expr * E)12463 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
12464   assert(E->isLValue() && E->getType().isConstQualified());
12465   E = E->IgnoreParens();
12466 
12467   // Must be a reference to a declaration from an enclosing scope.
12468   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
12469   if (!DRE) return NCCK_None;
12470   if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
12471 
12472   // The declaration must be a variable which is not declared 'const'.
12473   VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
12474   if (!var) return NCCK_None;
12475   if (var->getType().isConstQualified()) return NCCK_None;
12476   assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
12477 
12478   // Decide whether the first capture was for a block or a lambda.
12479   DeclContext *DC = S.CurContext, *Prev = nullptr;
12480   // Decide whether the first capture was for a block or a lambda.
12481   while (DC) {
12482     // For init-capture, it is possible that the variable belongs to the
12483     // template pattern of the current context.
12484     if (auto *FD = dyn_cast<FunctionDecl>(DC))
12485       if (var->isInitCapture() &&
12486           FD->getTemplateInstantiationPattern() == var->getDeclContext())
12487         break;
12488     if (DC == var->getDeclContext())
12489       break;
12490     Prev = DC;
12491     DC = DC->getParent();
12492   }
12493   // Unless we have an init-capture, we've gone one step too far.
12494   if (!var->isInitCapture())
12495     DC = Prev;
12496   return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
12497 }
12498 
IsTypeModifiable(QualType Ty,bool IsDereference)12499 static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
12500   Ty = Ty.getNonReferenceType();
12501   if (IsDereference && Ty->isPointerType())
12502     Ty = Ty->getPointeeType();
12503   return !Ty.isConstQualified();
12504 }
12505 
12506 // Update err_typecheck_assign_const and note_typecheck_assign_const
12507 // when this enum is changed.
12508 enum {
12509   ConstFunction,
12510   ConstVariable,
12511   ConstMember,
12512   ConstMethod,
12513   NestedConstMember,
12514   ConstUnknown,  // Keep as last element
12515 };
12516 
12517 /// Emit the "read-only variable not assignable" error and print notes to give
12518 /// more information about why the variable is not assignable, such as pointing
12519 /// to the declaration of a const variable, showing that a method is const, or
12520 /// that the function is returning a const reference.
DiagnoseConstAssignment(Sema & S,const Expr * E,SourceLocation Loc)12521 static void DiagnoseConstAssignment(Sema &S, const Expr *E,
12522                                     SourceLocation Loc) {
12523   SourceRange ExprRange = E->getSourceRange();
12524 
12525   // Only emit one error on the first const found.  All other consts will emit
12526   // a note to the error.
12527   bool DiagnosticEmitted = false;
12528 
12529   // Track if the current expression is the result of a dereference, and if the
12530   // next checked expression is the result of a dereference.
12531   bool IsDereference = false;
12532   bool NextIsDereference = false;
12533 
12534   // Loop to process MemberExpr chains.
12535   while (true) {
12536     IsDereference = NextIsDereference;
12537 
12538     E = E->IgnoreImplicit()->IgnoreParenImpCasts();
12539     if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
12540       NextIsDereference = ME->isArrow();
12541       const ValueDecl *VD = ME->getMemberDecl();
12542       if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
12543         // Mutable fields can be modified even if the class is const.
12544         if (Field->isMutable()) {
12545           assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
12546           break;
12547         }
12548 
12549         if (!IsTypeModifiable(Field->getType(), IsDereference)) {
12550           if (!DiagnosticEmitted) {
12551             S.Diag(Loc, diag::err_typecheck_assign_const)
12552                 << ExprRange << ConstMember << false /*static*/ << Field
12553                 << Field->getType();
12554             DiagnosticEmitted = true;
12555           }
12556           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
12557               << ConstMember << false /*static*/ << Field << Field->getType()
12558               << Field->getSourceRange();
12559         }
12560         E = ME->getBase();
12561         continue;
12562       } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
12563         if (VDecl->getType().isConstQualified()) {
12564           if (!DiagnosticEmitted) {
12565             S.Diag(Loc, diag::err_typecheck_assign_const)
12566                 << ExprRange << ConstMember << true /*static*/ << VDecl
12567                 << VDecl->getType();
12568             DiagnosticEmitted = true;
12569           }
12570           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
12571               << ConstMember << true /*static*/ << VDecl << VDecl->getType()
12572               << VDecl->getSourceRange();
12573         }
12574         // Static fields do not inherit constness from parents.
12575         break;
12576       }
12577       break; // End MemberExpr
12578     } else if (const ArraySubscriptExpr *ASE =
12579                    dyn_cast<ArraySubscriptExpr>(E)) {
12580       E = ASE->getBase()->IgnoreParenImpCasts();
12581       continue;
12582     } else if (const ExtVectorElementExpr *EVE =
12583                    dyn_cast<ExtVectorElementExpr>(E)) {
12584       E = EVE->getBase()->IgnoreParenImpCasts();
12585       continue;
12586     }
12587     break;
12588   }
12589 
12590   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
12591     // Function calls
12592     const FunctionDecl *FD = CE->getDirectCallee();
12593     if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
12594       if (!DiagnosticEmitted) {
12595         S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
12596                                                       << ConstFunction << FD;
12597         DiagnosticEmitted = true;
12598       }
12599       S.Diag(FD->getReturnTypeSourceRange().getBegin(),
12600              diag::note_typecheck_assign_const)
12601           << ConstFunction << FD << FD->getReturnType()
12602           << FD->getReturnTypeSourceRange();
12603     }
12604   } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
12605     // Point to variable declaration.
12606     if (const ValueDecl *VD = DRE->getDecl()) {
12607       if (!IsTypeModifiable(VD->getType(), IsDereference)) {
12608         if (!DiagnosticEmitted) {
12609           S.Diag(Loc, diag::err_typecheck_assign_const)
12610               << ExprRange << ConstVariable << VD << VD->getType();
12611           DiagnosticEmitted = true;
12612         }
12613         S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
12614             << ConstVariable << VD << VD->getType() << VD->getSourceRange();
12615       }
12616     }
12617   } else if (isa<CXXThisExpr>(E)) {
12618     if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
12619       if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
12620         if (MD->isConst()) {
12621           if (!DiagnosticEmitted) {
12622             S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
12623                                                           << ConstMethod << MD;
12624             DiagnosticEmitted = true;
12625           }
12626           S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
12627               << ConstMethod << MD << MD->getSourceRange();
12628         }
12629       }
12630     }
12631   }
12632 
12633   if (DiagnosticEmitted)
12634     return;
12635 
12636   // Can't determine a more specific message, so display the generic error.
12637   S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
12638 }
12639 
12640 enum OriginalExprKind {
12641   OEK_Variable,
12642   OEK_Member,
12643   OEK_LValue
12644 };
12645 
DiagnoseRecursiveConstFields(Sema & S,const ValueDecl * VD,const RecordType * Ty,SourceLocation Loc,SourceRange Range,OriginalExprKind OEK,bool & DiagnosticEmitted)12646 static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
12647                                          const RecordType *Ty,
12648                                          SourceLocation Loc, SourceRange Range,
12649                                          OriginalExprKind OEK,
12650                                          bool &DiagnosticEmitted) {
12651   std::vector<const RecordType *> RecordTypeList;
12652   RecordTypeList.push_back(Ty);
12653   unsigned NextToCheckIndex = 0;
12654   // We walk the record hierarchy breadth-first to ensure that we print
12655   // diagnostics in field nesting order.
12656   while (RecordTypeList.size() > NextToCheckIndex) {
12657     bool IsNested = NextToCheckIndex > 0;
12658     for (const FieldDecl *Field :
12659          RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
12660       // First, check every field for constness.
12661       QualType FieldTy = Field->getType();
12662       if (FieldTy.isConstQualified()) {
12663         if (!DiagnosticEmitted) {
12664           S.Diag(Loc, diag::err_typecheck_assign_const)
12665               << Range << NestedConstMember << OEK << VD
12666               << IsNested << Field;
12667           DiagnosticEmitted = true;
12668         }
12669         S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
12670             << NestedConstMember << IsNested << Field
12671             << FieldTy << Field->getSourceRange();
12672       }
12673 
12674       // Then we append it to the list to check next in order.
12675       FieldTy = FieldTy.getCanonicalType();
12676       if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
12677         if (llvm::find(RecordTypeList, FieldRecTy) == RecordTypeList.end())
12678           RecordTypeList.push_back(FieldRecTy);
12679       }
12680     }
12681     ++NextToCheckIndex;
12682   }
12683 }
12684 
12685 /// Emit an error for the case where a record we are trying to assign to has a
12686 /// const-qualified field somewhere in its hierarchy.
DiagnoseRecursiveConstFields(Sema & S,const Expr * E,SourceLocation Loc)12687 static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
12688                                          SourceLocation Loc) {
12689   QualType Ty = E->getType();
12690   assert(Ty->isRecordType() && "lvalue was not record?");
12691   SourceRange Range = E->getSourceRange();
12692   const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
12693   bool DiagEmitted = false;
12694 
12695   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
12696     DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
12697             Range, OEK_Member, DiagEmitted);
12698   else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
12699     DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
12700             Range, OEK_Variable, DiagEmitted);
12701   else
12702     DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
12703             Range, OEK_LValue, DiagEmitted);
12704   if (!DiagEmitted)
12705     DiagnoseConstAssignment(S, E, Loc);
12706 }
12707 
12708 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
12709 /// emit an error and return true.  If so, return false.
CheckForModifiableLvalue(Expr * E,SourceLocation Loc,Sema & S)12710 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
12711   assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
12712 
12713   S.CheckShadowingDeclModification(E, Loc);
12714 
12715   SourceLocation OrigLoc = Loc;
12716   Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
12717                                                               &Loc);
12718   if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
12719     IsLV = Expr::MLV_InvalidMessageExpression;
12720   if (IsLV == Expr::MLV_Valid)
12721     return false;
12722 
12723   unsigned DiagID = 0;
12724   bool NeedType = false;
12725   switch (IsLV) { // C99 6.5.16p2
12726   case Expr::MLV_ConstQualified:
12727     // Use a specialized diagnostic when we're assigning to an object
12728     // from an enclosing function or block.
12729     if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
12730       if (NCCK == NCCK_Block)
12731         DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
12732       else
12733         DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
12734       break;
12735     }
12736 
12737     // In ARC, use some specialized diagnostics for occasions where we
12738     // infer 'const'.  These are always pseudo-strong variables.
12739     if (S.getLangOpts().ObjCAutoRefCount) {
12740       DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
12741       if (declRef && isa<VarDecl>(declRef->getDecl())) {
12742         VarDecl *var = cast<VarDecl>(declRef->getDecl());
12743 
12744         // Use the normal diagnostic if it's pseudo-__strong but the
12745         // user actually wrote 'const'.
12746         if (var->isARCPseudoStrong() &&
12747             (!var->getTypeSourceInfo() ||
12748              !var->getTypeSourceInfo()->getType().isConstQualified())) {
12749           // There are three pseudo-strong cases:
12750           //  - self
12751           ObjCMethodDecl *method = S.getCurMethodDecl();
12752           if (method && var == method->getSelfDecl()) {
12753             DiagID = method->isClassMethod()
12754               ? diag::err_typecheck_arc_assign_self_class_method
12755               : diag::err_typecheck_arc_assign_self;
12756 
12757           //  - Objective-C externally_retained attribute.
12758           } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
12759                      isa<ParmVarDecl>(var)) {
12760             DiagID = diag::err_typecheck_arc_assign_externally_retained;
12761 
12762           //  - fast enumeration variables
12763           } else {
12764             DiagID = diag::err_typecheck_arr_assign_enumeration;
12765           }
12766 
12767           SourceRange Assign;
12768           if (Loc != OrigLoc)
12769             Assign = SourceRange(OrigLoc, OrigLoc);
12770           S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
12771           // We need to preserve the AST regardless, so migration tool
12772           // can do its job.
12773           return false;
12774         }
12775       }
12776     }
12777 
12778     // If none of the special cases above are triggered, then this is a
12779     // simple const assignment.
12780     if (DiagID == 0) {
12781       DiagnoseConstAssignment(S, E, Loc);
12782       return true;
12783     }
12784 
12785     break;
12786   case Expr::MLV_ConstAddrSpace:
12787     DiagnoseConstAssignment(S, E, Loc);
12788     return true;
12789   case Expr::MLV_ConstQualifiedField:
12790     DiagnoseRecursiveConstFields(S, E, Loc);
12791     return true;
12792   case Expr::MLV_ArrayType:
12793   case Expr::MLV_ArrayTemporary:
12794     DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
12795     NeedType = true;
12796     break;
12797   case Expr::MLV_NotObjectType:
12798     DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
12799     NeedType = true;
12800     break;
12801   case Expr::MLV_LValueCast:
12802     DiagID = diag::err_typecheck_lvalue_casts_not_supported;
12803     break;
12804   case Expr::MLV_Valid:
12805     llvm_unreachable("did not take early return for MLV_Valid");
12806   case Expr::MLV_InvalidExpression:
12807   case Expr::MLV_MemberFunction:
12808   case Expr::MLV_ClassTemporary:
12809     DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
12810     break;
12811   case Expr::MLV_IncompleteType:
12812   case Expr::MLV_IncompleteVoidType:
12813     return S.RequireCompleteType(Loc, E->getType(),
12814              diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
12815   case Expr::MLV_DuplicateVectorComponents:
12816     DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
12817     break;
12818   case Expr::MLV_NoSetterProperty:
12819     llvm_unreachable("readonly properties should be processed differently");
12820   case Expr::MLV_InvalidMessageExpression:
12821     DiagID = diag::err_readonly_message_assignment;
12822     break;
12823   case Expr::MLV_SubObjCPropertySetting:
12824     DiagID = diag::err_no_subobject_property_setting;
12825     break;
12826   }
12827 
12828   SourceRange Assign;
12829   if (Loc != OrigLoc)
12830     Assign = SourceRange(OrigLoc, OrigLoc);
12831   if (NeedType)
12832     S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
12833   else
12834     S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
12835   return true;
12836 }
12837 
CheckIdentityFieldAssignment(Expr * LHSExpr,Expr * RHSExpr,SourceLocation Loc,Sema & Sema)12838 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
12839                                          SourceLocation Loc,
12840                                          Sema &Sema) {
12841   if (Sema.inTemplateInstantiation())
12842     return;
12843   if (Sema.isUnevaluatedContext())
12844     return;
12845   if (Loc.isInvalid() || Loc.isMacroID())
12846     return;
12847   if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
12848     return;
12849 
12850   // C / C++ fields
12851   MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
12852   MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
12853   if (ML && MR) {
12854     if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
12855       return;
12856     const ValueDecl *LHSDecl =
12857         cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
12858     const ValueDecl *RHSDecl =
12859         cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
12860     if (LHSDecl != RHSDecl)
12861       return;
12862     if (LHSDecl->getType().isVolatileQualified())
12863       return;
12864     if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
12865       if (RefTy->getPointeeType().isVolatileQualified())
12866         return;
12867 
12868     Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
12869   }
12870 
12871   // Objective-C instance variables
12872   ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
12873   ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
12874   if (OL && OR && OL->getDecl() == OR->getDecl()) {
12875     DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
12876     DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
12877     if (RL && RR && RL->getDecl() == RR->getDecl())
12878       Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
12879   }
12880 }
12881 
12882 // C99 6.5.16.1
CheckAssignmentOperands(Expr * LHSExpr,ExprResult & RHS,SourceLocation Loc,QualType CompoundType)12883 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
12884                                        SourceLocation Loc,
12885                                        QualType CompoundType) {
12886   assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
12887 
12888   // Verify that LHS is a modifiable lvalue, and emit error if not.
12889   if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
12890     return QualType();
12891 
12892   QualType LHSType = LHSExpr->getType();
12893   QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
12894                                              CompoundType;
12895   // OpenCL v1.2 s6.1.1.1 p2:
12896   // The half data type can only be used to declare a pointer to a buffer that
12897   // contains half values
12898   if (getLangOpts().OpenCL && !getOpenCLOptions().isEnabled("cl_khr_fp16") &&
12899     LHSType->isHalfType()) {
12900     Diag(Loc, diag::err_opencl_half_load_store) << 1
12901         << LHSType.getUnqualifiedType();
12902     return QualType();
12903   }
12904 
12905   AssignConvertType ConvTy;
12906   if (CompoundType.isNull()) {
12907     Expr *RHSCheck = RHS.get();
12908 
12909     CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
12910 
12911     QualType LHSTy(LHSType);
12912     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
12913     if (RHS.isInvalid())
12914       return QualType();
12915     // Special case of NSObject attributes on c-style pointer types.
12916     if (ConvTy == IncompatiblePointer &&
12917         ((Context.isObjCNSObjectType(LHSType) &&
12918           RHSType->isObjCObjectPointerType()) ||
12919          (Context.isObjCNSObjectType(RHSType) &&
12920           LHSType->isObjCObjectPointerType())))
12921       ConvTy = Compatible;
12922 
12923     if (ConvTy == Compatible &&
12924         LHSType->isObjCObjectType())
12925         Diag(Loc, diag::err_objc_object_assignment)
12926           << LHSType;
12927 
12928     // If the RHS is a unary plus or minus, check to see if they = and + are
12929     // right next to each other.  If so, the user may have typo'd "x =+ 4"
12930     // instead of "x += 4".
12931     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
12932       RHSCheck = ICE->getSubExpr();
12933     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
12934       if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
12935           Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
12936           // Only if the two operators are exactly adjacent.
12937           Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
12938           // And there is a space or other character before the subexpr of the
12939           // unary +/-.  We don't want to warn on "x=-1".
12940           Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
12941           UO->getSubExpr()->getBeginLoc().isFileID()) {
12942         Diag(Loc, diag::warn_not_compound_assign)
12943           << (UO->getOpcode() == UO_Plus ? "+" : "-")
12944           << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
12945       }
12946     }
12947 
12948     if (ConvTy == Compatible) {
12949       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
12950         // Warn about retain cycles where a block captures the LHS, but
12951         // not if the LHS is a simple variable into which the block is
12952         // being stored...unless that variable can be captured by reference!
12953         const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
12954         const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
12955         if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
12956           checkRetainCycles(LHSExpr, RHS.get());
12957       }
12958 
12959       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
12960           LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
12961         // It is safe to assign a weak reference into a strong variable.
12962         // Although this code can still have problems:
12963         //   id x = self.weakProp;
12964         //   id y = self.weakProp;
12965         // we do not warn to warn spuriously when 'x' and 'y' are on separate
12966         // paths through the function. This should be revisited if
12967         // -Wrepeated-use-of-weak is made flow-sensitive.
12968         // For ObjCWeak only, we do not warn if the assign is to a non-weak
12969         // variable, which will be valid for the current autorelease scope.
12970         if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
12971                              RHS.get()->getBeginLoc()))
12972           getCurFunction()->markSafeWeakUse(RHS.get());
12973 
12974       } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
12975         checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
12976       }
12977     }
12978   } else {
12979     // Compound assignment "x += y"
12980     ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
12981   }
12982 
12983   if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
12984                                RHS.get(), AA_Assigning))
12985     return QualType();
12986 
12987   CheckForNullPointerDereference(*this, LHSExpr);
12988 
12989   if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) {
12990     if (CompoundType.isNull()) {
12991       // C++2a [expr.ass]p5:
12992       //   A simple-assignment whose left operand is of a volatile-qualified
12993       //   type is deprecated unless the assignment is either a discarded-value
12994       //   expression or an unevaluated operand
12995       ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr);
12996     } else {
12997       // C++2a [expr.ass]p6:
12998       //   [Compound-assignment] expressions are deprecated if E1 has
12999       //   volatile-qualified type
13000       Diag(Loc, diag::warn_deprecated_compound_assign_volatile) << LHSType;
13001     }
13002   }
13003 
13004   // C99 6.5.16p3: The type of an assignment expression is the type of the
13005   // left operand unless the left operand has qualified type, in which case
13006   // it is the unqualified version of the type of the left operand.
13007   // C99 6.5.16.1p2: In simple assignment, the value of the right operand
13008   // is converted to the type of the assignment expression (above).
13009   // C++ 5.17p1: the type of the assignment expression is that of its left
13010   // operand.
13011   return (getLangOpts().CPlusPlus
13012           ? LHSType : LHSType.getUnqualifiedType());
13013 }
13014 
13015 // Only ignore explicit casts to void.
IgnoreCommaOperand(const Expr * E)13016 static bool IgnoreCommaOperand(const Expr *E) {
13017   E = E->IgnoreParens();
13018 
13019   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
13020     if (CE->getCastKind() == CK_ToVoid) {
13021       return true;
13022     }
13023 
13024     // static_cast<void> on a dependent type will not show up as CK_ToVoid.
13025     if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
13026         CE->getSubExpr()->getType()->isDependentType()) {
13027       return true;
13028     }
13029   }
13030 
13031   return false;
13032 }
13033 
13034 // Look for instances where it is likely the comma operator is confused with
13035 // another operator.  There is an explicit list of acceptable expressions for
13036 // the left hand side of the comma operator, otherwise emit a warning.
DiagnoseCommaOperator(const Expr * LHS,SourceLocation Loc)13037 void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
13038   // No warnings in macros
13039   if (Loc.isMacroID())
13040     return;
13041 
13042   // Don't warn in template instantiations.
13043   if (inTemplateInstantiation())
13044     return;
13045 
13046   // Scope isn't fine-grained enough to explicitly list the specific cases, so
13047   // instead, skip more than needed, then call back into here with the
13048   // CommaVisitor in SemaStmt.cpp.
13049   // The listed locations are the initialization and increment portions
13050   // of a for loop.  The additional checks are on the condition of
13051   // if statements, do/while loops, and for loops.
13052   // Differences in scope flags for C89 mode requires the extra logic.
13053   const unsigned ForIncrementFlags =
13054       getLangOpts().C99 || getLangOpts().CPlusPlus
13055           ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
13056           : Scope::ContinueScope | Scope::BreakScope;
13057   const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
13058   const unsigned ScopeFlags = getCurScope()->getFlags();
13059   if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
13060       (ScopeFlags & ForInitFlags) == ForInitFlags)
13061     return;
13062 
13063   // If there are multiple comma operators used together, get the RHS of the
13064   // of the comma operator as the LHS.
13065   while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
13066     if (BO->getOpcode() != BO_Comma)
13067       break;
13068     LHS = BO->getRHS();
13069   }
13070 
13071   // Only allow some expressions on LHS to not warn.
13072   if (IgnoreCommaOperand(LHS))
13073     return;
13074 
13075   Diag(Loc, diag::warn_comma_operator);
13076   Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
13077       << LHS->getSourceRange()
13078       << FixItHint::CreateInsertion(LHS->getBeginLoc(),
13079                                     LangOpts.CPlusPlus ? "static_cast<void>("
13080                                                        : "(void)(")
13081       << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
13082                                     ")");
13083 }
13084 
13085 // C99 6.5.17
CheckCommaOperands(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)13086 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
13087                                    SourceLocation Loc) {
13088   LHS = S.CheckPlaceholderExpr(LHS.get());
13089   RHS = S.CheckPlaceholderExpr(RHS.get());
13090   if (LHS.isInvalid() || RHS.isInvalid())
13091     return QualType();
13092 
13093   // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
13094   // operands, but not unary promotions.
13095   // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
13096 
13097   // So we treat the LHS as a ignored value, and in C++ we allow the
13098   // containing site to determine what should be done with the RHS.
13099   LHS = S.IgnoredValueConversions(LHS.get());
13100   if (LHS.isInvalid())
13101     return QualType();
13102 
13103   S.DiagnoseUnusedExprResult(LHS.get());
13104 
13105   if (!S.getLangOpts().CPlusPlus) {
13106     RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
13107     if (RHS.isInvalid())
13108       return QualType();
13109     if (!RHS.get()->getType()->isVoidType())
13110       S.RequireCompleteType(Loc, RHS.get()->getType(),
13111                             diag::err_incomplete_type);
13112   }
13113 
13114   if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
13115     S.DiagnoseCommaOperator(LHS.get(), Loc);
13116 
13117   return RHS.get()->getType();
13118 }
13119 
13120 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
13121 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
CheckIncrementDecrementOperand(Sema & S,Expr * Op,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation OpLoc,bool IsInc,bool IsPrefix)13122 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
13123                                                ExprValueKind &VK,
13124                                                ExprObjectKind &OK,
13125                                                SourceLocation OpLoc,
13126                                                bool IsInc, bool IsPrefix) {
13127   if (Op->isTypeDependent())
13128     return S.Context.DependentTy;
13129 
13130   QualType ResType = Op->getType();
13131   // Atomic types can be used for increment / decrement where the non-atomic
13132   // versions can, so ignore the _Atomic() specifier for the purpose of
13133   // checking.
13134   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
13135     ResType = ResAtomicType->getValueType();
13136 
13137   assert(!ResType.isNull() && "no type for increment/decrement expression");
13138 
13139   if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
13140     // Decrement of bool is not allowed.
13141     if (!IsInc) {
13142       S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
13143       return QualType();
13144     }
13145     // Increment of bool sets it to true, but is deprecated.
13146     S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
13147                                               : diag::warn_increment_bool)
13148       << Op->getSourceRange();
13149   } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
13150     // Error on enum increments and decrements in C++ mode
13151     S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
13152     return QualType();
13153   } else if (ResType->isRealType()) {
13154     // OK!
13155   } else if (ResType->isPointerType()) {
13156     // C99 6.5.2.4p2, 6.5.6p2
13157     if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
13158       return QualType();
13159   } else if (ResType->isObjCObjectPointerType()) {
13160     // On modern runtimes, ObjC pointer arithmetic is forbidden.
13161     // Otherwise, we just need a complete type.
13162     if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
13163         checkArithmeticOnObjCPointer(S, OpLoc, Op))
13164       return QualType();
13165   } else if (ResType->isAnyComplexType()) {
13166     // C99 does not support ++/-- on complex types, we allow as an extension.
13167     S.Diag(OpLoc, diag::ext_integer_increment_complex)
13168       << ResType << Op->getSourceRange();
13169   } else if (ResType->isPlaceholderType()) {
13170     ExprResult PR = S.CheckPlaceholderExpr(Op);
13171     if (PR.isInvalid()) return QualType();
13172     return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
13173                                           IsInc, IsPrefix);
13174   } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
13175     // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
13176   } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
13177              (ResType->castAs<VectorType>()->getVectorKind() !=
13178               VectorType::AltiVecBool)) {
13179     // The z vector extensions allow ++ and -- for non-bool vectors.
13180   } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
13181             ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
13182     // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
13183   } else {
13184     S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
13185       << ResType << int(IsInc) << Op->getSourceRange();
13186     return QualType();
13187   }
13188   // At this point, we know we have a real, complex or pointer type.
13189   // Now make sure the operand is a modifiable lvalue.
13190   if (CheckForModifiableLvalue(Op, OpLoc, S))
13191     return QualType();
13192   if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) {
13193     // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
13194     //   An operand with volatile-qualified type is deprecated
13195     S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile)
13196         << IsInc << ResType;
13197   }
13198   // In C++, a prefix increment is the same type as the operand. Otherwise
13199   // (in C or with postfix), the increment is the unqualified type of the
13200   // operand.
13201   if (IsPrefix && S.getLangOpts().CPlusPlus) {
13202     VK = VK_LValue;
13203     OK = Op->getObjectKind();
13204     return ResType;
13205   } else {
13206     VK = VK_RValue;
13207     return ResType.getUnqualifiedType();
13208   }
13209 }
13210 
13211 
13212 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
13213 /// This routine allows us to typecheck complex/recursive expressions
13214 /// where the declaration is needed for type checking. We only need to
13215 /// handle cases when the expression references a function designator
13216 /// or is an lvalue. Here are some examples:
13217 ///  - &(x) => x
13218 ///  - &*****f => f for f a function designator.
13219 ///  - &s.xx => s
13220 ///  - &s.zz[1].yy -> s, if zz is an array
13221 ///  - *(x + 1) -> x, if x is an array
13222 ///  - &"123"[2] -> 0
13223 ///  - & __real__ x -> x
13224 ///
13225 /// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
13226 /// members.
getPrimaryDecl(Expr * E)13227 static ValueDecl *getPrimaryDecl(Expr *E) {
13228   switch (E->getStmtClass()) {
13229   case Stmt::DeclRefExprClass:
13230     return cast<DeclRefExpr>(E)->getDecl();
13231   case Stmt::MemberExprClass:
13232     // If this is an arrow operator, the address is an offset from
13233     // the base's value, so the object the base refers to is
13234     // irrelevant.
13235     if (cast<MemberExpr>(E)->isArrow())
13236       return nullptr;
13237     // Otherwise, the expression refers to a part of the base
13238     return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
13239   case Stmt::ArraySubscriptExprClass: {
13240     // FIXME: This code shouldn't be necessary!  We should catch the implicit
13241     // promotion of register arrays earlier.
13242     Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
13243     if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
13244       if (ICE->getSubExpr()->getType()->isArrayType())
13245         return getPrimaryDecl(ICE->getSubExpr());
13246     }
13247     return nullptr;
13248   }
13249   case Stmt::UnaryOperatorClass: {
13250     UnaryOperator *UO = cast<UnaryOperator>(E);
13251 
13252     switch(UO->getOpcode()) {
13253     case UO_Real:
13254     case UO_Imag:
13255     case UO_Extension:
13256       return getPrimaryDecl(UO->getSubExpr());
13257     default:
13258       return nullptr;
13259     }
13260   }
13261   case Stmt::ParenExprClass:
13262     return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
13263   case Stmt::ImplicitCastExprClass:
13264     // If the result of an implicit cast is an l-value, we care about
13265     // the sub-expression; otherwise, the result here doesn't matter.
13266     return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
13267   case Stmt::CXXUuidofExprClass:
13268     return cast<CXXUuidofExpr>(E)->getGuidDecl();
13269   default:
13270     return nullptr;
13271   }
13272 }
13273 
13274 namespace {
13275 enum {
13276   AO_Bit_Field = 0,
13277   AO_Vector_Element = 1,
13278   AO_Property_Expansion = 2,
13279   AO_Register_Variable = 3,
13280   AO_Matrix_Element = 4,
13281   AO_No_Error = 5
13282 };
13283 }
13284 /// Diagnose invalid operand for address of operations.
13285 ///
13286 /// \param Type The type of operand which cannot have its address taken.
diagnoseAddressOfInvalidType(Sema & S,SourceLocation Loc,Expr * E,unsigned Type)13287 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
13288                                          Expr *E, unsigned Type) {
13289   S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
13290 }
13291 
13292 /// CheckAddressOfOperand - The operand of & must be either a function
13293 /// designator or an lvalue designating an object. If it is an lvalue, the
13294 /// object cannot be declared with storage class register or be a bit field.
13295 /// Note: The usual conversions are *not* applied to the operand of the &
13296 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
13297 /// In C++, the operand might be an overloaded function name, in which case
13298 /// we allow the '&' but retain the overloaded-function type.
CheckAddressOfOperand(ExprResult & OrigOp,SourceLocation OpLoc)13299 QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
13300   if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
13301     if (PTy->getKind() == BuiltinType::Overload) {
13302       Expr *E = OrigOp.get()->IgnoreParens();
13303       if (!isa<OverloadExpr>(E)) {
13304         assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
13305         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
13306           << OrigOp.get()->getSourceRange();
13307         return QualType();
13308       }
13309 
13310       OverloadExpr *Ovl = cast<OverloadExpr>(E);
13311       if (isa<UnresolvedMemberExpr>(Ovl))
13312         if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
13313           Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
13314             << OrigOp.get()->getSourceRange();
13315           return QualType();
13316         }
13317 
13318       return Context.OverloadTy;
13319     }
13320 
13321     if (PTy->getKind() == BuiltinType::UnknownAny)
13322       return Context.UnknownAnyTy;
13323 
13324     if (PTy->getKind() == BuiltinType::BoundMember) {
13325       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
13326         << OrigOp.get()->getSourceRange();
13327       return QualType();
13328     }
13329 
13330     OrigOp = CheckPlaceholderExpr(OrigOp.get());
13331     if (OrigOp.isInvalid()) return QualType();
13332   }
13333 
13334   if (OrigOp.get()->isTypeDependent())
13335     return Context.DependentTy;
13336 
13337   assert(!OrigOp.get()->getType()->isPlaceholderType());
13338 
13339   // Make sure to ignore parentheses in subsequent checks
13340   Expr *op = OrigOp.get()->IgnoreParens();
13341 
13342   // In OpenCL captures for blocks called as lambda functions
13343   // are located in the private address space. Blocks used in
13344   // enqueue_kernel can be located in a different address space
13345   // depending on a vendor implementation. Thus preventing
13346   // taking an address of the capture to avoid invalid AS casts.
13347   if (LangOpts.OpenCL) {
13348     auto* VarRef = dyn_cast<DeclRefExpr>(op);
13349     if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
13350       Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
13351       return QualType();
13352     }
13353   }
13354 
13355   if (getLangOpts().C99) {
13356     // Implement C99-only parts of addressof rules.
13357     if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
13358       if (uOp->getOpcode() == UO_Deref)
13359         // Per C99 6.5.3.2, the address of a deref always returns a valid result
13360         // (assuming the deref expression is valid).
13361         return uOp->getSubExpr()->getType();
13362     }
13363     // Technically, there should be a check for array subscript
13364     // expressions here, but the result of one is always an lvalue anyway.
13365   }
13366   ValueDecl *dcl = getPrimaryDecl(op);
13367 
13368   if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
13369     if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
13370                                            op->getBeginLoc()))
13371       return QualType();
13372 
13373   Expr::LValueClassification lval = op->ClassifyLValue(Context);
13374   unsigned AddressOfError = AO_No_Error;
13375 
13376   if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
13377     bool sfinae = (bool)isSFINAEContext();
13378     Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
13379                                   : diag::ext_typecheck_addrof_temporary)
13380       << op->getType() << op->getSourceRange();
13381     if (sfinae)
13382       return QualType();
13383     // Materialize the temporary as an lvalue so that we can take its address.
13384     OrigOp = op =
13385         CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
13386   } else if (isa<ObjCSelectorExpr>(op)) {
13387     return Context.getPointerType(op->getType());
13388   } else if (lval == Expr::LV_MemberFunction) {
13389     // If it's an instance method, make a member pointer.
13390     // The expression must have exactly the form &A::foo.
13391 
13392     // If the underlying expression isn't a decl ref, give up.
13393     if (!isa<DeclRefExpr>(op)) {
13394       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
13395         << OrigOp.get()->getSourceRange();
13396       return QualType();
13397     }
13398     DeclRefExpr *DRE = cast<DeclRefExpr>(op);
13399     CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
13400 
13401     // The id-expression was parenthesized.
13402     if (OrigOp.get() != DRE) {
13403       Diag(OpLoc, diag::err_parens_pointer_member_function)
13404         << OrigOp.get()->getSourceRange();
13405 
13406     // The method was named without a qualifier.
13407     } else if (!DRE->getQualifier()) {
13408       if (MD->getParent()->getName().empty())
13409         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
13410           << op->getSourceRange();
13411       else {
13412         SmallString<32> Str;
13413         StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
13414         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
13415           << op->getSourceRange()
13416           << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
13417       }
13418     }
13419 
13420     // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
13421     if (isa<CXXDestructorDecl>(MD))
13422       Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
13423 
13424     QualType MPTy = Context.getMemberPointerType(
13425         op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
13426     // Under the MS ABI, lock down the inheritance model now.
13427     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
13428       (void)isCompleteType(OpLoc, MPTy);
13429     return MPTy;
13430   } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
13431     // C99 6.5.3.2p1
13432     // The operand must be either an l-value or a function designator
13433     if (!op->getType()->isFunctionType()) {
13434       // Use a special diagnostic for loads from property references.
13435       if (isa<PseudoObjectExpr>(op)) {
13436         AddressOfError = AO_Property_Expansion;
13437       } else {
13438         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
13439           << op->getType() << op->getSourceRange();
13440         return QualType();
13441       }
13442     }
13443   } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
13444     // The operand cannot be a bit-field
13445     AddressOfError = AO_Bit_Field;
13446   } else if (op->getObjectKind() == OK_VectorComponent) {
13447     // The operand cannot be an element of a vector
13448     AddressOfError = AO_Vector_Element;
13449   } else if (op->getObjectKind() == OK_MatrixComponent) {
13450     // The operand cannot be an element of a matrix.
13451     AddressOfError = AO_Matrix_Element;
13452   } else if (dcl) { // C99 6.5.3.2p1
13453     // We have an lvalue with a decl. Make sure the decl is not declared
13454     // with the register storage-class specifier.
13455     if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
13456       // in C++ it is not error to take address of a register
13457       // variable (c++03 7.1.1P3)
13458       if (vd->getStorageClass() == SC_Register &&
13459           !getLangOpts().CPlusPlus) {
13460         AddressOfError = AO_Register_Variable;
13461       }
13462     } else if (isa<MSPropertyDecl>(dcl)) {
13463       AddressOfError = AO_Property_Expansion;
13464     } else if (isa<FunctionTemplateDecl>(dcl)) {
13465       return Context.OverloadTy;
13466     } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
13467       // Okay: we can take the address of a field.
13468       // Could be a pointer to member, though, if there is an explicit
13469       // scope qualifier for the class.
13470       if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
13471         DeclContext *Ctx = dcl->getDeclContext();
13472         if (Ctx && Ctx->isRecord()) {
13473           if (dcl->getType()->isReferenceType()) {
13474             Diag(OpLoc,
13475                  diag::err_cannot_form_pointer_to_member_of_reference_type)
13476               << dcl->getDeclName() << dcl->getType();
13477             return QualType();
13478           }
13479 
13480           while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
13481             Ctx = Ctx->getParent();
13482 
13483           QualType MPTy = Context.getMemberPointerType(
13484               op->getType(),
13485               Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
13486           // Under the MS ABI, lock down the inheritance model now.
13487           if (Context.getTargetInfo().getCXXABI().isMicrosoft())
13488             (void)isCompleteType(OpLoc, MPTy);
13489           return MPTy;
13490         }
13491       }
13492     } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl) &&
13493                !isa<BindingDecl>(dcl) && !isa<MSGuidDecl>(dcl))
13494       llvm_unreachable("Unknown/unexpected decl type");
13495   }
13496 
13497   if (AddressOfError != AO_No_Error) {
13498     diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
13499     return QualType();
13500   }
13501 
13502   if (lval == Expr::LV_IncompleteVoidType) {
13503     // Taking the address of a void variable is technically illegal, but we
13504     // allow it in cases which are otherwise valid.
13505     // Example: "extern void x; void* y = &x;".
13506     Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
13507   }
13508 
13509   // If the operand has type "type", the result has type "pointer to type".
13510   if (op->getType()->isObjCObjectType())
13511     return Context.getObjCObjectPointerType(op->getType());
13512 
13513   CheckAddressOfPackedMember(op);
13514 
13515   return Context.getPointerType(op->getType());
13516 }
13517 
RecordModifiableNonNullParam(Sema & S,const Expr * Exp)13518 static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
13519   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
13520   if (!DRE)
13521     return;
13522   const Decl *D = DRE->getDecl();
13523   if (!D)
13524     return;
13525   const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
13526   if (!Param)
13527     return;
13528   if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
13529     if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
13530       return;
13531   if (FunctionScopeInfo *FD = S.getCurFunction())
13532     if (!FD->ModifiedNonNullParams.count(Param))
13533       FD->ModifiedNonNullParams.insert(Param);
13534 }
13535 
13536 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
CheckIndirectionOperand(Sema & S,Expr * Op,ExprValueKind & VK,SourceLocation OpLoc)13537 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
13538                                         SourceLocation OpLoc) {
13539   if (Op->isTypeDependent())
13540     return S.Context.DependentTy;
13541 
13542   ExprResult ConvResult = S.UsualUnaryConversions(Op);
13543   if (ConvResult.isInvalid())
13544     return QualType();
13545   Op = ConvResult.get();
13546   QualType OpTy = Op->getType();
13547   QualType Result;
13548 
13549   if (isa<CXXReinterpretCastExpr>(Op)) {
13550     QualType OpOrigType = Op->IgnoreParenCasts()->getType();
13551     S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
13552                                      Op->getSourceRange());
13553   }
13554 
13555   if (const PointerType *PT = OpTy->getAs<PointerType>())
13556   {
13557     Result = PT->getPointeeType();
13558   }
13559   else if (const ObjCObjectPointerType *OPT =
13560              OpTy->getAs<ObjCObjectPointerType>())
13561     Result = OPT->getPointeeType();
13562   else {
13563     ExprResult PR = S.CheckPlaceholderExpr(Op);
13564     if (PR.isInvalid()) return QualType();
13565     if (PR.get() != Op)
13566       return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
13567   }
13568 
13569   if (Result.isNull()) {
13570     S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
13571       << OpTy << Op->getSourceRange();
13572     return QualType();
13573   }
13574 
13575   // Note that per both C89 and C99, indirection is always legal, even if Result
13576   // is an incomplete type or void.  It would be possible to warn about
13577   // dereferencing a void pointer, but it's completely well-defined, and such a
13578   // warning is unlikely to catch any mistakes. In C++, indirection is not valid
13579   // for pointers to 'void' but is fine for any other pointer type:
13580   //
13581   // C++ [expr.unary.op]p1:
13582   //   [...] the expression to which [the unary * operator] is applied shall
13583   //   be a pointer to an object type, or a pointer to a function type
13584   if (S.getLangOpts().CPlusPlus && Result->isVoidType())
13585     S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
13586       << OpTy << Op->getSourceRange();
13587 
13588   // Dereferences are usually l-values...
13589   VK = VK_LValue;
13590 
13591   // ...except that certain expressions are never l-values in C.
13592   if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
13593     VK = VK_RValue;
13594 
13595   return Result;
13596 }
13597 
ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind)13598 BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
13599   BinaryOperatorKind Opc;
13600   switch (Kind) {
13601   default: llvm_unreachable("Unknown binop!");
13602   case tok::periodstar:           Opc = BO_PtrMemD; break;
13603   case tok::arrowstar:            Opc = BO_PtrMemI; break;
13604   case tok::star:                 Opc = BO_Mul; break;
13605   case tok::slash:                Opc = BO_Div; break;
13606   case tok::percent:              Opc = BO_Rem; break;
13607   case tok::plus:                 Opc = BO_Add; break;
13608   case tok::minus:                Opc = BO_Sub; break;
13609   case tok::lessless:             Opc = BO_Shl; break;
13610   case tok::greatergreater:       Opc = BO_Shr; break;
13611   case tok::lessequal:            Opc = BO_LE; break;
13612   case tok::less:                 Opc = BO_LT; break;
13613   case tok::greaterequal:         Opc = BO_GE; break;
13614   case tok::greater:              Opc = BO_GT; break;
13615   case tok::exclaimequal:         Opc = BO_NE; break;
13616   case tok::equalequal:           Opc = BO_EQ; break;
13617   case tok::spaceship:            Opc = BO_Cmp; break;
13618   case tok::amp:                  Opc = BO_And; break;
13619   case tok::caret:                Opc = BO_Xor; break;
13620   case tok::pipe:                 Opc = BO_Or; break;
13621   case tok::ampamp:               Opc = BO_LAnd; break;
13622   case tok::pipepipe:             Opc = BO_LOr; break;
13623   case tok::equal:                Opc = BO_Assign; break;
13624   case tok::starequal:            Opc = BO_MulAssign; break;
13625   case tok::slashequal:           Opc = BO_DivAssign; break;
13626   case tok::percentequal:         Opc = BO_RemAssign; break;
13627   case tok::plusequal:            Opc = BO_AddAssign; break;
13628   case tok::minusequal:           Opc = BO_SubAssign; break;
13629   case tok::lesslessequal:        Opc = BO_ShlAssign; break;
13630   case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
13631   case tok::ampequal:             Opc = BO_AndAssign; break;
13632   case tok::caretequal:           Opc = BO_XorAssign; break;
13633   case tok::pipeequal:            Opc = BO_OrAssign; break;
13634   case tok::comma:                Opc = BO_Comma; break;
13635   }
13636   return Opc;
13637 }
13638 
ConvertTokenKindToUnaryOpcode(tok::TokenKind Kind)13639 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
13640   tok::TokenKind Kind) {
13641   UnaryOperatorKind Opc;
13642   switch (Kind) {
13643   default: llvm_unreachable("Unknown unary op!");
13644   case tok::plusplus:     Opc = UO_PreInc; break;
13645   case tok::minusminus:   Opc = UO_PreDec; break;
13646   case tok::amp:          Opc = UO_AddrOf; break;
13647   case tok::star:         Opc = UO_Deref; break;
13648   case tok::plus:         Opc = UO_Plus; break;
13649   case tok::minus:        Opc = UO_Minus; break;
13650   case tok::tilde:        Opc = UO_Not; break;
13651   case tok::exclaim:      Opc = UO_LNot; break;
13652   case tok::kw___real:    Opc = UO_Real; break;
13653   case tok::kw___imag:    Opc = UO_Imag; break;
13654   case tok::kw___extension__: Opc = UO_Extension; break;
13655   }
13656   return Opc;
13657 }
13658 
13659 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
13660 /// This warning suppressed in the event of macro expansions.
DiagnoseSelfAssignment(Sema & S,Expr * LHSExpr,Expr * RHSExpr,SourceLocation OpLoc,bool IsBuiltin)13661 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
13662                                    SourceLocation OpLoc, bool IsBuiltin) {
13663   if (S.inTemplateInstantiation())
13664     return;
13665   if (S.isUnevaluatedContext())
13666     return;
13667   if (OpLoc.isInvalid() || OpLoc.isMacroID())
13668     return;
13669   LHSExpr = LHSExpr->IgnoreParenImpCasts();
13670   RHSExpr = RHSExpr->IgnoreParenImpCasts();
13671   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
13672   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
13673   if (!LHSDeclRef || !RHSDeclRef ||
13674       LHSDeclRef->getLocation().isMacroID() ||
13675       RHSDeclRef->getLocation().isMacroID())
13676     return;
13677   const ValueDecl *LHSDecl =
13678     cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
13679   const ValueDecl *RHSDecl =
13680     cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
13681   if (LHSDecl != RHSDecl)
13682     return;
13683   if (LHSDecl->getType().isVolatileQualified())
13684     return;
13685   if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
13686     if (RefTy->getPointeeType().isVolatileQualified())
13687       return;
13688 
13689   S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
13690                           : diag::warn_self_assignment_overloaded)
13691       << LHSDeclRef->getType() << LHSExpr->getSourceRange()
13692       << RHSExpr->getSourceRange();
13693 }
13694 
13695 /// Check if a bitwise-& is performed on an Objective-C pointer.  This
13696 /// is usually indicative of introspection within the Objective-C pointer.
checkObjCPointerIntrospection(Sema & S,ExprResult & L,ExprResult & R,SourceLocation OpLoc)13697 static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
13698                                           SourceLocation OpLoc) {
13699   if (!S.getLangOpts().ObjC)
13700     return;
13701 
13702   const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
13703   const Expr *LHS = L.get();
13704   const Expr *RHS = R.get();
13705 
13706   if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
13707     ObjCPointerExpr = LHS;
13708     OtherExpr = RHS;
13709   }
13710   else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
13711     ObjCPointerExpr = RHS;
13712     OtherExpr = LHS;
13713   }
13714 
13715   // This warning is deliberately made very specific to reduce false
13716   // positives with logic that uses '&' for hashing.  This logic mainly
13717   // looks for code trying to introspect into tagged pointers, which
13718   // code should generally never do.
13719   if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
13720     unsigned Diag = diag::warn_objc_pointer_masking;
13721     // Determine if we are introspecting the result of performSelectorXXX.
13722     const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
13723     // Special case messages to -performSelector and friends, which
13724     // can return non-pointer values boxed in a pointer value.
13725     // Some clients may wish to silence warnings in this subcase.
13726     if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
13727       Selector S = ME->getSelector();
13728       StringRef SelArg0 = S.getNameForSlot(0);
13729       if (SelArg0.startswith("performSelector"))
13730         Diag = diag::warn_objc_pointer_masking_performSelector;
13731     }
13732 
13733     S.Diag(OpLoc, Diag)
13734       << ObjCPointerExpr->getSourceRange();
13735   }
13736 }
13737 
getDeclFromExpr(Expr * E)13738 static NamedDecl *getDeclFromExpr(Expr *E) {
13739   if (!E)
13740     return nullptr;
13741   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
13742     return DRE->getDecl();
13743   if (auto *ME = dyn_cast<MemberExpr>(E))
13744     return ME->getMemberDecl();
13745   if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
13746     return IRE->getDecl();
13747   return nullptr;
13748 }
13749 
13750 // This helper function promotes a binary operator's operands (which are of a
13751 // half vector type) to a vector of floats and then truncates the result to
13752 // a vector of either half or short.
convertHalfVecBinOp(Sema & S,ExprResult LHS,ExprResult RHS,BinaryOperatorKind Opc,QualType ResultTy,ExprValueKind VK,ExprObjectKind OK,bool IsCompAssign,SourceLocation OpLoc,FPOptionsOverride FPFeatures)13753 static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
13754                                       BinaryOperatorKind Opc, QualType ResultTy,
13755                                       ExprValueKind VK, ExprObjectKind OK,
13756                                       bool IsCompAssign, SourceLocation OpLoc,
13757                                       FPOptionsOverride FPFeatures) {
13758   auto &Context = S.getASTContext();
13759   assert((isVector(ResultTy, Context.HalfTy) ||
13760           isVector(ResultTy, Context.ShortTy)) &&
13761          "Result must be a vector of half or short");
13762   assert(isVector(LHS.get()->getType(), Context.HalfTy) &&
13763          isVector(RHS.get()->getType(), Context.HalfTy) &&
13764          "both operands expected to be a half vector");
13765 
13766   RHS = convertVector(RHS.get(), Context.FloatTy, S);
13767   QualType BinOpResTy = RHS.get()->getType();
13768 
13769   // If Opc is a comparison, ResultType is a vector of shorts. In that case,
13770   // change BinOpResTy to a vector of ints.
13771   if (isVector(ResultTy, Context.ShortTy))
13772     BinOpResTy = S.GetSignedVectorType(BinOpResTy);
13773 
13774   if (IsCompAssign)
13775     return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc,
13776                                           ResultTy, VK, OK, OpLoc, FPFeatures,
13777                                           BinOpResTy, BinOpResTy);
13778 
13779   LHS = convertVector(LHS.get(), Context.FloatTy, S);
13780   auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc,
13781                                     BinOpResTy, VK, OK, OpLoc, FPFeatures);
13782   return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S);
13783 }
13784 
13785 static std::pair<ExprResult, ExprResult>
CorrectDelayedTyposInBinOp(Sema & S,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)13786 CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
13787                            Expr *RHSExpr) {
13788   ExprResult LHS = LHSExpr, RHS = RHSExpr;
13789   if (!S.Context.isDependenceAllowed()) {
13790     // C cannot handle TypoExpr nodes on either side of a binop because it
13791     // doesn't handle dependent types properly, so make sure any TypoExprs have
13792     // been dealt with before checking the operands.
13793     LHS = S.CorrectDelayedTyposInExpr(LHS);
13794     RHS = S.CorrectDelayedTyposInExpr(
13795         RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
13796         [Opc, LHS](Expr *E) {
13797           if (Opc != BO_Assign)
13798             return ExprResult(E);
13799           // Avoid correcting the RHS to the same Expr as the LHS.
13800           Decl *D = getDeclFromExpr(E);
13801           return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
13802         });
13803   }
13804   return std::make_pair(LHS, RHS);
13805 }
13806 
13807 /// Returns true if conversion between vectors of halfs and vectors of floats
13808 /// is needed.
needsConversionOfHalfVec(bool OpRequiresConversion,ASTContext & Ctx,Expr * E0,Expr * E1=nullptr)13809 static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
13810                                      Expr *E0, Expr *E1 = nullptr) {
13811   if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType ||
13812       Ctx.getTargetInfo().useFP16ConversionIntrinsics())
13813     return false;
13814 
13815   auto HasVectorOfHalfType = [&Ctx](Expr *E) {
13816     QualType Ty = E->IgnoreImplicit()->getType();
13817 
13818     // Don't promote half precision neon vectors like float16x4_t in arm_neon.h
13819     // to vectors of floats. Although the element type of the vectors is __fp16,
13820     // the vectors shouldn't be treated as storage-only types. See the
13821     // discussion here: https://reviews.llvm.org/rG825235c140e7
13822     if (const VectorType *VT = Ty->getAs<VectorType>()) {
13823       if (VT->getVectorKind() == VectorType::NeonVector)
13824         return false;
13825       return VT->getElementType().getCanonicalType() == Ctx.HalfTy;
13826     }
13827     return false;
13828   };
13829 
13830   return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1));
13831 }
13832 
13833 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
13834 /// operator @p Opc at location @c TokLoc. This routine only supports
13835 /// built-in operations; ActOnBinOp handles overloaded operators.
CreateBuiltinBinOp(SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)13836 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
13837                                     BinaryOperatorKind Opc,
13838                                     Expr *LHSExpr, Expr *RHSExpr) {
13839   if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
13840     // The syntax only allows initializer lists on the RHS of assignment,
13841     // so we don't need to worry about accepting invalid code for
13842     // non-assignment operators.
13843     // C++11 5.17p9:
13844     //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
13845     //   of x = {} is x = T().
13846     InitializationKind Kind = InitializationKind::CreateDirectList(
13847         RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
13848     InitializedEntity Entity =
13849         InitializedEntity::InitializeTemporary(LHSExpr->getType());
13850     InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
13851     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
13852     if (Init.isInvalid())
13853       return Init;
13854     RHSExpr = Init.get();
13855   }
13856 
13857   ExprResult LHS = LHSExpr, RHS = RHSExpr;
13858   QualType ResultTy;     // Result type of the binary operator.
13859   // The following two variables are used for compound assignment operators
13860   QualType CompLHSTy;    // Type of LHS after promotions for computation
13861   QualType CompResultTy; // Type of computation result
13862   ExprValueKind VK = VK_RValue;
13863   ExprObjectKind OK = OK_Ordinary;
13864   bool ConvertHalfVec = false;
13865 
13866   std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
13867   if (!LHS.isUsable() || !RHS.isUsable())
13868     return ExprError();
13869 
13870   if (getLangOpts().OpenCL) {
13871     QualType LHSTy = LHSExpr->getType();
13872     QualType RHSTy = RHSExpr->getType();
13873     // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
13874     // the ATOMIC_VAR_INIT macro.
13875     if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
13876       SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
13877       if (BO_Assign == Opc)
13878         Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
13879       else
13880         ResultTy = InvalidOperands(OpLoc, LHS, RHS);
13881       return ExprError();
13882     }
13883 
13884     // OpenCL special types - image, sampler, pipe, and blocks are to be used
13885     // only with a builtin functions and therefore should be disallowed here.
13886     if (LHSTy->isImageType() || RHSTy->isImageType() ||
13887         LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
13888         LHSTy->isPipeType() || RHSTy->isPipeType() ||
13889         LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
13890       ResultTy = InvalidOperands(OpLoc, LHS, RHS);
13891       return ExprError();
13892     }
13893   }
13894 
13895   switch (Opc) {
13896   case BO_Assign:
13897     ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
13898     if (getLangOpts().CPlusPlus &&
13899         LHS.get()->getObjectKind() != OK_ObjCProperty) {
13900       VK = LHS.get()->getValueKind();
13901       OK = LHS.get()->getObjectKind();
13902     }
13903     if (!ResultTy.isNull()) {
13904       DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
13905       DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
13906 
13907       // Avoid copying a block to the heap if the block is assigned to a local
13908       // auto variable that is declared in the same scope as the block. This
13909       // optimization is unsafe if the local variable is declared in an outer
13910       // scope. For example:
13911       //
13912       // BlockTy b;
13913       // {
13914       //   b = ^{...};
13915       // }
13916       // // It is unsafe to invoke the block here if it wasn't copied to the
13917       // // heap.
13918       // b();
13919 
13920       if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
13921         if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
13922           if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
13923             if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
13924               BE->getBlockDecl()->setCanAvoidCopyToHeap();
13925 
13926       if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
13927         checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(),
13928                               NTCUC_Assignment, NTCUK_Copy);
13929     }
13930     RecordModifiableNonNullParam(*this, LHS.get());
13931     break;
13932   case BO_PtrMemD:
13933   case BO_PtrMemI:
13934     ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
13935                                             Opc == BO_PtrMemI);
13936     break;
13937   case BO_Mul:
13938   case BO_Div:
13939     ConvertHalfVec = true;
13940     ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
13941                                            Opc == BO_Div);
13942     break;
13943   case BO_Rem:
13944     ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
13945     break;
13946   case BO_Add:
13947     ConvertHalfVec = true;
13948     ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
13949     break;
13950   case BO_Sub:
13951     ConvertHalfVec = true;
13952     ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
13953     break;
13954   case BO_Shl:
13955   case BO_Shr:
13956     ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
13957     break;
13958   case BO_LE:
13959   case BO_LT:
13960   case BO_GE:
13961   case BO_GT:
13962     ConvertHalfVec = true;
13963     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
13964     break;
13965   case BO_EQ:
13966   case BO_NE:
13967     ConvertHalfVec = true;
13968     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
13969     break;
13970   case BO_Cmp:
13971     ConvertHalfVec = true;
13972     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
13973     assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl());
13974     break;
13975   case BO_And:
13976     checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
13977     LLVM_FALLTHROUGH;
13978   case BO_Xor:
13979   case BO_Or:
13980     ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
13981     break;
13982   case BO_LAnd:
13983   case BO_LOr:
13984     ConvertHalfVec = true;
13985     ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
13986     break;
13987   case BO_MulAssign:
13988   case BO_DivAssign:
13989     ConvertHalfVec = true;
13990     CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
13991                                                Opc == BO_DivAssign);
13992     CompLHSTy = CompResultTy;
13993     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
13994       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
13995     break;
13996   case BO_RemAssign:
13997     CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
13998     CompLHSTy = CompResultTy;
13999     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14000       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14001     break;
14002   case BO_AddAssign:
14003     ConvertHalfVec = true;
14004     CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
14005     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14006       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14007     break;
14008   case BO_SubAssign:
14009     ConvertHalfVec = true;
14010     CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
14011     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14012       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14013     break;
14014   case BO_ShlAssign:
14015   case BO_ShrAssign:
14016     CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
14017     CompLHSTy = CompResultTy;
14018     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14019       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14020     break;
14021   case BO_AndAssign:
14022   case BO_OrAssign: // fallthrough
14023     DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
14024     LLVM_FALLTHROUGH;
14025   case BO_XorAssign:
14026     CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
14027     CompLHSTy = CompResultTy;
14028     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14029       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14030     break;
14031   case BO_Comma:
14032     ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
14033     if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
14034       VK = RHS.get()->getValueKind();
14035       OK = RHS.get()->getObjectKind();
14036     }
14037     break;
14038   }
14039   if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
14040     return ExprError();
14041 
14042   // Some of the binary operations require promoting operands of half vector to
14043   // float vectors and truncating the result back to half vector. For now, we do
14044   // this only when HalfArgsAndReturn is set (that is, when the target is arm or
14045   // arm64).
14046   assert(
14047       (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) ==
14048                               isVector(LHS.get()->getType(), Context.HalfTy)) &&
14049       "both sides are half vectors or neither sides are");
14050   ConvertHalfVec =
14051       needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get());
14052 
14053   // Check for array bounds violations for both sides of the BinaryOperator
14054   CheckArrayAccess(LHS.get());
14055   CheckArrayAccess(RHS.get());
14056 
14057   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
14058     NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
14059                                                  &Context.Idents.get("object_setClass"),
14060                                                  SourceLocation(), LookupOrdinaryName);
14061     if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
14062       SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
14063       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
14064           << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
14065                                         "object_setClass(")
14066           << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
14067                                           ",")
14068           << FixItHint::CreateInsertion(RHSLocEnd, ")");
14069     }
14070     else
14071       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
14072   }
14073   else if (const ObjCIvarRefExpr *OIRE =
14074            dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
14075     DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
14076 
14077   // Opc is not a compound assignment if CompResultTy is null.
14078   if (CompResultTy.isNull()) {
14079     if (ConvertHalfVec)
14080       return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
14081                                  OpLoc, CurFPFeatureOverrides());
14082     return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy,
14083                                   VK, OK, OpLoc, CurFPFeatureOverrides());
14084   }
14085 
14086   // Handle compound assignments.
14087   if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
14088       OK_ObjCProperty) {
14089     VK = VK_LValue;
14090     OK = LHS.get()->getObjectKind();
14091   }
14092 
14093   // The LHS is not converted to the result type for fixed-point compound
14094   // assignment as the common type is computed on demand. Reset the CompLHSTy
14095   // to the LHS type we would have gotten after unary conversions.
14096   if (CompResultTy->isFixedPointType())
14097     CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType();
14098 
14099   if (ConvertHalfVec)
14100     return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
14101                                OpLoc, CurFPFeatureOverrides());
14102 
14103   return CompoundAssignOperator::Create(
14104       Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc,
14105       CurFPFeatureOverrides(), CompLHSTy, CompResultTy);
14106 }
14107 
14108 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
14109 /// operators are mixed in a way that suggests that the programmer forgot that
14110 /// comparison operators have higher precedence. The most typical example of
14111 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
DiagnoseBitwisePrecedence(Sema & Self,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)14112 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
14113                                       SourceLocation OpLoc, Expr *LHSExpr,
14114                                       Expr *RHSExpr) {
14115   BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
14116   BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
14117 
14118   // Check that one of the sides is a comparison operator and the other isn't.
14119   bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
14120   bool isRightComp = RHSBO && RHSBO->isComparisonOp();
14121   if (isLeftComp == isRightComp)
14122     return;
14123 
14124   // Bitwise operations are sometimes used as eager logical ops.
14125   // Don't diagnose this.
14126   bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
14127   bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
14128   if (isLeftBitwise || isRightBitwise)
14129     return;
14130 
14131   SourceRange DiagRange = isLeftComp
14132                               ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
14133                               : SourceRange(OpLoc, RHSExpr->getEndLoc());
14134   StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
14135   SourceRange ParensRange =
14136       isLeftComp
14137           ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
14138           : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
14139 
14140   Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
14141     << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
14142   SuggestParentheses(Self, OpLoc,
14143     Self.PDiag(diag::note_precedence_silence) << OpStr,
14144     (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
14145   SuggestParentheses(Self, OpLoc,
14146     Self.PDiag(diag::note_precedence_bitwise_first)
14147       << BinaryOperator::getOpcodeStr(Opc),
14148     ParensRange);
14149 }
14150 
14151 /// It accepts a '&&' expr that is inside a '||' one.
14152 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
14153 /// in parentheses.
14154 static void
EmitDiagnosticForLogicalAndInLogicalOr(Sema & Self,SourceLocation OpLoc,BinaryOperator * Bop)14155 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
14156                                        BinaryOperator *Bop) {
14157   assert(Bop->getOpcode() == BO_LAnd);
14158   Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
14159       << Bop->getSourceRange() << OpLoc;
14160   SuggestParentheses(Self, Bop->getOperatorLoc(),
14161     Self.PDiag(diag::note_precedence_silence)
14162       << Bop->getOpcodeStr(),
14163     Bop->getSourceRange());
14164 }
14165 
14166 /// Returns true if the given expression can be evaluated as a constant
14167 /// 'true'.
EvaluatesAsTrue(Sema & S,Expr * E)14168 static bool EvaluatesAsTrue(Sema &S, Expr *E) {
14169   bool Res;
14170   return !E->isValueDependent() &&
14171          E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
14172 }
14173 
14174 /// Returns true if the given expression can be evaluated as a constant
14175 /// 'false'.
EvaluatesAsFalse(Sema & S,Expr * E)14176 static bool EvaluatesAsFalse(Sema &S, Expr *E) {
14177   bool Res;
14178   return !E->isValueDependent() &&
14179          E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
14180 }
14181 
14182 /// Look for '&&' in the left hand of a '||' expr.
DiagnoseLogicalAndInLogicalOrLHS(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)14183 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
14184                                              Expr *LHSExpr, Expr *RHSExpr) {
14185   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
14186     if (Bop->getOpcode() == BO_LAnd) {
14187       // If it's "a && b || 0" don't warn since the precedence doesn't matter.
14188       if (EvaluatesAsFalse(S, RHSExpr))
14189         return;
14190       // If it's "1 && a || b" don't warn since the precedence doesn't matter.
14191       if (!EvaluatesAsTrue(S, Bop->getLHS()))
14192         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
14193     } else if (Bop->getOpcode() == BO_LOr) {
14194       if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
14195         // If it's "a || b && 1 || c" we didn't warn earlier for
14196         // "a || b && 1", but warn now.
14197         if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
14198           return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
14199       }
14200     }
14201   }
14202 }
14203 
14204 /// Look for '&&' in the right hand of a '||' expr.
DiagnoseLogicalAndInLogicalOrRHS(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)14205 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
14206                                              Expr *LHSExpr, Expr *RHSExpr) {
14207   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
14208     if (Bop->getOpcode() == BO_LAnd) {
14209       // If it's "0 || a && b" don't warn since the precedence doesn't matter.
14210       if (EvaluatesAsFalse(S, LHSExpr))
14211         return;
14212       // If it's "a || b && 1" don't warn since the precedence doesn't matter.
14213       if (!EvaluatesAsTrue(S, Bop->getRHS()))
14214         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
14215     }
14216   }
14217 }
14218 
14219 /// Look for bitwise op in the left or right hand of a bitwise op with
14220 /// lower precedence and emit a diagnostic together with a fixit hint that wraps
14221 /// the '&' expression in parentheses.
DiagnoseBitwiseOpInBitwiseOp(Sema & S,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * SubExpr)14222 static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
14223                                          SourceLocation OpLoc, Expr *SubExpr) {
14224   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
14225     if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
14226       S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
14227         << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
14228         << Bop->getSourceRange() << OpLoc;
14229       SuggestParentheses(S, Bop->getOperatorLoc(),
14230         S.PDiag(diag::note_precedence_silence)
14231           << Bop->getOpcodeStr(),
14232         Bop->getSourceRange());
14233     }
14234   }
14235 }
14236 
DiagnoseAdditionInShift(Sema & S,SourceLocation OpLoc,Expr * SubExpr,StringRef Shift)14237 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
14238                                     Expr *SubExpr, StringRef Shift) {
14239   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
14240     if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
14241       StringRef Op = Bop->getOpcodeStr();
14242       S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
14243           << Bop->getSourceRange() << OpLoc << Shift << Op;
14244       SuggestParentheses(S, Bop->getOperatorLoc(),
14245           S.PDiag(diag::note_precedence_silence) << Op,
14246           Bop->getSourceRange());
14247     }
14248   }
14249 }
14250 
DiagnoseShiftCompare(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)14251 static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
14252                                  Expr *LHSExpr, Expr *RHSExpr) {
14253   CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
14254   if (!OCE)
14255     return;
14256 
14257   FunctionDecl *FD = OCE->getDirectCallee();
14258   if (!FD || !FD->isOverloadedOperator())
14259     return;
14260 
14261   OverloadedOperatorKind Kind = FD->getOverloadedOperator();
14262   if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
14263     return;
14264 
14265   S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
14266       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
14267       << (Kind == OO_LessLess);
14268   SuggestParentheses(S, OCE->getOperatorLoc(),
14269                      S.PDiag(diag::note_precedence_silence)
14270                          << (Kind == OO_LessLess ? "<<" : ">>"),
14271                      OCE->getSourceRange());
14272   SuggestParentheses(
14273       S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
14274       SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
14275 }
14276 
14277 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
14278 /// precedence.
DiagnoseBinOpPrecedence(Sema & Self,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)14279 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
14280                                     SourceLocation OpLoc, Expr *LHSExpr,
14281                                     Expr *RHSExpr){
14282   // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
14283   if (BinaryOperator::isBitwiseOp(Opc))
14284     DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
14285 
14286   // Diagnose "arg1 & arg2 | arg3"
14287   if ((Opc == BO_Or || Opc == BO_Xor) &&
14288       !OpLoc.isMacroID()/* Don't warn in macros. */) {
14289     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
14290     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
14291   }
14292 
14293   // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
14294   // We don't warn for 'assert(a || b && "bad")' since this is safe.
14295   if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
14296     DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
14297     DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
14298   }
14299 
14300   if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
14301       || Opc == BO_Shr) {
14302     StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
14303     DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
14304     DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
14305   }
14306 
14307   // Warn on overloaded shift operators and comparisons, such as:
14308   // cout << 5 == 4;
14309   if (BinaryOperator::isComparisonOp(Opc))
14310     DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
14311 }
14312 
14313 // Binary Operators.  'Tok' is the token for the operator.
ActOnBinOp(Scope * S,SourceLocation TokLoc,tok::TokenKind Kind,Expr * LHSExpr,Expr * RHSExpr)14314 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
14315                             tok::TokenKind Kind,
14316                             Expr *LHSExpr, Expr *RHSExpr) {
14317   BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
14318   assert(LHSExpr && "ActOnBinOp(): missing left expression");
14319   assert(RHSExpr && "ActOnBinOp(): missing right expression");
14320 
14321   // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
14322   DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
14323 
14324   return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
14325 }
14326 
LookupBinOp(Scope * S,SourceLocation OpLoc,BinaryOperatorKind Opc,UnresolvedSetImpl & Functions)14327 void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
14328                        UnresolvedSetImpl &Functions) {
14329   OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
14330   if (OverOp != OO_None && OverOp != OO_Equal)
14331     LookupOverloadedOperatorName(OverOp, S, Functions);
14332 
14333   // In C++20 onwards, we may have a second operator to look up.
14334   if (getLangOpts().CPlusPlus20) {
14335     if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp))
14336       LookupOverloadedOperatorName(ExtraOp, S, Functions);
14337   }
14338 }
14339 
14340 /// Build an overloaded binary operator expression in the given scope.
BuildOverloadedBinOp(Sema & S,Scope * Sc,SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHS,Expr * RHS)14341 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
14342                                        BinaryOperatorKind Opc,
14343                                        Expr *LHS, Expr *RHS) {
14344   switch (Opc) {
14345   case BO_Assign:
14346   case BO_DivAssign:
14347   case BO_RemAssign:
14348   case BO_SubAssign:
14349   case BO_AndAssign:
14350   case BO_OrAssign:
14351   case BO_XorAssign:
14352     DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
14353     CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
14354     break;
14355   default:
14356     break;
14357   }
14358 
14359   // Find all of the overloaded operators visible from this point.
14360   UnresolvedSet<16> Functions;
14361   S.LookupBinOp(Sc, OpLoc, Opc, Functions);
14362 
14363   // Build the (potentially-overloaded, potentially-dependent)
14364   // binary operation.
14365   return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
14366 }
14367 
BuildBinOp(Scope * S,SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)14368 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
14369                             BinaryOperatorKind Opc,
14370                             Expr *LHSExpr, Expr *RHSExpr) {
14371   ExprResult LHS, RHS;
14372   std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
14373   if (!LHS.isUsable() || !RHS.isUsable())
14374     return ExprError();
14375   LHSExpr = LHS.get();
14376   RHSExpr = RHS.get();
14377 
14378   // We want to end up calling one of checkPseudoObjectAssignment
14379   // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
14380   // both expressions are overloadable or either is type-dependent),
14381   // or CreateBuiltinBinOp (in any other case).  We also want to get
14382   // any placeholder types out of the way.
14383 
14384   // Handle pseudo-objects in the LHS.
14385   if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
14386     // Assignments with a pseudo-object l-value need special analysis.
14387     if (pty->getKind() == BuiltinType::PseudoObject &&
14388         BinaryOperator::isAssignmentOp(Opc))
14389       return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
14390 
14391     // Don't resolve overloads if the other type is overloadable.
14392     if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
14393       // We can't actually test that if we still have a placeholder,
14394       // though.  Fortunately, none of the exceptions we see in that
14395       // code below are valid when the LHS is an overload set.  Note
14396       // that an overload set can be dependently-typed, but it never
14397       // instantiates to having an overloadable type.
14398       ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
14399       if (resolvedRHS.isInvalid()) return ExprError();
14400       RHSExpr = resolvedRHS.get();
14401 
14402       if (RHSExpr->isTypeDependent() ||
14403           RHSExpr->getType()->isOverloadableType())
14404         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14405     }
14406 
14407     // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
14408     // template, diagnose the missing 'template' keyword instead of diagnosing
14409     // an invalid use of a bound member function.
14410     //
14411     // Note that "A::x < b" might be valid if 'b' has an overloadable type due
14412     // to C++1z [over.over]/1.4, but we already checked for that case above.
14413     if (Opc == BO_LT && inTemplateInstantiation() &&
14414         (pty->getKind() == BuiltinType::BoundMember ||
14415          pty->getKind() == BuiltinType::Overload)) {
14416       auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
14417       if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
14418           std::any_of(OE->decls_begin(), OE->decls_end(), [](NamedDecl *ND) {
14419             return isa<FunctionTemplateDecl>(ND);
14420           })) {
14421         Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
14422                                 : OE->getNameLoc(),
14423              diag::err_template_kw_missing)
14424           << OE->getName().getAsString() << "";
14425         return ExprError();
14426       }
14427     }
14428 
14429     ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
14430     if (LHS.isInvalid()) return ExprError();
14431     LHSExpr = LHS.get();
14432   }
14433 
14434   // Handle pseudo-objects in the RHS.
14435   if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
14436     // An overload in the RHS can potentially be resolved by the type
14437     // being assigned to.
14438     if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
14439       if (getLangOpts().CPlusPlus &&
14440           (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
14441            LHSExpr->getType()->isOverloadableType()))
14442         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14443 
14444       return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
14445     }
14446 
14447     // Don't resolve overloads if the other type is overloadable.
14448     if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
14449         LHSExpr->getType()->isOverloadableType())
14450       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14451 
14452     ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
14453     if (!resolvedRHS.isUsable()) return ExprError();
14454     RHSExpr = resolvedRHS.get();
14455   }
14456 
14457   if (getLangOpts().CPlusPlus) {
14458     // If either expression is type-dependent, always build an
14459     // overloaded op.
14460     if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
14461       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14462 
14463     // Otherwise, build an overloaded op if either expression has an
14464     // overloadable type.
14465     if (LHSExpr->getType()->isOverloadableType() ||
14466         RHSExpr->getType()->isOverloadableType())
14467       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14468   }
14469 
14470   if (getLangOpts().RecoveryAST &&
14471       (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())) {
14472     assert(!getLangOpts().CPlusPlus);
14473     assert((LHSExpr->containsErrors() || RHSExpr->containsErrors()) &&
14474            "Should only occur in error-recovery path.");
14475     if (BinaryOperator::isCompoundAssignmentOp(Opc))
14476       // C [6.15.16] p3:
14477       // An assignment expression has the value of the left operand after the
14478       // assignment, but is not an lvalue.
14479       return CompoundAssignOperator::Create(
14480           Context, LHSExpr, RHSExpr, Opc,
14481           LHSExpr->getType().getUnqualifiedType(), VK_RValue, OK_Ordinary,
14482           OpLoc, CurFPFeatureOverrides());
14483     QualType ResultType;
14484     switch (Opc) {
14485     case BO_Assign:
14486       ResultType = LHSExpr->getType().getUnqualifiedType();
14487       break;
14488     case BO_LT:
14489     case BO_GT:
14490     case BO_LE:
14491     case BO_GE:
14492     case BO_EQ:
14493     case BO_NE:
14494     case BO_LAnd:
14495     case BO_LOr:
14496       // These operators have a fixed result type regardless of operands.
14497       ResultType = Context.IntTy;
14498       break;
14499     case BO_Comma:
14500       ResultType = RHSExpr->getType();
14501       break;
14502     default:
14503       ResultType = Context.DependentTy;
14504       break;
14505     }
14506     return BinaryOperator::Create(Context, LHSExpr, RHSExpr, Opc, ResultType,
14507                                   VK_RValue, OK_Ordinary, OpLoc,
14508                                   CurFPFeatureOverrides());
14509   }
14510 
14511   // Build a built-in binary operation.
14512   return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
14513 }
14514 
isOverflowingIntegerType(ASTContext & Ctx,QualType T)14515 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
14516   if (T.isNull() || T->isDependentType())
14517     return false;
14518 
14519   if (!T->isPromotableIntegerType())
14520     return true;
14521 
14522   return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
14523 }
14524 
CreateBuiltinUnaryOp(SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * InputExpr)14525 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
14526                                       UnaryOperatorKind Opc,
14527                                       Expr *InputExpr) {
14528   ExprResult Input = InputExpr;
14529   ExprValueKind VK = VK_RValue;
14530   ExprObjectKind OK = OK_Ordinary;
14531   QualType resultType;
14532   bool CanOverflow = false;
14533 
14534   bool ConvertHalfVec = false;
14535   if (getLangOpts().OpenCL) {
14536     QualType Ty = InputExpr->getType();
14537     // The only legal unary operation for atomics is '&'.
14538     if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
14539     // OpenCL special types - image, sampler, pipe, and blocks are to be used
14540     // only with a builtin functions and therefore should be disallowed here.
14541         (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
14542         || Ty->isBlockPointerType())) {
14543       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14544                        << InputExpr->getType()
14545                        << Input.get()->getSourceRange());
14546     }
14547   }
14548 
14549   switch (Opc) {
14550   case UO_PreInc:
14551   case UO_PreDec:
14552   case UO_PostInc:
14553   case UO_PostDec:
14554     resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
14555                                                 OpLoc,
14556                                                 Opc == UO_PreInc ||
14557                                                 Opc == UO_PostInc,
14558                                                 Opc == UO_PreInc ||
14559                                                 Opc == UO_PreDec);
14560     CanOverflow = isOverflowingIntegerType(Context, resultType);
14561     break;
14562   case UO_AddrOf:
14563     resultType = CheckAddressOfOperand(Input, OpLoc);
14564     CheckAddressOfNoDeref(InputExpr);
14565     RecordModifiableNonNullParam(*this, InputExpr);
14566     break;
14567   case UO_Deref: {
14568     Input = DefaultFunctionArrayLvalueConversion(Input.get());
14569     if (Input.isInvalid()) return ExprError();
14570     resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
14571     break;
14572   }
14573   case UO_Plus:
14574   case UO_Minus:
14575     CanOverflow = Opc == UO_Minus &&
14576                   isOverflowingIntegerType(Context, Input.get()->getType());
14577     Input = UsualUnaryConversions(Input.get());
14578     if (Input.isInvalid()) return ExprError();
14579     // Unary plus and minus require promoting an operand of half vector to a
14580     // float vector and truncating the result back to a half vector. For now, we
14581     // do this only when HalfArgsAndReturns is set (that is, when the target is
14582     // arm or arm64).
14583     ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get());
14584 
14585     // If the operand is a half vector, promote it to a float vector.
14586     if (ConvertHalfVec)
14587       Input = convertVector(Input.get(), Context.FloatTy, *this);
14588     resultType = Input.get()->getType();
14589     if (resultType->isDependentType())
14590       break;
14591     if (resultType->isArithmeticType()) // C99 6.5.3.3p1
14592       break;
14593     else if (resultType->isVectorType() &&
14594              // The z vector extensions don't allow + or - with bool vectors.
14595              (!Context.getLangOpts().ZVector ||
14596               resultType->castAs<VectorType>()->getVectorKind() !=
14597               VectorType::AltiVecBool))
14598       break;
14599     else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
14600              Opc == UO_Plus &&
14601              resultType->isPointerType())
14602       break;
14603 
14604     return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14605       << resultType << Input.get()->getSourceRange());
14606 
14607   case UO_Not: // bitwise complement
14608     Input = UsualUnaryConversions(Input.get());
14609     if (Input.isInvalid())
14610       return ExprError();
14611     resultType = Input.get()->getType();
14612     if (resultType->isDependentType())
14613       break;
14614     // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
14615     if (resultType->isComplexType() || resultType->isComplexIntegerType())
14616       // C99 does not support '~' for complex conjugation.
14617       Diag(OpLoc, diag::ext_integer_complement_complex)
14618           << resultType << Input.get()->getSourceRange();
14619     else if (resultType->hasIntegerRepresentation())
14620       break;
14621     else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
14622       // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
14623       // on vector float types.
14624       QualType T = resultType->castAs<ExtVectorType>()->getElementType();
14625       if (!T->isIntegerType())
14626         return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14627                           << resultType << Input.get()->getSourceRange());
14628     } else {
14629       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14630                        << resultType << Input.get()->getSourceRange());
14631     }
14632     break;
14633 
14634   case UO_LNot: // logical negation
14635     // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
14636     Input = DefaultFunctionArrayLvalueConversion(Input.get());
14637     if (Input.isInvalid()) return ExprError();
14638     resultType = Input.get()->getType();
14639 
14640     // Though we still have to promote half FP to float...
14641     if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
14642       Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
14643       resultType = Context.FloatTy;
14644     }
14645 
14646     if (resultType->isDependentType())
14647       break;
14648     if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
14649       // C99 6.5.3.3p1: ok, fallthrough;
14650       if (Context.getLangOpts().CPlusPlus) {
14651         // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
14652         // operand contextually converted to bool.
14653         Input = ImpCastExprToType(Input.get(), Context.BoolTy,
14654                                   ScalarTypeToBooleanCastKind(resultType));
14655       } else if (Context.getLangOpts().OpenCL &&
14656                  Context.getLangOpts().OpenCLVersion < 120) {
14657         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
14658         // operate on scalar float types.
14659         if (!resultType->isIntegerType() && !resultType->isPointerType())
14660           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14661                            << resultType << Input.get()->getSourceRange());
14662       }
14663     } else if (resultType->isExtVectorType()) {
14664       if (Context.getLangOpts().OpenCL &&
14665           Context.getLangOpts().OpenCLVersion < 120 &&
14666           !Context.getLangOpts().OpenCLCPlusPlus) {
14667         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
14668         // operate on vector float types.
14669         QualType T = resultType->castAs<ExtVectorType>()->getElementType();
14670         if (!T->isIntegerType())
14671           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14672                            << resultType << Input.get()->getSourceRange());
14673       }
14674       // Vector logical not returns the signed variant of the operand type.
14675       resultType = GetSignedVectorType(resultType);
14676       break;
14677     } else if (Context.getLangOpts().CPlusPlus && resultType->isVectorType()) {
14678       const VectorType *VTy = resultType->castAs<VectorType>();
14679       if (VTy->getVectorKind() != VectorType::GenericVector)
14680         return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14681                          << resultType << Input.get()->getSourceRange());
14682 
14683       // Vector logical not returns the signed variant of the operand type.
14684       resultType = GetSignedVectorType(resultType);
14685       break;
14686     } else {
14687       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14688         << resultType << Input.get()->getSourceRange());
14689     }
14690 
14691     // LNot always has type int. C99 6.5.3.3p5.
14692     // In C++, it's bool. C++ 5.3.1p8
14693     resultType = Context.getLogicalOperationType();
14694     break;
14695   case UO_Real:
14696   case UO_Imag:
14697     resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
14698     // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
14699     // complex l-values to ordinary l-values and all other values to r-values.
14700     if (Input.isInvalid()) return ExprError();
14701     if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
14702       if (Input.get()->getValueKind() != VK_RValue &&
14703           Input.get()->getObjectKind() == OK_Ordinary)
14704         VK = Input.get()->getValueKind();
14705     } else if (!getLangOpts().CPlusPlus) {
14706       // In C, a volatile scalar is read by __imag. In C++, it is not.
14707       Input = DefaultLvalueConversion(Input.get());
14708     }
14709     break;
14710   case UO_Extension:
14711     resultType = Input.get()->getType();
14712     VK = Input.get()->getValueKind();
14713     OK = Input.get()->getObjectKind();
14714     break;
14715   case UO_Coawait:
14716     // It's unnecessary to represent the pass-through operator co_await in the
14717     // AST; just return the input expression instead.
14718     assert(!Input.get()->getType()->isDependentType() &&
14719                    "the co_await expression must be non-dependant before "
14720                    "building operator co_await");
14721     return Input;
14722   }
14723   if (resultType.isNull() || Input.isInvalid())
14724     return ExprError();
14725 
14726   // Check for array bounds violations in the operand of the UnaryOperator,
14727   // except for the '*' and '&' operators that have to be handled specially
14728   // by CheckArrayAccess (as there are special cases like &array[arraysize]
14729   // that are explicitly defined as valid by the standard).
14730   if (Opc != UO_AddrOf && Opc != UO_Deref)
14731     CheckArrayAccess(Input.get());
14732 
14733   auto *UO =
14734       UnaryOperator::Create(Context, Input.get(), Opc, resultType, VK, OK,
14735                             OpLoc, CanOverflow, CurFPFeatureOverrides());
14736 
14737   if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
14738       !isa<ArrayType>(UO->getType().getDesugaredType(Context)) &&
14739       !isUnevaluatedContext())
14740     ExprEvalContexts.back().PossibleDerefs.insert(UO);
14741 
14742   // Convert the result back to a half vector.
14743   if (ConvertHalfVec)
14744     return convertVector(UO, Context.HalfTy, *this);
14745   return UO;
14746 }
14747 
14748 /// Determine whether the given expression is a qualified member
14749 /// access expression, of a form that could be turned into a pointer to member
14750 /// with the address-of operator.
isQualifiedMemberAccess(Expr * E)14751 bool Sema::isQualifiedMemberAccess(Expr *E) {
14752   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
14753     if (!DRE->getQualifier())
14754       return false;
14755 
14756     ValueDecl *VD = DRE->getDecl();
14757     if (!VD->isCXXClassMember())
14758       return false;
14759 
14760     if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
14761       return true;
14762     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
14763       return Method->isInstance();
14764 
14765     return false;
14766   }
14767 
14768   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
14769     if (!ULE->getQualifier())
14770       return false;
14771 
14772     for (NamedDecl *D : ULE->decls()) {
14773       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
14774         if (Method->isInstance())
14775           return true;
14776       } else {
14777         // Overload set does not contain methods.
14778         break;
14779       }
14780     }
14781 
14782     return false;
14783   }
14784 
14785   return false;
14786 }
14787 
BuildUnaryOp(Scope * S,SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * Input)14788 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
14789                               UnaryOperatorKind Opc, Expr *Input) {
14790   // First things first: handle placeholders so that the
14791   // overloaded-operator check considers the right type.
14792   if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
14793     // Increment and decrement of pseudo-object references.
14794     if (pty->getKind() == BuiltinType::PseudoObject &&
14795         UnaryOperator::isIncrementDecrementOp(Opc))
14796       return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
14797 
14798     // extension is always a builtin operator.
14799     if (Opc == UO_Extension)
14800       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
14801 
14802     // & gets special logic for several kinds of placeholder.
14803     // The builtin code knows what to do.
14804     if (Opc == UO_AddrOf &&
14805         (pty->getKind() == BuiltinType::Overload ||
14806          pty->getKind() == BuiltinType::UnknownAny ||
14807          pty->getKind() == BuiltinType::BoundMember))
14808       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
14809 
14810     // Anything else needs to be handled now.
14811     ExprResult Result = CheckPlaceholderExpr(Input);
14812     if (Result.isInvalid()) return ExprError();
14813     Input = Result.get();
14814   }
14815 
14816   if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
14817       UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
14818       !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
14819     // Find all of the overloaded operators visible from this point.
14820     UnresolvedSet<16> Functions;
14821     OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
14822     if (S && OverOp != OO_None)
14823       LookupOverloadedOperatorName(OverOp, S, Functions);
14824 
14825     return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
14826   }
14827 
14828   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
14829 }
14830 
14831 // Unary Operators.  'Tok' is the token for the operator.
ActOnUnaryOp(Scope * S,SourceLocation OpLoc,tok::TokenKind Op,Expr * Input)14832 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
14833                               tok::TokenKind Op, Expr *Input) {
14834   return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
14835 }
14836 
14837 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
ActOnAddrLabel(SourceLocation OpLoc,SourceLocation LabLoc,LabelDecl * TheDecl)14838 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
14839                                 LabelDecl *TheDecl) {
14840   TheDecl->markUsed(Context);
14841   // Create the AST node.  The address of a label always has type 'void*'.
14842   return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
14843                                      Context.getPointerType(Context.VoidTy));
14844 }
14845 
ActOnStartStmtExpr()14846 void Sema::ActOnStartStmtExpr() {
14847   PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
14848 }
14849 
ActOnStmtExprError()14850 void Sema::ActOnStmtExprError() {
14851   // Note that function is also called by TreeTransform when leaving a
14852   // StmtExpr scope without rebuilding anything.
14853 
14854   DiscardCleanupsInEvaluationContext();
14855   PopExpressionEvaluationContext();
14856 }
14857 
ActOnStmtExpr(Scope * S,SourceLocation LPLoc,Stmt * SubStmt,SourceLocation RPLoc)14858 ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
14859                                SourceLocation RPLoc) {
14860   return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S));
14861 }
14862 
BuildStmtExpr(SourceLocation LPLoc,Stmt * SubStmt,SourceLocation RPLoc,unsigned TemplateDepth)14863 ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
14864                                SourceLocation RPLoc, unsigned TemplateDepth) {
14865   assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
14866   CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
14867 
14868   if (hasAnyUnrecoverableErrorsInThisFunction())
14869     DiscardCleanupsInEvaluationContext();
14870   assert(!Cleanup.exprNeedsCleanups() &&
14871          "cleanups within StmtExpr not correctly bound!");
14872   PopExpressionEvaluationContext();
14873 
14874   // FIXME: there are a variety of strange constraints to enforce here, for
14875   // example, it is not possible to goto into a stmt expression apparently.
14876   // More semantic analysis is needed.
14877 
14878   // If there are sub-stmts in the compound stmt, take the type of the last one
14879   // as the type of the stmtexpr.
14880   QualType Ty = Context.VoidTy;
14881   bool StmtExprMayBindToTemp = false;
14882   if (!Compound->body_empty()) {
14883     // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
14884     if (const auto *LastStmt =
14885             dyn_cast<ValueStmt>(Compound->getStmtExprResult())) {
14886       if (const Expr *Value = LastStmt->getExprStmt()) {
14887         StmtExprMayBindToTemp = true;
14888         Ty = Value->getType();
14889       }
14890     }
14891   }
14892 
14893   // FIXME: Check that expression type is complete/non-abstract; statement
14894   // expressions are not lvalues.
14895   Expr *ResStmtExpr =
14896       new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
14897   if (StmtExprMayBindToTemp)
14898     return MaybeBindToTemporary(ResStmtExpr);
14899   return ResStmtExpr;
14900 }
14901 
ActOnStmtExprResult(ExprResult ER)14902 ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
14903   if (ER.isInvalid())
14904     return ExprError();
14905 
14906   // Do function/array conversion on the last expression, but not
14907   // lvalue-to-rvalue.  However, initialize an unqualified type.
14908   ER = DefaultFunctionArrayConversion(ER.get());
14909   if (ER.isInvalid())
14910     return ExprError();
14911   Expr *E = ER.get();
14912 
14913   if (E->isTypeDependent())
14914     return E;
14915 
14916   // In ARC, if the final expression ends in a consume, splice
14917   // the consume out and bind it later.  In the alternate case
14918   // (when dealing with a retainable type), the result
14919   // initialization will create a produce.  In both cases the
14920   // result will be +1, and we'll need to balance that out with
14921   // a bind.
14922   auto *Cast = dyn_cast<ImplicitCastExpr>(E);
14923   if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
14924     return Cast->getSubExpr();
14925 
14926   // FIXME: Provide a better location for the initialization.
14927   return PerformCopyInitialization(
14928       InitializedEntity::InitializeStmtExprResult(
14929           E->getBeginLoc(), E->getType().getUnqualifiedType()),
14930       SourceLocation(), E);
14931 }
14932 
BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,TypeSourceInfo * TInfo,ArrayRef<OffsetOfComponent> Components,SourceLocation RParenLoc)14933 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
14934                                       TypeSourceInfo *TInfo,
14935                                       ArrayRef<OffsetOfComponent> Components,
14936                                       SourceLocation RParenLoc) {
14937   QualType ArgTy = TInfo->getType();
14938   bool Dependent = ArgTy->isDependentType();
14939   SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
14940 
14941   // We must have at least one component that refers to the type, and the first
14942   // one is known to be a field designator.  Verify that the ArgTy represents
14943   // a struct/union/class.
14944   if (!Dependent && !ArgTy->isRecordType())
14945     return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
14946                        << ArgTy << TypeRange);
14947 
14948   // Type must be complete per C99 7.17p3 because a declaring a variable
14949   // with an incomplete type would be ill-formed.
14950   if (!Dependent
14951       && RequireCompleteType(BuiltinLoc, ArgTy,
14952                              diag::err_offsetof_incomplete_type, TypeRange))
14953     return ExprError();
14954 
14955   bool DidWarnAboutNonPOD = false;
14956   QualType CurrentType = ArgTy;
14957   SmallVector<OffsetOfNode, 4> Comps;
14958   SmallVector<Expr*, 4> Exprs;
14959   for (const OffsetOfComponent &OC : Components) {
14960     if (OC.isBrackets) {
14961       // Offset of an array sub-field.  TODO: Should we allow vector elements?
14962       if (!CurrentType->isDependentType()) {
14963         const ArrayType *AT = Context.getAsArrayType(CurrentType);
14964         if(!AT)
14965           return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
14966                            << CurrentType);
14967         CurrentType = AT->getElementType();
14968       } else
14969         CurrentType = Context.DependentTy;
14970 
14971       ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
14972       if (IdxRval.isInvalid())
14973         return ExprError();
14974       Expr *Idx = IdxRval.get();
14975 
14976       // The expression must be an integral expression.
14977       // FIXME: An integral constant expression?
14978       if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
14979           !Idx->getType()->isIntegerType())
14980         return ExprError(
14981             Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
14982             << Idx->getSourceRange());
14983 
14984       // Record this array index.
14985       Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
14986       Exprs.push_back(Idx);
14987       continue;
14988     }
14989 
14990     // Offset of a field.
14991     if (CurrentType->isDependentType()) {
14992       // We have the offset of a field, but we can't look into the dependent
14993       // type. Just record the identifier of the field.
14994       Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
14995       CurrentType = Context.DependentTy;
14996       continue;
14997     }
14998 
14999     // We need to have a complete type to look into.
15000     if (RequireCompleteType(OC.LocStart, CurrentType,
15001                             diag::err_offsetof_incomplete_type))
15002       return ExprError();
15003 
15004     // Look for the designated field.
15005     const RecordType *RC = CurrentType->getAs<RecordType>();
15006     if (!RC)
15007       return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
15008                        << CurrentType);
15009     RecordDecl *RD = RC->getDecl();
15010 
15011     // C++ [lib.support.types]p5:
15012     //   The macro offsetof accepts a restricted set of type arguments in this
15013     //   International Standard. type shall be a POD structure or a POD union
15014     //   (clause 9).
15015     // C++11 [support.types]p4:
15016     //   If type is not a standard-layout class (Clause 9), the results are
15017     //   undefined.
15018     if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
15019       bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
15020       unsigned DiagID =
15021         LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
15022                             : diag::ext_offsetof_non_pod_type;
15023 
15024       if (!IsSafe && !DidWarnAboutNonPOD &&
15025           DiagRuntimeBehavior(BuiltinLoc, nullptr,
15026                               PDiag(DiagID)
15027                               << SourceRange(Components[0].LocStart, OC.LocEnd)
15028                               << CurrentType))
15029         DidWarnAboutNonPOD = true;
15030     }
15031 
15032     // Look for the field.
15033     LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
15034     LookupQualifiedName(R, RD);
15035     FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
15036     IndirectFieldDecl *IndirectMemberDecl = nullptr;
15037     if (!MemberDecl) {
15038       if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
15039         MemberDecl = IndirectMemberDecl->getAnonField();
15040     }
15041 
15042     if (!MemberDecl)
15043       return ExprError(Diag(BuiltinLoc, diag::err_no_member)
15044                        << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
15045                                                               OC.LocEnd));
15046 
15047     // C99 7.17p3:
15048     //   (If the specified member is a bit-field, the behavior is undefined.)
15049     //
15050     // We diagnose this as an error.
15051     if (MemberDecl->isBitField()) {
15052       Diag(OC.LocEnd, diag::err_offsetof_bitfield)
15053         << MemberDecl->getDeclName()
15054         << SourceRange(BuiltinLoc, RParenLoc);
15055       Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
15056       return ExprError();
15057     }
15058 
15059     RecordDecl *Parent = MemberDecl->getParent();
15060     if (IndirectMemberDecl)
15061       Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
15062 
15063     // If the member was found in a base class, introduce OffsetOfNodes for
15064     // the base class indirections.
15065     CXXBasePaths Paths;
15066     if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
15067                       Paths)) {
15068       if (Paths.getDetectedVirtual()) {
15069         Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
15070           << MemberDecl->getDeclName()
15071           << SourceRange(BuiltinLoc, RParenLoc);
15072         return ExprError();
15073       }
15074 
15075       CXXBasePath &Path = Paths.front();
15076       for (const CXXBasePathElement &B : Path)
15077         Comps.push_back(OffsetOfNode(B.Base));
15078     }
15079 
15080     if (IndirectMemberDecl) {
15081       for (auto *FI : IndirectMemberDecl->chain()) {
15082         assert(isa<FieldDecl>(FI));
15083         Comps.push_back(OffsetOfNode(OC.LocStart,
15084                                      cast<FieldDecl>(FI), OC.LocEnd));
15085       }
15086     } else
15087       Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
15088 
15089     CurrentType = MemberDecl->getType().getNonReferenceType();
15090   }
15091 
15092   return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
15093                               Comps, Exprs, RParenLoc);
15094 }
15095 
ActOnBuiltinOffsetOf(Scope * S,SourceLocation BuiltinLoc,SourceLocation TypeLoc,ParsedType ParsedArgTy,ArrayRef<OffsetOfComponent> Components,SourceLocation RParenLoc)15096 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
15097                                       SourceLocation BuiltinLoc,
15098                                       SourceLocation TypeLoc,
15099                                       ParsedType ParsedArgTy,
15100                                       ArrayRef<OffsetOfComponent> Components,
15101                                       SourceLocation RParenLoc) {
15102 
15103   TypeSourceInfo *ArgTInfo;
15104   QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
15105   if (ArgTy.isNull())
15106     return ExprError();
15107 
15108   if (!ArgTInfo)
15109     ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
15110 
15111   return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
15112 }
15113 
15114 
ActOnChooseExpr(SourceLocation BuiltinLoc,Expr * CondExpr,Expr * LHSExpr,Expr * RHSExpr,SourceLocation RPLoc)15115 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
15116                                  Expr *CondExpr,
15117                                  Expr *LHSExpr, Expr *RHSExpr,
15118                                  SourceLocation RPLoc) {
15119   assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
15120 
15121   ExprValueKind VK = VK_RValue;
15122   ExprObjectKind OK = OK_Ordinary;
15123   QualType resType;
15124   bool CondIsTrue = false;
15125   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
15126     resType = Context.DependentTy;
15127   } else {
15128     // The conditional expression is required to be a constant expression.
15129     llvm::APSInt condEval(32);
15130     ExprResult CondICE = VerifyIntegerConstantExpression(
15131         CondExpr, &condEval, diag::err_typecheck_choose_expr_requires_constant);
15132     if (CondICE.isInvalid())
15133       return ExprError();
15134     CondExpr = CondICE.get();
15135     CondIsTrue = condEval.getZExtValue();
15136 
15137     // If the condition is > zero, then the AST type is the same as the LHSExpr.
15138     Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
15139 
15140     resType = ActiveExpr->getType();
15141     VK = ActiveExpr->getValueKind();
15142     OK = ActiveExpr->getObjectKind();
15143   }
15144 
15145   return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
15146                                   resType, VK, OK, RPLoc, CondIsTrue);
15147 }
15148 
15149 //===----------------------------------------------------------------------===//
15150 // Clang Extensions.
15151 //===----------------------------------------------------------------------===//
15152 
15153 /// ActOnBlockStart - This callback is invoked when a block literal is started.
ActOnBlockStart(SourceLocation CaretLoc,Scope * CurScope)15154 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
15155   BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
15156 
15157   if (LangOpts.CPlusPlus) {
15158     MangleNumberingContext *MCtx;
15159     Decl *ManglingContextDecl;
15160     std::tie(MCtx, ManglingContextDecl) =
15161         getCurrentMangleNumberContext(Block->getDeclContext());
15162     if (MCtx) {
15163       unsigned ManglingNumber = MCtx->getManglingNumber(Block);
15164       Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
15165     }
15166   }
15167 
15168   PushBlockScope(CurScope, Block);
15169   CurContext->addDecl(Block);
15170   if (CurScope)
15171     PushDeclContext(CurScope, Block);
15172   else
15173     CurContext = Block;
15174 
15175   getCurBlock()->HasImplicitReturnType = true;
15176 
15177   // Enter a new evaluation context to insulate the block from any
15178   // cleanups from the enclosing full-expression.
15179   PushExpressionEvaluationContext(
15180       ExpressionEvaluationContext::PotentiallyEvaluated);
15181 }
15182 
ActOnBlockArguments(SourceLocation CaretLoc,Declarator & ParamInfo,Scope * CurScope)15183 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
15184                                Scope *CurScope) {
15185   assert(ParamInfo.getIdentifier() == nullptr &&
15186          "block-id should have no identifier!");
15187   assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteral);
15188   BlockScopeInfo *CurBlock = getCurBlock();
15189 
15190   TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
15191   QualType T = Sig->getType();
15192 
15193   // FIXME: We should allow unexpanded parameter packs here, but that would,
15194   // in turn, make the block expression contain unexpanded parameter packs.
15195   if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
15196     // Drop the parameters.
15197     FunctionProtoType::ExtProtoInfo EPI;
15198     EPI.HasTrailingReturn = false;
15199     EPI.TypeQuals.addConst();
15200     T = Context.getFunctionType(Context.DependentTy, None, EPI);
15201     Sig = Context.getTrivialTypeSourceInfo(T);
15202   }
15203 
15204   // GetTypeForDeclarator always produces a function type for a block
15205   // literal signature.  Furthermore, it is always a FunctionProtoType
15206   // unless the function was written with a typedef.
15207   assert(T->isFunctionType() &&
15208          "GetTypeForDeclarator made a non-function block signature");
15209 
15210   // Look for an explicit signature in that function type.
15211   FunctionProtoTypeLoc ExplicitSignature;
15212 
15213   if ((ExplicitSignature = Sig->getTypeLoc()
15214                                .getAsAdjusted<FunctionProtoTypeLoc>())) {
15215 
15216     // Check whether that explicit signature was synthesized by
15217     // GetTypeForDeclarator.  If so, don't save that as part of the
15218     // written signature.
15219     if (ExplicitSignature.getLocalRangeBegin() ==
15220         ExplicitSignature.getLocalRangeEnd()) {
15221       // This would be much cheaper if we stored TypeLocs instead of
15222       // TypeSourceInfos.
15223       TypeLoc Result = ExplicitSignature.getReturnLoc();
15224       unsigned Size = Result.getFullDataSize();
15225       Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
15226       Sig->getTypeLoc().initializeFullCopy(Result, Size);
15227 
15228       ExplicitSignature = FunctionProtoTypeLoc();
15229     }
15230   }
15231 
15232   CurBlock->TheDecl->setSignatureAsWritten(Sig);
15233   CurBlock->FunctionType = T;
15234 
15235   const auto *Fn = T->castAs<FunctionType>();
15236   QualType RetTy = Fn->getReturnType();
15237   bool isVariadic =
15238       (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
15239 
15240   CurBlock->TheDecl->setIsVariadic(isVariadic);
15241 
15242   // Context.DependentTy is used as a placeholder for a missing block
15243   // return type.  TODO:  what should we do with declarators like:
15244   //   ^ * { ... }
15245   // If the answer is "apply template argument deduction"....
15246   if (RetTy != Context.DependentTy) {
15247     CurBlock->ReturnType = RetTy;
15248     CurBlock->TheDecl->setBlockMissingReturnType(false);
15249     CurBlock->HasImplicitReturnType = false;
15250   }
15251 
15252   // Push block parameters from the declarator if we had them.
15253   SmallVector<ParmVarDecl*, 8> Params;
15254   if (ExplicitSignature) {
15255     for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
15256       ParmVarDecl *Param = ExplicitSignature.getParam(I);
15257       if (Param->getIdentifier() == nullptr && !Param->isImplicit() &&
15258           !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) {
15259         // Diagnose this as an extension in C17 and earlier.
15260         if (!getLangOpts().C2x)
15261           Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
15262       }
15263       Params.push_back(Param);
15264     }
15265 
15266   // Fake up parameter variables if we have a typedef, like
15267   //   ^ fntype { ... }
15268   } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
15269     for (const auto &I : Fn->param_types()) {
15270       ParmVarDecl *Param = BuildParmVarDeclForTypedef(
15271           CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
15272       Params.push_back(Param);
15273     }
15274   }
15275 
15276   // Set the parameters on the block decl.
15277   if (!Params.empty()) {
15278     CurBlock->TheDecl->setParams(Params);
15279     CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
15280                              /*CheckParameterNames=*/false);
15281   }
15282 
15283   // Finally we can process decl attributes.
15284   ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
15285 
15286   // Put the parameter variables in scope.
15287   for (auto AI : CurBlock->TheDecl->parameters()) {
15288     AI->setOwningFunction(CurBlock->TheDecl);
15289 
15290     // If this has an identifier, add it to the scope stack.
15291     if (AI->getIdentifier()) {
15292       CheckShadow(CurBlock->TheScope, AI);
15293 
15294       PushOnScopeChains(AI, CurBlock->TheScope);
15295     }
15296   }
15297 }
15298 
15299 /// ActOnBlockError - If there is an error parsing a block, this callback
15300 /// is invoked to pop the information about the block from the action impl.
ActOnBlockError(SourceLocation CaretLoc,Scope * CurScope)15301 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
15302   // Leave the expression-evaluation context.
15303   DiscardCleanupsInEvaluationContext();
15304   PopExpressionEvaluationContext();
15305 
15306   // Pop off CurBlock, handle nested blocks.
15307   PopDeclContext();
15308   PopFunctionScopeInfo();
15309 }
15310 
15311 /// ActOnBlockStmtExpr - This is called when the body of a block statement
15312 /// literal was successfully completed.  ^(int x){...}
ActOnBlockStmtExpr(SourceLocation CaretLoc,Stmt * Body,Scope * CurScope)15313 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
15314                                     Stmt *Body, Scope *CurScope) {
15315   // If blocks are disabled, emit an error.
15316   if (!LangOpts.Blocks)
15317     Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
15318 
15319   // Leave the expression-evaluation context.
15320   if (hasAnyUnrecoverableErrorsInThisFunction())
15321     DiscardCleanupsInEvaluationContext();
15322   assert(!Cleanup.exprNeedsCleanups() &&
15323          "cleanups within block not correctly bound!");
15324   PopExpressionEvaluationContext();
15325 
15326   BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
15327   BlockDecl *BD = BSI->TheDecl;
15328 
15329   if (BSI->HasImplicitReturnType)
15330     deduceClosureReturnType(*BSI);
15331 
15332   QualType RetTy = Context.VoidTy;
15333   if (!BSI->ReturnType.isNull())
15334     RetTy = BSI->ReturnType;
15335 
15336   bool NoReturn = BD->hasAttr<NoReturnAttr>();
15337   QualType BlockTy;
15338 
15339   // If the user wrote a function type in some form, try to use that.
15340   if (!BSI->FunctionType.isNull()) {
15341     const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();
15342 
15343     FunctionType::ExtInfo Ext = FTy->getExtInfo();
15344     if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
15345 
15346     // Turn protoless block types into nullary block types.
15347     if (isa<FunctionNoProtoType>(FTy)) {
15348       FunctionProtoType::ExtProtoInfo EPI;
15349       EPI.ExtInfo = Ext;
15350       BlockTy = Context.getFunctionType(RetTy, None, EPI);
15351 
15352     // Otherwise, if we don't need to change anything about the function type,
15353     // preserve its sugar structure.
15354     } else if (FTy->getReturnType() == RetTy &&
15355                (!NoReturn || FTy->getNoReturnAttr())) {
15356       BlockTy = BSI->FunctionType;
15357 
15358     // Otherwise, make the minimal modifications to the function type.
15359     } else {
15360       const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
15361       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
15362       EPI.TypeQuals = Qualifiers();
15363       EPI.ExtInfo = Ext;
15364       BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
15365     }
15366 
15367   // If we don't have a function type, just build one from nothing.
15368   } else {
15369     FunctionProtoType::ExtProtoInfo EPI;
15370     EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
15371     BlockTy = Context.getFunctionType(RetTy, None, EPI);
15372   }
15373 
15374   DiagnoseUnusedParameters(BD->parameters());
15375   BlockTy = Context.getBlockPointerType(BlockTy);
15376 
15377   // If needed, diagnose invalid gotos and switches in the block.
15378   if (getCurFunction()->NeedsScopeChecking() &&
15379       !PP.isCodeCompletionEnabled())
15380     DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
15381 
15382   BD->setBody(cast<CompoundStmt>(Body));
15383 
15384   if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
15385     DiagnoseUnguardedAvailabilityViolations(BD);
15386 
15387   // Try to apply the named return value optimization. We have to check again
15388   // if we can do this, though, because blocks keep return statements around
15389   // to deduce an implicit return type.
15390   if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
15391       !BD->isDependentContext())
15392     computeNRVO(Body, BSI);
15393 
15394   if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
15395       RetTy.hasNonTrivialToPrimitiveCopyCUnion())
15396     checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn,
15397                           NTCUK_Destruct|NTCUK_Copy);
15398 
15399   PopDeclContext();
15400 
15401   // Pop the block scope now but keep it alive to the end of this function.
15402   AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
15403   PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);
15404 
15405   // Set the captured variables on the block.
15406   SmallVector<BlockDecl::Capture, 4> Captures;
15407   for (Capture &Cap : BSI->Captures) {
15408     if (Cap.isInvalid() || Cap.isThisCapture())
15409       continue;
15410 
15411     VarDecl *Var = Cap.getVariable();
15412     Expr *CopyExpr = nullptr;
15413     if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
15414       if (const RecordType *Record =
15415               Cap.getCaptureType()->getAs<RecordType>()) {
15416         // The capture logic needs the destructor, so make sure we mark it.
15417         // Usually this is unnecessary because most local variables have
15418         // their destructors marked at declaration time, but parameters are
15419         // an exception because it's technically only the call site that
15420         // actually requires the destructor.
15421         if (isa<ParmVarDecl>(Var))
15422           FinalizeVarWithDestructor(Var, Record);
15423 
15424         // Enter a separate potentially-evaluated context while building block
15425         // initializers to isolate their cleanups from those of the block
15426         // itself.
15427         // FIXME: Is this appropriate even when the block itself occurs in an
15428         // unevaluated operand?
15429         EnterExpressionEvaluationContext EvalContext(
15430             *this, ExpressionEvaluationContext::PotentiallyEvaluated);
15431 
15432         SourceLocation Loc = Cap.getLocation();
15433 
15434         ExprResult Result = BuildDeclarationNameExpr(
15435             CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
15436 
15437         // According to the blocks spec, the capture of a variable from
15438         // the stack requires a const copy constructor.  This is not true
15439         // of the copy/move done to move a __block variable to the heap.
15440         if (!Result.isInvalid() &&
15441             !Result.get()->getType().isConstQualified()) {
15442           Result = ImpCastExprToType(Result.get(),
15443                                      Result.get()->getType().withConst(),
15444                                      CK_NoOp, VK_LValue);
15445         }
15446 
15447         if (!Result.isInvalid()) {
15448           Result = PerformCopyInitialization(
15449               InitializedEntity::InitializeBlock(Var->getLocation(),
15450                                                  Cap.getCaptureType(), false),
15451               Loc, Result.get());
15452         }
15453 
15454         // Build a full-expression copy expression if initialization
15455         // succeeded and used a non-trivial constructor.  Recover from
15456         // errors by pretending that the copy isn't necessary.
15457         if (!Result.isInvalid() &&
15458             !cast<CXXConstructExpr>(Result.get())->getConstructor()
15459                 ->isTrivial()) {
15460           Result = MaybeCreateExprWithCleanups(Result);
15461           CopyExpr = Result.get();
15462         }
15463       }
15464     }
15465 
15466     BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
15467                               CopyExpr);
15468     Captures.push_back(NewCap);
15469   }
15470   BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
15471 
15472   BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy);
15473 
15474   // If the block isn't obviously global, i.e. it captures anything at
15475   // all, then we need to do a few things in the surrounding context:
15476   if (Result->getBlockDecl()->hasCaptures()) {
15477     // First, this expression has a new cleanup object.
15478     ExprCleanupObjects.push_back(Result->getBlockDecl());
15479     Cleanup.setExprNeedsCleanups(true);
15480 
15481     // It also gets a branch-protected scope if any of the captured
15482     // variables needs destruction.
15483     for (const auto &CI : Result->getBlockDecl()->captures()) {
15484       const VarDecl *var = CI.getVariable();
15485       if (var->getType().isDestructedType() != QualType::DK_none) {
15486         setFunctionHasBranchProtectedScope();
15487         break;
15488       }
15489     }
15490   }
15491 
15492   if (getCurFunction())
15493     getCurFunction()->addBlock(BD);
15494 
15495   return Result;
15496 }
15497 
ActOnVAArg(SourceLocation BuiltinLoc,Expr * E,ParsedType Ty,SourceLocation RPLoc)15498 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
15499                             SourceLocation RPLoc) {
15500   TypeSourceInfo *TInfo;
15501   GetTypeFromParser(Ty, &TInfo);
15502   return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
15503 }
15504 
BuildVAArgExpr(SourceLocation BuiltinLoc,Expr * E,TypeSourceInfo * TInfo,SourceLocation RPLoc)15505 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
15506                                 Expr *E, TypeSourceInfo *TInfo,
15507                                 SourceLocation RPLoc) {
15508   Expr *OrigExpr = E;
15509   bool IsMS = false;
15510 
15511   // CUDA device code does not support varargs.
15512   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
15513     if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
15514       CUDAFunctionTarget T = IdentifyCUDATarget(F);
15515       if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice)
15516         return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
15517     }
15518   }
15519 
15520   // NVPTX does not support va_arg expression.
15521   if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
15522       Context.getTargetInfo().getTriple().isNVPTX())
15523     targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
15524 
15525   // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
15526   // as Microsoft ABI on an actual Microsoft platform, where
15527   // __builtin_ms_va_list and __builtin_va_list are the same.)
15528   if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
15529       Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
15530     QualType MSVaListType = Context.getBuiltinMSVaListType();
15531     if (Context.hasSameType(MSVaListType, E->getType())) {
15532       if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
15533         return ExprError();
15534       IsMS = true;
15535     }
15536   }
15537 
15538   // Get the va_list type
15539   QualType VaListType = Context.getBuiltinVaListType();
15540   if (!IsMS) {
15541     if (VaListType->isArrayType()) {
15542       // Deal with implicit array decay; for example, on x86-64,
15543       // va_list is an array, but it's supposed to decay to
15544       // a pointer for va_arg.
15545       VaListType = Context.getArrayDecayedType(VaListType);
15546       // Make sure the input expression also decays appropriately.
15547       ExprResult Result = UsualUnaryConversions(E);
15548       if (Result.isInvalid())
15549         return ExprError();
15550       E = Result.get();
15551     } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
15552       // If va_list is a record type and we are compiling in C++ mode,
15553       // check the argument using reference binding.
15554       InitializedEntity Entity = InitializedEntity::InitializeParameter(
15555           Context, Context.getLValueReferenceType(VaListType), false);
15556       ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
15557       if (Init.isInvalid())
15558         return ExprError();
15559       E = Init.getAs<Expr>();
15560     } else {
15561       // Otherwise, the va_list argument must be an l-value because
15562       // it is modified by va_arg.
15563       if (!E->isTypeDependent() &&
15564           CheckForModifiableLvalue(E, BuiltinLoc, *this))
15565         return ExprError();
15566     }
15567   }
15568 
15569   if (!IsMS && !E->isTypeDependent() &&
15570       !Context.hasSameType(VaListType, E->getType()))
15571     return ExprError(
15572         Diag(E->getBeginLoc(),
15573              diag::err_first_argument_to_va_arg_not_of_type_va_list)
15574         << OrigExpr->getType() << E->getSourceRange());
15575 
15576   if (!TInfo->getType()->isDependentType()) {
15577     if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
15578                             diag::err_second_parameter_to_va_arg_incomplete,
15579                             TInfo->getTypeLoc()))
15580       return ExprError();
15581 
15582     if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
15583                                TInfo->getType(),
15584                                diag::err_second_parameter_to_va_arg_abstract,
15585                                TInfo->getTypeLoc()))
15586       return ExprError();
15587 
15588     if (!TInfo->getType().isPODType(Context)) {
15589       Diag(TInfo->getTypeLoc().getBeginLoc(),
15590            TInfo->getType()->isObjCLifetimeType()
15591              ? diag::warn_second_parameter_to_va_arg_ownership_qualified
15592              : diag::warn_second_parameter_to_va_arg_not_pod)
15593         << TInfo->getType()
15594         << TInfo->getTypeLoc().getSourceRange();
15595     }
15596 
15597     // Check for va_arg where arguments of the given type will be promoted
15598     // (i.e. this va_arg is guaranteed to have undefined behavior).
15599     QualType PromoteType;
15600     if (TInfo->getType()->isPromotableIntegerType()) {
15601       PromoteType = Context.getPromotedIntegerType(TInfo->getType());
15602       if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
15603         PromoteType = QualType();
15604     }
15605     if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
15606       PromoteType = Context.DoubleTy;
15607     if (!PromoteType.isNull())
15608       DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
15609                   PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
15610                           << TInfo->getType()
15611                           << PromoteType
15612                           << TInfo->getTypeLoc().getSourceRange());
15613   }
15614 
15615   QualType T = TInfo->getType().getNonLValueExprType(Context);
15616   return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
15617 }
15618 
ActOnGNUNullExpr(SourceLocation TokenLoc)15619 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
15620   // The type of __null will be int or long, depending on the size of
15621   // pointers on the target.
15622   QualType Ty;
15623   unsigned pw = Context.getTargetInfo().getPointerWidth(0);
15624   if (pw == Context.getTargetInfo().getIntWidth())
15625     Ty = Context.IntTy;
15626   else if (pw == Context.getTargetInfo().getLongWidth())
15627     Ty = Context.LongTy;
15628   else if (pw == Context.getTargetInfo().getLongLongWidth())
15629     Ty = Context.LongLongTy;
15630   else {
15631     llvm_unreachable("I don't know size of pointer!");
15632   }
15633 
15634   return new (Context) GNUNullExpr(Ty, TokenLoc);
15635 }
15636 
ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,SourceLocation BuiltinLoc,SourceLocation RPLoc)15637 ExprResult Sema::ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
15638                                     SourceLocation BuiltinLoc,
15639                                     SourceLocation RPLoc) {
15640   return BuildSourceLocExpr(Kind, BuiltinLoc, RPLoc, CurContext);
15641 }
15642 
BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,SourceLocation BuiltinLoc,SourceLocation RPLoc,DeclContext * ParentContext)15643 ExprResult Sema::BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
15644                                     SourceLocation BuiltinLoc,
15645                                     SourceLocation RPLoc,
15646                                     DeclContext *ParentContext) {
15647   return new (Context)
15648       SourceLocExpr(Context, Kind, BuiltinLoc, RPLoc, ParentContext);
15649 }
15650 
CheckConversionToObjCLiteral(QualType DstType,Expr * & Exp,bool Diagnose)15651 bool Sema::CheckConversionToObjCLiteral(QualType DstType, Expr *&Exp,
15652                                         bool Diagnose) {
15653   if (!getLangOpts().ObjC)
15654     return false;
15655 
15656   const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
15657   if (!PT)
15658     return false;
15659   const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
15660 
15661   // Ignore any parens, implicit casts (should only be
15662   // array-to-pointer decays), and not-so-opaque values.  The last is
15663   // important for making this trigger for property assignments.
15664   Expr *SrcExpr = Exp->IgnoreParenImpCasts();
15665   if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
15666     if (OV->getSourceExpr())
15667       SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
15668 
15669   if (auto *SL = dyn_cast<StringLiteral>(SrcExpr)) {
15670     if (!PT->isObjCIdType() &&
15671         !(ID && ID->getIdentifier()->isStr("NSString")))
15672       return false;
15673     if (!SL->isAscii())
15674       return false;
15675 
15676     if (Diagnose) {
15677       Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix)
15678           << /*string*/0 << FixItHint::CreateInsertion(SL->getBeginLoc(), "@");
15679       Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get();
15680     }
15681     return true;
15682   }
15683 
15684   if ((isa<IntegerLiteral>(SrcExpr) || isa<CharacterLiteral>(SrcExpr) ||
15685       isa<FloatingLiteral>(SrcExpr) || isa<ObjCBoolLiteralExpr>(SrcExpr) ||
15686       isa<CXXBoolLiteralExpr>(SrcExpr)) &&
15687       !SrcExpr->isNullPointerConstant(
15688           getASTContext(), Expr::NPC_NeverValueDependent)) {
15689     if (!ID || !ID->getIdentifier()->isStr("NSNumber"))
15690       return false;
15691     if (Diagnose) {
15692       Diag(SrcExpr->getBeginLoc(), diag::err_missing_atsign_prefix)
15693           << /*number*/1
15694           << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "@");
15695       Expr *NumLit =
15696           BuildObjCNumericLiteral(SrcExpr->getBeginLoc(), SrcExpr).get();
15697       if (NumLit)
15698         Exp = NumLit;
15699     }
15700     return true;
15701   }
15702 
15703   return false;
15704 }
15705 
maybeDiagnoseAssignmentToFunction(Sema & S,QualType DstType,const Expr * SrcExpr)15706 static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
15707                                               const Expr *SrcExpr) {
15708   if (!DstType->isFunctionPointerType() ||
15709       !SrcExpr->getType()->isFunctionType())
15710     return false;
15711 
15712   auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
15713   if (!DRE)
15714     return false;
15715 
15716   auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
15717   if (!FD)
15718     return false;
15719 
15720   return !S.checkAddressOfFunctionIsAvailable(FD,
15721                                               /*Complain=*/true,
15722                                               SrcExpr->getBeginLoc());
15723 }
15724 
DiagnoseAssignmentResult(AssignConvertType ConvTy,SourceLocation Loc,QualType DstType,QualType SrcType,Expr * SrcExpr,AssignmentAction Action,bool * Complained)15725 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
15726                                     SourceLocation Loc,
15727                                     QualType DstType, QualType SrcType,
15728                                     Expr *SrcExpr, AssignmentAction Action,
15729                                     bool *Complained) {
15730   if (Complained)
15731     *Complained = false;
15732 
15733   // Decode the result (notice that AST's are still created for extensions).
15734   bool CheckInferredResultType = false;
15735   bool isInvalid = false;
15736   unsigned DiagKind = 0;
15737   ConversionFixItGenerator ConvHints;
15738   bool MayHaveConvFixit = false;
15739   bool MayHaveFunctionDiff = false;
15740   const ObjCInterfaceDecl *IFace = nullptr;
15741   const ObjCProtocolDecl *PDecl = nullptr;
15742 
15743   switch (ConvTy) {
15744   case Compatible:
15745       DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
15746       return false;
15747 
15748   case PointerToInt:
15749     if (getLangOpts().CPlusPlus) {
15750       DiagKind = diag::err_typecheck_convert_pointer_int;
15751       isInvalid = true;
15752     } else {
15753       DiagKind = diag::ext_typecheck_convert_pointer_int;
15754     }
15755     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
15756     MayHaveConvFixit = true;
15757     break;
15758   case IntToPointer:
15759     if (getLangOpts().CPlusPlus) {
15760       DiagKind = diag::err_typecheck_convert_int_pointer;
15761       isInvalid = true;
15762     } else {
15763       DiagKind = diag::ext_typecheck_convert_int_pointer;
15764     }
15765     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
15766     MayHaveConvFixit = true;
15767     break;
15768   case IncompatibleFunctionPointer:
15769     if (getLangOpts().CPlusPlus) {
15770       DiagKind = diag::err_typecheck_convert_incompatible_function_pointer;
15771       isInvalid = true;
15772     } else {
15773       DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
15774     }
15775     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
15776     MayHaveConvFixit = true;
15777     break;
15778   case IncompatiblePointer:
15779     if (Action == AA_Passing_CFAudited) {
15780       DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
15781     } else if (getLangOpts().CPlusPlus) {
15782       DiagKind = diag::err_typecheck_convert_incompatible_pointer;
15783       isInvalid = true;
15784     } else {
15785       DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
15786     }
15787     CheckInferredResultType = DstType->isObjCObjectPointerType() &&
15788       SrcType->isObjCObjectPointerType();
15789     if (!CheckInferredResultType) {
15790       ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
15791     } else if (CheckInferredResultType) {
15792       SrcType = SrcType.getUnqualifiedType();
15793       DstType = DstType.getUnqualifiedType();
15794     }
15795     MayHaveConvFixit = true;
15796     break;
15797   case IncompatiblePointerSign:
15798     if (getLangOpts().CPlusPlus) {
15799       DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign;
15800       isInvalid = true;
15801     } else {
15802       DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
15803     }
15804     break;
15805   case FunctionVoidPointer:
15806     if (getLangOpts().CPlusPlus) {
15807       DiagKind = diag::err_typecheck_convert_pointer_void_func;
15808       isInvalid = true;
15809     } else {
15810       DiagKind = diag::ext_typecheck_convert_pointer_void_func;
15811     }
15812     break;
15813   case IncompatiblePointerDiscardsQualifiers: {
15814     // Perform array-to-pointer decay if necessary.
15815     if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
15816 
15817     isInvalid = true;
15818 
15819     Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
15820     Qualifiers rhq = DstType->getPointeeType().getQualifiers();
15821     if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
15822       DiagKind = diag::err_typecheck_incompatible_address_space;
15823       break;
15824 
15825     } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
15826       DiagKind = diag::err_typecheck_incompatible_ownership;
15827       break;
15828     }
15829 
15830     llvm_unreachable("unknown error case for discarding qualifiers!");
15831     // fallthrough
15832   }
15833   case CompatiblePointerDiscardsQualifiers:
15834     // If the qualifiers lost were because we were applying the
15835     // (deprecated) C++ conversion from a string literal to a char*
15836     // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
15837     // Ideally, this check would be performed in
15838     // checkPointerTypesForAssignment. However, that would require a
15839     // bit of refactoring (so that the second argument is an
15840     // expression, rather than a type), which should be done as part
15841     // of a larger effort to fix checkPointerTypesForAssignment for
15842     // C++ semantics.
15843     if (getLangOpts().CPlusPlus &&
15844         IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
15845       return false;
15846     if (getLangOpts().CPlusPlus) {
15847       DiagKind =  diag::err_typecheck_convert_discards_qualifiers;
15848       isInvalid = true;
15849     } else {
15850       DiagKind =  diag::ext_typecheck_convert_discards_qualifiers;
15851     }
15852 
15853     break;
15854   case IncompatibleNestedPointerQualifiers:
15855     if (getLangOpts().CPlusPlus) {
15856       isInvalid = true;
15857       DiagKind = diag::err_nested_pointer_qualifier_mismatch;
15858     } else {
15859       DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
15860     }
15861     break;
15862   case IncompatibleNestedPointerAddressSpaceMismatch:
15863     DiagKind = diag::err_typecheck_incompatible_nested_address_space;
15864     isInvalid = true;
15865     break;
15866   case IntToBlockPointer:
15867     DiagKind = diag::err_int_to_block_pointer;
15868     isInvalid = true;
15869     break;
15870   case IncompatibleBlockPointer:
15871     DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
15872     isInvalid = true;
15873     break;
15874   case IncompatibleObjCQualifiedId: {
15875     if (SrcType->isObjCQualifiedIdType()) {
15876       const ObjCObjectPointerType *srcOPT =
15877                 SrcType->castAs<ObjCObjectPointerType>();
15878       for (auto *srcProto : srcOPT->quals()) {
15879         PDecl = srcProto;
15880         break;
15881       }
15882       if (const ObjCInterfaceType *IFaceT =
15883             DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
15884         IFace = IFaceT->getDecl();
15885     }
15886     else if (DstType->isObjCQualifiedIdType()) {
15887       const ObjCObjectPointerType *dstOPT =
15888         DstType->castAs<ObjCObjectPointerType>();
15889       for (auto *dstProto : dstOPT->quals()) {
15890         PDecl = dstProto;
15891         break;
15892       }
15893       if (const ObjCInterfaceType *IFaceT =
15894             SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
15895         IFace = IFaceT->getDecl();
15896     }
15897     if (getLangOpts().CPlusPlus) {
15898       DiagKind = diag::err_incompatible_qualified_id;
15899       isInvalid = true;
15900     } else {
15901       DiagKind = diag::warn_incompatible_qualified_id;
15902     }
15903     break;
15904   }
15905   case IncompatibleVectors:
15906     if (getLangOpts().CPlusPlus) {
15907       DiagKind = diag::err_incompatible_vectors;
15908       isInvalid = true;
15909     } else {
15910       DiagKind = diag::warn_incompatible_vectors;
15911     }
15912     break;
15913   case IncompatibleObjCWeakRef:
15914     DiagKind = diag::err_arc_weak_unavailable_assign;
15915     isInvalid = true;
15916     break;
15917   case Incompatible:
15918     if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
15919       if (Complained)
15920         *Complained = true;
15921       return true;
15922     }
15923 
15924     DiagKind = diag::err_typecheck_convert_incompatible;
15925     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
15926     MayHaveConvFixit = true;
15927     isInvalid = true;
15928     MayHaveFunctionDiff = true;
15929     break;
15930   }
15931 
15932   QualType FirstType, SecondType;
15933   switch (Action) {
15934   case AA_Assigning:
15935   case AA_Initializing:
15936     // The destination type comes first.
15937     FirstType = DstType;
15938     SecondType = SrcType;
15939     break;
15940 
15941   case AA_Returning:
15942   case AA_Passing:
15943   case AA_Passing_CFAudited:
15944   case AA_Converting:
15945   case AA_Sending:
15946   case AA_Casting:
15947     // The source type comes first.
15948     FirstType = SrcType;
15949     SecondType = DstType;
15950     break;
15951   }
15952 
15953   PartialDiagnostic FDiag = PDiag(DiagKind);
15954   if (Action == AA_Passing_CFAudited)
15955     FDiag << FirstType << SecondType << AA_Passing << SrcExpr->getSourceRange();
15956   else
15957     FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
15958 
15959   // If we can fix the conversion, suggest the FixIts.
15960   if (!ConvHints.isNull()) {
15961     for (FixItHint &H : ConvHints.Hints)
15962       FDiag << H;
15963   }
15964 
15965   if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
15966 
15967   if (MayHaveFunctionDiff)
15968     HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
15969 
15970   Diag(Loc, FDiag);
15971   if ((DiagKind == diag::warn_incompatible_qualified_id ||
15972        DiagKind == diag::err_incompatible_qualified_id) &&
15973       PDecl && IFace && !IFace->hasDefinition())
15974     Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
15975         << IFace << PDecl;
15976 
15977   if (SecondType == Context.OverloadTy)
15978     NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
15979                               FirstType, /*TakingAddress=*/true);
15980 
15981   if (CheckInferredResultType)
15982     EmitRelatedResultTypeNote(SrcExpr);
15983 
15984   if (Action == AA_Returning && ConvTy == IncompatiblePointer)
15985     EmitRelatedResultTypeNoteForReturn(DstType);
15986 
15987   if (Complained)
15988     *Complained = true;
15989   return isInvalid;
15990 }
15991 
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result,AllowFoldKind CanFold)15992 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
15993                                                  llvm::APSInt *Result,
15994                                                  AllowFoldKind CanFold) {
15995   class SimpleICEDiagnoser : public VerifyICEDiagnoser {
15996   public:
15997     SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
15998                                              QualType T) override {
15999       return S.Diag(Loc, diag::err_ice_not_integral)
16000              << T << S.LangOpts.CPlusPlus;
16001     }
16002     SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
16003       return S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus;
16004     }
16005   } Diagnoser;
16006 
16007   return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
16008 }
16009 
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result,unsigned DiagID,AllowFoldKind CanFold)16010 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
16011                                                  llvm::APSInt *Result,
16012                                                  unsigned DiagID,
16013                                                  AllowFoldKind CanFold) {
16014   class IDDiagnoser : public VerifyICEDiagnoser {
16015     unsigned DiagID;
16016 
16017   public:
16018     IDDiagnoser(unsigned DiagID)
16019       : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
16020 
16021     SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
16022       return S.Diag(Loc, DiagID);
16023     }
16024   } Diagnoser(DiagID);
16025 
16026   return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
16027 }
16028 
16029 Sema::SemaDiagnosticBuilder
diagnoseNotICEType(Sema & S,SourceLocation Loc,QualType T)16030 Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc,
16031                                              QualType T) {
16032   return diagnoseNotICE(S, Loc);
16033 }
16034 
16035 Sema::SemaDiagnosticBuilder
diagnoseFold(Sema & S,SourceLocation Loc)16036 Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) {
16037   return S.Diag(Loc, diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus;
16038 }
16039 
16040 ExprResult
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result,VerifyICEDiagnoser & Diagnoser,AllowFoldKind CanFold)16041 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
16042                                       VerifyICEDiagnoser &Diagnoser,
16043                                       AllowFoldKind CanFold) {
16044   SourceLocation DiagLoc = E->getBeginLoc();
16045 
16046   if (getLangOpts().CPlusPlus11) {
16047     // C++11 [expr.const]p5:
16048     //   If an expression of literal class type is used in a context where an
16049     //   integral constant expression is required, then that class type shall
16050     //   have a single non-explicit conversion function to an integral or
16051     //   unscoped enumeration type
16052     ExprResult Converted;
16053     class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
16054       VerifyICEDiagnoser &BaseDiagnoser;
16055     public:
16056       CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser)
16057           : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false,
16058                                 BaseDiagnoser.Suppress, true),
16059             BaseDiagnoser(BaseDiagnoser) {}
16060 
16061       SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
16062                                            QualType T) override {
16063         return BaseDiagnoser.diagnoseNotICEType(S, Loc, T);
16064       }
16065 
16066       SemaDiagnosticBuilder diagnoseIncomplete(
16067           Sema &S, SourceLocation Loc, QualType T) override {
16068         return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
16069       }
16070 
16071       SemaDiagnosticBuilder diagnoseExplicitConv(
16072           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
16073         return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
16074       }
16075 
16076       SemaDiagnosticBuilder noteExplicitConv(
16077           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
16078         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
16079                  << ConvTy->isEnumeralType() << ConvTy;
16080       }
16081 
16082       SemaDiagnosticBuilder diagnoseAmbiguous(
16083           Sema &S, SourceLocation Loc, QualType T) override {
16084         return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
16085       }
16086 
16087       SemaDiagnosticBuilder noteAmbiguous(
16088           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
16089         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
16090                  << ConvTy->isEnumeralType() << ConvTy;
16091       }
16092 
16093       SemaDiagnosticBuilder diagnoseConversion(
16094           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
16095         llvm_unreachable("conversion functions are permitted");
16096       }
16097     } ConvertDiagnoser(Diagnoser);
16098 
16099     Converted = PerformContextualImplicitConversion(DiagLoc, E,
16100                                                     ConvertDiagnoser);
16101     if (Converted.isInvalid())
16102       return Converted;
16103     E = Converted.get();
16104     if (!E->getType()->isIntegralOrUnscopedEnumerationType())
16105       return ExprError();
16106   } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
16107     // An ICE must be of integral or unscoped enumeration type.
16108     if (!Diagnoser.Suppress)
16109       Diagnoser.diagnoseNotICEType(*this, DiagLoc, E->getType())
16110           << E->getSourceRange();
16111     return ExprError();
16112   }
16113 
16114   ExprResult RValueExpr = DefaultLvalueConversion(E);
16115   if (RValueExpr.isInvalid())
16116     return ExprError();
16117 
16118   E = RValueExpr.get();
16119 
16120   // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
16121   // in the non-ICE case.
16122   if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
16123     if (Result)
16124       *Result = E->EvaluateKnownConstIntCheckOverflow(Context);
16125     if (!isa<ConstantExpr>(E))
16126       E = ConstantExpr::Create(Context, E);
16127     return E;
16128   }
16129 
16130   Expr::EvalResult EvalResult;
16131   SmallVector<PartialDiagnosticAt, 8> Notes;
16132   EvalResult.Diag = &Notes;
16133 
16134   // Try to evaluate the expression, and produce diagnostics explaining why it's
16135   // not a constant expression as a side-effect.
16136   bool Folded =
16137       E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) &&
16138       EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
16139 
16140   if (!isa<ConstantExpr>(E))
16141     E = ConstantExpr::Create(Context, E, EvalResult.Val);
16142 
16143   // In C++11, we can rely on diagnostics being produced for any expression
16144   // which is not a constant expression. If no diagnostics were produced, then
16145   // this is a constant expression.
16146   if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
16147     if (Result)
16148       *Result = EvalResult.Val.getInt();
16149     return E;
16150   }
16151 
16152   // If our only note is the usual "invalid subexpression" note, just point
16153   // the caret at its location rather than producing an essentially
16154   // redundant note.
16155   if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
16156         diag::note_invalid_subexpr_in_const_expr) {
16157     DiagLoc = Notes[0].first;
16158     Notes.clear();
16159   }
16160 
16161   if (!Folded || !CanFold) {
16162     if (!Diagnoser.Suppress) {
16163       Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange();
16164       for (const PartialDiagnosticAt &Note : Notes)
16165         Diag(Note.first, Note.second);
16166     }
16167 
16168     return ExprError();
16169   }
16170 
16171   Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange();
16172   for (const PartialDiagnosticAt &Note : Notes)
16173     Diag(Note.first, Note.second);
16174 
16175   if (Result)
16176     *Result = EvalResult.Val.getInt();
16177   return E;
16178 }
16179 
16180 namespace {
16181   // Handle the case where we conclude a expression which we speculatively
16182   // considered to be unevaluated is actually evaluated.
16183   class TransformToPE : public TreeTransform<TransformToPE> {
16184     typedef TreeTransform<TransformToPE> BaseTransform;
16185 
16186   public:
TransformToPE(Sema & SemaRef)16187     TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
16188 
16189     // Make sure we redo semantic analysis
AlwaysRebuild()16190     bool AlwaysRebuild() { return true; }
ReplacingOriginal()16191     bool ReplacingOriginal() { return true; }
16192 
16193     // We need to special-case DeclRefExprs referring to FieldDecls which
16194     // are not part of a member pointer formation; normal TreeTransforming
16195     // doesn't catch this case because of the way we represent them in the AST.
16196     // FIXME: This is a bit ugly; is it really the best way to handle this
16197     // case?
16198     //
16199     // Error on DeclRefExprs referring to FieldDecls.
TransformDeclRefExpr(DeclRefExpr * E)16200     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
16201       if (isa<FieldDecl>(E->getDecl()) &&
16202           !SemaRef.isUnevaluatedContext())
16203         return SemaRef.Diag(E->getLocation(),
16204                             diag::err_invalid_non_static_member_use)
16205             << E->getDecl() << E->getSourceRange();
16206 
16207       return BaseTransform::TransformDeclRefExpr(E);
16208     }
16209 
16210     // Exception: filter out member pointer formation
TransformUnaryOperator(UnaryOperator * E)16211     ExprResult TransformUnaryOperator(UnaryOperator *E) {
16212       if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
16213         return E;
16214 
16215       return BaseTransform::TransformUnaryOperator(E);
16216     }
16217 
16218     // The body of a lambda-expression is in a separate expression evaluation
16219     // context so never needs to be transformed.
16220     // FIXME: Ideally we wouldn't transform the closure type either, and would
16221     // just recreate the capture expressions and lambda expression.
TransformLambdaBody(LambdaExpr * E,Stmt * Body)16222     StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
16223       return SkipLambdaBody(E, Body);
16224     }
16225   };
16226 }
16227 
TransformToPotentiallyEvaluated(Expr * E)16228 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
16229   assert(isUnevaluatedContext() &&
16230          "Should only transform unevaluated expressions");
16231   ExprEvalContexts.back().Context =
16232       ExprEvalContexts[ExprEvalContexts.size()-2].Context;
16233   if (isUnevaluatedContext())
16234     return E;
16235   return TransformToPE(*this).TransformExpr(E);
16236 }
16237 
16238 void
PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,Decl * LambdaContextDecl,ExpressionEvaluationContextRecord::ExpressionKind ExprContext)16239 Sema::PushExpressionEvaluationContext(
16240     ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
16241     ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
16242   ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
16243                                 LambdaContextDecl, ExprContext);
16244   Cleanup.reset();
16245   if (!MaybeODRUseExprs.empty())
16246     std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
16247 }
16248 
16249 void
PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,ReuseLambdaContextDecl_t,ExpressionEvaluationContextRecord::ExpressionKind ExprContext)16250 Sema::PushExpressionEvaluationContext(
16251     ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
16252     ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
16253   Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
16254   PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
16255 }
16256 
16257 namespace {
16258 
CheckPossibleDeref(Sema & S,const Expr * PossibleDeref)16259 const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
16260   PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
16261   if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
16262     if (E->getOpcode() == UO_Deref)
16263       return CheckPossibleDeref(S, E->getSubExpr());
16264   } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
16265     return CheckPossibleDeref(S, E->getBase());
16266   } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
16267     return CheckPossibleDeref(S, E->getBase());
16268   } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
16269     QualType Inner;
16270     QualType Ty = E->getType();
16271     if (const auto *Ptr = Ty->getAs<PointerType>())
16272       Inner = Ptr->getPointeeType();
16273     else if (const auto *Arr = S.Context.getAsArrayType(Ty))
16274       Inner = Arr->getElementType();
16275     else
16276       return nullptr;
16277 
16278     if (Inner->hasAttr(attr::NoDeref))
16279       return E;
16280   }
16281   return nullptr;
16282 }
16283 
16284 } // namespace
16285 
WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord & Rec)16286 void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
16287   for (const Expr *E : Rec.PossibleDerefs) {
16288     const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
16289     if (DeclRef) {
16290       const ValueDecl *Decl = DeclRef->getDecl();
16291       Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
16292           << Decl->getName() << E->getSourceRange();
16293       Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
16294     } else {
16295       Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
16296           << E->getSourceRange();
16297     }
16298   }
16299   Rec.PossibleDerefs.clear();
16300 }
16301 
16302 /// Check whether E, which is either a discarded-value expression or an
16303 /// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue,
16304 /// and if so, remove it from the list of volatile-qualified assignments that
16305 /// we are going to warn are deprecated.
CheckUnusedVolatileAssignment(Expr * E)16306 void Sema::CheckUnusedVolatileAssignment(Expr *E) {
16307   if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20)
16308     return;
16309 
16310   // Note: ignoring parens here is not justified by the standard rules, but
16311   // ignoring parentheses seems like a more reasonable approach, and this only
16312   // drives a deprecation warning so doesn't affect conformance.
16313   if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) {
16314     if (BO->getOpcode() == BO_Assign) {
16315       auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
16316       LHSs.erase(std::remove(LHSs.begin(), LHSs.end(), BO->getLHS()),
16317                  LHSs.end());
16318     }
16319   }
16320 }
16321 
CheckForImmediateInvocation(ExprResult E,FunctionDecl * Decl)16322 ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) {
16323   if (!E.isUsable() || !Decl || !Decl->isConsteval() || isConstantEvaluated() ||
16324       RebuildingImmediateInvocation)
16325     return E;
16326 
16327   /// Opportunistically remove the callee from ReferencesToConsteval if we can.
16328   /// It's OK if this fails; we'll also remove this in
16329   /// HandleImmediateInvocations, but catching it here allows us to avoid
16330   /// walking the AST looking for it in simple cases.
16331   if (auto *Call = dyn_cast<CallExpr>(E.get()->IgnoreImplicit()))
16332     if (auto *DeclRef =
16333             dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
16334       ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef);
16335 
16336   E = MaybeCreateExprWithCleanups(E);
16337 
16338   ConstantExpr *Res = ConstantExpr::Create(
16339       getASTContext(), E.get(),
16340       ConstantExpr::getStorageKind(Decl->getReturnType().getTypePtr(),
16341                                    getASTContext()),
16342       /*IsImmediateInvocation*/ true);
16343   ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0);
16344   return Res;
16345 }
16346 
EvaluateAndDiagnoseImmediateInvocation(Sema & SemaRef,Sema::ImmediateInvocationCandidate Candidate)16347 static void EvaluateAndDiagnoseImmediateInvocation(
16348     Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) {
16349   llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
16350   Expr::EvalResult Eval;
16351   Eval.Diag = &Notes;
16352   ConstantExpr *CE = Candidate.getPointer();
16353   bool Result = CE->EvaluateAsConstantExpr(
16354       Eval, SemaRef.getASTContext(), ConstantExprKind::ImmediateInvocation);
16355   if (!Result || !Notes.empty()) {
16356     Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit();
16357     if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(InnerExpr))
16358       InnerExpr = FunctionalCast->getSubExpr();
16359     FunctionDecl *FD = nullptr;
16360     if (auto *Call = dyn_cast<CallExpr>(InnerExpr))
16361       FD = cast<FunctionDecl>(Call->getCalleeDecl());
16362     else if (auto *Call = dyn_cast<CXXConstructExpr>(InnerExpr))
16363       FD = Call->getConstructor();
16364     else
16365       llvm_unreachable("unhandled decl kind");
16366     assert(FD->isConsteval());
16367     SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call) << FD;
16368     for (auto &Note : Notes)
16369       SemaRef.Diag(Note.first, Note.second);
16370     return;
16371   }
16372   CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext());
16373 }
16374 
RemoveNestedImmediateInvocation(Sema & SemaRef,Sema::ExpressionEvaluationContextRecord & Rec,SmallVector<Sema::ImmediateInvocationCandidate,4>::reverse_iterator It)16375 static void RemoveNestedImmediateInvocation(
16376     Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec,
16377     SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) {
16378   struct ComplexRemove : TreeTransform<ComplexRemove> {
16379     using Base = TreeTransform<ComplexRemove>;
16380     llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
16381     SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet;
16382     SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator
16383         CurrentII;
16384     ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR,
16385                   SmallVector<Sema::ImmediateInvocationCandidate, 4> &II,
16386                   SmallVector<Sema::ImmediateInvocationCandidate,
16387                               4>::reverse_iterator Current)
16388         : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {}
16389     void RemoveImmediateInvocation(ConstantExpr* E) {
16390       auto It = std::find_if(CurrentII, IISet.rend(),
16391                              [E](Sema::ImmediateInvocationCandidate Elem) {
16392                                return Elem.getPointer() == E;
16393                              });
16394       assert(It != IISet.rend() &&
16395              "ConstantExpr marked IsImmediateInvocation should "
16396              "be present");
16397       It->setInt(1); // Mark as deleted
16398     }
16399     ExprResult TransformConstantExpr(ConstantExpr *E) {
16400       if (!E->isImmediateInvocation())
16401         return Base::TransformConstantExpr(E);
16402       RemoveImmediateInvocation(E);
16403       return Base::TransformExpr(E->getSubExpr());
16404     }
16405     /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
16406     /// we need to remove its DeclRefExpr from the DRSet.
16407     ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
16408       DRSet.erase(cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit()));
16409       return Base::TransformCXXOperatorCallExpr(E);
16410     }
16411     /// Base::TransformInitializer skip ConstantExpr so we need to visit them
16412     /// here.
16413     ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) {
16414       if (!Init)
16415         return Init;
16416       /// ConstantExpr are the first layer of implicit node to be removed so if
16417       /// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
16418       if (auto *CE = dyn_cast<ConstantExpr>(Init))
16419         if (CE->isImmediateInvocation())
16420           RemoveImmediateInvocation(CE);
16421       return Base::TransformInitializer(Init, NotCopyInit);
16422     }
16423     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
16424       DRSet.erase(E);
16425       return E;
16426     }
16427     bool AlwaysRebuild() { return false; }
16428     bool ReplacingOriginal() { return true; }
16429     bool AllowSkippingCXXConstructExpr() {
16430       bool Res = AllowSkippingFirstCXXConstructExpr;
16431       AllowSkippingFirstCXXConstructExpr = true;
16432       return Res;
16433     }
16434     bool AllowSkippingFirstCXXConstructExpr = true;
16435   } Transformer(SemaRef, Rec.ReferenceToConsteval,
16436                 Rec.ImmediateInvocationCandidates, It);
16437 
16438   /// CXXConstructExpr with a single argument are getting skipped by
16439   /// TreeTransform in some situtation because they could be implicit. This
16440   /// can only occur for the top-level CXXConstructExpr because it is used
16441   /// nowhere in the expression being transformed therefore will not be rebuilt.
16442   /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
16443   /// skipping the first CXXConstructExpr.
16444   if (isa<CXXConstructExpr>(It->getPointer()->IgnoreImplicit()))
16445     Transformer.AllowSkippingFirstCXXConstructExpr = false;
16446 
16447   ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr());
16448   assert(Res.isUsable());
16449   Res = SemaRef.MaybeCreateExprWithCleanups(Res);
16450   It->getPointer()->setSubExpr(Res.get());
16451 }
16452 
16453 static void
HandleImmediateInvocations(Sema & SemaRef,Sema::ExpressionEvaluationContextRecord & Rec)16454 HandleImmediateInvocations(Sema &SemaRef,
16455                            Sema::ExpressionEvaluationContextRecord &Rec) {
16456   if ((Rec.ImmediateInvocationCandidates.size() == 0 &&
16457        Rec.ReferenceToConsteval.size() == 0) ||
16458       SemaRef.RebuildingImmediateInvocation)
16459     return;
16460 
16461   /// When we have more then 1 ImmediateInvocationCandidates we need to check
16462   /// for nested ImmediateInvocationCandidates. when we have only 1 we only
16463   /// need to remove ReferenceToConsteval in the immediate invocation.
16464   if (Rec.ImmediateInvocationCandidates.size() > 1) {
16465 
16466     /// Prevent sema calls during the tree transform from adding pointers that
16467     /// are already in the sets.
16468     llvm::SaveAndRestore<bool> DisableIITracking(
16469         SemaRef.RebuildingImmediateInvocation, true);
16470 
16471     /// Prevent diagnostic during tree transfrom as they are duplicates
16472     Sema::TentativeAnalysisScope DisableDiag(SemaRef);
16473 
16474     for (auto It = Rec.ImmediateInvocationCandidates.rbegin();
16475          It != Rec.ImmediateInvocationCandidates.rend(); It++)
16476       if (!It->getInt())
16477         RemoveNestedImmediateInvocation(SemaRef, Rec, It);
16478   } else if (Rec.ImmediateInvocationCandidates.size() == 1 &&
16479              Rec.ReferenceToConsteval.size()) {
16480     struct SimpleRemove : RecursiveASTVisitor<SimpleRemove> {
16481       llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
16482       SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {}
16483       bool VisitDeclRefExpr(DeclRefExpr *E) {
16484         DRSet.erase(E);
16485         return DRSet.size();
16486       }
16487     } Visitor(Rec.ReferenceToConsteval);
16488     Visitor.TraverseStmt(
16489         Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr());
16490   }
16491   for (auto CE : Rec.ImmediateInvocationCandidates)
16492     if (!CE.getInt())
16493       EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE);
16494   for (auto DR : Rec.ReferenceToConsteval) {
16495     auto *FD = cast<FunctionDecl>(DR->getDecl());
16496     SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address)
16497         << FD;
16498     SemaRef.Diag(FD->getLocation(), diag::note_declared_at);
16499   }
16500 }
16501 
PopExpressionEvaluationContext()16502 void Sema::PopExpressionEvaluationContext() {
16503   ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
16504   unsigned NumTypos = Rec.NumTypos;
16505 
16506   if (!Rec.Lambdas.empty()) {
16507     using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
16508     if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument || Rec.isUnevaluated() ||
16509         (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17)) {
16510       unsigned D;
16511       if (Rec.isUnevaluated()) {
16512         // C++11 [expr.prim.lambda]p2:
16513         //   A lambda-expression shall not appear in an unevaluated operand
16514         //   (Clause 5).
16515         D = diag::err_lambda_unevaluated_operand;
16516       } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
16517         // C++1y [expr.const]p2:
16518         //   A conditional-expression e is a core constant expression unless the
16519         //   evaluation of e, following the rules of the abstract machine, would
16520         //   evaluate [...] a lambda-expression.
16521         D = diag::err_lambda_in_constant_expression;
16522       } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
16523         // C++17 [expr.prim.lamda]p2:
16524         // A lambda-expression shall not appear [...] in a template-argument.
16525         D = diag::err_lambda_in_invalid_context;
16526       } else
16527         llvm_unreachable("Couldn't infer lambda error message.");
16528 
16529       for (const auto *L : Rec.Lambdas)
16530         Diag(L->getBeginLoc(), D);
16531     }
16532   }
16533 
16534   WarnOnPendingNoDerefs(Rec);
16535   HandleImmediateInvocations(*this, Rec);
16536 
16537   // Warn on any volatile-qualified simple-assignments that are not discarded-
16538   // value expressions nor unevaluated operands (those cases get removed from
16539   // this list by CheckUnusedVolatileAssignment).
16540   for (auto *BO : Rec.VolatileAssignmentLHSs)
16541     Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile)
16542         << BO->getType();
16543 
16544   // When are coming out of an unevaluated context, clear out any
16545   // temporaries that we may have created as part of the evaluation of
16546   // the expression in that context: they aren't relevant because they
16547   // will never be constructed.
16548   if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
16549     ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
16550                              ExprCleanupObjects.end());
16551     Cleanup = Rec.ParentCleanup;
16552     CleanupVarDeclMarking();
16553     std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
16554   // Otherwise, merge the contexts together.
16555   } else {
16556     Cleanup.mergeFrom(Rec.ParentCleanup);
16557     MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
16558                             Rec.SavedMaybeODRUseExprs.end());
16559   }
16560 
16561   // Pop the current expression evaluation context off the stack.
16562   ExprEvalContexts.pop_back();
16563 
16564   // The global expression evaluation context record is never popped.
16565   ExprEvalContexts.back().NumTypos += NumTypos;
16566 }
16567 
DiscardCleanupsInEvaluationContext()16568 void Sema::DiscardCleanupsInEvaluationContext() {
16569   ExprCleanupObjects.erase(
16570          ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
16571          ExprCleanupObjects.end());
16572   Cleanup.reset();
16573   MaybeODRUseExprs.clear();
16574 }
16575 
HandleExprEvaluationContextForTypeof(Expr * E)16576 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
16577   ExprResult Result = CheckPlaceholderExpr(E);
16578   if (Result.isInvalid())
16579     return ExprError();
16580   E = Result.get();
16581   if (!E->getType()->isVariablyModifiedType())
16582     return E;
16583   return TransformToPotentiallyEvaluated(E);
16584 }
16585 
16586 /// Are we in a context that is potentially constant evaluated per C++20
16587 /// [expr.const]p12?
isPotentiallyConstantEvaluatedContext(Sema & SemaRef)16588 static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
16589   /// C++2a [expr.const]p12:
16590   //   An expression or conversion is potentially constant evaluated if it is
16591   switch (SemaRef.ExprEvalContexts.back().Context) {
16592     case Sema::ExpressionEvaluationContext::ConstantEvaluated:
16593       // -- a manifestly constant-evaluated expression,
16594     case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
16595     case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
16596     case Sema::ExpressionEvaluationContext::DiscardedStatement:
16597       // -- a potentially-evaluated expression,
16598     case Sema::ExpressionEvaluationContext::UnevaluatedList:
16599       // -- an immediate subexpression of a braced-init-list,
16600 
16601       // -- [FIXME] an expression of the form & cast-expression that occurs
16602       //    within a templated entity
16603       // -- a subexpression of one of the above that is not a subexpression of
16604       // a nested unevaluated operand.
16605       return true;
16606 
16607     case Sema::ExpressionEvaluationContext::Unevaluated:
16608     case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
16609       // Expressions in this context are never evaluated.
16610       return false;
16611   }
16612   llvm_unreachable("Invalid context");
16613 }
16614 
16615 /// Return true if this function has a calling convention that requires mangling
16616 /// in the size of the parameter pack.
funcHasParameterSizeMangling(Sema & S,FunctionDecl * FD)16617 static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
16618   // These manglings don't do anything on non-Windows or non-x86 platforms, so
16619   // we don't need parameter type sizes.
16620   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
16621   if (!TT.isOSWindows() || !TT.isX86())
16622     return false;
16623 
16624   // If this is C++ and this isn't an extern "C" function, parameters do not
16625   // need to be complete. In this case, C++ mangling will apply, which doesn't
16626   // use the size of the parameters.
16627   if (S.getLangOpts().CPlusPlus && !FD->isExternC())
16628     return false;
16629 
16630   // Stdcall, fastcall, and vectorcall need this special treatment.
16631   CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
16632   switch (CC) {
16633   case CC_X86StdCall:
16634   case CC_X86FastCall:
16635   case CC_X86VectorCall:
16636     return true;
16637   default:
16638     break;
16639   }
16640   return false;
16641 }
16642 
16643 /// Require that all of the parameter types of function be complete. Normally,
16644 /// parameter types are only required to be complete when a function is called
16645 /// or defined, but to mangle functions with certain calling conventions, the
16646 /// mangler needs to know the size of the parameter list. In this situation,
16647 /// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
16648 /// the function as _foo@0, i.e. zero bytes of parameters, which will usually
16649 /// result in a linker error. Clang doesn't implement this behavior, and instead
16650 /// attempts to error at compile time.
CheckCompleteParameterTypesForMangler(Sema & S,FunctionDecl * FD,SourceLocation Loc)16651 static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
16652                                                   SourceLocation Loc) {
16653   class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
16654     FunctionDecl *FD;
16655     ParmVarDecl *Param;
16656 
16657   public:
16658     ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
16659         : FD(FD), Param(Param) {}
16660 
16661     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
16662       CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
16663       StringRef CCName;
16664       switch (CC) {
16665       case CC_X86StdCall:
16666         CCName = "stdcall";
16667         break;
16668       case CC_X86FastCall:
16669         CCName = "fastcall";
16670         break;
16671       case CC_X86VectorCall:
16672         CCName = "vectorcall";
16673         break;
16674       default:
16675         llvm_unreachable("CC does not need mangling");
16676       }
16677 
16678       S.Diag(Loc, diag::err_cconv_incomplete_param_type)
16679           << Param->getDeclName() << FD->getDeclName() << CCName;
16680     }
16681   };
16682 
16683   for (ParmVarDecl *Param : FD->parameters()) {
16684     ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
16685     S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
16686   }
16687 }
16688 
16689 namespace {
16690 enum class OdrUseContext {
16691   /// Declarations in this context are not odr-used.
16692   None,
16693   /// Declarations in this context are formally odr-used, but this is a
16694   /// dependent context.
16695   Dependent,
16696   /// Declarations in this context are odr-used but not actually used (yet).
16697   FormallyOdrUsed,
16698   /// Declarations in this context are used.
16699   Used
16700 };
16701 }
16702 
16703 /// Are we within a context in which references to resolved functions or to
16704 /// variables result in odr-use?
isOdrUseContext(Sema & SemaRef)16705 static OdrUseContext isOdrUseContext(Sema &SemaRef) {
16706   OdrUseContext Result;
16707 
16708   switch (SemaRef.ExprEvalContexts.back().Context) {
16709     case Sema::ExpressionEvaluationContext::Unevaluated:
16710     case Sema::ExpressionEvaluationContext::UnevaluatedList:
16711     case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
16712       return OdrUseContext::None;
16713 
16714     case Sema::ExpressionEvaluationContext::ConstantEvaluated:
16715     case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
16716       Result = OdrUseContext::Used;
16717       break;
16718 
16719     case Sema::ExpressionEvaluationContext::DiscardedStatement:
16720       Result = OdrUseContext::FormallyOdrUsed;
16721       break;
16722 
16723     case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
16724       // A default argument formally results in odr-use, but doesn't actually
16725       // result in a use in any real sense until it itself is used.
16726       Result = OdrUseContext::FormallyOdrUsed;
16727       break;
16728   }
16729 
16730   if (SemaRef.CurContext->isDependentContext())
16731     return OdrUseContext::Dependent;
16732 
16733   return Result;
16734 }
16735 
isImplicitlyDefinableConstexprFunction(FunctionDecl * Func)16736 static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
16737   if (!Func->isConstexpr())
16738     return false;
16739 
16740   if (Func->isImplicitlyInstantiable() || !Func->isUserProvided())
16741     return true;
16742   auto *CCD = dyn_cast<CXXConstructorDecl>(Func);
16743   return CCD && CCD->getInheritedConstructor();
16744 }
16745 
16746 /// Mark a function referenced, and check whether it is odr-used
16747 /// (C++ [basic.def.odr]p2, C99 6.9p3)
MarkFunctionReferenced(SourceLocation Loc,FunctionDecl * Func,bool MightBeOdrUse)16748 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
16749                                   bool MightBeOdrUse) {
16750   assert(Func && "No function?");
16751 
16752   Func->setReferenced();
16753 
16754   // Recursive functions aren't really used until they're used from some other
16755   // context.
16756   bool IsRecursiveCall = CurContext == Func;
16757 
16758   // C++11 [basic.def.odr]p3:
16759   //   A function whose name appears as a potentially-evaluated expression is
16760   //   odr-used if it is the unique lookup result or the selected member of a
16761   //   set of overloaded functions [...].
16762   //
16763   // We (incorrectly) mark overload resolution as an unevaluated context, so we
16764   // can just check that here.
16765   OdrUseContext OdrUse =
16766       MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
16767   if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
16768     OdrUse = OdrUseContext::FormallyOdrUsed;
16769 
16770   // Trivial default constructors and destructors are never actually used.
16771   // FIXME: What about other special members?
16772   if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
16773       OdrUse == OdrUseContext::Used) {
16774     if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func))
16775       if (Constructor->isDefaultConstructor())
16776         OdrUse = OdrUseContext::FormallyOdrUsed;
16777     if (isa<CXXDestructorDecl>(Func))
16778       OdrUse = OdrUseContext::FormallyOdrUsed;
16779   }
16780 
16781   // C++20 [expr.const]p12:
16782   //   A function [...] is needed for constant evaluation if it is [...] a
16783   //   constexpr function that is named by an expression that is potentially
16784   //   constant evaluated
16785   bool NeededForConstantEvaluation =
16786       isPotentiallyConstantEvaluatedContext(*this) &&
16787       isImplicitlyDefinableConstexprFunction(Func);
16788 
16789   // Determine whether we require a function definition to exist, per
16790   // C++11 [temp.inst]p3:
16791   //   Unless a function template specialization has been explicitly
16792   //   instantiated or explicitly specialized, the function template
16793   //   specialization is implicitly instantiated when the specialization is
16794   //   referenced in a context that requires a function definition to exist.
16795   // C++20 [temp.inst]p7:
16796   //   The existence of a definition of a [...] function is considered to
16797   //   affect the semantics of the program if the [...] function is needed for
16798   //   constant evaluation by an expression
16799   // C++20 [basic.def.odr]p10:
16800   //   Every program shall contain exactly one definition of every non-inline
16801   //   function or variable that is odr-used in that program outside of a
16802   //   discarded statement
16803   // C++20 [special]p1:
16804   //   The implementation will implicitly define [defaulted special members]
16805   //   if they are odr-used or needed for constant evaluation.
16806   //
16807   // Note that we skip the implicit instantiation of templates that are only
16808   // used in unused default arguments or by recursive calls to themselves.
16809   // This is formally non-conforming, but seems reasonable in practice.
16810   bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used ||
16811                                              NeededForConstantEvaluation);
16812 
16813   // C++14 [temp.expl.spec]p6:
16814   //   If a template [...] is explicitly specialized then that specialization
16815   //   shall be declared before the first use of that specialization that would
16816   //   cause an implicit instantiation to take place, in every translation unit
16817   //   in which such a use occurs
16818   if (NeedDefinition &&
16819       (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
16820        Func->getMemberSpecializationInfo()))
16821     checkSpecializationVisibility(Loc, Func);
16822 
16823   if (getLangOpts().CUDA)
16824     CheckCUDACall(Loc, Func);
16825 
16826   if (getLangOpts().SYCLIsDevice)
16827     checkSYCLDeviceFunction(Loc, Func);
16828 
16829   // If we need a definition, try to create one.
16830   if (NeedDefinition && !Func->getBody()) {
16831     runWithSufficientStackSpace(Loc, [&] {
16832       if (CXXConstructorDecl *Constructor =
16833               dyn_cast<CXXConstructorDecl>(Func)) {
16834         Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
16835         if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
16836           if (Constructor->isDefaultConstructor()) {
16837             if (Constructor->isTrivial() &&
16838                 !Constructor->hasAttr<DLLExportAttr>())
16839               return;
16840             DefineImplicitDefaultConstructor(Loc, Constructor);
16841           } else if (Constructor->isCopyConstructor()) {
16842             DefineImplicitCopyConstructor(Loc, Constructor);
16843           } else if (Constructor->isMoveConstructor()) {
16844             DefineImplicitMoveConstructor(Loc, Constructor);
16845           }
16846         } else if (Constructor->getInheritedConstructor()) {
16847           DefineInheritingConstructor(Loc, Constructor);
16848         }
16849       } else if (CXXDestructorDecl *Destructor =
16850                      dyn_cast<CXXDestructorDecl>(Func)) {
16851         Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
16852         if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
16853           if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
16854             return;
16855           DefineImplicitDestructor(Loc, Destructor);
16856         }
16857         if (Destructor->isVirtual() && getLangOpts().AppleKext)
16858           MarkVTableUsed(Loc, Destructor->getParent());
16859       } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
16860         if (MethodDecl->isOverloadedOperator() &&
16861             MethodDecl->getOverloadedOperator() == OO_Equal) {
16862           MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
16863           if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
16864             if (MethodDecl->isCopyAssignmentOperator())
16865               DefineImplicitCopyAssignment(Loc, MethodDecl);
16866             else if (MethodDecl->isMoveAssignmentOperator())
16867               DefineImplicitMoveAssignment(Loc, MethodDecl);
16868           }
16869         } else if (isa<CXXConversionDecl>(MethodDecl) &&
16870                    MethodDecl->getParent()->isLambda()) {
16871           CXXConversionDecl *Conversion =
16872               cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
16873           if (Conversion->isLambdaToBlockPointerConversion())
16874             DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
16875           else
16876             DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
16877         } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
16878           MarkVTableUsed(Loc, MethodDecl->getParent());
16879       }
16880 
16881       if (Func->isDefaulted() && !Func->isDeleted()) {
16882         DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func);
16883         if (DCK != DefaultedComparisonKind::None)
16884           DefineDefaultedComparison(Loc, Func, DCK);
16885       }
16886 
16887       // Implicit instantiation of function templates and member functions of
16888       // class templates.
16889       if (Func->isImplicitlyInstantiable()) {
16890         TemplateSpecializationKind TSK =
16891             Func->getTemplateSpecializationKindForInstantiation();
16892         SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
16893         bool FirstInstantiation = PointOfInstantiation.isInvalid();
16894         if (FirstInstantiation) {
16895           PointOfInstantiation = Loc;
16896           if (auto *MSI = Func->getMemberSpecializationInfo())
16897             MSI->setPointOfInstantiation(Loc);
16898             // FIXME: Notify listener.
16899           else
16900             Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
16901         } else if (TSK != TSK_ImplicitInstantiation) {
16902           // Use the point of use as the point of instantiation, instead of the
16903           // point of explicit instantiation (which we track as the actual point
16904           // of instantiation). This gives better backtraces in diagnostics.
16905           PointOfInstantiation = Loc;
16906         }
16907 
16908         if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
16909             Func->isConstexpr()) {
16910           if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
16911               cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
16912               CodeSynthesisContexts.size())
16913             PendingLocalImplicitInstantiations.push_back(
16914                 std::make_pair(Func, PointOfInstantiation));
16915           else if (Func->isConstexpr())
16916             // Do not defer instantiations of constexpr functions, to avoid the
16917             // expression evaluator needing to call back into Sema if it sees a
16918             // call to such a function.
16919             InstantiateFunctionDefinition(PointOfInstantiation, Func);
16920           else {
16921             Func->setInstantiationIsPending(true);
16922             PendingInstantiations.push_back(
16923                 std::make_pair(Func, PointOfInstantiation));
16924             // Notify the consumer that a function was implicitly instantiated.
16925             Consumer.HandleCXXImplicitFunctionInstantiation(Func);
16926           }
16927         }
16928       } else {
16929         // Walk redefinitions, as some of them may be instantiable.
16930         for (auto i : Func->redecls()) {
16931           if (!i->isUsed(false) && i->isImplicitlyInstantiable())
16932             MarkFunctionReferenced(Loc, i, MightBeOdrUse);
16933         }
16934       }
16935     });
16936   }
16937 
16938   // C++14 [except.spec]p17:
16939   //   An exception-specification is considered to be needed when:
16940   //   - the function is odr-used or, if it appears in an unevaluated operand,
16941   //     would be odr-used if the expression were potentially-evaluated;
16942   //
16943   // Note, we do this even if MightBeOdrUse is false. That indicates that the
16944   // function is a pure virtual function we're calling, and in that case the
16945   // function was selected by overload resolution and we need to resolve its
16946   // exception specification for a different reason.
16947   const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
16948   if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
16949     ResolveExceptionSpec(Loc, FPT);
16950 
16951   // If this is the first "real" use, act on that.
16952   if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
16953     // Keep track of used but undefined functions.
16954     if (!Func->isDefined()) {
16955       if (mightHaveNonExternalLinkage(Func))
16956         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
16957       else if (Func->getMostRecentDecl()->isInlined() &&
16958                !LangOpts.GNUInline &&
16959                !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
16960         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
16961       else if (isExternalWithNoLinkageType(Func))
16962         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
16963     }
16964 
16965     // Some x86 Windows calling conventions mangle the size of the parameter
16966     // pack into the name. Computing the size of the parameters requires the
16967     // parameter types to be complete. Check that now.
16968     if (funcHasParameterSizeMangling(*this, Func))
16969       CheckCompleteParameterTypesForMangler(*this, Func, Loc);
16970 
16971     // In the MS C++ ABI, the compiler emits destructor variants where they are
16972     // used. If the destructor is used here but defined elsewhere, mark the
16973     // virtual base destructors referenced. If those virtual base destructors
16974     // are inline, this will ensure they are defined when emitting the complete
16975     // destructor variant. This checking may be redundant if the destructor is
16976     // provided later in this TU.
16977     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
16978       if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Func)) {
16979         CXXRecordDecl *Parent = Dtor->getParent();
16980         if (Parent->getNumVBases() > 0 && !Dtor->getBody())
16981           CheckCompleteDestructorVariant(Loc, Dtor);
16982       }
16983     }
16984 
16985     Func->markUsed(Context);
16986   }
16987 }
16988 
16989 /// Directly mark a variable odr-used. Given a choice, prefer to use
16990 /// MarkVariableReferenced since it does additional checks and then
16991 /// calls MarkVarDeclODRUsed.
16992 /// If the variable must be captured:
16993 ///  - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
16994 ///  - else capture it in the DeclContext that maps to the
16995 ///    *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
16996 static void
MarkVarDeclODRUsed(VarDecl * Var,SourceLocation Loc,Sema & SemaRef,const unsigned * const FunctionScopeIndexToStopAt=nullptr)16997 MarkVarDeclODRUsed(VarDecl *Var, SourceLocation Loc, Sema &SemaRef,
16998                    const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
16999   // Keep track of used but undefined variables.
17000   // FIXME: We shouldn't suppress this warning for static data members.
17001   if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
17002       (!Var->isExternallyVisible() || Var->isInline() ||
17003        SemaRef.isExternalWithNoLinkageType(Var)) &&
17004       !(Var->isStaticDataMember() && Var->hasInit())) {
17005     SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
17006     if (old.isInvalid())
17007       old = Loc;
17008   }
17009   QualType CaptureType, DeclRefType;
17010   if (SemaRef.LangOpts.OpenMP)
17011     SemaRef.tryCaptureOpenMPLambdas(Var);
17012   SemaRef.tryCaptureVariable(Var, Loc, Sema::TryCapture_Implicit,
17013     /*EllipsisLoc*/ SourceLocation(),
17014     /*BuildAndDiagnose*/ true,
17015     CaptureType, DeclRefType,
17016     FunctionScopeIndexToStopAt);
17017 
17018   Var->markUsed(SemaRef.Context);
17019 }
17020 
MarkCaptureUsedInEnclosingContext(VarDecl * Capture,SourceLocation Loc,unsigned CapturingScopeIndex)17021 void Sema::MarkCaptureUsedInEnclosingContext(VarDecl *Capture,
17022                                              SourceLocation Loc,
17023                                              unsigned CapturingScopeIndex) {
17024   MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex);
17025 }
17026 
17027 static void
diagnoseUncapturableValueReference(Sema & S,SourceLocation loc,ValueDecl * var,DeclContext * DC)17028 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
17029                                    ValueDecl *var, DeclContext *DC) {
17030   DeclContext *VarDC = var->getDeclContext();
17031 
17032   //  If the parameter still belongs to the translation unit, then
17033   //  we're actually just using one parameter in the declaration of
17034   //  the next.
17035   if (isa<ParmVarDecl>(var) &&
17036       isa<TranslationUnitDecl>(VarDC))
17037     return;
17038 
17039   // For C code, don't diagnose about capture if we're not actually in code
17040   // right now; it's impossible to write a non-constant expression outside of
17041   // function context, so we'll get other (more useful) diagnostics later.
17042   //
17043   // For C++, things get a bit more nasty... it would be nice to suppress this
17044   // diagnostic for certain cases like using a local variable in an array bound
17045   // for a member of a local class, but the correct predicate is not obvious.
17046   if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
17047     return;
17048 
17049   unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
17050   unsigned ContextKind = 3; // unknown
17051   if (isa<CXXMethodDecl>(VarDC) &&
17052       cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
17053     ContextKind = 2;
17054   } else if (isa<FunctionDecl>(VarDC)) {
17055     ContextKind = 0;
17056   } else if (isa<BlockDecl>(VarDC)) {
17057     ContextKind = 1;
17058   }
17059 
17060   S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
17061     << var << ValueKind << ContextKind << VarDC;
17062   S.Diag(var->getLocation(), diag::note_entity_declared_at)
17063       << var;
17064 
17065   // FIXME: Add additional diagnostic info about class etc. which prevents
17066   // capture.
17067 }
17068 
17069 
isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo * CSI,VarDecl * Var,bool & SubCapturesAreNested,QualType & CaptureType,QualType & DeclRefType)17070 static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
17071                                       bool &SubCapturesAreNested,
17072                                       QualType &CaptureType,
17073                                       QualType &DeclRefType) {
17074    // Check whether we've already captured it.
17075   if (CSI->CaptureMap.count(Var)) {
17076     // If we found a capture, any subcaptures are nested.
17077     SubCapturesAreNested = true;
17078 
17079     // Retrieve the capture type for this variable.
17080     CaptureType = CSI->getCapture(Var).getCaptureType();
17081 
17082     // Compute the type of an expression that refers to this variable.
17083     DeclRefType = CaptureType.getNonReferenceType();
17084 
17085     // Similarly to mutable captures in lambda, all the OpenMP captures by copy
17086     // are mutable in the sense that user can change their value - they are
17087     // private instances of the captured declarations.
17088     const Capture &Cap = CSI->getCapture(Var);
17089     if (Cap.isCopyCapture() &&
17090         !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) &&
17091         !(isa<CapturedRegionScopeInfo>(CSI) &&
17092           cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
17093       DeclRefType.addConst();
17094     return true;
17095   }
17096   return false;
17097 }
17098 
17099 // Only block literals, captured statements, and lambda expressions can
17100 // capture; other scopes don't work.
getParentOfCapturingContextOrNull(DeclContext * DC,VarDecl * Var,SourceLocation Loc,const bool Diagnose,Sema & S)17101 static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
17102                                  SourceLocation Loc,
17103                                  const bool Diagnose, Sema &S) {
17104   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
17105     return getLambdaAwareParentOfDeclContext(DC);
17106   else if (Var->hasLocalStorage()) {
17107     if (Diagnose)
17108        diagnoseUncapturableValueReference(S, Loc, Var, DC);
17109   }
17110   return nullptr;
17111 }
17112 
17113 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
17114 // certain types of variables (unnamed, variably modified types etc.)
17115 // so check for eligibility.
isVariableCapturable(CapturingScopeInfo * CSI,VarDecl * Var,SourceLocation Loc,const bool Diagnose,Sema & S)17116 static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
17117                                  SourceLocation Loc,
17118                                  const bool Diagnose, Sema &S) {
17119 
17120   bool IsBlock = isa<BlockScopeInfo>(CSI);
17121   bool IsLambda = isa<LambdaScopeInfo>(CSI);
17122 
17123   // Lambdas are not allowed to capture unnamed variables
17124   // (e.g. anonymous unions).
17125   // FIXME: The C++11 rule don't actually state this explicitly, but I'm
17126   // assuming that's the intent.
17127   if (IsLambda && !Var->getDeclName()) {
17128     if (Diagnose) {
17129       S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
17130       S.Diag(Var->getLocation(), diag::note_declared_at);
17131     }
17132     return false;
17133   }
17134 
17135   // Prohibit variably-modified types in blocks; they're difficult to deal with.
17136   if (Var->getType()->isVariablyModifiedType() && IsBlock) {
17137     if (Diagnose) {
17138       S.Diag(Loc, diag::err_ref_vm_type);
17139       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17140     }
17141     return false;
17142   }
17143   // Prohibit structs with flexible array members too.
17144   // We cannot capture what is in the tail end of the struct.
17145   if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
17146     if (VTTy->getDecl()->hasFlexibleArrayMember()) {
17147       if (Diagnose) {
17148         if (IsBlock)
17149           S.Diag(Loc, diag::err_ref_flexarray_type);
17150         else
17151           S.Diag(Loc, diag::err_lambda_capture_flexarray_type) << Var;
17152         S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17153       }
17154       return false;
17155     }
17156   }
17157   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
17158   // Lambdas and captured statements are not allowed to capture __block
17159   // variables; they don't support the expected semantics.
17160   if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
17161     if (Diagnose) {
17162       S.Diag(Loc, diag::err_capture_block_variable) << Var << !IsLambda;
17163       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17164     }
17165     return false;
17166   }
17167   // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
17168   if (S.getLangOpts().OpenCL && IsBlock &&
17169       Var->getType()->isBlockPointerType()) {
17170     if (Diagnose)
17171       S.Diag(Loc, diag::err_opencl_block_ref_block);
17172     return false;
17173   }
17174 
17175   return true;
17176 }
17177 
17178 // Returns true if the capture by block was successful.
captureInBlock(BlockScopeInfo * BSI,VarDecl * Var,SourceLocation Loc,const bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType,const bool Nested,Sema & S,bool Invalid)17179 static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
17180                                  SourceLocation Loc,
17181                                  const bool BuildAndDiagnose,
17182                                  QualType &CaptureType,
17183                                  QualType &DeclRefType,
17184                                  const bool Nested,
17185                                  Sema &S, bool Invalid) {
17186   bool ByRef = false;
17187 
17188   // Blocks are not allowed to capture arrays, excepting OpenCL.
17189   // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
17190   // (decayed to pointers).
17191   if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
17192     if (BuildAndDiagnose) {
17193       S.Diag(Loc, diag::err_ref_array_type);
17194       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17195       Invalid = true;
17196     } else {
17197       return false;
17198     }
17199   }
17200 
17201   // Forbid the block-capture of autoreleasing variables.
17202   if (!Invalid &&
17203       CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
17204     if (BuildAndDiagnose) {
17205       S.Diag(Loc, diag::err_arc_autoreleasing_capture)
17206         << /*block*/ 0;
17207       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17208       Invalid = true;
17209     } else {
17210       return false;
17211     }
17212   }
17213 
17214   // Warn about implicitly autoreleasing indirect parameters captured by blocks.
17215   if (const auto *PT = CaptureType->getAs<PointerType>()) {
17216     QualType PointeeTy = PT->getPointeeType();
17217 
17218     if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
17219         PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
17220         !S.Context.hasDirectOwnershipQualifier(PointeeTy)) {
17221       if (BuildAndDiagnose) {
17222         SourceLocation VarLoc = Var->getLocation();
17223         S.Diag(Loc, diag::warn_block_capture_autoreleasing);
17224         S.Diag(VarLoc, diag::note_declare_parameter_strong);
17225       }
17226     }
17227   }
17228 
17229   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
17230   if (HasBlocksAttr || CaptureType->isReferenceType() ||
17231       (S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) {
17232     // Block capture by reference does not change the capture or
17233     // declaration reference types.
17234     ByRef = true;
17235   } else {
17236     // Block capture by copy introduces 'const'.
17237     CaptureType = CaptureType.getNonReferenceType().withConst();
17238     DeclRefType = CaptureType;
17239   }
17240 
17241   // Actually capture the variable.
17242   if (BuildAndDiagnose)
17243     BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
17244                     CaptureType, Invalid);
17245 
17246   return !Invalid;
17247 }
17248 
17249 
17250 /// Capture the given variable in the captured region.
captureInCapturedRegion(CapturedRegionScopeInfo * RSI,VarDecl * Var,SourceLocation Loc,const bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType,const bool RefersToCapturedVariable,Sema & S,bool Invalid)17251 static bool captureInCapturedRegion(CapturedRegionScopeInfo *RSI,
17252                                     VarDecl *Var,
17253                                     SourceLocation Loc,
17254                                     const bool BuildAndDiagnose,
17255                                     QualType &CaptureType,
17256                                     QualType &DeclRefType,
17257                                     const bool RefersToCapturedVariable,
17258                                     Sema &S, bool Invalid) {
17259   // By default, capture variables by reference.
17260   bool ByRef = true;
17261   // Using an LValue reference type is consistent with Lambdas (see below).
17262   if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
17263     if (S.isOpenMPCapturedDecl(Var)) {
17264       bool HasConst = DeclRefType.isConstQualified();
17265       DeclRefType = DeclRefType.getUnqualifiedType();
17266       // Don't lose diagnostics about assignments to const.
17267       if (HasConst)
17268         DeclRefType.addConst();
17269     }
17270     // Do not capture firstprivates in tasks.
17271     if (S.isOpenMPPrivateDecl(Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel) !=
17272         OMPC_unknown)
17273       return true;
17274     ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel,
17275                                     RSI->OpenMPCaptureLevel);
17276   }
17277 
17278   if (ByRef)
17279     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
17280   else
17281     CaptureType = DeclRefType;
17282 
17283   // Actually capture the variable.
17284   if (BuildAndDiagnose)
17285     RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
17286                     Loc, SourceLocation(), CaptureType, Invalid);
17287 
17288   return !Invalid;
17289 }
17290 
17291 /// Capture the given variable in the lambda.
captureInLambda(LambdaScopeInfo * LSI,VarDecl * Var,SourceLocation Loc,const bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType,const bool RefersToCapturedVariable,const Sema::TryCaptureKind Kind,SourceLocation EllipsisLoc,const bool IsTopScope,Sema & S,bool Invalid)17292 static bool captureInLambda(LambdaScopeInfo *LSI,
17293                             VarDecl *Var,
17294                             SourceLocation Loc,
17295                             const bool BuildAndDiagnose,
17296                             QualType &CaptureType,
17297                             QualType &DeclRefType,
17298                             const bool RefersToCapturedVariable,
17299                             const Sema::TryCaptureKind Kind,
17300                             SourceLocation EllipsisLoc,
17301                             const bool IsTopScope,
17302                             Sema &S, bool Invalid) {
17303   // Determine whether we are capturing by reference or by value.
17304   bool ByRef = false;
17305   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
17306     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
17307   } else {
17308     ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
17309   }
17310 
17311   // Compute the type of the field that will capture this variable.
17312   if (ByRef) {
17313     // C++11 [expr.prim.lambda]p15:
17314     //   An entity is captured by reference if it is implicitly or
17315     //   explicitly captured but not captured by copy. It is
17316     //   unspecified whether additional unnamed non-static data
17317     //   members are declared in the closure type for entities
17318     //   captured by reference.
17319     //
17320     // FIXME: It is not clear whether we want to build an lvalue reference
17321     // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
17322     // to do the former, while EDG does the latter. Core issue 1249 will
17323     // clarify, but for now we follow GCC because it's a more permissive and
17324     // easily defensible position.
17325     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
17326   } else {
17327     // C++11 [expr.prim.lambda]p14:
17328     //   For each entity captured by copy, an unnamed non-static
17329     //   data member is declared in the closure type. The
17330     //   declaration order of these members is unspecified. The type
17331     //   of such a data member is the type of the corresponding
17332     //   captured entity if the entity is not a reference to an
17333     //   object, or the referenced type otherwise. [Note: If the
17334     //   captured entity is a reference to a function, the
17335     //   corresponding data member is also a reference to a
17336     //   function. - end note ]
17337     if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
17338       if (!RefType->getPointeeType()->isFunctionType())
17339         CaptureType = RefType->getPointeeType();
17340     }
17341 
17342     // Forbid the lambda copy-capture of autoreleasing variables.
17343     if (!Invalid &&
17344         CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
17345       if (BuildAndDiagnose) {
17346         S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
17347         S.Diag(Var->getLocation(), diag::note_previous_decl)
17348           << Var->getDeclName();
17349         Invalid = true;
17350       } else {
17351         return false;
17352       }
17353     }
17354 
17355     // Make sure that by-copy captures are of a complete and non-abstract type.
17356     if (!Invalid && BuildAndDiagnose) {
17357       if (!CaptureType->isDependentType() &&
17358           S.RequireCompleteSizedType(
17359               Loc, CaptureType,
17360               diag::err_capture_of_incomplete_or_sizeless_type,
17361               Var->getDeclName()))
17362         Invalid = true;
17363       else if (S.RequireNonAbstractType(Loc, CaptureType,
17364                                         diag::err_capture_of_abstract_type))
17365         Invalid = true;
17366     }
17367   }
17368 
17369   // Compute the type of a reference to this captured variable.
17370   if (ByRef)
17371     DeclRefType = CaptureType.getNonReferenceType();
17372   else {
17373     // C++ [expr.prim.lambda]p5:
17374     //   The closure type for a lambda-expression has a public inline
17375     //   function call operator [...]. This function call operator is
17376     //   declared const (9.3.1) if and only if the lambda-expression's
17377     //   parameter-declaration-clause is not followed by mutable.
17378     DeclRefType = CaptureType.getNonReferenceType();
17379     if (!LSI->Mutable && !CaptureType->isReferenceType())
17380       DeclRefType.addConst();
17381   }
17382 
17383   // Add the capture.
17384   if (BuildAndDiagnose)
17385     LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
17386                     Loc, EllipsisLoc, CaptureType, Invalid);
17387 
17388   return !Invalid;
17389 }
17390 
tryCaptureVariable(VarDecl * Var,SourceLocation ExprLoc,TryCaptureKind Kind,SourceLocation EllipsisLoc,bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType,const unsigned * const FunctionScopeIndexToStopAt)17391 bool Sema::tryCaptureVariable(
17392     VarDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
17393     SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
17394     QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
17395   // An init-capture is notionally from the context surrounding its
17396   // declaration, but its parent DC is the lambda class.
17397   DeclContext *VarDC = Var->getDeclContext();
17398   if (Var->isInitCapture())
17399     VarDC = VarDC->getParent();
17400 
17401   DeclContext *DC = CurContext;
17402   const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
17403       ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
17404   // We need to sync up the Declaration Context with the
17405   // FunctionScopeIndexToStopAt
17406   if (FunctionScopeIndexToStopAt) {
17407     unsigned FSIndex = FunctionScopes.size() - 1;
17408     while (FSIndex != MaxFunctionScopesIndex) {
17409       DC = getLambdaAwareParentOfDeclContext(DC);
17410       --FSIndex;
17411     }
17412   }
17413 
17414 
17415   // If the variable is declared in the current context, there is no need to
17416   // capture it.
17417   if (VarDC == DC) return true;
17418 
17419   // Capture global variables if it is required to use private copy of this
17420   // variable.
17421   bool IsGlobal = !Var->hasLocalStorage();
17422   if (IsGlobal &&
17423       !(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
17424                                                 MaxFunctionScopesIndex)))
17425     return true;
17426   Var = Var->getCanonicalDecl();
17427 
17428   // Walk up the stack to determine whether we can capture the variable,
17429   // performing the "simple" checks that don't depend on type. We stop when
17430   // we've either hit the declared scope of the variable or find an existing
17431   // capture of that variable.  We start from the innermost capturing-entity
17432   // (the DC) and ensure that all intervening capturing-entities
17433   // (blocks/lambdas etc.) between the innermost capturer and the variable`s
17434   // declcontext can either capture the variable or have already captured
17435   // the variable.
17436   CaptureType = Var->getType();
17437   DeclRefType = CaptureType.getNonReferenceType();
17438   bool Nested = false;
17439   bool Explicit = (Kind != TryCapture_Implicit);
17440   unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
17441   do {
17442     // Only block literals, captured statements, and lambda expressions can
17443     // capture; other scopes don't work.
17444     DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
17445                                                               ExprLoc,
17446                                                               BuildAndDiagnose,
17447                                                               *this);
17448     // We need to check for the parent *first* because, if we *have*
17449     // private-captured a global variable, we need to recursively capture it in
17450     // intermediate blocks, lambdas, etc.
17451     if (!ParentDC) {
17452       if (IsGlobal) {
17453         FunctionScopesIndex = MaxFunctionScopesIndex - 1;
17454         break;
17455       }
17456       return true;
17457     }
17458 
17459     FunctionScopeInfo  *FSI = FunctionScopes[FunctionScopesIndex];
17460     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
17461 
17462 
17463     // Check whether we've already captured it.
17464     if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
17465                                              DeclRefType)) {
17466       CSI->getCapture(Var).markUsed(BuildAndDiagnose);
17467       break;
17468     }
17469     // If we are instantiating a generic lambda call operator body,
17470     // we do not want to capture new variables.  What was captured
17471     // during either a lambdas transformation or initial parsing
17472     // should be used.
17473     if (isGenericLambdaCallOperatorSpecialization(DC)) {
17474       if (BuildAndDiagnose) {
17475         LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
17476         if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
17477           Diag(ExprLoc, diag::err_lambda_impcap) << Var;
17478           Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17479           Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
17480         } else
17481           diagnoseUncapturableValueReference(*this, ExprLoc, Var, DC);
17482       }
17483       return true;
17484     }
17485 
17486     // Try to capture variable-length arrays types.
17487     if (Var->getType()->isVariablyModifiedType()) {
17488       // We're going to walk down into the type and look for VLA
17489       // expressions.
17490       QualType QTy = Var->getType();
17491       if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
17492         QTy = PVD->getOriginalType();
17493       captureVariablyModifiedType(Context, QTy, CSI);
17494     }
17495 
17496     if (getLangOpts().OpenMP) {
17497       if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
17498         // OpenMP private variables should not be captured in outer scope, so
17499         // just break here. Similarly, global variables that are captured in a
17500         // target region should not be captured outside the scope of the region.
17501         if (RSI->CapRegionKind == CR_OpenMP) {
17502           OpenMPClauseKind IsOpenMPPrivateDecl = isOpenMPPrivateDecl(
17503               Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
17504           // If the variable is private (i.e. not captured) and has variably
17505           // modified type, we still need to capture the type for correct
17506           // codegen in all regions, associated with the construct. Currently,
17507           // it is captured in the innermost captured region only.
17508           if (IsOpenMPPrivateDecl != OMPC_unknown &&
17509               Var->getType()->isVariablyModifiedType()) {
17510             QualType QTy = Var->getType();
17511             if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
17512               QTy = PVD->getOriginalType();
17513             for (int I = 1, E = getNumberOfConstructScopes(RSI->OpenMPLevel);
17514                  I < E; ++I) {
17515               auto *OuterRSI = cast<CapturedRegionScopeInfo>(
17516                   FunctionScopes[FunctionScopesIndex - I]);
17517               assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&
17518                      "Wrong number of captured regions associated with the "
17519                      "OpenMP construct.");
17520               captureVariablyModifiedType(Context, QTy, OuterRSI);
17521             }
17522           }
17523           bool IsTargetCap =
17524               IsOpenMPPrivateDecl != OMPC_private &&
17525               isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel,
17526                                          RSI->OpenMPCaptureLevel);
17527           // Do not capture global if it is not privatized in outer regions.
17528           bool IsGlobalCap =
17529               IsGlobal && isOpenMPGlobalCapturedDecl(Var, RSI->OpenMPLevel,
17530                                                      RSI->OpenMPCaptureLevel);
17531 
17532           // When we detect target captures we are looking from inside the
17533           // target region, therefore we need to propagate the capture from the
17534           // enclosing region. Therefore, the capture is not initially nested.
17535           if (IsTargetCap)
17536             adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel);
17537 
17538           if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private ||
17539               (IsGlobal && !IsGlobalCap)) {
17540             Nested = !IsTargetCap;
17541             bool HasConst = DeclRefType.isConstQualified();
17542             DeclRefType = DeclRefType.getUnqualifiedType();
17543             // Don't lose diagnostics about assignments to const.
17544             if (HasConst)
17545               DeclRefType.addConst();
17546             CaptureType = Context.getLValueReferenceType(DeclRefType);
17547             break;
17548           }
17549         }
17550       }
17551     }
17552     if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
17553       // No capture-default, and this is not an explicit capture
17554       // so cannot capture this variable.
17555       if (BuildAndDiagnose) {
17556         Diag(ExprLoc, diag::err_lambda_impcap) << Var;
17557         Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17558         if (cast<LambdaScopeInfo>(CSI)->Lambda)
17559           Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getBeginLoc(),
17560                diag::note_lambda_decl);
17561         // FIXME: If we error out because an outer lambda can not implicitly
17562         // capture a variable that an inner lambda explicitly captures, we
17563         // should have the inner lambda do the explicit capture - because
17564         // it makes for cleaner diagnostics later.  This would purely be done
17565         // so that the diagnostic does not misleadingly claim that a variable
17566         // can not be captured by a lambda implicitly even though it is captured
17567         // explicitly.  Suggestion:
17568         //  - create const bool VariableCaptureWasInitiallyExplicit = Explicit
17569         //    at the function head
17570         //  - cache the StartingDeclContext - this must be a lambda
17571         //  - captureInLambda in the innermost lambda the variable.
17572       }
17573       return true;
17574     }
17575 
17576     FunctionScopesIndex--;
17577     DC = ParentDC;
17578     Explicit = false;
17579   } while (!VarDC->Equals(DC));
17580 
17581   // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
17582   // computing the type of the capture at each step, checking type-specific
17583   // requirements, and adding captures if requested.
17584   // If the variable had already been captured previously, we start capturing
17585   // at the lambda nested within that one.
17586   bool Invalid = false;
17587   for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
17588        ++I) {
17589     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
17590 
17591     // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
17592     // certain types of variables (unnamed, variably modified types etc.)
17593     // so check for eligibility.
17594     if (!Invalid)
17595       Invalid =
17596           !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this);
17597 
17598     // After encountering an error, if we're actually supposed to capture, keep
17599     // capturing in nested contexts to suppress any follow-on diagnostics.
17600     if (Invalid && !BuildAndDiagnose)
17601       return true;
17602 
17603     if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
17604       Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
17605                                DeclRefType, Nested, *this, Invalid);
17606       Nested = true;
17607     } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
17608       Invalid = !captureInCapturedRegion(RSI, Var, ExprLoc, BuildAndDiagnose,
17609                                          CaptureType, DeclRefType, Nested,
17610                                          *this, Invalid);
17611       Nested = true;
17612     } else {
17613       LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
17614       Invalid =
17615           !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
17616                            DeclRefType, Nested, Kind, EllipsisLoc,
17617                            /*IsTopScope*/ I == N - 1, *this, Invalid);
17618       Nested = true;
17619     }
17620 
17621     if (Invalid && !BuildAndDiagnose)
17622       return true;
17623   }
17624   return Invalid;
17625 }
17626 
tryCaptureVariable(VarDecl * Var,SourceLocation Loc,TryCaptureKind Kind,SourceLocation EllipsisLoc)17627 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
17628                               TryCaptureKind Kind, SourceLocation EllipsisLoc) {
17629   QualType CaptureType;
17630   QualType DeclRefType;
17631   return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
17632                             /*BuildAndDiagnose=*/true, CaptureType,
17633                             DeclRefType, nullptr);
17634 }
17635 
NeedToCaptureVariable(VarDecl * Var,SourceLocation Loc)17636 bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) {
17637   QualType CaptureType;
17638   QualType DeclRefType;
17639   return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
17640                              /*BuildAndDiagnose=*/false, CaptureType,
17641                              DeclRefType, nullptr);
17642 }
17643 
getCapturedDeclRefType(VarDecl * Var,SourceLocation Loc)17644 QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
17645   QualType CaptureType;
17646   QualType DeclRefType;
17647 
17648   // Determine whether we can capture this variable.
17649   if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
17650                          /*BuildAndDiagnose=*/false, CaptureType,
17651                          DeclRefType, nullptr))
17652     return QualType();
17653 
17654   return DeclRefType;
17655 }
17656 
17657 namespace {
17658 // Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
17659 // The produced TemplateArgumentListInfo* points to data stored within this
17660 // object, so should only be used in contexts where the pointer will not be
17661 // used after the CopiedTemplateArgs object is destroyed.
17662 class CopiedTemplateArgs {
17663   bool HasArgs;
17664   TemplateArgumentListInfo TemplateArgStorage;
17665 public:
17666   template<typename RefExpr>
CopiedTemplateArgs(RefExpr * E)17667   CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
17668     if (HasArgs)
17669       E->copyTemplateArgumentsInto(TemplateArgStorage);
17670   }
operator TemplateArgumentListInfo*()17671   operator TemplateArgumentListInfo*()
17672 #ifdef __has_cpp_attribute
17673 #if __has_cpp_attribute(clang::lifetimebound)
17674   [[clang::lifetimebound]]
17675 #endif
17676 #endif
17677   {
17678     return HasArgs ? &TemplateArgStorage : nullptr;
17679   }
17680 };
17681 }
17682 
17683 /// Walk the set of potential results of an expression and mark them all as
17684 /// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
17685 ///
17686 /// \return A new expression if we found any potential results, ExprEmpty() if
17687 ///         not, and ExprError() if we diagnosed an error.
rebuildPotentialResultsAsNonOdrUsed(Sema & S,Expr * E,NonOdrUseReason NOUR)17688 static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
17689                                                       NonOdrUseReason NOUR) {
17690   // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
17691   // an object that satisfies the requirements for appearing in a
17692   // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
17693   // is immediately applied."  This function handles the lvalue-to-rvalue
17694   // conversion part.
17695   //
17696   // If we encounter a node that claims to be an odr-use but shouldn't be, we
17697   // transform it into the relevant kind of non-odr-use node and rebuild the
17698   // tree of nodes leading to it.
17699   //
17700   // This is a mini-TreeTransform that only transforms a restricted subset of
17701   // nodes (and only certain operands of them).
17702 
17703   // Rebuild a subexpression.
17704   auto Rebuild = [&](Expr *Sub) {
17705     return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR);
17706   };
17707 
17708   // Check whether a potential result satisfies the requirements of NOUR.
17709   auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
17710     // Any entity other than a VarDecl is always odr-used whenever it's named
17711     // in a potentially-evaluated expression.
17712     auto *VD = dyn_cast<VarDecl>(D);
17713     if (!VD)
17714       return true;
17715 
17716     // C++2a [basic.def.odr]p4:
17717     //   A variable x whose name appears as a potentially-evalauted expression
17718     //   e is odr-used by e unless
17719     //   -- x is a reference that is usable in constant expressions, or
17720     //   -- x is a variable of non-reference type that is usable in constant
17721     //      expressions and has no mutable subobjects, and e is an element of
17722     //      the set of potential results of an expression of
17723     //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
17724     //      conversion is applied, or
17725     //   -- x is a variable of non-reference type, and e is an element of the
17726     //      set of potential results of a discarded-value expression to which
17727     //      the lvalue-to-rvalue conversion is not applied
17728     //
17729     // We check the first bullet and the "potentially-evaluated" condition in
17730     // BuildDeclRefExpr. We check the type requirements in the second bullet
17731     // in CheckLValueToRValueConversionOperand below.
17732     switch (NOUR) {
17733     case NOUR_None:
17734     case NOUR_Unevaluated:
17735       llvm_unreachable("unexpected non-odr-use-reason");
17736 
17737     case NOUR_Constant:
17738       // Constant references were handled when they were built.
17739       if (VD->getType()->isReferenceType())
17740         return true;
17741       if (auto *RD = VD->getType()->getAsCXXRecordDecl())
17742         if (RD->hasMutableFields())
17743           return true;
17744       if (!VD->isUsableInConstantExpressions(S.Context))
17745         return true;
17746       break;
17747 
17748     case NOUR_Discarded:
17749       if (VD->getType()->isReferenceType())
17750         return true;
17751       break;
17752     }
17753     return false;
17754   };
17755 
17756   // Mark that this expression does not constitute an odr-use.
17757   auto MarkNotOdrUsed = [&] {
17758     S.MaybeODRUseExprs.remove(E);
17759     if (LambdaScopeInfo *LSI = S.getCurLambda())
17760       LSI->markVariableExprAsNonODRUsed(E);
17761   };
17762 
17763   // C++2a [basic.def.odr]p2:
17764   //   The set of potential results of an expression e is defined as follows:
17765   switch (E->getStmtClass()) {
17766   //   -- If e is an id-expression, ...
17767   case Expr::DeclRefExprClass: {
17768     auto *DRE = cast<DeclRefExpr>(E);
17769     if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
17770       break;
17771 
17772     // Rebuild as a non-odr-use DeclRefExpr.
17773     MarkNotOdrUsed();
17774     return DeclRefExpr::Create(
17775         S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
17776         DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
17777         DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
17778         DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
17779   }
17780 
17781   case Expr::FunctionParmPackExprClass: {
17782     auto *FPPE = cast<FunctionParmPackExpr>(E);
17783     // If any of the declarations in the pack is odr-used, then the expression
17784     // as a whole constitutes an odr-use.
17785     for (VarDecl *D : *FPPE)
17786       if (IsPotentialResultOdrUsed(D))
17787         return ExprEmpty();
17788 
17789     // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
17790     // nothing cares about whether we marked this as an odr-use, but it might
17791     // be useful for non-compiler tools.
17792     MarkNotOdrUsed();
17793     break;
17794   }
17795 
17796   //   -- If e is a subscripting operation with an array operand...
17797   case Expr::ArraySubscriptExprClass: {
17798     auto *ASE = cast<ArraySubscriptExpr>(E);
17799     Expr *OldBase = ASE->getBase()->IgnoreImplicit();
17800     if (!OldBase->getType()->isArrayType())
17801       break;
17802     ExprResult Base = Rebuild(OldBase);
17803     if (!Base.isUsable())
17804       return Base;
17805     Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
17806     Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
17807     SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
17808     return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS,
17809                                      ASE->getRBracketLoc());
17810   }
17811 
17812   case Expr::MemberExprClass: {
17813     auto *ME = cast<MemberExpr>(E);
17814     // -- If e is a class member access expression [...] naming a non-static
17815     //    data member...
17816     if (isa<FieldDecl>(ME->getMemberDecl())) {
17817       ExprResult Base = Rebuild(ME->getBase());
17818       if (!Base.isUsable())
17819         return Base;
17820       return MemberExpr::Create(
17821           S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(),
17822           ME->getQualifierLoc(), ME->getTemplateKeywordLoc(),
17823           ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(),
17824           CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(),
17825           ME->getObjectKind(), ME->isNonOdrUse());
17826     }
17827 
17828     if (ME->getMemberDecl()->isCXXInstanceMember())
17829       break;
17830 
17831     // -- If e is a class member access expression naming a static data member,
17832     //    ...
17833     if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
17834       break;
17835 
17836     // Rebuild as a non-odr-use MemberExpr.
17837     MarkNotOdrUsed();
17838     return MemberExpr::Create(
17839         S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(),
17840         ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(),
17841         ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME),
17842         ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR);
17843     return ExprEmpty();
17844   }
17845 
17846   case Expr::BinaryOperatorClass: {
17847     auto *BO = cast<BinaryOperator>(E);
17848     Expr *LHS = BO->getLHS();
17849     Expr *RHS = BO->getRHS();
17850     // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
17851     if (BO->getOpcode() == BO_PtrMemD) {
17852       ExprResult Sub = Rebuild(LHS);
17853       if (!Sub.isUsable())
17854         return Sub;
17855       LHS = Sub.get();
17856     //   -- If e is a comma expression, ...
17857     } else if (BO->getOpcode() == BO_Comma) {
17858       ExprResult Sub = Rebuild(RHS);
17859       if (!Sub.isUsable())
17860         return Sub;
17861       RHS = Sub.get();
17862     } else {
17863       break;
17864     }
17865     return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(),
17866                         LHS, RHS);
17867   }
17868 
17869   //   -- If e has the form (e1)...
17870   case Expr::ParenExprClass: {
17871     auto *PE = cast<ParenExpr>(E);
17872     ExprResult Sub = Rebuild(PE->getSubExpr());
17873     if (!Sub.isUsable())
17874       return Sub;
17875     return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get());
17876   }
17877 
17878   //   -- If e is a glvalue conditional expression, ...
17879   // We don't apply this to a binary conditional operator. FIXME: Should we?
17880   case Expr::ConditionalOperatorClass: {
17881     auto *CO = cast<ConditionalOperator>(E);
17882     ExprResult LHS = Rebuild(CO->getLHS());
17883     if (LHS.isInvalid())
17884       return ExprError();
17885     ExprResult RHS = Rebuild(CO->getRHS());
17886     if (RHS.isInvalid())
17887       return ExprError();
17888     if (!LHS.isUsable() && !RHS.isUsable())
17889       return ExprEmpty();
17890     if (!LHS.isUsable())
17891       LHS = CO->getLHS();
17892     if (!RHS.isUsable())
17893       RHS = CO->getRHS();
17894     return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(),
17895                                 CO->getCond(), LHS.get(), RHS.get());
17896   }
17897 
17898   // [Clang extension]
17899   //   -- If e has the form __extension__ e1...
17900   case Expr::UnaryOperatorClass: {
17901     auto *UO = cast<UnaryOperator>(E);
17902     if (UO->getOpcode() != UO_Extension)
17903       break;
17904     ExprResult Sub = Rebuild(UO->getSubExpr());
17905     if (!Sub.isUsable())
17906       return Sub;
17907     return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension,
17908                           Sub.get());
17909   }
17910 
17911   // [Clang extension]
17912   //   -- If e has the form _Generic(...), the set of potential results is the
17913   //      union of the sets of potential results of the associated expressions.
17914   case Expr::GenericSelectionExprClass: {
17915     auto *GSE = cast<GenericSelectionExpr>(E);
17916 
17917     SmallVector<Expr *, 4> AssocExprs;
17918     bool AnyChanged = false;
17919     for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
17920       ExprResult AssocExpr = Rebuild(OrigAssocExpr);
17921       if (AssocExpr.isInvalid())
17922         return ExprError();
17923       if (AssocExpr.isUsable()) {
17924         AssocExprs.push_back(AssocExpr.get());
17925         AnyChanged = true;
17926       } else {
17927         AssocExprs.push_back(OrigAssocExpr);
17928       }
17929     }
17930 
17931     return AnyChanged ? S.CreateGenericSelectionExpr(
17932                             GSE->getGenericLoc(), GSE->getDefaultLoc(),
17933                             GSE->getRParenLoc(), GSE->getControllingExpr(),
17934                             GSE->getAssocTypeSourceInfos(), AssocExprs)
17935                       : ExprEmpty();
17936   }
17937 
17938   // [Clang extension]
17939   //   -- If e has the form __builtin_choose_expr(...), the set of potential
17940   //      results is the union of the sets of potential results of the
17941   //      second and third subexpressions.
17942   case Expr::ChooseExprClass: {
17943     auto *CE = cast<ChooseExpr>(E);
17944 
17945     ExprResult LHS = Rebuild(CE->getLHS());
17946     if (LHS.isInvalid())
17947       return ExprError();
17948 
17949     ExprResult RHS = Rebuild(CE->getLHS());
17950     if (RHS.isInvalid())
17951       return ExprError();
17952 
17953     if (!LHS.get() && !RHS.get())
17954       return ExprEmpty();
17955     if (!LHS.isUsable())
17956       LHS = CE->getLHS();
17957     if (!RHS.isUsable())
17958       RHS = CE->getRHS();
17959 
17960     return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(),
17961                              RHS.get(), CE->getRParenLoc());
17962   }
17963 
17964   // Step through non-syntactic nodes.
17965   case Expr::ConstantExprClass: {
17966     auto *CE = cast<ConstantExpr>(E);
17967     ExprResult Sub = Rebuild(CE->getSubExpr());
17968     if (!Sub.isUsable())
17969       return Sub;
17970     return ConstantExpr::Create(S.Context, Sub.get());
17971   }
17972 
17973   // We could mostly rely on the recursive rebuilding to rebuild implicit
17974   // casts, but not at the top level, so rebuild them here.
17975   case Expr::ImplicitCastExprClass: {
17976     auto *ICE = cast<ImplicitCastExpr>(E);
17977     // Only step through the narrow set of cast kinds we expect to encounter.
17978     // Anything else suggests we've left the region in which potential results
17979     // can be found.
17980     switch (ICE->getCastKind()) {
17981     case CK_NoOp:
17982     case CK_DerivedToBase:
17983     case CK_UncheckedDerivedToBase: {
17984       ExprResult Sub = Rebuild(ICE->getSubExpr());
17985       if (!Sub.isUsable())
17986         return Sub;
17987       CXXCastPath Path(ICE->path());
17988       return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(),
17989                                  ICE->getValueKind(), &Path);
17990     }
17991 
17992     default:
17993       break;
17994     }
17995     break;
17996   }
17997 
17998   default:
17999     break;
18000   }
18001 
18002   // Can't traverse through this node. Nothing to do.
18003   return ExprEmpty();
18004 }
18005 
CheckLValueToRValueConversionOperand(Expr * E)18006 ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
18007   // Check whether the operand is or contains an object of non-trivial C union
18008   // type.
18009   if (E->getType().isVolatileQualified() &&
18010       (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
18011        E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
18012     checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
18013                           Sema::NTCUC_LValueToRValueVolatile,
18014                           NTCUK_Destruct|NTCUK_Copy);
18015 
18016   // C++2a [basic.def.odr]p4:
18017   //   [...] an expression of non-volatile-qualified non-class type to which
18018   //   the lvalue-to-rvalue conversion is applied [...]
18019   if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
18020     return E;
18021 
18022   ExprResult Result =
18023       rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant);
18024   if (Result.isInvalid())
18025     return ExprError();
18026   return Result.get() ? Result : E;
18027 }
18028 
ActOnConstantExpression(ExprResult Res)18029 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
18030   Res = CorrectDelayedTyposInExpr(Res);
18031 
18032   if (!Res.isUsable())
18033     return Res;
18034 
18035   // If a constant-expression is a reference to a variable where we delay
18036   // deciding whether it is an odr-use, just assume we will apply the
18037   // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
18038   // (a non-type template argument), we have special handling anyway.
18039   return CheckLValueToRValueConversionOperand(Res.get());
18040 }
18041 
CleanupVarDeclMarking()18042 void Sema::CleanupVarDeclMarking() {
18043   // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
18044   // call.
18045   MaybeODRUseExprSet LocalMaybeODRUseExprs;
18046   std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);
18047 
18048   for (Expr *E : LocalMaybeODRUseExprs) {
18049     if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
18050       MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()),
18051                          DRE->getLocation(), *this);
18052     } else if (auto *ME = dyn_cast<MemberExpr>(E)) {
18053       MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(),
18054                          *this);
18055     } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) {
18056       for (VarDecl *VD : *FP)
18057         MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this);
18058     } else {
18059       llvm_unreachable("Unexpected expression");
18060     }
18061   }
18062 
18063   assert(MaybeODRUseExprs.empty() &&
18064          "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
18065 }
18066 
DoMarkVarDeclReferenced(Sema & SemaRef,SourceLocation Loc,VarDecl * Var,Expr * E)18067 static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
18068                                     VarDecl *Var, Expr *E) {
18069   assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||
18070           isa<FunctionParmPackExpr>(E)) &&
18071          "Invalid Expr argument to DoMarkVarDeclReferenced");
18072   Var->setReferenced();
18073 
18074   if (Var->isInvalidDecl())
18075     return;
18076 
18077   // Record a CUDA/HIP static device/constant variable if it is referenced
18078   // by host code. This is done conservatively, when the variable is referenced
18079   // in any of the following contexts:
18080   //   - a non-function context
18081   //   - a host function
18082   //   - a host device function
18083   // This also requires the reference of the static device/constant variable by
18084   // host code to be visible in the device compilation for the compiler to be
18085   // able to externalize the static device/constant variable.
18086   if (SemaRef.getASTContext().mayExternalizeStaticVar(Var)) {
18087     auto *CurContext = SemaRef.CurContext;
18088     if (!CurContext || !isa<FunctionDecl>(CurContext) ||
18089         cast<FunctionDecl>(CurContext)->hasAttr<CUDAHostAttr>() ||
18090         (!cast<FunctionDecl>(CurContext)->hasAttr<CUDADeviceAttr>() &&
18091          !cast<FunctionDecl>(CurContext)->hasAttr<CUDAGlobalAttr>()))
18092       SemaRef.getASTContext().CUDAStaticDeviceVarReferencedByHost.insert(Var);
18093   }
18094 
18095   auto *MSI = Var->getMemberSpecializationInfo();
18096   TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
18097                                        : Var->getTemplateSpecializationKind();
18098 
18099   OdrUseContext OdrUse = isOdrUseContext(SemaRef);
18100   bool UsableInConstantExpr =
18101       Var->mightBeUsableInConstantExpressions(SemaRef.Context);
18102 
18103   // C++20 [expr.const]p12:
18104   //   A variable [...] is needed for constant evaluation if it is [...] a
18105   //   variable whose name appears as a potentially constant evaluated
18106   //   expression that is either a contexpr variable or is of non-volatile
18107   //   const-qualified integral type or of reference type
18108   bool NeededForConstantEvaluation =
18109       isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
18110 
18111   bool NeedDefinition =
18112       OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
18113 
18114   assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
18115          "Can't instantiate a partial template specialization.");
18116 
18117   // If this might be a member specialization of a static data member, check
18118   // the specialization is visible. We already did the checks for variable
18119   // template specializations when we created them.
18120   if (NeedDefinition && TSK != TSK_Undeclared &&
18121       !isa<VarTemplateSpecializationDecl>(Var))
18122     SemaRef.checkSpecializationVisibility(Loc, Var);
18123 
18124   // Perform implicit instantiation of static data members, static data member
18125   // templates of class templates, and variable template specializations. Delay
18126   // instantiations of variable templates, except for those that could be used
18127   // in a constant expression.
18128   if (NeedDefinition && isTemplateInstantiation(TSK)) {
18129     // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
18130     // instantiation declaration if a variable is usable in a constant
18131     // expression (among other cases).
18132     bool TryInstantiating =
18133         TSK == TSK_ImplicitInstantiation ||
18134         (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
18135 
18136     if (TryInstantiating) {
18137       SourceLocation PointOfInstantiation =
18138           MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
18139       bool FirstInstantiation = PointOfInstantiation.isInvalid();
18140       if (FirstInstantiation) {
18141         PointOfInstantiation = Loc;
18142         if (MSI)
18143           MSI->setPointOfInstantiation(PointOfInstantiation);
18144           // FIXME: Notify listener.
18145         else
18146           Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
18147       }
18148 
18149       if (UsableInConstantExpr) {
18150         // Do not defer instantiations of variables that could be used in a
18151         // constant expression.
18152         SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] {
18153           SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
18154         });
18155 
18156         // Re-set the member to trigger a recomputation of the dependence bits
18157         // for the expression.
18158         if (auto *DRE = dyn_cast_or_null<DeclRefExpr>(E))
18159           DRE->setDecl(DRE->getDecl());
18160         else if (auto *ME = dyn_cast_or_null<MemberExpr>(E))
18161           ME->setMemberDecl(ME->getMemberDecl());
18162       } else if (FirstInstantiation ||
18163                  isa<VarTemplateSpecializationDecl>(Var)) {
18164         // FIXME: For a specialization of a variable template, we don't
18165         // distinguish between "declaration and type implicitly instantiated"
18166         // and "implicit instantiation of definition requested", so we have
18167         // no direct way to avoid enqueueing the pending instantiation
18168         // multiple times.
18169         SemaRef.PendingInstantiations
18170             .push_back(std::make_pair(Var, PointOfInstantiation));
18171       }
18172     }
18173   }
18174 
18175   // C++2a [basic.def.odr]p4:
18176   //   A variable x whose name appears as a potentially-evaluated expression e
18177   //   is odr-used by e unless
18178   //   -- x is a reference that is usable in constant expressions
18179   //   -- x is a variable of non-reference type that is usable in constant
18180   //      expressions and has no mutable subobjects [FIXME], and e is an
18181   //      element of the set of potential results of an expression of
18182   //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
18183   //      conversion is applied
18184   //   -- x is a variable of non-reference type, and e is an element of the set
18185   //      of potential results of a discarded-value expression to which the
18186   //      lvalue-to-rvalue conversion is not applied [FIXME]
18187   //
18188   // We check the first part of the second bullet here, and
18189   // Sema::CheckLValueToRValueConversionOperand deals with the second part.
18190   // FIXME: To get the third bullet right, we need to delay this even for
18191   // variables that are not usable in constant expressions.
18192 
18193   // If we already know this isn't an odr-use, there's nothing more to do.
18194   if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
18195     if (DRE->isNonOdrUse())
18196       return;
18197   if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E))
18198     if (ME->isNonOdrUse())
18199       return;
18200 
18201   switch (OdrUse) {
18202   case OdrUseContext::None:
18203     assert((!E || isa<FunctionParmPackExpr>(E)) &&
18204            "missing non-odr-use marking for unevaluated decl ref");
18205     break;
18206 
18207   case OdrUseContext::FormallyOdrUsed:
18208     // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
18209     // behavior.
18210     break;
18211 
18212   case OdrUseContext::Used:
18213     // If we might later find that this expression isn't actually an odr-use,
18214     // delay the marking.
18215     if (E && Var->isUsableInConstantExpressions(SemaRef.Context))
18216       SemaRef.MaybeODRUseExprs.insert(E);
18217     else
18218       MarkVarDeclODRUsed(Var, Loc, SemaRef);
18219     break;
18220 
18221   case OdrUseContext::Dependent:
18222     // If this is a dependent context, we don't need to mark variables as
18223     // odr-used, but we may still need to track them for lambda capture.
18224     // FIXME: Do we also need to do this inside dependent typeid expressions
18225     // (which are modeled as unevaluated at this point)?
18226     const bool RefersToEnclosingScope =
18227         (SemaRef.CurContext != Var->getDeclContext() &&
18228          Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage());
18229     if (RefersToEnclosingScope) {
18230       LambdaScopeInfo *const LSI =
18231           SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
18232       if (LSI && (!LSI->CallOperator ||
18233                   !LSI->CallOperator->Encloses(Var->getDeclContext()))) {
18234         // If a variable could potentially be odr-used, defer marking it so
18235         // until we finish analyzing the full expression for any
18236         // lvalue-to-rvalue
18237         // or discarded value conversions that would obviate odr-use.
18238         // Add it to the list of potential captures that will be analyzed
18239         // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
18240         // unless the variable is a reference that was initialized by a constant
18241         // expression (this will never need to be captured or odr-used).
18242         //
18243         // FIXME: We can simplify this a lot after implementing P0588R1.
18244         assert(E && "Capture variable should be used in an expression.");
18245         if (!Var->getType()->isReferenceType() ||
18246             !Var->isUsableInConstantExpressions(SemaRef.Context))
18247           LSI->addPotentialCapture(E->IgnoreParens());
18248       }
18249     }
18250     break;
18251   }
18252 }
18253 
18254 /// Mark a variable referenced, and check whether it is odr-used
18255 /// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
18256 /// used directly for normal expressions referring to VarDecl.
MarkVariableReferenced(SourceLocation Loc,VarDecl * Var)18257 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
18258   DoMarkVarDeclReferenced(*this, Loc, Var, nullptr);
18259 }
18260 
MarkExprReferenced(Sema & SemaRef,SourceLocation Loc,Decl * D,Expr * E,bool MightBeOdrUse)18261 static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
18262                                Decl *D, Expr *E, bool MightBeOdrUse) {
18263   if (SemaRef.isInOpenMPDeclareTargetContext())
18264     SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D);
18265 
18266   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
18267     DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
18268     return;
18269   }
18270 
18271   SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
18272 
18273   // If this is a call to a method via a cast, also mark the method in the
18274   // derived class used in case codegen can devirtualize the call.
18275   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
18276   if (!ME)
18277     return;
18278   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
18279   if (!MD)
18280     return;
18281   // Only attempt to devirtualize if this is truly a virtual call.
18282   bool IsVirtualCall = MD->isVirtual() &&
18283                           ME->performsVirtualDispatch(SemaRef.getLangOpts());
18284   if (!IsVirtualCall)
18285     return;
18286 
18287   // If it's possible to devirtualize the call, mark the called function
18288   // referenced.
18289   CXXMethodDecl *DM = MD->getDevirtualizedMethod(
18290       ME->getBase(), SemaRef.getLangOpts().AppleKext);
18291   if (DM)
18292     SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
18293 }
18294 
18295 /// Perform reference-marking and odr-use handling for a DeclRefExpr.
18296 ///
18297 /// Note, this may change the dependence of the DeclRefExpr, and so needs to be
18298 /// handled with care if the DeclRefExpr is not newly-created.
MarkDeclRefReferenced(DeclRefExpr * E,const Expr * Base)18299 void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
18300   // TODO: update this with DR# once a defect report is filed.
18301   // C++11 defect. The address of a pure member should not be an ODR use, even
18302   // if it's a qualified reference.
18303   bool OdrUse = true;
18304   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
18305     if (Method->isVirtual() &&
18306         !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
18307       OdrUse = false;
18308 
18309   if (auto *FD = dyn_cast<FunctionDecl>(E->getDecl()))
18310     if (!isConstantEvaluated() && FD->isConsteval() &&
18311         !RebuildingImmediateInvocation)
18312       ExprEvalContexts.back().ReferenceToConsteval.insert(E);
18313   MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse);
18314 }
18315 
18316 /// Perform reference-marking and odr-use handling for a MemberExpr.
MarkMemberReferenced(MemberExpr * E)18317 void Sema::MarkMemberReferenced(MemberExpr *E) {
18318   // C++11 [basic.def.odr]p2:
18319   //   A non-overloaded function whose name appears as a potentially-evaluated
18320   //   expression or a member of a set of candidate functions, if selected by
18321   //   overload resolution when referred to from a potentially-evaluated
18322   //   expression, is odr-used, unless it is a pure virtual function and its
18323   //   name is not explicitly qualified.
18324   bool MightBeOdrUse = true;
18325   if (E->performsVirtualDispatch(getLangOpts())) {
18326     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
18327       if (Method->isPure())
18328         MightBeOdrUse = false;
18329   }
18330   SourceLocation Loc =
18331       E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
18332   MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse);
18333 }
18334 
18335 /// Perform reference-marking and odr-use handling for a FunctionParmPackExpr.
MarkFunctionParmPackReferenced(FunctionParmPackExpr * E)18336 void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
18337   for (VarDecl *VD : *E)
18338     MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true);
18339 }
18340 
18341 /// Perform marking for a reference to an arbitrary declaration.  It
18342 /// marks the declaration referenced, and performs odr-use checking for
18343 /// functions and variables. This method should not be used when building a
18344 /// normal expression which refers to a variable.
MarkAnyDeclReferenced(SourceLocation Loc,Decl * D,bool MightBeOdrUse)18345 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
18346                                  bool MightBeOdrUse) {
18347   if (MightBeOdrUse) {
18348     if (auto *VD = dyn_cast<VarDecl>(D)) {
18349       MarkVariableReferenced(Loc, VD);
18350       return;
18351     }
18352   }
18353   if (auto *FD = dyn_cast<FunctionDecl>(D)) {
18354     MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
18355     return;
18356   }
18357   D->setReferenced();
18358 }
18359 
18360 namespace {
18361   // Mark all of the declarations used by a type as referenced.
18362   // FIXME: Not fully implemented yet! We need to have a better understanding
18363   // of when we're entering a context we should not recurse into.
18364   // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
18365   // TreeTransforms rebuilding the type in a new context. Rather than
18366   // duplicating the TreeTransform logic, we should consider reusing it here.
18367   // Currently that causes problems when rebuilding LambdaExprs.
18368   class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
18369     Sema &S;
18370     SourceLocation Loc;
18371 
18372   public:
18373     typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
18374 
MarkReferencedDecls(Sema & S,SourceLocation Loc)18375     MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
18376 
18377     bool TraverseTemplateArgument(const TemplateArgument &Arg);
18378   };
18379 }
18380 
TraverseTemplateArgument(const TemplateArgument & Arg)18381 bool MarkReferencedDecls::TraverseTemplateArgument(
18382     const TemplateArgument &Arg) {
18383   {
18384     // A non-type template argument is a constant-evaluated context.
18385     EnterExpressionEvaluationContext Evaluated(
18386         S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
18387     if (Arg.getKind() == TemplateArgument::Declaration) {
18388       if (Decl *D = Arg.getAsDecl())
18389         S.MarkAnyDeclReferenced(Loc, D, true);
18390     } else if (Arg.getKind() == TemplateArgument::Expression) {
18391       S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
18392     }
18393   }
18394 
18395   return Inherited::TraverseTemplateArgument(Arg);
18396 }
18397 
MarkDeclarationsReferencedInType(SourceLocation Loc,QualType T)18398 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
18399   MarkReferencedDecls Marker(*this, Loc);
18400   Marker.TraverseType(T);
18401 }
18402 
18403 namespace {
18404 /// Helper class that marks all of the declarations referenced by
18405 /// potentially-evaluated subexpressions as "referenced".
18406 class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> {
18407 public:
18408   typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited;
18409   bool SkipLocalVariables;
18410 
EvaluatedExprMarker(Sema & S,bool SkipLocalVariables)18411   EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
18412       : Inherited(S), SkipLocalVariables(SkipLocalVariables) {}
18413 
visitUsedDecl(SourceLocation Loc,Decl * D)18414   void visitUsedDecl(SourceLocation Loc, Decl *D) {
18415     S.MarkFunctionReferenced(Loc, cast<FunctionDecl>(D));
18416   }
18417 
VisitDeclRefExpr(DeclRefExpr * E)18418   void VisitDeclRefExpr(DeclRefExpr *E) {
18419     // If we were asked not to visit local variables, don't.
18420     if (SkipLocalVariables) {
18421       if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
18422         if (VD->hasLocalStorage())
18423           return;
18424     }
18425 
18426     // FIXME: This can trigger the instantiation of the initializer of a
18427     // variable, which can cause the expression to become value-dependent
18428     // or error-dependent. Do we need to propagate the new dependence bits?
18429     S.MarkDeclRefReferenced(E);
18430   }
18431 
VisitMemberExpr(MemberExpr * E)18432   void VisitMemberExpr(MemberExpr *E) {
18433     S.MarkMemberReferenced(E);
18434     Visit(E->getBase());
18435   }
18436 };
18437 } // namespace
18438 
18439 /// Mark any declarations that appear within this expression or any
18440 /// potentially-evaluated subexpressions as "referenced".
18441 ///
18442 /// \param SkipLocalVariables If true, don't mark local variables as
18443 /// 'referenced'.
MarkDeclarationsReferencedInExpr(Expr * E,bool SkipLocalVariables)18444 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
18445                                             bool SkipLocalVariables) {
18446   EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
18447 }
18448 
18449 /// Emit a diagnostic that describes an effect on the run-time behavior
18450 /// of the program being compiled.
18451 ///
18452 /// This routine emits the given diagnostic when the code currently being
18453 /// type-checked is "potentially evaluated", meaning that there is a
18454 /// possibility that the code will actually be executable. Code in sizeof()
18455 /// expressions, code used only during overload resolution, etc., are not
18456 /// potentially evaluated. This routine will suppress such diagnostics or,
18457 /// in the absolutely nutty case of potentially potentially evaluated
18458 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
18459 /// later.
18460 ///
18461 /// This routine should be used for all diagnostics that describe the run-time
18462 /// behavior of a program, such as passing a non-POD value through an ellipsis.
18463 /// Failure to do so will likely result in spurious diagnostics or failures
18464 /// during overload resolution or within sizeof/alignof/typeof/typeid.
DiagRuntimeBehavior(SourceLocation Loc,ArrayRef<const Stmt * > Stmts,const PartialDiagnostic & PD)18465 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
18466                                const PartialDiagnostic &PD) {
18467   switch (ExprEvalContexts.back().Context) {
18468   case ExpressionEvaluationContext::Unevaluated:
18469   case ExpressionEvaluationContext::UnevaluatedList:
18470   case ExpressionEvaluationContext::UnevaluatedAbstract:
18471   case ExpressionEvaluationContext::DiscardedStatement:
18472     // The argument will never be evaluated, so don't complain.
18473     break;
18474 
18475   case ExpressionEvaluationContext::ConstantEvaluated:
18476     // Relevant diagnostics should be produced by constant evaluation.
18477     break;
18478 
18479   case ExpressionEvaluationContext::PotentiallyEvaluated:
18480   case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
18481     if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
18482       FunctionScopes.back()->PossiblyUnreachableDiags.
18483         push_back(sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
18484       return true;
18485     }
18486 
18487     // The initializer of a constexpr variable or of the first declaration of a
18488     // static data member is not syntactically a constant evaluated constant,
18489     // but nonetheless is always required to be a constant expression, so we
18490     // can skip diagnosing.
18491     // FIXME: Using the mangling context here is a hack.
18492     if (auto *VD = dyn_cast_or_null<VarDecl>(
18493             ExprEvalContexts.back().ManglingContextDecl)) {
18494       if (VD->isConstexpr() ||
18495           (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
18496         break;
18497       // FIXME: For any other kind of variable, we should build a CFG for its
18498       // initializer and check whether the context in question is reachable.
18499     }
18500 
18501     Diag(Loc, PD);
18502     return true;
18503   }
18504 
18505   return false;
18506 }
18507 
DiagRuntimeBehavior(SourceLocation Loc,const Stmt * Statement,const PartialDiagnostic & PD)18508 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
18509                                const PartialDiagnostic &PD) {
18510   return DiagRuntimeBehavior(
18511       Loc, Statement ? llvm::makeArrayRef(Statement) : llvm::None, PD);
18512 }
18513 
CheckCallReturnType(QualType ReturnType,SourceLocation Loc,CallExpr * CE,FunctionDecl * FD)18514 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
18515                                CallExpr *CE, FunctionDecl *FD) {
18516   if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
18517     return false;
18518 
18519   // If we're inside a decltype's expression, don't check for a valid return
18520   // type or construct temporaries until we know whether this is the last call.
18521   if (ExprEvalContexts.back().ExprContext ==
18522       ExpressionEvaluationContextRecord::EK_Decltype) {
18523     ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
18524     return false;
18525   }
18526 
18527   class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
18528     FunctionDecl *FD;
18529     CallExpr *CE;
18530 
18531   public:
18532     CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
18533       : FD(FD), CE(CE) { }
18534 
18535     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
18536       if (!FD) {
18537         S.Diag(Loc, diag::err_call_incomplete_return)
18538           << T << CE->getSourceRange();
18539         return;
18540       }
18541 
18542       S.Diag(Loc, diag::err_call_function_incomplete_return)
18543           << CE->getSourceRange() << FD << T;
18544       S.Diag(FD->getLocation(), diag::note_entity_declared_at)
18545           << FD->getDeclName();
18546     }
18547   } Diagnoser(FD, CE);
18548 
18549   if (RequireCompleteType(Loc, ReturnType, Diagnoser))
18550     return true;
18551 
18552   return false;
18553 }
18554 
18555 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
18556 // will prevent this condition from triggering, which is what we want.
DiagnoseAssignmentAsCondition(Expr * E)18557 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
18558   SourceLocation Loc;
18559 
18560   unsigned diagnostic = diag::warn_condition_is_assignment;
18561   bool IsOrAssign = false;
18562 
18563   if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
18564     if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
18565       return;
18566 
18567     IsOrAssign = Op->getOpcode() == BO_OrAssign;
18568 
18569     // Greylist some idioms by putting them into a warning subcategory.
18570     if (ObjCMessageExpr *ME
18571           = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
18572       Selector Sel = ME->getSelector();
18573 
18574       // self = [<foo> init...]
18575       if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
18576         diagnostic = diag::warn_condition_is_idiomatic_assignment;
18577 
18578       // <foo> = [<bar> nextObject]
18579       else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
18580         diagnostic = diag::warn_condition_is_idiomatic_assignment;
18581     }
18582 
18583     Loc = Op->getOperatorLoc();
18584   } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
18585     if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
18586       return;
18587 
18588     IsOrAssign = Op->getOperator() == OO_PipeEqual;
18589     Loc = Op->getOperatorLoc();
18590   } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
18591     return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
18592   else {
18593     // Not an assignment.
18594     return;
18595   }
18596 
18597   Diag(Loc, diagnostic) << E->getSourceRange();
18598 
18599   SourceLocation Open = E->getBeginLoc();
18600   SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
18601   Diag(Loc, diag::note_condition_assign_silence)
18602         << FixItHint::CreateInsertion(Open, "(")
18603         << FixItHint::CreateInsertion(Close, ")");
18604 
18605   if (IsOrAssign)
18606     Diag(Loc, diag::note_condition_or_assign_to_comparison)
18607       << FixItHint::CreateReplacement(Loc, "!=");
18608   else
18609     Diag(Loc, diag::note_condition_assign_to_comparison)
18610       << FixItHint::CreateReplacement(Loc, "==");
18611 }
18612 
18613 /// Redundant parentheses over an equality comparison can indicate
18614 /// that the user intended an assignment used as condition.
DiagnoseEqualityWithExtraParens(ParenExpr * ParenE)18615 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
18616   // Don't warn if the parens came from a macro.
18617   SourceLocation parenLoc = ParenE->getBeginLoc();
18618   if (parenLoc.isInvalid() || parenLoc.isMacroID())
18619     return;
18620   // Don't warn for dependent expressions.
18621   if (ParenE->isTypeDependent())
18622     return;
18623 
18624   Expr *E = ParenE->IgnoreParens();
18625 
18626   if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
18627     if (opE->getOpcode() == BO_EQ &&
18628         opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
18629                                                            == Expr::MLV_Valid) {
18630       SourceLocation Loc = opE->getOperatorLoc();
18631 
18632       Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
18633       SourceRange ParenERange = ParenE->getSourceRange();
18634       Diag(Loc, diag::note_equality_comparison_silence)
18635         << FixItHint::CreateRemoval(ParenERange.getBegin())
18636         << FixItHint::CreateRemoval(ParenERange.getEnd());
18637       Diag(Loc, diag::note_equality_comparison_to_assign)
18638         << FixItHint::CreateReplacement(Loc, "=");
18639     }
18640 }
18641 
CheckBooleanCondition(SourceLocation Loc,Expr * E,bool IsConstexpr)18642 ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
18643                                        bool IsConstexpr) {
18644   DiagnoseAssignmentAsCondition(E);
18645   if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
18646     DiagnoseEqualityWithExtraParens(parenE);
18647 
18648   ExprResult result = CheckPlaceholderExpr(E);
18649   if (result.isInvalid()) return ExprError();
18650   E = result.get();
18651 
18652   if (!E->isTypeDependent()) {
18653     if (getLangOpts().CPlusPlus)
18654       return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
18655 
18656     ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
18657     if (ERes.isInvalid())
18658       return ExprError();
18659     E = ERes.get();
18660 
18661     QualType T = E->getType();
18662     if (!T->isScalarType()) { // C99 6.8.4.1p1
18663       Diag(Loc, diag::err_typecheck_statement_requires_scalar)
18664         << T << E->getSourceRange();
18665       return ExprError();
18666     }
18667     CheckBoolLikeConversion(E, Loc);
18668   }
18669 
18670   return E;
18671 }
18672 
ActOnCondition(Scope * S,SourceLocation Loc,Expr * SubExpr,ConditionKind CK)18673 Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
18674                                            Expr *SubExpr, ConditionKind CK) {
18675   // Empty conditions are valid in for-statements.
18676   if (!SubExpr)
18677     return ConditionResult();
18678 
18679   ExprResult Cond;
18680   switch (CK) {
18681   case ConditionKind::Boolean:
18682     Cond = CheckBooleanCondition(Loc, SubExpr);
18683     break;
18684 
18685   case ConditionKind::ConstexprIf:
18686     Cond = CheckBooleanCondition(Loc, SubExpr, true);
18687     break;
18688 
18689   case ConditionKind::Switch:
18690     Cond = CheckSwitchCondition(Loc, SubExpr);
18691     break;
18692   }
18693   if (Cond.isInvalid()) {
18694     Cond = CreateRecoveryExpr(SubExpr->getBeginLoc(), SubExpr->getEndLoc(),
18695                               {SubExpr});
18696     if (!Cond.get())
18697       return ConditionError();
18698   }
18699   // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
18700   FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
18701   if (!FullExpr.get())
18702     return ConditionError();
18703 
18704   return ConditionResult(*this, nullptr, FullExpr,
18705                          CK == ConditionKind::ConstexprIf);
18706 }
18707 
18708 namespace {
18709   /// A visitor for rebuilding a call to an __unknown_any expression
18710   /// to have an appropriate type.
18711   struct RebuildUnknownAnyFunction
18712     : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
18713 
18714     Sema &S;
18715 
RebuildUnknownAnyFunction__anona30d30eb2411::RebuildUnknownAnyFunction18716     RebuildUnknownAnyFunction(Sema &S) : S(S) {}
18717 
VisitStmt__anona30d30eb2411::RebuildUnknownAnyFunction18718     ExprResult VisitStmt(Stmt *S) {
18719       llvm_unreachable("unexpected statement!");
18720     }
18721 
VisitExpr__anona30d30eb2411::RebuildUnknownAnyFunction18722     ExprResult VisitExpr(Expr *E) {
18723       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
18724         << E->getSourceRange();
18725       return ExprError();
18726     }
18727 
18728     /// Rebuild an expression which simply semantically wraps another
18729     /// expression which it shares the type and value kind of.
rebuildSugarExpr__anona30d30eb2411::RebuildUnknownAnyFunction18730     template <class T> ExprResult rebuildSugarExpr(T *E) {
18731       ExprResult SubResult = Visit(E->getSubExpr());
18732       if (SubResult.isInvalid()) return ExprError();
18733 
18734       Expr *SubExpr = SubResult.get();
18735       E->setSubExpr(SubExpr);
18736       E->setType(SubExpr->getType());
18737       E->setValueKind(SubExpr->getValueKind());
18738       assert(E->getObjectKind() == OK_Ordinary);
18739       return E;
18740     }
18741 
VisitParenExpr__anona30d30eb2411::RebuildUnknownAnyFunction18742     ExprResult VisitParenExpr(ParenExpr *E) {
18743       return rebuildSugarExpr(E);
18744     }
18745 
VisitUnaryExtension__anona30d30eb2411::RebuildUnknownAnyFunction18746     ExprResult VisitUnaryExtension(UnaryOperator *E) {
18747       return rebuildSugarExpr(E);
18748     }
18749 
VisitUnaryAddrOf__anona30d30eb2411::RebuildUnknownAnyFunction18750     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
18751       ExprResult SubResult = Visit(E->getSubExpr());
18752       if (SubResult.isInvalid()) return ExprError();
18753 
18754       Expr *SubExpr = SubResult.get();
18755       E->setSubExpr(SubExpr);
18756       E->setType(S.Context.getPointerType(SubExpr->getType()));
18757       assert(E->getValueKind() == VK_RValue);
18758       assert(E->getObjectKind() == OK_Ordinary);
18759       return E;
18760     }
18761 
resolveDecl__anona30d30eb2411::RebuildUnknownAnyFunction18762     ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
18763       if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
18764 
18765       E->setType(VD->getType());
18766 
18767       assert(E->getValueKind() == VK_RValue);
18768       if (S.getLangOpts().CPlusPlus &&
18769           !(isa<CXXMethodDecl>(VD) &&
18770             cast<CXXMethodDecl>(VD)->isInstance()))
18771         E->setValueKind(VK_LValue);
18772 
18773       return E;
18774     }
18775 
VisitMemberExpr__anona30d30eb2411::RebuildUnknownAnyFunction18776     ExprResult VisitMemberExpr(MemberExpr *E) {
18777       return resolveDecl(E, E->getMemberDecl());
18778     }
18779 
VisitDeclRefExpr__anona30d30eb2411::RebuildUnknownAnyFunction18780     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
18781       return resolveDecl(E, E->getDecl());
18782     }
18783   };
18784 }
18785 
18786 /// Given a function expression of unknown-any type, try to rebuild it
18787 /// to have a function type.
rebuildUnknownAnyFunction(Sema & S,Expr * FunctionExpr)18788 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
18789   ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
18790   if (Result.isInvalid()) return ExprError();
18791   return S.DefaultFunctionArrayConversion(Result.get());
18792 }
18793 
18794 namespace {
18795   /// A visitor for rebuilding an expression of type __unknown_anytype
18796   /// into one which resolves the type directly on the referring
18797   /// expression.  Strict preservation of the original source
18798   /// structure is not a goal.
18799   struct RebuildUnknownAnyExpr
18800     : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
18801 
18802     Sema &S;
18803 
18804     /// The current destination type.
18805     QualType DestType;
18806 
RebuildUnknownAnyExpr__anona30d30eb2511::RebuildUnknownAnyExpr18807     RebuildUnknownAnyExpr(Sema &S, QualType CastType)
18808       : S(S), DestType(CastType) {}
18809 
VisitStmt__anona30d30eb2511::RebuildUnknownAnyExpr18810     ExprResult VisitStmt(Stmt *S) {
18811       llvm_unreachable("unexpected statement!");
18812     }
18813 
VisitExpr__anona30d30eb2511::RebuildUnknownAnyExpr18814     ExprResult VisitExpr(Expr *E) {
18815       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
18816         << E->getSourceRange();
18817       return ExprError();
18818     }
18819 
18820     ExprResult VisitCallExpr(CallExpr *E);
18821     ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
18822 
18823     /// Rebuild an expression which simply semantically wraps another
18824     /// expression which it shares the type and value kind of.
rebuildSugarExpr__anona30d30eb2511::RebuildUnknownAnyExpr18825     template <class T> ExprResult rebuildSugarExpr(T *E) {
18826       ExprResult SubResult = Visit(E->getSubExpr());
18827       if (SubResult.isInvalid()) return ExprError();
18828       Expr *SubExpr = SubResult.get();
18829       E->setSubExpr(SubExpr);
18830       E->setType(SubExpr->getType());
18831       E->setValueKind(SubExpr->getValueKind());
18832       assert(E->getObjectKind() == OK_Ordinary);
18833       return E;
18834     }
18835 
VisitParenExpr__anona30d30eb2511::RebuildUnknownAnyExpr18836     ExprResult VisitParenExpr(ParenExpr *E) {
18837       return rebuildSugarExpr(E);
18838     }
18839 
VisitUnaryExtension__anona30d30eb2511::RebuildUnknownAnyExpr18840     ExprResult VisitUnaryExtension(UnaryOperator *E) {
18841       return rebuildSugarExpr(E);
18842     }
18843 
VisitUnaryAddrOf__anona30d30eb2511::RebuildUnknownAnyExpr18844     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
18845       const PointerType *Ptr = DestType->getAs<PointerType>();
18846       if (!Ptr) {
18847         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
18848           << E->getSourceRange();
18849         return ExprError();
18850       }
18851 
18852       if (isa<CallExpr>(E->getSubExpr())) {
18853         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
18854           << E->getSourceRange();
18855         return ExprError();
18856       }
18857 
18858       assert(E->getValueKind() == VK_RValue);
18859       assert(E->getObjectKind() == OK_Ordinary);
18860       E->setType(DestType);
18861 
18862       // Build the sub-expression as if it were an object of the pointee type.
18863       DestType = Ptr->getPointeeType();
18864       ExprResult SubResult = Visit(E->getSubExpr());
18865       if (SubResult.isInvalid()) return ExprError();
18866       E->setSubExpr(SubResult.get());
18867       return E;
18868     }
18869 
18870     ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
18871 
18872     ExprResult resolveDecl(Expr *E, ValueDecl *VD);
18873 
VisitMemberExpr__anona30d30eb2511::RebuildUnknownAnyExpr18874     ExprResult VisitMemberExpr(MemberExpr *E) {
18875       return resolveDecl(E, E->getMemberDecl());
18876     }
18877 
VisitDeclRefExpr__anona30d30eb2511::RebuildUnknownAnyExpr18878     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
18879       return resolveDecl(E, E->getDecl());
18880     }
18881   };
18882 }
18883 
18884 /// Rebuilds a call expression which yielded __unknown_anytype.
VisitCallExpr(CallExpr * E)18885 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
18886   Expr *CalleeExpr = E->getCallee();
18887 
18888   enum FnKind {
18889     FK_MemberFunction,
18890     FK_FunctionPointer,
18891     FK_BlockPointer
18892   };
18893 
18894   FnKind Kind;
18895   QualType CalleeType = CalleeExpr->getType();
18896   if (CalleeType == S.Context.BoundMemberTy) {
18897     assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
18898     Kind = FK_MemberFunction;
18899     CalleeType = Expr::findBoundMemberType(CalleeExpr);
18900   } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
18901     CalleeType = Ptr->getPointeeType();
18902     Kind = FK_FunctionPointer;
18903   } else {
18904     CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
18905     Kind = FK_BlockPointer;
18906   }
18907   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
18908 
18909   // Verify that this is a legal result type of a function.
18910   if (DestType->isArrayType() || DestType->isFunctionType()) {
18911     unsigned diagID = diag::err_func_returning_array_function;
18912     if (Kind == FK_BlockPointer)
18913       diagID = diag::err_block_returning_array_function;
18914 
18915     S.Diag(E->getExprLoc(), diagID)
18916       << DestType->isFunctionType() << DestType;
18917     return ExprError();
18918   }
18919 
18920   // Otherwise, go ahead and set DestType as the call's result.
18921   E->setType(DestType.getNonLValueExprType(S.Context));
18922   E->setValueKind(Expr::getValueKindForType(DestType));
18923   assert(E->getObjectKind() == OK_Ordinary);
18924 
18925   // Rebuild the function type, replacing the result type with DestType.
18926   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
18927   if (Proto) {
18928     // __unknown_anytype(...) is a special case used by the debugger when
18929     // it has no idea what a function's signature is.
18930     //
18931     // We want to build this call essentially under the K&R
18932     // unprototyped rules, but making a FunctionNoProtoType in C++
18933     // would foul up all sorts of assumptions.  However, we cannot
18934     // simply pass all arguments as variadic arguments, nor can we
18935     // portably just call the function under a non-variadic type; see
18936     // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
18937     // However, it turns out that in practice it is generally safe to
18938     // call a function declared as "A foo(B,C,D);" under the prototype
18939     // "A foo(B,C,D,...);".  The only known exception is with the
18940     // Windows ABI, where any variadic function is implicitly cdecl
18941     // regardless of its normal CC.  Therefore we change the parameter
18942     // types to match the types of the arguments.
18943     //
18944     // This is a hack, but it is far superior to moving the
18945     // corresponding target-specific code from IR-gen to Sema/AST.
18946 
18947     ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
18948     SmallVector<QualType, 8> ArgTypes;
18949     if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
18950       ArgTypes.reserve(E->getNumArgs());
18951       for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
18952         Expr *Arg = E->getArg(i);
18953         QualType ArgType = Arg->getType();
18954         if (E->isLValue()) {
18955           ArgType = S.Context.getLValueReferenceType(ArgType);
18956         } else if (E->isXValue()) {
18957           ArgType = S.Context.getRValueReferenceType(ArgType);
18958         }
18959         ArgTypes.push_back(ArgType);
18960       }
18961       ParamTypes = ArgTypes;
18962     }
18963     DestType = S.Context.getFunctionType(DestType, ParamTypes,
18964                                          Proto->getExtProtoInfo());
18965   } else {
18966     DestType = S.Context.getFunctionNoProtoType(DestType,
18967                                                 FnType->getExtInfo());
18968   }
18969 
18970   // Rebuild the appropriate pointer-to-function type.
18971   switch (Kind) {
18972   case FK_MemberFunction:
18973     // Nothing to do.
18974     break;
18975 
18976   case FK_FunctionPointer:
18977     DestType = S.Context.getPointerType(DestType);
18978     break;
18979 
18980   case FK_BlockPointer:
18981     DestType = S.Context.getBlockPointerType(DestType);
18982     break;
18983   }
18984 
18985   // Finally, we can recurse.
18986   ExprResult CalleeResult = Visit(CalleeExpr);
18987   if (!CalleeResult.isUsable()) return ExprError();
18988   E->setCallee(CalleeResult.get());
18989 
18990   // Bind a temporary if necessary.
18991   return S.MaybeBindToTemporary(E);
18992 }
18993 
VisitObjCMessageExpr(ObjCMessageExpr * E)18994 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
18995   // Verify that this is a legal result type of a call.
18996   if (DestType->isArrayType() || DestType->isFunctionType()) {
18997     S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
18998       << DestType->isFunctionType() << DestType;
18999     return ExprError();
19000   }
19001 
19002   // Rewrite the method result type if available.
19003   if (ObjCMethodDecl *Method = E->getMethodDecl()) {
19004     assert(Method->getReturnType() == S.Context.UnknownAnyTy);
19005     Method->setReturnType(DestType);
19006   }
19007 
19008   // Change the type of the message.
19009   E->setType(DestType.getNonReferenceType());
19010   E->setValueKind(Expr::getValueKindForType(DestType));
19011 
19012   return S.MaybeBindToTemporary(E);
19013 }
19014 
VisitImplicitCastExpr(ImplicitCastExpr * E)19015 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
19016   // The only case we should ever see here is a function-to-pointer decay.
19017   if (E->getCastKind() == CK_FunctionToPointerDecay) {
19018     assert(E->getValueKind() == VK_RValue);
19019     assert(E->getObjectKind() == OK_Ordinary);
19020 
19021     E->setType(DestType);
19022 
19023     // Rebuild the sub-expression as the pointee (function) type.
19024     DestType = DestType->castAs<PointerType>()->getPointeeType();
19025 
19026     ExprResult Result = Visit(E->getSubExpr());
19027     if (!Result.isUsable()) return ExprError();
19028 
19029     E->setSubExpr(Result.get());
19030     return E;
19031   } else if (E->getCastKind() == CK_LValueToRValue) {
19032     assert(E->getValueKind() == VK_RValue);
19033     assert(E->getObjectKind() == OK_Ordinary);
19034 
19035     assert(isa<BlockPointerType>(E->getType()));
19036 
19037     E->setType(DestType);
19038 
19039     // The sub-expression has to be a lvalue reference, so rebuild it as such.
19040     DestType = S.Context.getLValueReferenceType(DestType);
19041 
19042     ExprResult Result = Visit(E->getSubExpr());
19043     if (!Result.isUsable()) return ExprError();
19044 
19045     E->setSubExpr(Result.get());
19046     return E;
19047   } else {
19048     llvm_unreachable("Unhandled cast type!");
19049   }
19050 }
19051 
resolveDecl(Expr * E,ValueDecl * VD)19052 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
19053   ExprValueKind ValueKind = VK_LValue;
19054   QualType Type = DestType;
19055 
19056   // We know how to make this work for certain kinds of decls:
19057 
19058   //  - functions
19059   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
19060     if (const PointerType *Ptr = Type->getAs<PointerType>()) {
19061       DestType = Ptr->getPointeeType();
19062       ExprResult Result = resolveDecl(E, VD);
19063       if (Result.isInvalid()) return ExprError();
19064       return S.ImpCastExprToType(Result.get(), Type,
19065                                  CK_FunctionToPointerDecay, VK_RValue);
19066     }
19067 
19068     if (!Type->isFunctionType()) {
19069       S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
19070         << VD << E->getSourceRange();
19071       return ExprError();
19072     }
19073     if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
19074       // We must match the FunctionDecl's type to the hack introduced in
19075       // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
19076       // type. See the lengthy commentary in that routine.
19077       QualType FDT = FD->getType();
19078       const FunctionType *FnType = FDT->castAs<FunctionType>();
19079       const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
19080       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
19081       if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
19082         SourceLocation Loc = FD->getLocation();
19083         FunctionDecl *NewFD = FunctionDecl::Create(
19084             S.Context, FD->getDeclContext(), Loc, Loc,
19085             FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
19086             SC_None, false /*isInlineSpecified*/, FD->hasPrototype(),
19087             /*ConstexprKind*/ ConstexprSpecKind::Unspecified);
19088 
19089         if (FD->getQualifier())
19090           NewFD->setQualifierInfo(FD->getQualifierLoc());
19091 
19092         SmallVector<ParmVarDecl*, 16> Params;
19093         for (const auto &AI : FT->param_types()) {
19094           ParmVarDecl *Param =
19095             S.BuildParmVarDeclForTypedef(FD, Loc, AI);
19096           Param->setScopeInfo(0, Params.size());
19097           Params.push_back(Param);
19098         }
19099         NewFD->setParams(Params);
19100         DRE->setDecl(NewFD);
19101         VD = DRE->getDecl();
19102       }
19103     }
19104 
19105     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
19106       if (MD->isInstance()) {
19107         ValueKind = VK_RValue;
19108         Type = S.Context.BoundMemberTy;
19109       }
19110 
19111     // Function references aren't l-values in C.
19112     if (!S.getLangOpts().CPlusPlus)
19113       ValueKind = VK_RValue;
19114 
19115   //  - variables
19116   } else if (isa<VarDecl>(VD)) {
19117     if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
19118       Type = RefTy->getPointeeType();
19119     } else if (Type->isFunctionType()) {
19120       S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
19121         << VD << E->getSourceRange();
19122       return ExprError();
19123     }
19124 
19125   //  - nothing else
19126   } else {
19127     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
19128       << VD << E->getSourceRange();
19129     return ExprError();
19130   }
19131 
19132   // Modifying the declaration like this is friendly to IR-gen but
19133   // also really dangerous.
19134   VD->setType(DestType);
19135   E->setType(Type);
19136   E->setValueKind(ValueKind);
19137   return E;
19138 }
19139 
19140 /// Check a cast of an unknown-any type.  We intentionally only
19141 /// trigger this for C-style casts.
checkUnknownAnyCast(SourceRange TypeRange,QualType CastType,Expr * CastExpr,CastKind & CastKind,ExprValueKind & VK,CXXCastPath & Path)19142 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
19143                                      Expr *CastExpr, CastKind &CastKind,
19144                                      ExprValueKind &VK, CXXCastPath &Path) {
19145   // The type we're casting to must be either void or complete.
19146   if (!CastType->isVoidType() &&
19147       RequireCompleteType(TypeRange.getBegin(), CastType,
19148                           diag::err_typecheck_cast_to_incomplete))
19149     return ExprError();
19150 
19151   // Rewrite the casted expression from scratch.
19152   ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
19153   if (!result.isUsable()) return ExprError();
19154 
19155   CastExpr = result.get();
19156   VK = CastExpr->getValueKind();
19157   CastKind = CK_NoOp;
19158 
19159   return CastExpr;
19160 }
19161 
forceUnknownAnyToType(Expr * E,QualType ToType)19162 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
19163   return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
19164 }
19165 
checkUnknownAnyArg(SourceLocation callLoc,Expr * arg,QualType & paramType)19166 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
19167                                     Expr *arg, QualType &paramType) {
19168   // If the syntactic form of the argument is not an explicit cast of
19169   // any sort, just do default argument promotion.
19170   ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
19171   if (!castArg) {
19172     ExprResult result = DefaultArgumentPromotion(arg);
19173     if (result.isInvalid()) return ExprError();
19174     paramType = result.get()->getType();
19175     return result;
19176   }
19177 
19178   // Otherwise, use the type that was written in the explicit cast.
19179   assert(!arg->hasPlaceholderType());
19180   paramType = castArg->getTypeAsWritten();
19181 
19182   // Copy-initialize a parameter of that type.
19183   InitializedEntity entity =
19184     InitializedEntity::InitializeParameter(Context, paramType,
19185                                            /*consumed*/ false);
19186   return PerformCopyInitialization(entity, callLoc, arg);
19187 }
19188 
diagnoseUnknownAnyExpr(Sema & S,Expr * E)19189 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
19190   Expr *orig = E;
19191   unsigned diagID = diag::err_uncasted_use_of_unknown_any;
19192   while (true) {
19193     E = E->IgnoreParenImpCasts();
19194     if (CallExpr *call = dyn_cast<CallExpr>(E)) {
19195       E = call->getCallee();
19196       diagID = diag::err_uncasted_call_of_unknown_any;
19197     } else {
19198       break;
19199     }
19200   }
19201 
19202   SourceLocation loc;
19203   NamedDecl *d;
19204   if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
19205     loc = ref->getLocation();
19206     d = ref->getDecl();
19207   } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
19208     loc = mem->getMemberLoc();
19209     d = mem->getMemberDecl();
19210   } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
19211     diagID = diag::err_uncasted_call_of_unknown_any;
19212     loc = msg->getSelectorStartLoc();
19213     d = msg->getMethodDecl();
19214     if (!d) {
19215       S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
19216         << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
19217         << orig->getSourceRange();
19218       return ExprError();
19219     }
19220   } else {
19221     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
19222       << E->getSourceRange();
19223     return ExprError();
19224   }
19225 
19226   S.Diag(loc, diagID) << d << orig->getSourceRange();
19227 
19228   // Never recoverable.
19229   return ExprError();
19230 }
19231 
19232 /// Check for operands with placeholder types and complain if found.
19233 /// Returns ExprError() if there was an error and no recovery was possible.
CheckPlaceholderExpr(Expr * E)19234 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
19235   if (!Context.isDependenceAllowed()) {
19236     // C cannot handle TypoExpr nodes on either side of a binop because it
19237     // doesn't handle dependent types properly, so make sure any TypoExprs have
19238     // been dealt with before checking the operands.
19239     ExprResult Result = CorrectDelayedTyposInExpr(E);
19240     if (!Result.isUsable()) return ExprError();
19241     E = Result.get();
19242   }
19243 
19244   const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
19245   if (!placeholderType) return E;
19246 
19247   switch (placeholderType->getKind()) {
19248 
19249   // Overloaded expressions.
19250   case BuiltinType::Overload: {
19251     // Try to resolve a single function template specialization.
19252     // This is obligatory.
19253     ExprResult Result = E;
19254     if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
19255       return Result;
19256 
19257     // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
19258     // leaves Result unchanged on failure.
19259     Result = E;
19260     if (resolveAndFixAddressOfSingleOverloadCandidate(Result))
19261       return Result;
19262 
19263     // If that failed, try to recover with a call.
19264     tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
19265                          /*complain*/ true);
19266     return Result;
19267   }
19268 
19269   // Bound member functions.
19270   case BuiltinType::BoundMember: {
19271     ExprResult result = E;
19272     const Expr *BME = E->IgnoreParens();
19273     PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
19274     // Try to give a nicer diagnostic if it is a bound member that we recognize.
19275     if (isa<CXXPseudoDestructorExpr>(BME)) {
19276       PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
19277     } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
19278       if (ME->getMemberNameInfo().getName().getNameKind() ==
19279           DeclarationName::CXXDestructorName)
19280         PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
19281     }
19282     tryToRecoverWithCall(result, PD,
19283                          /*complain*/ true);
19284     return result;
19285   }
19286 
19287   // ARC unbridged casts.
19288   case BuiltinType::ARCUnbridgedCast: {
19289     Expr *realCast = stripARCUnbridgedCast(E);
19290     diagnoseARCUnbridgedCast(realCast);
19291     return realCast;
19292   }
19293 
19294   // Expressions of unknown type.
19295   case BuiltinType::UnknownAny:
19296     return diagnoseUnknownAnyExpr(*this, E);
19297 
19298   // Pseudo-objects.
19299   case BuiltinType::PseudoObject:
19300     return checkPseudoObjectRValue(E);
19301 
19302   case BuiltinType::BuiltinFn: {
19303     // Accept __noop without parens by implicitly converting it to a call expr.
19304     auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
19305     if (DRE) {
19306       auto *FD = cast<FunctionDecl>(DRE->getDecl());
19307       if (FD->getBuiltinID() == Builtin::BI__noop) {
19308         E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
19309                               CK_BuiltinFnToFnPtr)
19310                 .get();
19311         return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
19312                                 VK_RValue, SourceLocation(),
19313                                 FPOptionsOverride());
19314       }
19315     }
19316 
19317     Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
19318     return ExprError();
19319   }
19320 
19321   case BuiltinType::IncompleteMatrixIdx:
19322     Diag(cast<MatrixSubscriptExpr>(E->IgnoreParens())
19323              ->getRowIdx()
19324              ->getBeginLoc(),
19325          diag::err_matrix_incomplete_index);
19326     return ExprError();
19327 
19328   // Expressions of unknown type.
19329   case BuiltinType::OMPArraySection:
19330     Diag(E->getBeginLoc(), diag::err_omp_array_section_use);
19331     return ExprError();
19332 
19333   // Expressions of unknown type.
19334   case BuiltinType::OMPArrayShaping:
19335     return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use));
19336 
19337   case BuiltinType::OMPIterator:
19338     return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use));
19339 
19340   // Everything else should be impossible.
19341 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
19342   case BuiltinType::Id:
19343 #include "clang/Basic/OpenCLImageTypes.def"
19344 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
19345   case BuiltinType::Id:
19346 #include "clang/Basic/OpenCLExtensionTypes.def"
19347 #define SVE_TYPE(Name, Id, SingletonId) \
19348   case BuiltinType::Id:
19349 #include "clang/Basic/AArch64SVEACLETypes.def"
19350 #define PPC_MMA_VECTOR_TYPE(Name, Id, Size) \
19351   case BuiltinType::Id:
19352 #include "clang/Basic/PPCTypes.def"
19353 #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
19354 #define PLACEHOLDER_TYPE(Id, SingletonId)
19355 #include "clang/AST/BuiltinTypes.def"
19356     break;
19357   }
19358 
19359   llvm_unreachable("invalid placeholder type!");
19360 }
19361 
CheckCaseExpression(Expr * E)19362 bool Sema::CheckCaseExpression(Expr *E) {
19363   if (E->isTypeDependent())
19364     return true;
19365   if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
19366     return E->getType()->isIntegralOrEnumerationType();
19367   return false;
19368 }
19369 
19370 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
19371 ExprResult
ActOnObjCBoolLiteral(SourceLocation OpLoc,tok::TokenKind Kind)19372 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
19373   assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
19374          "Unknown Objective-C Boolean value!");
19375   QualType BoolT = Context.ObjCBuiltinBoolTy;
19376   if (!Context.getBOOLDecl()) {
19377     LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
19378                         Sema::LookupOrdinaryName);
19379     if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
19380       NamedDecl *ND = Result.getFoundDecl();
19381       if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
19382         Context.setBOOLDecl(TD);
19383     }
19384   }
19385   if (Context.getBOOLDecl())
19386     BoolT = Context.getBOOLType();
19387   return new (Context)
19388       ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
19389 }
19390 
ActOnObjCAvailabilityCheckExpr(llvm::ArrayRef<AvailabilitySpec> AvailSpecs,SourceLocation AtLoc,SourceLocation RParen)19391 ExprResult Sema::ActOnObjCAvailabilityCheckExpr(
19392     llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc,
19393     SourceLocation RParen) {
19394 
19395   StringRef Platform = getASTContext().getTargetInfo().getPlatformName();
19396 
19397   auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
19398     return Spec.getPlatform() == Platform;
19399   });
19400 
19401   VersionTuple Version;
19402   if (Spec != AvailSpecs.end())
19403     Version = Spec->getVersion();
19404 
19405   // The use of `@available` in the enclosing function should be analyzed to
19406   // warn when it's used inappropriately (i.e. not if(@available)).
19407   if (getCurFunctionOrMethodDecl())
19408     getEnclosingFunction()->HasPotentialAvailabilityViolations = true;
19409   else if (getCurBlock() || getCurLambda())
19410     getCurFunction()->HasPotentialAvailabilityViolations = true;
19411 
19412   return new (Context)
19413       ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy);
19414 }
19415 
CreateRecoveryExpr(SourceLocation Begin,SourceLocation End,ArrayRef<Expr * > SubExprs,QualType T)19416 ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
19417                                     ArrayRef<Expr *> SubExprs, QualType T) {
19418   if (!Context.getLangOpts().RecoveryAST)
19419     return ExprError();
19420 
19421   if (isSFINAEContext())
19422     return ExprError();
19423 
19424   if (T.isNull() || !Context.getLangOpts().RecoveryASTType)
19425     // We don't know the concrete type, fallback to dependent type.
19426     T = Context.DependentTy;
19427   return RecoveryExpr::Create(Context, T, Begin, End, SubExprs);
19428 }
19429