• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //===----------------------------------------------------------------------===//
7 //
8 //  This file implements semantic analysis for C++ templates.
9 //===----------------------------------------------------------------------===//
10 
11 #include "TreeTransform.h"
12 #include "clang/AST/ASTConsumer.h"
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/DeclFriend.h"
15 #include "clang/AST/DeclTemplate.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/RecursiveASTVisitor.h"
19 #include "clang/AST/TypeVisitor.h"
20 #include "clang/Basic/Builtins.h"
21 #include "clang/Basic/LangOptions.h"
22 #include "clang/Basic/PartialDiagnostic.h"
23 #include "clang/Basic/Stack.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Sema/DeclSpec.h"
26 #include "clang/Sema/Initialization.h"
27 #include "clang/Sema/Lookup.h"
28 #include "clang/Sema/Overload.h"
29 #include "clang/Sema/ParsedTemplate.h"
30 #include "clang/Sema/Scope.h"
31 #include "clang/Sema/SemaInternal.h"
32 #include "clang/Sema/Template.h"
33 #include "clang/Sema/TemplateDeduction.h"
34 #include "llvm/ADT/SmallBitVector.h"
35 #include "llvm/ADT/SmallString.h"
36 #include "llvm/ADT/StringExtras.h"
37 
38 #include <iterator>
39 using namespace clang;
40 using namespace sema;
41 
42 // Exported for use by Parser.
43 SourceRange
getTemplateParamsRange(TemplateParameterList const * const * Ps,unsigned N)44 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
45                               unsigned N) {
46   if (!N) return SourceRange();
47   return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
48 }
49 
getTemplateDepth(Scope * S) const50 unsigned Sema::getTemplateDepth(Scope *S) const {
51   unsigned Depth = 0;
52 
53   // Each template parameter scope represents one level of template parameter
54   // depth.
55   for (Scope *TempParamScope = S->getTemplateParamParent(); TempParamScope;
56        TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) {
57     ++Depth;
58   }
59 
60   // Note that there are template parameters with the given depth.
61   auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(Depth, D + 1); };
62 
63   // Look for parameters of an enclosing generic lambda. We don't create a
64   // template parameter scope for these.
65   for (FunctionScopeInfo *FSI : getFunctionScopes()) {
66     if (auto *LSI = dyn_cast<LambdaScopeInfo>(FSI)) {
67       if (!LSI->TemplateParams.empty()) {
68         ParamsAtDepth(LSI->AutoTemplateParameterDepth);
69         break;
70       }
71       if (LSI->GLTemplateParameterList) {
72         ParamsAtDepth(LSI->GLTemplateParameterList->getDepth());
73         break;
74       }
75     }
76   }
77 
78   // Look for parameters of an enclosing terse function template. We don't
79   // create a template parameter scope for these either.
80   for (const InventedTemplateParameterInfo &Info :
81        getInventedParameterInfos()) {
82     if (!Info.TemplateParams.empty()) {
83       ParamsAtDepth(Info.AutoTemplateParameterDepth);
84       break;
85     }
86   }
87 
88   return Depth;
89 }
90 
91 /// \brief Determine whether the declaration found is acceptable as the name
92 /// of a template and, if so, return that template declaration. Otherwise,
93 /// returns null.
94 ///
95 /// Note that this may return an UnresolvedUsingValueDecl if AllowDependent
96 /// is true. In all other cases it will return a TemplateDecl (or null).
getAsTemplateNameDecl(NamedDecl * D,bool AllowFunctionTemplates,bool AllowDependent)97 NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D,
98                                        bool AllowFunctionTemplates,
99                                        bool AllowDependent) {
100   D = D->getUnderlyingDecl();
101 
102   if (isa<TemplateDecl>(D)) {
103     if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
104       return nullptr;
105 
106     return D;
107   }
108 
109   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
110     // C++ [temp.local]p1:
111     //   Like normal (non-template) classes, class templates have an
112     //   injected-class-name (Clause 9). The injected-class-name
113     //   can be used with or without a template-argument-list. When
114     //   it is used without a template-argument-list, it is
115     //   equivalent to the injected-class-name followed by the
116     //   template-parameters of the class template enclosed in
117     //   <>. When it is used with a template-argument-list, it
118     //   refers to the specified class template specialization,
119     //   which could be the current specialization or another
120     //   specialization.
121     if (Record->isInjectedClassName()) {
122       Record = cast<CXXRecordDecl>(Record->getDeclContext());
123       if (Record->getDescribedClassTemplate())
124         return Record->getDescribedClassTemplate();
125 
126       if (ClassTemplateSpecializationDecl *Spec
127             = dyn_cast<ClassTemplateSpecializationDecl>(Record))
128         return Spec->getSpecializedTemplate();
129     }
130 
131     return nullptr;
132   }
133 
134   // 'using Dependent::foo;' can resolve to a template name.
135   // 'using typename Dependent::foo;' cannot (not even if 'foo' is an
136   // injected-class-name).
137   if (AllowDependent && isa<UnresolvedUsingValueDecl>(D))
138     return D;
139 
140   return nullptr;
141 }
142 
FilterAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates,bool AllowDependent)143 void Sema::FilterAcceptableTemplateNames(LookupResult &R,
144                                          bool AllowFunctionTemplates,
145                                          bool AllowDependent) {
146   LookupResult::Filter filter = R.makeFilter();
147   while (filter.hasNext()) {
148     NamedDecl *Orig = filter.next();
149     if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent))
150       filter.erase();
151   }
152   filter.done();
153 }
154 
hasAnyAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates,bool AllowDependent,bool AllowNonTemplateFunctions)155 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
156                                          bool AllowFunctionTemplates,
157                                          bool AllowDependent,
158                                          bool AllowNonTemplateFunctions) {
159   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
160     if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent))
161       return true;
162     if (AllowNonTemplateFunctions &&
163         isa<FunctionDecl>((*I)->getUnderlyingDecl()))
164       return true;
165   }
166 
167   return false;
168 }
169 
isTemplateName(Scope * S,CXXScopeSpec & SS,bool hasTemplateKeyword,const UnqualifiedId & Name,ParsedType ObjectTypePtr,bool EnteringContext,TemplateTy & TemplateResult,bool & MemberOfUnknownSpecialization,bool Disambiguation)170 TemplateNameKind Sema::isTemplateName(Scope *S,
171                                       CXXScopeSpec &SS,
172                                       bool hasTemplateKeyword,
173                                       const UnqualifiedId &Name,
174                                       ParsedType ObjectTypePtr,
175                                       bool EnteringContext,
176                                       TemplateTy &TemplateResult,
177                                       bool &MemberOfUnknownSpecialization,
178                                       bool Disambiguation) {
179   assert(getLangOpts().CPlusPlus && "No template names in C!");
180 
181   DeclarationName TName;
182   MemberOfUnknownSpecialization = false;
183 
184   switch (Name.getKind()) {
185   case UnqualifiedIdKind::IK_Identifier:
186     TName = DeclarationName(Name.Identifier);
187     break;
188 
189   case UnqualifiedIdKind::IK_OperatorFunctionId:
190     TName = Context.DeclarationNames.getCXXOperatorName(
191                                               Name.OperatorFunctionId.Operator);
192     break;
193 
194   case UnqualifiedIdKind::IK_LiteralOperatorId:
195     TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
196     break;
197 
198   default:
199     return TNK_Non_template;
200   }
201 
202   QualType ObjectType = ObjectTypePtr.get();
203 
204   AssumedTemplateKind AssumedTemplate;
205   LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName);
206   if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
207                          MemberOfUnknownSpecialization, SourceLocation(),
208                          &AssumedTemplate,
209                          /*AllowTypoCorrection=*/!Disambiguation))
210     return TNK_Non_template;
211 
212   if (AssumedTemplate != AssumedTemplateKind::None) {
213     TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName));
214     // Let the parser know whether we found nothing or found functions; if we
215     // found nothing, we want to more carefully check whether this is actually
216     // a function template name versus some other kind of undeclared identifier.
217     return AssumedTemplate == AssumedTemplateKind::FoundNothing
218                ? TNK_Undeclared_template
219                : TNK_Function_template;
220   }
221 
222   if (R.empty())
223     return TNK_Non_template;
224 
225   NamedDecl *D = nullptr;
226   if (R.isAmbiguous()) {
227     // If we got an ambiguity involving a non-function template, treat this
228     // as a template name, and pick an arbitrary template for error recovery.
229     bool AnyFunctionTemplates = false;
230     for (NamedDecl *FoundD : R) {
231       if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) {
232         if (isa<FunctionTemplateDecl>(FoundTemplate))
233           AnyFunctionTemplates = true;
234         else {
235           D = FoundTemplate;
236           break;
237         }
238       }
239     }
240 
241     // If we didn't find any templates at all, this isn't a template name.
242     // Leave the ambiguity for a later lookup to diagnose.
243     if (!D && !AnyFunctionTemplates) {
244       R.suppressDiagnostics();
245       return TNK_Non_template;
246     }
247 
248     // If the only templates were function templates, filter out the rest.
249     // We'll diagnose the ambiguity later.
250     if (!D)
251       FilterAcceptableTemplateNames(R);
252   }
253 
254   // At this point, we have either picked a single template name declaration D
255   // or we have a non-empty set of results R containing either one template name
256   // declaration or a set of function templates.
257 
258   TemplateName Template;
259   TemplateNameKind TemplateKind;
260 
261   unsigned ResultCount = R.end() - R.begin();
262   if (!D && ResultCount > 1) {
263     // We assume that we'll preserve the qualifier from a function
264     // template name in other ways.
265     Template = Context.getOverloadedTemplateName(R.begin(), R.end());
266     TemplateKind = TNK_Function_template;
267 
268     // We'll do this lookup again later.
269     R.suppressDiagnostics();
270   } else {
271     if (!D) {
272       D = getAsTemplateNameDecl(*R.begin());
273       assert(D && "unambiguous result is not a template name");
274     }
275 
276     if (isa<UnresolvedUsingValueDecl>(D)) {
277       // We don't yet know whether this is a template-name or not.
278       MemberOfUnknownSpecialization = true;
279       return TNK_Non_template;
280     }
281 
282     TemplateDecl *TD = cast<TemplateDecl>(D);
283 
284     if (SS.isSet() && !SS.isInvalid()) {
285       NestedNameSpecifier *Qualifier = SS.getScopeRep();
286       Template = Context.getQualifiedTemplateName(Qualifier,
287                                                   hasTemplateKeyword, TD);
288     } else {
289       Template = TemplateName(TD);
290     }
291 
292     if (isa<FunctionTemplateDecl>(TD)) {
293       TemplateKind = TNK_Function_template;
294 
295       // We'll do this lookup again later.
296       R.suppressDiagnostics();
297     } else {
298       assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
299              isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||
300              isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD));
301       TemplateKind =
302           isa<VarTemplateDecl>(TD) ? TNK_Var_template :
303           isa<ConceptDecl>(TD) ? TNK_Concept_template :
304           TNK_Type_template;
305     }
306   }
307 
308   TemplateResult = TemplateTy::make(Template);
309   return TemplateKind;
310 }
311 
isDeductionGuideName(Scope * S,const IdentifierInfo & Name,SourceLocation NameLoc,ParsedTemplateTy * Template)312 bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
313                                 SourceLocation NameLoc,
314                                 ParsedTemplateTy *Template) {
315   CXXScopeSpec SS;
316   bool MemberOfUnknownSpecialization = false;
317 
318   // We could use redeclaration lookup here, but we don't need to: the
319   // syntactic form of a deduction guide is enough to identify it even
320   // if we can't look up the template name at all.
321   LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName);
322   if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(),
323                          /*EnteringContext*/ false,
324                          MemberOfUnknownSpecialization))
325     return false;
326 
327   if (R.empty()) return false;
328   if (R.isAmbiguous()) {
329     // FIXME: Diagnose an ambiguity if we find at least one template.
330     R.suppressDiagnostics();
331     return false;
332   }
333 
334   // We only treat template-names that name type templates as valid deduction
335   // guide names.
336   TemplateDecl *TD = R.getAsSingle<TemplateDecl>();
337   if (!TD || !getAsTypeTemplateDecl(TD))
338     return false;
339 
340   if (Template)
341     *Template = TemplateTy::make(TemplateName(TD));
342   return true;
343 }
344 
DiagnoseUnknownTemplateName(const IdentifierInfo & II,SourceLocation IILoc,Scope * S,const CXXScopeSpec * SS,TemplateTy & SuggestedTemplate,TemplateNameKind & SuggestedKind)345 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
346                                        SourceLocation IILoc,
347                                        Scope *S,
348                                        const CXXScopeSpec *SS,
349                                        TemplateTy &SuggestedTemplate,
350                                        TemplateNameKind &SuggestedKind) {
351   // We can't recover unless there's a dependent scope specifier preceding the
352   // template name.
353   // FIXME: Typo correction?
354   if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
355       computeDeclContext(*SS))
356     return false;
357 
358   // The code is missing a 'template' keyword prior to the dependent template
359   // name.
360   NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
361   Diag(IILoc, diag::err_template_kw_missing)
362     << Qualifier << II.getName()
363     << FixItHint::CreateInsertion(IILoc, "template ");
364   SuggestedTemplate
365     = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
366   SuggestedKind = TNK_Dependent_template_name;
367   return true;
368 }
369 
LookupTemplateName(LookupResult & Found,Scope * S,CXXScopeSpec & SS,QualType ObjectType,bool EnteringContext,bool & MemberOfUnknownSpecialization,RequiredTemplateKind RequiredTemplate,AssumedTemplateKind * ATK,bool AllowTypoCorrection)370 bool Sema::LookupTemplateName(LookupResult &Found,
371                               Scope *S, CXXScopeSpec &SS,
372                               QualType ObjectType,
373                               bool EnteringContext,
374                               bool &MemberOfUnknownSpecialization,
375                               RequiredTemplateKind RequiredTemplate,
376                               AssumedTemplateKind *ATK,
377                               bool AllowTypoCorrection) {
378   if (ATK)
379     *ATK = AssumedTemplateKind::None;
380 
381   if (SS.isInvalid())
382     return true;
383 
384   Found.setTemplateNameLookup(true);
385 
386   // Determine where to perform name lookup
387   MemberOfUnknownSpecialization = false;
388   DeclContext *LookupCtx = nullptr;
389   bool IsDependent = false;
390   if (!ObjectType.isNull()) {
391     // This nested-name-specifier occurs in a member access expression, e.g.,
392     // x->B::f, and we are looking into the type of the object.
393     assert(SS.isEmpty() && "ObjectType and scope specifier cannot coexist");
394     LookupCtx = computeDeclContext(ObjectType);
395     IsDependent = !LookupCtx && ObjectType->isDependentType();
396     assert((IsDependent || !ObjectType->isIncompleteType() ||
397             ObjectType->castAs<TagType>()->isBeingDefined()) &&
398            "Caller should have completed object type");
399 
400     // Template names cannot appear inside an Objective-C class or object type
401     // or a vector type.
402     //
403     // FIXME: This is wrong. For example:
404     //
405     //   template<typename T> using Vec = T __attribute__((ext_vector_type(4)));
406     //   Vec<int> vi;
407     //   vi.Vec<int>::~Vec<int>();
408     //
409     // ... should be accepted but we will not treat 'Vec' as a template name
410     // here. The right thing to do would be to check if the name is a valid
411     // vector component name, and look up a template name if not. And similarly
412     // for lookups into Objective-C class and object types, where the same
413     // problem can arise.
414     if (ObjectType->isObjCObjectOrInterfaceType() ||
415         ObjectType->isVectorType()) {
416       Found.clear();
417       return false;
418     }
419   } else if (SS.isNotEmpty()) {
420     // This nested-name-specifier occurs after another nested-name-specifier,
421     // so long into the context associated with the prior nested-name-specifier.
422     LookupCtx = computeDeclContext(SS, EnteringContext);
423     IsDependent = !LookupCtx && isDependentScopeSpecifier(SS);
424 
425     // The declaration context must be complete.
426     if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
427       return true;
428   }
429 
430   bool ObjectTypeSearchedInScope = false;
431   bool AllowFunctionTemplatesInLookup = true;
432   if (LookupCtx) {
433     // Perform "qualified" name lookup into the declaration context we
434     // computed, which is either the type of the base of a member access
435     // expression or the declaration context associated with a prior
436     // nested-name-specifier.
437     LookupQualifiedName(Found, LookupCtx);
438 
439     // FIXME: The C++ standard does not clearly specify what happens in the
440     // case where the object type is dependent, and implementations vary. In
441     // Clang, we treat a name after a . or -> as a template-name if lookup
442     // finds a non-dependent member or member of the current instantiation that
443     // is a type template, or finds no such members and lookup in the context
444     // of the postfix-expression finds a type template. In the latter case, the
445     // name is nonetheless dependent, and we may resolve it to a member of an
446     // unknown specialization when we come to instantiate the template.
447     IsDependent |= Found.wasNotFoundInCurrentInstantiation();
448   }
449 
450   if (SS.isEmpty() && (ObjectType.isNull() || Found.empty())) {
451     // C++ [basic.lookup.classref]p1:
452     //   In a class member access expression (5.2.5), if the . or -> token is
453     //   immediately followed by an identifier followed by a <, the
454     //   identifier must be looked up to determine whether the < is the
455     //   beginning of a template argument list (14.2) or a less-than operator.
456     //   The identifier is first looked up in the class of the object
457     //   expression. If the identifier is not found, it is then looked up in
458     //   the context of the entire postfix-expression and shall name a class
459     //   template.
460     if (S)
461       LookupName(Found, S);
462 
463     if (!ObjectType.isNull()) {
464       //  FIXME: We should filter out all non-type templates here, particularly
465       //  variable templates and concepts. But the exclusion of alias templates
466       //  and template template parameters is a wording defect.
467       AllowFunctionTemplatesInLookup = false;
468       ObjectTypeSearchedInScope = true;
469     }
470 
471     IsDependent |= Found.wasNotFoundInCurrentInstantiation();
472   }
473 
474   if (Found.isAmbiguous())
475     return false;
476 
477   if (ATK && SS.isEmpty() && ObjectType.isNull() &&
478       !RequiredTemplate.hasTemplateKeyword()) {
479     // C++2a [temp.names]p2:
480     //   A name is also considered to refer to a template if it is an
481     //   unqualified-id followed by a < and name lookup finds either one or more
482     //   functions or finds nothing.
483     //
484     // To keep our behavior consistent, we apply the "finds nothing" part in
485     // all language modes, and diagnose the empty lookup in ActOnCallExpr if we
486     // successfully form a call to an undeclared template-id.
487     bool AllFunctions =
488         getLangOpts().CPlusPlus20 &&
489         std::all_of(Found.begin(), Found.end(), [](NamedDecl *ND) {
490           return isa<FunctionDecl>(ND->getUnderlyingDecl());
491         });
492     if (AllFunctions || (Found.empty() && !IsDependent)) {
493       // If lookup found any functions, or if this is a name that can only be
494       // used for a function, then strongly assume this is a function
495       // template-id.
496       *ATK = (Found.empty() && Found.getLookupName().isIdentifier())
497                  ? AssumedTemplateKind::FoundNothing
498                  : AssumedTemplateKind::FoundFunctions;
499       Found.clear();
500       return false;
501     }
502   }
503 
504   if (Found.empty() && !IsDependent && AllowTypoCorrection) {
505     // If we did not find any names, and this is not a disambiguation, attempt
506     // to correct any typos.
507     DeclarationName Name = Found.getLookupName();
508     Found.clear();
509     // Simple filter callback that, for keywords, only accepts the C++ *_cast
510     DefaultFilterCCC FilterCCC{};
511     FilterCCC.WantTypeSpecifiers = false;
512     FilterCCC.WantExpressionKeywords = false;
513     FilterCCC.WantRemainingKeywords = false;
514     FilterCCC.WantCXXNamedCasts = true;
515     if (TypoCorrection Corrected =
516             CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S,
517                         &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) {
518       if (auto *ND = Corrected.getFoundDecl())
519         Found.addDecl(ND);
520       FilterAcceptableTemplateNames(Found);
521       if (Found.isAmbiguous()) {
522         Found.clear();
523       } else if (!Found.empty()) {
524         Found.setLookupName(Corrected.getCorrection());
525         if (LookupCtx) {
526           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
527           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
528                                   Name.getAsString() == CorrectedStr;
529           diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
530                                     << Name << LookupCtx << DroppedSpecifier
531                                     << SS.getRange());
532         } else {
533           diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
534         }
535       }
536     }
537   }
538 
539   NamedDecl *ExampleLookupResult =
540       Found.empty() ? nullptr : Found.getRepresentativeDecl();
541   FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
542   if (Found.empty()) {
543     if (IsDependent) {
544       MemberOfUnknownSpecialization = true;
545       return false;
546     }
547 
548     // If a 'template' keyword was used, a lookup that finds only non-template
549     // names is an error.
550     if (ExampleLookupResult && RequiredTemplate) {
551       Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template)
552           << Found.getLookupName() << SS.getRange()
553           << RequiredTemplate.hasTemplateKeyword()
554           << RequiredTemplate.getTemplateKeywordLoc();
555       Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(),
556            diag::note_template_kw_refers_to_non_template)
557           << Found.getLookupName();
558       return true;
559     }
560 
561     return false;
562   }
563 
564   if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
565       !getLangOpts().CPlusPlus11) {
566     // C++03 [basic.lookup.classref]p1:
567     //   [...] If the lookup in the class of the object expression finds a
568     //   template, the name is also looked up in the context of the entire
569     //   postfix-expression and [...]
570     //
571     // Note: C++11 does not perform this second lookup.
572     LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
573                             LookupOrdinaryName);
574     FoundOuter.setTemplateNameLookup(true);
575     LookupName(FoundOuter, S);
576     // FIXME: We silently accept an ambiguous lookup here, in violation of
577     // [basic.lookup]/1.
578     FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
579 
580     NamedDecl *OuterTemplate;
581     if (FoundOuter.empty()) {
582       //   - if the name is not found, the name found in the class of the
583       //     object expression is used, otherwise
584     } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() ||
585                !(OuterTemplate =
586                      getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) {
587       //   - if the name is found in the context of the entire
588       //     postfix-expression and does not name a class template, the name
589       //     found in the class of the object expression is used, otherwise
590       FoundOuter.clear();
591     } else if (!Found.isSuppressingDiagnostics()) {
592       //   - if the name found is a class template, it must refer to the same
593       //     entity as the one found in the class of the object expression,
594       //     otherwise the program is ill-formed.
595       if (!Found.isSingleResult() ||
596           getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() !=
597               OuterTemplate->getCanonicalDecl()) {
598         Diag(Found.getNameLoc(),
599              diag::ext_nested_name_member_ref_lookup_ambiguous)
600           << Found.getLookupName()
601           << ObjectType;
602         Diag(Found.getRepresentativeDecl()->getLocation(),
603              diag::note_ambig_member_ref_object_type)
604           << ObjectType;
605         Diag(FoundOuter.getFoundDecl()->getLocation(),
606              diag::note_ambig_member_ref_scope);
607 
608         // Recover by taking the template that we found in the object
609         // expression's type.
610       }
611     }
612   }
613 
614   return false;
615 }
616 
diagnoseExprIntendedAsTemplateName(Scope * S,ExprResult TemplateName,SourceLocation Less,SourceLocation Greater)617 void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
618                                               SourceLocation Less,
619                                               SourceLocation Greater) {
620   if (TemplateName.isInvalid())
621     return;
622 
623   DeclarationNameInfo NameInfo;
624   CXXScopeSpec SS;
625   LookupNameKind LookupKind;
626 
627   DeclContext *LookupCtx = nullptr;
628   NamedDecl *Found = nullptr;
629   bool MissingTemplateKeyword = false;
630 
631   // Figure out what name we looked up.
632   if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) {
633     NameInfo = DRE->getNameInfo();
634     SS.Adopt(DRE->getQualifierLoc());
635     LookupKind = LookupOrdinaryName;
636     Found = DRE->getFoundDecl();
637   } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) {
638     NameInfo = ME->getMemberNameInfo();
639     SS.Adopt(ME->getQualifierLoc());
640     LookupKind = LookupMemberName;
641     LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl();
642     Found = ME->getMemberDecl();
643   } else if (auto *DSDRE =
644                  dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) {
645     NameInfo = DSDRE->getNameInfo();
646     SS.Adopt(DSDRE->getQualifierLoc());
647     MissingTemplateKeyword = true;
648   } else if (auto *DSME =
649                  dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) {
650     NameInfo = DSME->getMemberNameInfo();
651     SS.Adopt(DSME->getQualifierLoc());
652     MissingTemplateKeyword = true;
653   } else {
654     llvm_unreachable("unexpected kind of potential template name");
655   }
656 
657   // If this is a dependent-scope lookup, diagnose that the 'template' keyword
658   // was missing.
659   if (MissingTemplateKeyword) {
660     Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing)
661         << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater);
662     return;
663   }
664 
665   // Try to correct the name by looking for templates and C++ named casts.
666   struct TemplateCandidateFilter : CorrectionCandidateCallback {
667     Sema &S;
668     TemplateCandidateFilter(Sema &S) : S(S) {
669       WantTypeSpecifiers = false;
670       WantExpressionKeywords = false;
671       WantRemainingKeywords = false;
672       WantCXXNamedCasts = true;
673     };
674     bool ValidateCandidate(const TypoCorrection &Candidate) override {
675       if (auto *ND = Candidate.getCorrectionDecl())
676         return S.getAsTemplateNameDecl(ND);
677       return Candidate.isKeyword();
678     }
679 
680     std::unique_ptr<CorrectionCandidateCallback> clone() override {
681       return std::make_unique<TemplateCandidateFilter>(*this);
682     }
683   };
684 
685   DeclarationName Name = NameInfo.getName();
686   TemplateCandidateFilter CCC(*this);
687   if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC,
688                                              CTK_ErrorRecovery, LookupCtx)) {
689     auto *ND = Corrected.getFoundDecl();
690     if (ND)
691       ND = getAsTemplateNameDecl(ND);
692     if (ND || Corrected.isKeyword()) {
693       if (LookupCtx) {
694         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
695         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
696                                 Name.getAsString() == CorrectedStr;
697         diagnoseTypo(Corrected,
698                      PDiag(diag::err_non_template_in_member_template_id_suggest)
699                          << Name << LookupCtx << DroppedSpecifier
700                          << SS.getRange(), false);
701       } else {
702         diagnoseTypo(Corrected,
703                      PDiag(diag::err_non_template_in_template_id_suggest)
704                          << Name, false);
705       }
706       if (Found)
707         Diag(Found->getLocation(),
708              diag::note_non_template_in_template_id_found);
709       return;
710     }
711   }
712 
713   Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id)
714     << Name << SourceRange(Less, Greater);
715   if (Found)
716     Diag(Found->getLocation(), diag::note_non_template_in_template_id_found);
717 }
718 
719 /// ActOnDependentIdExpression - Handle a dependent id-expression that
720 /// was just parsed.  This is only possible with an explicit scope
721 /// specifier naming a dependent type.
722 ExprResult
ActOnDependentIdExpression(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,bool isAddressOfOperand,const TemplateArgumentListInfo * TemplateArgs)723 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
724                                  SourceLocation TemplateKWLoc,
725                                  const DeclarationNameInfo &NameInfo,
726                                  bool isAddressOfOperand,
727                            const TemplateArgumentListInfo *TemplateArgs) {
728   DeclContext *DC = getFunctionLevelDeclContext();
729 
730   // C++11 [expr.prim.general]p12:
731   //   An id-expression that denotes a non-static data member or non-static
732   //   member function of a class can only be used:
733   //   (...)
734   //   - if that id-expression denotes a non-static data member and it
735   //     appears in an unevaluated operand.
736   //
737   // If this might be the case, form a DependentScopeDeclRefExpr instead of a
738   // CXXDependentScopeMemberExpr. The former can instantiate to either
739   // DeclRefExpr or MemberExpr depending on lookup results, while the latter is
740   // always a MemberExpr.
741   bool MightBeCxx11UnevalField =
742       getLangOpts().CPlusPlus11 && isUnevaluatedContext();
743 
744   // Check if the nested name specifier is an enum type.
745   bool IsEnum = false;
746   if (NestedNameSpecifier *NNS = SS.getScopeRep())
747     IsEnum = dyn_cast_or_null<EnumType>(NNS->getAsType());
748 
749   if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum &&
750       isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) {
751     QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType();
752 
753     // Since the 'this' expression is synthesized, we don't need to
754     // perform the double-lookup check.
755     NamedDecl *FirstQualifierInScope = nullptr;
756 
757     return CXXDependentScopeMemberExpr::Create(
758         Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
759         /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
760         FirstQualifierInScope, NameInfo, TemplateArgs);
761   }
762 
763   return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
764 }
765 
766 ExprResult
BuildDependentDeclRefExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)767 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
768                                 SourceLocation TemplateKWLoc,
769                                 const DeclarationNameInfo &NameInfo,
770                                 const TemplateArgumentListInfo *TemplateArgs) {
771   // DependentScopeDeclRefExpr::Create requires a valid QualifierLoc
772   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
773   if (!QualifierLoc)
774     return ExprError();
775 
776   return DependentScopeDeclRefExpr::Create(
777       Context, QualifierLoc, TemplateKWLoc, NameInfo, TemplateArgs);
778 }
779 
780 
781 /// Determine whether we would be unable to instantiate this template (because
782 /// it either has no definition, or is in the process of being instantiated).
DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,NamedDecl * Instantiation,bool InstantiatedFromMember,const NamedDecl * Pattern,const NamedDecl * PatternDef,TemplateSpecializationKind TSK,bool Complain)783 bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
784                                           NamedDecl *Instantiation,
785                                           bool InstantiatedFromMember,
786                                           const NamedDecl *Pattern,
787                                           const NamedDecl *PatternDef,
788                                           TemplateSpecializationKind TSK,
789                                           bool Complain /*= true*/) {
790   assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) ||
791          isa<VarDecl>(Instantiation));
792 
793   bool IsEntityBeingDefined = false;
794   if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef))
795     IsEntityBeingDefined = TD->isBeingDefined();
796 
797   if (PatternDef && !IsEntityBeingDefined) {
798     NamedDecl *SuggestedDef = nullptr;
799     if (!hasVisibleDefinition(const_cast<NamedDecl*>(PatternDef), &SuggestedDef,
800                               /*OnlyNeedComplete*/false)) {
801       // If we're allowed to diagnose this and recover, do so.
802       bool Recover = Complain && !isSFINAEContext();
803       if (Complain)
804         diagnoseMissingImport(PointOfInstantiation, SuggestedDef,
805                               Sema::MissingImportKind::Definition, Recover);
806       return !Recover;
807     }
808     return false;
809   }
810 
811   if (!Complain || (PatternDef && PatternDef->isInvalidDecl()))
812     return true;
813 
814   llvm::Optional<unsigned> Note;
815   QualType InstantiationTy;
816   if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation))
817     InstantiationTy = Context.getTypeDeclType(TD);
818   if (PatternDef) {
819     Diag(PointOfInstantiation,
820          diag::err_template_instantiate_within_definition)
821       << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation)
822       << InstantiationTy;
823     // Not much point in noting the template declaration here, since
824     // we're lexically inside it.
825     Instantiation->setInvalidDecl();
826   } else if (InstantiatedFromMember) {
827     if (isa<FunctionDecl>(Instantiation)) {
828       Diag(PointOfInstantiation,
829            diag::err_explicit_instantiation_undefined_member)
830         << /*member function*/ 1 << Instantiation->getDeclName()
831         << Instantiation->getDeclContext();
832       Note = diag::note_explicit_instantiation_here;
833     } else {
834       assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!");
835       Diag(PointOfInstantiation,
836            diag::err_implicit_instantiate_member_undefined)
837         << InstantiationTy;
838       Note = diag::note_member_declared_at;
839     }
840   } else {
841     if (isa<FunctionDecl>(Instantiation)) {
842       Diag(PointOfInstantiation,
843            diag::err_explicit_instantiation_undefined_func_template)
844         << Pattern;
845       Note = diag::note_explicit_instantiation_here;
846     } else if (isa<TagDecl>(Instantiation)) {
847       Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
848         << (TSK != TSK_ImplicitInstantiation)
849         << InstantiationTy;
850       Note = diag::note_template_decl_here;
851     } else {
852       assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!");
853       if (isa<VarTemplateSpecializationDecl>(Instantiation)) {
854         Diag(PointOfInstantiation,
855              diag::err_explicit_instantiation_undefined_var_template)
856           << Instantiation;
857         Instantiation->setInvalidDecl();
858       } else
859         Diag(PointOfInstantiation,
860              diag::err_explicit_instantiation_undefined_member)
861           << /*static data member*/ 2 << Instantiation->getDeclName()
862           << Instantiation->getDeclContext();
863       Note = diag::note_explicit_instantiation_here;
864     }
865   }
866   if (Note) // Diagnostics were emitted.
867     Diag(Pattern->getLocation(), Note.getValue());
868 
869   // In general, Instantiation isn't marked invalid to get more than one
870   // error for multiple undefined instantiations. But the code that does
871   // explicit declaration -> explicit definition conversion can't handle
872   // invalid declarations, so mark as invalid in that case.
873   if (TSK == TSK_ExplicitInstantiationDeclaration)
874     Instantiation->setInvalidDecl();
875   return true;
876 }
877 
878 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
879 /// that the template parameter 'PrevDecl' is being shadowed by a new
880 /// declaration at location Loc. Returns true to indicate that this is
881 /// an error, and false otherwise.
DiagnoseTemplateParameterShadow(SourceLocation Loc,Decl * PrevDecl)882 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
883   assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
884 
885   // C++ [temp.local]p4:
886   //   A template-parameter shall not be redeclared within its
887   //   scope (including nested scopes).
888   //
889   // Make this a warning when MSVC compatibility is requested.
890   unsigned DiagId = getLangOpts().MSVCCompat ? diag::ext_template_param_shadow
891                                              : diag::err_template_param_shadow;
892   Diag(Loc, DiagId) << cast<NamedDecl>(PrevDecl)->getDeclName();
893   Diag(PrevDecl->getLocation(), diag::note_template_param_here);
894 }
895 
896 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
897 /// the parameter D to reference the templated declaration and return a pointer
898 /// to the template declaration. Otherwise, do nothing to D and return null.
AdjustDeclIfTemplate(Decl * & D)899 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
900   if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
901     D = Temp->getTemplatedDecl();
902     return Temp;
903   }
904   return nullptr;
905 }
906 
getTemplatePackExpansion(SourceLocation EllipsisLoc) const907 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
908                                              SourceLocation EllipsisLoc) const {
909   assert(Kind == Template &&
910          "Only template template arguments can be pack expansions here");
911   assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
912          "Template template argument pack expansion without packs");
913   ParsedTemplateArgument Result(*this);
914   Result.EllipsisLoc = EllipsisLoc;
915   return Result;
916 }
917 
translateTemplateArgument(Sema & SemaRef,const ParsedTemplateArgument & Arg)918 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
919                                             const ParsedTemplateArgument &Arg) {
920 
921   switch (Arg.getKind()) {
922   case ParsedTemplateArgument::Type: {
923     TypeSourceInfo *DI;
924     QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
925     if (!DI)
926       DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
927     return TemplateArgumentLoc(TemplateArgument(T), DI);
928   }
929 
930   case ParsedTemplateArgument::NonType: {
931     Expr *E = static_cast<Expr *>(Arg.getAsExpr());
932     return TemplateArgumentLoc(TemplateArgument(E), E);
933   }
934 
935   case ParsedTemplateArgument::Template: {
936     TemplateName Template = Arg.getAsTemplate().get();
937     TemplateArgument TArg;
938     if (Arg.getEllipsisLoc().isValid())
939       TArg = TemplateArgument(Template, Optional<unsigned int>());
940     else
941       TArg = Template;
942     return TemplateArgumentLoc(
943         SemaRef.Context, TArg,
944         Arg.getScopeSpec().getWithLocInContext(SemaRef.Context),
945         Arg.getLocation(), Arg.getEllipsisLoc());
946   }
947   }
948 
949   llvm_unreachable("Unhandled parsed template argument");
950 }
951 
952 /// Translates template arguments as provided by the parser
953 /// into template arguments used by semantic analysis.
translateTemplateArguments(const ASTTemplateArgsPtr & TemplateArgsIn,TemplateArgumentListInfo & TemplateArgs)954 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
955                                       TemplateArgumentListInfo &TemplateArgs) {
956  for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
957    TemplateArgs.addArgument(translateTemplateArgument(*this,
958                                                       TemplateArgsIn[I]));
959 }
960 
maybeDiagnoseTemplateParameterShadow(Sema & SemaRef,Scope * S,SourceLocation Loc,IdentifierInfo * Name)961 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
962                                                  SourceLocation Loc,
963                                                  IdentifierInfo *Name) {
964   NamedDecl *PrevDecl = SemaRef.LookupSingleName(
965       S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
966   if (PrevDecl && PrevDecl->isTemplateParameter())
967     SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
968 }
969 
970 /// Convert a parsed type into a parsed template argument. This is mostly
971 /// trivial, except that we may have parsed a C++17 deduced class template
972 /// specialization type, in which case we should form a template template
973 /// argument instead of a type template argument.
ActOnTemplateTypeArgument(TypeResult ParsedType)974 ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) {
975   TypeSourceInfo *TInfo;
976   QualType T = GetTypeFromParser(ParsedType.get(), &TInfo);
977   if (T.isNull())
978     return ParsedTemplateArgument();
979   assert(TInfo && "template argument with no location");
980 
981   // If we might have formed a deduced template specialization type, convert
982   // it to a template template argument.
983   if (getLangOpts().CPlusPlus17) {
984     TypeLoc TL = TInfo->getTypeLoc();
985     SourceLocation EllipsisLoc;
986     if (auto PET = TL.getAs<PackExpansionTypeLoc>()) {
987       EllipsisLoc = PET.getEllipsisLoc();
988       TL = PET.getPatternLoc();
989     }
990 
991     CXXScopeSpec SS;
992     if (auto ET = TL.getAs<ElaboratedTypeLoc>()) {
993       SS.Adopt(ET.getQualifierLoc());
994       TL = ET.getNamedTypeLoc();
995     }
996 
997     if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) {
998       TemplateName Name = DTST.getTypePtr()->getTemplateName();
999       if (SS.isSet())
1000         Name = Context.getQualifiedTemplateName(SS.getScopeRep(),
1001                                                 /*HasTemplateKeyword*/ false,
1002                                                 Name.getAsTemplateDecl());
1003       ParsedTemplateArgument Result(SS, TemplateTy::make(Name),
1004                                     DTST.getTemplateNameLoc());
1005       if (EllipsisLoc.isValid())
1006         Result = Result.getTemplatePackExpansion(EllipsisLoc);
1007       return Result;
1008     }
1009   }
1010 
1011   // This is a normal type template argument. Note, if the type template
1012   // argument is an injected-class-name for a template, it has a dual nature
1013   // and can be used as either a type or a template. We handle that in
1014   // convertTypeTemplateArgumentToTemplate.
1015   return ParsedTemplateArgument(ParsedTemplateArgument::Type,
1016                                 ParsedType.get().getAsOpaquePtr(),
1017                                 TInfo->getTypeLoc().getBeginLoc());
1018 }
1019 
1020 /// ActOnTypeParameter - Called when a C++ template type parameter
1021 /// (e.g., "typename T") has been parsed. Typename specifies whether
1022 /// the keyword "typename" was used to declare the type parameter
1023 /// (otherwise, "class" was used), and KeyLoc is the location of the
1024 /// "class" or "typename" keyword. ParamName is the name of the
1025 /// parameter (NULL indicates an unnamed template parameter) and
1026 /// ParamNameLoc is the location of the parameter name (if any).
1027 /// If the type parameter has a default argument, it will be added
1028 /// later via ActOnTypeParameterDefault.
ActOnTypeParameter(Scope * S,bool Typename,SourceLocation EllipsisLoc,SourceLocation KeyLoc,IdentifierInfo * ParamName,SourceLocation ParamNameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedType DefaultArg,bool HasTypeConstraint)1029 NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
1030                                     SourceLocation EllipsisLoc,
1031                                     SourceLocation KeyLoc,
1032                                     IdentifierInfo *ParamName,
1033                                     SourceLocation ParamNameLoc,
1034                                     unsigned Depth, unsigned Position,
1035                                     SourceLocation EqualLoc,
1036                                     ParsedType DefaultArg,
1037                                     bool HasTypeConstraint) {
1038   assert(S->isTemplateParamScope() &&
1039          "Template type parameter not in template parameter scope!");
1040 
1041   bool IsParameterPack = EllipsisLoc.isValid();
1042   TemplateTypeParmDecl *Param
1043     = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1044                                    KeyLoc, ParamNameLoc, Depth, Position,
1045                                    ParamName, Typename, IsParameterPack,
1046                                    HasTypeConstraint);
1047   Param->setAccess(AS_public);
1048 
1049   if (Param->isParameterPack())
1050     if (auto *LSI = getEnclosingLambda())
1051       LSI->LocalPacks.push_back(Param);
1052 
1053   if (ParamName) {
1054     maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
1055 
1056     // Add the template parameter into the current scope.
1057     S->AddDecl(Param);
1058     IdResolver.AddDecl(Param);
1059   }
1060 
1061   // C++0x [temp.param]p9:
1062   //   A default template-argument may be specified for any kind of
1063   //   template-parameter that is not a template parameter pack.
1064   if (DefaultArg && IsParameterPack) {
1065     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1066     DefaultArg = nullptr;
1067   }
1068 
1069   // Handle the default argument, if provided.
1070   if (DefaultArg) {
1071     TypeSourceInfo *DefaultTInfo;
1072     GetTypeFromParser(DefaultArg, &DefaultTInfo);
1073 
1074     assert(DefaultTInfo && "expected source information for type");
1075 
1076     // Check for unexpanded parameter packs.
1077     if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo,
1078                                         UPPC_DefaultArgument))
1079       return Param;
1080 
1081     // Check the template argument itself.
1082     if (CheckTemplateArgument(Param, DefaultTInfo)) {
1083       Param->setInvalidDecl();
1084       return Param;
1085     }
1086 
1087     Param->setDefaultArgument(DefaultTInfo);
1088   }
1089 
1090   return Param;
1091 }
1092 
1093 /// Convert the parser's template argument list representation into our form.
1094 static TemplateArgumentListInfo
makeTemplateArgumentListInfo(Sema & S,TemplateIdAnnotation & TemplateId)1095 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
1096   TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
1097                                         TemplateId.RAngleLoc);
1098   ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
1099                                      TemplateId.NumArgs);
1100   S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
1101   return TemplateArgs;
1102 }
1103 
ActOnTypeConstraint(const CXXScopeSpec & SS,TemplateIdAnnotation * TypeConstr,TemplateTypeParmDecl * ConstrainedParameter,SourceLocation EllipsisLoc)1104 bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS,
1105                                TemplateIdAnnotation *TypeConstr,
1106                                TemplateTypeParmDecl *ConstrainedParameter,
1107                                SourceLocation EllipsisLoc) {
1108   ConceptDecl *CD =
1109       cast<ConceptDecl>(TypeConstr->Template.get().getAsTemplateDecl());
1110 
1111   // C++2a [temp.param]p4:
1112   //     [...] The concept designated by a type-constraint shall be a type
1113   //     concept ([temp.concept]).
1114   if (!CD->isTypeConcept()) {
1115     Diag(TypeConstr->TemplateNameLoc,
1116          diag::err_type_constraint_non_type_concept);
1117     return true;
1118   }
1119 
1120   bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid();
1121 
1122   if (!WereArgsSpecified &&
1123       CD->getTemplateParameters()->getMinRequiredArguments() > 1) {
1124     Diag(TypeConstr->TemplateNameLoc,
1125          diag::err_type_constraint_missing_arguments) << CD;
1126     return true;
1127   }
1128 
1129   TemplateArgumentListInfo TemplateArgs;
1130   if (TypeConstr->LAngleLoc.isValid()) {
1131     TemplateArgs =
1132         makeTemplateArgumentListInfo(*this, *TypeConstr);
1133   }
1134   return AttachTypeConstraint(
1135       SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(),
1136       DeclarationNameInfo(DeclarationName(TypeConstr->Name),
1137                           TypeConstr->TemplateNameLoc), CD,
1138       TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr,
1139       ConstrainedParameter, EllipsisLoc);
1140 }
1141 
1142 template<typename ArgumentLocAppender>
formImmediatelyDeclaredConstraint(Sema & S,NestedNameSpecifierLoc NS,DeclarationNameInfo NameInfo,ConceptDecl * NamedConcept,SourceLocation LAngleLoc,SourceLocation RAngleLoc,QualType ConstrainedType,SourceLocation ParamNameLoc,ArgumentLocAppender Appender,SourceLocation EllipsisLoc)1143 static ExprResult formImmediatelyDeclaredConstraint(
1144     Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo,
1145     ConceptDecl *NamedConcept, SourceLocation LAngleLoc,
1146     SourceLocation RAngleLoc, QualType ConstrainedType,
1147     SourceLocation ParamNameLoc, ArgumentLocAppender Appender,
1148     SourceLocation EllipsisLoc) {
1149 
1150   TemplateArgumentListInfo ConstraintArgs;
1151   ConstraintArgs.addArgument(
1152     S.getTrivialTemplateArgumentLoc(TemplateArgument(ConstrainedType),
1153                                     /*NTTPType=*/QualType(), ParamNameLoc));
1154 
1155   ConstraintArgs.setRAngleLoc(RAngleLoc);
1156   ConstraintArgs.setLAngleLoc(LAngleLoc);
1157   Appender(ConstraintArgs);
1158 
1159   // C++2a [temp.param]p4:
1160   //     [...] This constraint-expression E is called the immediately-declared
1161   //     constraint of T. [...]
1162   CXXScopeSpec SS;
1163   SS.Adopt(NS);
1164   ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId(
1165       SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo,
1166       /*FoundDecl=*/NamedConcept, NamedConcept, &ConstraintArgs);
1167   if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid())
1168     return ImmediatelyDeclaredConstraint;
1169 
1170   // C++2a [temp.param]p4:
1171   //     [...] If T is not a pack, then E is E', otherwise E is (E' && ...).
1172   //
1173   // We have the following case:
1174   //
1175   // template<typename T> concept C1 = true;
1176   // template<C1... T> struct s1;
1177   //
1178   // The constraint: (C1<T> && ...)
1179   //
1180   // Note that the type of C1<T> is known to be 'bool', so we don't need to do
1181   // any unqualified lookups for 'operator&&' here.
1182   return S.BuildCXXFoldExpr(/*UnqualifiedLookup=*/nullptr,
1183                             /*LParenLoc=*/SourceLocation(),
1184                             ImmediatelyDeclaredConstraint.get(), BO_LAnd,
1185                             EllipsisLoc, /*RHS=*/nullptr,
1186                             /*RParenLoc=*/SourceLocation(),
1187                             /*NumExpansions=*/None);
1188 }
1189 
1190 /// Attach a type-constraint to a template parameter.
1191 /// \returns true if an error occured. This can happen if the
1192 /// immediately-declared constraint could not be formed (e.g. incorrect number
1193 /// of arguments for the named concept).
AttachTypeConstraint(NestedNameSpecifierLoc NS,DeclarationNameInfo NameInfo,ConceptDecl * NamedConcept,const TemplateArgumentListInfo * TemplateArgs,TemplateTypeParmDecl * ConstrainedParameter,SourceLocation EllipsisLoc)1194 bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS,
1195                                 DeclarationNameInfo NameInfo,
1196                                 ConceptDecl *NamedConcept,
1197                                 const TemplateArgumentListInfo *TemplateArgs,
1198                                 TemplateTypeParmDecl *ConstrainedParameter,
1199                                 SourceLocation EllipsisLoc) {
1200   // C++2a [temp.param]p4:
1201   //     [...] If Q is of the form C<A1, ..., An>, then let E' be
1202   //     C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...]
1203   const ASTTemplateArgumentListInfo *ArgsAsWritten =
1204     TemplateArgs ? ASTTemplateArgumentListInfo::Create(Context,
1205                                                        *TemplateArgs) : nullptr;
1206 
1207   QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0);
1208 
1209   ExprResult ImmediatelyDeclaredConstraint =
1210       formImmediatelyDeclaredConstraint(
1211           *this, NS, NameInfo, NamedConcept,
1212           TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(),
1213           TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(),
1214           ParamAsArgument, ConstrainedParameter->getLocation(),
1215           [&] (TemplateArgumentListInfo &ConstraintArgs) {
1216             if (TemplateArgs)
1217               for (const auto &ArgLoc : TemplateArgs->arguments())
1218                 ConstraintArgs.addArgument(ArgLoc);
1219           }, EllipsisLoc);
1220   if (ImmediatelyDeclaredConstraint.isInvalid())
1221     return true;
1222 
1223   ConstrainedParameter->setTypeConstraint(NS, NameInfo,
1224                                           /*FoundDecl=*/NamedConcept,
1225                                           NamedConcept, ArgsAsWritten,
1226                                           ImmediatelyDeclaredConstraint.get());
1227   return false;
1228 }
1229 
AttachTypeConstraint(AutoTypeLoc TL,NonTypeTemplateParmDecl * NTTP,SourceLocation EllipsisLoc)1230 bool Sema::AttachTypeConstraint(AutoTypeLoc TL, NonTypeTemplateParmDecl *NTTP,
1231                                 SourceLocation EllipsisLoc) {
1232   if (NTTP->getType() != TL.getType() ||
1233       TL.getAutoKeyword() != AutoTypeKeyword::Auto) {
1234     Diag(NTTP->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1235          diag::err_unsupported_placeholder_constraint)
1236        << NTTP->getTypeSourceInfo()->getTypeLoc().getSourceRange();
1237     return true;
1238   }
1239   // FIXME: Concepts: This should be the type of the placeholder, but this is
1240   // unclear in the wording right now.
1241   DeclRefExpr *Ref = BuildDeclRefExpr(NTTP, NTTP->getType(), VK_RValue,
1242                                       NTTP->getLocation());
1243   if (!Ref)
1244     return true;
1245   ExprResult ImmediatelyDeclaredConstraint =
1246       formImmediatelyDeclaredConstraint(
1247           *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(),
1248           TL.getNamedConcept(), TL.getLAngleLoc(), TL.getRAngleLoc(),
1249           BuildDecltypeType(Ref, NTTP->getLocation()), NTTP->getLocation(),
1250           [&] (TemplateArgumentListInfo &ConstraintArgs) {
1251             for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I)
1252               ConstraintArgs.addArgument(TL.getArgLoc(I));
1253           }, EllipsisLoc);
1254   if (ImmediatelyDeclaredConstraint.isInvalid() ||
1255      !ImmediatelyDeclaredConstraint.isUsable())
1256     return true;
1257 
1258   NTTP->setPlaceholderTypeConstraint(ImmediatelyDeclaredConstraint.get());
1259   return false;
1260 }
1261 
1262 /// Check that the type of a non-type template parameter is
1263 /// well-formed.
1264 ///
1265 /// \returns the (possibly-promoted) parameter type if valid;
1266 /// otherwise, produces a diagnostic and returns a NULL type.
CheckNonTypeTemplateParameterType(TypeSourceInfo * & TSI,SourceLocation Loc)1267 QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
1268                                                  SourceLocation Loc) {
1269   if (TSI->getType()->isUndeducedType()) {
1270     // C++17 [temp.dep.expr]p3:
1271     //   An id-expression is type-dependent if it contains
1272     //    - an identifier associated by name lookup with a non-type
1273     //      template-parameter declared with a type that contains a
1274     //      placeholder type (7.1.7.4),
1275     TSI = SubstAutoTypeSourceInfo(TSI, Context.DependentTy);
1276   }
1277 
1278   return CheckNonTypeTemplateParameterType(TSI->getType(), Loc);
1279 }
1280 
1281 /// Require the given type to be a structural type, and diagnose if it is not.
1282 ///
1283 /// \return \c true if an error was produced.
RequireStructuralType(QualType T,SourceLocation Loc)1284 bool Sema::RequireStructuralType(QualType T, SourceLocation Loc) {
1285   if (T->isDependentType())
1286     return false;
1287 
1288   if (RequireCompleteType(Loc, T, diag::err_template_nontype_parm_incomplete))
1289     return true;
1290 
1291   if (T->isStructuralType())
1292     return false;
1293 
1294   // Structural types are required to be object types or lvalue references.
1295   if (T->isRValueReferenceType()) {
1296     Diag(Loc, diag::err_template_nontype_parm_rvalue_ref) << T;
1297     return true;
1298   }
1299 
1300   // Don't mention structural types in our diagnostic prior to C++20. Also,
1301   // there's not much more we can say about non-scalar non-class types --
1302   // because we can't see functions or arrays here, those can only be language
1303   // extensions.
1304   if (!getLangOpts().CPlusPlus20 ||
1305       (!T->isScalarType() && !T->isRecordType())) {
1306     Diag(Loc, diag::err_template_nontype_parm_bad_type) << T;
1307     return true;
1308   }
1309 
1310   // Structural types are required to be literal types.
1311   if (RequireLiteralType(Loc, T, diag::err_template_nontype_parm_not_literal))
1312     return true;
1313 
1314   Diag(Loc, diag::err_template_nontype_parm_not_structural) << T;
1315 
1316   // Drill down into the reason why the class is non-structural.
1317   while (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
1318     // All members are required to be public and non-mutable, and can't be of
1319     // rvalue reference type. Check these conditions first to prefer a "local"
1320     // reason over a more distant one.
1321     for (const FieldDecl *FD : RD->fields()) {
1322       if (FD->getAccess() != AS_public) {
1323         Diag(FD->getLocation(), diag::note_not_structural_non_public) << T << 0;
1324         return true;
1325       }
1326       if (FD->isMutable()) {
1327         Diag(FD->getLocation(), diag::note_not_structural_mutable_field) << T;
1328         return true;
1329       }
1330       if (FD->getType()->isRValueReferenceType()) {
1331         Diag(FD->getLocation(), diag::note_not_structural_rvalue_ref_field)
1332             << T;
1333         return true;
1334       }
1335     }
1336 
1337     // All bases are required to be public.
1338     for (const auto &BaseSpec : RD->bases()) {
1339       if (BaseSpec.getAccessSpecifier() != AS_public) {
1340         Diag(BaseSpec.getBaseTypeLoc(), diag::note_not_structural_non_public)
1341             << T << 1;
1342         return true;
1343       }
1344     }
1345 
1346     // All subobjects are required to be of structural types.
1347     SourceLocation SubLoc;
1348     QualType SubType;
1349     int Kind = -1;
1350 
1351     for (const FieldDecl *FD : RD->fields()) {
1352       QualType T = Context.getBaseElementType(FD->getType());
1353       if (!T->isStructuralType()) {
1354         SubLoc = FD->getLocation();
1355         SubType = T;
1356         Kind = 0;
1357         break;
1358       }
1359     }
1360 
1361     if (Kind == -1) {
1362       for (const auto &BaseSpec : RD->bases()) {
1363         QualType T = BaseSpec.getType();
1364         if (!T->isStructuralType()) {
1365           SubLoc = BaseSpec.getBaseTypeLoc();
1366           SubType = T;
1367           Kind = 1;
1368           break;
1369         }
1370       }
1371     }
1372 
1373     assert(Kind != -1 && "couldn't find reason why type is not structural");
1374     Diag(SubLoc, diag::note_not_structural_subobject)
1375         << T << Kind << SubType;
1376     T = SubType;
1377     RD = T->getAsCXXRecordDecl();
1378   }
1379 
1380   return true;
1381 }
1382 
CheckNonTypeTemplateParameterType(QualType T,SourceLocation Loc)1383 QualType Sema::CheckNonTypeTemplateParameterType(QualType T,
1384                                                  SourceLocation Loc) {
1385   // We don't allow variably-modified types as the type of non-type template
1386   // parameters.
1387   if (T->isVariablyModifiedType()) {
1388     Diag(Loc, diag::err_variably_modified_nontype_template_param)
1389       << T;
1390     return QualType();
1391   }
1392 
1393   // C++ [temp.param]p4:
1394   //
1395   // A non-type template-parameter shall have one of the following
1396   // (optionally cv-qualified) types:
1397   //
1398   //       -- integral or enumeration type,
1399   if (T->isIntegralOrEnumerationType() ||
1400       //   -- pointer to object or pointer to function,
1401       T->isPointerType() ||
1402       //   -- lvalue reference to object or lvalue reference to function,
1403       T->isLValueReferenceType() ||
1404       //   -- pointer to member,
1405       T->isMemberPointerType() ||
1406       //   -- std::nullptr_t, or
1407       T->isNullPtrType() ||
1408       //   -- a type that contains a placeholder type.
1409       T->isUndeducedType()) {
1410     // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
1411     // are ignored when determining its type.
1412     return T.getUnqualifiedType();
1413   }
1414 
1415   // C++ [temp.param]p8:
1416   //
1417   //   A non-type template-parameter of type "array of T" or
1418   //   "function returning T" is adjusted to be of type "pointer to
1419   //   T" or "pointer to function returning T", respectively.
1420   if (T->isArrayType() || T->isFunctionType())
1421     return Context.getDecayedType(T);
1422 
1423   // If T is a dependent type, we can't do the check now, so we
1424   // assume that it is well-formed. Note that stripping off the
1425   // qualifiers here is not really correct if T turns out to be
1426   // an array type, but we'll recompute the type everywhere it's
1427   // used during instantiation, so that should be OK. (Using the
1428   // qualified type is equally wrong.)
1429   if (T->isDependentType())
1430     return T.getUnqualifiedType();
1431 
1432   // C++20 [temp.param]p6:
1433   //   -- a structural type
1434   if (RequireStructuralType(T, Loc))
1435     return QualType();
1436 
1437   if (!getLangOpts().CPlusPlus20) {
1438     // FIXME: Consider allowing structural types as an extension in C++17. (In
1439     // earlier language modes, the template argument evaluation rules are too
1440     // inflexible.)
1441     Diag(Loc, diag::err_template_nontype_parm_bad_structural_type) << T;
1442     return QualType();
1443   }
1444 
1445   Diag(Loc, diag::warn_cxx17_compat_template_nontype_parm_type) << T;
1446   return T.getUnqualifiedType();
1447 }
1448 
ActOnNonTypeTemplateParameter(Scope * S,Declarator & D,unsigned Depth,unsigned Position,SourceLocation EqualLoc,Expr * Default)1449 NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
1450                                           unsigned Depth,
1451                                           unsigned Position,
1452                                           SourceLocation EqualLoc,
1453                                           Expr *Default) {
1454   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
1455 
1456   // Check that we have valid decl-specifiers specified.
1457   auto CheckValidDeclSpecifiers = [this, &D] {
1458     // C++ [temp.param]
1459     // p1
1460     //   template-parameter:
1461     //     ...
1462     //     parameter-declaration
1463     // p2
1464     //   ... A storage class shall not be specified in a template-parameter
1465     //   declaration.
1466     // [dcl.typedef]p1:
1467     //   The typedef specifier [...] shall not be used in the decl-specifier-seq
1468     //   of a parameter-declaration
1469     const DeclSpec &DS = D.getDeclSpec();
1470     auto EmitDiag = [this](SourceLocation Loc) {
1471       Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm)
1472           << FixItHint::CreateRemoval(Loc);
1473     };
1474     if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified)
1475       EmitDiag(DS.getStorageClassSpecLoc());
1476 
1477     if (DS.getThreadStorageClassSpec() != TSCS_unspecified)
1478       EmitDiag(DS.getThreadStorageClassSpecLoc());
1479 
1480     // [dcl.inline]p1:
1481     //   The inline specifier can be applied only to the declaration or
1482     //   definition of a variable or function.
1483 
1484     if (DS.isInlineSpecified())
1485       EmitDiag(DS.getInlineSpecLoc());
1486 
1487     // [dcl.constexpr]p1:
1488     //   The constexpr specifier shall be applied only to the definition of a
1489     //   variable or variable template or the declaration of a function or
1490     //   function template.
1491 
1492     if (DS.hasConstexprSpecifier())
1493       EmitDiag(DS.getConstexprSpecLoc());
1494 
1495     // [dcl.fct.spec]p1:
1496     //   Function-specifiers can be used only in function declarations.
1497 
1498     if (DS.isVirtualSpecified())
1499       EmitDiag(DS.getVirtualSpecLoc());
1500 
1501     if (DS.hasExplicitSpecifier())
1502       EmitDiag(DS.getExplicitSpecLoc());
1503 
1504     if (DS.isNoreturnSpecified())
1505       EmitDiag(DS.getNoreturnSpecLoc());
1506   };
1507 
1508   CheckValidDeclSpecifiers();
1509 
1510   if (TInfo->getType()->isUndeducedType()) {
1511     Diag(D.getIdentifierLoc(),
1512          diag::warn_cxx14_compat_template_nontype_parm_auto_type)
1513       << QualType(TInfo->getType()->getContainedAutoType(), 0);
1514   }
1515 
1516   assert(S->isTemplateParamScope() &&
1517          "Non-type template parameter not in template parameter scope!");
1518   bool Invalid = false;
1519 
1520   QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc());
1521   if (T.isNull()) {
1522     T = Context.IntTy; // Recover with an 'int' type.
1523     Invalid = true;
1524   }
1525 
1526   CheckFunctionOrTemplateParamDeclarator(S, D);
1527 
1528   IdentifierInfo *ParamName = D.getIdentifier();
1529   bool IsParameterPack = D.hasEllipsis();
1530   NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create(
1531       Context, Context.getTranslationUnitDecl(), D.getBeginLoc(),
1532       D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack,
1533       TInfo);
1534   Param->setAccess(AS_public);
1535 
1536   if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc())
1537     if (TL.isConstrained())
1538       if (AttachTypeConstraint(TL, Param, D.getEllipsisLoc()))
1539         Invalid = true;
1540 
1541   if (Invalid)
1542     Param->setInvalidDecl();
1543 
1544   if (Param->isParameterPack())
1545     if (auto *LSI = getEnclosingLambda())
1546       LSI->LocalPacks.push_back(Param);
1547 
1548   if (ParamName) {
1549     maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
1550                                          ParamName);
1551 
1552     // Add the template parameter into the current scope.
1553     S->AddDecl(Param);
1554     IdResolver.AddDecl(Param);
1555   }
1556 
1557   // C++0x [temp.param]p9:
1558   //   A default template-argument may be specified for any kind of
1559   //   template-parameter that is not a template parameter pack.
1560   if (Default && IsParameterPack) {
1561     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1562     Default = nullptr;
1563   }
1564 
1565   // Check the well-formedness of the default template argument, if provided.
1566   if (Default) {
1567     // Check for unexpanded parameter packs.
1568     if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
1569       return Param;
1570 
1571     TemplateArgument Converted;
1572     ExprResult DefaultRes =
1573         CheckTemplateArgument(Param, Param->getType(), Default, Converted);
1574     if (DefaultRes.isInvalid()) {
1575       Param->setInvalidDecl();
1576       return Param;
1577     }
1578     Default = DefaultRes.get();
1579 
1580     Param->setDefaultArgument(Default);
1581   }
1582 
1583   return Param;
1584 }
1585 
1586 /// ActOnTemplateTemplateParameter - Called when a C++ template template
1587 /// parameter (e.g. T in template <template \<typename> class T> class array)
1588 /// has been parsed. S is the current scope.
ActOnTemplateTemplateParameter(Scope * S,SourceLocation TmpLoc,TemplateParameterList * Params,SourceLocation EllipsisLoc,IdentifierInfo * Name,SourceLocation NameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedTemplateArgument Default)1589 NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S,
1590                                            SourceLocation TmpLoc,
1591                                            TemplateParameterList *Params,
1592                                            SourceLocation EllipsisLoc,
1593                                            IdentifierInfo *Name,
1594                                            SourceLocation NameLoc,
1595                                            unsigned Depth,
1596                                            unsigned Position,
1597                                            SourceLocation EqualLoc,
1598                                            ParsedTemplateArgument Default) {
1599   assert(S->isTemplateParamScope() &&
1600          "Template template parameter not in template parameter scope!");
1601 
1602   // Construct the parameter object.
1603   bool IsParameterPack = EllipsisLoc.isValid();
1604   TemplateTemplateParmDecl *Param =
1605     TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1606                                      NameLoc.isInvalid()? TmpLoc : NameLoc,
1607                                      Depth, Position, IsParameterPack,
1608                                      Name, Params);
1609   Param->setAccess(AS_public);
1610 
1611   if (Param->isParameterPack())
1612     if (auto *LSI = getEnclosingLambda())
1613       LSI->LocalPacks.push_back(Param);
1614 
1615   // If the template template parameter has a name, then link the identifier
1616   // into the scope and lookup mechanisms.
1617   if (Name) {
1618     maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
1619 
1620     S->AddDecl(Param);
1621     IdResolver.AddDecl(Param);
1622   }
1623 
1624   if (Params->size() == 0) {
1625     Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
1626     << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
1627     Param->setInvalidDecl();
1628   }
1629 
1630   // C++0x [temp.param]p9:
1631   //   A default template-argument may be specified for any kind of
1632   //   template-parameter that is not a template parameter pack.
1633   if (IsParameterPack && !Default.isInvalid()) {
1634     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1635     Default = ParsedTemplateArgument();
1636   }
1637 
1638   if (!Default.isInvalid()) {
1639     // Check only that we have a template template argument. We don't want to
1640     // try to check well-formedness now, because our template template parameter
1641     // might have dependent types in its template parameters, which we wouldn't
1642     // be able to match now.
1643     //
1644     // If none of the template template parameter's template arguments mention
1645     // other template parameters, we could actually perform more checking here.
1646     // However, it isn't worth doing.
1647     TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
1648     if (DefaultArg.getArgument().getAsTemplate().isNull()) {
1649       Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template)
1650         << DefaultArg.getSourceRange();
1651       return Param;
1652     }
1653 
1654     // Check for unexpanded parameter packs.
1655     if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
1656                                         DefaultArg.getArgument().getAsTemplate(),
1657                                         UPPC_DefaultArgument))
1658       return Param;
1659 
1660     Param->setDefaultArgument(Context, DefaultArg);
1661   }
1662 
1663   return Param;
1664 }
1665 
1666 /// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally
1667 /// constrained by RequiresClause, that contains the template parameters in
1668 /// Params.
1669 TemplateParameterList *
ActOnTemplateParameterList(unsigned Depth,SourceLocation ExportLoc,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ArrayRef<NamedDecl * > Params,SourceLocation RAngleLoc,Expr * RequiresClause)1670 Sema::ActOnTemplateParameterList(unsigned Depth,
1671                                  SourceLocation ExportLoc,
1672                                  SourceLocation TemplateLoc,
1673                                  SourceLocation LAngleLoc,
1674                                  ArrayRef<NamedDecl *> Params,
1675                                  SourceLocation RAngleLoc,
1676                                  Expr *RequiresClause) {
1677   if (ExportLoc.isValid())
1678     Diag(ExportLoc, diag::warn_template_export_unsupported);
1679 
1680   return TemplateParameterList::Create(
1681       Context, TemplateLoc, LAngleLoc,
1682       llvm::makeArrayRef(Params.data(), Params.size()),
1683       RAngleLoc, RequiresClause);
1684 }
1685 
SetNestedNameSpecifier(Sema & S,TagDecl * T,const CXXScopeSpec & SS)1686 static void SetNestedNameSpecifier(Sema &S, TagDecl *T,
1687                                    const CXXScopeSpec &SS) {
1688   if (SS.isSet())
1689     T->setQualifierInfo(SS.getWithLocInContext(S.Context));
1690 }
1691 
CheckClassTemplate(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,const ParsedAttributesView & Attr,TemplateParameterList * TemplateParams,AccessSpecifier AS,SourceLocation ModulePrivateLoc,SourceLocation FriendLoc,unsigned NumOuterTemplateParamLists,TemplateParameterList ** OuterTemplateParamLists,SkipBodyInfo * SkipBody)1692 DeclResult Sema::CheckClassTemplate(
1693     Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
1694     CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
1695     const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
1696     AccessSpecifier AS, SourceLocation ModulePrivateLoc,
1697     SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
1698     TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) {
1699   assert(TemplateParams && TemplateParams->size() > 0 &&
1700          "No template parameters");
1701   assert(TUK != TUK_Reference && "Can only declare or define class templates");
1702   bool Invalid = false;
1703 
1704   // Check that we can declare a template here.
1705   if (CheckTemplateDeclScope(S, TemplateParams))
1706     return true;
1707 
1708   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1709   assert(Kind != TTK_Enum && "can't build template of enumerated type");
1710 
1711   // There is no such thing as an unnamed class template.
1712   if (!Name) {
1713     Diag(KWLoc, diag::err_template_unnamed_class);
1714     return true;
1715   }
1716 
1717   // Find any previous declaration with this name. For a friend with no
1718   // scope explicitly specified, we only look for tag declarations (per
1719   // C++11 [basic.lookup.elab]p2).
1720   DeclContext *SemanticContext;
1721   LookupResult Previous(*this, Name, NameLoc,
1722                         (SS.isEmpty() && TUK == TUK_Friend)
1723                           ? LookupTagName : LookupOrdinaryName,
1724                         forRedeclarationInCurContext());
1725   if (SS.isNotEmpty() && !SS.isInvalid()) {
1726     SemanticContext = computeDeclContext(SS, true);
1727     if (!SemanticContext) {
1728       // FIXME: Horrible, horrible hack! We can't currently represent this
1729       // in the AST, and historically we have just ignored such friend
1730       // class templates, so don't complain here.
1731       Diag(NameLoc, TUK == TUK_Friend
1732                         ? diag::warn_template_qualified_friend_ignored
1733                         : diag::err_template_qualified_declarator_no_match)
1734           << SS.getScopeRep() << SS.getRange();
1735       return TUK != TUK_Friend;
1736     }
1737 
1738     if (RequireCompleteDeclContext(SS, SemanticContext))
1739       return true;
1740 
1741     // If we're adding a template to a dependent context, we may need to
1742     // rebuilding some of the types used within the template parameter list,
1743     // now that we know what the current instantiation is.
1744     if (SemanticContext->isDependentContext()) {
1745       ContextRAII SavedContext(*this, SemanticContext);
1746       if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
1747         Invalid = true;
1748     } else if (TUK != TUK_Friend && TUK != TUK_Reference)
1749       diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false);
1750 
1751     LookupQualifiedName(Previous, SemanticContext);
1752   } else {
1753     SemanticContext = CurContext;
1754 
1755     // C++14 [class.mem]p14:
1756     //   If T is the name of a class, then each of the following shall have a
1757     //   name different from T:
1758     //    -- every member template of class T
1759     if (TUK != TUK_Friend &&
1760         DiagnoseClassNameShadow(SemanticContext,
1761                                 DeclarationNameInfo(Name, NameLoc)))
1762       return true;
1763 
1764     LookupName(Previous, S);
1765   }
1766 
1767   if (Previous.isAmbiguous())
1768     return true;
1769 
1770   NamedDecl *PrevDecl = nullptr;
1771   if (Previous.begin() != Previous.end())
1772     PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1773 
1774   if (PrevDecl && PrevDecl->isTemplateParameter()) {
1775     // Maybe we will complain about the shadowed template parameter.
1776     DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1777     // Just pretend that we didn't see the previous declaration.
1778     PrevDecl = nullptr;
1779   }
1780 
1781   // If there is a previous declaration with the same name, check
1782   // whether this is a valid redeclaration.
1783   ClassTemplateDecl *PrevClassTemplate =
1784       dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
1785 
1786   // We may have found the injected-class-name of a class template,
1787   // class template partial specialization, or class template specialization.
1788   // In these cases, grab the template that is being defined or specialized.
1789   if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
1790       cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
1791     PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
1792     PrevClassTemplate
1793       = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
1794     if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
1795       PrevClassTemplate
1796         = cast<ClassTemplateSpecializationDecl>(PrevDecl)
1797             ->getSpecializedTemplate();
1798     }
1799   }
1800 
1801   if (TUK == TUK_Friend) {
1802     // C++ [namespace.memdef]p3:
1803     //   [...] When looking for a prior declaration of a class or a function
1804     //   declared as a friend, and when the name of the friend class or
1805     //   function is neither a qualified name nor a template-id, scopes outside
1806     //   the innermost enclosing namespace scope are not considered.
1807     if (!SS.isSet()) {
1808       DeclContext *OutermostContext = CurContext;
1809       while (!OutermostContext->isFileContext())
1810         OutermostContext = OutermostContext->getLookupParent();
1811 
1812       if (PrevDecl &&
1813           (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
1814            OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
1815         SemanticContext = PrevDecl->getDeclContext();
1816       } else {
1817         // Declarations in outer scopes don't matter. However, the outermost
1818         // context we computed is the semantic context for our new
1819         // declaration.
1820         PrevDecl = PrevClassTemplate = nullptr;
1821         SemanticContext = OutermostContext;
1822 
1823         // Check that the chosen semantic context doesn't already contain a
1824         // declaration of this name as a non-tag type.
1825         Previous.clear(LookupOrdinaryName);
1826         DeclContext *LookupContext = SemanticContext;
1827         while (LookupContext->isTransparentContext())
1828           LookupContext = LookupContext->getLookupParent();
1829         LookupQualifiedName(Previous, LookupContext);
1830 
1831         if (Previous.isAmbiguous())
1832           return true;
1833 
1834         if (Previous.begin() != Previous.end())
1835           PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1836       }
1837     }
1838   } else if (PrevDecl &&
1839              !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext,
1840                             S, SS.isValid()))
1841     PrevDecl = PrevClassTemplate = nullptr;
1842 
1843   if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
1844           PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
1845     if (SS.isEmpty() &&
1846         !(PrevClassTemplate &&
1847           PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
1848               SemanticContext->getRedeclContext()))) {
1849       Diag(KWLoc, diag::err_using_decl_conflict_reverse);
1850       Diag(Shadow->getTargetDecl()->getLocation(),
1851            diag::note_using_decl_target);
1852       Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
1853       // Recover by ignoring the old declaration.
1854       PrevDecl = PrevClassTemplate = nullptr;
1855     }
1856   }
1857 
1858   if (PrevClassTemplate) {
1859     // Ensure that the template parameter lists are compatible. Skip this check
1860     // for a friend in a dependent context: the template parameter list itself
1861     // could be dependent.
1862     if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1863         !TemplateParameterListsAreEqual(TemplateParams,
1864                                    PrevClassTemplate->getTemplateParameters(),
1865                                         /*Complain=*/true,
1866                                         TPL_TemplateMatch))
1867       return true;
1868 
1869     // C++ [temp.class]p4:
1870     //   In a redeclaration, partial specialization, explicit
1871     //   specialization or explicit instantiation of a class template,
1872     //   the class-key shall agree in kind with the original class
1873     //   template declaration (7.1.5.3).
1874     RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
1875     if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
1876                                       TUK == TUK_Definition,  KWLoc, Name)) {
1877       Diag(KWLoc, diag::err_use_with_wrong_tag)
1878         << Name
1879         << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
1880       Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
1881       Kind = PrevRecordDecl->getTagKind();
1882     }
1883 
1884     // Check for redefinition of this class template.
1885     if (TUK == TUK_Definition) {
1886       if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1887         // If we have a prior definition that is not visible, treat this as
1888         // simply making that previous definition visible.
1889         NamedDecl *Hidden = nullptr;
1890         if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
1891           SkipBody->ShouldSkip = true;
1892           SkipBody->Previous = Def;
1893           auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
1894           assert(Tmpl && "original definition of a class template is not a "
1895                          "class template?");
1896           makeMergedDefinitionVisible(Hidden);
1897           makeMergedDefinitionVisible(Tmpl);
1898         } else {
1899           Diag(NameLoc, diag::err_redefinition) << Name;
1900           Diag(Def->getLocation(), diag::note_previous_definition);
1901           // FIXME: Would it make sense to try to "forget" the previous
1902           // definition, as part of error recovery?
1903           return true;
1904         }
1905       }
1906     }
1907   } else if (PrevDecl) {
1908     // C++ [temp]p5:
1909     //   A class template shall not have the same name as any other
1910     //   template, class, function, object, enumeration, enumerator,
1911     //   namespace, or type in the same scope (3.3), except as specified
1912     //   in (14.5.4).
1913     Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1914     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1915     return true;
1916   }
1917 
1918   // Check the template parameter list of this declaration, possibly
1919   // merging in the template parameter list from the previous class
1920   // template declaration. Skip this check for a friend in a dependent
1921   // context, because the template parameter list might be dependent.
1922   if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1923       CheckTemplateParameterList(
1924           TemplateParams,
1925           PrevClassTemplate
1926               ? PrevClassTemplate->getMostRecentDecl()->getTemplateParameters()
1927               : nullptr,
1928           (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
1929            SemanticContext->isDependentContext())
1930               ? TPC_ClassTemplateMember
1931               : TUK == TUK_Friend ? TPC_FriendClassTemplate : TPC_ClassTemplate,
1932           SkipBody))
1933     Invalid = true;
1934 
1935   if (SS.isSet()) {
1936     // If the name of the template was qualified, we must be defining the
1937     // template out-of-line.
1938     if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1939       Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1940                                       : diag::err_member_decl_does_not_match)
1941         << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
1942       Invalid = true;
1943     }
1944   }
1945 
1946   // If this is a templated friend in a dependent context we should not put it
1947   // on the redecl chain. In some cases, the templated friend can be the most
1948   // recent declaration tricking the template instantiator to make substitutions
1949   // there.
1950   // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious
1951   bool ShouldAddRedecl
1952     = !(TUK == TUK_Friend && CurContext->isDependentContext());
1953 
1954   CXXRecordDecl *NewClass =
1955     CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1956                           PrevClassTemplate && ShouldAddRedecl ?
1957                             PrevClassTemplate->getTemplatedDecl() : nullptr,
1958                           /*DelayTypeCreation=*/true);
1959   SetNestedNameSpecifier(*this, NewClass, SS);
1960   if (NumOuterTemplateParamLists > 0)
1961     NewClass->setTemplateParameterListsInfo(
1962         Context, llvm::makeArrayRef(OuterTemplateParamLists,
1963                                     NumOuterTemplateParamLists));
1964 
1965   // Add alignment attributes if necessary; these attributes are checked when
1966   // the ASTContext lays out the structure.
1967   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
1968     AddAlignmentAttributesForRecord(NewClass);
1969     AddMsStructLayoutForRecord(NewClass);
1970   }
1971 
1972   ClassTemplateDecl *NewTemplate
1973     = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1974                                 DeclarationName(Name), TemplateParams,
1975                                 NewClass);
1976 
1977   if (ShouldAddRedecl)
1978     NewTemplate->setPreviousDecl(PrevClassTemplate);
1979 
1980   NewClass->setDescribedClassTemplate(NewTemplate);
1981 
1982   if (ModulePrivateLoc.isValid())
1983     NewTemplate->setModulePrivate();
1984 
1985   // Build the type for the class template declaration now.
1986   QualType T = NewTemplate->getInjectedClassNameSpecialization();
1987   T = Context.getInjectedClassNameType(NewClass, T);
1988   assert(T->isDependentType() && "Class template type is not dependent?");
1989   (void)T;
1990 
1991   // If we are providing an explicit specialization of a member that is a
1992   // class template, make a note of that.
1993   if (PrevClassTemplate &&
1994       PrevClassTemplate->getInstantiatedFromMemberTemplate())
1995     PrevClassTemplate->setMemberSpecialization();
1996 
1997   // Set the access specifier.
1998   if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1999     SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
2000 
2001   // Set the lexical context of these templates
2002   NewClass->setLexicalDeclContext(CurContext);
2003   NewTemplate->setLexicalDeclContext(CurContext);
2004 
2005   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
2006     NewClass->startDefinition();
2007 
2008   ProcessDeclAttributeList(S, NewClass, Attr);
2009 
2010   if (PrevClassTemplate)
2011     mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
2012 
2013   AddPushedVisibilityAttribute(NewClass);
2014   inferGslOwnerPointerAttribute(NewClass);
2015 
2016   if (TUK != TUK_Friend) {
2017     // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
2018     Scope *Outer = S;
2019     while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
2020       Outer = Outer->getParent();
2021     PushOnScopeChains(NewTemplate, Outer);
2022   } else {
2023     if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
2024       NewTemplate->setAccess(PrevClassTemplate->getAccess());
2025       NewClass->setAccess(PrevClassTemplate->getAccess());
2026     }
2027 
2028     NewTemplate->setObjectOfFriendDecl();
2029 
2030     // Friend templates are visible in fairly strange ways.
2031     if (!CurContext->isDependentContext()) {
2032       DeclContext *DC = SemanticContext->getRedeclContext();
2033       DC->makeDeclVisibleInContext(NewTemplate);
2034       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
2035         PushOnScopeChains(NewTemplate, EnclosingScope,
2036                           /* AddToContext = */ false);
2037     }
2038 
2039     FriendDecl *Friend = FriendDecl::Create(
2040         Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
2041     Friend->setAccess(AS_public);
2042     CurContext->addDecl(Friend);
2043   }
2044 
2045   if (PrevClassTemplate)
2046     CheckRedeclarationModuleOwnership(NewTemplate, PrevClassTemplate);
2047 
2048   if (Invalid) {
2049     NewTemplate->setInvalidDecl();
2050     NewClass->setInvalidDecl();
2051   }
2052 
2053   ActOnDocumentableDecl(NewTemplate);
2054 
2055   if (SkipBody && SkipBody->ShouldSkip)
2056     return SkipBody->Previous;
2057 
2058   return NewTemplate;
2059 }
2060 
2061 namespace {
2062 /// Tree transform to "extract" a transformed type from a class template's
2063 /// constructor to a deduction guide.
2064 class ExtractTypeForDeductionGuide
2065   : public TreeTransform<ExtractTypeForDeductionGuide> {
2066   llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs;
2067 
2068 public:
2069   typedef TreeTransform<ExtractTypeForDeductionGuide> Base;
ExtractTypeForDeductionGuide(Sema & SemaRef,llvm::SmallVectorImpl<TypedefNameDecl * > & MaterializedTypedefs)2070   ExtractTypeForDeductionGuide(
2071       Sema &SemaRef,
2072       llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs)
2073       : Base(SemaRef), MaterializedTypedefs(MaterializedTypedefs) {}
2074 
transform(TypeSourceInfo * TSI)2075   TypeSourceInfo *transform(TypeSourceInfo *TSI) { return TransformType(TSI); }
2076 
TransformTypedefType(TypeLocBuilder & TLB,TypedefTypeLoc TL)2077   QualType TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) {
2078     ASTContext &Context = SemaRef.getASTContext();
2079     TypedefNameDecl *OrigDecl = TL.getTypedefNameDecl();
2080     TypedefNameDecl *Decl = OrigDecl;
2081     // Transform the underlying type of the typedef and clone the Decl only if
2082     // the typedef has a dependent context.
2083     if (OrigDecl->getDeclContext()->isDependentContext()) {
2084       TypeLocBuilder InnerTLB;
2085       QualType Transformed =
2086           TransformType(InnerTLB, OrigDecl->getTypeSourceInfo()->getTypeLoc());
2087       TypeSourceInfo *TSI = InnerTLB.getTypeSourceInfo(Context, Transformed);
2088       if (isa<TypeAliasDecl>(OrigDecl))
2089         Decl = TypeAliasDecl::Create(
2090             Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(),
2091             OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI);
2092       else {
2093         assert(isa<TypedefDecl>(OrigDecl) && "Not a Type alias or typedef");
2094         Decl = TypedefDecl::Create(
2095             Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(),
2096             OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI);
2097       }
2098       MaterializedTypedefs.push_back(Decl);
2099     }
2100 
2101     QualType TDTy = Context.getTypedefType(Decl);
2102     TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(TDTy);
2103     TypedefTL.setNameLoc(TL.getNameLoc());
2104 
2105     return TDTy;
2106   }
2107 };
2108 
2109 /// Transform to convert portions of a constructor declaration into the
2110 /// corresponding deduction guide, per C++1z [over.match.class.deduct]p1.
2111 struct ConvertConstructorToDeductionGuideTransform {
ConvertConstructorToDeductionGuideTransform__anon80afb5480711::ConvertConstructorToDeductionGuideTransform2112   ConvertConstructorToDeductionGuideTransform(Sema &S,
2113                                               ClassTemplateDecl *Template)
2114       : SemaRef(S), Template(Template) {}
2115 
2116   Sema &SemaRef;
2117   ClassTemplateDecl *Template;
2118 
2119   DeclContext *DC = Template->getDeclContext();
2120   CXXRecordDecl *Primary = Template->getTemplatedDecl();
2121   DeclarationName DeductionGuideName =
2122       SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template);
2123 
2124   QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary);
2125 
2126   // Index adjustment to apply to convert depth-1 template parameters into
2127   // depth-0 template parameters.
2128   unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size();
2129 
2130   /// Transform a constructor declaration into a deduction guide.
transformConstructor__anon80afb5480711::ConvertConstructorToDeductionGuideTransform2131   NamedDecl *transformConstructor(FunctionTemplateDecl *FTD,
2132                                   CXXConstructorDecl *CD) {
2133     SmallVector<TemplateArgument, 16> SubstArgs;
2134 
2135     LocalInstantiationScope Scope(SemaRef);
2136 
2137     // C++ [over.match.class.deduct]p1:
2138     // -- For each constructor of the class template designated by the
2139     //    template-name, a function template with the following properties:
2140 
2141     //    -- The template parameters are the template parameters of the class
2142     //       template followed by the template parameters (including default
2143     //       template arguments) of the constructor, if any.
2144     TemplateParameterList *TemplateParams = Template->getTemplateParameters();
2145     if (FTD) {
2146       TemplateParameterList *InnerParams = FTD->getTemplateParameters();
2147       SmallVector<NamedDecl *, 16> AllParams;
2148       AllParams.reserve(TemplateParams->size() + InnerParams->size());
2149       AllParams.insert(AllParams.begin(),
2150                        TemplateParams->begin(), TemplateParams->end());
2151       SubstArgs.reserve(InnerParams->size());
2152 
2153       // Later template parameters could refer to earlier ones, so build up
2154       // a list of substituted template arguments as we go.
2155       for (NamedDecl *Param : *InnerParams) {
2156         MultiLevelTemplateArgumentList Args;
2157         Args.setKind(TemplateSubstitutionKind::Rewrite);
2158         Args.addOuterTemplateArguments(SubstArgs);
2159         Args.addOuterRetainedLevel();
2160         NamedDecl *NewParam = transformTemplateParameter(Param, Args);
2161         if (!NewParam)
2162           return nullptr;
2163         AllParams.push_back(NewParam);
2164         SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument(
2165             SemaRef.Context.getInjectedTemplateArg(NewParam)));
2166       }
2167       TemplateParams = TemplateParameterList::Create(
2168           SemaRef.Context, InnerParams->getTemplateLoc(),
2169           InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(),
2170           /*FIXME: RequiresClause*/ nullptr);
2171     }
2172 
2173     // If we built a new template-parameter-list, track that we need to
2174     // substitute references to the old parameters into references to the
2175     // new ones.
2176     MultiLevelTemplateArgumentList Args;
2177     Args.setKind(TemplateSubstitutionKind::Rewrite);
2178     if (FTD) {
2179       Args.addOuterTemplateArguments(SubstArgs);
2180       Args.addOuterRetainedLevel();
2181     }
2182 
2183     FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc()
2184                                    .getAsAdjusted<FunctionProtoTypeLoc>();
2185     assert(FPTL && "no prototype for constructor declaration");
2186 
2187     // Transform the type of the function, adjusting the return type and
2188     // replacing references to the old parameters with references to the
2189     // new ones.
2190     TypeLocBuilder TLB;
2191     SmallVector<ParmVarDecl*, 8> Params;
2192     SmallVector<TypedefNameDecl *, 4> MaterializedTypedefs;
2193     QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args,
2194                                                   MaterializedTypedefs);
2195     if (NewType.isNull())
2196       return nullptr;
2197     TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType);
2198 
2199     return buildDeductionGuide(TemplateParams, CD->getExplicitSpecifier(),
2200                                NewTInfo, CD->getBeginLoc(), CD->getLocation(),
2201                                CD->getEndLoc(), MaterializedTypedefs);
2202   }
2203 
2204   /// Build a deduction guide with the specified parameter types.
buildSimpleDeductionGuide__anon80afb5480711::ConvertConstructorToDeductionGuideTransform2205   NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) {
2206     SourceLocation Loc = Template->getLocation();
2207 
2208     // Build the requested type.
2209     FunctionProtoType::ExtProtoInfo EPI;
2210     EPI.HasTrailingReturn = true;
2211     QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc,
2212                                                 DeductionGuideName, EPI);
2213     TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc);
2214 
2215     FunctionProtoTypeLoc FPTL =
2216         TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>();
2217 
2218     // Build the parameters, needed during deduction / substitution.
2219     SmallVector<ParmVarDecl*, 4> Params;
2220     for (auto T : ParamTypes) {
2221       ParmVarDecl *NewParam = ParmVarDecl::Create(
2222           SemaRef.Context, DC, Loc, Loc, nullptr, T,
2223           SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr);
2224       NewParam->setScopeInfo(0, Params.size());
2225       FPTL.setParam(Params.size(), NewParam);
2226       Params.push_back(NewParam);
2227     }
2228 
2229     return buildDeductionGuide(Template->getTemplateParameters(),
2230                                ExplicitSpecifier(), TSI, Loc, Loc, Loc);
2231   }
2232 
2233 private:
2234   /// Transform a constructor template parameter into a deduction guide template
2235   /// parameter, rebuilding any internal references to earlier parameters and
2236   /// renumbering as we go.
transformTemplateParameter__anon80afb5480711::ConvertConstructorToDeductionGuideTransform2237   NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam,
2238                                         MultiLevelTemplateArgumentList &Args) {
2239     if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) {
2240       // TemplateTypeParmDecl's index cannot be changed after creation, so
2241       // substitute it directly.
2242       auto *NewTTP = TemplateTypeParmDecl::Create(
2243           SemaRef.Context, DC, TTP->getBeginLoc(), TTP->getLocation(),
2244           /*Depth*/ 0, Depth1IndexAdjustment + TTP->getIndex(),
2245           TTP->getIdentifier(), TTP->wasDeclaredWithTypename(),
2246           TTP->isParameterPack(), TTP->hasTypeConstraint(),
2247           TTP->isExpandedParameterPack() ?
2248           llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None);
2249       if (const auto *TC = TTP->getTypeConstraint()) {
2250         TemplateArgumentListInfo TransformedArgs;
2251         const auto *ArgsAsWritten = TC->getTemplateArgsAsWritten();
2252         if (!ArgsAsWritten ||
2253             SemaRef.Subst(ArgsAsWritten->getTemplateArgs(),
2254                           ArgsAsWritten->NumTemplateArgs, TransformedArgs,
2255                           Args))
2256           SemaRef.AttachTypeConstraint(
2257               TC->getNestedNameSpecifierLoc(), TC->getConceptNameInfo(),
2258               TC->getNamedConcept(), ArgsAsWritten ? &TransformedArgs : nullptr,
2259               NewTTP,
2260               NewTTP->isParameterPack()
2261                  ? cast<CXXFoldExpr>(TC->getImmediatelyDeclaredConstraint())
2262                      ->getEllipsisLoc()
2263                  : SourceLocation());
2264       }
2265       if (TTP->hasDefaultArgument()) {
2266         TypeSourceInfo *InstantiatedDefaultArg =
2267             SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args,
2268                               TTP->getDefaultArgumentLoc(), TTP->getDeclName());
2269         if (InstantiatedDefaultArg)
2270           NewTTP->setDefaultArgument(InstantiatedDefaultArg);
2271       }
2272       SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam,
2273                                                            NewTTP);
2274       return NewTTP;
2275     }
2276 
2277     if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam))
2278       return transformTemplateParameterImpl(TTP, Args);
2279 
2280     return transformTemplateParameterImpl(
2281         cast<NonTypeTemplateParmDecl>(TemplateParam), Args);
2282   }
2283   template<typename TemplateParmDecl>
2284   TemplateParmDecl *
transformTemplateParameterImpl__anon80afb5480711::ConvertConstructorToDeductionGuideTransform2285   transformTemplateParameterImpl(TemplateParmDecl *OldParam,
2286                                  MultiLevelTemplateArgumentList &Args) {
2287     // Ask the template instantiator to do the heavy lifting for us, then adjust
2288     // the index of the parameter once it's done.
2289     auto *NewParam =
2290         cast<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args));
2291     assert(NewParam->getDepth() == 0 && "unexpected template param depth");
2292     NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment);
2293     return NewParam;
2294   }
2295 
transformFunctionProtoType__anon80afb5480711::ConvertConstructorToDeductionGuideTransform2296   QualType transformFunctionProtoType(
2297       TypeLocBuilder &TLB, FunctionProtoTypeLoc TL,
2298       SmallVectorImpl<ParmVarDecl *> &Params,
2299       MultiLevelTemplateArgumentList &Args,
2300       SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) {
2301     SmallVector<QualType, 4> ParamTypes;
2302     const FunctionProtoType *T = TL.getTypePtr();
2303 
2304     //    -- The types of the function parameters are those of the constructor.
2305     for (auto *OldParam : TL.getParams()) {
2306       ParmVarDecl *NewParam =
2307           transformFunctionTypeParam(OldParam, Args, MaterializedTypedefs);
2308       if (!NewParam)
2309         return QualType();
2310       ParamTypes.push_back(NewParam->getType());
2311       Params.push_back(NewParam);
2312     }
2313 
2314     //    -- The return type is the class template specialization designated by
2315     //       the template-name and template arguments corresponding to the
2316     //       template parameters obtained from the class template.
2317     //
2318     // We use the injected-class-name type of the primary template instead.
2319     // This has the convenient property that it is different from any type that
2320     // the user can write in a deduction-guide (because they cannot enter the
2321     // context of the template), so implicit deduction guides can never collide
2322     // with explicit ones.
2323     QualType ReturnType = DeducedType;
2324     TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation());
2325 
2326     // Resolving a wording defect, we also inherit the variadicness of the
2327     // constructor.
2328     FunctionProtoType::ExtProtoInfo EPI;
2329     EPI.Variadic = T->isVariadic();
2330     EPI.HasTrailingReturn = true;
2331 
2332     QualType Result = SemaRef.BuildFunctionType(
2333         ReturnType, ParamTypes, TL.getBeginLoc(), DeductionGuideName, EPI);
2334     if (Result.isNull())
2335       return QualType();
2336 
2337     FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
2338     NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
2339     NewTL.setLParenLoc(TL.getLParenLoc());
2340     NewTL.setRParenLoc(TL.getRParenLoc());
2341     NewTL.setExceptionSpecRange(SourceRange());
2342     NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
2343     for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I)
2344       NewTL.setParam(I, Params[I]);
2345 
2346     return Result;
2347   }
2348 
transformFunctionTypeParam__anon80afb5480711::ConvertConstructorToDeductionGuideTransform2349   ParmVarDecl *transformFunctionTypeParam(
2350       ParmVarDecl *OldParam, MultiLevelTemplateArgumentList &Args,
2351       llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) {
2352     TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo();
2353     TypeSourceInfo *NewDI;
2354     if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) {
2355       // Expand out the one and only element in each inner pack.
2356       Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0);
2357       NewDI =
2358           SemaRef.SubstType(PackTL.getPatternLoc(), Args,
2359                             OldParam->getLocation(), OldParam->getDeclName());
2360       if (!NewDI) return nullptr;
2361       NewDI =
2362           SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(),
2363                                      PackTL.getTypePtr()->getNumExpansions());
2364     } else
2365       NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(),
2366                                 OldParam->getDeclName());
2367     if (!NewDI)
2368       return nullptr;
2369 
2370     // Extract the type. This (for instance) replaces references to typedef
2371     // members of the current instantiations with the definitions of those
2372     // typedefs, avoiding triggering instantiation of the deduced type during
2373     // deduction.
2374     NewDI = ExtractTypeForDeductionGuide(SemaRef, MaterializedTypedefs)
2375                 .transform(NewDI);
2376 
2377     // Resolving a wording defect, we also inherit default arguments from the
2378     // constructor.
2379     ExprResult NewDefArg;
2380     if (OldParam->hasDefaultArg()) {
2381       // We don't care what the value is (we won't use it); just create a
2382       // placeholder to indicate there is a default argument.
2383       QualType ParamTy = NewDI->getType();
2384       NewDefArg = new (SemaRef.Context)
2385           OpaqueValueExpr(OldParam->getDefaultArg()->getBeginLoc(),
2386                           ParamTy.getNonLValueExprType(SemaRef.Context),
2387                           ParamTy->isLValueReferenceType() ? VK_LValue :
2388                           ParamTy->isRValueReferenceType() ? VK_XValue :
2389                           VK_RValue);
2390     }
2391 
2392     ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC,
2393                                                 OldParam->getInnerLocStart(),
2394                                                 OldParam->getLocation(),
2395                                                 OldParam->getIdentifier(),
2396                                                 NewDI->getType(),
2397                                                 NewDI,
2398                                                 OldParam->getStorageClass(),
2399                                                 NewDefArg.get());
2400     NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(),
2401                            OldParam->getFunctionScopeIndex());
2402     SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam);
2403     return NewParam;
2404   }
2405 
buildDeductionGuide__anon80afb5480711::ConvertConstructorToDeductionGuideTransform2406   FunctionTemplateDecl *buildDeductionGuide(
2407       TemplateParameterList *TemplateParams, ExplicitSpecifier ES,
2408       TypeSourceInfo *TInfo, SourceLocation LocStart, SourceLocation Loc,
2409       SourceLocation LocEnd,
2410       llvm::ArrayRef<TypedefNameDecl *> MaterializedTypedefs = {}) {
2411     DeclarationNameInfo Name(DeductionGuideName, Loc);
2412     ArrayRef<ParmVarDecl *> Params =
2413         TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams();
2414 
2415     // Build the implicit deduction guide template.
2416     auto *Guide =
2417         CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, ES, Name,
2418                                       TInfo->getType(), TInfo, LocEnd);
2419     Guide->setImplicit();
2420     Guide->setParams(Params);
2421 
2422     for (auto *Param : Params)
2423       Param->setDeclContext(Guide);
2424     for (auto *TD : MaterializedTypedefs)
2425       TD->setDeclContext(Guide);
2426 
2427     auto *GuideTemplate = FunctionTemplateDecl::Create(
2428         SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide);
2429     GuideTemplate->setImplicit();
2430     Guide->setDescribedFunctionTemplate(GuideTemplate);
2431 
2432     if (isa<CXXRecordDecl>(DC)) {
2433       Guide->setAccess(AS_public);
2434       GuideTemplate->setAccess(AS_public);
2435     }
2436 
2437     DC->addDecl(GuideTemplate);
2438     return GuideTemplate;
2439   }
2440 };
2441 }
2442 
DeclareImplicitDeductionGuides(TemplateDecl * Template,SourceLocation Loc)2443 void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template,
2444                                           SourceLocation Loc) {
2445   if (CXXRecordDecl *DefRecord =
2446           cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) {
2447     TemplateDecl *DescribedTemplate = DefRecord->getDescribedClassTemplate();
2448     Template = DescribedTemplate ? DescribedTemplate : Template;
2449   }
2450 
2451   DeclContext *DC = Template->getDeclContext();
2452   if (DC->isDependentContext())
2453     return;
2454 
2455   ConvertConstructorToDeductionGuideTransform Transform(
2456       *this, cast<ClassTemplateDecl>(Template));
2457   if (!isCompleteType(Loc, Transform.DeducedType))
2458     return;
2459 
2460   // Check whether we've already declared deduction guides for this template.
2461   // FIXME: Consider storing a flag on the template to indicate this.
2462   auto Existing = DC->lookup(Transform.DeductionGuideName);
2463   for (auto *D : Existing)
2464     if (D->isImplicit())
2465       return;
2466 
2467   // In case we were expanding a pack when we attempted to declare deduction
2468   // guides, turn off pack expansion for everything we're about to do.
2469   ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1);
2470   // Create a template instantiation record to track the "instantiation" of
2471   // constructors into deduction guides.
2472   // FIXME: Add a kind for this to give more meaningful diagnostics. But can
2473   // this substitution process actually fail?
2474   InstantiatingTemplate BuildingDeductionGuides(*this, Loc, Template);
2475   if (BuildingDeductionGuides.isInvalid())
2476     return;
2477 
2478   // Convert declared constructors into deduction guide templates.
2479   // FIXME: Skip constructors for which deduction must necessarily fail (those
2480   // for which some class template parameter without a default argument never
2481   // appears in a deduced context).
2482   bool AddedAny = false;
2483   for (NamedDecl *D : LookupConstructors(Transform.Primary)) {
2484     D = D->getUnderlyingDecl();
2485     if (D->isInvalidDecl() || D->isImplicit())
2486       continue;
2487     D = cast<NamedDecl>(D->getCanonicalDecl());
2488 
2489     auto *FTD = dyn_cast<FunctionTemplateDecl>(D);
2490     auto *CD =
2491         dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D);
2492     // Class-scope explicit specializations (MS extension) do not result in
2493     // deduction guides.
2494     if (!CD || (!FTD && CD->isFunctionTemplateSpecialization()))
2495       continue;
2496 
2497     Transform.transformConstructor(FTD, CD);
2498     AddedAny = true;
2499   }
2500 
2501   // C++17 [over.match.class.deduct]
2502   //    --  If C is not defined or does not declare any constructors, an
2503   //    additional function template derived as above from a hypothetical
2504   //    constructor C().
2505   if (!AddedAny)
2506     Transform.buildSimpleDeductionGuide(None);
2507 
2508   //    -- An additional function template derived as above from a hypothetical
2509   //    constructor C(C), called the copy deduction candidate.
2510   cast<CXXDeductionGuideDecl>(
2511       cast<FunctionTemplateDecl>(
2512           Transform.buildSimpleDeductionGuide(Transform.DeducedType))
2513           ->getTemplatedDecl())
2514       ->setIsCopyDeductionCandidate();
2515 }
2516 
2517 /// Diagnose the presence of a default template argument on a
2518 /// template parameter, which is ill-formed in certain contexts.
2519 ///
2520 /// \returns true if the default template argument should be dropped.
DiagnoseDefaultTemplateArgument(Sema & S,Sema::TemplateParamListContext TPC,SourceLocation ParamLoc,SourceRange DefArgRange)2521 static bool DiagnoseDefaultTemplateArgument(Sema &S,
2522                                             Sema::TemplateParamListContext TPC,
2523                                             SourceLocation ParamLoc,
2524                                             SourceRange DefArgRange) {
2525   switch (TPC) {
2526   case Sema::TPC_ClassTemplate:
2527   case Sema::TPC_VarTemplate:
2528   case Sema::TPC_TypeAliasTemplate:
2529     return false;
2530 
2531   case Sema::TPC_FunctionTemplate:
2532   case Sema::TPC_FriendFunctionTemplateDefinition:
2533     // C++ [temp.param]p9:
2534     //   A default template-argument shall not be specified in a
2535     //   function template declaration or a function template
2536     //   definition [...]
2537     //   If a friend function template declaration specifies a default
2538     //   template-argument, that declaration shall be a definition and shall be
2539     //   the only declaration of the function template in the translation unit.
2540     // (C++98/03 doesn't have this wording; see DR226).
2541     S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
2542          diag::warn_cxx98_compat_template_parameter_default_in_function_template
2543            : diag::ext_template_parameter_default_in_function_template)
2544       << DefArgRange;
2545     return false;
2546 
2547   case Sema::TPC_ClassTemplateMember:
2548     // C++0x [temp.param]p9:
2549     //   A default template-argument shall not be specified in the
2550     //   template-parameter-lists of the definition of a member of a
2551     //   class template that appears outside of the member's class.
2552     S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
2553       << DefArgRange;
2554     return true;
2555 
2556   case Sema::TPC_FriendClassTemplate:
2557   case Sema::TPC_FriendFunctionTemplate:
2558     // C++ [temp.param]p9:
2559     //   A default template-argument shall not be specified in a
2560     //   friend template declaration.
2561     S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
2562       << DefArgRange;
2563     return true;
2564 
2565     // FIXME: C++0x [temp.param]p9 allows default template-arguments
2566     // for friend function templates if there is only a single
2567     // declaration (and it is a definition). Strange!
2568   }
2569 
2570   llvm_unreachable("Invalid TemplateParamListContext!");
2571 }
2572 
2573 /// Check for unexpanded parameter packs within the template parameters
2574 /// of a template template parameter, recursively.
DiagnoseUnexpandedParameterPacks(Sema & S,TemplateTemplateParmDecl * TTP)2575 static bool DiagnoseUnexpandedParameterPacks(Sema &S,
2576                                              TemplateTemplateParmDecl *TTP) {
2577   // A template template parameter which is a parameter pack is also a pack
2578   // expansion.
2579   if (TTP->isParameterPack())
2580     return false;
2581 
2582   TemplateParameterList *Params = TTP->getTemplateParameters();
2583   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
2584     NamedDecl *P = Params->getParam(I);
2585     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(P)) {
2586       if (!TTP->isParameterPack())
2587         if (const TypeConstraint *TC = TTP->getTypeConstraint())
2588           if (TC->hasExplicitTemplateArgs())
2589             for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments())
2590               if (S.DiagnoseUnexpandedParameterPack(ArgLoc,
2591                                                     Sema::UPPC_TypeConstraint))
2592                 return true;
2593       continue;
2594     }
2595 
2596     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
2597       if (!NTTP->isParameterPack() &&
2598           S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
2599                                             NTTP->getTypeSourceInfo(),
2600                                       Sema::UPPC_NonTypeTemplateParameterType))
2601         return true;
2602 
2603       continue;
2604     }
2605 
2606     if (TemplateTemplateParmDecl *InnerTTP
2607                                         = dyn_cast<TemplateTemplateParmDecl>(P))
2608       if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
2609         return true;
2610   }
2611 
2612   return false;
2613 }
2614 
2615 /// Checks the validity of a template parameter list, possibly
2616 /// considering the template parameter list from a previous
2617 /// declaration.
2618 ///
2619 /// If an "old" template parameter list is provided, it must be
2620 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
2621 /// template parameter list.
2622 ///
2623 /// \param NewParams Template parameter list for a new template
2624 /// declaration. This template parameter list will be updated with any
2625 /// default arguments that are carried through from the previous
2626 /// template parameter list.
2627 ///
2628 /// \param OldParams If provided, template parameter list from a
2629 /// previous declaration of the same template. Default template
2630 /// arguments will be merged from the old template parameter list to
2631 /// the new template parameter list.
2632 ///
2633 /// \param TPC Describes the context in which we are checking the given
2634 /// template parameter list.
2635 ///
2636 /// \param SkipBody If we might have already made a prior merged definition
2637 /// of this template visible, the corresponding body-skipping information.
2638 /// Default argument redefinition is not an error when skipping such a body,
2639 /// because (under the ODR) we can assume the default arguments are the same
2640 /// as the prior merged definition.
2641 ///
2642 /// \returns true if an error occurred, false otherwise.
CheckTemplateParameterList(TemplateParameterList * NewParams,TemplateParameterList * OldParams,TemplateParamListContext TPC,SkipBodyInfo * SkipBody)2643 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
2644                                       TemplateParameterList *OldParams,
2645                                       TemplateParamListContext TPC,
2646                                       SkipBodyInfo *SkipBody) {
2647   bool Invalid = false;
2648 
2649   // C++ [temp.param]p10:
2650   //   The set of default template-arguments available for use with a
2651   //   template declaration or definition is obtained by merging the
2652   //   default arguments from the definition (if in scope) and all
2653   //   declarations in scope in the same way default function
2654   //   arguments are (8.3.6).
2655   bool SawDefaultArgument = false;
2656   SourceLocation PreviousDefaultArgLoc;
2657 
2658   // Dummy initialization to avoid warnings.
2659   TemplateParameterList::iterator OldParam = NewParams->end();
2660   if (OldParams)
2661     OldParam = OldParams->begin();
2662 
2663   bool RemoveDefaultArguments = false;
2664   for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2665                                     NewParamEnd = NewParams->end();
2666        NewParam != NewParamEnd; ++NewParam) {
2667     // Variables used to diagnose redundant default arguments
2668     bool RedundantDefaultArg = false;
2669     SourceLocation OldDefaultLoc;
2670     SourceLocation NewDefaultLoc;
2671 
2672     // Variable used to diagnose missing default arguments
2673     bool MissingDefaultArg = false;
2674 
2675     // Variable used to diagnose non-final parameter packs
2676     bool SawParameterPack = false;
2677 
2678     if (TemplateTypeParmDecl *NewTypeParm
2679           = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
2680       // Check the presence of a default argument here.
2681       if (NewTypeParm->hasDefaultArgument() &&
2682           DiagnoseDefaultTemplateArgument(*this, TPC,
2683                                           NewTypeParm->getLocation(),
2684                NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
2685                                                        .getSourceRange()))
2686         NewTypeParm->removeDefaultArgument();
2687 
2688       // Merge default arguments for template type parameters.
2689       TemplateTypeParmDecl *OldTypeParm
2690           = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
2691       if (NewTypeParm->isParameterPack()) {
2692         assert(!NewTypeParm->hasDefaultArgument() &&
2693                "Parameter packs can't have a default argument!");
2694         SawParameterPack = true;
2695       } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
2696                  NewTypeParm->hasDefaultArgument() &&
2697                  (!SkipBody || !SkipBody->ShouldSkip)) {
2698         OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
2699         NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
2700         SawDefaultArgument = true;
2701         RedundantDefaultArg = true;
2702         PreviousDefaultArgLoc = NewDefaultLoc;
2703       } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
2704         // Merge the default argument from the old declaration to the
2705         // new declaration.
2706         NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
2707         PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
2708       } else if (NewTypeParm->hasDefaultArgument()) {
2709         SawDefaultArgument = true;
2710         PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
2711       } else if (SawDefaultArgument)
2712         MissingDefaultArg = true;
2713     } else if (NonTypeTemplateParmDecl *NewNonTypeParm
2714                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
2715       // Check for unexpanded parameter packs.
2716       if (!NewNonTypeParm->isParameterPack() &&
2717           DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
2718                                           NewNonTypeParm->getTypeSourceInfo(),
2719                                           UPPC_NonTypeTemplateParameterType)) {
2720         Invalid = true;
2721         continue;
2722       }
2723 
2724       // Check the presence of a default argument here.
2725       if (NewNonTypeParm->hasDefaultArgument() &&
2726           DiagnoseDefaultTemplateArgument(*this, TPC,
2727                                           NewNonTypeParm->getLocation(),
2728                     NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
2729         NewNonTypeParm->removeDefaultArgument();
2730       }
2731 
2732       // Merge default arguments for non-type template parameters
2733       NonTypeTemplateParmDecl *OldNonTypeParm
2734         = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
2735       if (NewNonTypeParm->isParameterPack()) {
2736         assert(!NewNonTypeParm->hasDefaultArgument() &&
2737                "Parameter packs can't have a default argument!");
2738         if (!NewNonTypeParm->isPackExpansion())
2739           SawParameterPack = true;
2740       } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
2741                  NewNonTypeParm->hasDefaultArgument() &&
2742                  (!SkipBody || !SkipBody->ShouldSkip)) {
2743         OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
2744         NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
2745         SawDefaultArgument = true;
2746         RedundantDefaultArg = true;
2747         PreviousDefaultArgLoc = NewDefaultLoc;
2748       } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
2749         // Merge the default argument from the old declaration to the
2750         // new declaration.
2751         NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
2752         PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
2753       } else if (NewNonTypeParm->hasDefaultArgument()) {
2754         SawDefaultArgument = true;
2755         PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
2756       } else if (SawDefaultArgument)
2757         MissingDefaultArg = true;
2758     } else {
2759       TemplateTemplateParmDecl *NewTemplateParm
2760         = cast<TemplateTemplateParmDecl>(*NewParam);
2761 
2762       // Check for unexpanded parameter packs, recursively.
2763       if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
2764         Invalid = true;
2765         continue;
2766       }
2767 
2768       // Check the presence of a default argument here.
2769       if (NewTemplateParm->hasDefaultArgument() &&
2770           DiagnoseDefaultTemplateArgument(*this, TPC,
2771                                           NewTemplateParm->getLocation(),
2772                      NewTemplateParm->getDefaultArgument().getSourceRange()))
2773         NewTemplateParm->removeDefaultArgument();
2774 
2775       // Merge default arguments for template template parameters
2776       TemplateTemplateParmDecl *OldTemplateParm
2777         = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
2778       if (NewTemplateParm->isParameterPack()) {
2779         assert(!NewTemplateParm->hasDefaultArgument() &&
2780                "Parameter packs can't have a default argument!");
2781         if (!NewTemplateParm->isPackExpansion())
2782           SawParameterPack = true;
2783       } else if (OldTemplateParm &&
2784                  hasVisibleDefaultArgument(OldTemplateParm) &&
2785                  NewTemplateParm->hasDefaultArgument() &&
2786                  (!SkipBody || !SkipBody->ShouldSkip)) {
2787         OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
2788         NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
2789         SawDefaultArgument = true;
2790         RedundantDefaultArg = true;
2791         PreviousDefaultArgLoc = NewDefaultLoc;
2792       } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
2793         // Merge the default argument from the old declaration to the
2794         // new declaration.
2795         NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
2796         PreviousDefaultArgLoc
2797           = OldTemplateParm->getDefaultArgument().getLocation();
2798       } else if (NewTemplateParm->hasDefaultArgument()) {
2799         SawDefaultArgument = true;
2800         PreviousDefaultArgLoc
2801           = NewTemplateParm->getDefaultArgument().getLocation();
2802       } else if (SawDefaultArgument)
2803         MissingDefaultArg = true;
2804     }
2805 
2806     // C++11 [temp.param]p11:
2807     //   If a template parameter of a primary class template or alias template
2808     //   is a template parameter pack, it shall be the last template parameter.
2809     if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
2810         (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
2811          TPC == TPC_TypeAliasTemplate)) {
2812       Diag((*NewParam)->getLocation(),
2813            diag::err_template_param_pack_must_be_last_template_parameter);
2814       Invalid = true;
2815     }
2816 
2817     if (RedundantDefaultArg) {
2818       // C++ [temp.param]p12:
2819       //   A template-parameter shall not be given default arguments
2820       //   by two different declarations in the same scope.
2821       Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
2822       Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
2823       Invalid = true;
2824     } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
2825       // C++ [temp.param]p11:
2826       //   If a template-parameter of a class template has a default
2827       //   template-argument, each subsequent template-parameter shall either
2828       //   have a default template-argument supplied or be a template parameter
2829       //   pack.
2830       Diag((*NewParam)->getLocation(),
2831            diag::err_template_param_default_arg_missing);
2832       Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
2833       Invalid = true;
2834       RemoveDefaultArguments = true;
2835     }
2836 
2837     // If we have an old template parameter list that we're merging
2838     // in, move on to the next parameter.
2839     if (OldParams)
2840       ++OldParam;
2841   }
2842 
2843   // We were missing some default arguments at the end of the list, so remove
2844   // all of the default arguments.
2845   if (RemoveDefaultArguments) {
2846     for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2847                                       NewParamEnd = NewParams->end();
2848          NewParam != NewParamEnd; ++NewParam) {
2849       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
2850         TTP->removeDefaultArgument();
2851       else if (NonTypeTemplateParmDecl *NTTP
2852                                 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
2853         NTTP->removeDefaultArgument();
2854       else
2855         cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
2856     }
2857   }
2858 
2859   return Invalid;
2860 }
2861 
2862 namespace {
2863 
2864 /// A class which looks for a use of a certain level of template
2865 /// parameter.
2866 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
2867   typedef RecursiveASTVisitor<DependencyChecker> super;
2868 
2869   unsigned Depth;
2870 
2871   // Whether we're looking for a use of a template parameter that makes the
2872   // overall construct type-dependent / a dependent type. This is strictly
2873   // best-effort for now; we may fail to match at all for a dependent type
2874   // in some cases if this is set.
2875   bool IgnoreNonTypeDependent;
2876 
2877   bool Match;
2878   SourceLocation MatchLoc;
2879 
DependencyChecker__anon80afb5480811::DependencyChecker2880   DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent)
2881       : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent),
2882         Match(false) {}
2883 
DependencyChecker__anon80afb5480811::DependencyChecker2884   DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent)
2885       : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) {
2886     NamedDecl *ND = Params->getParam(0);
2887     if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
2888       Depth = PD->getDepth();
2889     } else if (NonTypeTemplateParmDecl *PD =
2890                  dyn_cast<NonTypeTemplateParmDecl>(ND)) {
2891       Depth = PD->getDepth();
2892     } else {
2893       Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
2894     }
2895   }
2896 
Matches__anon80afb5480811::DependencyChecker2897   bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
2898     if (ParmDepth >= Depth) {
2899       Match = true;
2900       MatchLoc = Loc;
2901       return true;
2902     }
2903     return false;
2904   }
2905 
TraverseStmt__anon80afb5480811::DependencyChecker2906   bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) {
2907     // Prune out non-type-dependent expressions if requested. This can
2908     // sometimes result in us failing to find a template parameter reference
2909     // (if a value-dependent expression creates a dependent type), but this
2910     // mode is best-effort only.
2911     if (auto *E = dyn_cast_or_null<Expr>(S))
2912       if (IgnoreNonTypeDependent && !E->isTypeDependent())
2913         return true;
2914     return super::TraverseStmt(S, Q);
2915   }
2916 
TraverseTypeLoc__anon80afb5480811::DependencyChecker2917   bool TraverseTypeLoc(TypeLoc TL) {
2918     if (IgnoreNonTypeDependent && !TL.isNull() &&
2919         !TL.getType()->isDependentType())
2920       return true;
2921     return super::TraverseTypeLoc(TL);
2922   }
2923 
VisitTemplateTypeParmTypeLoc__anon80afb5480811::DependencyChecker2924   bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
2925     return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
2926   }
2927 
VisitTemplateTypeParmType__anon80afb5480811::DependencyChecker2928   bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
2929     // For a best-effort search, keep looking until we find a location.
2930     return IgnoreNonTypeDependent || !Matches(T->getDepth());
2931   }
2932 
TraverseTemplateName__anon80afb5480811::DependencyChecker2933   bool TraverseTemplateName(TemplateName N) {
2934     if (TemplateTemplateParmDecl *PD =
2935           dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
2936       if (Matches(PD->getDepth()))
2937         return false;
2938     return super::TraverseTemplateName(N);
2939   }
2940 
VisitDeclRefExpr__anon80afb5480811::DependencyChecker2941   bool VisitDeclRefExpr(DeclRefExpr *E) {
2942     if (NonTypeTemplateParmDecl *PD =
2943           dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
2944       if (Matches(PD->getDepth(), E->getExprLoc()))
2945         return false;
2946     return super::VisitDeclRefExpr(E);
2947   }
2948 
VisitSubstTemplateTypeParmType__anon80afb5480811::DependencyChecker2949   bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
2950     return TraverseType(T->getReplacementType());
2951   }
2952 
2953   bool
VisitSubstTemplateTypeParmPackType__anon80afb5480811::DependencyChecker2954   VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
2955     return TraverseTemplateArgument(T->getArgumentPack());
2956   }
2957 
TraverseInjectedClassNameType__anon80afb5480811::DependencyChecker2958   bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
2959     return TraverseType(T->getInjectedSpecializationType());
2960   }
2961 };
2962 } // end anonymous namespace
2963 
2964 /// Determines whether a given type depends on the given parameter
2965 /// list.
2966 static bool
DependsOnTemplateParameters(QualType T,TemplateParameterList * Params)2967 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
2968   if (!Params->size())
2969     return false;
2970 
2971   DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false);
2972   Checker.TraverseType(T);
2973   return Checker.Match;
2974 }
2975 
2976 // Find the source range corresponding to the named type in the given
2977 // nested-name-specifier, if any.
getRangeOfTypeInNestedNameSpecifier(ASTContext & Context,QualType T,const CXXScopeSpec & SS)2978 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
2979                                                        QualType T,
2980                                                        const CXXScopeSpec &SS) {
2981   NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
2982   while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
2983     if (const Type *CurType = NNS->getAsType()) {
2984       if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
2985         return NNSLoc.getTypeLoc().getSourceRange();
2986     } else
2987       break;
2988 
2989     NNSLoc = NNSLoc.getPrefix();
2990   }
2991 
2992   return SourceRange();
2993 }
2994 
2995 /// Match the given template parameter lists to the given scope
2996 /// specifier, returning the template parameter list that applies to the
2997 /// name.
2998 ///
2999 /// \param DeclStartLoc the start of the declaration that has a scope
3000 /// specifier or a template parameter list.
3001 ///
3002 /// \param DeclLoc The location of the declaration itself.
3003 ///
3004 /// \param SS the scope specifier that will be matched to the given template
3005 /// parameter lists. This scope specifier precedes a qualified name that is
3006 /// being declared.
3007 ///
3008 /// \param TemplateId The template-id following the scope specifier, if there
3009 /// is one. Used to check for a missing 'template<>'.
3010 ///
3011 /// \param ParamLists the template parameter lists, from the outermost to the
3012 /// innermost template parameter lists.
3013 ///
3014 /// \param IsFriend Whether to apply the slightly different rules for
3015 /// matching template parameters to scope specifiers in friend
3016 /// declarations.
3017 ///
3018 /// \param IsMemberSpecialization will be set true if the scope specifier
3019 /// denotes a fully-specialized type, and therefore this is a declaration of
3020 /// a member specialization.
3021 ///
3022 /// \returns the template parameter list, if any, that corresponds to the
3023 /// name that is preceded by the scope specifier @p SS. This template
3024 /// parameter list may have template parameters (if we're declaring a
3025 /// template) or may have no template parameters (if we're declaring a
3026 /// template specialization), or may be NULL (if what we're declaring isn't
3027 /// itself a template).
MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,SourceLocation DeclLoc,const CXXScopeSpec & SS,TemplateIdAnnotation * TemplateId,ArrayRef<TemplateParameterList * > ParamLists,bool IsFriend,bool & IsMemberSpecialization,bool & Invalid,bool SuppressDiagnostic)3028 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
3029     SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
3030     TemplateIdAnnotation *TemplateId,
3031     ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
3032     bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) {
3033   IsMemberSpecialization = false;
3034   Invalid = false;
3035 
3036   // The sequence of nested types to which we will match up the template
3037   // parameter lists. We first build this list by starting with the type named
3038   // by the nested-name-specifier and walking out until we run out of types.
3039   SmallVector<QualType, 4> NestedTypes;
3040   QualType T;
3041   if (SS.getScopeRep()) {
3042     if (CXXRecordDecl *Record
3043               = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
3044       T = Context.getTypeDeclType(Record);
3045     else
3046       T = QualType(SS.getScopeRep()->getAsType(), 0);
3047   }
3048 
3049   // If we found an explicit specialization that prevents us from needing
3050   // 'template<>' headers, this will be set to the location of that
3051   // explicit specialization.
3052   SourceLocation ExplicitSpecLoc;
3053 
3054   while (!T.isNull()) {
3055     NestedTypes.push_back(T);
3056 
3057     // Retrieve the parent of a record type.
3058     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
3059       // If this type is an explicit specialization, we're done.
3060       if (ClassTemplateSpecializationDecl *Spec
3061           = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
3062         if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
3063             Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
3064           ExplicitSpecLoc = Spec->getLocation();
3065           break;
3066         }
3067       } else if (Record->getTemplateSpecializationKind()
3068                                                 == TSK_ExplicitSpecialization) {
3069         ExplicitSpecLoc = Record->getLocation();
3070         break;
3071       }
3072 
3073       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
3074         T = Context.getTypeDeclType(Parent);
3075       else
3076         T = QualType();
3077       continue;
3078     }
3079 
3080     if (const TemplateSpecializationType *TST
3081                                      = T->getAs<TemplateSpecializationType>()) {
3082       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
3083         if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
3084           T = Context.getTypeDeclType(Parent);
3085         else
3086           T = QualType();
3087         continue;
3088       }
3089     }
3090 
3091     // Look one step prior in a dependent template specialization type.
3092     if (const DependentTemplateSpecializationType *DependentTST
3093                           = T->getAs<DependentTemplateSpecializationType>()) {
3094       if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
3095         T = QualType(NNS->getAsType(), 0);
3096       else
3097         T = QualType();
3098       continue;
3099     }
3100 
3101     // Look one step prior in a dependent name type.
3102     if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
3103       if (NestedNameSpecifier *NNS = DependentName->getQualifier())
3104         T = QualType(NNS->getAsType(), 0);
3105       else
3106         T = QualType();
3107       continue;
3108     }
3109 
3110     // Retrieve the parent of an enumeration type.
3111     if (const EnumType *EnumT = T->getAs<EnumType>()) {
3112       // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
3113       // check here.
3114       EnumDecl *Enum = EnumT->getDecl();
3115 
3116       // Get to the parent type.
3117       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
3118         T = Context.getTypeDeclType(Parent);
3119       else
3120         T = QualType();
3121       continue;
3122     }
3123 
3124     T = QualType();
3125   }
3126   // Reverse the nested types list, since we want to traverse from the outermost
3127   // to the innermost while checking template-parameter-lists.
3128   std::reverse(NestedTypes.begin(), NestedTypes.end());
3129 
3130   // C++0x [temp.expl.spec]p17:
3131   //   A member or a member template may be nested within many
3132   //   enclosing class templates. In an explicit specialization for
3133   //   such a member, the member declaration shall be preceded by a
3134   //   template<> for each enclosing class template that is
3135   //   explicitly specialized.
3136   bool SawNonEmptyTemplateParameterList = false;
3137 
3138   auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
3139     if (SawNonEmptyTemplateParameterList) {
3140       if (!SuppressDiagnostic)
3141         Diag(DeclLoc, diag::err_specialize_member_of_template)
3142           << !Recovery << Range;
3143       Invalid = true;
3144       IsMemberSpecialization = false;
3145       return true;
3146     }
3147 
3148     return false;
3149   };
3150 
3151   auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
3152     // Check that we can have an explicit specialization here.
3153     if (CheckExplicitSpecialization(Range, true))
3154       return true;
3155 
3156     // We don't have a template header, but we should.
3157     SourceLocation ExpectedTemplateLoc;
3158     if (!ParamLists.empty())
3159       ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
3160     else
3161       ExpectedTemplateLoc = DeclStartLoc;
3162 
3163     if (!SuppressDiagnostic)
3164       Diag(DeclLoc, diag::err_template_spec_needs_header)
3165         << Range
3166         << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
3167     return false;
3168   };
3169 
3170   unsigned ParamIdx = 0;
3171   for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
3172        ++TypeIdx) {
3173     T = NestedTypes[TypeIdx];
3174 
3175     // Whether we expect a 'template<>' header.
3176     bool NeedEmptyTemplateHeader = false;
3177 
3178     // Whether we expect a template header with parameters.
3179     bool NeedNonemptyTemplateHeader = false;
3180 
3181     // For a dependent type, the set of template parameters that we
3182     // expect to see.
3183     TemplateParameterList *ExpectedTemplateParams = nullptr;
3184 
3185     // C++0x [temp.expl.spec]p15:
3186     //   A member or a member template may be nested within many enclosing
3187     //   class templates. In an explicit specialization for such a member, the
3188     //   member declaration shall be preceded by a template<> for each
3189     //   enclosing class template that is explicitly specialized.
3190     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
3191       if (ClassTemplatePartialSpecializationDecl *Partial
3192             = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
3193         ExpectedTemplateParams = Partial->getTemplateParameters();
3194         NeedNonemptyTemplateHeader = true;
3195       } else if (Record->isDependentType()) {
3196         if (Record->getDescribedClassTemplate()) {
3197           ExpectedTemplateParams = Record->getDescribedClassTemplate()
3198                                                       ->getTemplateParameters();
3199           NeedNonemptyTemplateHeader = true;
3200         }
3201       } else if (ClassTemplateSpecializationDecl *Spec
3202                      = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
3203         // C++0x [temp.expl.spec]p4:
3204         //   Members of an explicitly specialized class template are defined
3205         //   in the same manner as members of normal classes, and not using
3206         //   the template<> syntax.
3207         if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
3208           NeedEmptyTemplateHeader = true;
3209         else
3210           continue;
3211       } else if (Record->getTemplateSpecializationKind()) {
3212         if (Record->getTemplateSpecializationKind()
3213                                                 != TSK_ExplicitSpecialization &&
3214             TypeIdx == NumTypes - 1)
3215           IsMemberSpecialization = true;
3216 
3217         continue;
3218       }
3219     } else if (const TemplateSpecializationType *TST
3220                                      = T->getAs<TemplateSpecializationType>()) {
3221       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
3222         ExpectedTemplateParams = Template->getTemplateParameters();
3223         NeedNonemptyTemplateHeader = true;
3224       }
3225     } else if (T->getAs<DependentTemplateSpecializationType>()) {
3226       // FIXME:  We actually could/should check the template arguments here
3227       // against the corresponding template parameter list.
3228       NeedNonemptyTemplateHeader = false;
3229     }
3230 
3231     // C++ [temp.expl.spec]p16:
3232     //   In an explicit specialization declaration for a member of a class
3233     //   template or a member template that ap- pears in namespace scope, the
3234     //   member template and some of its enclosing class templates may remain
3235     //   unspecialized, except that the declaration shall not explicitly
3236     //   specialize a class member template if its en- closing class templates
3237     //   are not explicitly specialized as well.
3238     if (ParamIdx < ParamLists.size()) {
3239       if (ParamLists[ParamIdx]->size() == 0) {
3240         if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
3241                                         false))
3242           return nullptr;
3243       } else
3244         SawNonEmptyTemplateParameterList = true;
3245     }
3246 
3247     if (NeedEmptyTemplateHeader) {
3248       // If we're on the last of the types, and we need a 'template<>' header
3249       // here, then it's a member specialization.
3250       if (TypeIdx == NumTypes - 1)
3251         IsMemberSpecialization = true;
3252 
3253       if (ParamIdx < ParamLists.size()) {
3254         if (ParamLists[ParamIdx]->size() > 0) {
3255           // The header has template parameters when it shouldn't. Complain.
3256           if (!SuppressDiagnostic)
3257             Diag(ParamLists[ParamIdx]->getTemplateLoc(),
3258                  diag::err_template_param_list_matches_nontemplate)
3259               << T
3260               << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
3261                              ParamLists[ParamIdx]->getRAngleLoc())
3262               << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
3263           Invalid = true;
3264           return nullptr;
3265         }
3266 
3267         // Consume this template header.
3268         ++ParamIdx;
3269         continue;
3270       }
3271 
3272       if (!IsFriend)
3273         if (DiagnoseMissingExplicitSpecialization(
3274                 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
3275           return nullptr;
3276 
3277       continue;
3278     }
3279 
3280     if (NeedNonemptyTemplateHeader) {
3281       // In friend declarations we can have template-ids which don't
3282       // depend on the corresponding template parameter lists.  But
3283       // assume that empty parameter lists are supposed to match this
3284       // template-id.
3285       if (IsFriend && T->isDependentType()) {
3286         if (ParamIdx < ParamLists.size() &&
3287             DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
3288           ExpectedTemplateParams = nullptr;
3289         else
3290           continue;
3291       }
3292 
3293       if (ParamIdx < ParamLists.size()) {
3294         // Check the template parameter list, if we can.
3295         if (ExpectedTemplateParams &&
3296             !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
3297                                             ExpectedTemplateParams,
3298                                             !SuppressDiagnostic, TPL_TemplateMatch))
3299           Invalid = true;
3300 
3301         if (!Invalid &&
3302             CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
3303                                        TPC_ClassTemplateMember))
3304           Invalid = true;
3305 
3306         ++ParamIdx;
3307         continue;
3308       }
3309 
3310       if (!SuppressDiagnostic)
3311         Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
3312           << T
3313           << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
3314       Invalid = true;
3315       continue;
3316     }
3317   }
3318 
3319   // If there were at least as many template-ids as there were template
3320   // parameter lists, then there are no template parameter lists remaining for
3321   // the declaration itself.
3322   if (ParamIdx >= ParamLists.size()) {
3323     if (TemplateId && !IsFriend) {
3324       // We don't have a template header for the declaration itself, but we
3325       // should.
3326       DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
3327                                                         TemplateId->RAngleLoc));
3328 
3329       // Fabricate an empty template parameter list for the invented header.
3330       return TemplateParameterList::Create(Context, SourceLocation(),
3331                                            SourceLocation(), None,
3332                                            SourceLocation(), nullptr);
3333     }
3334 
3335     return nullptr;
3336   }
3337 
3338   // If there were too many template parameter lists, complain about that now.
3339   if (ParamIdx < ParamLists.size() - 1) {
3340     bool HasAnyExplicitSpecHeader = false;
3341     bool AllExplicitSpecHeaders = true;
3342     for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
3343       if (ParamLists[I]->size() == 0)
3344         HasAnyExplicitSpecHeader = true;
3345       else
3346         AllExplicitSpecHeaders = false;
3347     }
3348 
3349     if (!SuppressDiagnostic)
3350       Diag(ParamLists[ParamIdx]->getTemplateLoc(),
3351            AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
3352                                   : diag::err_template_spec_extra_headers)
3353           << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
3354                          ParamLists[ParamLists.size() - 2]->getRAngleLoc());
3355 
3356     // If there was a specialization somewhere, such that 'template<>' is
3357     // not required, and there were any 'template<>' headers, note where the
3358     // specialization occurred.
3359     if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader &&
3360         !SuppressDiagnostic)
3361       Diag(ExplicitSpecLoc,
3362            diag::note_explicit_template_spec_does_not_need_header)
3363         << NestedTypes.back();
3364 
3365     // We have a template parameter list with no corresponding scope, which
3366     // means that the resulting template declaration can't be instantiated
3367     // properly (we'll end up with dependent nodes when we shouldn't).
3368     if (!AllExplicitSpecHeaders)
3369       Invalid = true;
3370   }
3371 
3372   // C++ [temp.expl.spec]p16:
3373   //   In an explicit specialization declaration for a member of a class
3374   //   template or a member template that ap- pears in namespace scope, the
3375   //   member template and some of its enclosing class templates may remain
3376   //   unspecialized, except that the declaration shall not explicitly
3377   //   specialize a class member template if its en- closing class templates
3378   //   are not explicitly specialized as well.
3379   if (ParamLists.back()->size() == 0 &&
3380       CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
3381                                   false))
3382     return nullptr;
3383 
3384   // Return the last template parameter list, which corresponds to the
3385   // entity being declared.
3386   return ParamLists.back();
3387 }
3388 
NoteAllFoundTemplates(TemplateName Name)3389 void Sema::NoteAllFoundTemplates(TemplateName Name) {
3390   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
3391     Diag(Template->getLocation(), diag::note_template_declared_here)
3392         << (isa<FunctionTemplateDecl>(Template)
3393                 ? 0
3394                 : isa<ClassTemplateDecl>(Template)
3395                       ? 1
3396                       : isa<VarTemplateDecl>(Template)
3397                             ? 2
3398                             : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
3399         << Template->getDeclName();
3400     return;
3401   }
3402 
3403   if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
3404     for (OverloadedTemplateStorage::iterator I = OST->begin(),
3405                                           IEnd = OST->end();
3406          I != IEnd; ++I)
3407       Diag((*I)->getLocation(), diag::note_template_declared_here)
3408         << 0 << (*I)->getDeclName();
3409 
3410     return;
3411   }
3412 }
3413 
3414 static QualType
checkBuiltinTemplateIdType(Sema & SemaRef,BuiltinTemplateDecl * BTD,const SmallVectorImpl<TemplateArgument> & Converted,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)3415 checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
3416                            const SmallVectorImpl<TemplateArgument> &Converted,
3417                            SourceLocation TemplateLoc,
3418                            TemplateArgumentListInfo &TemplateArgs) {
3419   ASTContext &Context = SemaRef.getASTContext();
3420   switch (BTD->getBuiltinTemplateKind()) {
3421   case BTK__make_integer_seq: {
3422     // Specializations of __make_integer_seq<S, T, N> are treated like
3423     // S<T, 0, ..., N-1>.
3424 
3425     // C++14 [inteseq.intseq]p1:
3426     //   T shall be an integer type.
3427     if (!Converted[1].getAsType()->isIntegralType(Context)) {
3428       SemaRef.Diag(TemplateArgs[1].getLocation(),
3429                    diag::err_integer_sequence_integral_element_type);
3430       return QualType();
3431     }
3432 
3433     // C++14 [inteseq.make]p1:
3434     //   If N is negative the program is ill-formed.
3435     TemplateArgument NumArgsArg = Converted[2];
3436     llvm::APSInt NumArgs = NumArgsArg.getAsIntegral();
3437     if (NumArgs < 0) {
3438       SemaRef.Diag(TemplateArgs[2].getLocation(),
3439                    diag::err_integer_sequence_negative_length);
3440       return QualType();
3441     }
3442 
3443     QualType ArgTy = NumArgsArg.getIntegralType();
3444     TemplateArgumentListInfo SyntheticTemplateArgs;
3445     // The type argument gets reused as the first template argument in the
3446     // synthetic template argument list.
3447     SyntheticTemplateArgs.addArgument(TemplateArgs[1]);
3448     // Expand N into 0 ... N-1.
3449     for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
3450          I < NumArgs; ++I) {
3451       TemplateArgument TA(Context, I, ArgTy);
3452       SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc(
3453           TA, ArgTy, TemplateArgs[2].getLocation()));
3454     }
3455     // The first template argument will be reused as the template decl that
3456     // our synthetic template arguments will be applied to.
3457     return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
3458                                        TemplateLoc, SyntheticTemplateArgs);
3459   }
3460 
3461   case BTK__type_pack_element:
3462     // Specializations of
3463     //    __type_pack_element<Index, T_1, ..., T_N>
3464     // are treated like T_Index.
3465     assert(Converted.size() == 2 &&
3466       "__type_pack_element should be given an index and a parameter pack");
3467 
3468     // If the Index is out of bounds, the program is ill-formed.
3469     TemplateArgument IndexArg = Converted[0], Ts = Converted[1];
3470     llvm::APSInt Index = IndexArg.getAsIntegral();
3471     assert(Index >= 0 && "the index used with __type_pack_element should be of "
3472                          "type std::size_t, and hence be non-negative");
3473     if (Index >= Ts.pack_size()) {
3474       SemaRef.Diag(TemplateArgs[0].getLocation(),
3475                    diag::err_type_pack_element_out_of_bounds);
3476       return QualType();
3477     }
3478 
3479     // We simply return the type at index `Index`.
3480     auto Nth = std::next(Ts.pack_begin(), Index.getExtValue());
3481     return Nth->getAsType();
3482   }
3483   llvm_unreachable("unexpected BuiltinTemplateDecl!");
3484 }
3485 
3486 /// Determine whether this alias template is "enable_if_t".
isEnableIfAliasTemplate(TypeAliasTemplateDecl * AliasTemplate)3487 static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) {
3488   return AliasTemplate->getName().equals("enable_if_t");
3489 }
3490 
3491 /// Collect all of the separable terms in the given condition, which
3492 /// might be a conjunction.
3493 ///
3494 /// FIXME: The right answer is to convert the logical expression into
3495 /// disjunctive normal form, so we can find the first failed term
3496 /// within each possible clause.
collectConjunctionTerms(Expr * Clause,SmallVectorImpl<Expr * > & Terms)3497 static void collectConjunctionTerms(Expr *Clause,
3498                                     SmallVectorImpl<Expr *> &Terms) {
3499   if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) {
3500     if (BinOp->getOpcode() == BO_LAnd) {
3501       collectConjunctionTerms(BinOp->getLHS(), Terms);
3502       collectConjunctionTerms(BinOp->getRHS(), Terms);
3503     }
3504 
3505     return;
3506   }
3507 
3508   Terms.push_back(Clause);
3509 }
3510 
3511 // The ranges-v3 library uses an odd pattern of a top-level "||" with
3512 // a left-hand side that is value-dependent but never true. Identify
3513 // the idiom and ignore that term.
lookThroughRangesV3Condition(Preprocessor & PP,Expr * Cond)3514 static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) {
3515   // Top-level '||'.
3516   auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts());
3517   if (!BinOp) return Cond;
3518 
3519   if (BinOp->getOpcode() != BO_LOr) return Cond;
3520 
3521   // With an inner '==' that has a literal on the right-hand side.
3522   Expr *LHS = BinOp->getLHS();
3523   auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts());
3524   if (!InnerBinOp) return Cond;
3525 
3526   if (InnerBinOp->getOpcode() != BO_EQ ||
3527       !isa<IntegerLiteral>(InnerBinOp->getRHS()))
3528     return Cond;
3529 
3530   // If the inner binary operation came from a macro expansion named
3531   // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side
3532   // of the '||', which is the real, user-provided condition.
3533   SourceLocation Loc = InnerBinOp->getExprLoc();
3534   if (!Loc.isMacroID()) return Cond;
3535 
3536   StringRef MacroName = PP.getImmediateMacroName(Loc);
3537   if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_")
3538     return BinOp->getRHS();
3539 
3540   return Cond;
3541 }
3542 
3543 namespace {
3544 
3545 // A PrinterHelper that prints more helpful diagnostics for some sub-expressions
3546 // within failing boolean expression, such as substituting template parameters
3547 // for actual types.
3548 class FailedBooleanConditionPrinterHelper : public PrinterHelper {
3549 public:
FailedBooleanConditionPrinterHelper(const PrintingPolicy & P)3550   explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P)
3551       : Policy(P) {}
3552 
handledStmt(Stmt * E,raw_ostream & OS)3553   bool handledStmt(Stmt *E, raw_ostream &OS) override {
3554     const auto *DR = dyn_cast<DeclRefExpr>(E);
3555     if (DR && DR->getQualifier()) {
3556       // If this is a qualified name, expand the template arguments in nested
3557       // qualifiers.
3558       DR->getQualifier()->print(OS, Policy, true);
3559       // Then print the decl itself.
3560       const ValueDecl *VD = DR->getDecl();
3561       OS << VD->getName();
3562       if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
3563         // This is a template variable, print the expanded template arguments.
3564         printTemplateArgumentList(OS, IV->getTemplateArgs().asArray(), Policy);
3565       }
3566       return true;
3567     }
3568     return false;
3569   }
3570 
3571 private:
3572   const PrintingPolicy Policy;
3573 };
3574 
3575 } // end anonymous namespace
3576 
3577 std::pair<Expr *, std::string>
findFailedBooleanCondition(Expr * Cond)3578 Sema::findFailedBooleanCondition(Expr *Cond) {
3579   Cond = lookThroughRangesV3Condition(PP, Cond);
3580 
3581   // Separate out all of the terms in a conjunction.
3582   SmallVector<Expr *, 4> Terms;
3583   collectConjunctionTerms(Cond, Terms);
3584 
3585   // Determine which term failed.
3586   Expr *FailedCond = nullptr;
3587   for (Expr *Term : Terms) {
3588     Expr *TermAsWritten = Term->IgnoreParenImpCasts();
3589 
3590     // Literals are uninteresting.
3591     if (isa<CXXBoolLiteralExpr>(TermAsWritten) ||
3592         isa<IntegerLiteral>(TermAsWritten))
3593       continue;
3594 
3595     // The initialization of the parameter from the argument is
3596     // a constant-evaluated context.
3597     EnterExpressionEvaluationContext ConstantEvaluated(
3598       *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
3599 
3600     bool Succeeded;
3601     if (Term->EvaluateAsBooleanCondition(Succeeded, Context) &&
3602         !Succeeded) {
3603       FailedCond = TermAsWritten;
3604       break;
3605     }
3606   }
3607   if (!FailedCond)
3608     FailedCond = Cond->IgnoreParenImpCasts();
3609 
3610   std::string Description;
3611   {
3612     llvm::raw_string_ostream Out(Description);
3613     PrintingPolicy Policy = getPrintingPolicy();
3614     Policy.PrintCanonicalTypes = true;
3615     FailedBooleanConditionPrinterHelper Helper(Policy);
3616     FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr);
3617   }
3618   return { FailedCond, Description };
3619 }
3620 
CheckTemplateIdType(TemplateName Name,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)3621 QualType Sema::CheckTemplateIdType(TemplateName Name,
3622                                    SourceLocation TemplateLoc,
3623                                    TemplateArgumentListInfo &TemplateArgs) {
3624   DependentTemplateName *DTN
3625     = Name.getUnderlying().getAsDependentTemplateName();
3626   if (DTN && DTN->isIdentifier())
3627     // When building a template-id where the template-name is dependent,
3628     // assume the template is a type template. Either our assumption is
3629     // correct, or the code is ill-formed and will be diagnosed when the
3630     // dependent name is substituted.
3631     return Context.getDependentTemplateSpecializationType(ETK_None,
3632                                                           DTN->getQualifier(),
3633                                                           DTN->getIdentifier(),
3634                                                           TemplateArgs);
3635 
3636   if (Name.getAsAssumedTemplateName() &&
3637       resolveAssumedTemplateNameAsType(/*Scope*/nullptr, Name, TemplateLoc))
3638     return QualType();
3639 
3640   TemplateDecl *Template = Name.getAsTemplateDecl();
3641   if (!Template || isa<FunctionTemplateDecl>(Template) ||
3642       isa<VarTemplateDecl>(Template) || isa<ConceptDecl>(Template)) {
3643     // We might have a substituted template template parameter pack. If so,
3644     // build a template specialization type for it.
3645     if (Name.getAsSubstTemplateTemplateParmPack())
3646       return Context.getTemplateSpecializationType(Name, TemplateArgs);
3647 
3648     Diag(TemplateLoc, diag::err_template_id_not_a_type)
3649       << Name;
3650     NoteAllFoundTemplates(Name);
3651     return QualType();
3652   }
3653 
3654   // Check that the template argument list is well-formed for this
3655   // template.
3656   SmallVector<TemplateArgument, 4> Converted;
3657   if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
3658                                 false, Converted,
3659                                 /*UpdateArgsWithConversion=*/true))
3660     return QualType();
3661 
3662   QualType CanonType;
3663 
3664   bool InstantiationDependent = false;
3665   if (TypeAliasTemplateDecl *AliasTemplate =
3666           dyn_cast<TypeAliasTemplateDecl>(Template)) {
3667 
3668     // Find the canonical type for this type alias template specialization.
3669     TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
3670     if (Pattern->isInvalidDecl())
3671       return QualType();
3672 
3673     TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack,
3674                                            Converted);
3675 
3676     // Only substitute for the innermost template argument list.
3677     MultiLevelTemplateArgumentList TemplateArgLists;
3678     TemplateArgLists.addOuterTemplateArguments(&StackTemplateArgs);
3679     TemplateArgLists.addOuterRetainedLevels(
3680         AliasTemplate->getTemplateParameters()->getDepth());
3681 
3682     LocalInstantiationScope Scope(*this);
3683     InstantiatingTemplate Inst(*this, TemplateLoc, Template);
3684     if (Inst.isInvalid())
3685       return QualType();
3686 
3687     CanonType = SubstType(Pattern->getUnderlyingType(),
3688                           TemplateArgLists, AliasTemplate->getLocation(),
3689                           AliasTemplate->getDeclName());
3690     if (CanonType.isNull()) {
3691       // If this was enable_if and we failed to find the nested type
3692       // within enable_if in a SFINAE context, dig out the specific
3693       // enable_if condition that failed and present that instead.
3694       if (isEnableIfAliasTemplate(AliasTemplate)) {
3695         if (auto DeductionInfo = isSFINAEContext()) {
3696           if (*DeductionInfo &&
3697               (*DeductionInfo)->hasSFINAEDiagnostic() &&
3698               (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() ==
3699                 diag::err_typename_nested_not_found_enable_if &&
3700               TemplateArgs[0].getArgument().getKind()
3701                 == TemplateArgument::Expression) {
3702             Expr *FailedCond;
3703             std::string FailedDescription;
3704             std::tie(FailedCond, FailedDescription) =
3705               findFailedBooleanCondition(TemplateArgs[0].getSourceExpression());
3706 
3707             // Remove the old SFINAE diagnostic.
3708             PartialDiagnosticAt OldDiag =
3709               {SourceLocation(), PartialDiagnostic::NullDiagnostic()};
3710             (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag);
3711 
3712             // Add a new SFINAE diagnostic specifying which condition
3713             // failed.
3714             (*DeductionInfo)->addSFINAEDiagnostic(
3715               OldDiag.first,
3716               PDiag(diag::err_typename_nested_not_found_requirement)
3717                 << FailedDescription
3718                 << FailedCond->getSourceRange());
3719           }
3720         }
3721       }
3722 
3723       return QualType();
3724     }
3725   } else if (Name.isDependent() ||
3726              TemplateSpecializationType::anyDependentTemplateArguments(
3727                TemplateArgs, InstantiationDependent)) {
3728     // This class template specialization is a dependent
3729     // type. Therefore, its canonical type is another class template
3730     // specialization type that contains all of the converted
3731     // arguments in canonical form. This ensures that, e.g., A<T> and
3732     // A<T, T> have identical types when A is declared as:
3733     //
3734     //   template<typename T, typename U = T> struct A;
3735     CanonType = Context.getCanonicalTemplateSpecializationType(Name, Converted);
3736 
3737     // This might work out to be a current instantiation, in which
3738     // case the canonical type needs to be the InjectedClassNameType.
3739     //
3740     // TODO: in theory this could be a simple hashtable lookup; most
3741     // changes to CurContext don't change the set of current
3742     // instantiations.
3743     if (isa<ClassTemplateDecl>(Template)) {
3744       for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
3745         // If we get out to a namespace, we're done.
3746         if (Ctx->isFileContext()) break;
3747 
3748         // If this isn't a record, keep looking.
3749         CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
3750         if (!Record) continue;
3751 
3752         // Look for one of the two cases with InjectedClassNameTypes
3753         // and check whether it's the same template.
3754         if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
3755             !Record->getDescribedClassTemplate())
3756           continue;
3757 
3758         // Fetch the injected class name type and check whether its
3759         // injected type is equal to the type we just built.
3760         QualType ICNT = Context.getTypeDeclType(Record);
3761         QualType Injected = cast<InjectedClassNameType>(ICNT)
3762           ->getInjectedSpecializationType();
3763 
3764         if (CanonType != Injected->getCanonicalTypeInternal())
3765           continue;
3766 
3767         // If so, the canonical type of this TST is the injected
3768         // class name type of the record we just found.
3769         assert(ICNT.isCanonical());
3770         CanonType = ICNT;
3771         break;
3772       }
3773     }
3774   } else if (ClassTemplateDecl *ClassTemplate
3775                = dyn_cast<ClassTemplateDecl>(Template)) {
3776     // Find the class template specialization declaration that
3777     // corresponds to these arguments.
3778     void *InsertPos = nullptr;
3779     ClassTemplateSpecializationDecl *Decl
3780       = ClassTemplate->findSpecialization(Converted, InsertPos);
3781     if (!Decl) {
3782       // This is the first time we have referenced this class template
3783       // specialization. Create the canonical declaration and add it to
3784       // the set of specializations.
3785       Decl = ClassTemplateSpecializationDecl::Create(
3786           Context, ClassTemplate->getTemplatedDecl()->getTagKind(),
3787           ClassTemplate->getDeclContext(),
3788           ClassTemplate->getTemplatedDecl()->getBeginLoc(),
3789           ClassTemplate->getLocation(), ClassTemplate, Converted, nullptr);
3790       ClassTemplate->AddSpecialization(Decl, InsertPos);
3791       if (ClassTemplate->isOutOfLine())
3792         Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
3793     }
3794 
3795     if (Decl->getSpecializationKind() == TSK_Undeclared) {
3796       MultiLevelTemplateArgumentList TemplateArgLists;
3797       TemplateArgLists.addOuterTemplateArguments(Converted);
3798       InstantiateAttrsForDecl(TemplateArgLists, ClassTemplate->getTemplatedDecl(),
3799                               Decl);
3800     }
3801 
3802     // Diagnose uses of this specialization.
3803     (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
3804 
3805     CanonType = Context.getTypeDeclType(Decl);
3806     assert(isa<RecordType>(CanonType) &&
3807            "type of non-dependent specialization is not a RecordType");
3808   } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
3809     CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc,
3810                                            TemplateArgs);
3811   }
3812 
3813   // Build the fully-sugared type for this class template
3814   // specialization, which refers back to the class template
3815   // specialization we created or found.
3816   return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
3817 }
3818 
ActOnUndeclaredTypeTemplateName(Scope * S,TemplateTy & ParsedName,TemplateNameKind & TNK,SourceLocation NameLoc,IdentifierInfo * & II)3819 void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName,
3820                                            TemplateNameKind &TNK,
3821                                            SourceLocation NameLoc,
3822                                            IdentifierInfo *&II) {
3823   assert(TNK == TNK_Undeclared_template && "not an undeclared template name");
3824 
3825   TemplateName Name = ParsedName.get();
3826   auto *ATN = Name.getAsAssumedTemplateName();
3827   assert(ATN && "not an assumed template name");
3828   II = ATN->getDeclName().getAsIdentifierInfo();
3829 
3830   if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) {
3831     // Resolved to a type template name.
3832     ParsedName = TemplateTy::make(Name);
3833     TNK = TNK_Type_template;
3834   }
3835 }
3836 
resolveAssumedTemplateNameAsType(Scope * S,TemplateName & Name,SourceLocation NameLoc,bool Diagnose)3837 bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
3838                                             SourceLocation NameLoc,
3839                                             bool Diagnose) {
3840   // We assumed this undeclared identifier to be an (ADL-only) function
3841   // template name, but it was used in a context where a type was required.
3842   // Try to typo-correct it now.
3843   AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName();
3844   assert(ATN && "not an assumed template name");
3845 
3846   LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName);
3847   struct CandidateCallback : CorrectionCandidateCallback {
3848     bool ValidateCandidate(const TypoCorrection &TC) override {
3849       return TC.getCorrectionDecl() &&
3850              getAsTypeTemplateDecl(TC.getCorrectionDecl());
3851     }
3852     std::unique_ptr<CorrectionCandidateCallback> clone() override {
3853       return std::make_unique<CandidateCallback>(*this);
3854     }
3855   } FilterCCC;
3856 
3857   TypoCorrection Corrected =
3858       CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr,
3859                   FilterCCC, CTK_ErrorRecovery);
3860   if (Corrected && Corrected.getFoundDecl()) {
3861     diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest)
3862                                 << ATN->getDeclName());
3863     Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>());
3864     return false;
3865   }
3866 
3867   if (Diagnose)
3868     Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName();
3869   return true;
3870 }
3871 
ActOnTemplateIdType(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,IdentifierInfo * TemplateII,SourceLocation TemplateIILoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,bool IsCtorOrDtorName,bool IsClassName)3872 TypeResult Sema::ActOnTemplateIdType(
3873     Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
3874     TemplateTy TemplateD, IdentifierInfo *TemplateII,
3875     SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
3876     ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc,
3877     bool IsCtorOrDtorName, bool IsClassName) {
3878   if (SS.isInvalid())
3879     return true;
3880 
3881   if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) {
3882     DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false);
3883 
3884     // C++ [temp.res]p3:
3885     //   A qualified-id that refers to a type and in which the
3886     //   nested-name-specifier depends on a template-parameter (14.6.2)
3887     //   shall be prefixed by the keyword typename to indicate that the
3888     //   qualified-id denotes a type, forming an
3889     //   elaborated-type-specifier (7.1.5.3).
3890     if (!LookupCtx && isDependentScopeSpecifier(SS)) {
3891       Diag(SS.getBeginLoc(), diag::err_typename_missing_template)
3892         << SS.getScopeRep() << TemplateII->getName();
3893       // Recover as if 'typename' were specified.
3894       // FIXME: This is not quite correct recovery as we don't transform SS
3895       // into the corresponding dependent form (and we don't diagnose missing
3896       // 'template' keywords within SS as a result).
3897       return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc,
3898                                TemplateD, TemplateII, TemplateIILoc, LAngleLoc,
3899                                TemplateArgsIn, RAngleLoc);
3900     }
3901 
3902     // Per C++ [class.qual]p2, if the template-id was an injected-class-name,
3903     // it's not actually allowed to be used as a type in most cases. Because
3904     // we annotate it before we know whether it's valid, we have to check for
3905     // this case here.
3906     auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
3907     if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
3908       Diag(TemplateIILoc,
3909            TemplateKWLoc.isInvalid()
3910                ? diag::err_out_of_line_qualified_id_type_names_constructor
3911                : diag::ext_out_of_line_qualified_id_type_names_constructor)
3912         << TemplateII << 0 /*injected-class-name used as template name*/
3913         << 1 /*if any keyword was present, it was 'template'*/;
3914     }
3915   }
3916 
3917   TemplateName Template = TemplateD.get();
3918   if (Template.getAsAssumedTemplateName() &&
3919       resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc))
3920     return true;
3921 
3922   // Translate the parser's template argument list in our AST format.
3923   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
3924   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3925 
3926   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
3927     QualType T
3928       = Context.getDependentTemplateSpecializationType(ETK_None,
3929                                                        DTN->getQualifier(),
3930                                                        DTN->getIdentifier(),
3931                                                        TemplateArgs);
3932     // Build type-source information.
3933     TypeLocBuilder TLB;
3934     DependentTemplateSpecializationTypeLoc SpecTL
3935       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
3936     SpecTL.setElaboratedKeywordLoc(SourceLocation());
3937     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
3938     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3939     SpecTL.setTemplateNameLoc(TemplateIILoc);
3940     SpecTL.setLAngleLoc(LAngleLoc);
3941     SpecTL.setRAngleLoc(RAngleLoc);
3942     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
3943       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
3944     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
3945   }
3946 
3947   QualType Result = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
3948   if (Result.isNull())
3949     return true;
3950 
3951   // Build type-source information.
3952   TypeLocBuilder TLB;
3953   TemplateSpecializationTypeLoc SpecTL
3954     = TLB.push<TemplateSpecializationTypeLoc>(Result);
3955   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3956   SpecTL.setTemplateNameLoc(TemplateIILoc);
3957   SpecTL.setLAngleLoc(LAngleLoc);
3958   SpecTL.setRAngleLoc(RAngleLoc);
3959   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
3960     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
3961 
3962   // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
3963   // constructor or destructor name (in such a case, the scope specifier
3964   // will be attached to the enclosing Decl or Expr node).
3965   if (SS.isNotEmpty() && !IsCtorOrDtorName) {
3966     // Create an elaborated-type-specifier containing the nested-name-specifier.
3967     Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
3968     ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
3969     ElabTL.setElaboratedKeywordLoc(SourceLocation());
3970     ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
3971   }
3972 
3973   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
3974 }
3975 
ActOnTagTemplateIdType(TagUseKind TUK,TypeSpecifierType TagSpec,SourceLocation TagLoc,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)3976 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
3977                                         TypeSpecifierType TagSpec,
3978                                         SourceLocation TagLoc,
3979                                         CXXScopeSpec &SS,
3980                                         SourceLocation TemplateKWLoc,
3981                                         TemplateTy TemplateD,
3982                                         SourceLocation TemplateLoc,
3983                                         SourceLocation LAngleLoc,
3984                                         ASTTemplateArgsPtr TemplateArgsIn,
3985                                         SourceLocation RAngleLoc) {
3986   if (SS.isInvalid())
3987     return TypeResult(true);
3988 
3989   TemplateName Template = TemplateD.get();
3990 
3991   // Translate the parser's template argument list in our AST format.
3992   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
3993   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3994 
3995   // Determine the tag kind
3996   TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
3997   ElaboratedTypeKeyword Keyword
3998     = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
3999 
4000   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
4001     QualType T = Context.getDependentTemplateSpecializationType(Keyword,
4002                                                           DTN->getQualifier(),
4003                                                           DTN->getIdentifier(),
4004                                                                 TemplateArgs);
4005 
4006     // Build type-source information.
4007     TypeLocBuilder TLB;
4008     DependentTemplateSpecializationTypeLoc SpecTL
4009       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
4010     SpecTL.setElaboratedKeywordLoc(TagLoc);
4011     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
4012     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4013     SpecTL.setTemplateNameLoc(TemplateLoc);
4014     SpecTL.setLAngleLoc(LAngleLoc);
4015     SpecTL.setRAngleLoc(RAngleLoc);
4016     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
4017       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
4018     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
4019   }
4020 
4021   if (TypeAliasTemplateDecl *TAT =
4022         dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
4023     // C++0x [dcl.type.elab]p2:
4024     //   If the identifier resolves to a typedef-name or the simple-template-id
4025     //   resolves to an alias template specialization, the
4026     //   elaborated-type-specifier is ill-formed.
4027     Diag(TemplateLoc, diag::err_tag_reference_non_tag)
4028         << TAT << NTK_TypeAliasTemplate << TagKind;
4029     Diag(TAT->getLocation(), diag::note_declared_at);
4030   }
4031 
4032   QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
4033   if (Result.isNull())
4034     return TypeResult(true);
4035 
4036   // Check the tag kind
4037   if (const RecordType *RT = Result->getAs<RecordType>()) {
4038     RecordDecl *D = RT->getDecl();
4039 
4040     IdentifierInfo *Id = D->getIdentifier();
4041     assert(Id && "templated class must have an identifier");
4042 
4043     if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
4044                                       TagLoc, Id)) {
4045       Diag(TagLoc, diag::err_use_with_wrong_tag)
4046         << Result
4047         << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
4048       Diag(D->getLocation(), diag::note_previous_use);
4049     }
4050   }
4051 
4052   // Provide source-location information for the template specialization.
4053   TypeLocBuilder TLB;
4054   TemplateSpecializationTypeLoc SpecTL
4055     = TLB.push<TemplateSpecializationTypeLoc>(Result);
4056   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4057   SpecTL.setTemplateNameLoc(TemplateLoc);
4058   SpecTL.setLAngleLoc(LAngleLoc);
4059   SpecTL.setRAngleLoc(RAngleLoc);
4060   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
4061     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
4062 
4063   // Construct an elaborated type containing the nested-name-specifier (if any)
4064   // and tag keyword.
4065   Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
4066   ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
4067   ElabTL.setElaboratedKeywordLoc(TagLoc);
4068   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
4069   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
4070 }
4071 
4072 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
4073                                              NamedDecl *PrevDecl,
4074                                              SourceLocation Loc,
4075                                              bool IsPartialSpecialization);
4076 
4077 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
4078 
isTemplateArgumentTemplateParameter(const TemplateArgument & Arg,unsigned Depth,unsigned Index)4079 static bool isTemplateArgumentTemplateParameter(
4080     const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
4081   switch (Arg.getKind()) {
4082   case TemplateArgument::Null:
4083   case TemplateArgument::NullPtr:
4084   case TemplateArgument::Integral:
4085   case TemplateArgument::Declaration:
4086   case TemplateArgument::Pack:
4087   case TemplateArgument::TemplateExpansion:
4088     return false;
4089 
4090   case TemplateArgument::Type: {
4091     QualType Type = Arg.getAsType();
4092     const TemplateTypeParmType *TPT =
4093         Arg.getAsType()->getAs<TemplateTypeParmType>();
4094     return TPT && !Type.hasQualifiers() &&
4095            TPT->getDepth() == Depth && TPT->getIndex() == Index;
4096   }
4097 
4098   case TemplateArgument::Expression: {
4099     DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
4100     if (!DRE || !DRE->getDecl())
4101       return false;
4102     const NonTypeTemplateParmDecl *NTTP =
4103         dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
4104     return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
4105   }
4106 
4107   case TemplateArgument::Template:
4108     const TemplateTemplateParmDecl *TTP =
4109         dyn_cast_or_null<TemplateTemplateParmDecl>(
4110             Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
4111     return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
4112   }
4113   llvm_unreachable("unexpected kind of template argument");
4114 }
4115 
isSameAsPrimaryTemplate(TemplateParameterList * Params,ArrayRef<TemplateArgument> Args)4116 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
4117                                     ArrayRef<TemplateArgument> Args) {
4118   if (Params->size() != Args.size())
4119     return false;
4120 
4121   unsigned Depth = Params->getDepth();
4122 
4123   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
4124     TemplateArgument Arg = Args[I];
4125 
4126     // If the parameter is a pack expansion, the argument must be a pack
4127     // whose only element is a pack expansion.
4128     if (Params->getParam(I)->isParameterPack()) {
4129       if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
4130           !Arg.pack_begin()->isPackExpansion())
4131         return false;
4132       Arg = Arg.pack_begin()->getPackExpansionPattern();
4133     }
4134 
4135     if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
4136       return false;
4137   }
4138 
4139   return true;
4140 }
4141 
4142 template<typename PartialSpecDecl>
checkMoreSpecializedThanPrimary(Sema & S,PartialSpecDecl * Partial)4143 static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) {
4144   if (Partial->getDeclContext()->isDependentContext())
4145     return;
4146 
4147   // FIXME: Get the TDK from deduction in order to provide better diagnostics
4148   // for non-substitution-failure issues?
4149   TemplateDeductionInfo Info(Partial->getLocation());
4150   if (S.isMoreSpecializedThanPrimary(Partial, Info))
4151     return;
4152 
4153   auto *Template = Partial->getSpecializedTemplate();
4154   S.Diag(Partial->getLocation(),
4155          diag::ext_partial_spec_not_more_specialized_than_primary)
4156       << isa<VarTemplateDecl>(Template);
4157 
4158   if (Info.hasSFINAEDiagnostic()) {
4159     PartialDiagnosticAt Diag = {SourceLocation(),
4160                                 PartialDiagnostic::NullDiagnostic()};
4161     Info.takeSFINAEDiagnostic(Diag);
4162     SmallString<128> SFINAEArgString;
4163     Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString);
4164     S.Diag(Diag.first,
4165            diag::note_partial_spec_not_more_specialized_than_primary)
4166       << SFINAEArgString;
4167   }
4168 
4169   S.Diag(Template->getLocation(), diag::note_template_decl_here);
4170   SmallVector<const Expr *, 3> PartialAC, TemplateAC;
4171   Template->getAssociatedConstraints(TemplateAC);
4172   Partial->getAssociatedConstraints(PartialAC);
4173   S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Partial, PartialAC, Template,
4174                                                   TemplateAC);
4175 }
4176 
4177 static void
noteNonDeducibleParameters(Sema & S,TemplateParameterList * TemplateParams,const llvm::SmallBitVector & DeducibleParams)4178 noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams,
4179                            const llvm::SmallBitVector &DeducibleParams) {
4180   for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4181     if (!DeducibleParams[I]) {
4182       NamedDecl *Param = TemplateParams->getParam(I);
4183       if (Param->getDeclName())
4184         S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
4185             << Param->getDeclName();
4186       else
4187         S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
4188             << "(anonymous)";
4189     }
4190   }
4191 }
4192 
4193 
4194 template<typename PartialSpecDecl>
checkTemplatePartialSpecialization(Sema & S,PartialSpecDecl * Partial)4195 static void checkTemplatePartialSpecialization(Sema &S,
4196                                                PartialSpecDecl *Partial) {
4197   // C++1z [temp.class.spec]p8: (DR1495)
4198   //   - The specialization shall be more specialized than the primary
4199   //     template (14.5.5.2).
4200   checkMoreSpecializedThanPrimary(S, Partial);
4201 
4202   // C++ [temp.class.spec]p8: (DR1315)
4203   //   - Each template-parameter shall appear at least once in the
4204   //     template-id outside a non-deduced context.
4205   // C++1z [temp.class.spec.match]p3 (P0127R2)
4206   //   If the template arguments of a partial specialization cannot be
4207   //   deduced because of the structure of its template-parameter-list
4208   //   and the template-id, the program is ill-formed.
4209   auto *TemplateParams = Partial->getTemplateParameters();
4210   llvm::SmallBitVector DeducibleParams(TemplateParams->size());
4211   S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4212                                TemplateParams->getDepth(), DeducibleParams);
4213 
4214   if (!DeducibleParams.all()) {
4215     unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
4216     S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible)
4217       << isa<VarTemplatePartialSpecializationDecl>(Partial)
4218       << (NumNonDeducible > 1)
4219       << SourceRange(Partial->getLocation(),
4220                      Partial->getTemplateArgsAsWritten()->RAngleLoc);
4221     noteNonDeducibleParameters(S, TemplateParams, DeducibleParams);
4222   }
4223 }
4224 
CheckTemplatePartialSpecialization(ClassTemplatePartialSpecializationDecl * Partial)4225 void Sema::CheckTemplatePartialSpecialization(
4226     ClassTemplatePartialSpecializationDecl *Partial) {
4227   checkTemplatePartialSpecialization(*this, Partial);
4228 }
4229 
CheckTemplatePartialSpecialization(VarTemplatePartialSpecializationDecl * Partial)4230 void Sema::CheckTemplatePartialSpecialization(
4231     VarTemplatePartialSpecializationDecl *Partial) {
4232   checkTemplatePartialSpecialization(*this, Partial);
4233 }
4234 
CheckDeductionGuideTemplate(FunctionTemplateDecl * TD)4235 void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) {
4236   // C++1z [temp.param]p11:
4237   //   A template parameter of a deduction guide template that does not have a
4238   //   default-argument shall be deducible from the parameter-type-list of the
4239   //   deduction guide template.
4240   auto *TemplateParams = TD->getTemplateParameters();
4241   llvm::SmallBitVector DeducibleParams(TemplateParams->size());
4242   MarkDeducedTemplateParameters(TD, DeducibleParams);
4243   for (unsigned I = 0; I != TemplateParams->size(); ++I) {
4244     // A parameter pack is deducible (to an empty pack).
4245     auto *Param = TemplateParams->getParam(I);
4246     if (Param->isParameterPack() || hasVisibleDefaultArgument(Param))
4247       DeducibleParams[I] = true;
4248   }
4249 
4250   if (!DeducibleParams.all()) {
4251     unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
4252     Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible)
4253       << (NumNonDeducible > 1);
4254     noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams);
4255   }
4256 }
4257 
ActOnVarTemplateSpecialization(Scope * S,Declarator & D,TypeSourceInfo * DI,SourceLocation TemplateKWLoc,TemplateParameterList * TemplateParams,StorageClass SC,bool IsPartialSpecialization)4258 DeclResult Sema::ActOnVarTemplateSpecialization(
4259     Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
4260     TemplateParameterList *TemplateParams, StorageClass SC,
4261     bool IsPartialSpecialization) {
4262   // D must be variable template id.
4263   assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId &&
4264          "Variable template specialization is declared with a template it.");
4265 
4266   TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4267   TemplateArgumentListInfo TemplateArgs =
4268       makeTemplateArgumentListInfo(*this, *TemplateId);
4269   SourceLocation TemplateNameLoc = D.getIdentifierLoc();
4270   SourceLocation LAngleLoc = TemplateId->LAngleLoc;
4271   SourceLocation RAngleLoc = TemplateId->RAngleLoc;
4272 
4273   TemplateName Name = TemplateId->Template.get();
4274 
4275   // The template-id must name a variable template.
4276   VarTemplateDecl *VarTemplate =
4277       dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
4278   if (!VarTemplate) {
4279     NamedDecl *FnTemplate;
4280     if (auto *OTS = Name.getAsOverloadedTemplate())
4281       FnTemplate = *OTS->begin();
4282     else
4283       FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
4284     if (FnTemplate)
4285       return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
4286                << FnTemplate->getDeclName();
4287     return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
4288              << IsPartialSpecialization;
4289   }
4290 
4291   // Check for unexpanded parameter packs in any of the template arguments.
4292   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4293     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4294                                         UPPC_PartialSpecialization))
4295       return true;
4296 
4297   // Check that the template argument list is well-formed for this
4298   // template.
4299   SmallVector<TemplateArgument, 4> Converted;
4300   if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
4301                                 false, Converted,
4302                                 /*UpdateArgsWithConversion=*/true))
4303     return true;
4304 
4305   // Find the variable template (partial) specialization declaration that
4306   // corresponds to these arguments.
4307   if (IsPartialSpecialization) {
4308     if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate,
4309                                                TemplateArgs.size(), Converted))
4310       return true;
4311 
4312     // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we
4313     // also do them during instantiation.
4314     bool InstantiationDependent;
4315     if (!Name.isDependent() &&
4316         !TemplateSpecializationType::anyDependentTemplateArguments(
4317             TemplateArgs.arguments(),
4318             InstantiationDependent)) {
4319       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4320           << VarTemplate->getDeclName();
4321       IsPartialSpecialization = false;
4322     }
4323 
4324     if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
4325                                 Converted) &&
4326         (!Context.getLangOpts().CPlusPlus20 ||
4327          !TemplateParams->hasAssociatedConstraints())) {
4328       // C++ [temp.class.spec]p9b3:
4329       //
4330       //   -- The argument list of the specialization shall not be identical
4331       //      to the implicit argument list of the primary template.
4332       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4333         << /*variable template*/ 1
4334         << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
4335         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4336       // FIXME: Recover from this by treating the declaration as a redeclaration
4337       // of the primary template.
4338       return true;
4339     }
4340   }
4341 
4342   void *InsertPos = nullptr;
4343   VarTemplateSpecializationDecl *PrevDecl = nullptr;
4344 
4345   if (IsPartialSpecialization)
4346     PrevDecl = VarTemplate->findPartialSpecialization(Converted, TemplateParams,
4347                                                       InsertPos);
4348   else
4349     PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos);
4350 
4351   VarTemplateSpecializationDecl *Specialization = nullptr;
4352 
4353   // Check whether we can declare a variable template specialization in
4354   // the current scope.
4355   if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
4356                                        TemplateNameLoc,
4357                                        IsPartialSpecialization))
4358     return true;
4359 
4360   if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
4361     // Since the only prior variable template specialization with these
4362     // arguments was referenced but not declared,  reuse that
4363     // declaration node as our own, updating its source location and
4364     // the list of outer template parameters to reflect our new declaration.
4365     Specialization = PrevDecl;
4366     Specialization->setLocation(TemplateNameLoc);
4367     PrevDecl = nullptr;
4368   } else if (IsPartialSpecialization) {
4369     // Create a new class template partial specialization declaration node.
4370     VarTemplatePartialSpecializationDecl *PrevPartial =
4371         cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
4372     VarTemplatePartialSpecializationDecl *Partial =
4373         VarTemplatePartialSpecializationDecl::Create(
4374             Context, VarTemplate->getDeclContext(), TemplateKWLoc,
4375             TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
4376             Converted, TemplateArgs);
4377 
4378     if (!PrevPartial)
4379       VarTemplate->AddPartialSpecialization(Partial, InsertPos);
4380     Specialization = Partial;
4381 
4382     // If we are providing an explicit specialization of a member variable
4383     // template specialization, make a note of that.
4384     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4385       PrevPartial->setMemberSpecialization();
4386 
4387     CheckTemplatePartialSpecialization(Partial);
4388   } else {
4389     // Create a new class template specialization declaration node for
4390     // this explicit specialization or friend declaration.
4391     Specialization = VarTemplateSpecializationDecl::Create(
4392         Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
4393         VarTemplate, DI->getType(), DI, SC, Converted);
4394     Specialization->setTemplateArgsInfo(TemplateArgs);
4395 
4396     if (!PrevDecl)
4397       VarTemplate->AddSpecialization(Specialization, InsertPos);
4398   }
4399 
4400   // C++ [temp.expl.spec]p6:
4401   //   If a template, a member template or the member of a class template is
4402   //   explicitly specialized then that specialization shall be declared
4403   //   before the first use of that specialization that would cause an implicit
4404   //   instantiation to take place, in every translation unit in which such a
4405   //   use occurs; no diagnostic is required.
4406   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4407     bool Okay = false;
4408     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
4409       // Is there any previous explicit specialization declaration?
4410       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4411         Okay = true;
4412         break;
4413       }
4414     }
4415 
4416     if (!Okay) {
4417       SourceRange Range(TemplateNameLoc, RAngleLoc);
4418       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4419           << Name << Range;
4420 
4421       Diag(PrevDecl->getPointOfInstantiation(),
4422            diag::note_instantiation_required_here)
4423           << (PrevDecl->getTemplateSpecializationKind() !=
4424               TSK_ImplicitInstantiation);
4425       return true;
4426     }
4427   }
4428 
4429   Specialization->setTemplateKeywordLoc(TemplateKWLoc);
4430   Specialization->setLexicalDeclContext(CurContext);
4431 
4432   // Add the specialization into its lexical context, so that it can
4433   // be seen when iterating through the list of declarations in that
4434   // context. However, specializations are not found by name lookup.
4435   CurContext->addDecl(Specialization);
4436 
4437   // Note that this is an explicit specialization.
4438   Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4439 
4440   if (PrevDecl) {
4441     // Check that this isn't a redefinition of this specialization,
4442     // merging with previous declarations.
4443     LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
4444                           forRedeclarationInCurContext());
4445     PrevSpec.addDecl(PrevDecl);
4446     D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
4447   } else if (Specialization->isStaticDataMember() &&
4448              Specialization->isOutOfLine()) {
4449     Specialization->setAccess(VarTemplate->getAccess());
4450   }
4451 
4452   return Specialization;
4453 }
4454 
4455 namespace {
4456 /// A partial specialization whose template arguments have matched
4457 /// a given template-id.
4458 struct PartialSpecMatchResult {
4459   VarTemplatePartialSpecializationDecl *Partial;
4460   TemplateArgumentList *Args;
4461 };
4462 } // end anonymous namespace
4463 
4464 DeclResult
CheckVarTemplateId(VarTemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation TemplateNameLoc,const TemplateArgumentListInfo & TemplateArgs)4465 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
4466                          SourceLocation TemplateNameLoc,
4467                          const TemplateArgumentListInfo &TemplateArgs) {
4468   assert(Template && "A variable template id without template?");
4469 
4470   // Check that the template argument list is well-formed for this template.
4471   SmallVector<TemplateArgument, 4> Converted;
4472   if (CheckTemplateArgumentList(
4473           Template, TemplateNameLoc,
4474           const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
4475           Converted, /*UpdateArgsWithConversion=*/true))
4476     return true;
4477 
4478   // Produce a placeholder value if the specialization is dependent.
4479   bool InstantiationDependent = false;
4480   if (Template->getDeclContext()->isDependentContext() ||
4481       TemplateSpecializationType::anyDependentTemplateArguments(
4482           TemplateArgs, InstantiationDependent))
4483     return DeclResult();
4484 
4485   // Find the variable template specialization declaration that
4486   // corresponds to these arguments.
4487   void *InsertPos = nullptr;
4488   if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
4489           Converted, InsertPos)) {
4490     checkSpecializationVisibility(TemplateNameLoc, Spec);
4491     // If we already have a variable template specialization, return it.
4492     return Spec;
4493   }
4494 
4495   // This is the first time we have referenced this variable template
4496   // specialization. Create the canonical declaration and add it to
4497   // the set of specializations, based on the closest partial specialization
4498   // that it represents. That is,
4499   VarDecl *InstantiationPattern = Template->getTemplatedDecl();
4500   TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
4501                                        Converted);
4502   TemplateArgumentList *InstantiationArgs = &TemplateArgList;
4503   bool AmbiguousPartialSpec = false;
4504   typedef PartialSpecMatchResult MatchResult;
4505   SmallVector<MatchResult, 4> Matched;
4506   SourceLocation PointOfInstantiation = TemplateNameLoc;
4507   TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
4508                                             /*ForTakingAddress=*/false);
4509 
4510   // 1. Attempt to find the closest partial specialization that this
4511   // specializes, if any.
4512   // TODO: Unify with InstantiateClassTemplateSpecialization()?
4513   //       Perhaps better after unification of DeduceTemplateArguments() and
4514   //       getMoreSpecializedPartialSpecialization().
4515   SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
4516   Template->getPartialSpecializations(PartialSpecs);
4517 
4518   for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
4519     VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
4520     TemplateDeductionInfo Info(FailedCandidates.getLocation());
4521 
4522     if (TemplateDeductionResult Result =
4523             DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
4524       // Store the failed-deduction information for use in diagnostics, later.
4525       // TODO: Actually use the failed-deduction info?
4526       FailedCandidates.addCandidate().set(
4527           DeclAccessPair::make(Template, AS_public), Partial,
4528           MakeDeductionFailureInfo(Context, Result, Info));
4529       (void)Result;
4530     } else {
4531       Matched.push_back(PartialSpecMatchResult());
4532       Matched.back().Partial = Partial;
4533       Matched.back().Args = Info.take();
4534     }
4535   }
4536 
4537   if (Matched.size() >= 1) {
4538     SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
4539     if (Matched.size() == 1) {
4540       //   -- If exactly one matching specialization is found, the
4541       //      instantiation is generated from that specialization.
4542       // We don't need to do anything for this.
4543     } else {
4544       //   -- If more than one matching specialization is found, the
4545       //      partial order rules (14.5.4.2) are used to determine
4546       //      whether one of the specializations is more specialized
4547       //      than the others. If none of the specializations is more
4548       //      specialized than all of the other matching
4549       //      specializations, then the use of the variable template is
4550       //      ambiguous and the program is ill-formed.
4551       for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
4552                                                  PEnd = Matched.end();
4553            P != PEnd; ++P) {
4554         if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
4555                                                     PointOfInstantiation) ==
4556             P->Partial)
4557           Best = P;
4558       }
4559 
4560       // Determine if the best partial specialization is more specialized than
4561       // the others.
4562       for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
4563                                                  PEnd = Matched.end();
4564            P != PEnd; ++P) {
4565         if (P != Best && getMoreSpecializedPartialSpecialization(
4566                              P->Partial, Best->Partial,
4567                              PointOfInstantiation) != Best->Partial) {
4568           AmbiguousPartialSpec = true;
4569           break;
4570         }
4571       }
4572     }
4573 
4574     // Instantiate using the best variable template partial specialization.
4575     InstantiationPattern = Best->Partial;
4576     InstantiationArgs = Best->Args;
4577   } else {
4578     //   -- If no match is found, the instantiation is generated
4579     //      from the primary template.
4580     // InstantiationPattern = Template->getTemplatedDecl();
4581   }
4582 
4583   // 2. Create the canonical declaration.
4584   // Note that we do not instantiate a definition until we see an odr-use
4585   // in DoMarkVarDeclReferenced().
4586   // FIXME: LateAttrs et al.?
4587   VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
4588       Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
4589       Converted, TemplateNameLoc /*, LateAttrs, StartingScope*/);
4590   if (!Decl)
4591     return true;
4592 
4593   if (AmbiguousPartialSpec) {
4594     // Partial ordering did not produce a clear winner. Complain.
4595     Decl->setInvalidDecl();
4596     Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
4597         << Decl;
4598 
4599     // Print the matching partial specializations.
4600     for (MatchResult P : Matched)
4601       Diag(P.Partial->getLocation(), diag::note_partial_spec_match)
4602           << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(),
4603                                              *P.Args);
4604     return true;
4605   }
4606 
4607   if (VarTemplatePartialSpecializationDecl *D =
4608           dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
4609     Decl->setInstantiationOf(D, InstantiationArgs);
4610 
4611   checkSpecializationVisibility(TemplateNameLoc, Decl);
4612 
4613   assert(Decl && "No variable template specialization?");
4614   return Decl;
4615 }
4616 
4617 ExprResult
CheckVarTemplateId(const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,VarTemplateDecl * Template,SourceLocation TemplateLoc,const TemplateArgumentListInfo * TemplateArgs)4618 Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
4619                          const DeclarationNameInfo &NameInfo,
4620                          VarTemplateDecl *Template, SourceLocation TemplateLoc,
4621                          const TemplateArgumentListInfo *TemplateArgs) {
4622 
4623   DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
4624                                        *TemplateArgs);
4625   if (Decl.isInvalid())
4626     return ExprError();
4627 
4628   if (!Decl.get())
4629     return ExprResult();
4630 
4631   VarDecl *Var = cast<VarDecl>(Decl.get());
4632   if (!Var->getTemplateSpecializationKind())
4633     Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
4634                                        NameInfo.getLoc());
4635 
4636   // Build an ordinary singleton decl ref.
4637   return BuildDeclarationNameExpr(SS, NameInfo, Var,
4638                                   /*FoundD=*/nullptr, TemplateArgs);
4639 }
4640 
diagnoseMissingTemplateArguments(TemplateName Name,SourceLocation Loc)4641 void Sema::diagnoseMissingTemplateArguments(TemplateName Name,
4642                                             SourceLocation Loc) {
4643   Diag(Loc, diag::err_template_missing_args)
4644     << (int)getTemplateNameKindForDiagnostics(Name) << Name;
4645   if (TemplateDecl *TD = Name.getAsTemplateDecl()) {
4646     Diag(TD->getLocation(), diag::note_template_decl_here)
4647       << TD->getTemplateParameters()->getSourceRange();
4648   }
4649 }
4650 
4651 ExprResult
CheckConceptTemplateId(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & ConceptNameInfo,NamedDecl * FoundDecl,ConceptDecl * NamedConcept,const TemplateArgumentListInfo * TemplateArgs)4652 Sema::CheckConceptTemplateId(const CXXScopeSpec &SS,
4653                              SourceLocation TemplateKWLoc,
4654                              const DeclarationNameInfo &ConceptNameInfo,
4655                              NamedDecl *FoundDecl,
4656                              ConceptDecl *NamedConcept,
4657                              const TemplateArgumentListInfo *TemplateArgs) {
4658   assert(NamedConcept && "A concept template id without a template?");
4659 
4660   llvm::SmallVector<TemplateArgument, 4> Converted;
4661   if (CheckTemplateArgumentList(NamedConcept, ConceptNameInfo.getLoc(),
4662                            const_cast<TemplateArgumentListInfo&>(*TemplateArgs),
4663                                 /*PartialTemplateArgs=*/false, Converted,
4664                                 /*UpdateArgsWithConversion=*/false))
4665     return ExprError();
4666 
4667   ConstraintSatisfaction Satisfaction;
4668   bool AreArgsDependent = false;
4669   for (TemplateArgument &Arg : Converted) {
4670     if (Arg.isDependent()) {
4671       AreArgsDependent = true;
4672       break;
4673     }
4674   }
4675   if (!AreArgsDependent &&
4676       CheckConstraintSatisfaction(NamedConcept,
4677                                   {NamedConcept->getConstraintExpr()},
4678                                   Converted,
4679                                   SourceRange(SS.isSet() ? SS.getBeginLoc() :
4680                                                        ConceptNameInfo.getLoc(),
4681                                                 TemplateArgs->getRAngleLoc()),
4682                                     Satisfaction))
4683       return ExprError();
4684 
4685   return ConceptSpecializationExpr::Create(Context,
4686       SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{},
4687       TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept,
4688       ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs), Converted,
4689       AreArgsDependent ? nullptr : &Satisfaction);
4690 }
4691 
BuildTemplateIdExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,bool RequiresADL,const TemplateArgumentListInfo * TemplateArgs)4692 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
4693                                      SourceLocation TemplateKWLoc,
4694                                      LookupResult &R,
4695                                      bool RequiresADL,
4696                                  const TemplateArgumentListInfo *TemplateArgs) {
4697   // FIXME: Can we do any checking at this point? I guess we could check the
4698   // template arguments that we have against the template name, if the template
4699   // name refers to a single template. That's not a terribly common case,
4700   // though.
4701   // foo<int> could identify a single function unambiguously
4702   // This approach does NOT work, since f<int>(1);
4703   // gets resolved prior to resorting to overload resolution
4704   // i.e., template<class T> void f(double);
4705   //       vs template<class T, class U> void f(U);
4706 
4707   // These should be filtered out by our callers.
4708   assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
4709 
4710   // Non-function templates require a template argument list.
4711   if (auto *TD = R.getAsSingle<TemplateDecl>()) {
4712     if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) {
4713       diagnoseMissingTemplateArguments(TemplateName(TD), R.getNameLoc());
4714       return ExprError();
4715     }
4716   }
4717 
4718   // In C++1y, check variable template ids.
4719   if (R.getAsSingle<VarTemplateDecl>()) {
4720     ExprResult Res = CheckVarTemplateId(SS, R.getLookupNameInfo(),
4721                                         R.getAsSingle<VarTemplateDecl>(),
4722                                         TemplateKWLoc, TemplateArgs);
4723     if (Res.isInvalid() || Res.isUsable())
4724       return Res;
4725     // Result is dependent. Carry on to build an UnresolvedLookupEpxr.
4726   }
4727 
4728   if (R.getAsSingle<ConceptDecl>()) {
4729     return CheckConceptTemplateId(SS, TemplateKWLoc, R.getLookupNameInfo(),
4730                                   R.getFoundDecl(),
4731                                   R.getAsSingle<ConceptDecl>(), TemplateArgs);
4732   }
4733 
4734   // We don't want lookup warnings at this point.
4735   R.suppressDiagnostics();
4736 
4737   UnresolvedLookupExpr *ULE
4738     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
4739                                    SS.getWithLocInContext(Context),
4740                                    TemplateKWLoc,
4741                                    R.getLookupNameInfo(),
4742                                    RequiresADL, TemplateArgs,
4743                                    R.begin(), R.end());
4744 
4745   return ULE;
4746 }
4747 
4748 // We actually only call this from template instantiation.
4749 ExprResult
BuildQualifiedTemplateIdExpr(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)4750 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
4751                                    SourceLocation TemplateKWLoc,
4752                                    const DeclarationNameInfo &NameInfo,
4753                              const TemplateArgumentListInfo *TemplateArgs) {
4754 
4755   assert(TemplateArgs || TemplateKWLoc.isValid());
4756   DeclContext *DC;
4757   if (!(DC = computeDeclContext(SS, false)) ||
4758       DC->isDependentContext() ||
4759       RequireCompleteDeclContext(SS, DC))
4760     return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
4761 
4762   bool MemberOfUnknownSpecialization;
4763   LookupResult R(*this, NameInfo, LookupOrdinaryName);
4764   if (LookupTemplateName(R, (Scope *)nullptr, SS, QualType(),
4765                          /*Entering*/false, MemberOfUnknownSpecialization,
4766                          TemplateKWLoc))
4767     return ExprError();
4768 
4769   if (R.isAmbiguous())
4770     return ExprError();
4771 
4772   if (R.empty()) {
4773     Diag(NameInfo.getLoc(), diag::err_no_member)
4774       << NameInfo.getName() << DC << SS.getRange();
4775     return ExprError();
4776   }
4777 
4778   if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
4779     Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
4780       << SS.getScopeRep()
4781       << NameInfo.getName().getAsString() << SS.getRange();
4782     Diag(Temp->getLocation(), diag::note_referenced_class_template);
4783     return ExprError();
4784   }
4785 
4786   return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
4787 }
4788 
4789 /// Form a template name from a name that is syntactically required to name a
4790 /// template, either due to use of the 'template' keyword or because a name in
4791 /// this syntactic context is assumed to name a template (C++ [temp.names]p2-4).
4792 ///
4793 /// This action forms a template name given the name of the template and its
4794 /// optional scope specifier. This is used when the 'template' keyword is used
4795 /// or when the parsing context unambiguously treats a following '<' as
4796 /// introducing a template argument list. Note that this may produce a
4797 /// non-dependent template name if we can perform the lookup now and identify
4798 /// the named template.
4799 ///
4800 /// For example, given "x.MetaFun::template apply", the scope specifier
4801 /// \p SS will be "MetaFun::", \p TemplateKWLoc contains the location
4802 /// of the "template" keyword, and "apply" is the \p Name.
ActOnTemplateName(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const UnqualifiedId & Name,ParsedType ObjectType,bool EnteringContext,TemplateTy & Result,bool AllowInjectedClassName)4803 TemplateNameKind Sema::ActOnTemplateName(Scope *S,
4804                                          CXXScopeSpec &SS,
4805                                          SourceLocation TemplateKWLoc,
4806                                          const UnqualifiedId &Name,
4807                                          ParsedType ObjectType,
4808                                          bool EnteringContext,
4809                                          TemplateTy &Result,
4810                                          bool AllowInjectedClassName) {
4811   if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
4812     Diag(TemplateKWLoc,
4813          getLangOpts().CPlusPlus11 ?
4814            diag::warn_cxx98_compat_template_outside_of_template :
4815            diag::ext_template_outside_of_template)
4816       << FixItHint::CreateRemoval(TemplateKWLoc);
4817 
4818   if (SS.isInvalid())
4819     return TNK_Non_template;
4820 
4821   // Figure out where isTemplateName is going to look.
4822   DeclContext *LookupCtx = nullptr;
4823   if (SS.isNotEmpty())
4824     LookupCtx = computeDeclContext(SS, EnteringContext);
4825   else if (ObjectType)
4826     LookupCtx = computeDeclContext(GetTypeFromParser(ObjectType));
4827 
4828   // C++0x [temp.names]p5:
4829   //   If a name prefixed by the keyword template is not the name of
4830   //   a template, the program is ill-formed. [Note: the keyword
4831   //   template may not be applied to non-template members of class
4832   //   templates. -end note ] [ Note: as is the case with the
4833   //   typename prefix, the template prefix is allowed in cases
4834   //   where it is not strictly necessary; i.e., when the
4835   //   nested-name-specifier or the expression on the left of the ->
4836   //   or . is not dependent on a template-parameter, or the use
4837   //   does not appear in the scope of a template. -end note]
4838   //
4839   // Note: C++03 was more strict here, because it banned the use of
4840   // the "template" keyword prior to a template-name that was not a
4841   // dependent name. C++ DR468 relaxed this requirement (the
4842   // "template" keyword is now permitted). We follow the C++0x
4843   // rules, even in C++03 mode with a warning, retroactively applying the DR.
4844   bool MemberOfUnknownSpecialization;
4845   TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
4846                                         ObjectType, EnteringContext, Result,
4847                                         MemberOfUnknownSpecialization);
4848   if (TNK != TNK_Non_template) {
4849     // We resolved this to a (non-dependent) template name. Return it.
4850     auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
4851     if (!AllowInjectedClassName && SS.isNotEmpty() && LookupRD &&
4852         Name.getKind() == UnqualifiedIdKind::IK_Identifier &&
4853         Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) {
4854       // C++14 [class.qual]p2:
4855       //   In a lookup in which function names are not ignored and the
4856       //   nested-name-specifier nominates a class C, if the name specified
4857       //   [...] is the injected-class-name of C, [...] the name is instead
4858       //   considered to name the constructor
4859       //
4860       // We don't get here if naming the constructor would be valid, so we
4861       // just reject immediately and recover by treating the
4862       // injected-class-name as naming the template.
4863       Diag(Name.getBeginLoc(),
4864            diag::ext_out_of_line_qualified_id_type_names_constructor)
4865           << Name.Identifier
4866           << 0 /*injected-class-name used as template name*/
4867           << TemplateKWLoc.isValid();
4868     }
4869     return TNK;
4870   }
4871 
4872   if (!MemberOfUnknownSpecialization) {
4873     // Didn't find a template name, and the lookup wasn't dependent.
4874     // Do the lookup again to determine if this is a "nothing found" case or
4875     // a "not a template" case. FIXME: Refactor isTemplateName so we don't
4876     // need to do this.
4877     DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name);
4878     LookupResult R(*this, DNI.getName(), Name.getBeginLoc(),
4879                    LookupOrdinaryName);
4880     bool MOUS;
4881     // Tell LookupTemplateName that we require a template so that it diagnoses
4882     // cases where it finds a non-template.
4883     RequiredTemplateKind RTK = TemplateKWLoc.isValid()
4884                                    ? RequiredTemplateKind(TemplateKWLoc)
4885                                    : TemplateNameIsRequired;
4886     if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext, MOUS,
4887                             RTK, nullptr, /*AllowTypoCorrection=*/false) &&
4888         !R.isAmbiguous()) {
4889       if (LookupCtx)
4890         Diag(Name.getBeginLoc(), diag::err_no_member)
4891             << DNI.getName() << LookupCtx << SS.getRange();
4892       else
4893         Diag(Name.getBeginLoc(), diag::err_undeclared_use)
4894             << DNI.getName() << SS.getRange();
4895     }
4896     return TNK_Non_template;
4897   }
4898 
4899   NestedNameSpecifier *Qualifier = SS.getScopeRep();
4900 
4901   switch (Name.getKind()) {
4902   case UnqualifiedIdKind::IK_Identifier:
4903     Result = TemplateTy::make(
4904         Context.getDependentTemplateName(Qualifier, Name.Identifier));
4905     return TNK_Dependent_template_name;
4906 
4907   case UnqualifiedIdKind::IK_OperatorFunctionId:
4908     Result = TemplateTy::make(Context.getDependentTemplateName(
4909         Qualifier, Name.OperatorFunctionId.Operator));
4910     return TNK_Function_template;
4911 
4912   case UnqualifiedIdKind::IK_LiteralOperatorId:
4913     // This is a kind of template name, but can never occur in a dependent
4914     // scope (literal operators can only be declared at namespace scope).
4915     break;
4916 
4917   default:
4918     break;
4919   }
4920 
4921   // This name cannot possibly name a dependent template. Diagnose this now
4922   // rather than building a dependent template name that can never be valid.
4923   Diag(Name.getBeginLoc(),
4924        diag::err_template_kw_refers_to_dependent_non_template)
4925       << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange()
4926       << TemplateKWLoc.isValid() << TemplateKWLoc;
4927   return TNK_Non_template;
4928 }
4929 
CheckTemplateTypeArgument(TemplateTypeParmDecl * Param,TemplateArgumentLoc & AL,SmallVectorImpl<TemplateArgument> & Converted)4930 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
4931                                      TemplateArgumentLoc &AL,
4932                           SmallVectorImpl<TemplateArgument> &Converted) {
4933   const TemplateArgument &Arg = AL.getArgument();
4934   QualType ArgType;
4935   TypeSourceInfo *TSI = nullptr;
4936 
4937   // Check template type parameter.
4938   switch(Arg.getKind()) {
4939   case TemplateArgument::Type:
4940     // C++ [temp.arg.type]p1:
4941     //   A template-argument for a template-parameter which is a
4942     //   type shall be a type-id.
4943     ArgType = Arg.getAsType();
4944     TSI = AL.getTypeSourceInfo();
4945     break;
4946   case TemplateArgument::Template:
4947   case TemplateArgument::TemplateExpansion: {
4948     // We have a template type parameter but the template argument
4949     // is a template without any arguments.
4950     SourceRange SR = AL.getSourceRange();
4951     TemplateName Name = Arg.getAsTemplateOrTemplatePattern();
4952     diagnoseMissingTemplateArguments(Name, SR.getEnd());
4953     return true;
4954   }
4955   case TemplateArgument::Expression: {
4956     // We have a template type parameter but the template argument is an
4957     // expression; see if maybe it is missing the "typename" keyword.
4958     CXXScopeSpec SS;
4959     DeclarationNameInfo NameInfo;
4960 
4961    if (DependentScopeDeclRefExpr *ArgExpr =
4962                dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
4963       SS.Adopt(ArgExpr->getQualifierLoc());
4964       NameInfo = ArgExpr->getNameInfo();
4965     } else if (CXXDependentScopeMemberExpr *ArgExpr =
4966                dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
4967       if (ArgExpr->isImplicitAccess()) {
4968         SS.Adopt(ArgExpr->getQualifierLoc());
4969         NameInfo = ArgExpr->getMemberNameInfo();
4970       }
4971     }
4972 
4973     if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
4974       LookupResult Result(*this, NameInfo, LookupOrdinaryName);
4975       LookupParsedName(Result, CurScope, &SS);
4976 
4977       if (Result.getAsSingle<TypeDecl>() ||
4978           Result.getResultKind() ==
4979               LookupResult::NotFoundInCurrentInstantiation) {
4980         assert(SS.getScopeRep() && "dependent scope expr must has a scope!");
4981         // Suggest that the user add 'typename' before the NNS.
4982         SourceLocation Loc = AL.getSourceRange().getBegin();
4983         Diag(Loc, getLangOpts().MSVCCompat
4984                       ? diag::ext_ms_template_type_arg_missing_typename
4985                       : diag::err_template_arg_must_be_type_suggest)
4986             << FixItHint::CreateInsertion(Loc, "typename ");
4987         Diag(Param->getLocation(), diag::note_template_param_here);
4988 
4989         // Recover by synthesizing a type using the location information that we
4990         // already have.
4991         ArgType =
4992             Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
4993         TypeLocBuilder TLB;
4994         DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
4995         TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
4996         TL.setQualifierLoc(SS.getWithLocInContext(Context));
4997         TL.setNameLoc(NameInfo.getLoc());
4998         TSI = TLB.getTypeSourceInfo(Context, ArgType);
4999 
5000         // Overwrite our input TemplateArgumentLoc so that we can recover
5001         // properly.
5002         AL = TemplateArgumentLoc(TemplateArgument(ArgType),
5003                                  TemplateArgumentLocInfo(TSI));
5004 
5005         break;
5006       }
5007     }
5008     // fallthrough
5009     LLVM_FALLTHROUGH;
5010   }
5011   default: {
5012     // We have a template type parameter but the template argument
5013     // is not a type.
5014     SourceRange SR = AL.getSourceRange();
5015     Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
5016     Diag(Param->getLocation(), diag::note_template_param_here);
5017 
5018     return true;
5019   }
5020   }
5021 
5022   if (CheckTemplateArgument(Param, TSI))
5023     return true;
5024 
5025   // Add the converted template type argument.
5026   ArgType = Context.getCanonicalType(ArgType);
5027 
5028   // Objective-C ARC:
5029   //   If an explicitly-specified template argument type is a lifetime type
5030   //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
5031   if (getLangOpts().ObjCAutoRefCount &&
5032       ArgType->isObjCLifetimeType() &&
5033       !ArgType.getObjCLifetime()) {
5034     Qualifiers Qs;
5035     Qs.setObjCLifetime(Qualifiers::OCL_Strong);
5036     ArgType = Context.getQualifiedType(ArgType, Qs);
5037   }
5038 
5039   Converted.push_back(TemplateArgument(ArgType));
5040   return false;
5041 }
5042 
5043 /// Substitute template arguments into the default template argument for
5044 /// the given template type parameter.
5045 ///
5046 /// \param SemaRef the semantic analysis object for which we are performing
5047 /// the substitution.
5048 ///
5049 /// \param Template the template that we are synthesizing template arguments
5050 /// for.
5051 ///
5052 /// \param TemplateLoc the location of the template name that started the
5053 /// template-id we are checking.
5054 ///
5055 /// \param RAngleLoc the location of the right angle bracket ('>') that
5056 /// terminates the template-id.
5057 ///
5058 /// \param Param the template template parameter whose default we are
5059 /// substituting into.
5060 ///
5061 /// \param Converted the list of template arguments provided for template
5062 /// parameters that precede \p Param in the template parameter list.
5063 /// \returns the substituted template argument, or NULL if an error occurred.
5064 static TypeSourceInfo *
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTypeParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted)5065 SubstDefaultTemplateArgument(Sema &SemaRef,
5066                              TemplateDecl *Template,
5067                              SourceLocation TemplateLoc,
5068                              SourceLocation RAngleLoc,
5069                              TemplateTypeParmDecl *Param,
5070                              SmallVectorImpl<TemplateArgument> &Converted) {
5071   TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
5072 
5073   // If the argument type is dependent, instantiate it now based
5074   // on the previously-computed template arguments.
5075   if (ArgType->getType()->isInstantiationDependentType()) {
5076     Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
5077                                      Param, Template, Converted,
5078                                      SourceRange(TemplateLoc, RAngleLoc));
5079     if (Inst.isInvalid())
5080       return nullptr;
5081 
5082     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
5083 
5084     // Only substitute for the innermost template argument list.
5085     MultiLevelTemplateArgumentList TemplateArgLists;
5086     TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
5087     for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5088       TemplateArgLists.addOuterTemplateArguments(None);
5089 
5090     Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
5091     ArgType =
5092         SemaRef.SubstType(ArgType, TemplateArgLists,
5093                           Param->getDefaultArgumentLoc(), Param->getDeclName());
5094   }
5095 
5096   return ArgType;
5097 }
5098 
5099 /// Substitute template arguments into the default template argument for
5100 /// the given non-type template parameter.
5101 ///
5102 /// \param SemaRef the semantic analysis object for which we are performing
5103 /// the substitution.
5104 ///
5105 /// \param Template the template that we are synthesizing template arguments
5106 /// for.
5107 ///
5108 /// \param TemplateLoc the location of the template name that started the
5109 /// template-id we are checking.
5110 ///
5111 /// \param RAngleLoc the location of the right angle bracket ('>') that
5112 /// terminates the template-id.
5113 ///
5114 /// \param Param the non-type template parameter whose default we are
5115 /// substituting into.
5116 ///
5117 /// \param Converted the list of template arguments provided for template
5118 /// parameters that precede \p Param in the template parameter list.
5119 ///
5120 /// \returns the substituted template argument, or NULL if an error occurred.
5121 static ExprResult
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,NonTypeTemplateParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted)5122 SubstDefaultTemplateArgument(Sema &SemaRef,
5123                              TemplateDecl *Template,
5124                              SourceLocation TemplateLoc,
5125                              SourceLocation RAngleLoc,
5126                              NonTypeTemplateParmDecl *Param,
5127                         SmallVectorImpl<TemplateArgument> &Converted) {
5128   Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
5129                                    Param, Template, Converted,
5130                                    SourceRange(TemplateLoc, RAngleLoc));
5131   if (Inst.isInvalid())
5132     return ExprError();
5133 
5134   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
5135 
5136   // Only substitute for the innermost template argument list.
5137   MultiLevelTemplateArgumentList TemplateArgLists;
5138   TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
5139   for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5140     TemplateArgLists.addOuterTemplateArguments(None);
5141 
5142   Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
5143   EnterExpressionEvaluationContext ConstantEvaluated(
5144       SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5145   return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
5146 }
5147 
5148 /// Substitute template arguments into the default template argument for
5149 /// the given template template parameter.
5150 ///
5151 /// \param SemaRef the semantic analysis object for which we are performing
5152 /// the substitution.
5153 ///
5154 /// \param Template the template that we are synthesizing template arguments
5155 /// for.
5156 ///
5157 /// \param TemplateLoc the location of the template name that started the
5158 /// template-id we are checking.
5159 ///
5160 /// \param RAngleLoc the location of the right angle bracket ('>') that
5161 /// terminates the template-id.
5162 ///
5163 /// \param Param the template template parameter whose default we are
5164 /// substituting into.
5165 ///
5166 /// \param Converted the list of template arguments provided for template
5167 /// parameters that precede \p Param in the template parameter list.
5168 ///
5169 /// \param QualifierLoc Will be set to the nested-name-specifier (with
5170 /// source-location information) that precedes the template name.
5171 ///
5172 /// \returns the substituted template argument, or NULL if an error occurred.
5173 static TemplateName
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTemplateParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted,NestedNameSpecifierLoc & QualifierLoc)5174 SubstDefaultTemplateArgument(Sema &SemaRef,
5175                              TemplateDecl *Template,
5176                              SourceLocation TemplateLoc,
5177                              SourceLocation RAngleLoc,
5178                              TemplateTemplateParmDecl *Param,
5179                        SmallVectorImpl<TemplateArgument> &Converted,
5180                              NestedNameSpecifierLoc &QualifierLoc) {
5181   Sema::InstantiatingTemplate Inst(
5182       SemaRef, TemplateLoc, TemplateParameter(Param), Template, Converted,
5183       SourceRange(TemplateLoc, RAngleLoc));
5184   if (Inst.isInvalid())
5185     return TemplateName();
5186 
5187   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
5188 
5189   // Only substitute for the innermost template argument list.
5190   MultiLevelTemplateArgumentList TemplateArgLists;
5191   TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
5192   for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5193     TemplateArgLists.addOuterTemplateArguments(None);
5194 
5195   Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
5196   // Substitute into the nested-name-specifier first,
5197   QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
5198   if (QualifierLoc) {
5199     QualifierLoc =
5200         SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
5201     if (!QualifierLoc)
5202       return TemplateName();
5203   }
5204 
5205   return SemaRef.SubstTemplateName(
5206              QualifierLoc,
5207              Param->getDefaultArgument().getArgument().getAsTemplate(),
5208              Param->getDefaultArgument().getTemplateNameLoc(),
5209              TemplateArgLists);
5210 }
5211 
5212 /// If the given template parameter has a default template
5213 /// argument, substitute into that default template argument and
5214 /// return the corresponding template argument.
5215 TemplateArgumentLoc
SubstDefaultTemplateArgumentIfAvailable(TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,Decl * Param,SmallVectorImpl<TemplateArgument> & Converted,bool & HasDefaultArg)5216 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
5217                                               SourceLocation TemplateLoc,
5218                                               SourceLocation RAngleLoc,
5219                                               Decl *Param,
5220                                               SmallVectorImpl<TemplateArgument>
5221                                                 &Converted,
5222                                               bool &HasDefaultArg) {
5223   HasDefaultArg = false;
5224 
5225   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
5226     if (!hasVisibleDefaultArgument(TypeParm))
5227       return TemplateArgumentLoc();
5228 
5229     HasDefaultArg = true;
5230     TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
5231                                                       TemplateLoc,
5232                                                       RAngleLoc,
5233                                                       TypeParm,
5234                                                       Converted);
5235     if (DI)
5236       return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
5237 
5238     return TemplateArgumentLoc();
5239   }
5240 
5241   if (NonTypeTemplateParmDecl *NonTypeParm
5242         = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5243     if (!hasVisibleDefaultArgument(NonTypeParm))
5244       return TemplateArgumentLoc();
5245 
5246     HasDefaultArg = true;
5247     ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
5248                                                   TemplateLoc,
5249                                                   RAngleLoc,
5250                                                   NonTypeParm,
5251                                                   Converted);
5252     if (Arg.isInvalid())
5253       return TemplateArgumentLoc();
5254 
5255     Expr *ArgE = Arg.getAs<Expr>();
5256     return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
5257   }
5258 
5259   TemplateTemplateParmDecl *TempTempParm
5260     = cast<TemplateTemplateParmDecl>(Param);
5261   if (!hasVisibleDefaultArgument(TempTempParm))
5262     return TemplateArgumentLoc();
5263 
5264   HasDefaultArg = true;
5265   NestedNameSpecifierLoc QualifierLoc;
5266   TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
5267                                                     TemplateLoc,
5268                                                     RAngleLoc,
5269                                                     TempTempParm,
5270                                                     Converted,
5271                                                     QualifierLoc);
5272   if (TName.isNull())
5273     return TemplateArgumentLoc();
5274 
5275   return TemplateArgumentLoc(
5276       Context, TemplateArgument(TName),
5277       TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
5278       TempTempParm->getDefaultArgument().getTemplateNameLoc());
5279 }
5280 
5281 /// Convert a template-argument that we parsed as a type into a template, if
5282 /// possible. C++ permits injected-class-names to perform dual service as
5283 /// template template arguments and as template type arguments.
5284 static TemplateArgumentLoc
convertTypeTemplateArgumentToTemplate(ASTContext & Context,TypeLoc TLoc)5285 convertTypeTemplateArgumentToTemplate(ASTContext &Context, TypeLoc TLoc) {
5286   // Extract and step over any surrounding nested-name-specifier.
5287   NestedNameSpecifierLoc QualLoc;
5288   if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) {
5289     if (ETLoc.getTypePtr()->getKeyword() != ETK_None)
5290       return TemplateArgumentLoc();
5291 
5292     QualLoc = ETLoc.getQualifierLoc();
5293     TLoc = ETLoc.getNamedTypeLoc();
5294   }
5295   // If this type was written as an injected-class-name, it can be used as a
5296   // template template argument.
5297   if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>())
5298     return TemplateArgumentLoc(Context, InjLoc.getTypePtr()->getTemplateName(),
5299                                QualLoc, InjLoc.getNameLoc());
5300 
5301   // If this type was written as an injected-class-name, it may have been
5302   // converted to a RecordType during instantiation. If the RecordType is
5303   // *not* wrapped in a TemplateSpecializationType and denotes a class
5304   // template specialization, it must have come from an injected-class-name.
5305   if (auto RecLoc = TLoc.getAs<RecordTypeLoc>())
5306     if (auto *CTSD =
5307             dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl()))
5308       return TemplateArgumentLoc(Context,
5309                                  TemplateName(CTSD->getSpecializedTemplate()),
5310                                  QualLoc, RecLoc.getNameLoc());
5311 
5312   return TemplateArgumentLoc();
5313 }
5314 
5315 /// Check that the given template argument corresponds to the given
5316 /// template parameter.
5317 ///
5318 /// \param Param The template parameter against which the argument will be
5319 /// checked.
5320 ///
5321 /// \param Arg The template argument, which may be updated due to conversions.
5322 ///
5323 /// \param Template The template in which the template argument resides.
5324 ///
5325 /// \param TemplateLoc The location of the template name for the template
5326 /// whose argument list we're matching.
5327 ///
5328 /// \param RAngleLoc The location of the right angle bracket ('>') that closes
5329 /// the template argument list.
5330 ///
5331 /// \param ArgumentPackIndex The index into the argument pack where this
5332 /// argument will be placed. Only valid if the parameter is a parameter pack.
5333 ///
5334 /// \param Converted The checked, converted argument will be added to the
5335 /// end of this small vector.
5336 ///
5337 /// \param CTAK Describes how we arrived at this particular template argument:
5338 /// explicitly written, deduced, etc.
5339 ///
5340 /// \returns true on error, false otherwise.
CheckTemplateArgument(NamedDecl * Param,TemplateArgumentLoc & Arg,NamedDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,unsigned ArgumentPackIndex,SmallVectorImpl<TemplateArgument> & Converted,CheckTemplateArgumentKind CTAK)5341 bool Sema::CheckTemplateArgument(NamedDecl *Param,
5342                                  TemplateArgumentLoc &Arg,
5343                                  NamedDecl *Template,
5344                                  SourceLocation TemplateLoc,
5345                                  SourceLocation RAngleLoc,
5346                                  unsigned ArgumentPackIndex,
5347                             SmallVectorImpl<TemplateArgument> &Converted,
5348                                  CheckTemplateArgumentKind CTAK) {
5349   // Check template type parameters.
5350   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
5351     return CheckTemplateTypeArgument(TTP, Arg, Converted);
5352 
5353   // Check non-type template parameters.
5354   if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5355     // Do substitution on the type of the non-type template parameter
5356     // with the template arguments we've seen thus far.  But if the
5357     // template has a dependent context then we cannot substitute yet.
5358     QualType NTTPType = NTTP->getType();
5359     if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
5360       NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
5361 
5362     if (NTTPType->isInstantiationDependentType() &&
5363         !isa<TemplateTemplateParmDecl>(Template) &&
5364         !Template->getDeclContext()->isDependentContext()) {
5365       // Do substitution on the type of the non-type template parameter.
5366       InstantiatingTemplate Inst(*this, TemplateLoc, Template,
5367                                  NTTP, Converted,
5368                                  SourceRange(TemplateLoc, RAngleLoc));
5369       if (Inst.isInvalid())
5370         return true;
5371 
5372       TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
5373                                         Converted);
5374 
5375       // If the parameter is a pack expansion, expand this slice of the pack.
5376       if (auto *PET = NTTPType->getAs<PackExpansionType>()) {
5377         Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this,
5378                                                            ArgumentPackIndex);
5379         NTTPType = SubstType(PET->getPattern(),
5380                              MultiLevelTemplateArgumentList(TemplateArgs),
5381                              NTTP->getLocation(),
5382                              NTTP->getDeclName());
5383       } else {
5384         NTTPType = SubstType(NTTPType,
5385                              MultiLevelTemplateArgumentList(TemplateArgs),
5386                              NTTP->getLocation(),
5387                              NTTP->getDeclName());
5388       }
5389 
5390       // If that worked, check the non-type template parameter type
5391       // for validity.
5392       if (!NTTPType.isNull())
5393         NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
5394                                                      NTTP->getLocation());
5395       if (NTTPType.isNull())
5396         return true;
5397     }
5398 
5399     switch (Arg.getArgument().getKind()) {
5400     case TemplateArgument::Null:
5401       llvm_unreachable("Should never see a NULL template argument here");
5402 
5403     case TemplateArgument::Expression: {
5404       TemplateArgument Result;
5405       unsigned CurSFINAEErrors = NumSFINAEErrors;
5406       ExprResult Res =
5407         CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
5408                               Result, CTAK);
5409       if (Res.isInvalid())
5410         return true;
5411       // If the current template argument causes an error, give up now.
5412       if (CurSFINAEErrors < NumSFINAEErrors)
5413         return true;
5414 
5415       // If the resulting expression is new, then use it in place of the
5416       // old expression in the template argument.
5417       if (Res.get() != Arg.getArgument().getAsExpr()) {
5418         TemplateArgument TA(Res.get());
5419         Arg = TemplateArgumentLoc(TA, Res.get());
5420       }
5421 
5422       Converted.push_back(Result);
5423       break;
5424     }
5425 
5426     case TemplateArgument::Declaration:
5427     case TemplateArgument::Integral:
5428     case TemplateArgument::NullPtr:
5429       // We've already checked this template argument, so just copy
5430       // it to the list of converted arguments.
5431       Converted.push_back(Arg.getArgument());
5432       break;
5433 
5434     case TemplateArgument::Template:
5435     case TemplateArgument::TemplateExpansion:
5436       // We were given a template template argument. It may not be ill-formed;
5437       // see below.
5438       if (DependentTemplateName *DTN
5439             = Arg.getArgument().getAsTemplateOrTemplatePattern()
5440                                               .getAsDependentTemplateName()) {
5441         // We have a template argument such as \c T::template X, which we
5442         // parsed as a template template argument. However, since we now
5443         // know that we need a non-type template argument, convert this
5444         // template name into an expression.
5445 
5446         DeclarationNameInfo NameInfo(DTN->getIdentifier(),
5447                                      Arg.getTemplateNameLoc());
5448 
5449         CXXScopeSpec SS;
5450         SS.Adopt(Arg.getTemplateQualifierLoc());
5451         // FIXME: the template-template arg was a DependentTemplateName,
5452         // so it was provided with a template keyword. However, its source
5453         // location is not stored in the template argument structure.
5454         SourceLocation TemplateKWLoc;
5455         ExprResult E = DependentScopeDeclRefExpr::Create(
5456             Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
5457             nullptr);
5458 
5459         // If we parsed the template argument as a pack expansion, create a
5460         // pack expansion expression.
5461         if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
5462           E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
5463           if (E.isInvalid())
5464             return true;
5465         }
5466 
5467         TemplateArgument Result;
5468         E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result);
5469         if (E.isInvalid())
5470           return true;
5471 
5472         Converted.push_back(Result);
5473         break;
5474       }
5475 
5476       // We have a template argument that actually does refer to a class
5477       // template, alias template, or template template parameter, and
5478       // therefore cannot be a non-type template argument.
5479       Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
5480         << Arg.getSourceRange();
5481 
5482       Diag(Param->getLocation(), diag::note_template_param_here);
5483       return true;
5484 
5485     case TemplateArgument::Type: {
5486       // We have a non-type template parameter but the template
5487       // argument is a type.
5488 
5489       // C++ [temp.arg]p2:
5490       //   In a template-argument, an ambiguity between a type-id and
5491       //   an expression is resolved to a type-id, regardless of the
5492       //   form of the corresponding template-parameter.
5493       //
5494       // We warn specifically about this case, since it can be rather
5495       // confusing for users.
5496       QualType T = Arg.getArgument().getAsType();
5497       SourceRange SR = Arg.getSourceRange();
5498       if (T->isFunctionType())
5499         Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
5500       else
5501         Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
5502       Diag(Param->getLocation(), diag::note_template_param_here);
5503       return true;
5504     }
5505 
5506     case TemplateArgument::Pack:
5507       llvm_unreachable("Caller must expand template argument packs");
5508     }
5509 
5510     return false;
5511   }
5512 
5513 
5514   // Check template template parameters.
5515   TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
5516 
5517   TemplateParameterList *Params = TempParm->getTemplateParameters();
5518   if (TempParm->isExpandedParameterPack())
5519     Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex);
5520 
5521   // Substitute into the template parameter list of the template
5522   // template parameter, since previously-supplied template arguments
5523   // may appear within the template template parameter.
5524   //
5525   // FIXME: Skip this if the parameters aren't instantiation-dependent.
5526   {
5527     // Set up a template instantiation context.
5528     LocalInstantiationScope Scope(*this);
5529     InstantiatingTemplate Inst(*this, TemplateLoc, Template,
5530                                TempParm, Converted,
5531                                SourceRange(TemplateLoc, RAngleLoc));
5532     if (Inst.isInvalid())
5533       return true;
5534 
5535     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
5536     Params = SubstTemplateParams(Params, CurContext,
5537                                  MultiLevelTemplateArgumentList(TemplateArgs));
5538     if (!Params)
5539       return true;
5540   }
5541 
5542   // C++1z [temp.local]p1: (DR1004)
5543   //   When [the injected-class-name] is used [...] as a template-argument for
5544   //   a template template-parameter [...] it refers to the class template
5545   //   itself.
5546   if (Arg.getArgument().getKind() == TemplateArgument::Type) {
5547     TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate(
5548         Context, Arg.getTypeSourceInfo()->getTypeLoc());
5549     if (!ConvertedArg.getArgument().isNull())
5550       Arg = ConvertedArg;
5551   }
5552 
5553   switch (Arg.getArgument().getKind()) {
5554   case TemplateArgument::Null:
5555     llvm_unreachable("Should never see a NULL template argument here");
5556 
5557   case TemplateArgument::Template:
5558   case TemplateArgument::TemplateExpansion:
5559     if (CheckTemplateTemplateArgument(TempParm, Params, Arg))
5560       return true;
5561 
5562     Converted.push_back(Arg.getArgument());
5563     break;
5564 
5565   case TemplateArgument::Expression:
5566   case TemplateArgument::Type:
5567     // We have a template template parameter but the template
5568     // argument does not refer to a template.
5569     Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
5570       << getLangOpts().CPlusPlus11;
5571     return true;
5572 
5573   case TemplateArgument::Declaration:
5574     llvm_unreachable("Declaration argument with template template parameter");
5575   case TemplateArgument::Integral:
5576     llvm_unreachable("Integral argument with template template parameter");
5577   case TemplateArgument::NullPtr:
5578     llvm_unreachable("Null pointer argument with template template parameter");
5579 
5580   case TemplateArgument::Pack:
5581     llvm_unreachable("Caller must expand template argument packs");
5582   }
5583 
5584   return false;
5585 }
5586 
5587 /// Check whether the template parameter is a pack expansion, and if so,
5588 /// determine the number of parameters produced by that expansion. For instance:
5589 ///
5590 /// \code
5591 /// template<typename ...Ts> struct A {
5592 ///   template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
5593 /// };
5594 /// \endcode
5595 ///
5596 /// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
5597 /// is not a pack expansion, so returns an empty Optional.
getExpandedPackSize(NamedDecl * Param)5598 static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
5599   if (TemplateTypeParmDecl *TTP
5600         = dyn_cast<TemplateTypeParmDecl>(Param)) {
5601     if (TTP->isExpandedParameterPack())
5602       return TTP->getNumExpansionParameters();
5603   }
5604 
5605   if (NonTypeTemplateParmDecl *NTTP
5606         = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5607     if (NTTP->isExpandedParameterPack())
5608       return NTTP->getNumExpansionTypes();
5609   }
5610 
5611   if (TemplateTemplateParmDecl *TTP
5612         = dyn_cast<TemplateTemplateParmDecl>(Param)) {
5613     if (TTP->isExpandedParameterPack())
5614       return TTP->getNumExpansionTemplateParameters();
5615   }
5616 
5617   return None;
5618 }
5619 
5620 /// Diagnose a missing template argument.
5621 template<typename TemplateParmDecl>
diagnoseMissingArgument(Sema & S,SourceLocation Loc,TemplateDecl * TD,const TemplateParmDecl * D,TemplateArgumentListInfo & Args)5622 static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
5623                                     TemplateDecl *TD,
5624                                     const TemplateParmDecl *D,
5625                                     TemplateArgumentListInfo &Args) {
5626   // Dig out the most recent declaration of the template parameter; there may be
5627   // declarations of the template that are more recent than TD.
5628   D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
5629                                  ->getTemplateParameters()
5630                                  ->getParam(D->getIndex()));
5631 
5632   // If there's a default argument that's not visible, diagnose that we're
5633   // missing a module import.
5634   llvm::SmallVector<Module*, 8> Modules;
5635   if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) {
5636     S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
5637                             D->getDefaultArgumentLoc(), Modules,
5638                             Sema::MissingImportKind::DefaultArgument,
5639                             /*Recover*/true);
5640     return true;
5641   }
5642 
5643   // FIXME: If there's a more recent default argument that *is* visible,
5644   // diagnose that it was declared too late.
5645 
5646   TemplateParameterList *Params = TD->getTemplateParameters();
5647 
5648   S.Diag(Loc, diag::err_template_arg_list_different_arity)
5649     << /*not enough args*/0
5650     << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD))
5651     << TD;
5652   S.Diag(TD->getLocation(), diag::note_template_decl_here)
5653     << Params->getSourceRange();
5654   return true;
5655 }
5656 
5657 /// Check that the given template argument list is well-formed
5658 /// for specializing the given template.
CheckTemplateArgumentList(TemplateDecl * Template,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs,bool PartialTemplateArgs,SmallVectorImpl<TemplateArgument> & Converted,bool UpdateArgsWithConversions,bool * ConstraintsNotSatisfied)5659 bool Sema::CheckTemplateArgumentList(
5660     TemplateDecl *Template, SourceLocation TemplateLoc,
5661     TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs,
5662     SmallVectorImpl<TemplateArgument> &Converted,
5663     bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied) {
5664 
5665   if (ConstraintsNotSatisfied)
5666     *ConstraintsNotSatisfied = false;
5667 
5668   // Make a copy of the template arguments for processing.  Only make the
5669   // changes at the end when successful in matching the arguments to the
5670   // template.
5671   TemplateArgumentListInfo NewArgs = TemplateArgs;
5672 
5673   // Make sure we get the template parameter list from the most
5674   // recentdeclaration, since that is the only one that has is guaranteed to
5675   // have all the default template argument information.
5676   TemplateParameterList *Params =
5677       cast<TemplateDecl>(Template->getMostRecentDecl())
5678           ->getTemplateParameters();
5679 
5680   SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
5681 
5682   // C++ [temp.arg]p1:
5683   //   [...] The type and form of each template-argument specified in
5684   //   a template-id shall match the type and form specified for the
5685   //   corresponding parameter declared by the template in its
5686   //   template-parameter-list.
5687   bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
5688   SmallVector<TemplateArgument, 2> ArgumentPack;
5689   unsigned ArgIdx = 0, NumArgs = NewArgs.size();
5690   LocalInstantiationScope InstScope(*this, true);
5691   for (TemplateParameterList::iterator Param = Params->begin(),
5692                                        ParamEnd = Params->end();
5693        Param != ParamEnd; /* increment in loop */) {
5694     // If we have an expanded parameter pack, make sure we don't have too
5695     // many arguments.
5696     if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
5697       if (*Expansions == ArgumentPack.size()) {
5698         // We're done with this parameter pack. Pack up its arguments and add
5699         // them to the list.
5700         Converted.push_back(
5701             TemplateArgument::CreatePackCopy(Context, ArgumentPack));
5702         ArgumentPack.clear();
5703 
5704         // This argument is assigned to the next parameter.
5705         ++Param;
5706         continue;
5707       } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
5708         // Not enough arguments for this parameter pack.
5709         Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
5710           << /*not enough args*/0
5711           << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
5712           << Template;
5713         Diag(Template->getLocation(), diag::note_template_decl_here)
5714           << Params->getSourceRange();
5715         return true;
5716       }
5717     }
5718 
5719     if (ArgIdx < NumArgs) {
5720       // Check the template argument we were given.
5721       if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template,
5722                                 TemplateLoc, RAngleLoc,
5723                                 ArgumentPack.size(), Converted))
5724         return true;
5725 
5726       bool PackExpansionIntoNonPack =
5727           NewArgs[ArgIdx].getArgument().isPackExpansion() &&
5728           (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
5729       if (PackExpansionIntoNonPack && (isa<TypeAliasTemplateDecl>(Template) ||
5730                                        isa<ConceptDecl>(Template))) {
5731         // Core issue 1430: we have a pack expansion as an argument to an
5732         // alias template, and it's not part of a parameter pack. This
5733         // can't be canonicalized, so reject it now.
5734         // As for concepts - we cannot normalize constraints where this
5735         // situation exists.
5736         Diag(NewArgs[ArgIdx].getLocation(),
5737              diag::err_template_expansion_into_fixed_list)
5738           << (isa<ConceptDecl>(Template) ? 1 : 0)
5739           << NewArgs[ArgIdx].getSourceRange();
5740         Diag((*Param)->getLocation(), diag::note_template_param_here);
5741         return true;
5742       }
5743 
5744       // We're now done with this argument.
5745       ++ArgIdx;
5746 
5747       if ((*Param)->isTemplateParameterPack()) {
5748         // The template parameter was a template parameter pack, so take the
5749         // deduced argument and place it on the argument pack. Note that we
5750         // stay on the same template parameter so that we can deduce more
5751         // arguments.
5752         ArgumentPack.push_back(Converted.pop_back_val());
5753       } else {
5754         // Move to the next template parameter.
5755         ++Param;
5756       }
5757 
5758       // If we just saw a pack expansion into a non-pack, then directly convert
5759       // the remaining arguments, because we don't know what parameters they'll
5760       // match up with.
5761       if (PackExpansionIntoNonPack) {
5762         if (!ArgumentPack.empty()) {
5763           // If we were part way through filling in an expanded parameter pack,
5764           // fall back to just producing individual arguments.
5765           Converted.insert(Converted.end(),
5766                            ArgumentPack.begin(), ArgumentPack.end());
5767           ArgumentPack.clear();
5768         }
5769 
5770         while (ArgIdx < NumArgs) {
5771           Converted.push_back(NewArgs[ArgIdx].getArgument());
5772           ++ArgIdx;
5773         }
5774 
5775         return false;
5776       }
5777 
5778       continue;
5779     }
5780 
5781     // If we're checking a partial template argument list, we're done.
5782     if (PartialTemplateArgs) {
5783       if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
5784         Converted.push_back(
5785             TemplateArgument::CreatePackCopy(Context, ArgumentPack));
5786       return false;
5787     }
5788 
5789     // If we have a template parameter pack with no more corresponding
5790     // arguments, just break out now and we'll fill in the argument pack below.
5791     if ((*Param)->isTemplateParameterPack()) {
5792       assert(!getExpandedPackSize(*Param) &&
5793              "Should have dealt with this already");
5794 
5795       // A non-expanded parameter pack before the end of the parameter list
5796       // only occurs for an ill-formed template parameter list, unless we've
5797       // got a partial argument list for a function template, so just bail out.
5798       if (Param + 1 != ParamEnd)
5799         return true;
5800 
5801       Converted.push_back(
5802           TemplateArgument::CreatePackCopy(Context, ArgumentPack));
5803       ArgumentPack.clear();
5804 
5805       ++Param;
5806       continue;
5807     }
5808 
5809     // Check whether we have a default argument.
5810     TemplateArgumentLoc Arg;
5811 
5812     // Retrieve the default template argument from the template
5813     // parameter. For each kind of template parameter, we substitute the
5814     // template arguments provided thus far and any "outer" template arguments
5815     // (when the template parameter was part of a nested template) into
5816     // the default argument.
5817     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
5818       if (!hasVisibleDefaultArgument(TTP))
5819         return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP,
5820                                        NewArgs);
5821 
5822       TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
5823                                                              Template,
5824                                                              TemplateLoc,
5825                                                              RAngleLoc,
5826                                                              TTP,
5827                                                              Converted);
5828       if (!ArgType)
5829         return true;
5830 
5831       Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
5832                                 ArgType);
5833     } else if (NonTypeTemplateParmDecl *NTTP
5834                  = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
5835       if (!hasVisibleDefaultArgument(NTTP))
5836         return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP,
5837                                        NewArgs);
5838 
5839       ExprResult E = SubstDefaultTemplateArgument(*this, Template,
5840                                                               TemplateLoc,
5841                                                               RAngleLoc,
5842                                                               NTTP,
5843                                                               Converted);
5844       if (E.isInvalid())
5845         return true;
5846 
5847       Expr *Ex = E.getAs<Expr>();
5848       Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
5849     } else {
5850       TemplateTemplateParmDecl *TempParm
5851         = cast<TemplateTemplateParmDecl>(*Param);
5852 
5853       if (!hasVisibleDefaultArgument(TempParm))
5854         return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm,
5855                                        NewArgs);
5856 
5857       NestedNameSpecifierLoc QualifierLoc;
5858       TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
5859                                                        TemplateLoc,
5860                                                        RAngleLoc,
5861                                                        TempParm,
5862                                                        Converted,
5863                                                        QualifierLoc);
5864       if (Name.isNull())
5865         return true;
5866 
5867       Arg = TemplateArgumentLoc(
5868           Context, TemplateArgument(Name), QualifierLoc,
5869           TempParm->getDefaultArgument().getTemplateNameLoc());
5870     }
5871 
5872     // Introduce an instantiation record that describes where we are using
5873     // the default template argument. We're not actually instantiating a
5874     // template here, we just create this object to put a note into the
5875     // context stack.
5876     InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
5877                                SourceRange(TemplateLoc, RAngleLoc));
5878     if (Inst.isInvalid())
5879       return true;
5880 
5881     // Check the default template argument.
5882     if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
5883                               RAngleLoc, 0, Converted))
5884       return true;
5885 
5886     // Core issue 150 (assumed resolution): if this is a template template
5887     // parameter, keep track of the default template arguments from the
5888     // template definition.
5889     if (isTemplateTemplateParameter)
5890       NewArgs.addArgument(Arg);
5891 
5892     // Move to the next template parameter and argument.
5893     ++Param;
5894     ++ArgIdx;
5895   }
5896 
5897   // If we're performing a partial argument substitution, allow any trailing
5898   // pack expansions; they might be empty. This can happen even if
5899   // PartialTemplateArgs is false (the list of arguments is complete but
5900   // still dependent).
5901   if (ArgIdx < NumArgs && CurrentInstantiationScope &&
5902       CurrentInstantiationScope->getPartiallySubstitutedPack()) {
5903     while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion())
5904       Converted.push_back(NewArgs[ArgIdx++].getArgument());
5905   }
5906 
5907   // If we have any leftover arguments, then there were too many arguments.
5908   // Complain and fail.
5909   if (ArgIdx < NumArgs) {
5910     Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
5911         << /*too many args*/1
5912         << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
5913         << Template
5914         << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc());
5915     Diag(Template->getLocation(), diag::note_template_decl_here)
5916         << Params->getSourceRange();
5917     return true;
5918   }
5919 
5920   // No problems found with the new argument list, propagate changes back
5921   // to caller.
5922   if (UpdateArgsWithConversions)
5923     TemplateArgs = std::move(NewArgs);
5924 
5925   if (!PartialTemplateArgs &&
5926       EnsureTemplateArgumentListConstraints(
5927         Template, Converted, SourceRange(TemplateLoc,
5928                                          TemplateArgs.getRAngleLoc()))) {
5929     if (ConstraintsNotSatisfied)
5930       *ConstraintsNotSatisfied = true;
5931     return true;
5932   }
5933 
5934   return false;
5935 }
5936 
5937 namespace {
5938   class UnnamedLocalNoLinkageFinder
5939     : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
5940   {
5941     Sema &S;
5942     SourceRange SR;
5943 
5944     typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
5945 
5946   public:
UnnamedLocalNoLinkageFinder(Sema & S,SourceRange SR)5947     UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
5948 
Visit(QualType T)5949     bool Visit(QualType T) {
5950       return T.isNull() ? false : inherited::Visit(T.getTypePtr());
5951     }
5952 
5953 #define TYPE(Class, Parent) \
5954     bool Visit##Class##Type(const Class##Type *);
5955 #define ABSTRACT_TYPE(Class, Parent) \
5956     bool Visit##Class##Type(const Class##Type *) { return false; }
5957 #define NON_CANONICAL_TYPE(Class, Parent) \
5958     bool Visit##Class##Type(const Class##Type *) { return false; }
5959 #include "clang/AST/TypeNodes.inc"
5960 
5961     bool VisitTagDecl(const TagDecl *Tag);
5962     bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
5963   };
5964 } // end anonymous namespace
5965 
VisitBuiltinType(const BuiltinType *)5966 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
5967   return false;
5968 }
5969 
VisitComplexType(const ComplexType * T)5970 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
5971   return Visit(T->getElementType());
5972 }
5973 
VisitPointerType(const PointerType * T)5974 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
5975   return Visit(T->getPointeeType());
5976 }
5977 
VisitBlockPointerType(const BlockPointerType * T)5978 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
5979                                                     const BlockPointerType* T) {
5980   return Visit(T->getPointeeType());
5981 }
5982 
VisitLValueReferenceType(const LValueReferenceType * T)5983 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
5984                                                 const LValueReferenceType* T) {
5985   return Visit(T->getPointeeType());
5986 }
5987 
VisitRValueReferenceType(const RValueReferenceType * T)5988 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
5989                                                 const RValueReferenceType* T) {
5990   return Visit(T->getPointeeType());
5991 }
5992 
VisitMemberPointerType(const MemberPointerType * T)5993 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
5994                                                   const MemberPointerType* T) {
5995   return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
5996 }
5997 
VisitConstantArrayType(const ConstantArrayType * T)5998 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
5999                                                   const ConstantArrayType* T) {
6000   return Visit(T->getElementType());
6001 }
6002 
VisitIncompleteArrayType(const IncompleteArrayType * T)6003 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
6004                                                  const IncompleteArrayType* T) {
6005   return Visit(T->getElementType());
6006 }
6007 
VisitVariableArrayType(const VariableArrayType * T)6008 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
6009                                                    const VariableArrayType* T) {
6010   return Visit(T->getElementType());
6011 }
6012 
VisitDependentSizedArrayType(const DependentSizedArrayType * T)6013 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
6014                                             const DependentSizedArrayType* T) {
6015   return Visit(T->getElementType());
6016 }
6017 
VisitDependentSizedExtVectorType(const DependentSizedExtVectorType * T)6018 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
6019                                          const DependentSizedExtVectorType* T) {
6020   return Visit(T->getElementType());
6021 }
6022 
VisitDependentSizedMatrixType(const DependentSizedMatrixType * T)6023 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedMatrixType(
6024     const DependentSizedMatrixType *T) {
6025   return Visit(T->getElementType());
6026 }
6027 
VisitDependentAddressSpaceType(const DependentAddressSpaceType * T)6028 bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType(
6029     const DependentAddressSpaceType *T) {
6030   return Visit(T->getPointeeType());
6031 }
6032 
VisitVectorType(const VectorType * T)6033 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
6034   return Visit(T->getElementType());
6035 }
6036 
VisitDependentVectorType(const DependentVectorType * T)6037 bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType(
6038     const DependentVectorType *T) {
6039   return Visit(T->getElementType());
6040 }
6041 
VisitExtVectorType(const ExtVectorType * T)6042 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
6043   return Visit(T->getElementType());
6044 }
6045 
VisitConstantMatrixType(const ConstantMatrixType * T)6046 bool UnnamedLocalNoLinkageFinder::VisitConstantMatrixType(
6047     const ConstantMatrixType *T) {
6048   return Visit(T->getElementType());
6049 }
6050 
VisitFunctionProtoType(const FunctionProtoType * T)6051 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
6052                                                   const FunctionProtoType* T) {
6053   for (const auto &A : T->param_types()) {
6054     if (Visit(A))
6055       return true;
6056   }
6057 
6058   return Visit(T->getReturnType());
6059 }
6060 
VisitFunctionNoProtoType(const FunctionNoProtoType * T)6061 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
6062                                                const FunctionNoProtoType* T) {
6063   return Visit(T->getReturnType());
6064 }
6065 
VisitUnresolvedUsingType(const UnresolvedUsingType *)6066 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
6067                                                   const UnresolvedUsingType*) {
6068   return false;
6069 }
6070 
VisitTypeOfExprType(const TypeOfExprType *)6071 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
6072   return false;
6073 }
6074 
VisitTypeOfType(const TypeOfType * T)6075 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
6076   return Visit(T->getUnderlyingType());
6077 }
6078 
VisitDecltypeType(const DecltypeType *)6079 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
6080   return false;
6081 }
6082 
VisitUnaryTransformType(const UnaryTransformType *)6083 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
6084                                                     const UnaryTransformType*) {
6085   return false;
6086 }
6087 
VisitAutoType(const AutoType * T)6088 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
6089   return Visit(T->getDeducedType());
6090 }
6091 
VisitDeducedTemplateSpecializationType(const DeducedTemplateSpecializationType * T)6092 bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType(
6093     const DeducedTemplateSpecializationType *T) {
6094   return Visit(T->getDeducedType());
6095 }
6096 
VisitRecordType(const RecordType * T)6097 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
6098   return VisitTagDecl(T->getDecl());
6099 }
6100 
VisitEnumType(const EnumType * T)6101 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
6102   return VisitTagDecl(T->getDecl());
6103 }
6104 
VisitTemplateTypeParmType(const TemplateTypeParmType *)6105 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
6106                                                  const TemplateTypeParmType*) {
6107   return false;
6108 }
6109 
VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *)6110 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
6111                                         const SubstTemplateTypeParmPackType *) {
6112   return false;
6113 }
6114 
VisitTemplateSpecializationType(const TemplateSpecializationType *)6115 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
6116                                             const TemplateSpecializationType*) {
6117   return false;
6118 }
6119 
VisitInjectedClassNameType(const InjectedClassNameType * T)6120 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
6121                                               const InjectedClassNameType* T) {
6122   return VisitTagDecl(T->getDecl());
6123 }
6124 
VisitDependentNameType(const DependentNameType * T)6125 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
6126                                                    const DependentNameType* T) {
6127   return VisitNestedNameSpecifier(T->getQualifier());
6128 }
6129 
VisitDependentTemplateSpecializationType(const DependentTemplateSpecializationType * T)6130 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
6131                                  const DependentTemplateSpecializationType* T) {
6132   if (auto *Q = T->getQualifier())
6133     return VisitNestedNameSpecifier(Q);
6134   return false;
6135 }
6136 
VisitPackExpansionType(const PackExpansionType * T)6137 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
6138                                                    const PackExpansionType* T) {
6139   return Visit(T->getPattern());
6140 }
6141 
VisitObjCObjectType(const ObjCObjectType *)6142 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
6143   return false;
6144 }
6145 
VisitObjCInterfaceType(const ObjCInterfaceType *)6146 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
6147                                                    const ObjCInterfaceType *) {
6148   return false;
6149 }
6150 
VisitObjCObjectPointerType(const ObjCObjectPointerType *)6151 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
6152                                                 const ObjCObjectPointerType *) {
6153   return false;
6154 }
6155 
VisitAtomicType(const AtomicType * T)6156 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
6157   return Visit(T->getValueType());
6158 }
6159 
VisitPipeType(const PipeType * T)6160 bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) {
6161   return false;
6162 }
6163 
VisitExtIntType(const ExtIntType * T)6164 bool UnnamedLocalNoLinkageFinder::VisitExtIntType(const ExtIntType *T) {
6165   return false;
6166 }
6167 
VisitDependentExtIntType(const DependentExtIntType * T)6168 bool UnnamedLocalNoLinkageFinder::VisitDependentExtIntType(
6169     const DependentExtIntType *T) {
6170   return false;
6171 }
6172 
VisitTagDecl(const TagDecl * Tag)6173 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
6174   if (Tag->getDeclContext()->isFunctionOrMethod()) {
6175     S.Diag(SR.getBegin(),
6176            S.getLangOpts().CPlusPlus11 ?
6177              diag::warn_cxx98_compat_template_arg_local_type :
6178              diag::ext_template_arg_local_type)
6179       << S.Context.getTypeDeclType(Tag) << SR;
6180     return true;
6181   }
6182 
6183   if (!Tag->hasNameForLinkage()) {
6184     S.Diag(SR.getBegin(),
6185            S.getLangOpts().CPlusPlus11 ?
6186              diag::warn_cxx98_compat_template_arg_unnamed_type :
6187              diag::ext_template_arg_unnamed_type) << SR;
6188     S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
6189     return true;
6190   }
6191 
6192   return false;
6193 }
6194 
VisitNestedNameSpecifier(NestedNameSpecifier * NNS)6195 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
6196                                                     NestedNameSpecifier *NNS) {
6197   assert(NNS);
6198   if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
6199     return true;
6200 
6201   switch (NNS->getKind()) {
6202   case NestedNameSpecifier::Identifier:
6203   case NestedNameSpecifier::Namespace:
6204   case NestedNameSpecifier::NamespaceAlias:
6205   case NestedNameSpecifier::Global:
6206   case NestedNameSpecifier::Super:
6207     return false;
6208 
6209   case NestedNameSpecifier::TypeSpec:
6210   case NestedNameSpecifier::TypeSpecWithTemplate:
6211     return Visit(QualType(NNS->getAsType(), 0));
6212   }
6213   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
6214 }
6215 
6216 /// Check a template argument against its corresponding
6217 /// template type parameter.
6218 ///
6219 /// This routine implements the semantics of C++ [temp.arg.type]. It
6220 /// returns true if an error occurred, and false otherwise.
CheckTemplateArgument(TemplateTypeParmDecl * Param,TypeSourceInfo * ArgInfo)6221 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
6222                                  TypeSourceInfo *ArgInfo) {
6223   assert(ArgInfo && "invalid TypeSourceInfo");
6224   QualType Arg = ArgInfo->getType();
6225   SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
6226 
6227   if (Arg->isVariablyModifiedType()) {
6228     return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
6229   } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
6230     return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
6231   }
6232 
6233   // C++03 [temp.arg.type]p2:
6234   //   A local type, a type with no linkage, an unnamed type or a type
6235   //   compounded from any of these types shall not be used as a
6236   //   template-argument for a template type-parameter.
6237   //
6238   // C++11 allows these, and even in C++03 we allow them as an extension with
6239   // a warning.
6240   if (LangOpts.CPlusPlus11 || Arg->hasUnnamedOrLocalType()) {
6241     UnnamedLocalNoLinkageFinder Finder(*this, SR);
6242     (void)Finder.Visit(Context.getCanonicalType(Arg));
6243   }
6244 
6245   return false;
6246 }
6247 
6248 enum NullPointerValueKind {
6249   NPV_NotNullPointer,
6250   NPV_NullPointer,
6251   NPV_Error
6252 };
6253 
6254 /// Determine whether the given template argument is a null pointer
6255 /// value of the appropriate type.
6256 static NullPointerValueKind
isNullPointerValueTemplateArgument(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * Arg,Decl * Entity=nullptr)6257 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
6258                                    QualType ParamType, Expr *Arg,
6259                                    Decl *Entity = nullptr) {
6260   if (Arg->isValueDependent() || Arg->isTypeDependent())
6261     return NPV_NotNullPointer;
6262 
6263   // dllimport'd entities aren't constant but are available inside of template
6264   // arguments.
6265   if (Entity && Entity->hasAttr<DLLImportAttr>())
6266     return NPV_NotNullPointer;
6267 
6268   if (!S.isCompleteType(Arg->getExprLoc(), ParamType))
6269     llvm_unreachable(
6270         "Incomplete parameter type in isNullPointerValueTemplateArgument!");
6271 
6272   if (!S.getLangOpts().CPlusPlus11)
6273     return NPV_NotNullPointer;
6274 
6275   // Determine whether we have a constant expression.
6276   ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
6277   if (ArgRV.isInvalid())
6278     return NPV_Error;
6279   Arg = ArgRV.get();
6280 
6281   Expr::EvalResult EvalResult;
6282   SmallVector<PartialDiagnosticAt, 8> Notes;
6283   EvalResult.Diag = &Notes;
6284   if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
6285       EvalResult.HasSideEffects) {
6286     SourceLocation DiagLoc = Arg->getExprLoc();
6287 
6288     // If our only note is the usual "invalid subexpression" note, just point
6289     // the caret at its location rather than producing an essentially
6290     // redundant note.
6291     if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6292         diag::note_invalid_subexpr_in_const_expr) {
6293       DiagLoc = Notes[0].first;
6294       Notes.clear();
6295     }
6296 
6297     S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
6298       << Arg->getType() << Arg->getSourceRange();
6299     for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6300       S.Diag(Notes[I].first, Notes[I].second);
6301 
6302     S.Diag(Param->getLocation(), diag::note_template_param_here);
6303     return NPV_Error;
6304   }
6305 
6306   // C++11 [temp.arg.nontype]p1:
6307   //   - an address constant expression of type std::nullptr_t
6308   if (Arg->getType()->isNullPtrType())
6309     return NPV_NullPointer;
6310 
6311   //   - a constant expression that evaluates to a null pointer value (4.10); or
6312   //   - a constant expression that evaluates to a null member pointer value
6313   //     (4.11); or
6314   if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
6315       (EvalResult.Val.isMemberPointer() &&
6316        !EvalResult.Val.getMemberPointerDecl())) {
6317     // If our expression has an appropriate type, we've succeeded.
6318     bool ObjCLifetimeConversion;
6319     if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
6320         S.IsQualificationConversion(Arg->getType(), ParamType, false,
6321                                      ObjCLifetimeConversion))
6322       return NPV_NullPointer;
6323 
6324     // The types didn't match, but we know we got a null pointer; complain,
6325     // then recover as if the types were correct.
6326     S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
6327       << Arg->getType() << ParamType << Arg->getSourceRange();
6328     S.Diag(Param->getLocation(), diag::note_template_param_here);
6329     return NPV_NullPointer;
6330   }
6331 
6332   // If we don't have a null pointer value, but we do have a NULL pointer
6333   // constant, suggest a cast to the appropriate type.
6334   if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
6335     std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
6336     S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
6337         << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code)
6338         << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()),
6339                                       ")");
6340     S.Diag(Param->getLocation(), diag::note_template_param_here);
6341     return NPV_NullPointer;
6342   }
6343 
6344   // FIXME: If we ever want to support general, address-constant expressions
6345   // as non-type template arguments, we should return the ExprResult here to
6346   // be interpreted by the caller.
6347   return NPV_NotNullPointer;
6348 }
6349 
6350 /// Checks whether the given template argument is compatible with its
6351 /// template parameter.
CheckTemplateArgumentIsCompatibleWithParameter(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * ArgIn,Expr * Arg,QualType ArgType)6352 static bool CheckTemplateArgumentIsCompatibleWithParameter(
6353     Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
6354     Expr *Arg, QualType ArgType) {
6355   bool ObjCLifetimeConversion;
6356   if (ParamType->isPointerType() &&
6357       !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() &&
6358       S.IsQualificationConversion(ArgType, ParamType, false,
6359                                   ObjCLifetimeConversion)) {
6360     // For pointer-to-object types, qualification conversions are
6361     // permitted.
6362   } else {
6363     if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
6364       if (!ParamRef->getPointeeType()->isFunctionType()) {
6365         // C++ [temp.arg.nontype]p5b3:
6366         //   For a non-type template-parameter of type reference to
6367         //   object, no conversions apply. The type referred to by the
6368         //   reference may be more cv-qualified than the (otherwise
6369         //   identical) type of the template- argument. The
6370         //   template-parameter is bound directly to the
6371         //   template-argument, which shall be an lvalue.
6372 
6373         // FIXME: Other qualifiers?
6374         unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
6375         unsigned ArgQuals = ArgType.getCVRQualifiers();
6376 
6377         if ((ParamQuals | ArgQuals) != ParamQuals) {
6378           S.Diag(Arg->getBeginLoc(),
6379                  diag::err_template_arg_ref_bind_ignores_quals)
6380               << ParamType << Arg->getType() << Arg->getSourceRange();
6381           S.Diag(Param->getLocation(), diag::note_template_param_here);
6382           return true;
6383         }
6384       }
6385     }
6386 
6387     // At this point, the template argument refers to an object or
6388     // function with external linkage. We now need to check whether the
6389     // argument and parameter types are compatible.
6390     if (!S.Context.hasSameUnqualifiedType(ArgType,
6391                                           ParamType.getNonReferenceType())) {
6392       // We can't perform this conversion or binding.
6393       if (ParamType->isReferenceType())
6394         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind)
6395             << ParamType << ArgIn->getType() << Arg->getSourceRange();
6396       else
6397         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
6398             << ArgIn->getType() << ParamType << Arg->getSourceRange();
6399       S.Diag(Param->getLocation(), diag::note_template_param_here);
6400       return true;
6401     }
6402   }
6403 
6404   return false;
6405 }
6406 
6407 /// Checks whether the given template argument is the address
6408 /// of an object or function according to C++ [temp.arg.nontype]p1.
6409 static bool
CheckTemplateArgumentAddressOfObjectOrFunction(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * ArgIn,TemplateArgument & Converted)6410 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
6411                                                NonTypeTemplateParmDecl *Param,
6412                                                QualType ParamType,
6413                                                Expr *ArgIn,
6414                                                TemplateArgument &Converted) {
6415   bool Invalid = false;
6416   Expr *Arg = ArgIn;
6417   QualType ArgType = Arg->getType();
6418 
6419   bool AddressTaken = false;
6420   SourceLocation AddrOpLoc;
6421   if (S.getLangOpts().MicrosoftExt) {
6422     // Microsoft Visual C++ strips all casts, allows an arbitrary number of
6423     // dereference and address-of operators.
6424     Arg = Arg->IgnoreParenCasts();
6425 
6426     bool ExtWarnMSTemplateArg = false;
6427     UnaryOperatorKind FirstOpKind;
6428     SourceLocation FirstOpLoc;
6429     while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6430       UnaryOperatorKind UnOpKind = UnOp->getOpcode();
6431       if (UnOpKind == UO_Deref)
6432         ExtWarnMSTemplateArg = true;
6433       if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
6434         Arg = UnOp->getSubExpr()->IgnoreParenCasts();
6435         if (!AddrOpLoc.isValid()) {
6436           FirstOpKind = UnOpKind;
6437           FirstOpLoc = UnOp->getOperatorLoc();
6438         }
6439       } else
6440         break;
6441     }
6442     if (FirstOpLoc.isValid()) {
6443       if (ExtWarnMSTemplateArg)
6444         S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument)
6445             << ArgIn->getSourceRange();
6446 
6447       if (FirstOpKind == UO_AddrOf)
6448         AddressTaken = true;
6449       else if (Arg->getType()->isPointerType()) {
6450         // We cannot let pointers get dereferenced here, that is obviously not a
6451         // constant expression.
6452         assert(FirstOpKind == UO_Deref);
6453         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6454             << Arg->getSourceRange();
6455       }
6456     }
6457   } else {
6458     // See through any implicit casts we added to fix the type.
6459     Arg = Arg->IgnoreImpCasts();
6460 
6461     // C++ [temp.arg.nontype]p1:
6462     //
6463     //   A template-argument for a non-type, non-template
6464     //   template-parameter shall be one of: [...]
6465     //
6466     //     -- the address of an object or function with external
6467     //        linkage, including function templates and function
6468     //        template-ids but excluding non-static class members,
6469     //        expressed as & id-expression where the & is optional if
6470     //        the name refers to a function or array, or if the
6471     //        corresponding template-parameter is a reference; or
6472 
6473     // In C++98/03 mode, give an extension warning on any extra parentheses.
6474     // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
6475     bool ExtraParens = false;
6476     while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
6477       if (!Invalid && !ExtraParens) {
6478         S.Diag(Arg->getBeginLoc(),
6479                S.getLangOpts().CPlusPlus11
6480                    ? diag::warn_cxx98_compat_template_arg_extra_parens
6481                    : diag::ext_template_arg_extra_parens)
6482             << Arg->getSourceRange();
6483         ExtraParens = true;
6484       }
6485 
6486       Arg = Parens->getSubExpr();
6487     }
6488 
6489     while (SubstNonTypeTemplateParmExpr *subst =
6490                dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6491       Arg = subst->getReplacement()->IgnoreImpCasts();
6492 
6493     if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6494       if (UnOp->getOpcode() == UO_AddrOf) {
6495         Arg = UnOp->getSubExpr();
6496         AddressTaken = true;
6497         AddrOpLoc = UnOp->getOperatorLoc();
6498       }
6499     }
6500 
6501     while (SubstNonTypeTemplateParmExpr *subst =
6502                dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6503       Arg = subst->getReplacement()->IgnoreImpCasts();
6504   }
6505 
6506   ValueDecl *Entity = nullptr;
6507   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg))
6508     Entity = DRE->getDecl();
6509   else if (CXXUuidofExpr *CUE = dyn_cast<CXXUuidofExpr>(Arg))
6510     Entity = CUE->getGuidDecl();
6511 
6512   // If our parameter has pointer type, check for a null template value.
6513   if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
6514     switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn,
6515                                                Entity)) {
6516     case NPV_NullPointer:
6517       S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6518       Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
6519                                    /*isNullPtr=*/true);
6520       return false;
6521 
6522     case NPV_Error:
6523       return true;
6524 
6525     case NPV_NotNullPointer:
6526       break;
6527     }
6528   }
6529 
6530   // Stop checking the precise nature of the argument if it is value dependent,
6531   // it should be checked when instantiated.
6532   if (Arg->isValueDependent()) {
6533     Converted = TemplateArgument(ArgIn);
6534     return false;
6535   }
6536 
6537   if (!Entity) {
6538     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6539         << Arg->getSourceRange();
6540     S.Diag(Param->getLocation(), diag::note_template_param_here);
6541     return true;
6542   }
6543 
6544   // Cannot refer to non-static data members
6545   if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
6546     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field)
6547         << Entity << Arg->getSourceRange();
6548     S.Diag(Param->getLocation(), diag::note_template_param_here);
6549     return true;
6550   }
6551 
6552   // Cannot refer to non-static member functions
6553   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
6554     if (!Method->isStatic()) {
6555       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method)
6556           << Method << Arg->getSourceRange();
6557       S.Diag(Param->getLocation(), diag::note_template_param_here);
6558       return true;
6559     }
6560   }
6561 
6562   FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
6563   VarDecl *Var = dyn_cast<VarDecl>(Entity);
6564   MSGuidDecl *Guid = dyn_cast<MSGuidDecl>(Entity);
6565 
6566   // A non-type template argument must refer to an object or function.
6567   if (!Func && !Var && !Guid) {
6568     // We found something, but we don't know specifically what it is.
6569     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func)
6570         << Arg->getSourceRange();
6571     S.Diag(Entity->getLocation(), diag::note_template_arg_refers_here);
6572     return true;
6573   }
6574 
6575   // Address / reference template args must have external linkage in C++98.
6576   if (Entity->getFormalLinkage() == InternalLinkage) {
6577     S.Diag(Arg->getBeginLoc(),
6578            S.getLangOpts().CPlusPlus11
6579                ? diag::warn_cxx98_compat_template_arg_object_internal
6580                : diag::ext_template_arg_object_internal)
6581         << !Func << Entity << Arg->getSourceRange();
6582     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6583       << !Func;
6584   } else if (!Entity->hasLinkage()) {
6585     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage)
6586         << !Func << Entity << Arg->getSourceRange();
6587     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6588       << !Func;
6589     return true;
6590   }
6591 
6592   if (Var) {
6593     // A value of reference type is not an object.
6594     if (Var->getType()->isReferenceType()) {
6595       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var)
6596           << Var->getType() << Arg->getSourceRange();
6597       S.Diag(Param->getLocation(), diag::note_template_param_here);
6598       return true;
6599     }
6600 
6601     // A template argument must have static storage duration.
6602     if (Var->getTLSKind()) {
6603       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local)
6604           << Arg->getSourceRange();
6605       S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
6606       return true;
6607     }
6608   }
6609 
6610   if (AddressTaken && ParamType->isReferenceType()) {
6611     // If we originally had an address-of operator, but the
6612     // parameter has reference type, complain and (if things look
6613     // like they will work) drop the address-of operator.
6614     if (!S.Context.hasSameUnqualifiedType(Entity->getType(),
6615                                           ParamType.getNonReferenceType())) {
6616       S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6617         << ParamType;
6618       S.Diag(Param->getLocation(), diag::note_template_param_here);
6619       return true;
6620     }
6621 
6622     S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6623       << ParamType
6624       << FixItHint::CreateRemoval(AddrOpLoc);
6625     S.Diag(Param->getLocation(), diag::note_template_param_here);
6626 
6627     ArgType = Entity->getType();
6628   }
6629 
6630   // If the template parameter has pointer type, either we must have taken the
6631   // address or the argument must decay to a pointer.
6632   if (!AddressTaken && ParamType->isPointerType()) {
6633     if (Func) {
6634       // Function-to-pointer decay.
6635       ArgType = S.Context.getPointerType(Func->getType());
6636     } else if (Entity->getType()->isArrayType()) {
6637       // Array-to-pointer decay.
6638       ArgType = S.Context.getArrayDecayedType(Entity->getType());
6639     } else {
6640       // If the template parameter has pointer type but the address of
6641       // this object was not taken, complain and (possibly) recover by
6642       // taking the address of the entity.
6643       ArgType = S.Context.getPointerType(Entity->getType());
6644       if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
6645         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
6646           << ParamType;
6647         S.Diag(Param->getLocation(), diag::note_template_param_here);
6648         return true;
6649       }
6650 
6651       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
6652         << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&");
6653 
6654       S.Diag(Param->getLocation(), diag::note_template_param_here);
6655     }
6656   }
6657 
6658   if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
6659                                                      Arg, ArgType))
6660     return true;
6661 
6662   // Create the template argument.
6663   Converted =
6664       TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), ParamType);
6665   S.MarkAnyDeclReferenced(Arg->getBeginLoc(), Entity, false);
6666   return false;
6667 }
6668 
6669 /// Checks whether the given template argument is a pointer to
6670 /// member constant according to C++ [temp.arg.nontype]p1.
CheckTemplateArgumentPointerToMember(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * & ResultArg,TemplateArgument & Converted)6671 static bool CheckTemplateArgumentPointerToMember(Sema &S,
6672                                                  NonTypeTemplateParmDecl *Param,
6673                                                  QualType ParamType,
6674                                                  Expr *&ResultArg,
6675                                                  TemplateArgument &Converted) {
6676   bool Invalid = false;
6677 
6678   Expr *Arg = ResultArg;
6679   bool ObjCLifetimeConversion;
6680 
6681   // C++ [temp.arg.nontype]p1:
6682   //
6683   //   A template-argument for a non-type, non-template
6684   //   template-parameter shall be one of: [...]
6685   //
6686   //     -- a pointer to member expressed as described in 5.3.1.
6687   DeclRefExpr *DRE = nullptr;
6688 
6689   // In C++98/03 mode, give an extension warning on any extra parentheses.
6690   // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
6691   bool ExtraParens = false;
6692   while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
6693     if (!Invalid && !ExtraParens) {
6694       S.Diag(Arg->getBeginLoc(),
6695              S.getLangOpts().CPlusPlus11
6696                  ? diag::warn_cxx98_compat_template_arg_extra_parens
6697                  : diag::ext_template_arg_extra_parens)
6698           << Arg->getSourceRange();
6699       ExtraParens = true;
6700     }
6701 
6702     Arg = Parens->getSubExpr();
6703   }
6704 
6705   while (SubstNonTypeTemplateParmExpr *subst =
6706            dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6707     Arg = subst->getReplacement()->IgnoreImpCasts();
6708 
6709   // A pointer-to-member constant written &Class::member.
6710   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6711     if (UnOp->getOpcode() == UO_AddrOf) {
6712       DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
6713       if (DRE && !DRE->getQualifier())
6714         DRE = nullptr;
6715     }
6716   }
6717   // A constant of pointer-to-member type.
6718   else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
6719     ValueDecl *VD = DRE->getDecl();
6720     if (VD->getType()->isMemberPointerType()) {
6721       if (isa<NonTypeTemplateParmDecl>(VD)) {
6722         if (Arg->isTypeDependent() || Arg->isValueDependent()) {
6723           Converted = TemplateArgument(Arg);
6724         } else {
6725           VD = cast<ValueDecl>(VD->getCanonicalDecl());
6726           Converted = TemplateArgument(VD, ParamType);
6727         }
6728         return Invalid;
6729       }
6730     }
6731 
6732     DRE = nullptr;
6733   }
6734 
6735   ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
6736 
6737   // Check for a null pointer value.
6738   switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg,
6739                                              Entity)) {
6740   case NPV_Error:
6741     return true;
6742   case NPV_NullPointer:
6743     S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6744     Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
6745                                  /*isNullPtr*/true);
6746     return false;
6747   case NPV_NotNullPointer:
6748     break;
6749   }
6750 
6751   if (S.IsQualificationConversion(ResultArg->getType(),
6752                                   ParamType.getNonReferenceType(), false,
6753                                   ObjCLifetimeConversion)) {
6754     ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp,
6755                                     ResultArg->getValueKind())
6756                     .get();
6757   } else if (!S.Context.hasSameUnqualifiedType(
6758                  ResultArg->getType(), ParamType.getNonReferenceType())) {
6759     // We can't perform this conversion.
6760     S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible)
6761         << ResultArg->getType() << ParamType << ResultArg->getSourceRange();
6762     S.Diag(Param->getLocation(), diag::note_template_param_here);
6763     return true;
6764   }
6765 
6766   if (!DRE)
6767     return S.Diag(Arg->getBeginLoc(),
6768                   diag::err_template_arg_not_pointer_to_member_form)
6769            << Arg->getSourceRange();
6770 
6771   if (isa<FieldDecl>(DRE->getDecl()) ||
6772       isa<IndirectFieldDecl>(DRE->getDecl()) ||
6773       isa<CXXMethodDecl>(DRE->getDecl())) {
6774     assert((isa<FieldDecl>(DRE->getDecl()) ||
6775             isa<IndirectFieldDecl>(DRE->getDecl()) ||
6776             !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
6777            "Only non-static member pointers can make it here");
6778 
6779     // Okay: this is the address of a non-static member, and therefore
6780     // a member pointer constant.
6781     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
6782       Converted = TemplateArgument(Arg);
6783     } else {
6784       ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
6785       Converted = TemplateArgument(D, ParamType);
6786     }
6787     return Invalid;
6788   }
6789 
6790   // We found something else, but we don't know specifically what it is.
6791   S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form)
6792       << Arg->getSourceRange();
6793   S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
6794   return true;
6795 }
6796 
6797 /// Check a template argument against its corresponding
6798 /// non-type template parameter.
6799 ///
6800 /// This routine implements the semantics of C++ [temp.arg.nontype].
6801 /// If an error occurred, it returns ExprError(); otherwise, it
6802 /// returns the converted template argument. \p ParamType is the
6803 /// type of the non-type template parameter after it has been instantiated.
CheckTemplateArgument(NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * Arg,TemplateArgument & Converted,CheckTemplateArgumentKind CTAK)6804 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
6805                                        QualType ParamType, Expr *Arg,
6806                                        TemplateArgument &Converted,
6807                                        CheckTemplateArgumentKind CTAK) {
6808   SourceLocation StartLoc = Arg->getBeginLoc();
6809 
6810   // If the parameter type somehow involves auto, deduce the type now.
6811   DeducedType *DeducedT = ParamType->getContainedDeducedType();
6812   if (getLangOpts().CPlusPlus17 && DeducedT && !DeducedT->isDeduced()) {
6813     // During template argument deduction, we allow 'decltype(auto)' to
6814     // match an arbitrary dependent argument.
6815     // FIXME: The language rules don't say what happens in this case.
6816     // FIXME: We get an opaque dependent type out of decltype(auto) if the
6817     // expression is merely instantiation-dependent; is this enough?
6818     if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) {
6819       auto *AT = dyn_cast<AutoType>(DeducedT);
6820       if (AT && AT->isDecltypeAuto()) {
6821         Converted = TemplateArgument(Arg);
6822         return Arg;
6823       }
6824     }
6825 
6826     // When checking a deduced template argument, deduce from its type even if
6827     // the type is dependent, in order to check the types of non-type template
6828     // arguments line up properly in partial ordering.
6829     Optional<unsigned> Depth = Param->getDepth() + 1;
6830     Expr *DeductionArg = Arg;
6831     if (auto *PE = dyn_cast<PackExpansionExpr>(DeductionArg))
6832       DeductionArg = PE->getPattern();
6833     TypeSourceInfo *TSI =
6834         Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation());
6835     if (isa<DeducedTemplateSpecializationType>(DeducedT)) {
6836       InitializedEntity Entity =
6837           InitializedEntity::InitializeTemplateParameter(ParamType, Param);
6838       InitializationKind Kind = InitializationKind::CreateForInit(
6839           DeductionArg->getBeginLoc(), /*DirectInit*/false, DeductionArg);
6840       Expr *Inits[1] = {DeductionArg};
6841       ParamType =
6842           DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, Inits);
6843       if (ParamType.isNull())
6844         return ExprError();
6845     } else if (DeduceAutoType(
6846                    TSI, DeductionArg, ParamType, Depth,
6847                    // We do not check constraints right now because the
6848                    // immediately-declared constraint of the auto type is also
6849                    // an associated constraint, and will be checked along with
6850                    // the other associated constraints after checking the
6851                    // template argument list.
6852                    /*IgnoreConstraints=*/true) == DAR_Failed) {
6853       Diag(Arg->getExprLoc(),
6854            diag::err_non_type_template_parm_type_deduction_failure)
6855         << Param->getDeclName() << Param->getType() << Arg->getType()
6856         << Arg->getSourceRange();
6857       Diag(Param->getLocation(), diag::note_template_param_here);
6858       return ExprError();
6859     }
6860     // CheckNonTypeTemplateParameterType will produce a diagnostic if there's
6861     // an error. The error message normally references the parameter
6862     // declaration, but here we'll pass the argument location because that's
6863     // where the parameter type is deduced.
6864     ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc());
6865     if (ParamType.isNull()) {
6866       Diag(Param->getLocation(), diag::note_template_param_here);
6867       return ExprError();
6868     }
6869   }
6870 
6871   // We should have already dropped all cv-qualifiers by now.
6872   assert(!ParamType.hasQualifiers() &&
6873          "non-type template parameter type cannot be qualified");
6874 
6875   // FIXME: When Param is a reference, should we check that Arg is an lvalue?
6876   if (CTAK == CTAK_Deduced &&
6877       (ParamType->isReferenceType()
6878            ? !Context.hasSameType(ParamType.getNonReferenceType(),
6879                                   Arg->getType())
6880            : !Context.hasSameUnqualifiedType(ParamType, Arg->getType()))) {
6881     // FIXME: If either type is dependent, we skip the check. This isn't
6882     // correct, since during deduction we're supposed to have replaced each
6883     // template parameter with some unique (non-dependent) placeholder.
6884     // FIXME: If the argument type contains 'auto', we carry on and fail the
6885     // type check in order to force specific types to be more specialized than
6886     // 'auto'. It's not clear how partial ordering with 'auto' is supposed to
6887     // work. Similarly for CTAD, when comparing 'A<x>' against 'A'.
6888     if ((ParamType->isDependentType() || Arg->isTypeDependent()) &&
6889         !Arg->getType()->getContainedDeducedType()) {
6890       Converted = TemplateArgument(Arg);
6891       return Arg;
6892     }
6893     // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770,
6894     // we should actually be checking the type of the template argument in P,
6895     // not the type of the template argument deduced from A, against the
6896     // template parameter type.
6897     Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
6898       << Arg->getType()
6899       << ParamType.getUnqualifiedType();
6900     Diag(Param->getLocation(), diag::note_template_param_here);
6901     return ExprError();
6902   }
6903 
6904   // If either the parameter has a dependent type or the argument is
6905   // type-dependent, there's nothing we can check now. The argument only
6906   // contains an unexpanded pack during partial ordering, and there's
6907   // nothing more we can check in that case.
6908   if (ParamType->isDependentType() || Arg->isTypeDependent() ||
6909       Arg->containsUnexpandedParameterPack()) {
6910     // Force the argument to the type of the parameter to maintain invariants.
6911     auto *PE = dyn_cast<PackExpansionExpr>(Arg);
6912     if (PE)
6913       Arg = PE->getPattern();
6914     ExprResult E = ImpCastExprToType(
6915         Arg, ParamType.getNonLValueExprType(Context), CK_Dependent,
6916         ParamType->isLValueReferenceType() ? VK_LValue :
6917         ParamType->isRValueReferenceType() ? VK_XValue : VK_RValue);
6918     if (E.isInvalid())
6919       return ExprError();
6920     if (PE) {
6921       // Recreate a pack expansion if we unwrapped one.
6922       E = new (Context)
6923           PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(),
6924                             PE->getNumExpansions());
6925     }
6926     Converted = TemplateArgument(E.get());
6927     return E;
6928   }
6929 
6930   // The initialization of the parameter from the argument is
6931   // a constant-evaluated context.
6932   EnterExpressionEvaluationContext ConstantEvaluated(
6933       *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
6934 
6935   if (getLangOpts().CPlusPlus17) {
6936     QualType CanonParamType = Context.getCanonicalType(ParamType);
6937 
6938     // Avoid making a copy when initializing a template parameter of class type
6939     // from a template parameter object of the same type. This is going beyond
6940     // the standard, but is required for soundness: in
6941     //   template<A a> struct X { X *p; X<a> *q; };
6942     // ... we need p and q to have the same type.
6943     //
6944     // Similarly, don't inject a call to a copy constructor when initializing
6945     // from a template parameter of the same type.
6946     Expr *InnerArg = Arg->IgnoreParenImpCasts();
6947     if (ParamType->isRecordType() && isa<DeclRefExpr>(InnerArg) &&
6948         Context.hasSameUnqualifiedType(ParamType, InnerArg->getType())) {
6949       NamedDecl *ND = cast<DeclRefExpr>(InnerArg)->getDecl();
6950       if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
6951         Converted = TemplateArgument(TPO, CanonParamType);
6952         return Arg;
6953       }
6954       if (isa<NonTypeTemplateParmDecl>(ND)) {
6955         Converted = TemplateArgument(Arg);
6956         return Arg;
6957       }
6958     }
6959 
6960     // C++17 [temp.arg.nontype]p1:
6961     //   A template-argument for a non-type template parameter shall be
6962     //   a converted constant expression of the type of the template-parameter.
6963     APValue Value;
6964     ExprResult ArgResult = CheckConvertedConstantExpression(
6965         Arg, ParamType, Value, CCEK_TemplateArg, Param);
6966     if (ArgResult.isInvalid())
6967       return ExprError();
6968 
6969     // For a value-dependent argument, CheckConvertedConstantExpression is
6970     // permitted (and expected) to be unable to determine a value.
6971     if (ArgResult.get()->isValueDependent()) {
6972       Converted = TemplateArgument(ArgResult.get());
6973       return ArgResult;
6974     }
6975 
6976     // Convert the APValue to a TemplateArgument.
6977     switch (Value.getKind()) {
6978     case APValue::None:
6979       assert(ParamType->isNullPtrType());
6980       Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true);
6981       break;
6982     case APValue::Indeterminate:
6983       llvm_unreachable("result of constant evaluation should be initialized");
6984       break;
6985     case APValue::Int:
6986       assert(ParamType->isIntegralOrEnumerationType());
6987       Converted = TemplateArgument(Context, Value.getInt(), CanonParamType);
6988       break;
6989     case APValue::MemberPointer: {
6990       assert(ParamType->isMemberPointerType());
6991 
6992       // FIXME: We need TemplateArgument representation and mangling for these.
6993       if (!Value.getMemberPointerPath().empty()) {
6994         Diag(Arg->getBeginLoc(),
6995              diag::err_template_arg_member_ptr_base_derived_not_supported)
6996             << Value.getMemberPointerDecl() << ParamType
6997             << Arg->getSourceRange();
6998         return ExprError();
6999       }
7000 
7001       auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
7002       Converted = VD ? TemplateArgument(VD, CanonParamType)
7003                      : TemplateArgument(CanonParamType, /*isNullPtr*/true);
7004       break;
7005     }
7006     case APValue::LValue: {
7007       //   For a non-type template-parameter of pointer or reference type,
7008       //   the value of the constant expression shall not refer to
7009       assert(ParamType->isPointerType() || ParamType->isReferenceType() ||
7010              ParamType->isNullPtrType());
7011       // -- a temporary object
7012       // -- a string literal
7013       // -- the result of a typeid expression, or
7014       // -- a predefined __func__ variable
7015       APValue::LValueBase Base = Value.getLValueBase();
7016       auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>());
7017       if (Base && (!VD || isa<LifetimeExtendedTemporaryDecl>(VD))) {
7018         Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
7019             << Arg->getSourceRange();
7020         return ExprError();
7021       }
7022       // -- a subobject
7023       // FIXME: Until C++20
7024       if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
7025           VD && VD->getType()->isArrayType() &&
7026           Value.getLValuePath()[0].getAsArrayIndex() == 0 &&
7027           !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
7028         // Per defect report (no number yet):
7029         //   ... other than a pointer to the first element of a complete array
7030         //       object.
7031       } else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
7032                  Value.isLValueOnePastTheEnd()) {
7033         Diag(StartLoc, diag::err_non_type_template_arg_subobject)
7034           << Value.getAsString(Context, ParamType);
7035         return ExprError();
7036       }
7037       assert((VD || !ParamType->isReferenceType()) &&
7038              "null reference should not be a constant expression");
7039       assert((!VD || !ParamType->isNullPtrType()) &&
7040              "non-null value of type nullptr_t?");
7041       Converted = VD ? TemplateArgument(VD, CanonParamType)
7042                      : TemplateArgument(CanonParamType, /*isNullPtr*/true);
7043       break;
7044     }
7045     case APValue::Struct:
7046     case APValue::Union:
7047       // Get or create the corresponding template parameter object.
7048       Converted = TemplateArgument(
7049           Context.getTemplateParamObjectDecl(CanonParamType, Value),
7050           CanonParamType);
7051       break;
7052     case APValue::AddrLabelDiff:
7053       return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
7054     case APValue::FixedPoint:
7055     case APValue::Float:
7056     case APValue::ComplexInt:
7057     case APValue::ComplexFloat:
7058     case APValue::Vector:
7059     case APValue::Array:
7060       return Diag(StartLoc, diag::err_non_type_template_arg_unsupported)
7061              << ParamType;
7062     }
7063 
7064     return ArgResult.get();
7065   }
7066 
7067   // C++ [temp.arg.nontype]p5:
7068   //   The following conversions are performed on each expression used
7069   //   as a non-type template-argument. If a non-type
7070   //   template-argument cannot be converted to the type of the
7071   //   corresponding template-parameter then the program is
7072   //   ill-formed.
7073   if (ParamType->isIntegralOrEnumerationType()) {
7074     // C++11:
7075     //   -- for a non-type template-parameter of integral or
7076     //      enumeration type, conversions permitted in a converted
7077     //      constant expression are applied.
7078     //
7079     // C++98:
7080     //   -- for a non-type template-parameter of integral or
7081     //      enumeration type, integral promotions (4.5) and integral
7082     //      conversions (4.7) are applied.
7083 
7084     if (getLangOpts().CPlusPlus11) {
7085       // C++ [temp.arg.nontype]p1:
7086       //   A template-argument for a non-type, non-template template-parameter
7087       //   shall be one of:
7088       //
7089       //     -- for a non-type template-parameter of integral or enumeration
7090       //        type, a converted constant expression of the type of the
7091       //        template-parameter; or
7092       llvm::APSInt Value;
7093       ExprResult ArgResult =
7094         CheckConvertedConstantExpression(Arg, ParamType, Value,
7095                                          CCEK_TemplateArg);
7096       if (ArgResult.isInvalid())
7097         return ExprError();
7098 
7099       // We can't check arbitrary value-dependent arguments.
7100       if (ArgResult.get()->isValueDependent()) {
7101         Converted = TemplateArgument(ArgResult.get());
7102         return ArgResult;
7103       }
7104 
7105       // Widen the argument value to sizeof(parameter type). This is almost
7106       // always a no-op, except when the parameter type is bool. In
7107       // that case, this may extend the argument from 1 bit to 8 bits.
7108       QualType IntegerType = ParamType;
7109       if (const EnumType *Enum = IntegerType->getAs<EnumType>())
7110         IntegerType = Enum->getDecl()->getIntegerType();
7111       Value = Value.extOrTrunc(IntegerType->isExtIntType()
7112                                    ? Context.getIntWidth(IntegerType)
7113                                    : Context.getTypeSize(IntegerType));
7114 
7115       Converted = TemplateArgument(Context, Value,
7116                                    Context.getCanonicalType(ParamType));
7117       return ArgResult;
7118     }
7119 
7120     ExprResult ArgResult = DefaultLvalueConversion(Arg);
7121     if (ArgResult.isInvalid())
7122       return ExprError();
7123     Arg = ArgResult.get();
7124 
7125     QualType ArgType = Arg->getType();
7126 
7127     // C++ [temp.arg.nontype]p1:
7128     //   A template-argument for a non-type, non-template
7129     //   template-parameter shall be one of:
7130     //
7131     //     -- an integral constant-expression of integral or enumeration
7132     //        type; or
7133     //     -- the name of a non-type template-parameter; or
7134     llvm::APSInt Value;
7135     if (!ArgType->isIntegralOrEnumerationType()) {
7136       Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral)
7137           << ArgType << Arg->getSourceRange();
7138       Diag(Param->getLocation(), diag::note_template_param_here);
7139       return ExprError();
7140     } else if (!Arg->isValueDependent()) {
7141       class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
7142         QualType T;
7143 
7144       public:
7145         TmplArgICEDiagnoser(QualType T) : T(T) { }
7146 
7147         SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
7148                                              SourceLocation Loc) override {
7149           return S.Diag(Loc, diag::err_template_arg_not_ice) << T;
7150         }
7151       } Diagnoser(ArgType);
7152 
7153       Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser).get();
7154       if (!Arg)
7155         return ExprError();
7156     }
7157 
7158     // From here on out, all we care about is the unqualified form
7159     // of the argument type.
7160     ArgType = ArgType.getUnqualifiedType();
7161 
7162     // Try to convert the argument to the parameter's type.
7163     if (Context.hasSameType(ParamType, ArgType)) {
7164       // Okay: no conversion necessary
7165     } else if (ParamType->isBooleanType()) {
7166       // This is an integral-to-boolean conversion.
7167       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
7168     } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
7169                !ParamType->isEnumeralType()) {
7170       // This is an integral promotion or conversion.
7171       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
7172     } else {
7173       // We can't perform this conversion.
7174       Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
7175           << Arg->getType() << ParamType << Arg->getSourceRange();
7176       Diag(Param->getLocation(), diag::note_template_param_here);
7177       return ExprError();
7178     }
7179 
7180     // Add the value of this argument to the list of converted
7181     // arguments. We use the bitwidth and signedness of the template
7182     // parameter.
7183     if (Arg->isValueDependent()) {
7184       // The argument is value-dependent. Create a new
7185       // TemplateArgument with the converted expression.
7186       Converted = TemplateArgument(Arg);
7187       return Arg;
7188     }
7189 
7190     QualType IntegerType = Context.getCanonicalType(ParamType);
7191     if (const EnumType *Enum = IntegerType->getAs<EnumType>())
7192       IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
7193 
7194     if (ParamType->isBooleanType()) {
7195       // Value must be zero or one.
7196       Value = Value != 0;
7197       unsigned AllowedBits = Context.getTypeSize(IntegerType);
7198       if (Value.getBitWidth() != AllowedBits)
7199         Value = Value.extOrTrunc(AllowedBits);
7200       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
7201     } else {
7202       llvm::APSInt OldValue = Value;
7203 
7204       // Coerce the template argument's value to the value it will have
7205       // based on the template parameter's type.
7206       unsigned AllowedBits = IntegerType->isExtIntType()
7207                                  ? Context.getIntWidth(IntegerType)
7208                                  : Context.getTypeSize(IntegerType);
7209       if (Value.getBitWidth() != AllowedBits)
7210         Value = Value.extOrTrunc(AllowedBits);
7211       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
7212 
7213       // Complain if an unsigned parameter received a negative value.
7214       if (IntegerType->isUnsignedIntegerOrEnumerationType()
7215                && (OldValue.isSigned() && OldValue.isNegative())) {
7216         Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative)
7217             << OldValue.toString(10) << Value.toString(10) << Param->getType()
7218             << Arg->getSourceRange();
7219         Diag(Param->getLocation(), diag::note_template_param_here);
7220       }
7221 
7222       // Complain if we overflowed the template parameter's type.
7223       unsigned RequiredBits;
7224       if (IntegerType->isUnsignedIntegerOrEnumerationType())
7225         RequiredBits = OldValue.getActiveBits();
7226       else if (OldValue.isUnsigned())
7227         RequiredBits = OldValue.getActiveBits() + 1;
7228       else
7229         RequiredBits = OldValue.getMinSignedBits();
7230       if (RequiredBits > AllowedBits) {
7231         Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large)
7232             << OldValue.toString(10) << Value.toString(10) << Param->getType()
7233             << Arg->getSourceRange();
7234         Diag(Param->getLocation(), diag::note_template_param_here);
7235       }
7236     }
7237 
7238     Converted = TemplateArgument(Context, Value,
7239                                  ParamType->isEnumeralType()
7240                                    ? Context.getCanonicalType(ParamType)
7241                                    : IntegerType);
7242     return Arg;
7243   }
7244 
7245   QualType ArgType = Arg->getType();
7246   DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
7247 
7248   // Handle pointer-to-function, reference-to-function, and
7249   // pointer-to-member-function all in (roughly) the same way.
7250   if (// -- For a non-type template-parameter of type pointer to
7251       //    function, only the function-to-pointer conversion (4.3) is
7252       //    applied. If the template-argument represents a set of
7253       //    overloaded functions (or a pointer to such), the matching
7254       //    function is selected from the set (13.4).
7255       (ParamType->isPointerType() &&
7256        ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) ||
7257       // -- For a non-type template-parameter of type reference to
7258       //    function, no conversions apply. If the template-argument
7259       //    represents a set of overloaded functions, the matching
7260       //    function is selected from the set (13.4).
7261       (ParamType->isReferenceType() &&
7262        ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
7263       // -- For a non-type template-parameter of type pointer to
7264       //    member function, no conversions apply. If the
7265       //    template-argument represents a set of overloaded member
7266       //    functions, the matching member function is selected from
7267       //    the set (13.4).
7268       (ParamType->isMemberPointerType() &&
7269        ParamType->castAs<MemberPointerType>()->getPointeeType()
7270          ->isFunctionType())) {
7271 
7272     if (Arg->getType() == Context.OverloadTy) {
7273       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
7274                                                                 true,
7275                                                                 FoundResult)) {
7276         if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
7277           return ExprError();
7278 
7279         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
7280         ArgType = Arg->getType();
7281       } else
7282         return ExprError();
7283     }
7284 
7285     if (!ParamType->isMemberPointerType()) {
7286       if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
7287                                                          ParamType,
7288                                                          Arg, Converted))
7289         return ExprError();
7290       return Arg;
7291     }
7292 
7293     if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
7294                                              Converted))
7295       return ExprError();
7296     return Arg;
7297   }
7298 
7299   if (ParamType->isPointerType()) {
7300     //   -- for a non-type template-parameter of type pointer to
7301     //      object, qualification conversions (4.4) and the
7302     //      array-to-pointer conversion (4.2) are applied.
7303     // C++0x also allows a value of std::nullptr_t.
7304     assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
7305            "Only object pointers allowed here");
7306 
7307     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
7308                                                        ParamType,
7309                                                        Arg, Converted))
7310       return ExprError();
7311     return Arg;
7312   }
7313 
7314   if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
7315     //   -- For a non-type template-parameter of type reference to
7316     //      object, no conversions apply. The type referred to by the
7317     //      reference may be more cv-qualified than the (otherwise
7318     //      identical) type of the template-argument. The
7319     //      template-parameter is bound directly to the
7320     //      template-argument, which must be an lvalue.
7321     assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
7322            "Only object references allowed here");
7323 
7324     if (Arg->getType() == Context.OverloadTy) {
7325       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
7326                                                  ParamRefType->getPointeeType(),
7327                                                                 true,
7328                                                                 FoundResult)) {
7329         if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
7330           return ExprError();
7331 
7332         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
7333         ArgType = Arg->getType();
7334       } else
7335         return ExprError();
7336     }
7337 
7338     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
7339                                                        ParamType,
7340                                                        Arg, Converted))
7341       return ExprError();
7342     return Arg;
7343   }
7344 
7345   // Deal with parameters of type std::nullptr_t.
7346   if (ParamType->isNullPtrType()) {
7347     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
7348       Converted = TemplateArgument(Arg);
7349       return Arg;
7350     }
7351 
7352     switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
7353     case NPV_NotNullPointer:
7354       Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
7355         << Arg->getType() << ParamType;
7356       Diag(Param->getLocation(), diag::note_template_param_here);
7357       return ExprError();
7358 
7359     case NPV_Error:
7360       return ExprError();
7361 
7362     case NPV_NullPointer:
7363       Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
7364       Converted = TemplateArgument(Context.getCanonicalType(ParamType),
7365                                    /*isNullPtr*/true);
7366       return Arg;
7367     }
7368   }
7369 
7370   //     -- For a non-type template-parameter of type pointer to data
7371   //        member, qualification conversions (4.4) are applied.
7372   assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
7373 
7374   if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
7375                                            Converted))
7376     return ExprError();
7377   return Arg;
7378 }
7379 
7380 static void DiagnoseTemplateParameterListArityMismatch(
7381     Sema &S, TemplateParameterList *New, TemplateParameterList *Old,
7382     Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc);
7383 
7384 /// Check a template argument against its corresponding
7385 /// template template parameter.
7386 ///
7387 /// This routine implements the semantics of C++ [temp.arg.template].
7388 /// It returns true if an error occurred, and false otherwise.
CheckTemplateTemplateArgument(TemplateTemplateParmDecl * Param,TemplateParameterList * Params,TemplateArgumentLoc & Arg)7389 bool Sema::CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param,
7390                                          TemplateParameterList *Params,
7391                                          TemplateArgumentLoc &Arg) {
7392   TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
7393   TemplateDecl *Template = Name.getAsTemplateDecl();
7394   if (!Template) {
7395     // Any dependent template name is fine.
7396     assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
7397     return false;
7398   }
7399 
7400   if (Template->isInvalidDecl())
7401     return true;
7402 
7403   // C++0x [temp.arg.template]p1:
7404   //   A template-argument for a template template-parameter shall be
7405   //   the name of a class template or an alias template, expressed as an
7406   //   id-expression. When the template-argument names a class template, only
7407   //   primary class templates are considered when matching the
7408   //   template template argument with the corresponding parameter;
7409   //   partial specializations are not considered even if their
7410   //   parameter lists match that of the template template parameter.
7411   //
7412   // Note that we also allow template template parameters here, which
7413   // will happen when we are dealing with, e.g., class template
7414   // partial specializations.
7415   if (!isa<ClassTemplateDecl>(Template) &&
7416       !isa<TemplateTemplateParmDecl>(Template) &&
7417       !isa<TypeAliasTemplateDecl>(Template) &&
7418       !isa<BuiltinTemplateDecl>(Template)) {
7419     assert(isa<FunctionTemplateDecl>(Template) &&
7420            "Only function templates are possible here");
7421     Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template);
7422     Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
7423       << Template;
7424   }
7425 
7426   // C++1z [temp.arg.template]p3: (DR 150)
7427   //   A template-argument matches a template template-parameter P when P
7428   //   is at least as specialized as the template-argument A.
7429   // FIXME: We should enable RelaxedTemplateTemplateArgs by default as it is a
7430   //  defect report resolution from C++17 and shouldn't be introduced by
7431   //  concepts.
7432   if (getLangOpts().RelaxedTemplateTemplateArgs) {
7433     // Quick check for the common case:
7434     //   If P contains a parameter pack, then A [...] matches P if each of A's
7435     //   template parameters matches the corresponding template parameter in
7436     //   the template-parameter-list of P.
7437     if (TemplateParameterListsAreEqual(
7438             Template->getTemplateParameters(), Params, false,
7439             TPL_TemplateTemplateArgumentMatch, Arg.getLocation()) &&
7440         // If the argument has no associated constraints, then the parameter is
7441         // definitely at least as specialized as the argument.
7442         // Otherwise - we need a more thorough check.
7443         !Template->hasAssociatedConstraints())
7444       return false;
7445 
7446     if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template,
7447                                                           Arg.getLocation())) {
7448       // C++2a[temp.func.order]p2
7449       //   [...] If both deductions succeed, the partial ordering selects the
7450       //   more constrained template as described by the rules in
7451       //   [temp.constr.order].
7452       SmallVector<const Expr *, 3> ParamsAC, TemplateAC;
7453       Params->getAssociatedConstraints(ParamsAC);
7454       // C++2a[temp.arg.template]p3
7455       //   [...] In this comparison, if P is unconstrained, the constraints on A
7456       //   are not considered.
7457       if (ParamsAC.empty())
7458         return false;
7459       Template->getAssociatedConstraints(TemplateAC);
7460       bool IsParamAtLeastAsConstrained;
7461       if (IsAtLeastAsConstrained(Param, ParamsAC, Template, TemplateAC,
7462                                  IsParamAtLeastAsConstrained))
7463         return true;
7464       if (!IsParamAtLeastAsConstrained) {
7465         Diag(Arg.getLocation(),
7466              diag::err_template_template_parameter_not_at_least_as_constrained)
7467             << Template << Param << Arg.getSourceRange();
7468         Diag(Param->getLocation(), diag::note_entity_declared_at) << Param;
7469         Diag(Template->getLocation(), diag::note_entity_declared_at)
7470             << Template;
7471         MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Param, ParamsAC, Template,
7472                                                       TemplateAC);
7473         return true;
7474       }
7475       return false;
7476     }
7477     // FIXME: Produce better diagnostics for deduction failures.
7478   }
7479 
7480   return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
7481                                          Params,
7482                                          true,
7483                                          TPL_TemplateTemplateArgumentMatch,
7484                                          Arg.getLocation());
7485 }
7486 
7487 /// Given a non-type template argument that refers to a
7488 /// declaration and the type of its corresponding non-type template
7489 /// parameter, produce an expression that properly refers to that
7490 /// declaration.
7491 ExprResult
BuildExpressionFromDeclTemplateArgument(const TemplateArgument & Arg,QualType ParamType,SourceLocation Loc)7492 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
7493                                               QualType ParamType,
7494                                               SourceLocation Loc) {
7495   // C++ [temp.param]p8:
7496   //
7497   //   A non-type template-parameter of type "array of T" or
7498   //   "function returning T" is adjusted to be of type "pointer to
7499   //   T" or "pointer to function returning T", respectively.
7500   if (ParamType->isArrayType())
7501     ParamType = Context.getArrayDecayedType(ParamType);
7502   else if (ParamType->isFunctionType())
7503     ParamType = Context.getPointerType(ParamType);
7504 
7505   // For a NULL non-type template argument, return nullptr casted to the
7506   // parameter's type.
7507   if (Arg.getKind() == TemplateArgument::NullPtr) {
7508     return ImpCastExprToType(
7509              new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
7510                              ParamType,
7511                              ParamType->getAs<MemberPointerType>()
7512                                ? CK_NullToMemberPointer
7513                                : CK_NullToPointer);
7514   }
7515   assert(Arg.getKind() == TemplateArgument::Declaration &&
7516          "Only declaration template arguments permitted here");
7517 
7518   ValueDecl *VD = Arg.getAsDecl();
7519 
7520   CXXScopeSpec SS;
7521   if (ParamType->isMemberPointerType()) {
7522     // If this is a pointer to member, we need to use a qualified name to
7523     // form a suitable pointer-to-member constant.
7524     assert(VD->getDeclContext()->isRecord() &&
7525            (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
7526             isa<IndirectFieldDecl>(VD)));
7527     QualType ClassType
7528       = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
7529     NestedNameSpecifier *Qualifier
7530       = NestedNameSpecifier::Create(Context, nullptr, false,
7531                                     ClassType.getTypePtr());
7532     SS.MakeTrivial(Context, Qualifier, Loc);
7533   }
7534 
7535   ExprResult RefExpr = BuildDeclarationNameExpr(
7536       SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD);
7537   if (RefExpr.isInvalid())
7538     return ExprError();
7539 
7540   // For a pointer, the argument declaration is the pointee. Take its address.
7541   QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0);
7542   if (ParamType->isPointerType() && !ElemT.isNull() &&
7543       Context.hasSimilarType(ElemT, ParamType->getPointeeType())) {
7544     // Decay an array argument if we want a pointer to its first element.
7545     RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
7546     if (RefExpr.isInvalid())
7547       return ExprError();
7548   } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
7549     // For any other pointer, take the address (or form a pointer-to-member).
7550     RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
7551     if (RefExpr.isInvalid())
7552       return ExprError();
7553   } else if (ParamType->isRecordType()) {
7554     assert(isa<TemplateParamObjectDecl>(VD) &&
7555            "arg for class template param not a template parameter object");
7556     // No conversions apply in this case.
7557     return RefExpr;
7558   } else {
7559     assert(ParamType->isReferenceType() &&
7560            "unexpected type for decl template argument");
7561   }
7562 
7563   // At this point we should have the right value category.
7564   assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() &&
7565          "value kind mismatch for non-type template argument");
7566 
7567   // The type of the template parameter can differ from the type of the
7568   // argument in various ways; convert it now if necessary.
7569   QualType DestExprType = ParamType.getNonLValueExprType(Context);
7570   if (!Context.hasSameType(RefExpr.get()->getType(), DestExprType)) {
7571     CastKind CK;
7572     QualType Ignored;
7573     if (Context.hasSimilarType(RefExpr.get()->getType(), DestExprType) ||
7574         IsFunctionConversion(RefExpr.get()->getType(), DestExprType, Ignored)) {
7575       CK = CK_NoOp;
7576     } else if (ParamType->isVoidPointerType() &&
7577                RefExpr.get()->getType()->isPointerType()) {
7578       CK = CK_BitCast;
7579     } else {
7580       // FIXME: Pointers to members can need conversion derived-to-base or
7581       // base-to-derived conversions. We currently don't retain enough
7582       // information to convert properly (we need to track a cast path or
7583       // subobject number in the template argument).
7584       llvm_unreachable(
7585           "unexpected conversion required for non-type template argument");
7586     }
7587     RefExpr = ImpCastExprToType(RefExpr.get(), DestExprType, CK,
7588                                 RefExpr.get()->getValueKind());
7589   }
7590 
7591   return RefExpr;
7592 }
7593 
7594 /// Construct a new expression that refers to the given
7595 /// integral template argument with the given source-location
7596 /// information.
7597 ///
7598 /// This routine takes care of the mapping from an integral template
7599 /// argument (which may have any integral type) to the appropriate
7600 /// literal value.
7601 ExprResult
BuildExpressionFromIntegralTemplateArgument(const TemplateArgument & Arg,SourceLocation Loc)7602 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
7603                                                   SourceLocation Loc) {
7604   assert(Arg.getKind() == TemplateArgument::Integral &&
7605          "Operation is only valid for integral template arguments");
7606   QualType OrigT = Arg.getIntegralType();
7607 
7608   // If this is an enum type that we're instantiating, we need to use an integer
7609   // type the same size as the enumerator.  We don't want to build an
7610   // IntegerLiteral with enum type.  The integer type of an enum type can be of
7611   // any integral type with C++11 enum classes, make sure we create the right
7612   // type of literal for it.
7613   QualType T = OrigT;
7614   if (const EnumType *ET = OrigT->getAs<EnumType>())
7615     T = ET->getDecl()->getIntegerType();
7616 
7617   Expr *E;
7618   if (T->isAnyCharacterType()) {
7619     CharacterLiteral::CharacterKind Kind;
7620     if (T->isWideCharType())
7621       Kind = CharacterLiteral::Wide;
7622     else if (T->isChar8Type() && getLangOpts().Char8)
7623       Kind = CharacterLiteral::UTF8;
7624     else if (T->isChar16Type())
7625       Kind = CharacterLiteral::UTF16;
7626     else if (T->isChar32Type())
7627       Kind = CharacterLiteral::UTF32;
7628     else
7629       Kind = CharacterLiteral::Ascii;
7630 
7631     E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
7632                                        Kind, T, Loc);
7633   } else if (T->isBooleanType()) {
7634     E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
7635                                          T, Loc);
7636   } else if (T->isNullPtrType()) {
7637     E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
7638   } else {
7639     E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
7640   }
7641 
7642   if (OrigT->isEnumeralType()) {
7643     // FIXME: This is a hack. We need a better way to handle substituted
7644     // non-type template parameters.
7645     E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E,
7646                                nullptr, CurFPFeatureOverrides(),
7647                                Context.getTrivialTypeSourceInfo(OrigT, Loc),
7648                                Loc, Loc);
7649   }
7650 
7651   return E;
7652 }
7653 
7654 /// Match two template parameters within template parameter lists.
MatchTemplateParameterKind(Sema & S,NamedDecl * New,NamedDecl * Old,bool Complain,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)7655 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
7656                                        bool Complain,
7657                                      Sema::TemplateParameterListEqualKind Kind,
7658                                        SourceLocation TemplateArgLoc) {
7659   // Check the actual kind (type, non-type, template).
7660   if (Old->getKind() != New->getKind()) {
7661     if (Complain) {
7662       unsigned NextDiag = diag::err_template_param_different_kind;
7663       if (TemplateArgLoc.isValid()) {
7664         S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
7665         NextDiag = diag::note_template_param_different_kind;
7666       }
7667       S.Diag(New->getLocation(), NextDiag)
7668         << (Kind != Sema::TPL_TemplateMatch);
7669       S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
7670         << (Kind != Sema::TPL_TemplateMatch);
7671     }
7672 
7673     return false;
7674   }
7675 
7676   // Check that both are parameter packs or neither are parameter packs.
7677   // However, if we are matching a template template argument to a
7678   // template template parameter, the template template parameter can have
7679   // a parameter pack where the template template argument does not.
7680   if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
7681       !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
7682         Old->isTemplateParameterPack())) {
7683     if (Complain) {
7684       unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
7685       if (TemplateArgLoc.isValid()) {
7686         S.Diag(TemplateArgLoc,
7687              diag::err_template_arg_template_params_mismatch);
7688         NextDiag = diag::note_template_parameter_pack_non_pack;
7689       }
7690 
7691       unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
7692                       : isa<NonTypeTemplateParmDecl>(New)? 1
7693                       : 2;
7694       S.Diag(New->getLocation(), NextDiag)
7695         << ParamKind << New->isParameterPack();
7696       S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
7697         << ParamKind << Old->isParameterPack();
7698     }
7699 
7700     return false;
7701   }
7702 
7703   // For non-type template parameters, check the type of the parameter.
7704   if (NonTypeTemplateParmDecl *OldNTTP
7705                                     = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
7706     NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
7707 
7708     // If we are matching a template template argument to a template
7709     // template parameter and one of the non-type template parameter types
7710     // is dependent, then we must wait until template instantiation time
7711     // to actually compare the arguments.
7712     if (Kind != Sema::TPL_TemplateTemplateArgumentMatch ||
7713         (!OldNTTP->getType()->isDependentType() &&
7714          !NewNTTP->getType()->isDependentType()))
7715       if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
7716         if (Complain) {
7717           unsigned NextDiag = diag::err_template_nontype_parm_different_type;
7718           if (TemplateArgLoc.isValid()) {
7719             S.Diag(TemplateArgLoc,
7720                    diag::err_template_arg_template_params_mismatch);
7721             NextDiag = diag::note_template_nontype_parm_different_type;
7722           }
7723           S.Diag(NewNTTP->getLocation(), NextDiag)
7724             << NewNTTP->getType()
7725             << (Kind != Sema::TPL_TemplateMatch);
7726           S.Diag(OldNTTP->getLocation(),
7727                  diag::note_template_nontype_parm_prev_declaration)
7728             << OldNTTP->getType();
7729         }
7730 
7731         return false;
7732       }
7733   }
7734   // For template template parameters, check the template parameter types.
7735   // The template parameter lists of template template
7736   // parameters must agree.
7737   else if (TemplateTemplateParmDecl *OldTTP
7738                                     = dyn_cast<TemplateTemplateParmDecl>(Old)) {
7739     TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
7740     if (!S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
7741                                           OldTTP->getTemplateParameters(),
7742                                           Complain,
7743                                         (Kind == Sema::TPL_TemplateMatch
7744                                            ? Sema::TPL_TemplateTemplateParmMatch
7745                                            : Kind),
7746                                           TemplateArgLoc))
7747       return false;
7748   } else if (Kind != Sema::TPL_TemplateTemplateArgumentMatch) {
7749     const Expr *NewC = nullptr, *OldC = nullptr;
7750     if (const auto *TC = cast<TemplateTypeParmDecl>(New)->getTypeConstraint())
7751       NewC = TC->getImmediatelyDeclaredConstraint();
7752     if (const auto *TC = cast<TemplateTypeParmDecl>(Old)->getTypeConstraint())
7753       OldC = TC->getImmediatelyDeclaredConstraint();
7754 
7755     auto Diagnose = [&] {
7756       S.Diag(NewC ? NewC->getBeginLoc() : New->getBeginLoc(),
7757            diag::err_template_different_type_constraint);
7758       S.Diag(OldC ? OldC->getBeginLoc() : Old->getBeginLoc(),
7759            diag::note_template_prev_declaration) << /*declaration*/0;
7760     };
7761 
7762     if (!NewC != !OldC) {
7763       if (Complain)
7764         Diagnose();
7765       return false;
7766     }
7767 
7768     if (NewC) {
7769       llvm::FoldingSetNodeID OldCID, NewCID;
7770       OldC->Profile(OldCID, S.Context, /*Canonical=*/true);
7771       NewC->Profile(NewCID, S.Context, /*Canonical=*/true);
7772       if (OldCID != NewCID) {
7773         if (Complain)
7774           Diagnose();
7775         return false;
7776       }
7777     }
7778   }
7779 
7780   return true;
7781 }
7782 
7783 /// Diagnose a known arity mismatch when comparing template argument
7784 /// lists.
7785 static
DiagnoseTemplateParameterListArityMismatch(Sema & S,TemplateParameterList * New,TemplateParameterList * Old,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)7786 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
7787                                                 TemplateParameterList *New,
7788                                                 TemplateParameterList *Old,
7789                                       Sema::TemplateParameterListEqualKind Kind,
7790                                                 SourceLocation TemplateArgLoc) {
7791   unsigned NextDiag = diag::err_template_param_list_different_arity;
7792   if (TemplateArgLoc.isValid()) {
7793     S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
7794     NextDiag = diag::note_template_param_list_different_arity;
7795   }
7796   S.Diag(New->getTemplateLoc(), NextDiag)
7797     << (New->size() > Old->size())
7798     << (Kind != Sema::TPL_TemplateMatch)
7799     << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
7800   S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
7801     << (Kind != Sema::TPL_TemplateMatch)
7802     << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
7803 }
7804 
7805 /// Determine whether the given template parameter lists are
7806 /// equivalent.
7807 ///
7808 /// \param New  The new template parameter list, typically written in the
7809 /// source code as part of a new template declaration.
7810 ///
7811 /// \param Old  The old template parameter list, typically found via
7812 /// name lookup of the template declared with this template parameter
7813 /// list.
7814 ///
7815 /// \param Complain  If true, this routine will produce a diagnostic if
7816 /// the template parameter lists are not equivalent.
7817 ///
7818 /// \param Kind describes how we are to match the template parameter lists.
7819 ///
7820 /// \param TemplateArgLoc If this source location is valid, then we
7821 /// are actually checking the template parameter list of a template
7822 /// argument (New) against the template parameter list of its
7823 /// corresponding template template parameter (Old). We produce
7824 /// slightly different diagnostics in this scenario.
7825 ///
7826 /// \returns True if the template parameter lists are equal, false
7827 /// otherwise.
7828 bool
TemplateParameterListsAreEqual(TemplateParameterList * New,TemplateParameterList * Old,bool Complain,TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)7829 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
7830                                      TemplateParameterList *Old,
7831                                      bool Complain,
7832                                      TemplateParameterListEqualKind Kind,
7833                                      SourceLocation TemplateArgLoc) {
7834   if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
7835     if (Complain)
7836       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7837                                                  TemplateArgLoc);
7838 
7839     return false;
7840   }
7841 
7842   // C++0x [temp.arg.template]p3:
7843   //   A template-argument matches a template template-parameter (call it P)
7844   //   when each of the template parameters in the template-parameter-list of
7845   //   the template-argument's corresponding class template or alias template
7846   //   (call it A) matches the corresponding template parameter in the
7847   //   template-parameter-list of P. [...]
7848   TemplateParameterList::iterator NewParm = New->begin();
7849   TemplateParameterList::iterator NewParmEnd = New->end();
7850   for (TemplateParameterList::iterator OldParm = Old->begin(),
7851                                     OldParmEnd = Old->end();
7852        OldParm != OldParmEnd; ++OldParm) {
7853     if (Kind != TPL_TemplateTemplateArgumentMatch ||
7854         !(*OldParm)->isTemplateParameterPack()) {
7855       if (NewParm == NewParmEnd) {
7856         if (Complain)
7857           DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7858                                                      TemplateArgLoc);
7859 
7860         return false;
7861       }
7862 
7863       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
7864                                       Kind, TemplateArgLoc))
7865         return false;
7866 
7867       ++NewParm;
7868       continue;
7869     }
7870 
7871     // C++0x [temp.arg.template]p3:
7872     //   [...] When P's template- parameter-list contains a template parameter
7873     //   pack (14.5.3), the template parameter pack will match zero or more
7874     //   template parameters or template parameter packs in the
7875     //   template-parameter-list of A with the same type and form as the
7876     //   template parameter pack in P (ignoring whether those template
7877     //   parameters are template parameter packs).
7878     for (; NewParm != NewParmEnd; ++NewParm) {
7879       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
7880                                       Kind, TemplateArgLoc))
7881         return false;
7882     }
7883   }
7884 
7885   // Make sure we exhausted all of the arguments.
7886   if (NewParm != NewParmEnd) {
7887     if (Complain)
7888       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7889                                                  TemplateArgLoc);
7890 
7891     return false;
7892   }
7893 
7894   if (Kind != TPL_TemplateTemplateArgumentMatch) {
7895     const Expr *NewRC = New->getRequiresClause();
7896     const Expr *OldRC = Old->getRequiresClause();
7897 
7898     auto Diagnose = [&] {
7899       Diag(NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(),
7900            diag::err_template_different_requires_clause);
7901       Diag(OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(),
7902            diag::note_template_prev_declaration) << /*declaration*/0;
7903     };
7904 
7905     if (!NewRC != !OldRC) {
7906       if (Complain)
7907         Diagnose();
7908       return false;
7909     }
7910 
7911     if (NewRC) {
7912       llvm::FoldingSetNodeID OldRCID, NewRCID;
7913       OldRC->Profile(OldRCID, Context, /*Canonical=*/true);
7914       NewRC->Profile(NewRCID, Context, /*Canonical=*/true);
7915       if (OldRCID != NewRCID) {
7916         if (Complain)
7917           Diagnose();
7918         return false;
7919       }
7920     }
7921   }
7922 
7923   return true;
7924 }
7925 
7926 /// Check whether a template can be declared within this scope.
7927 ///
7928 /// If the template declaration is valid in this scope, returns
7929 /// false. Otherwise, issues a diagnostic and returns true.
7930 bool
CheckTemplateDeclScope(Scope * S,TemplateParameterList * TemplateParams)7931 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
7932   if (!S)
7933     return false;
7934 
7935   // Find the nearest enclosing declaration scope.
7936   while ((S->getFlags() & Scope::DeclScope) == 0 ||
7937          (S->getFlags() & Scope::TemplateParamScope) != 0)
7938     S = S->getParent();
7939 
7940   // C++ [temp.pre]p6: [P2096]
7941   //   A template, explicit specialization, or partial specialization shall not
7942   //   have C linkage.
7943   DeclContext *Ctx = S->getEntity();
7944   if (Ctx && Ctx->isExternCContext()) {
7945     Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
7946         << TemplateParams->getSourceRange();
7947     if (const LinkageSpecDecl *LSD = Ctx->getExternCContext())
7948       Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
7949     return true;
7950   }
7951   Ctx = Ctx ? Ctx->getRedeclContext() : nullptr;
7952 
7953   // C++ [temp]p2:
7954   //   A template-declaration can appear only as a namespace scope or
7955   //   class scope declaration.
7956   // C++ [temp.expl.spec]p3:
7957   //   An explicit specialization may be declared in any scope in which the
7958   //   corresponding primary template may be defined.
7959   // C++ [temp.class.spec]p6: [P2096]
7960   //   A partial specialization may be declared in any scope in which the
7961   //   corresponding primary template may be defined.
7962   if (Ctx) {
7963     if (Ctx->isFileContext())
7964       return false;
7965     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
7966       // C++ [temp.mem]p2:
7967       //   A local class shall not have member templates.
7968       if (RD->isLocalClass())
7969         return Diag(TemplateParams->getTemplateLoc(),
7970                     diag::err_template_inside_local_class)
7971           << TemplateParams->getSourceRange();
7972       else
7973         return false;
7974     }
7975   }
7976 
7977   return Diag(TemplateParams->getTemplateLoc(),
7978               diag::err_template_outside_namespace_or_class_scope)
7979     << TemplateParams->getSourceRange();
7980 }
7981 
7982 /// Determine what kind of template specialization the given declaration
7983 /// is.
getTemplateSpecializationKind(Decl * D)7984 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
7985   if (!D)
7986     return TSK_Undeclared;
7987 
7988   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
7989     return Record->getTemplateSpecializationKind();
7990   if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
7991     return Function->getTemplateSpecializationKind();
7992   if (VarDecl *Var = dyn_cast<VarDecl>(D))
7993     return Var->getTemplateSpecializationKind();
7994 
7995   return TSK_Undeclared;
7996 }
7997 
7998 /// Check whether a specialization is well-formed in the current
7999 /// context.
8000 ///
8001 /// This routine determines whether a template specialization can be declared
8002 /// in the current context (C++ [temp.expl.spec]p2).
8003 ///
8004 /// \param S the semantic analysis object for which this check is being
8005 /// performed.
8006 ///
8007 /// \param Specialized the entity being specialized or instantiated, which
8008 /// may be a kind of template (class template, function template, etc.) or
8009 /// a member of a class template (member function, static data member,
8010 /// member class).
8011 ///
8012 /// \param PrevDecl the previous declaration of this entity, if any.
8013 ///
8014 /// \param Loc the location of the explicit specialization or instantiation of
8015 /// this entity.
8016 ///
8017 /// \param IsPartialSpecialization whether this is a partial specialization of
8018 /// a class template.
8019 ///
8020 /// \returns true if there was an error that we cannot recover from, false
8021 /// otherwise.
CheckTemplateSpecializationScope(Sema & S,NamedDecl * Specialized,NamedDecl * PrevDecl,SourceLocation Loc,bool IsPartialSpecialization)8022 static bool CheckTemplateSpecializationScope(Sema &S,
8023                                              NamedDecl *Specialized,
8024                                              NamedDecl *PrevDecl,
8025                                              SourceLocation Loc,
8026                                              bool IsPartialSpecialization) {
8027   // Keep these "kind" numbers in sync with the %select statements in the
8028   // various diagnostics emitted by this routine.
8029   int EntityKind = 0;
8030   if (isa<ClassTemplateDecl>(Specialized))
8031     EntityKind = IsPartialSpecialization? 1 : 0;
8032   else if (isa<VarTemplateDecl>(Specialized))
8033     EntityKind = IsPartialSpecialization ? 3 : 2;
8034   else if (isa<FunctionTemplateDecl>(Specialized))
8035     EntityKind = 4;
8036   else if (isa<CXXMethodDecl>(Specialized))
8037     EntityKind = 5;
8038   else if (isa<VarDecl>(Specialized))
8039     EntityKind = 6;
8040   else if (isa<RecordDecl>(Specialized))
8041     EntityKind = 7;
8042   else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
8043     EntityKind = 8;
8044   else {
8045     S.Diag(Loc, diag::err_template_spec_unknown_kind)
8046       << S.getLangOpts().CPlusPlus11;
8047     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
8048     return true;
8049   }
8050 
8051   // C++ [temp.expl.spec]p2:
8052   //   An explicit specialization may be declared in any scope in which
8053   //   the corresponding primary template may be defined.
8054   if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
8055     S.Diag(Loc, diag::err_template_spec_decl_function_scope)
8056       << Specialized;
8057     return true;
8058   }
8059 
8060   // C++ [temp.class.spec]p6:
8061   //   A class template partial specialization may be declared in any
8062   //   scope in which the primary template may be defined.
8063   DeclContext *SpecializedContext =
8064       Specialized->getDeclContext()->getRedeclContext();
8065   DeclContext *DC = S.CurContext->getRedeclContext();
8066 
8067   // Make sure that this redeclaration (or definition) occurs in the same
8068   // scope or an enclosing namespace.
8069   if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext)
8070                             : DC->Equals(SpecializedContext))) {
8071     if (isa<TranslationUnitDecl>(SpecializedContext))
8072       S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
8073         << EntityKind << Specialized;
8074     else {
8075       auto *ND = cast<NamedDecl>(SpecializedContext);
8076       int Diag = diag::err_template_spec_redecl_out_of_scope;
8077       if (S.getLangOpts().MicrosoftExt && !DC->isRecord())
8078         Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
8079       S.Diag(Loc, Diag) << EntityKind << Specialized
8080                         << ND << isa<CXXRecordDecl>(ND);
8081     }
8082 
8083     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
8084 
8085     // Don't allow specializing in the wrong class during error recovery.
8086     // Otherwise, things can go horribly wrong.
8087     if (DC->isRecord())
8088       return true;
8089   }
8090 
8091   return false;
8092 }
8093 
findTemplateParameterInType(unsigned Depth,Expr * E)8094 static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) {
8095   if (!E->isTypeDependent())
8096     return SourceLocation();
8097   DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
8098   Checker.TraverseStmt(E);
8099   if (Checker.MatchLoc.isInvalid())
8100     return E->getSourceRange();
8101   return Checker.MatchLoc;
8102 }
8103 
findTemplateParameter(unsigned Depth,TypeLoc TL)8104 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
8105   if (!TL.getType()->isDependentType())
8106     return SourceLocation();
8107   DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
8108   Checker.TraverseTypeLoc(TL);
8109   if (Checker.MatchLoc.isInvalid())
8110     return TL.getSourceRange();
8111   return Checker.MatchLoc;
8112 }
8113 
8114 /// Subroutine of Sema::CheckTemplatePartialSpecializationArgs
8115 /// that checks non-type template partial specialization arguments.
CheckNonTypeTemplatePartialSpecializationArgs(Sema & S,SourceLocation TemplateNameLoc,NonTypeTemplateParmDecl * Param,const TemplateArgument * Args,unsigned NumArgs,bool IsDefaultArgument)8116 static bool CheckNonTypeTemplatePartialSpecializationArgs(
8117     Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
8118     const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
8119   for (unsigned I = 0; I != NumArgs; ++I) {
8120     if (Args[I].getKind() == TemplateArgument::Pack) {
8121       if (CheckNonTypeTemplatePartialSpecializationArgs(
8122               S, TemplateNameLoc, Param, Args[I].pack_begin(),
8123               Args[I].pack_size(), IsDefaultArgument))
8124         return true;
8125 
8126       continue;
8127     }
8128 
8129     if (Args[I].getKind() != TemplateArgument::Expression)
8130       continue;
8131 
8132     Expr *ArgExpr = Args[I].getAsExpr();
8133 
8134     // We can have a pack expansion of any of the bullets below.
8135     if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
8136       ArgExpr = Expansion->getPattern();
8137 
8138     // Strip off any implicit casts we added as part of type checking.
8139     while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
8140       ArgExpr = ICE->getSubExpr();
8141 
8142     // C++ [temp.class.spec]p8:
8143     //   A non-type argument is non-specialized if it is the name of a
8144     //   non-type parameter. All other non-type arguments are
8145     //   specialized.
8146     //
8147     // Below, we check the two conditions that only apply to
8148     // specialized non-type arguments, so skip any non-specialized
8149     // arguments.
8150     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
8151       if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
8152         continue;
8153 
8154     // C++ [temp.class.spec]p9:
8155     //   Within the argument list of a class template partial
8156     //   specialization, the following restrictions apply:
8157     //     -- A partially specialized non-type argument expression
8158     //        shall not involve a template parameter of the partial
8159     //        specialization except when the argument expression is a
8160     //        simple identifier.
8161     //     -- The type of a template parameter corresponding to a
8162     //        specialized non-type argument shall not be dependent on a
8163     //        parameter of the specialization.
8164     // DR1315 removes the first bullet, leaving an incoherent set of rules.
8165     // We implement a compromise between the original rules and DR1315:
8166     //     --  A specialized non-type template argument shall not be
8167     //         type-dependent and the corresponding template parameter
8168     //         shall have a non-dependent type.
8169     SourceRange ParamUseRange =
8170         findTemplateParameterInType(Param->getDepth(), ArgExpr);
8171     if (ParamUseRange.isValid()) {
8172       if (IsDefaultArgument) {
8173         S.Diag(TemplateNameLoc,
8174                diag::err_dependent_non_type_arg_in_partial_spec);
8175         S.Diag(ParamUseRange.getBegin(),
8176                diag::note_dependent_non_type_default_arg_in_partial_spec)
8177           << ParamUseRange;
8178       } else {
8179         S.Diag(ParamUseRange.getBegin(),
8180                diag::err_dependent_non_type_arg_in_partial_spec)
8181           << ParamUseRange;
8182       }
8183       return true;
8184     }
8185 
8186     ParamUseRange = findTemplateParameter(
8187         Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
8188     if (ParamUseRange.isValid()) {
8189       S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(),
8190              diag::err_dependent_typed_non_type_arg_in_partial_spec)
8191           << Param->getType();
8192       S.Diag(Param->getLocation(), diag::note_template_param_here)
8193         << (IsDefaultArgument ? ParamUseRange : SourceRange())
8194         << ParamUseRange;
8195       return true;
8196     }
8197   }
8198 
8199   return false;
8200 }
8201 
8202 /// Check the non-type template arguments of a class template
8203 /// partial specialization according to C++ [temp.class.spec]p9.
8204 ///
8205 /// \param TemplateNameLoc the location of the template name.
8206 /// \param PrimaryTemplate the template parameters of the primary class
8207 ///        template.
8208 /// \param NumExplicit the number of explicitly-specified template arguments.
8209 /// \param TemplateArgs the template arguments of the class template
8210 ///        partial specialization.
8211 ///
8212 /// \returns \c true if there was an error, \c false otherwise.
CheckTemplatePartialSpecializationArgs(SourceLocation TemplateNameLoc,TemplateDecl * PrimaryTemplate,unsigned NumExplicit,ArrayRef<TemplateArgument> TemplateArgs)8213 bool Sema::CheckTemplatePartialSpecializationArgs(
8214     SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate,
8215     unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) {
8216   // We have to be conservative when checking a template in a dependent
8217   // context.
8218   if (PrimaryTemplate->getDeclContext()->isDependentContext())
8219     return false;
8220 
8221   TemplateParameterList *TemplateParams =
8222       PrimaryTemplate->getTemplateParameters();
8223   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
8224     NonTypeTemplateParmDecl *Param
8225       = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
8226     if (!Param)
8227       continue;
8228 
8229     if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc,
8230                                                       Param, &TemplateArgs[I],
8231                                                       1, I >= NumExplicit))
8232       return true;
8233   }
8234 
8235   return false;
8236 }
8237 
ActOnClassTemplateSpecialization(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,SourceLocation ModulePrivateLoc,CXXScopeSpec & SS,TemplateIdAnnotation & TemplateId,const ParsedAttributesView & Attr,MultiTemplateParamsArg TemplateParameterLists,SkipBodyInfo * SkipBody)8238 DeclResult Sema::ActOnClassTemplateSpecialization(
8239     Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
8240     SourceLocation ModulePrivateLoc, CXXScopeSpec &SS,
8241     TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr,
8242     MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) {
8243   assert(TUK != TUK_Reference && "References are not specializations");
8244 
8245   // NOTE: KWLoc is the location of the tag keyword. This will instead
8246   // store the location of the outermost template keyword in the declaration.
8247   SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
8248     ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
8249   SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
8250   SourceLocation LAngleLoc = TemplateId.LAngleLoc;
8251   SourceLocation RAngleLoc = TemplateId.RAngleLoc;
8252 
8253   // Find the class template we're specializing
8254   TemplateName Name = TemplateId.Template.get();
8255   ClassTemplateDecl *ClassTemplate
8256     = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
8257 
8258   if (!ClassTemplate) {
8259     Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
8260       << (Name.getAsTemplateDecl() &&
8261           isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
8262     return true;
8263   }
8264 
8265   bool isMemberSpecialization = false;
8266   bool isPartialSpecialization = false;
8267 
8268   // Check the validity of the template headers that introduce this
8269   // template.
8270   // FIXME: We probably shouldn't complain about these headers for
8271   // friend declarations.
8272   bool Invalid = false;
8273   TemplateParameterList *TemplateParams =
8274       MatchTemplateParametersToScopeSpecifier(
8275           KWLoc, TemplateNameLoc, SS, &TemplateId,
8276           TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization,
8277           Invalid);
8278   if (Invalid)
8279     return true;
8280 
8281   // Check that we can declare a template specialization here.
8282   if (TemplateParams && CheckTemplateDeclScope(S, TemplateParams))
8283     return true;
8284 
8285   if (TemplateParams && TemplateParams->size() > 0) {
8286     isPartialSpecialization = true;
8287 
8288     if (TUK == TUK_Friend) {
8289       Diag(KWLoc, diag::err_partial_specialization_friend)
8290         << SourceRange(LAngleLoc, RAngleLoc);
8291       return true;
8292     }
8293 
8294     // C++ [temp.class.spec]p10:
8295     //   The template parameter list of a specialization shall not
8296     //   contain default template argument values.
8297     for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
8298       Decl *Param = TemplateParams->getParam(I);
8299       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
8300         if (TTP->hasDefaultArgument()) {
8301           Diag(TTP->getDefaultArgumentLoc(),
8302                diag::err_default_arg_in_partial_spec);
8303           TTP->removeDefaultArgument();
8304         }
8305       } else if (NonTypeTemplateParmDecl *NTTP
8306                    = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
8307         if (Expr *DefArg = NTTP->getDefaultArgument()) {
8308           Diag(NTTP->getDefaultArgumentLoc(),
8309                diag::err_default_arg_in_partial_spec)
8310             << DefArg->getSourceRange();
8311           NTTP->removeDefaultArgument();
8312         }
8313       } else {
8314         TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
8315         if (TTP->hasDefaultArgument()) {
8316           Diag(TTP->getDefaultArgument().getLocation(),
8317                diag::err_default_arg_in_partial_spec)
8318             << TTP->getDefaultArgument().getSourceRange();
8319           TTP->removeDefaultArgument();
8320         }
8321       }
8322     }
8323   } else if (TemplateParams) {
8324     if (TUK == TUK_Friend)
8325       Diag(KWLoc, diag::err_template_spec_friend)
8326         << FixItHint::CreateRemoval(
8327                                 SourceRange(TemplateParams->getTemplateLoc(),
8328                                             TemplateParams->getRAngleLoc()))
8329         << SourceRange(LAngleLoc, RAngleLoc);
8330   } else {
8331     assert(TUK == TUK_Friend && "should have a 'template<>' for this decl");
8332   }
8333 
8334   // Check that the specialization uses the same tag kind as the
8335   // original template.
8336   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8337   assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
8338   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
8339                                     Kind, TUK == TUK_Definition, KWLoc,
8340                                     ClassTemplate->getIdentifier())) {
8341     Diag(KWLoc, diag::err_use_with_wrong_tag)
8342       << ClassTemplate
8343       << FixItHint::CreateReplacement(KWLoc,
8344                             ClassTemplate->getTemplatedDecl()->getKindName());
8345     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
8346          diag::note_previous_use);
8347     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
8348   }
8349 
8350   // Translate the parser's template argument list in our AST format.
8351   TemplateArgumentListInfo TemplateArgs =
8352       makeTemplateArgumentListInfo(*this, TemplateId);
8353 
8354   // Check for unexpanded parameter packs in any of the template arguments.
8355   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
8356     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
8357                                         UPPC_PartialSpecialization))
8358       return true;
8359 
8360   // Check that the template argument list is well-formed for this
8361   // template.
8362   SmallVector<TemplateArgument, 4> Converted;
8363   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
8364                                 TemplateArgs, false, Converted,
8365                                 /*UpdateArgsWithConversion=*/true))
8366     return true;
8367 
8368   // Find the class template (partial) specialization declaration that
8369   // corresponds to these arguments.
8370   if (isPartialSpecialization) {
8371     if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate,
8372                                                TemplateArgs.size(), Converted))
8373       return true;
8374 
8375     // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we
8376     // also do it during instantiation.
8377     bool InstantiationDependent;
8378     if (!Name.isDependent() &&
8379         !TemplateSpecializationType::anyDependentTemplateArguments(
8380             TemplateArgs.arguments(), InstantiationDependent)) {
8381       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
8382         << ClassTemplate->getDeclName();
8383       isPartialSpecialization = false;
8384     }
8385   }
8386 
8387   void *InsertPos = nullptr;
8388   ClassTemplateSpecializationDecl *PrevDecl = nullptr;
8389 
8390   if (isPartialSpecialization)
8391     PrevDecl = ClassTemplate->findPartialSpecialization(Converted,
8392                                                         TemplateParams,
8393                                                         InsertPos);
8394   else
8395     PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos);
8396 
8397   ClassTemplateSpecializationDecl *Specialization = nullptr;
8398 
8399   // Check whether we can declare a class template specialization in
8400   // the current scope.
8401   if (TUK != TUK_Friend &&
8402       CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
8403                                        TemplateNameLoc,
8404                                        isPartialSpecialization))
8405     return true;
8406 
8407   // The canonical type
8408   QualType CanonType;
8409   if (isPartialSpecialization) {
8410     // Build the canonical type that describes the converted template
8411     // arguments of the class template partial specialization.
8412     TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
8413     CanonType = Context.getTemplateSpecializationType(CanonTemplate,
8414                                                       Converted);
8415 
8416     if (Context.hasSameType(CanonType,
8417                         ClassTemplate->getInjectedClassNameSpecialization()) &&
8418         (!Context.getLangOpts().CPlusPlus20 ||
8419          !TemplateParams->hasAssociatedConstraints())) {
8420       // C++ [temp.class.spec]p9b3:
8421       //
8422       //   -- The argument list of the specialization shall not be identical
8423       //      to the implicit argument list of the primary template.
8424       //
8425       // This rule has since been removed, because it's redundant given DR1495,
8426       // but we keep it because it produces better diagnostics and recovery.
8427       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
8428         << /*class template*/0 << (TUK == TUK_Definition)
8429         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
8430       return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
8431                                 ClassTemplate->getIdentifier(),
8432                                 TemplateNameLoc,
8433                                 Attr,
8434                                 TemplateParams,
8435                                 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
8436                                 /*FriendLoc*/SourceLocation(),
8437                                 TemplateParameterLists.size() - 1,
8438                                 TemplateParameterLists.data());
8439     }
8440 
8441     // Create a new class template partial specialization declaration node.
8442     ClassTemplatePartialSpecializationDecl *PrevPartial
8443       = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
8444     ClassTemplatePartialSpecializationDecl *Partial
8445       = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
8446                                              ClassTemplate->getDeclContext(),
8447                                                        KWLoc, TemplateNameLoc,
8448                                                        TemplateParams,
8449                                                        ClassTemplate,
8450                                                        Converted,
8451                                                        TemplateArgs,
8452                                                        CanonType,
8453                                                        PrevPartial);
8454     SetNestedNameSpecifier(*this, Partial, SS);
8455     if (TemplateParameterLists.size() > 1 && SS.isSet()) {
8456       Partial->setTemplateParameterListsInfo(
8457           Context, TemplateParameterLists.drop_back(1));
8458     }
8459 
8460     if (!PrevPartial)
8461       ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
8462     Specialization = Partial;
8463 
8464     // If we are providing an explicit specialization of a member class
8465     // template specialization, make a note of that.
8466     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
8467       PrevPartial->setMemberSpecialization();
8468 
8469     CheckTemplatePartialSpecialization(Partial);
8470   } else {
8471     // Create a new class template specialization declaration node for
8472     // this explicit specialization or friend declaration.
8473     Specialization
8474       = ClassTemplateSpecializationDecl::Create(Context, Kind,
8475                                              ClassTemplate->getDeclContext(),
8476                                                 KWLoc, TemplateNameLoc,
8477                                                 ClassTemplate,
8478                                                 Converted,
8479                                                 PrevDecl);
8480     SetNestedNameSpecifier(*this, Specialization, SS);
8481     if (TemplateParameterLists.size() > 0) {
8482       Specialization->setTemplateParameterListsInfo(Context,
8483                                                     TemplateParameterLists);
8484     }
8485 
8486     if (!PrevDecl)
8487       ClassTemplate->AddSpecialization(Specialization, InsertPos);
8488 
8489     if (CurContext->isDependentContext()) {
8490       TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
8491       CanonType = Context.getTemplateSpecializationType(
8492           CanonTemplate, Converted);
8493     } else {
8494       CanonType = Context.getTypeDeclType(Specialization);
8495     }
8496   }
8497 
8498   // C++ [temp.expl.spec]p6:
8499   //   If a template, a member template or the member of a class template is
8500   //   explicitly specialized then that specialization shall be declared
8501   //   before the first use of that specialization that would cause an implicit
8502   //   instantiation to take place, in every translation unit in which such a
8503   //   use occurs; no diagnostic is required.
8504   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
8505     bool Okay = false;
8506     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8507       // Is there any previous explicit specialization declaration?
8508       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
8509         Okay = true;
8510         break;
8511       }
8512     }
8513 
8514     if (!Okay) {
8515       SourceRange Range(TemplateNameLoc, RAngleLoc);
8516       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
8517         << Context.getTypeDeclType(Specialization) << Range;
8518 
8519       Diag(PrevDecl->getPointOfInstantiation(),
8520            diag::note_instantiation_required_here)
8521         << (PrevDecl->getTemplateSpecializationKind()
8522                                                 != TSK_ImplicitInstantiation);
8523       return true;
8524     }
8525   }
8526 
8527   // If this is not a friend, note that this is an explicit specialization.
8528   if (TUK != TUK_Friend)
8529     Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
8530 
8531   // Check that this isn't a redefinition of this specialization.
8532   if (TUK == TUK_Definition) {
8533     RecordDecl *Def = Specialization->getDefinition();
8534     NamedDecl *Hidden = nullptr;
8535     if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
8536       SkipBody->ShouldSkip = true;
8537       SkipBody->Previous = Def;
8538       makeMergedDefinitionVisible(Hidden);
8539     } else if (Def) {
8540       SourceRange Range(TemplateNameLoc, RAngleLoc);
8541       Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range;
8542       Diag(Def->getLocation(), diag::note_previous_definition);
8543       Specialization->setInvalidDecl();
8544       return true;
8545     }
8546   }
8547 
8548   ProcessDeclAttributeList(S, Specialization, Attr);
8549 
8550   // Add alignment attributes if necessary; these attributes are checked when
8551   // the ASTContext lays out the structure.
8552   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
8553     AddAlignmentAttributesForRecord(Specialization);
8554     AddMsStructLayoutForRecord(Specialization);
8555   }
8556 
8557   if (ModulePrivateLoc.isValid())
8558     Diag(Specialization->getLocation(), diag::err_module_private_specialization)
8559       << (isPartialSpecialization? 1 : 0)
8560       << FixItHint::CreateRemoval(ModulePrivateLoc);
8561 
8562   // Build the fully-sugared type for this class template
8563   // specialization as the user wrote in the specialization
8564   // itself. This means that we'll pretty-print the type retrieved
8565   // from the specialization's declaration the way that the user
8566   // actually wrote the specialization, rather than formatting the
8567   // name based on the "canonical" representation used to store the
8568   // template arguments in the specialization.
8569   TypeSourceInfo *WrittenTy
8570     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
8571                                                 TemplateArgs, CanonType);
8572   if (TUK != TUK_Friend) {
8573     Specialization->setTypeAsWritten(WrittenTy);
8574     Specialization->setTemplateKeywordLoc(TemplateKWLoc);
8575   }
8576 
8577   // C++ [temp.expl.spec]p9:
8578   //   A template explicit specialization is in the scope of the
8579   //   namespace in which the template was defined.
8580   //
8581   // We actually implement this paragraph where we set the semantic
8582   // context (in the creation of the ClassTemplateSpecializationDecl),
8583   // but we also maintain the lexical context where the actual
8584   // definition occurs.
8585   Specialization->setLexicalDeclContext(CurContext);
8586 
8587   // We may be starting the definition of this specialization.
8588   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
8589     Specialization->startDefinition();
8590 
8591   if (TUK == TUK_Friend) {
8592     FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
8593                                             TemplateNameLoc,
8594                                             WrittenTy,
8595                                             /*FIXME:*/KWLoc);
8596     Friend->setAccess(AS_public);
8597     CurContext->addDecl(Friend);
8598   } else {
8599     // Add the specialization into its lexical context, so that it can
8600     // be seen when iterating through the list of declarations in that
8601     // context. However, specializations are not found by name lookup.
8602     CurContext->addDecl(Specialization);
8603   }
8604 
8605   if (SkipBody && SkipBody->ShouldSkip)
8606     return SkipBody->Previous;
8607 
8608   return Specialization;
8609 }
8610 
ActOnTemplateDeclarator(Scope * S,MultiTemplateParamsArg TemplateParameterLists,Declarator & D)8611 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
8612                               MultiTemplateParamsArg TemplateParameterLists,
8613                                     Declarator &D) {
8614   Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
8615   ActOnDocumentableDecl(NewDecl);
8616   return NewDecl;
8617 }
8618 
ActOnConceptDefinition(Scope * S,MultiTemplateParamsArg TemplateParameterLists,IdentifierInfo * Name,SourceLocation NameLoc,Expr * ConstraintExpr)8619 Decl *Sema::ActOnConceptDefinition(Scope *S,
8620                               MultiTemplateParamsArg TemplateParameterLists,
8621                                    IdentifierInfo *Name, SourceLocation NameLoc,
8622                                    Expr *ConstraintExpr) {
8623   DeclContext *DC = CurContext;
8624 
8625   if (!DC->getRedeclContext()->isFileContext()) {
8626     Diag(NameLoc,
8627       diag::err_concept_decls_may_only_appear_in_global_namespace_scope);
8628     return nullptr;
8629   }
8630 
8631   if (TemplateParameterLists.size() > 1) {
8632     Diag(NameLoc, diag::err_concept_extra_headers);
8633     return nullptr;
8634   }
8635 
8636   if (TemplateParameterLists.front()->size() == 0) {
8637     Diag(NameLoc, diag::err_concept_no_parameters);
8638     return nullptr;
8639   }
8640 
8641   if (DiagnoseUnexpandedParameterPack(ConstraintExpr))
8642     return nullptr;
8643 
8644   ConceptDecl *NewDecl = ConceptDecl::Create(Context, DC, NameLoc, Name,
8645                                              TemplateParameterLists.front(),
8646                                              ConstraintExpr);
8647 
8648   if (NewDecl->hasAssociatedConstraints()) {
8649     // C++2a [temp.concept]p4:
8650     // A concept shall not have associated constraints.
8651     Diag(NameLoc, diag::err_concept_no_associated_constraints);
8652     NewDecl->setInvalidDecl();
8653   }
8654 
8655   // Check for conflicting previous declaration.
8656   DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NameLoc);
8657   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
8658                         ForVisibleRedeclaration);
8659   LookupName(Previous, S);
8660 
8661   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage=*/false,
8662                        /*AllowInlineNamespace*/false);
8663   if (!Previous.empty()) {
8664     auto *Old = Previous.getRepresentativeDecl();
8665     Diag(NameLoc, isa<ConceptDecl>(Old) ? diag::err_redefinition :
8666          diag::err_redefinition_different_kind) << NewDecl->getDeclName();
8667     Diag(Old->getLocation(), diag::note_previous_definition);
8668   }
8669 
8670   ActOnDocumentableDecl(NewDecl);
8671   PushOnScopeChains(NewDecl, S);
8672   return NewDecl;
8673 }
8674 
8675 /// \brief Strips various properties off an implicit instantiation
8676 /// that has just been explicitly specialized.
StripImplicitInstantiation(NamedDecl * D)8677 static void StripImplicitInstantiation(NamedDecl *D) {
8678   D->dropAttr<DLLImportAttr>();
8679   D->dropAttr<DLLExportAttr>();
8680 
8681   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
8682     FD->setInlineSpecified(false);
8683 }
8684 
8685 /// Compute the diagnostic location for an explicit instantiation
8686 //  declaration or definition.
DiagLocForExplicitInstantiation(NamedDecl * D,SourceLocation PointOfInstantiation)8687 static SourceLocation DiagLocForExplicitInstantiation(
8688     NamedDecl* D, SourceLocation PointOfInstantiation) {
8689   // Explicit instantiations following a specialization have no effect and
8690   // hence no PointOfInstantiation. In that case, walk decl backwards
8691   // until a valid name loc is found.
8692   SourceLocation PrevDiagLoc = PointOfInstantiation;
8693   for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
8694        Prev = Prev->getPreviousDecl()) {
8695     PrevDiagLoc = Prev->getLocation();
8696   }
8697   assert(PrevDiagLoc.isValid() &&
8698          "Explicit instantiation without point of instantiation?");
8699   return PrevDiagLoc;
8700 }
8701 
8702 /// Diagnose cases where we have an explicit template specialization
8703 /// before/after an explicit template instantiation, producing diagnostics
8704 /// for those cases where they are required and determining whether the
8705 /// new specialization/instantiation will have any effect.
8706 ///
8707 /// \param NewLoc the location of the new explicit specialization or
8708 /// instantiation.
8709 ///
8710 /// \param NewTSK the kind of the new explicit specialization or instantiation.
8711 ///
8712 /// \param PrevDecl the previous declaration of the entity.
8713 ///
8714 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
8715 ///
8716 /// \param PrevPointOfInstantiation if valid, indicates where the previus
8717 /// declaration was instantiated (either implicitly or explicitly).
8718 ///
8719 /// \param HasNoEffect will be set to true to indicate that the new
8720 /// specialization or instantiation has no effect and should be ignored.
8721 ///
8722 /// \returns true if there was an error that should prevent the introduction of
8723 /// the new declaration into the AST, false otherwise.
8724 bool
CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,TemplateSpecializationKind NewTSK,NamedDecl * PrevDecl,TemplateSpecializationKind PrevTSK,SourceLocation PrevPointOfInstantiation,bool & HasNoEffect)8725 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
8726                                              TemplateSpecializationKind NewTSK,
8727                                              NamedDecl *PrevDecl,
8728                                              TemplateSpecializationKind PrevTSK,
8729                                         SourceLocation PrevPointOfInstantiation,
8730                                              bool &HasNoEffect) {
8731   HasNoEffect = false;
8732 
8733   switch (NewTSK) {
8734   case TSK_Undeclared:
8735   case TSK_ImplicitInstantiation:
8736     assert(
8737         (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&
8738         "previous declaration must be implicit!");
8739     return false;
8740 
8741   case TSK_ExplicitSpecialization:
8742     switch (PrevTSK) {
8743     case TSK_Undeclared:
8744     case TSK_ExplicitSpecialization:
8745       // Okay, we're just specializing something that is either already
8746       // explicitly specialized or has merely been mentioned without any
8747       // instantiation.
8748       return false;
8749 
8750     case TSK_ImplicitInstantiation:
8751       if (PrevPointOfInstantiation.isInvalid()) {
8752         // The declaration itself has not actually been instantiated, so it is
8753         // still okay to specialize it.
8754         StripImplicitInstantiation(PrevDecl);
8755         return false;
8756       }
8757       // Fall through
8758       LLVM_FALLTHROUGH;
8759 
8760     case TSK_ExplicitInstantiationDeclaration:
8761     case TSK_ExplicitInstantiationDefinition:
8762       assert((PrevTSK == TSK_ImplicitInstantiation ||
8763               PrevPointOfInstantiation.isValid()) &&
8764              "Explicit instantiation without point of instantiation?");
8765 
8766       // C++ [temp.expl.spec]p6:
8767       //   If a template, a member template or the member of a class template
8768       //   is explicitly specialized then that specialization shall be declared
8769       //   before the first use of that specialization that would cause an
8770       //   implicit instantiation to take place, in every translation unit in
8771       //   which such a use occurs; no diagnostic is required.
8772       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8773         // Is there any previous explicit specialization declaration?
8774         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
8775           return false;
8776       }
8777 
8778       Diag(NewLoc, diag::err_specialization_after_instantiation)
8779         << PrevDecl;
8780       Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
8781         << (PrevTSK != TSK_ImplicitInstantiation);
8782 
8783       return true;
8784     }
8785     llvm_unreachable("The switch over PrevTSK must be exhaustive.");
8786 
8787   case TSK_ExplicitInstantiationDeclaration:
8788     switch (PrevTSK) {
8789     case TSK_ExplicitInstantiationDeclaration:
8790       // This explicit instantiation declaration is redundant (that's okay).
8791       HasNoEffect = true;
8792       return false;
8793 
8794     case TSK_Undeclared:
8795     case TSK_ImplicitInstantiation:
8796       // We're explicitly instantiating something that may have already been
8797       // implicitly instantiated; that's fine.
8798       return false;
8799 
8800     case TSK_ExplicitSpecialization:
8801       // C++0x [temp.explicit]p4:
8802       //   For a given set of template parameters, if an explicit instantiation
8803       //   of a template appears after a declaration of an explicit
8804       //   specialization for that template, the explicit instantiation has no
8805       //   effect.
8806       HasNoEffect = true;
8807       return false;
8808 
8809     case TSK_ExplicitInstantiationDefinition:
8810       // C++0x [temp.explicit]p10:
8811       //   If an entity is the subject of both an explicit instantiation
8812       //   declaration and an explicit instantiation definition in the same
8813       //   translation unit, the definition shall follow the declaration.
8814       Diag(NewLoc,
8815            diag::err_explicit_instantiation_declaration_after_definition);
8816 
8817       // Explicit instantiations following a specialization have no effect and
8818       // hence no PrevPointOfInstantiation. In that case, walk decl backwards
8819       // until a valid name loc is found.
8820       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
8821            diag::note_explicit_instantiation_definition_here);
8822       HasNoEffect = true;
8823       return false;
8824     }
8825     llvm_unreachable("Unexpected TemplateSpecializationKind!");
8826 
8827   case TSK_ExplicitInstantiationDefinition:
8828     switch (PrevTSK) {
8829     case TSK_Undeclared:
8830     case TSK_ImplicitInstantiation:
8831       // We're explicitly instantiating something that may have already been
8832       // implicitly instantiated; that's fine.
8833       return false;
8834 
8835     case TSK_ExplicitSpecialization:
8836       // C++ DR 259, C++0x [temp.explicit]p4:
8837       //   For a given set of template parameters, if an explicit
8838       //   instantiation of a template appears after a declaration of
8839       //   an explicit specialization for that template, the explicit
8840       //   instantiation has no effect.
8841       Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization)
8842         << PrevDecl;
8843       Diag(PrevDecl->getLocation(),
8844            diag::note_previous_template_specialization);
8845       HasNoEffect = true;
8846       return false;
8847 
8848     case TSK_ExplicitInstantiationDeclaration:
8849       // We're explicitly instantiating a definition for something for which we
8850       // were previously asked to suppress instantiations. That's fine.
8851 
8852       // C++0x [temp.explicit]p4:
8853       //   For a given set of template parameters, if an explicit instantiation
8854       //   of a template appears after a declaration of an explicit
8855       //   specialization for that template, the explicit instantiation has no
8856       //   effect.
8857       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8858         // Is there any previous explicit specialization declaration?
8859         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
8860           HasNoEffect = true;
8861           break;
8862         }
8863       }
8864 
8865       return false;
8866 
8867     case TSK_ExplicitInstantiationDefinition:
8868       // C++0x [temp.spec]p5:
8869       //   For a given template and a given set of template-arguments,
8870       //     - an explicit instantiation definition shall appear at most once
8871       //       in a program,
8872 
8873       // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
8874       Diag(NewLoc, (getLangOpts().MSVCCompat)
8875                        ? diag::ext_explicit_instantiation_duplicate
8876                        : diag::err_explicit_instantiation_duplicate)
8877           << PrevDecl;
8878       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
8879            diag::note_previous_explicit_instantiation);
8880       HasNoEffect = true;
8881       return false;
8882     }
8883   }
8884 
8885   llvm_unreachable("Missing specialization/instantiation case?");
8886 }
8887 
8888 /// Perform semantic analysis for the given dependent function
8889 /// template specialization.
8890 ///
8891 /// The only possible way to get a dependent function template specialization
8892 /// is with a friend declaration, like so:
8893 ///
8894 /// \code
8895 ///   template \<class T> void foo(T);
8896 ///   template \<class T> class A {
8897 ///     friend void foo<>(T);
8898 ///   };
8899 /// \endcode
8900 ///
8901 /// There really isn't any useful analysis we can do here, so we
8902 /// just store the information.
8903 bool
CheckDependentFunctionTemplateSpecialization(FunctionDecl * FD,const TemplateArgumentListInfo & ExplicitTemplateArgs,LookupResult & Previous)8904 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
8905                    const TemplateArgumentListInfo &ExplicitTemplateArgs,
8906                                                    LookupResult &Previous) {
8907   // Remove anything from Previous that isn't a function template in
8908   // the correct context.
8909   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
8910   LookupResult::Filter F = Previous.makeFilter();
8911   enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing };
8912   SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates;
8913   while (F.hasNext()) {
8914     NamedDecl *D = F.next()->getUnderlyingDecl();
8915     if (!isa<FunctionTemplateDecl>(D)) {
8916       F.erase();
8917       DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D));
8918       continue;
8919     }
8920 
8921     if (!FDLookupContext->InEnclosingNamespaceSetOf(
8922             D->getDeclContext()->getRedeclContext())) {
8923       F.erase();
8924       DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D));
8925       continue;
8926     }
8927   }
8928   F.done();
8929 
8930   if (Previous.empty()) {
8931     Diag(FD->getLocation(),
8932          diag::err_dependent_function_template_spec_no_match);
8933     for (auto &P : DiscardedCandidates)
8934       Diag(P.second->getLocation(),
8935            diag::note_dependent_function_template_spec_discard_reason)
8936           << P.first;
8937     return true;
8938   }
8939 
8940   FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
8941                                          ExplicitTemplateArgs);
8942   return false;
8943 }
8944 
8945 /// Perform semantic analysis for the given function template
8946 /// specialization.
8947 ///
8948 /// This routine performs all of the semantic analysis required for an
8949 /// explicit function template specialization. On successful completion,
8950 /// the function declaration \p FD will become a function template
8951 /// specialization.
8952 ///
8953 /// \param FD the function declaration, which will be updated to become a
8954 /// function template specialization.
8955 ///
8956 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
8957 /// if any. Note that this may be valid info even when 0 arguments are
8958 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
8959 /// as it anyway contains info on the angle brackets locations.
8960 ///
8961 /// \param Previous the set of declarations that may be specialized by
8962 /// this function specialization.
8963 ///
8964 /// \param QualifiedFriend whether this is a lookup for a qualified friend
8965 /// declaration with no explicit template argument list that might be
8966 /// befriending a function template specialization.
CheckFunctionTemplateSpecialization(FunctionDecl * FD,TemplateArgumentListInfo * ExplicitTemplateArgs,LookupResult & Previous,bool QualifiedFriend)8967 bool Sema::CheckFunctionTemplateSpecialization(
8968     FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
8969     LookupResult &Previous, bool QualifiedFriend) {
8970   // The set of function template specializations that could match this
8971   // explicit function template specialization.
8972   UnresolvedSet<8> Candidates;
8973   TemplateSpecCandidateSet FailedCandidates(FD->getLocation(),
8974                                             /*ForTakingAddress=*/false);
8975 
8976   llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8>
8977       ConvertedTemplateArgs;
8978 
8979   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
8980   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8981          I != E; ++I) {
8982     NamedDecl *Ovl = (*I)->getUnderlyingDecl();
8983     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
8984       // Only consider templates found within the same semantic lookup scope as
8985       // FD.
8986       if (!FDLookupContext->InEnclosingNamespaceSetOf(
8987                                 Ovl->getDeclContext()->getRedeclContext()))
8988         continue;
8989 
8990       // When matching a constexpr member function template specialization
8991       // against the primary template, we don't yet know whether the
8992       // specialization has an implicit 'const' (because we don't know whether
8993       // it will be a static member function until we know which template it
8994       // specializes), so adjust it now assuming it specializes this template.
8995       QualType FT = FD->getType();
8996       if (FD->isConstexpr()) {
8997         CXXMethodDecl *OldMD =
8998           dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
8999         if (OldMD && OldMD->isConst()) {
9000           const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
9001           FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9002           EPI.TypeQuals.addConst();
9003           FT = Context.getFunctionType(FPT->getReturnType(),
9004                                        FPT->getParamTypes(), EPI);
9005         }
9006       }
9007 
9008       TemplateArgumentListInfo Args;
9009       if (ExplicitTemplateArgs)
9010         Args = *ExplicitTemplateArgs;
9011 
9012       // C++ [temp.expl.spec]p11:
9013       //   A trailing template-argument can be left unspecified in the
9014       //   template-id naming an explicit function template specialization
9015       //   provided it can be deduced from the function argument type.
9016       // Perform template argument deduction to determine whether we may be
9017       // specializing this template.
9018       // FIXME: It is somewhat wasteful to build
9019       TemplateDeductionInfo Info(FailedCandidates.getLocation());
9020       FunctionDecl *Specialization = nullptr;
9021       if (TemplateDeductionResult TDK = DeduceTemplateArguments(
9022               cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
9023               ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization,
9024               Info)) {
9025         // Template argument deduction failed; record why it failed, so
9026         // that we can provide nifty diagnostics.
9027         FailedCandidates.addCandidate().set(
9028             I.getPair(), FunTmpl->getTemplatedDecl(),
9029             MakeDeductionFailureInfo(Context, TDK, Info));
9030         (void)TDK;
9031         continue;
9032       }
9033 
9034       // Target attributes are part of the cuda function signature, so
9035       // the deduced template's cuda target must match that of the
9036       // specialization.  Given that C++ template deduction does not
9037       // take target attributes into account, we reject candidates
9038       // here that have a different target.
9039       if (LangOpts.CUDA &&
9040           IdentifyCUDATarget(Specialization,
9041                              /* IgnoreImplicitHDAttr = */ true) !=
9042               IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttr = */ true)) {
9043         FailedCandidates.addCandidate().set(
9044             I.getPair(), FunTmpl->getTemplatedDecl(),
9045             MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
9046         continue;
9047       }
9048 
9049       // Record this candidate.
9050       if (ExplicitTemplateArgs)
9051         ConvertedTemplateArgs[Specialization] = std::move(Args);
9052       Candidates.addDecl(Specialization, I.getAccess());
9053     }
9054   }
9055 
9056   // For a qualified friend declaration (with no explicit marker to indicate
9057   // that a template specialization was intended), note all (template and
9058   // non-template) candidates.
9059   if (QualifiedFriend && Candidates.empty()) {
9060     Diag(FD->getLocation(), diag::err_qualified_friend_no_match)
9061         << FD->getDeclName() << FDLookupContext;
9062     // FIXME: We should form a single candidate list and diagnose all
9063     // candidates at once, to get proper sorting and limiting.
9064     for (auto *OldND : Previous) {
9065       if (auto *OldFD = dyn_cast<FunctionDecl>(OldND->getUnderlyingDecl()))
9066         NoteOverloadCandidate(OldND, OldFD, CRK_None, FD->getType(), false);
9067     }
9068     FailedCandidates.NoteCandidates(*this, FD->getLocation());
9069     return true;
9070   }
9071 
9072   // Find the most specialized function template.
9073   UnresolvedSetIterator Result = getMostSpecialized(
9074       Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(),
9075       PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
9076       PDiag(diag::err_function_template_spec_ambiguous)
9077           << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
9078       PDiag(diag::note_function_template_spec_matched));
9079 
9080   if (Result == Candidates.end())
9081     return true;
9082 
9083   // Ignore access information;  it doesn't figure into redeclaration checking.
9084   FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
9085 
9086   FunctionTemplateSpecializationInfo *SpecInfo
9087     = Specialization->getTemplateSpecializationInfo();
9088   assert(SpecInfo && "Function template specialization info missing?");
9089 
9090   // Note: do not overwrite location info if previous template
9091   // specialization kind was explicit.
9092   TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
9093   if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
9094     Specialization->setLocation(FD->getLocation());
9095     Specialization->setLexicalDeclContext(FD->getLexicalDeclContext());
9096     // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
9097     // function can differ from the template declaration with respect to
9098     // the constexpr specifier.
9099     // FIXME: We need an update record for this AST mutation.
9100     // FIXME: What if there are multiple such prior declarations (for instance,
9101     // from different modules)?
9102     Specialization->setConstexprKind(FD->getConstexprKind());
9103   }
9104 
9105   // FIXME: Check if the prior specialization has a point of instantiation.
9106   // If so, we have run afoul of .
9107 
9108   // If this is a friend declaration, then we're not really declaring
9109   // an explicit specialization.
9110   bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
9111 
9112   // Check the scope of this explicit specialization.
9113   if (!isFriend &&
9114       CheckTemplateSpecializationScope(*this,
9115                                        Specialization->getPrimaryTemplate(),
9116                                        Specialization, FD->getLocation(),
9117                                        false))
9118     return true;
9119 
9120   // C++ [temp.expl.spec]p6:
9121   //   If a template, a member template or the member of a class template is
9122   //   explicitly specialized then that specialization shall be declared
9123   //   before the first use of that specialization that would cause an implicit
9124   //   instantiation to take place, in every translation unit in which such a
9125   //   use occurs; no diagnostic is required.
9126   bool HasNoEffect = false;
9127   if (!isFriend &&
9128       CheckSpecializationInstantiationRedecl(FD->getLocation(),
9129                                              TSK_ExplicitSpecialization,
9130                                              Specialization,
9131                                    SpecInfo->getTemplateSpecializationKind(),
9132                                          SpecInfo->getPointOfInstantiation(),
9133                                              HasNoEffect))
9134     return true;
9135 
9136   // Mark the prior declaration as an explicit specialization, so that later
9137   // clients know that this is an explicit specialization.
9138   if (!isFriend) {
9139     // Since explicit specializations do not inherit '=delete' from their
9140     // primary function template - check if the 'specialization' that was
9141     // implicitly generated (during template argument deduction for partial
9142     // ordering) from the most specialized of all the function templates that
9143     // 'FD' could have been specializing, has a 'deleted' definition.  If so,
9144     // first check that it was implicitly generated during template argument
9145     // deduction by making sure it wasn't referenced, and then reset the deleted
9146     // flag to not-deleted, so that we can inherit that information from 'FD'.
9147     if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() &&
9148         !Specialization->getCanonicalDecl()->isReferenced()) {
9149       // FIXME: This assert will not hold in the presence of modules.
9150       assert(
9151           Specialization->getCanonicalDecl() == Specialization &&
9152           "This must be the only existing declaration of this specialization");
9153       // FIXME: We need an update record for this AST mutation.
9154       Specialization->setDeletedAsWritten(false);
9155     }
9156     // FIXME: We need an update record for this AST mutation.
9157     SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
9158     MarkUnusedFileScopedDecl(Specialization);
9159   }
9160 
9161   // Turn the given function declaration into a function template
9162   // specialization, with the template arguments from the previous
9163   // specialization.
9164   // Take copies of (semantic and syntactic) template argument lists.
9165   const TemplateArgumentList* TemplArgs = new (Context)
9166     TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
9167   FD->setFunctionTemplateSpecialization(
9168       Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr,
9169       SpecInfo->getTemplateSpecializationKind(),
9170       ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr);
9171 
9172   // A function template specialization inherits the target attributes
9173   // of its template.  (We require the attributes explicitly in the
9174   // code to match, but a template may have implicit attributes by
9175   // virtue e.g. of being constexpr, and it passes these implicit
9176   // attributes on to its specializations.)
9177   if (LangOpts.CUDA)
9178     inheritCUDATargetAttrs(FD, *Specialization->getPrimaryTemplate());
9179 
9180   // The "previous declaration" for this function template specialization is
9181   // the prior function template specialization.
9182   Previous.clear();
9183   Previous.addDecl(Specialization);
9184   return false;
9185 }
9186 
9187 /// Perform semantic analysis for the given non-template member
9188 /// specialization.
9189 ///
9190 /// This routine performs all of the semantic analysis required for an
9191 /// explicit member function specialization. On successful completion,
9192 /// the function declaration \p FD will become a member function
9193 /// specialization.
9194 ///
9195 /// \param Member the member declaration, which will be updated to become a
9196 /// specialization.
9197 ///
9198 /// \param Previous the set of declarations, one of which may be specialized
9199 /// by this function specialization;  the set will be modified to contain the
9200 /// redeclared member.
9201 bool
CheckMemberSpecialization(NamedDecl * Member,LookupResult & Previous)9202 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
9203   assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
9204 
9205   // Try to find the member we are instantiating.
9206   NamedDecl *FoundInstantiation = nullptr;
9207   NamedDecl *Instantiation = nullptr;
9208   NamedDecl *InstantiatedFrom = nullptr;
9209   MemberSpecializationInfo *MSInfo = nullptr;
9210 
9211   if (Previous.empty()) {
9212     // Nowhere to look anyway.
9213   } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
9214     for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
9215            I != E; ++I) {
9216       NamedDecl *D = (*I)->getUnderlyingDecl();
9217       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
9218         QualType Adjusted = Function->getType();
9219         if (!hasExplicitCallingConv(Adjusted))
9220           Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
9221         // This doesn't handle deduced return types, but both function
9222         // declarations should be undeduced at this point.
9223         if (Context.hasSameType(Adjusted, Method->getType())) {
9224           FoundInstantiation = *I;
9225           Instantiation = Method;
9226           InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
9227           MSInfo = Method->getMemberSpecializationInfo();
9228           break;
9229         }
9230       }
9231     }
9232   } else if (isa<VarDecl>(Member)) {
9233     VarDecl *PrevVar;
9234     if (Previous.isSingleResult() &&
9235         (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
9236       if (PrevVar->isStaticDataMember()) {
9237         FoundInstantiation = Previous.getRepresentativeDecl();
9238         Instantiation = PrevVar;
9239         InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
9240         MSInfo = PrevVar->getMemberSpecializationInfo();
9241       }
9242   } else if (isa<RecordDecl>(Member)) {
9243     CXXRecordDecl *PrevRecord;
9244     if (Previous.isSingleResult() &&
9245         (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
9246       FoundInstantiation = Previous.getRepresentativeDecl();
9247       Instantiation = PrevRecord;
9248       InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
9249       MSInfo = PrevRecord->getMemberSpecializationInfo();
9250     }
9251   } else if (isa<EnumDecl>(Member)) {
9252     EnumDecl *PrevEnum;
9253     if (Previous.isSingleResult() &&
9254         (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
9255       FoundInstantiation = Previous.getRepresentativeDecl();
9256       Instantiation = PrevEnum;
9257       InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
9258       MSInfo = PrevEnum->getMemberSpecializationInfo();
9259     }
9260   }
9261 
9262   if (!Instantiation) {
9263     // There is no previous declaration that matches. Since member
9264     // specializations are always out-of-line, the caller will complain about
9265     // this mismatch later.
9266     return false;
9267   }
9268 
9269   // A member specialization in a friend declaration isn't really declaring
9270   // an explicit specialization, just identifying a specific (possibly implicit)
9271   // specialization. Don't change the template specialization kind.
9272   //
9273   // FIXME: Is this really valid? Other compilers reject.
9274   if (Member->getFriendObjectKind() != Decl::FOK_None) {
9275     // Preserve instantiation information.
9276     if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
9277       cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
9278                                       cast<CXXMethodDecl>(InstantiatedFrom),
9279         cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
9280     } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
9281       cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
9282                                       cast<CXXRecordDecl>(InstantiatedFrom),
9283         cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
9284     }
9285 
9286     Previous.clear();
9287     Previous.addDecl(FoundInstantiation);
9288     return false;
9289   }
9290 
9291   // Make sure that this is a specialization of a member.
9292   if (!InstantiatedFrom) {
9293     Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
9294       << Member;
9295     Diag(Instantiation->getLocation(), diag::note_specialized_decl);
9296     return true;
9297   }
9298 
9299   // C++ [temp.expl.spec]p6:
9300   //   If a template, a member template or the member of a class template is
9301   //   explicitly specialized then that specialization shall be declared
9302   //   before the first use of that specialization that would cause an implicit
9303   //   instantiation to take place, in every translation unit in which such a
9304   //   use occurs; no diagnostic is required.
9305   assert(MSInfo && "Member specialization info missing?");
9306 
9307   bool HasNoEffect = false;
9308   if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
9309                                              TSK_ExplicitSpecialization,
9310                                              Instantiation,
9311                                      MSInfo->getTemplateSpecializationKind(),
9312                                            MSInfo->getPointOfInstantiation(),
9313                                              HasNoEffect))
9314     return true;
9315 
9316   // Check the scope of this explicit specialization.
9317   if (CheckTemplateSpecializationScope(*this,
9318                                        InstantiatedFrom,
9319                                        Instantiation, Member->getLocation(),
9320                                        false))
9321     return true;
9322 
9323   // Note that this member specialization is an "instantiation of" the
9324   // corresponding member of the original template.
9325   if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) {
9326     FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
9327     if (InstantiationFunction->getTemplateSpecializationKind() ==
9328           TSK_ImplicitInstantiation) {
9329       // Explicit specializations of member functions of class templates do not
9330       // inherit '=delete' from the member function they are specializing.
9331       if (InstantiationFunction->isDeleted()) {
9332         // FIXME: This assert will not hold in the presence of modules.
9333         assert(InstantiationFunction->getCanonicalDecl() ==
9334                InstantiationFunction);
9335         // FIXME: We need an update record for this AST mutation.
9336         InstantiationFunction->setDeletedAsWritten(false);
9337       }
9338     }
9339 
9340     MemberFunction->setInstantiationOfMemberFunction(
9341         cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9342   } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) {
9343     MemberVar->setInstantiationOfStaticDataMember(
9344         cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9345   } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) {
9346     MemberClass->setInstantiationOfMemberClass(
9347         cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9348   } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) {
9349     MemberEnum->setInstantiationOfMemberEnum(
9350         cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9351   } else {
9352     llvm_unreachable("unknown member specialization kind");
9353   }
9354 
9355   // Save the caller the trouble of having to figure out which declaration
9356   // this specialization matches.
9357   Previous.clear();
9358   Previous.addDecl(FoundInstantiation);
9359   return false;
9360 }
9361 
9362 /// Complete the explicit specialization of a member of a class template by
9363 /// updating the instantiated member to be marked as an explicit specialization.
9364 ///
9365 /// \param OrigD The member declaration instantiated from the template.
9366 /// \param Loc The location of the explicit specialization of the member.
9367 template<typename DeclT>
completeMemberSpecializationImpl(Sema & S,DeclT * OrigD,SourceLocation Loc)9368 static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD,
9369                                              SourceLocation Loc) {
9370   if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
9371     return;
9372 
9373   // FIXME: Inform AST mutation listeners of this AST mutation.
9374   // FIXME: If there are multiple in-class declarations of the member (from
9375   // multiple modules, or a declaration and later definition of a member type),
9376   // should we update all of them?
9377   OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
9378   OrigD->setLocation(Loc);
9379 }
9380 
CompleteMemberSpecialization(NamedDecl * Member,LookupResult & Previous)9381 void Sema::CompleteMemberSpecialization(NamedDecl *Member,
9382                                         LookupResult &Previous) {
9383   NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl());
9384   if (Instantiation == Member)
9385     return;
9386 
9387   if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation))
9388     completeMemberSpecializationImpl(*this, Function, Member->getLocation());
9389   else if (auto *Var = dyn_cast<VarDecl>(Instantiation))
9390     completeMemberSpecializationImpl(*this, Var, Member->getLocation());
9391   else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation))
9392     completeMemberSpecializationImpl(*this, Record, Member->getLocation());
9393   else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation))
9394     completeMemberSpecializationImpl(*this, Enum, Member->getLocation());
9395   else
9396     llvm_unreachable("unknown member specialization kind");
9397 }
9398 
9399 /// Check the scope of an explicit instantiation.
9400 ///
9401 /// \returns true if a serious error occurs, false otherwise.
CheckExplicitInstantiationScope(Sema & S,NamedDecl * D,SourceLocation InstLoc,bool WasQualifiedName)9402 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
9403                                             SourceLocation InstLoc,
9404                                             bool WasQualifiedName) {
9405   DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
9406   DeclContext *CurContext = S.CurContext->getRedeclContext();
9407 
9408   if (CurContext->isRecord()) {
9409     S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
9410       << D;
9411     return true;
9412   }
9413 
9414   // C++11 [temp.explicit]p3:
9415   //   An explicit instantiation shall appear in an enclosing namespace of its
9416   //   template. If the name declared in the explicit instantiation is an
9417   //   unqualified name, the explicit instantiation shall appear in the
9418   //   namespace where its template is declared or, if that namespace is inline
9419   //   (7.3.1), any namespace from its enclosing namespace set.
9420   //
9421   // This is DR275, which we do not retroactively apply to C++98/03.
9422   if (WasQualifiedName) {
9423     if (CurContext->Encloses(OrigContext))
9424       return false;
9425   } else {
9426     if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
9427       return false;
9428   }
9429 
9430   if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
9431     if (WasQualifiedName)
9432       S.Diag(InstLoc,
9433              S.getLangOpts().CPlusPlus11?
9434                diag::err_explicit_instantiation_out_of_scope :
9435                diag::warn_explicit_instantiation_out_of_scope_0x)
9436         << D << NS;
9437     else
9438       S.Diag(InstLoc,
9439              S.getLangOpts().CPlusPlus11?
9440                diag::err_explicit_instantiation_unqualified_wrong_namespace :
9441                diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
9442         << D << NS;
9443   } else
9444     S.Diag(InstLoc,
9445            S.getLangOpts().CPlusPlus11?
9446              diag::err_explicit_instantiation_must_be_global :
9447              diag::warn_explicit_instantiation_must_be_global_0x)
9448       << D;
9449   S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
9450   return false;
9451 }
9452 
9453 /// Common checks for whether an explicit instantiation of \p D is valid.
CheckExplicitInstantiation(Sema & S,NamedDecl * D,SourceLocation InstLoc,bool WasQualifiedName,TemplateSpecializationKind TSK)9454 static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D,
9455                                        SourceLocation InstLoc,
9456                                        bool WasQualifiedName,
9457                                        TemplateSpecializationKind TSK) {
9458   // C++ [temp.explicit]p13:
9459   //   An explicit instantiation declaration shall not name a specialization of
9460   //   a template with internal linkage.
9461   if (TSK == TSK_ExplicitInstantiationDeclaration &&
9462       D->getFormalLinkage() == InternalLinkage) {
9463     S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D;
9464     return true;
9465   }
9466 
9467   // C++11 [temp.explicit]p3: [DR 275]
9468   //   An explicit instantiation shall appear in an enclosing namespace of its
9469   //   template.
9470   if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName))
9471     return true;
9472 
9473   return false;
9474 }
9475 
9476 /// Determine whether the given scope specifier has a template-id in it.
ScopeSpecifierHasTemplateId(const CXXScopeSpec & SS)9477 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
9478   if (!SS.isSet())
9479     return false;
9480 
9481   // C++11 [temp.explicit]p3:
9482   //   If the explicit instantiation is for a member function, a member class
9483   //   or a static data member of a class template specialization, the name of
9484   //   the class template specialization in the qualified-id for the member
9485   //   name shall be a simple-template-id.
9486   //
9487   // C++98 has the same restriction, just worded differently.
9488   for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
9489        NNS = NNS->getPrefix())
9490     if (const Type *T = NNS->getAsType())
9491       if (isa<TemplateSpecializationType>(T))
9492         return true;
9493 
9494   return false;
9495 }
9496 
9497 /// Make a dllexport or dllimport attr on a class template specialization take
9498 /// effect.
dllExportImportClassTemplateSpecialization(Sema & S,ClassTemplateSpecializationDecl * Def)9499 static void dllExportImportClassTemplateSpecialization(
9500     Sema &S, ClassTemplateSpecializationDecl *Def) {
9501   auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def));
9502   assert(A && "dllExportImportClassTemplateSpecialization called "
9503               "on Def without dllexport or dllimport");
9504 
9505   // We reject explicit instantiations in class scope, so there should
9506   // never be any delayed exported classes to worry about.
9507   assert(S.DelayedDllExportClasses.empty() &&
9508          "delayed exports present at explicit instantiation");
9509   S.checkClassLevelDLLAttribute(Def);
9510 
9511   // Propagate attribute to base class templates.
9512   for (auto &B : Def->bases()) {
9513     if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
9514             B.getType()->getAsCXXRecordDecl()))
9515       S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc());
9516   }
9517 
9518   S.referenceDLLExportedClassMethods();
9519 }
9520 
9521 // Explicit instantiation of a class template specialization
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,const CXXScopeSpec & SS,TemplateTy TemplateD,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,const ParsedAttributesView & Attr)9522 DeclResult Sema::ActOnExplicitInstantiation(
9523     Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
9524     unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
9525     TemplateTy TemplateD, SourceLocation TemplateNameLoc,
9526     SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn,
9527     SourceLocation RAngleLoc, const ParsedAttributesView &Attr) {
9528   // Find the class template we're specializing
9529   TemplateName Name = TemplateD.get();
9530   TemplateDecl *TD = Name.getAsTemplateDecl();
9531   // Check that the specialization uses the same tag kind as the
9532   // original template.
9533   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9534   assert(Kind != TTK_Enum &&
9535          "Invalid enum tag in class template explicit instantiation!");
9536 
9537   ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD);
9538 
9539   if (!ClassTemplate) {
9540     NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind);
9541     Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << TD << NTK << Kind;
9542     Diag(TD->getLocation(), diag::note_previous_use);
9543     return true;
9544   }
9545 
9546   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
9547                                     Kind, /*isDefinition*/false, KWLoc,
9548                                     ClassTemplate->getIdentifier())) {
9549     Diag(KWLoc, diag::err_use_with_wrong_tag)
9550       << ClassTemplate
9551       << FixItHint::CreateReplacement(KWLoc,
9552                             ClassTemplate->getTemplatedDecl()->getKindName());
9553     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
9554          diag::note_previous_use);
9555     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
9556   }
9557 
9558   // C++0x [temp.explicit]p2:
9559   //   There are two forms of explicit instantiation: an explicit instantiation
9560   //   definition and an explicit instantiation declaration. An explicit
9561   //   instantiation declaration begins with the extern keyword. [...]
9562   TemplateSpecializationKind TSK = ExternLoc.isInvalid()
9563                                        ? TSK_ExplicitInstantiationDefinition
9564                                        : TSK_ExplicitInstantiationDeclaration;
9565 
9566   if (TSK == TSK_ExplicitInstantiationDeclaration &&
9567       !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
9568     // Check for dllexport class template instantiation declarations,
9569     // except for MinGW mode.
9570     for (const ParsedAttr &AL : Attr) {
9571       if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9572         Diag(ExternLoc,
9573              diag::warn_attribute_dllexport_explicit_instantiation_decl);
9574         Diag(AL.getLoc(), diag::note_attribute);
9575         break;
9576       }
9577     }
9578 
9579     if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) {
9580       Diag(ExternLoc,
9581            diag::warn_attribute_dllexport_explicit_instantiation_decl);
9582       Diag(A->getLocation(), diag::note_attribute);
9583     }
9584   }
9585 
9586   // In MSVC mode, dllimported explicit instantiation definitions are treated as
9587   // instantiation declarations for most purposes.
9588   bool DLLImportExplicitInstantiationDef = false;
9589   if (TSK == TSK_ExplicitInstantiationDefinition &&
9590       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
9591     // Check for dllimport class template instantiation definitions.
9592     bool DLLImport =
9593         ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>();
9594     for (const ParsedAttr &AL : Attr) {
9595       if (AL.getKind() == ParsedAttr::AT_DLLImport)
9596         DLLImport = true;
9597       if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9598         // dllexport trumps dllimport here.
9599         DLLImport = false;
9600         break;
9601       }
9602     }
9603     if (DLLImport) {
9604       TSK = TSK_ExplicitInstantiationDeclaration;
9605       DLLImportExplicitInstantiationDef = true;
9606     }
9607   }
9608 
9609   // Translate the parser's template argument list in our AST format.
9610   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
9611   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
9612 
9613   // Check that the template argument list is well-formed for this
9614   // template.
9615   SmallVector<TemplateArgument, 4> Converted;
9616   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
9617                                 TemplateArgs, false, Converted,
9618                                 /*UpdateArgsWithConversion=*/true))
9619     return true;
9620 
9621   // Find the class template specialization declaration that
9622   // corresponds to these arguments.
9623   void *InsertPos = nullptr;
9624   ClassTemplateSpecializationDecl *PrevDecl
9625     = ClassTemplate->findSpecialization(Converted, InsertPos);
9626 
9627   TemplateSpecializationKind PrevDecl_TSK
9628     = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
9629 
9630   if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr &&
9631       Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
9632     // Check for dllexport class template instantiation definitions in MinGW
9633     // mode, if a previous declaration of the instantiation was seen.
9634     for (const ParsedAttr &AL : Attr) {
9635       if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9636         Diag(AL.getLoc(),
9637              diag::warn_attribute_dllexport_explicit_instantiation_def);
9638         break;
9639       }
9640     }
9641   }
9642 
9643   if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc,
9644                                  SS.isSet(), TSK))
9645     return true;
9646 
9647   ClassTemplateSpecializationDecl *Specialization = nullptr;
9648 
9649   bool HasNoEffect = false;
9650   if (PrevDecl) {
9651     if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
9652                                                PrevDecl, PrevDecl_TSK,
9653                                             PrevDecl->getPointOfInstantiation(),
9654                                                HasNoEffect))
9655       return PrevDecl;
9656 
9657     // Even though HasNoEffect == true means that this explicit instantiation
9658     // has no effect on semantics, we go on to put its syntax in the AST.
9659 
9660     if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
9661         PrevDecl_TSK == TSK_Undeclared) {
9662       // Since the only prior class template specialization with these
9663       // arguments was referenced but not declared, reuse that
9664       // declaration node as our own, updating the source location
9665       // for the template name to reflect our new declaration.
9666       // (Other source locations will be updated later.)
9667       Specialization = PrevDecl;
9668       Specialization->setLocation(TemplateNameLoc);
9669       PrevDecl = nullptr;
9670     }
9671 
9672     if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
9673         DLLImportExplicitInstantiationDef) {
9674       // The new specialization might add a dllimport attribute.
9675       HasNoEffect = false;
9676     }
9677   }
9678 
9679   if (!Specialization) {
9680     // Create a new class template specialization declaration node for
9681     // this explicit specialization.
9682     Specialization
9683       = ClassTemplateSpecializationDecl::Create(Context, Kind,
9684                                              ClassTemplate->getDeclContext(),
9685                                                 KWLoc, TemplateNameLoc,
9686                                                 ClassTemplate,
9687                                                 Converted,
9688                                                 PrevDecl);
9689     SetNestedNameSpecifier(*this, Specialization, SS);
9690 
9691     if (!HasNoEffect && !PrevDecl) {
9692       // Insert the new specialization.
9693       ClassTemplate->AddSpecialization(Specialization, InsertPos);
9694     }
9695   }
9696 
9697   // Build the fully-sugared type for this explicit instantiation as
9698   // the user wrote in the explicit instantiation itself. This means
9699   // that we'll pretty-print the type retrieved from the
9700   // specialization's declaration the way that the user actually wrote
9701   // the explicit instantiation, rather than formatting the name based
9702   // on the "canonical" representation used to store the template
9703   // arguments in the specialization.
9704   TypeSourceInfo *WrittenTy
9705     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
9706                                                 TemplateArgs,
9707                                   Context.getTypeDeclType(Specialization));
9708   Specialization->setTypeAsWritten(WrittenTy);
9709 
9710   // Set source locations for keywords.
9711   Specialization->setExternLoc(ExternLoc);
9712   Specialization->setTemplateKeywordLoc(TemplateLoc);
9713   Specialization->setBraceRange(SourceRange());
9714 
9715   bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>();
9716   ProcessDeclAttributeList(S, Specialization, Attr);
9717 
9718   // Add the explicit instantiation into its lexical context. However,
9719   // since explicit instantiations are never found by name lookup, we
9720   // just put it into the declaration context directly.
9721   Specialization->setLexicalDeclContext(CurContext);
9722   CurContext->addDecl(Specialization);
9723 
9724   // Syntax is now OK, so return if it has no other effect on semantics.
9725   if (HasNoEffect) {
9726     // Set the template specialization kind.
9727     Specialization->setTemplateSpecializationKind(TSK);
9728     return Specialization;
9729   }
9730 
9731   // C++ [temp.explicit]p3:
9732   //   A definition of a class template or class member template
9733   //   shall be in scope at the point of the explicit instantiation of
9734   //   the class template or class member template.
9735   //
9736   // This check comes when we actually try to perform the
9737   // instantiation.
9738   ClassTemplateSpecializationDecl *Def
9739     = cast_or_null<ClassTemplateSpecializationDecl>(
9740                                               Specialization->getDefinition());
9741   if (!Def)
9742     InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
9743   else if (TSK == TSK_ExplicitInstantiationDefinition) {
9744     MarkVTableUsed(TemplateNameLoc, Specialization, true);
9745     Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
9746   }
9747 
9748   // Instantiate the members of this class template specialization.
9749   Def = cast_or_null<ClassTemplateSpecializationDecl>(
9750                                        Specialization->getDefinition());
9751   if (Def) {
9752     TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
9753     // Fix a TSK_ExplicitInstantiationDeclaration followed by a
9754     // TSK_ExplicitInstantiationDefinition
9755     if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
9756         (TSK == TSK_ExplicitInstantiationDefinition ||
9757          DLLImportExplicitInstantiationDef)) {
9758       // FIXME: Need to notify the ASTMutationListener that we did this.
9759       Def->setTemplateSpecializationKind(TSK);
9760 
9761       if (!getDLLAttr(Def) && getDLLAttr(Specialization) &&
9762           (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
9763            !Context.getTargetInfo().getTriple().isPS4CPU())) {
9764         // An explicit instantiation definition can add a dll attribute to a
9765         // template with a previous instantiation declaration. MinGW doesn't
9766         // allow this.
9767         auto *A = cast<InheritableAttr>(
9768             getDLLAttr(Specialization)->clone(getASTContext()));
9769         A->setInherited(true);
9770         Def->addAttr(A);
9771         dllExportImportClassTemplateSpecialization(*this, Def);
9772       }
9773     }
9774 
9775     // Fix a TSK_ImplicitInstantiation followed by a
9776     // TSK_ExplicitInstantiationDefinition
9777     bool NewlyDLLExported =
9778         !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>();
9779     if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported &&
9780         (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
9781          !Context.getTargetInfo().getTriple().isPS4CPU())) {
9782       // An explicit instantiation definition can add a dll attribute to a
9783       // template with a previous implicit instantiation. MinGW doesn't allow
9784       // this. We limit clang to only adding dllexport, to avoid potentially
9785       // strange codegen behavior. For example, if we extend this conditional
9786       // to dllimport, and we have a source file calling a method on an
9787       // implicitly instantiated template class instance and then declaring a
9788       // dllimport explicit instantiation definition for the same template
9789       // class, the codegen for the method call will not respect the dllimport,
9790       // while it will with cl. The Def will already have the DLL attribute,
9791       // since the Def and Specialization will be the same in the case of
9792       // Old_TSK == TSK_ImplicitInstantiation, and we already added the
9793       // attribute to the Specialization; we just need to make it take effect.
9794       assert(Def == Specialization &&
9795              "Def and Specialization should match for implicit instantiation");
9796       dllExportImportClassTemplateSpecialization(*this, Def);
9797     }
9798 
9799     // In MinGW mode, export the template instantiation if the declaration
9800     // was marked dllexport.
9801     if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
9802         Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() &&
9803         PrevDecl->hasAttr<DLLExportAttr>()) {
9804       dllExportImportClassTemplateSpecialization(*this, Def);
9805     }
9806 
9807     // Set the template specialization kind. Make sure it is set before
9808     // instantiating the members which will trigger ASTConsumer callbacks.
9809     Specialization->setTemplateSpecializationKind(TSK);
9810     InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
9811   } else {
9812 
9813     // Set the template specialization kind.
9814     Specialization->setTemplateSpecializationKind(TSK);
9815   }
9816 
9817   return Specialization;
9818 }
9819 
9820 // Explicit instantiation of a member class of a class template.
9821 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,const ParsedAttributesView & Attr)9822 Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
9823                                  SourceLocation TemplateLoc, unsigned TagSpec,
9824                                  SourceLocation KWLoc, CXXScopeSpec &SS,
9825                                  IdentifierInfo *Name, SourceLocation NameLoc,
9826                                  const ParsedAttributesView &Attr) {
9827 
9828   bool Owned = false;
9829   bool IsDependent = false;
9830   Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
9831                         KWLoc, SS, Name, NameLoc, Attr, AS_none,
9832                         /*ModulePrivateLoc=*/SourceLocation(),
9833                         MultiTemplateParamsArg(), Owned, IsDependent,
9834                         SourceLocation(), false, TypeResult(),
9835                         /*IsTypeSpecifier*/false,
9836                         /*IsTemplateParamOrArg*/false);
9837   assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
9838 
9839   if (!TagD)
9840     return true;
9841 
9842   TagDecl *Tag = cast<TagDecl>(TagD);
9843   assert(!Tag->isEnum() && "shouldn't see enumerations here");
9844 
9845   if (Tag->isInvalidDecl())
9846     return true;
9847 
9848   CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
9849   CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
9850   if (!Pattern) {
9851     Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
9852       << Context.getTypeDeclType(Record);
9853     Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
9854     return true;
9855   }
9856 
9857   // C++0x [temp.explicit]p2:
9858   //   If the explicit instantiation is for a class or member class, the
9859   //   elaborated-type-specifier in the declaration shall include a
9860   //   simple-template-id.
9861   //
9862   // C++98 has the same restriction, just worded differently.
9863   if (!ScopeSpecifierHasTemplateId(SS))
9864     Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
9865       << Record << SS.getRange();
9866 
9867   // C++0x [temp.explicit]p2:
9868   //   There are two forms of explicit instantiation: an explicit instantiation
9869   //   definition and an explicit instantiation declaration. An explicit
9870   //   instantiation declaration begins with the extern keyword. [...]
9871   TemplateSpecializationKind TSK
9872     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
9873                            : TSK_ExplicitInstantiationDeclaration;
9874 
9875   CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK);
9876 
9877   // Verify that it is okay to explicitly instantiate here.
9878   CXXRecordDecl *PrevDecl
9879     = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
9880   if (!PrevDecl && Record->getDefinition())
9881     PrevDecl = Record;
9882   if (PrevDecl) {
9883     MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
9884     bool HasNoEffect = false;
9885     assert(MSInfo && "No member specialization information?");
9886     if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
9887                                                PrevDecl,
9888                                         MSInfo->getTemplateSpecializationKind(),
9889                                              MSInfo->getPointOfInstantiation(),
9890                                                HasNoEffect))
9891       return true;
9892     if (HasNoEffect)
9893       return TagD;
9894   }
9895 
9896   CXXRecordDecl *RecordDef
9897     = cast_or_null<CXXRecordDecl>(Record->getDefinition());
9898   if (!RecordDef) {
9899     // C++ [temp.explicit]p3:
9900     //   A definition of a member class of a class template shall be in scope
9901     //   at the point of an explicit instantiation of the member class.
9902     CXXRecordDecl *Def
9903       = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
9904     if (!Def) {
9905       Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
9906         << 0 << Record->getDeclName() << Record->getDeclContext();
9907       Diag(Pattern->getLocation(), diag::note_forward_declaration)
9908         << Pattern;
9909       return true;
9910     } else {
9911       if (InstantiateClass(NameLoc, Record, Def,
9912                            getTemplateInstantiationArgs(Record),
9913                            TSK))
9914         return true;
9915 
9916       RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
9917       if (!RecordDef)
9918         return true;
9919     }
9920   }
9921 
9922   // Instantiate all of the members of the class.
9923   InstantiateClassMembers(NameLoc, RecordDef,
9924                           getTemplateInstantiationArgs(Record), TSK);
9925 
9926   if (TSK == TSK_ExplicitInstantiationDefinition)
9927     MarkVTableUsed(NameLoc, RecordDef, true);
9928 
9929   // FIXME: We don't have any representation for explicit instantiations of
9930   // member classes. Such a representation is not needed for compilation, but it
9931   // should be available for clients that want to see all of the declarations in
9932   // the source code.
9933   return TagD;
9934 }
9935 
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,Declarator & D)9936 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
9937                                             SourceLocation ExternLoc,
9938                                             SourceLocation TemplateLoc,
9939                                             Declarator &D) {
9940   // Explicit instantiations always require a name.
9941   // TODO: check if/when DNInfo should replace Name.
9942   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
9943   DeclarationName Name = NameInfo.getName();
9944   if (!Name) {
9945     if (!D.isInvalidType())
9946       Diag(D.getDeclSpec().getBeginLoc(),
9947            diag::err_explicit_instantiation_requires_name)
9948           << D.getDeclSpec().getSourceRange() << D.getSourceRange();
9949 
9950     return true;
9951   }
9952 
9953   // The scope passed in may not be a decl scope.  Zip up the scope tree until
9954   // we find one that is.
9955   while ((S->getFlags() & Scope::DeclScope) == 0 ||
9956          (S->getFlags() & Scope::TemplateParamScope) != 0)
9957     S = S->getParent();
9958 
9959   // Determine the type of the declaration.
9960   TypeSourceInfo *T = GetTypeForDeclarator(D, S);
9961   QualType R = T->getType();
9962   if (R.isNull())
9963     return true;
9964 
9965   // C++ [dcl.stc]p1:
9966   //   A storage-class-specifier shall not be specified in [...] an explicit
9967   //   instantiation (14.7.2) directive.
9968   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
9969     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
9970       << Name;
9971     return true;
9972   } else if (D.getDeclSpec().getStorageClassSpec()
9973                                                 != DeclSpec::SCS_unspecified) {
9974     // Complain about then remove the storage class specifier.
9975     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
9976       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
9977 
9978     D.getMutableDeclSpec().ClearStorageClassSpecs();
9979   }
9980 
9981   // C++0x [temp.explicit]p1:
9982   //   [...] An explicit instantiation of a function template shall not use the
9983   //   inline or constexpr specifiers.
9984   // Presumably, this also applies to member functions of class templates as
9985   // well.
9986   if (D.getDeclSpec().isInlineSpecified())
9987     Diag(D.getDeclSpec().getInlineSpecLoc(),
9988          getLangOpts().CPlusPlus11 ?
9989            diag::err_explicit_instantiation_inline :
9990            diag::warn_explicit_instantiation_inline_0x)
9991       << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
9992   if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType())
9993     // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
9994     // not already specified.
9995     Diag(D.getDeclSpec().getConstexprSpecLoc(),
9996          diag::err_explicit_instantiation_constexpr);
9997 
9998   // A deduction guide is not on the list of entities that can be explicitly
9999   // instantiated.
10000   if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
10001     Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized)
10002         << /*explicit instantiation*/ 0;
10003     return true;
10004   }
10005 
10006   // C++0x [temp.explicit]p2:
10007   //   There are two forms of explicit instantiation: an explicit instantiation
10008   //   definition and an explicit instantiation declaration. An explicit
10009   //   instantiation declaration begins with the extern keyword. [...]
10010   TemplateSpecializationKind TSK
10011     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
10012                            : TSK_ExplicitInstantiationDeclaration;
10013 
10014   LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
10015   LookupParsedName(Previous, S, &D.getCXXScopeSpec());
10016 
10017   if (!R->isFunctionType()) {
10018     // C++ [temp.explicit]p1:
10019     //   A [...] static data member of a class template can be explicitly
10020     //   instantiated from the member definition associated with its class
10021     //   template.
10022     // C++1y [temp.explicit]p1:
10023     //   A [...] variable [...] template specialization can be explicitly
10024     //   instantiated from its template.
10025     if (Previous.isAmbiguous())
10026       return true;
10027 
10028     VarDecl *Prev = Previous.getAsSingle<VarDecl>();
10029     VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
10030 
10031     if (!PrevTemplate) {
10032       if (!Prev || !Prev->isStaticDataMember()) {
10033         // We expect to see a static data member here.
10034         Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
10035             << Name;
10036         for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
10037              P != PEnd; ++P)
10038           Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
10039         return true;
10040       }
10041 
10042       if (!Prev->getInstantiatedFromStaticDataMember()) {
10043         // FIXME: Check for explicit specialization?
10044         Diag(D.getIdentifierLoc(),
10045              diag::err_explicit_instantiation_data_member_not_instantiated)
10046             << Prev;
10047         Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
10048         // FIXME: Can we provide a note showing where this was declared?
10049         return true;
10050       }
10051     } else {
10052       // Explicitly instantiate a variable template.
10053 
10054       // C++1y [dcl.spec.auto]p6:
10055       //   ... A program that uses auto or decltype(auto) in a context not
10056       //   explicitly allowed in this section is ill-formed.
10057       //
10058       // This includes auto-typed variable template instantiations.
10059       if (R->isUndeducedType()) {
10060         Diag(T->getTypeLoc().getBeginLoc(),
10061              diag::err_auto_not_allowed_var_inst);
10062         return true;
10063       }
10064 
10065       if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
10066         // C++1y [temp.explicit]p3:
10067         //   If the explicit instantiation is for a variable, the unqualified-id
10068         //   in the declaration shall be a template-id.
10069         Diag(D.getIdentifierLoc(),
10070              diag::err_explicit_instantiation_without_template_id)
10071           << PrevTemplate;
10072         Diag(PrevTemplate->getLocation(),
10073              diag::note_explicit_instantiation_here);
10074         return true;
10075       }
10076 
10077       // Translate the parser's template argument list into our AST format.
10078       TemplateArgumentListInfo TemplateArgs =
10079           makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
10080 
10081       DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
10082                                           D.getIdentifierLoc(), TemplateArgs);
10083       if (Res.isInvalid())
10084         return true;
10085 
10086       if (!Res.isUsable()) {
10087         // We somehow specified dependent template arguments in an explicit
10088         // instantiation. This should probably only happen during error
10089         // recovery.
10090         Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_dependent);
10091         return true;
10092       }
10093 
10094       // Ignore access control bits, we don't need them for redeclaration
10095       // checking.
10096       Prev = cast<VarDecl>(Res.get());
10097     }
10098 
10099     // C++0x [temp.explicit]p2:
10100     //   If the explicit instantiation is for a member function, a member class
10101     //   or a static data member of a class template specialization, the name of
10102     //   the class template specialization in the qualified-id for the member
10103     //   name shall be a simple-template-id.
10104     //
10105     // C++98 has the same restriction, just worded differently.
10106     //
10107     // This does not apply to variable template specializations, where the
10108     // template-id is in the unqualified-id instead.
10109     if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
10110       Diag(D.getIdentifierLoc(),
10111            diag::ext_explicit_instantiation_without_qualified_id)
10112         << Prev << D.getCXXScopeSpec().getRange();
10113 
10114     CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK);
10115 
10116     // Verify that it is okay to explicitly instantiate here.
10117     TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
10118     SourceLocation POI = Prev->getPointOfInstantiation();
10119     bool HasNoEffect = false;
10120     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
10121                                                PrevTSK, POI, HasNoEffect))
10122       return true;
10123 
10124     if (!HasNoEffect) {
10125       // Instantiate static data member or variable template.
10126       Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
10127       // Merge attributes.
10128       ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes());
10129       if (TSK == TSK_ExplicitInstantiationDefinition)
10130         InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
10131     }
10132 
10133     // Check the new variable specialization against the parsed input.
10134     if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
10135       Diag(T->getTypeLoc().getBeginLoc(),
10136            diag::err_invalid_var_template_spec_type)
10137           << 0 << PrevTemplate << R << Prev->getType();
10138       Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
10139           << 2 << PrevTemplate->getDeclName();
10140       return true;
10141     }
10142 
10143     // FIXME: Create an ExplicitInstantiation node?
10144     return (Decl*) nullptr;
10145   }
10146 
10147   // If the declarator is a template-id, translate the parser's template
10148   // argument list into our AST format.
10149   bool HasExplicitTemplateArgs = false;
10150   TemplateArgumentListInfo TemplateArgs;
10151   if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
10152     TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
10153     HasExplicitTemplateArgs = true;
10154   }
10155 
10156   // C++ [temp.explicit]p1:
10157   //   A [...] function [...] can be explicitly instantiated from its template.
10158   //   A member function [...] of a class template can be explicitly
10159   //  instantiated from the member definition associated with its class
10160   //  template.
10161   UnresolvedSet<8> TemplateMatches;
10162   FunctionDecl *NonTemplateMatch = nullptr;
10163   TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
10164   for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
10165        P != PEnd; ++P) {
10166     NamedDecl *Prev = *P;
10167     if (!HasExplicitTemplateArgs) {
10168       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
10169         QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(),
10170                                                 /*AdjustExceptionSpec*/true);
10171         if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
10172           if (Method->getPrimaryTemplate()) {
10173             TemplateMatches.addDecl(Method, P.getAccess());
10174           } else {
10175             // FIXME: Can this assert ever happen?  Needs a test.
10176             assert(!NonTemplateMatch && "Multiple NonTemplateMatches");
10177             NonTemplateMatch = Method;
10178           }
10179         }
10180       }
10181     }
10182 
10183     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
10184     if (!FunTmpl)
10185       continue;
10186 
10187     TemplateDeductionInfo Info(FailedCandidates.getLocation());
10188     FunctionDecl *Specialization = nullptr;
10189     if (TemplateDeductionResult TDK
10190           = DeduceTemplateArguments(FunTmpl,
10191                                (HasExplicitTemplateArgs ? &TemplateArgs
10192                                                         : nullptr),
10193                                     R, Specialization, Info)) {
10194       // Keep track of almost-matches.
10195       FailedCandidates.addCandidate()
10196           .set(P.getPair(), FunTmpl->getTemplatedDecl(),
10197                MakeDeductionFailureInfo(Context, TDK, Info));
10198       (void)TDK;
10199       continue;
10200     }
10201 
10202     // Target attributes are part of the cuda function signature, so
10203     // the cuda target of the instantiated function must match that of its
10204     // template.  Given that C++ template deduction does not take
10205     // target attributes into account, we reject candidates here that
10206     // have a different target.
10207     if (LangOpts.CUDA &&
10208         IdentifyCUDATarget(Specialization,
10209                            /* IgnoreImplicitHDAttr = */ true) !=
10210             IdentifyCUDATarget(D.getDeclSpec().getAttributes())) {
10211       FailedCandidates.addCandidate().set(
10212           P.getPair(), FunTmpl->getTemplatedDecl(),
10213           MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
10214       continue;
10215     }
10216 
10217     TemplateMatches.addDecl(Specialization, P.getAccess());
10218   }
10219 
10220   FunctionDecl *Specialization = NonTemplateMatch;
10221   if (!Specialization) {
10222     // Find the most specialized function template specialization.
10223     UnresolvedSetIterator Result = getMostSpecialized(
10224         TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates,
10225         D.getIdentifierLoc(),
10226         PDiag(diag::err_explicit_instantiation_not_known) << Name,
10227         PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
10228         PDiag(diag::note_explicit_instantiation_candidate));
10229 
10230     if (Result == TemplateMatches.end())
10231       return true;
10232 
10233     // Ignore access control bits, we don't need them for redeclaration checking.
10234     Specialization = cast<FunctionDecl>(*Result);
10235   }
10236 
10237   // C++11 [except.spec]p4
10238   // In an explicit instantiation an exception-specification may be specified,
10239   // but is not required.
10240   // If an exception-specification is specified in an explicit instantiation
10241   // directive, it shall be compatible with the exception-specifications of
10242   // other declarations of that function.
10243   if (auto *FPT = R->getAs<FunctionProtoType>())
10244     if (FPT->hasExceptionSpec()) {
10245       unsigned DiagID =
10246           diag::err_mismatched_exception_spec_explicit_instantiation;
10247       if (getLangOpts().MicrosoftExt)
10248         DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
10249       bool Result = CheckEquivalentExceptionSpec(
10250           PDiag(DiagID) << Specialization->getType(),
10251           PDiag(diag::note_explicit_instantiation_here),
10252           Specialization->getType()->getAs<FunctionProtoType>(),
10253           Specialization->getLocation(), FPT, D.getBeginLoc());
10254       // In Microsoft mode, mismatching exception specifications just cause a
10255       // warning.
10256       if (!getLangOpts().MicrosoftExt && Result)
10257         return true;
10258     }
10259 
10260   if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
10261     Diag(D.getIdentifierLoc(),
10262          diag::err_explicit_instantiation_member_function_not_instantiated)
10263       << Specialization
10264       << (Specialization->getTemplateSpecializationKind() ==
10265           TSK_ExplicitSpecialization);
10266     Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
10267     return true;
10268   }
10269 
10270   FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
10271   if (!PrevDecl && Specialization->isThisDeclarationADefinition())
10272     PrevDecl = Specialization;
10273 
10274   if (PrevDecl) {
10275     bool HasNoEffect = false;
10276     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
10277                                                PrevDecl,
10278                                      PrevDecl->getTemplateSpecializationKind(),
10279                                           PrevDecl->getPointOfInstantiation(),
10280                                                HasNoEffect))
10281       return true;
10282 
10283     // FIXME: We may still want to build some representation of this
10284     // explicit specialization.
10285     if (HasNoEffect)
10286       return (Decl*) nullptr;
10287   }
10288 
10289   // HACK: libc++ has a bug where it attempts to explicitly instantiate the
10290   // functions
10291   //     valarray<size_t>::valarray(size_t) and
10292   //     valarray<size_t>::~valarray()
10293   // that it declared to have internal linkage with the internal_linkage
10294   // attribute. Ignore the explicit instantiation declaration in this case.
10295   if (Specialization->hasAttr<InternalLinkageAttr>() &&
10296       TSK == TSK_ExplicitInstantiationDeclaration) {
10297     if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext()))
10298       if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") &&
10299           RD->isInStdNamespace())
10300         return (Decl*) nullptr;
10301   }
10302 
10303   ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes());
10304 
10305   // In MSVC mode, dllimported explicit instantiation definitions are treated as
10306   // instantiation declarations.
10307   if (TSK == TSK_ExplicitInstantiationDefinition &&
10308       Specialization->hasAttr<DLLImportAttr>() &&
10309       Context.getTargetInfo().getCXXABI().isMicrosoft())
10310     TSK = TSK_ExplicitInstantiationDeclaration;
10311 
10312   Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
10313 
10314   if (Specialization->isDefined()) {
10315     // Let the ASTConsumer know that this function has been explicitly
10316     // instantiated now, and its linkage might have changed.
10317     Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
10318   } else if (TSK == TSK_ExplicitInstantiationDefinition)
10319     InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
10320 
10321   // C++0x [temp.explicit]p2:
10322   //   If the explicit instantiation is for a member function, a member class
10323   //   or a static data member of a class template specialization, the name of
10324   //   the class template specialization in the qualified-id for the member
10325   //   name shall be a simple-template-id.
10326   //
10327   // C++98 has the same restriction, just worded differently.
10328   FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
10329   if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl &&
10330       D.getCXXScopeSpec().isSet() &&
10331       !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
10332     Diag(D.getIdentifierLoc(),
10333          diag::ext_explicit_instantiation_without_qualified_id)
10334     << Specialization << D.getCXXScopeSpec().getRange();
10335 
10336   CheckExplicitInstantiation(
10337       *this,
10338       FunTmpl ? (NamedDecl *)FunTmpl
10339               : Specialization->getInstantiatedFromMemberFunction(),
10340       D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK);
10341 
10342   // FIXME: Create some kind of ExplicitInstantiationDecl here.
10343   return (Decl*) nullptr;
10344 }
10345 
10346 TypeResult
ActOnDependentTag(Scope * S,unsigned TagSpec,TagUseKind TUK,const CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation TagLoc,SourceLocation NameLoc)10347 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
10348                         const CXXScopeSpec &SS, IdentifierInfo *Name,
10349                         SourceLocation TagLoc, SourceLocation NameLoc) {
10350   // This has to hold, because SS is expected to be defined.
10351   assert(Name && "Expected a name in a dependent tag");
10352 
10353   NestedNameSpecifier *NNS = SS.getScopeRep();
10354   if (!NNS)
10355     return true;
10356 
10357   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10358 
10359   if (TUK == TUK_Declaration || TUK == TUK_Definition) {
10360     Diag(NameLoc, diag::err_dependent_tag_decl)
10361       << (TUK == TUK_Definition) << Kind << SS.getRange();
10362     return true;
10363   }
10364 
10365   // Create the resulting type.
10366   ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10367   QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
10368 
10369   // Create type-source location information for this type.
10370   TypeLocBuilder TLB;
10371   DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
10372   TL.setElaboratedKeywordLoc(TagLoc);
10373   TL.setQualifierLoc(SS.getWithLocInContext(Context));
10374   TL.setNameLoc(NameLoc);
10375   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
10376 }
10377 
10378 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,const IdentifierInfo & II,SourceLocation IdLoc)10379 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
10380                         const CXXScopeSpec &SS, const IdentifierInfo &II,
10381                         SourceLocation IdLoc) {
10382   if (SS.isInvalid())
10383     return true;
10384 
10385   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
10386     Diag(TypenameLoc,
10387          getLangOpts().CPlusPlus11 ?
10388            diag::warn_cxx98_compat_typename_outside_of_template :
10389            diag::ext_typename_outside_of_template)
10390       << FixItHint::CreateRemoval(TypenameLoc);
10391 
10392   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10393   TypeSourceInfo *TSI = nullptr;
10394   QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
10395                                  TypenameLoc, QualifierLoc, II, IdLoc, &TSI,
10396                                  /*DeducedTSTContext=*/true);
10397   if (T.isNull())
10398     return true;
10399   return CreateParsedType(T, TSI);
10400 }
10401 
10402 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateIn,IdentifierInfo * TemplateII,SourceLocation TemplateIILoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)10403 Sema::ActOnTypenameType(Scope *S,
10404                         SourceLocation TypenameLoc,
10405                         const CXXScopeSpec &SS,
10406                         SourceLocation TemplateKWLoc,
10407                         TemplateTy TemplateIn,
10408                         IdentifierInfo *TemplateII,
10409                         SourceLocation TemplateIILoc,
10410                         SourceLocation LAngleLoc,
10411                         ASTTemplateArgsPtr TemplateArgsIn,
10412                         SourceLocation RAngleLoc) {
10413   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
10414     Diag(TypenameLoc,
10415          getLangOpts().CPlusPlus11 ?
10416            diag::warn_cxx98_compat_typename_outside_of_template :
10417            diag::ext_typename_outside_of_template)
10418       << FixItHint::CreateRemoval(TypenameLoc);
10419 
10420   // Strangely, non-type results are not ignored by this lookup, so the
10421   // program is ill-formed if it finds an injected-class-name.
10422   if (TypenameLoc.isValid()) {
10423     auto *LookupRD =
10424         dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false));
10425     if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
10426       Diag(TemplateIILoc,
10427            diag::ext_out_of_line_qualified_id_type_names_constructor)
10428         << TemplateII << 0 /*injected-class-name used as template name*/
10429         << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/);
10430     }
10431   }
10432 
10433   // Translate the parser's template argument list in our AST format.
10434   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
10435   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
10436 
10437   TemplateName Template = TemplateIn.get();
10438   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
10439     // Construct a dependent template specialization type.
10440     assert(DTN && "dependent template has non-dependent name?");
10441     assert(DTN->getQualifier() == SS.getScopeRep());
10442     QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
10443                                                           DTN->getQualifier(),
10444                                                           DTN->getIdentifier(),
10445                                                                 TemplateArgs);
10446 
10447     // Create source-location information for this type.
10448     TypeLocBuilder Builder;
10449     DependentTemplateSpecializationTypeLoc SpecTL
10450     = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
10451     SpecTL.setElaboratedKeywordLoc(TypenameLoc);
10452     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
10453     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
10454     SpecTL.setTemplateNameLoc(TemplateIILoc);
10455     SpecTL.setLAngleLoc(LAngleLoc);
10456     SpecTL.setRAngleLoc(RAngleLoc);
10457     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
10458       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
10459     return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
10460   }
10461 
10462   QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
10463   if (T.isNull())
10464     return true;
10465 
10466   // Provide source-location information for the template specialization type.
10467   TypeLocBuilder Builder;
10468   TemplateSpecializationTypeLoc SpecTL
10469     = Builder.push<TemplateSpecializationTypeLoc>(T);
10470   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
10471   SpecTL.setTemplateNameLoc(TemplateIILoc);
10472   SpecTL.setLAngleLoc(LAngleLoc);
10473   SpecTL.setRAngleLoc(RAngleLoc);
10474   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
10475     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
10476 
10477   T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
10478   ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
10479   TL.setElaboratedKeywordLoc(TypenameLoc);
10480   TL.setQualifierLoc(SS.getWithLocInContext(Context));
10481 
10482   TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
10483   return CreateParsedType(T, TSI);
10484 }
10485 
10486 
10487 /// Determine whether this failed name lookup should be treated as being
10488 /// disabled by a usage of std::enable_if.
isEnableIf(NestedNameSpecifierLoc NNS,const IdentifierInfo & II,SourceRange & CondRange,Expr * & Cond)10489 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
10490                        SourceRange &CondRange, Expr *&Cond) {
10491   // We must be looking for a ::type...
10492   if (!II.isStr("type"))
10493     return false;
10494 
10495   // ... within an explicitly-written template specialization...
10496   if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
10497     return false;
10498   TypeLoc EnableIfTy = NNS.getTypeLoc();
10499   TemplateSpecializationTypeLoc EnableIfTSTLoc =
10500       EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
10501   if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
10502     return false;
10503   const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr();
10504 
10505   // ... which names a complete class template declaration...
10506   const TemplateDecl *EnableIfDecl =
10507     EnableIfTST->getTemplateName().getAsTemplateDecl();
10508   if (!EnableIfDecl || EnableIfTST->isIncompleteType())
10509     return false;
10510 
10511   // ... called "enable_if".
10512   const IdentifierInfo *EnableIfII =
10513     EnableIfDecl->getDeclName().getAsIdentifierInfo();
10514   if (!EnableIfII || !EnableIfII->isStr("enable_if"))
10515     return false;
10516 
10517   // Assume the first template argument is the condition.
10518   CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
10519 
10520   // Dig out the condition.
10521   Cond = nullptr;
10522   if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind()
10523         != TemplateArgument::Expression)
10524     return true;
10525 
10526   Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression();
10527 
10528   // Ignore Boolean literals; they add no value.
10529   if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts()))
10530     Cond = nullptr;
10531 
10532   return true;
10533 }
10534 
10535 QualType
CheckTypenameType(ElaboratedTypeKeyword Keyword,SourceLocation KeywordLoc,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo & II,SourceLocation IILoc,TypeSourceInfo ** TSI,bool DeducedTSTContext)10536 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
10537                         SourceLocation KeywordLoc,
10538                         NestedNameSpecifierLoc QualifierLoc,
10539                         const IdentifierInfo &II,
10540                         SourceLocation IILoc,
10541                         TypeSourceInfo **TSI,
10542                         bool DeducedTSTContext) {
10543   QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc,
10544                                  DeducedTSTContext);
10545   if (T.isNull())
10546     return QualType();
10547 
10548   *TSI = Context.CreateTypeSourceInfo(T);
10549   if (isa<DependentNameType>(T)) {
10550     DependentNameTypeLoc TL =
10551         (*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>();
10552     TL.setElaboratedKeywordLoc(KeywordLoc);
10553     TL.setQualifierLoc(QualifierLoc);
10554     TL.setNameLoc(IILoc);
10555   } else {
10556     ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>();
10557     TL.setElaboratedKeywordLoc(KeywordLoc);
10558     TL.setQualifierLoc(QualifierLoc);
10559     TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc);
10560   }
10561   return T;
10562 }
10563 
10564 /// Build the type that describes a C++ typename specifier,
10565 /// e.g., "typename T::type".
10566 QualType
CheckTypenameType(ElaboratedTypeKeyword Keyword,SourceLocation KeywordLoc,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo & II,SourceLocation IILoc,bool DeducedTSTContext)10567 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
10568                         SourceLocation KeywordLoc,
10569                         NestedNameSpecifierLoc QualifierLoc,
10570                         const IdentifierInfo &II,
10571                         SourceLocation IILoc, bool DeducedTSTContext) {
10572   CXXScopeSpec SS;
10573   SS.Adopt(QualifierLoc);
10574 
10575   DeclContext *Ctx = nullptr;
10576   if (QualifierLoc) {
10577     Ctx = computeDeclContext(SS);
10578     if (!Ctx) {
10579       // If the nested-name-specifier is dependent and couldn't be
10580       // resolved to a type, build a typename type.
10581       assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
10582       return Context.getDependentNameType(Keyword,
10583                                           QualifierLoc.getNestedNameSpecifier(),
10584                                           &II);
10585     }
10586 
10587     // If the nested-name-specifier refers to the current instantiation,
10588     // the "typename" keyword itself is superfluous. In C++03, the
10589     // program is actually ill-formed. However, DR 382 (in C++0x CD1)
10590     // allows such extraneous "typename" keywords, and we retroactively
10591     // apply this DR to C++03 code with only a warning. In any case we continue.
10592 
10593     if (RequireCompleteDeclContext(SS, Ctx))
10594       return QualType();
10595   }
10596 
10597   DeclarationName Name(&II);
10598   LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
10599   if (Ctx)
10600     LookupQualifiedName(Result, Ctx, SS);
10601   else
10602     LookupName(Result, CurScope);
10603   unsigned DiagID = 0;
10604   Decl *Referenced = nullptr;
10605   switch (Result.getResultKind()) {
10606   case LookupResult::NotFound: {
10607     // If we're looking up 'type' within a template named 'enable_if', produce
10608     // a more specific diagnostic.
10609     SourceRange CondRange;
10610     Expr *Cond = nullptr;
10611     if (Ctx && isEnableIf(QualifierLoc, II, CondRange, Cond)) {
10612       // If we have a condition, narrow it down to the specific failed
10613       // condition.
10614       if (Cond) {
10615         Expr *FailedCond;
10616         std::string FailedDescription;
10617         std::tie(FailedCond, FailedDescription) =
10618           findFailedBooleanCondition(Cond);
10619 
10620         Diag(FailedCond->getExprLoc(),
10621              diag::err_typename_nested_not_found_requirement)
10622           << FailedDescription
10623           << FailedCond->getSourceRange();
10624         return QualType();
10625       }
10626 
10627       Diag(CondRange.getBegin(),
10628            diag::err_typename_nested_not_found_enable_if)
10629           << Ctx << CondRange;
10630       return QualType();
10631     }
10632 
10633     DiagID = Ctx ? diag::err_typename_nested_not_found
10634                  : diag::err_unknown_typename;
10635     break;
10636   }
10637 
10638   case LookupResult::FoundUnresolvedValue: {
10639     // We found a using declaration that is a value. Most likely, the using
10640     // declaration itself is meant to have the 'typename' keyword.
10641     SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
10642                           IILoc);
10643     Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
10644       << Name << Ctx << FullRange;
10645     if (UnresolvedUsingValueDecl *Using
10646           = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
10647       SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
10648       Diag(Loc, diag::note_using_value_decl_missing_typename)
10649         << FixItHint::CreateInsertion(Loc, "typename ");
10650     }
10651   }
10652   // Fall through to create a dependent typename type, from which we can recover
10653   // better.
10654   LLVM_FALLTHROUGH;
10655 
10656   case LookupResult::NotFoundInCurrentInstantiation:
10657     // Okay, it's a member of an unknown instantiation.
10658     return Context.getDependentNameType(Keyword,
10659                                         QualifierLoc.getNestedNameSpecifier(),
10660                                         &II);
10661 
10662   case LookupResult::Found:
10663     if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
10664       // C++ [class.qual]p2:
10665       //   In a lookup in which function names are not ignored and the
10666       //   nested-name-specifier nominates a class C, if the name specified
10667       //   after the nested-name-specifier, when looked up in C, is the
10668       //   injected-class-name of C [...] then the name is instead considered
10669       //   to name the constructor of class C.
10670       //
10671       // Unlike in an elaborated-type-specifier, function names are not ignored
10672       // in typename-specifier lookup. However, they are ignored in all the
10673       // contexts where we form a typename type with no keyword (that is, in
10674       // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers).
10675       //
10676       // FIXME: That's not strictly true: mem-initializer-id lookup does not
10677       // ignore functions, but that appears to be an oversight.
10678       auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx);
10679       auto *FoundRD = dyn_cast<CXXRecordDecl>(Type);
10680       if (Keyword == ETK_Typename && LookupRD && FoundRD &&
10681           FoundRD->isInjectedClassName() &&
10682           declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
10683         Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor)
10684             << &II << 1 << 0 /*'typename' keyword used*/;
10685 
10686       // We found a type. Build an ElaboratedType, since the
10687       // typename-specifier was just sugar.
10688       MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
10689       return Context.getElaboratedType(Keyword,
10690                                        QualifierLoc.getNestedNameSpecifier(),
10691                                        Context.getTypeDeclType(Type));
10692     }
10693 
10694     // C++ [dcl.type.simple]p2:
10695     //   A type-specifier of the form
10696     //     typename[opt] nested-name-specifier[opt] template-name
10697     //   is a placeholder for a deduced class type [...].
10698     if (getLangOpts().CPlusPlus17) {
10699       if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) {
10700         if (!DeducedTSTContext) {
10701           QualType T(QualifierLoc
10702                          ? QualifierLoc.getNestedNameSpecifier()->getAsType()
10703                          : nullptr, 0);
10704           if (!T.isNull())
10705             Diag(IILoc, diag::err_dependent_deduced_tst)
10706               << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << T;
10707           else
10708             Diag(IILoc, diag::err_deduced_tst)
10709               << (int)getTemplateNameKindForDiagnostics(TemplateName(TD));
10710           Diag(TD->getLocation(), diag::note_template_decl_here);
10711           return QualType();
10712         }
10713         return Context.getElaboratedType(
10714             Keyword, QualifierLoc.getNestedNameSpecifier(),
10715             Context.getDeducedTemplateSpecializationType(TemplateName(TD),
10716                                                          QualType(), false));
10717       }
10718     }
10719 
10720     DiagID = Ctx ? diag::err_typename_nested_not_type
10721                  : diag::err_typename_not_type;
10722     Referenced = Result.getFoundDecl();
10723     break;
10724 
10725   case LookupResult::FoundOverloaded:
10726     DiagID = Ctx ? diag::err_typename_nested_not_type
10727                  : diag::err_typename_not_type;
10728     Referenced = *Result.begin();
10729     break;
10730 
10731   case LookupResult::Ambiguous:
10732     return QualType();
10733   }
10734 
10735   // If we get here, it's because name lookup did not find a
10736   // type. Emit an appropriate diagnostic and return an error.
10737   SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
10738                         IILoc);
10739   if (Ctx)
10740     Diag(IILoc, DiagID) << FullRange << Name << Ctx;
10741   else
10742     Diag(IILoc, DiagID) << FullRange << Name;
10743   if (Referenced)
10744     Diag(Referenced->getLocation(),
10745          Ctx ? diag::note_typename_member_refers_here
10746              : diag::note_typename_refers_here)
10747       << Name;
10748   return QualType();
10749 }
10750 
10751 namespace {
10752   // See Sema::RebuildTypeInCurrentInstantiation
10753   class CurrentInstantiationRebuilder
10754     : public TreeTransform<CurrentInstantiationRebuilder> {
10755     SourceLocation Loc;
10756     DeclarationName Entity;
10757 
10758   public:
10759     typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
10760 
CurrentInstantiationRebuilder(Sema & SemaRef,SourceLocation Loc,DeclarationName Entity)10761     CurrentInstantiationRebuilder(Sema &SemaRef,
10762                                   SourceLocation Loc,
10763                                   DeclarationName Entity)
10764     : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
10765       Loc(Loc), Entity(Entity) { }
10766 
10767     /// Determine whether the given type \p T has already been
10768     /// transformed.
10769     ///
10770     /// For the purposes of type reconstruction, a type has already been
10771     /// transformed if it is NULL or if it is not dependent.
AlreadyTransformed(QualType T)10772     bool AlreadyTransformed(QualType T) {
10773       return T.isNull() || !T->isDependentType();
10774     }
10775 
10776     /// Returns the location of the entity whose type is being
10777     /// rebuilt.
getBaseLocation()10778     SourceLocation getBaseLocation() { return Loc; }
10779 
10780     /// Returns the name of the entity whose type is being rebuilt.
getBaseEntity()10781     DeclarationName getBaseEntity() { return Entity; }
10782 
10783     /// Sets the "base" location and entity when that
10784     /// information is known based on another transformation.
setBase(SourceLocation Loc,DeclarationName Entity)10785     void setBase(SourceLocation Loc, DeclarationName Entity) {
10786       this->Loc = Loc;
10787       this->Entity = Entity;
10788     }
10789 
TransformLambdaExpr(LambdaExpr * E)10790     ExprResult TransformLambdaExpr(LambdaExpr *E) {
10791       // Lambdas never need to be transformed.
10792       return E;
10793     }
10794   };
10795 } // end anonymous namespace
10796 
10797 /// Rebuilds a type within the context of the current instantiation.
10798 ///
10799 /// The type \p T is part of the type of an out-of-line member definition of
10800 /// a class template (or class template partial specialization) that was parsed
10801 /// and constructed before we entered the scope of the class template (or
10802 /// partial specialization thereof). This routine will rebuild that type now
10803 /// that we have entered the declarator's scope, which may produce different
10804 /// canonical types, e.g.,
10805 ///
10806 /// \code
10807 /// template<typename T>
10808 /// struct X {
10809 ///   typedef T* pointer;
10810 ///   pointer data();
10811 /// };
10812 ///
10813 /// template<typename T>
10814 /// typename X<T>::pointer X<T>::data() { ... }
10815 /// \endcode
10816 ///
10817 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
10818 /// since we do not know that we can look into X<T> when we parsed the type.
10819 /// This function will rebuild the type, performing the lookup of "pointer"
10820 /// in X<T> and returning an ElaboratedType whose canonical type is the same
10821 /// as the canonical type of T*, allowing the return types of the out-of-line
10822 /// definition and the declaration to match.
RebuildTypeInCurrentInstantiation(TypeSourceInfo * T,SourceLocation Loc,DeclarationName Name)10823 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
10824                                                         SourceLocation Loc,
10825                                                         DeclarationName Name) {
10826   if (!T || !T->getType()->isDependentType())
10827     return T;
10828 
10829   CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
10830   return Rebuilder.TransformType(T);
10831 }
10832 
RebuildExprInCurrentInstantiation(Expr * E)10833 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
10834   CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
10835                                           DeclarationName());
10836   return Rebuilder.TransformExpr(E);
10837 }
10838 
RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec & SS)10839 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
10840   if (SS.isInvalid())
10841     return true;
10842 
10843   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10844   CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
10845                                           DeclarationName());
10846   NestedNameSpecifierLoc Rebuilt
10847     = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
10848   if (!Rebuilt)
10849     return true;
10850 
10851   SS.Adopt(Rebuilt);
10852   return false;
10853 }
10854 
10855 /// Rebuild the template parameters now that we know we're in a current
10856 /// instantiation.
RebuildTemplateParamsInCurrentInstantiation(TemplateParameterList * Params)10857 bool Sema::RebuildTemplateParamsInCurrentInstantiation(
10858                                                TemplateParameterList *Params) {
10859   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
10860     Decl *Param = Params->getParam(I);
10861 
10862     // There is nothing to rebuild in a type parameter.
10863     if (isa<TemplateTypeParmDecl>(Param))
10864       continue;
10865 
10866     // Rebuild the template parameter list of a template template parameter.
10867     if (TemplateTemplateParmDecl *TTP
10868         = dyn_cast<TemplateTemplateParmDecl>(Param)) {
10869       if (RebuildTemplateParamsInCurrentInstantiation(
10870             TTP->getTemplateParameters()))
10871         return true;
10872 
10873       continue;
10874     }
10875 
10876     // Rebuild the type of a non-type template parameter.
10877     NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
10878     TypeSourceInfo *NewTSI
10879       = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
10880                                           NTTP->getLocation(),
10881                                           NTTP->getDeclName());
10882     if (!NewTSI)
10883       return true;
10884 
10885     if (NewTSI->getType()->isUndeducedType()) {
10886       // C++17 [temp.dep.expr]p3:
10887       //   An id-expression is type-dependent if it contains
10888       //    - an identifier associated by name lookup with a non-type
10889       //      template-parameter declared with a type that contains a
10890       //      placeholder type (7.1.7.4),
10891       NewTSI = SubstAutoTypeSourceInfo(NewTSI, Context.DependentTy);
10892     }
10893 
10894     if (NewTSI != NTTP->getTypeSourceInfo()) {
10895       NTTP->setTypeSourceInfo(NewTSI);
10896       NTTP->setType(NewTSI->getType());
10897     }
10898   }
10899 
10900   return false;
10901 }
10902 
10903 /// Produces a formatted string that describes the binding of
10904 /// template parameters to template arguments.
10905 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgumentList & Args)10906 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
10907                                       const TemplateArgumentList &Args) {
10908   return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
10909 }
10910 
10911 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgument * Args,unsigned NumArgs)10912 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
10913                                       const TemplateArgument *Args,
10914                                       unsigned NumArgs) {
10915   SmallString<128> Str;
10916   llvm::raw_svector_ostream Out(Str);
10917 
10918   if (!Params || Params->size() == 0 || NumArgs == 0)
10919     return std::string();
10920 
10921   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
10922     if (I >= NumArgs)
10923       break;
10924 
10925     if (I == 0)
10926       Out << "[with ";
10927     else
10928       Out << ", ";
10929 
10930     if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
10931       Out << Id->getName();
10932     } else {
10933       Out << '$' << I;
10934     }
10935 
10936     Out << " = ";
10937     Args[I].print(getPrintingPolicy(), Out);
10938   }
10939 
10940   Out << ']';
10941   return std::string(Out.str());
10942 }
10943 
MarkAsLateParsedTemplate(FunctionDecl * FD,Decl * FnD,CachedTokens & Toks)10944 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
10945                                     CachedTokens &Toks) {
10946   if (!FD)
10947     return;
10948 
10949   auto LPT = std::make_unique<LateParsedTemplate>();
10950 
10951   // Take tokens to avoid allocations
10952   LPT->Toks.swap(Toks);
10953   LPT->D = FnD;
10954   LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT)));
10955 
10956   FD->setLateTemplateParsed(true);
10957 }
10958 
UnmarkAsLateParsedTemplate(FunctionDecl * FD)10959 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
10960   if (!FD)
10961     return;
10962   FD->setLateTemplateParsed(false);
10963 }
10964 
IsInsideALocalClassWithinATemplateFunction()10965 bool Sema::IsInsideALocalClassWithinATemplateFunction() {
10966   DeclContext *DC = CurContext;
10967 
10968   while (DC) {
10969     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
10970       const FunctionDecl *FD = RD->isLocalClass();
10971       return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
10972     } else if (DC->isTranslationUnit() || DC->isNamespace())
10973       return false;
10974 
10975     DC = DC->getParent();
10976   }
10977   return false;
10978 }
10979 
10980 namespace {
10981 /// Walk the path from which a declaration was instantiated, and check
10982 /// that every explicit specialization along that path is visible. This enforces
10983 /// C++ [temp.expl.spec]/6:
10984 ///
10985 ///   If a template, a member template or a member of a class template is
10986 ///   explicitly specialized then that specialization shall be declared before
10987 ///   the first use of that specialization that would cause an implicit
10988 ///   instantiation to take place, in every translation unit in which such a
10989 ///   use occurs; no diagnostic is required.
10990 ///
10991 /// and also C++ [temp.class.spec]/1:
10992 ///
10993 ///   A partial specialization shall be declared before the first use of a
10994 ///   class template specialization that would make use of the partial
10995 ///   specialization as the result of an implicit or explicit instantiation
10996 ///   in every translation unit in which such a use occurs; no diagnostic is
10997 ///   required.
10998 class ExplicitSpecializationVisibilityChecker {
10999   Sema &S;
11000   SourceLocation Loc;
11001   llvm::SmallVector<Module *, 8> Modules;
11002 
11003 public:
ExplicitSpecializationVisibilityChecker(Sema & S,SourceLocation Loc)11004   ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc)
11005       : S(S), Loc(Loc) {}
11006 
check(NamedDecl * ND)11007   void check(NamedDecl *ND) {
11008     if (auto *FD = dyn_cast<FunctionDecl>(ND))
11009       return checkImpl(FD);
11010     if (auto *RD = dyn_cast<CXXRecordDecl>(ND))
11011       return checkImpl(RD);
11012     if (auto *VD = dyn_cast<VarDecl>(ND))
11013       return checkImpl(VD);
11014     if (auto *ED = dyn_cast<EnumDecl>(ND))
11015       return checkImpl(ED);
11016   }
11017 
11018 private:
diagnose(NamedDecl * D,bool IsPartialSpec)11019   void diagnose(NamedDecl *D, bool IsPartialSpec) {
11020     auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization
11021                               : Sema::MissingImportKind::ExplicitSpecialization;
11022     const bool Recover = true;
11023 
11024     // If we got a custom set of modules (because only a subset of the
11025     // declarations are interesting), use them, otherwise let
11026     // diagnoseMissingImport intelligently pick some.
11027     if (Modules.empty())
11028       S.diagnoseMissingImport(Loc, D, Kind, Recover);
11029     else
11030       S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover);
11031   }
11032 
11033   // Check a specific declaration. There are three problematic cases:
11034   //
11035   //  1) The declaration is an explicit specialization of a template
11036   //     specialization.
11037   //  2) The declaration is an explicit specialization of a member of an
11038   //     templated class.
11039   //  3) The declaration is an instantiation of a template, and that template
11040   //     is an explicit specialization of a member of a templated class.
11041   //
11042   // We don't need to go any deeper than that, as the instantiation of the
11043   // surrounding class / etc is not triggered by whatever triggered this
11044   // instantiation, and thus should be checked elsewhere.
11045   template<typename SpecDecl>
checkImpl(SpecDecl * Spec)11046   void checkImpl(SpecDecl *Spec) {
11047     bool IsHiddenExplicitSpecialization = false;
11048     if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) {
11049       IsHiddenExplicitSpecialization =
11050           Spec->getMemberSpecializationInfo()
11051               ? !S.hasVisibleMemberSpecialization(Spec, &Modules)
11052               : !S.hasVisibleExplicitSpecialization(Spec, &Modules);
11053     } else {
11054       checkInstantiated(Spec);
11055     }
11056 
11057     if (IsHiddenExplicitSpecialization)
11058       diagnose(Spec->getMostRecentDecl(), false);
11059   }
11060 
checkInstantiated(FunctionDecl * FD)11061   void checkInstantiated(FunctionDecl *FD) {
11062     if (auto *TD = FD->getPrimaryTemplate())
11063       checkTemplate(TD);
11064   }
11065 
checkInstantiated(CXXRecordDecl * RD)11066   void checkInstantiated(CXXRecordDecl *RD) {
11067     auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD);
11068     if (!SD)
11069       return;
11070 
11071     auto From = SD->getSpecializedTemplateOrPartial();
11072     if (auto *TD = From.dyn_cast<ClassTemplateDecl *>())
11073       checkTemplate(TD);
11074     else if (auto *TD =
11075                  From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
11076       if (!S.hasVisibleDeclaration(TD))
11077         diagnose(TD, true);
11078       checkTemplate(TD);
11079     }
11080   }
11081 
checkInstantiated(VarDecl * RD)11082   void checkInstantiated(VarDecl *RD) {
11083     auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD);
11084     if (!SD)
11085       return;
11086 
11087     auto From = SD->getSpecializedTemplateOrPartial();
11088     if (auto *TD = From.dyn_cast<VarTemplateDecl *>())
11089       checkTemplate(TD);
11090     else if (auto *TD =
11091                  From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
11092       if (!S.hasVisibleDeclaration(TD))
11093         diagnose(TD, true);
11094       checkTemplate(TD);
11095     }
11096   }
11097 
checkInstantiated(EnumDecl * FD)11098   void checkInstantiated(EnumDecl *FD) {}
11099 
11100   template<typename TemplDecl>
checkTemplate(TemplDecl * TD)11101   void checkTemplate(TemplDecl *TD) {
11102     if (TD->isMemberSpecialization()) {
11103       if (!S.hasVisibleMemberSpecialization(TD, &Modules))
11104         diagnose(TD->getMostRecentDecl(), false);
11105     }
11106   }
11107 };
11108 } // end anonymous namespace
11109 
checkSpecializationVisibility(SourceLocation Loc,NamedDecl * Spec)11110 void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) {
11111   if (!getLangOpts().Modules)
11112     return;
11113 
11114   ExplicitSpecializationVisibilityChecker(*this, Loc).check(Spec);
11115 }
11116