• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/CodeGen/MachineBasicBlock.h -------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
14 #define LLVM_CODEGEN_MACHINEBASICBLOCK_H
15 
16 #include "llvm/ADT/GraphTraits.h"
17 #include "llvm/ADT/ilist.h"
18 #include "llvm/ADT/iterator_range.h"
19 #include "llvm/ADT/SparseBitVector.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
22 #include "llvm/IR/DebugLoc.h"
23 #include "llvm/MC/LaneBitmask.h"
24 #include "llvm/Support/BranchProbability.h"
25 #include <cassert>
26 #include <cstdint>
27 #include <functional>
28 #include <iterator>
29 #include <string>
30 #include <vector>
31 
32 namespace llvm {
33 
34 class BasicBlock;
35 class MachineFunction;
36 class MCSymbol;
37 class ModuleSlotTracker;
38 class Pass;
39 class Printable;
40 class SlotIndexes;
41 class StringRef;
42 class raw_ostream;
43 class LiveIntervals;
44 class TargetRegisterClass;
45 class TargetRegisterInfo;
46 
47 // This structure uniquely identifies a basic block section.
48 // Possible values are
49 //  {Type: Default, Number: (unsigned)} (These are regular section IDs)
50 //  {Type: Exception, Number: 0}  (ExceptionSectionID)
51 //  {Type: Cold, Number: 0}  (ColdSectionID)
52 struct MBBSectionID {
53   enum SectionType {
54     Default = 0, // Regular section (these sections are distinguished by the
55                  // Number field).
56     Exception,   // Special section type for exception handling blocks
57     Cold,        // Special section type for cold blocks
58   } Type;
59   unsigned Number;
60 
MBBSectionIDMBBSectionID61   MBBSectionID(unsigned N) : Type(Default), Number(N) {}
62 
63   // Special unique sections for cold and exception blocks.
64   const static MBBSectionID ColdSectionID;
65   const static MBBSectionID ExceptionSectionID;
66 
67   bool operator==(const MBBSectionID &Other) const {
68     return Type == Other.Type && Number == Other.Number;
69   }
70 
71   bool operator!=(const MBBSectionID &Other) const { return !(*this == Other); }
72 
73 private:
74   // This is only used to construct the special cold and exception sections.
MBBSectionIDMBBSectionID75   MBBSectionID(SectionType T) : Type(T), Number(0) {}
76 };
77 
78 template <> struct ilist_traits<MachineInstr> {
79 private:
80   friend class MachineBasicBlock; // Set by the owning MachineBasicBlock.
81 
82   MachineBasicBlock *Parent;
83 
84   using instr_iterator =
85       simple_ilist<MachineInstr, ilist_sentinel_tracking<true>>::iterator;
86 
87 public:
88   void addNodeToList(MachineInstr *N);
89   void removeNodeFromList(MachineInstr *N);
90   void transferNodesFromList(ilist_traits &FromList, instr_iterator First,
91                              instr_iterator Last);
92   void deleteNode(MachineInstr *MI);
93 };
94 
95 class MachineBasicBlock
96     : public ilist_node_with_parent<MachineBasicBlock, MachineFunction> {
97 public:
98   /// Pair of physical register and lane mask.
99   /// This is not simply a std::pair typedef because the members should be named
100   /// clearly as they both have an integer type.
101   struct RegisterMaskPair {
102   public:
103     MCPhysReg PhysReg;
104     LaneBitmask LaneMask;
105 
106     RegisterMaskPair(MCPhysReg PhysReg, LaneBitmask LaneMask)
107         : PhysReg(PhysReg), LaneMask(LaneMask) {}
108   };
109 
110 private:
111   using Instructions = ilist<MachineInstr, ilist_sentinel_tracking<true>>;
112 
113   Instructions Insts;
114   const BasicBlock *BB;
115   int Number;
116   MachineFunction *xParent;
117 
118   /// Keep track of the predecessor / successor basic blocks.
119   std::vector<MachineBasicBlock *> Predecessors;
120   std::vector<MachineBasicBlock *> Successors;
121 
122   /// Keep track of the probabilities to the successors. This vector has the
123   /// same order as Successors, or it is empty if we don't use it (disable
124   /// optimization).
125   std::vector<BranchProbability> Probs;
126   using probability_iterator = std::vector<BranchProbability>::iterator;
127   using const_probability_iterator =
128       std::vector<BranchProbability>::const_iterator;
129 
130   Optional<uint64_t> IrrLoopHeaderWeight;
131 
132   /// Keep track of the physical registers that are livein of the basicblock.
133   using LiveInVector = std::vector<RegisterMaskPair>;
134   LiveInVector LiveIns;
135 
136   /// Alignment of the basic block. One if the basic block does not need to be
137   /// aligned.
138   Align Alignment;
139 
140   /// Indicate that this basic block is entered via an exception handler.
141   bool IsEHPad = false;
142 
143   /// Indicate that this basic block is potentially the target of an indirect
144   /// branch.
145   bool AddressTaken = false;
146 
147   /// Indicate that this basic block needs its symbol be emitted regardless of
148   /// whether the flow just falls-through to it.
149   bool LabelMustBeEmitted = false;
150 
151   /// Indicate that this basic block is the entry block of an EH scope, i.e.,
152   /// the block that used to have a catchpad or cleanuppad instruction in the
153   /// LLVM IR.
154   bool IsEHScopeEntry = false;
155 
156   /// Indicate that this basic block is the entry block of an EH funclet.
157   bool IsEHFuncletEntry = false;
158 
159   /// Indicate that this basic block is the entry block of a cleanup funclet.
160   bool IsCleanupFuncletEntry = false;
161 
162   /// With basic block sections, this stores the Section ID of the basic block.
163   MBBSectionID SectionID{0};
164 
165   // Indicate that this basic block begins a section.
166   bool IsBeginSection = false;
167 
168   // Indicate that this basic block ends a section.
169   bool IsEndSection = false;
170 
171   /// Indicate that this basic block is the indirect dest of an INLINEASM_BR.
172   bool IsInlineAsmBrIndirectTarget = false;
173 
174   /// since getSymbol is a relatively heavy-weight operation, the symbol
175   /// is only computed once and is cached.
176   mutable MCSymbol *CachedMCSymbol = nullptr;
177 
178   /// Marks the end of the basic block. Used during basic block sections to
179   /// calculate the size of the basic block, or the BB section ending with it.
180   mutable MCSymbol *CachedEndMCSymbol = nullptr;
181 
182   // Intrusive list support
183   MachineBasicBlock() = default;
184 
185   explicit MachineBasicBlock(MachineFunction &MF, const BasicBlock *BB);
186 
187   ~MachineBasicBlock();
188 
189   // MachineBasicBlocks are allocated and owned by MachineFunction.
190   friend class MachineFunction;
191 
192 public:
193   /// Return the LLVM basic block that this instance corresponded to originally.
194   /// Note that this may be NULL if this instance does not correspond directly
195   /// to an LLVM basic block.
196   const BasicBlock *getBasicBlock() const { return BB; }
197 
198   /// Return the name of the corresponding LLVM basic block, or an empty string.
199   StringRef getName() const;
200 
201   /// Return a formatted string to identify this block and its parent function.
202   std::string getFullName() const;
203 
204   /// Test whether this block is potentially the target of an indirect branch.
205   bool hasAddressTaken() const { return AddressTaken; }
206 
207   /// Set this block to reflect that it potentially is the target of an indirect
208   /// branch.
209   void setHasAddressTaken() { AddressTaken = true; }
210 
211   /// Test whether this block must have its label emitted.
212   bool hasLabelMustBeEmitted() const { return LabelMustBeEmitted; }
213 
214   /// Set this block to reflect that, regardless how we flow to it, we need
215   /// its label be emitted.
216   void setLabelMustBeEmitted() { LabelMustBeEmitted = true; }
217 
218   /// Return the MachineFunction containing this basic block.
219   const MachineFunction *getParent() const { return xParent; }
220   MachineFunction *getParent() { return xParent; }
221 
222   using instr_iterator = Instructions::iterator;
223   using const_instr_iterator = Instructions::const_iterator;
224   using reverse_instr_iterator = Instructions::reverse_iterator;
225   using const_reverse_instr_iterator = Instructions::const_reverse_iterator;
226 
227   using iterator = MachineInstrBundleIterator<MachineInstr>;
228   using const_iterator = MachineInstrBundleIterator<const MachineInstr>;
229   using reverse_iterator = MachineInstrBundleIterator<MachineInstr, true>;
230   using const_reverse_iterator =
231       MachineInstrBundleIterator<const MachineInstr, true>;
232 
233   unsigned size() const { return (unsigned)Insts.size(); }
234   bool empty() const { return Insts.empty(); }
235 
236   MachineInstr       &instr_front()       { return Insts.front(); }
237   MachineInstr       &instr_back()        { return Insts.back();  }
238   const MachineInstr &instr_front() const { return Insts.front(); }
239   const MachineInstr &instr_back()  const { return Insts.back();  }
240 
241   MachineInstr       &front()             { return Insts.front(); }
242   MachineInstr       &back()              { return *--end();      }
243   const MachineInstr &front()       const { return Insts.front(); }
244   const MachineInstr &back()        const { return *--end();      }
245 
246   instr_iterator                instr_begin()       { return Insts.begin();  }
247   const_instr_iterator          instr_begin() const { return Insts.begin();  }
248   instr_iterator                  instr_end()       { return Insts.end();    }
249   const_instr_iterator            instr_end() const { return Insts.end();    }
250   reverse_instr_iterator       instr_rbegin()       { return Insts.rbegin(); }
251   const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
252   reverse_instr_iterator       instr_rend  ()       { return Insts.rend();   }
253   const_reverse_instr_iterator instr_rend  () const { return Insts.rend();   }
254 
255   using instr_range = iterator_range<instr_iterator>;
256   using const_instr_range = iterator_range<const_instr_iterator>;
257   instr_range instrs() { return instr_range(instr_begin(), instr_end()); }
258   const_instr_range instrs() const {
259     return const_instr_range(instr_begin(), instr_end());
260   }
261 
262   iterator                begin()       { return instr_begin();  }
263   const_iterator          begin() const { return instr_begin();  }
264   iterator                end  ()       { return instr_end();    }
265   const_iterator          end  () const { return instr_end();    }
266   reverse_iterator rbegin() {
267     return reverse_iterator::getAtBundleBegin(instr_rbegin());
268   }
269   const_reverse_iterator rbegin() const {
270     return const_reverse_iterator::getAtBundleBegin(instr_rbegin());
271   }
272   reverse_iterator rend() { return reverse_iterator(instr_rend()); }
273   const_reverse_iterator rend() const {
274     return const_reverse_iterator(instr_rend());
275   }
276 
277   /// Support for MachineInstr::getNextNode().
278   static Instructions MachineBasicBlock::*getSublistAccess(MachineInstr *) {
279     return &MachineBasicBlock::Insts;
280   }
281 
282   inline iterator_range<iterator> terminators() {
283     return make_range(getFirstTerminator(), end());
284   }
285   inline iterator_range<const_iterator> terminators() const {
286     return make_range(getFirstTerminator(), end());
287   }
288 
289   /// Returns a range that iterates over the phis in the basic block.
290   inline iterator_range<iterator> phis() {
291     return make_range(begin(), getFirstNonPHI());
292   }
293   inline iterator_range<const_iterator> phis() const {
294     return const_cast<MachineBasicBlock *>(this)->phis();
295   }
296 
297   // Machine-CFG iterators
298   using pred_iterator = std::vector<MachineBasicBlock *>::iterator;
299   using const_pred_iterator = std::vector<MachineBasicBlock *>::const_iterator;
300   using succ_iterator = std::vector<MachineBasicBlock *>::iterator;
301   using const_succ_iterator = std::vector<MachineBasicBlock *>::const_iterator;
302   using pred_reverse_iterator =
303       std::vector<MachineBasicBlock *>::reverse_iterator;
304   using const_pred_reverse_iterator =
305       std::vector<MachineBasicBlock *>::const_reverse_iterator;
306   using succ_reverse_iterator =
307       std::vector<MachineBasicBlock *>::reverse_iterator;
308   using const_succ_reverse_iterator =
309       std::vector<MachineBasicBlock *>::const_reverse_iterator;
310   pred_iterator        pred_begin()       { return Predecessors.begin(); }
311   const_pred_iterator  pred_begin() const { return Predecessors.begin(); }
312   pred_iterator        pred_end()         { return Predecessors.end();   }
313   const_pred_iterator  pred_end()   const { return Predecessors.end();   }
314   pred_reverse_iterator        pred_rbegin()
315                                           { return Predecessors.rbegin();}
316   const_pred_reverse_iterator  pred_rbegin() const
317                                           { return Predecessors.rbegin();}
318   pred_reverse_iterator        pred_rend()
319                                           { return Predecessors.rend();  }
320   const_pred_reverse_iterator  pred_rend()   const
321                                           { return Predecessors.rend();  }
322   unsigned             pred_size()  const {
323     return (unsigned)Predecessors.size();
324   }
325   bool                 pred_empty() const { return Predecessors.empty(); }
326   succ_iterator        succ_begin()       { return Successors.begin();   }
327   const_succ_iterator  succ_begin() const { return Successors.begin();   }
328   succ_iterator        succ_end()         { return Successors.end();     }
329   const_succ_iterator  succ_end()   const { return Successors.end();     }
330   succ_reverse_iterator        succ_rbegin()
331                                           { return Successors.rbegin();  }
332   const_succ_reverse_iterator  succ_rbegin() const
333                                           { return Successors.rbegin();  }
334   succ_reverse_iterator        succ_rend()
335                                           { return Successors.rend();    }
336   const_succ_reverse_iterator  succ_rend()   const
337                                           { return Successors.rend();    }
338   unsigned             succ_size()  const {
339     return (unsigned)Successors.size();
340   }
341   bool                 succ_empty() const { return Successors.empty();   }
342 
343   inline iterator_range<pred_iterator> predecessors() {
344     return make_range(pred_begin(), pred_end());
345   }
346   inline iterator_range<const_pred_iterator> predecessors() const {
347     return make_range(pred_begin(), pred_end());
348   }
349   inline iterator_range<succ_iterator> successors() {
350     return make_range(succ_begin(), succ_end());
351   }
352   inline iterator_range<const_succ_iterator> successors() const {
353     return make_range(succ_begin(), succ_end());
354   }
355 
356   // LiveIn management methods.
357 
358   /// Adds the specified register as a live in. Note that it is an error to add
359   /// the same register to the same set more than once unless the intention is
360   /// to call sortUniqueLiveIns after all registers are added.
361   void addLiveIn(MCRegister PhysReg,
362                  LaneBitmask LaneMask = LaneBitmask::getAll()) {
363     LiveIns.push_back(RegisterMaskPair(PhysReg, LaneMask));
364   }
365   void addLiveIn(const RegisterMaskPair &RegMaskPair) {
366     LiveIns.push_back(RegMaskPair);
367   }
368 
369   /// Sorts and uniques the LiveIns vector. It can be significantly faster to do
370   /// this than repeatedly calling isLiveIn before calling addLiveIn for every
371   /// LiveIn insertion.
372   void sortUniqueLiveIns();
373 
374   /// Clear live in list.
375   void clearLiveIns();
376 
377   /// Add PhysReg as live in to this block, and ensure that there is a copy of
378   /// PhysReg to a virtual register of class RC. Return the virtual register
379   /// that is a copy of the live in PhysReg.
380   Register addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC);
381 
382   /// Remove the specified register from the live in set.
383   void removeLiveIn(MCPhysReg Reg,
384                     LaneBitmask LaneMask = LaneBitmask::getAll());
385 
386   /// Return true if the specified register is in the live in set.
387   bool isLiveIn(MCPhysReg Reg,
388                 LaneBitmask LaneMask = LaneBitmask::getAll()) const;
389 
390   // Iteration support for live in sets.  These sets are kept in sorted
391   // order by their register number.
392   using livein_iterator = LiveInVector::const_iterator;
393 #ifndef NDEBUG
394   /// Unlike livein_begin, this method does not check that the liveness
395   /// information is accurate. Still for debug purposes it may be useful
396   /// to have iterators that won't assert if the liveness information
397   /// is not current.
398   livein_iterator livein_begin_dbg() const { return LiveIns.begin(); }
399   iterator_range<livein_iterator> liveins_dbg() const {
400     return make_range(livein_begin_dbg(), livein_end());
401   }
402 #endif
403   livein_iterator livein_begin() const;
404   livein_iterator livein_end()   const { return LiveIns.end(); }
405   bool            livein_empty() const { return LiveIns.empty(); }
406   iterator_range<livein_iterator> liveins() const {
407     return make_range(livein_begin(), livein_end());
408   }
409 
410   /// Remove entry from the livein set and return iterator to the next.
411   livein_iterator removeLiveIn(livein_iterator I);
412 
413   /// Get the clobber mask for the start of this basic block. Funclets use this
414   /// to prevent register allocation across funclet transitions.
415   const uint32_t *getBeginClobberMask(const TargetRegisterInfo *TRI) const;
416 
417   /// Get the clobber mask for the end of the basic block.
418   /// \see getBeginClobberMask()
419   const uint32_t *getEndClobberMask(const TargetRegisterInfo *TRI) const;
420 
421   /// Return alignment of the basic block.
422   Align getAlignment() const { return Alignment; }
423 
424   /// Set alignment of the basic block.
425   void setAlignment(Align A) { Alignment = A; }
426 
427   /// Returns true if the block is a landing pad. That is this basic block is
428   /// entered via an exception handler.
429   bool isEHPad() const { return IsEHPad; }
430 
431   /// Indicates the block is a landing pad.  That is this basic block is entered
432   /// via an exception handler.
433   void setIsEHPad(bool V = true) { IsEHPad = V; }
434 
435   bool hasEHPadSuccessor() const;
436 
437   /// Returns true if this is the entry block of the function.
438   bool isEntryBlock() const;
439 
440   /// Returns true if this is the entry block of an EH scope, i.e., the block
441   /// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
442   bool isEHScopeEntry() const { return IsEHScopeEntry; }
443 
444   /// Indicates if this is the entry block of an EH scope, i.e., the block that
445   /// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
446   void setIsEHScopeEntry(bool V = true) { IsEHScopeEntry = V; }
447 
448   /// Returns true if this is the entry block of an EH funclet.
449   bool isEHFuncletEntry() const { return IsEHFuncletEntry; }
450 
451   /// Indicates if this is the entry block of an EH funclet.
452   void setIsEHFuncletEntry(bool V = true) { IsEHFuncletEntry = V; }
453 
454   /// Returns true if this is the entry block of a cleanup funclet.
455   bool isCleanupFuncletEntry() const { return IsCleanupFuncletEntry; }
456 
457   /// Indicates if this is the entry block of a cleanup funclet.
458   void setIsCleanupFuncletEntry(bool V = true) { IsCleanupFuncletEntry = V; }
459 
460   /// Returns true if this block begins any section.
461   bool isBeginSection() const { return IsBeginSection; }
462 
463   /// Returns true if this block ends any section.
464   bool isEndSection() const { return IsEndSection; }
465 
466   void setIsBeginSection(bool V = true) { IsBeginSection = V; }
467 
468   void setIsEndSection(bool V = true) { IsEndSection = V; }
469 
470   /// Returns the section ID of this basic block.
471   MBBSectionID getSectionID() const { return SectionID; }
472 
473   /// Returns the unique section ID number of this basic block.
474   unsigned getSectionIDNum() const {
475     return ((unsigned)MBBSectionID::SectionType::Cold) -
476            ((unsigned)SectionID.Type) + SectionID.Number;
477   }
478 
479   /// Sets the section ID for this basic block.
480   void setSectionID(MBBSectionID V) { SectionID = V; }
481 
482   /// Returns the MCSymbol marking the end of this basic block.
483   MCSymbol *getEndSymbol() const;
484 
485   /// Returns true if this block may have an INLINEASM_BR (overestimate, by
486   /// checking if any of the successors are indirect targets of any inlineasm_br
487   /// in the function).
488   bool mayHaveInlineAsmBr() const;
489 
490   /// Returns true if this is the indirect dest of an INLINEASM_BR.
491   bool isInlineAsmBrIndirectTarget() const {
492     return IsInlineAsmBrIndirectTarget;
493   }
494 
495   /// Indicates if this is the indirect dest of an INLINEASM_BR.
496   void setIsInlineAsmBrIndirectTarget(bool V = true) {
497     IsInlineAsmBrIndirectTarget = V;
498   }
499 
500   /// Returns true if it is legal to hoist instructions into this block.
501   bool isLegalToHoistInto() const;
502 
503   // Code Layout methods.
504 
505   /// Move 'this' block before or after the specified block.  This only moves
506   /// the block, it does not modify the CFG or adjust potential fall-throughs at
507   /// the end of the block.
508   void moveBefore(MachineBasicBlock *NewAfter);
509   void moveAfter(MachineBasicBlock *NewBefore);
510 
511   /// Returns true if this and MBB belong to the same section.
512   bool sameSection(const MachineBasicBlock *MBB) const {
513     return getSectionID() == MBB->getSectionID();
514   }
515 
516   /// Update the terminator instructions in block to account for changes to
517   /// block layout which may have been made. PreviousLayoutSuccessor should be
518   /// set to the block which may have been used as fallthrough before the block
519   /// layout was modified.  If the block previously fell through to that block,
520   /// it may now need a branch. If it previously branched to another block, it
521   /// may now be able to fallthrough to the current layout successor.
522   void updateTerminator(MachineBasicBlock *PreviousLayoutSuccessor);
523 
524   // Machine-CFG mutators
525 
526   /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
527   /// of Succ is automatically updated. PROB parameter is stored in
528   /// Probabilities list. The default probability is set as unknown. Mixing
529   /// known and unknown probabilities in successor list is not allowed. When all
530   /// successors have unknown probabilities, 1 / N is returned as the
531   /// probability for each successor, where N is the number of successors.
532   ///
533   /// Note that duplicate Machine CFG edges are not allowed.
534   void addSuccessor(MachineBasicBlock *Succ,
535                     BranchProbability Prob = BranchProbability::getUnknown());
536 
537   /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
538   /// of Succ is automatically updated. The probability is not provided because
539   /// BPI is not available (e.g. -O0 is used), in which case edge probabilities
540   /// won't be used. Using this interface can save some space.
541   void addSuccessorWithoutProb(MachineBasicBlock *Succ);
542 
543   /// Set successor probability of a given iterator.
544   void setSuccProbability(succ_iterator I, BranchProbability Prob);
545 
546   /// Normalize probabilities of all successors so that the sum of them becomes
547   /// one. This is usually done when the current update on this MBB is done, and
548   /// the sum of its successors' probabilities is not guaranteed to be one. The
549   /// user is responsible for the correct use of this function.
550   /// MBB::removeSuccessor() has an option to do this automatically.
551   void normalizeSuccProbs() {
552     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
553   }
554 
555   /// Validate successors' probabilities and check if the sum of them is
556   /// approximate one. This only works in DEBUG mode.
557   void validateSuccProbs() const;
558 
559   /// Remove successor from the successors list of this MachineBasicBlock. The
560   /// Predecessors list of Succ is automatically updated.
561   /// If NormalizeSuccProbs is true, then normalize successors' probabilities
562   /// after the successor is removed.
563   void removeSuccessor(MachineBasicBlock *Succ,
564                        bool NormalizeSuccProbs = false);
565 
566   /// Remove specified successor from the successors list of this
567   /// MachineBasicBlock. The Predecessors list of Succ is automatically updated.
568   /// If NormalizeSuccProbs is true, then normalize successors' probabilities
569   /// after the successor is removed.
570   /// Return the iterator to the element after the one removed.
571   succ_iterator removeSuccessor(succ_iterator I,
572                                 bool NormalizeSuccProbs = false);
573 
574   /// Replace successor OLD with NEW and update probability info.
575   void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
576 
577   /// Copy a successor (and any probability info) from original block to this
578   /// block's. Uses an iterator into the original blocks successors.
579   ///
580   /// This is useful when doing a partial clone of successors. Afterward, the
581   /// probabilities may need to be normalized.
582   void copySuccessor(MachineBasicBlock *Orig, succ_iterator I);
583 
584   /// Split the old successor into old plus new and updates the probability
585   /// info.
586   void splitSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New,
587                       bool NormalizeSuccProbs = false);
588 
589   /// Transfers all the successors from MBB to this machine basic block (i.e.,
590   /// copies all the successors FromMBB and remove all the successors from
591   /// FromMBB).
592   void transferSuccessors(MachineBasicBlock *FromMBB);
593 
594   /// Transfers all the successors, as in transferSuccessors, and update PHI
595   /// operands in the successor blocks which refer to FromMBB to refer to this.
596   void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB);
597 
598   /// Return true if any of the successors have probabilities attached to them.
599   bool hasSuccessorProbabilities() const { return !Probs.empty(); }
600 
601   /// Return true if the specified MBB is a predecessor of this block.
602   bool isPredecessor(const MachineBasicBlock *MBB) const;
603 
604   /// Return true if the specified MBB is a successor of this block.
605   bool isSuccessor(const MachineBasicBlock *MBB) const;
606 
607   /// Return true if the specified MBB will be emitted immediately after this
608   /// block, such that if this block exits by falling through, control will
609   /// transfer to the specified MBB. Note that MBB need not be a successor at
610   /// all, for example if this block ends with an unconditional branch to some
611   /// other block.
612   bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
613 
614   /// Return the fallthrough block if the block can implicitly
615   /// transfer control to the block after it by falling off the end of
616   /// it.  This should return null if it can reach the block after
617   /// it, but it uses an explicit branch to do so (e.g., a table
618   /// jump).  Non-null return  is a conservative answer.
619   MachineBasicBlock *getFallThrough();
620 
621   /// Return true if the block can implicitly transfer control to the
622   /// block after it by falling off the end of it.  This should return
623   /// false if it can reach the block after it, but it uses an
624   /// explicit branch to do so (e.g., a table jump).  True is a
625   /// conservative answer.
626   bool canFallThrough();
627 
628   /// Returns a pointer to the first instruction in this block that is not a
629   /// PHINode instruction. When adding instructions to the beginning of the
630   /// basic block, they should be added before the returned value, not before
631   /// the first instruction, which might be PHI.
632   /// Returns end() is there's no non-PHI instruction.
633   iterator getFirstNonPHI();
634 
635   /// Return the first instruction in MBB after I that is not a PHI or a label.
636   /// This is the correct point to insert lowered copies at the beginning of a
637   /// basic block that must be before any debugging information.
638   iterator SkipPHIsAndLabels(iterator I);
639 
640   /// Return the first instruction in MBB after I that is not a PHI, label or
641   /// debug.  This is the correct point to insert copies at the beginning of a
642   /// basic block.
643   iterator SkipPHIsLabelsAndDebug(iterator I);
644 
645   /// Returns an iterator to the first terminator instruction of this basic
646   /// block. If a terminator does not exist, it returns end().
647   iterator getFirstTerminator();
648   const_iterator getFirstTerminator() const {
649     return const_cast<MachineBasicBlock *>(this)->getFirstTerminator();
650   }
651 
652   /// Same getFirstTerminator but it ignores bundles and return an
653   /// instr_iterator instead.
654   instr_iterator getFirstInstrTerminator();
655 
656   /// Returns an iterator to the first non-debug instruction in the basic block,
657   /// or end().
658   iterator getFirstNonDebugInstr();
659   const_iterator getFirstNonDebugInstr() const {
660     return const_cast<MachineBasicBlock *>(this)->getFirstNonDebugInstr();
661   }
662 
663   /// Returns an iterator to the last non-debug instruction in the basic block,
664   /// or end().
665   iterator getLastNonDebugInstr();
666   const_iterator getLastNonDebugInstr() const {
667     return const_cast<MachineBasicBlock *>(this)->getLastNonDebugInstr();
668   }
669 
670   /// Convenience function that returns true if the block ends in a return
671   /// instruction.
672   bool isReturnBlock() const {
673     return !empty() && back().isReturn();
674   }
675 
676   /// Convenience function that returns true if the bock ends in a EH scope
677   /// return instruction.
678   bool isEHScopeReturnBlock() const {
679     return !empty() && back().isEHScopeReturn();
680   }
681 
682   /// Split a basic block into 2 pieces at \p SplitPoint. A new block will be
683   /// inserted after this block, and all instructions after \p SplitInst moved
684   /// to it (\p SplitInst will be in the original block). If \p LIS is provided,
685   /// LiveIntervals will be appropriately updated. \return the newly inserted
686   /// block.
687   ///
688   /// If \p UpdateLiveIns is true, this will ensure the live ins list is
689   /// accurate, including for physreg uses/defs in the original block.
690   MachineBasicBlock *splitAt(MachineInstr &SplitInst, bool UpdateLiveIns = true,
691                              LiveIntervals *LIS = nullptr);
692 
693   /// Split the critical edge from this block to the given successor block, and
694   /// return the newly created block, or null if splitting is not possible.
695   ///
696   /// This function updates LiveVariables, MachineDominatorTree, and
697   /// MachineLoopInfo, as applicable.
698   MachineBasicBlock *
699   SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P,
700                     std::vector<SparseBitVector<>> *LiveInSets = nullptr);
701 
702   /// Check if the edge between this block and the given successor \p
703   /// Succ, can be split. If this returns true a subsequent call to
704   /// SplitCriticalEdge is guaranteed to return a valid basic block if
705   /// no changes occurred in the meantime.
706   bool canSplitCriticalEdge(const MachineBasicBlock *Succ) const;
707 
708   void pop_front() { Insts.pop_front(); }
709   void pop_back() { Insts.pop_back(); }
710   void push_back(MachineInstr *MI) { Insts.push_back(MI); }
711 
712   /// Insert MI into the instruction list before I, possibly inside a bundle.
713   ///
714   /// If the insertion point is inside a bundle, MI will be added to the bundle,
715   /// otherwise MI will not be added to any bundle. That means this function
716   /// alone can't be used to prepend or append instructions to bundles. See
717   /// MIBundleBuilder::insert() for a more reliable way of doing that.
718   instr_iterator insert(instr_iterator I, MachineInstr *M);
719 
720   /// Insert a range of instructions into the instruction list before I.
721   template<typename IT>
722   void insert(iterator I, IT S, IT E) {
723     assert((I == end() || I->getParent() == this) &&
724            "iterator points outside of basic block");
725     Insts.insert(I.getInstrIterator(), S, E);
726   }
727 
728   /// Insert MI into the instruction list before I.
729   iterator insert(iterator I, MachineInstr *MI) {
730     assert((I == end() || I->getParent() == this) &&
731            "iterator points outside of basic block");
732     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
733            "Cannot insert instruction with bundle flags");
734     return Insts.insert(I.getInstrIterator(), MI);
735   }
736 
737   /// Insert MI into the instruction list after I.
738   iterator insertAfter(iterator I, MachineInstr *MI) {
739     assert((I == end() || I->getParent() == this) &&
740            "iterator points outside of basic block");
741     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
742            "Cannot insert instruction with bundle flags");
743     return Insts.insertAfter(I.getInstrIterator(), MI);
744   }
745 
746   /// If I is bundled then insert MI into the instruction list after the end of
747   /// the bundle, otherwise insert MI immediately after I.
748   instr_iterator insertAfterBundle(instr_iterator I, MachineInstr *MI) {
749     assert((I == instr_end() || I->getParent() == this) &&
750            "iterator points outside of basic block");
751     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
752            "Cannot insert instruction with bundle flags");
753     while (I->isBundledWithSucc())
754       ++I;
755     return Insts.insertAfter(I, MI);
756   }
757 
758   /// Remove an instruction from the instruction list and delete it.
759   ///
760   /// If the instruction is part of a bundle, the other instructions in the
761   /// bundle will still be bundled after removing the single instruction.
762   instr_iterator erase(instr_iterator I);
763 
764   /// Remove an instruction from the instruction list and delete it.
765   ///
766   /// If the instruction is part of a bundle, the other instructions in the
767   /// bundle will still be bundled after removing the single instruction.
768   instr_iterator erase_instr(MachineInstr *I) {
769     return erase(instr_iterator(I));
770   }
771 
772   /// Remove a range of instructions from the instruction list and delete them.
773   iterator erase(iterator I, iterator E) {
774     return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
775   }
776 
777   /// Remove an instruction or bundle from the instruction list and delete it.
778   ///
779   /// If I points to a bundle of instructions, they are all erased.
780   iterator erase(iterator I) {
781     return erase(I, std::next(I));
782   }
783 
784   /// Remove an instruction from the instruction list and delete it.
785   ///
786   /// If I is the head of a bundle of instructions, the whole bundle will be
787   /// erased.
788   iterator erase(MachineInstr *I) {
789     return erase(iterator(I));
790   }
791 
792   /// Remove the unbundled instruction from the instruction list without
793   /// deleting it.
794   ///
795   /// This function can not be used to remove bundled instructions, use
796   /// remove_instr to remove individual instructions from a bundle.
797   MachineInstr *remove(MachineInstr *I) {
798     assert(!I->isBundled() && "Cannot remove bundled instructions");
799     return Insts.remove(instr_iterator(I));
800   }
801 
802   /// Remove the possibly bundled instruction from the instruction list
803   /// without deleting it.
804   ///
805   /// If the instruction is part of a bundle, the other instructions in the
806   /// bundle will still be bundled after removing the single instruction.
807   MachineInstr *remove_instr(MachineInstr *I);
808 
809   void clear() {
810     Insts.clear();
811   }
812 
813   /// Take an instruction from MBB 'Other' at the position From, and insert it
814   /// into this MBB right before 'Where'.
815   ///
816   /// If From points to a bundle of instructions, the whole bundle is moved.
817   void splice(iterator Where, MachineBasicBlock *Other, iterator From) {
818     // The range splice() doesn't allow noop moves, but this one does.
819     if (Where != From)
820       splice(Where, Other, From, std::next(From));
821   }
822 
823   /// Take a block of instructions from MBB 'Other' in the range [From, To),
824   /// and insert them into this MBB right before 'Where'.
825   ///
826   /// The instruction at 'Where' must not be included in the range of
827   /// instructions to move.
828   void splice(iterator Where, MachineBasicBlock *Other,
829               iterator From, iterator To) {
830     Insts.splice(Where.getInstrIterator(), Other->Insts,
831                  From.getInstrIterator(), To.getInstrIterator());
832   }
833 
834   /// This method unlinks 'this' from the containing function, and returns it,
835   /// but does not delete it.
836   MachineBasicBlock *removeFromParent();
837 
838   /// This method unlinks 'this' from the containing function and deletes it.
839   void eraseFromParent();
840 
841   /// Given a machine basic block that branched to 'Old', change the code and
842   /// CFG so that it branches to 'New' instead.
843   void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
844 
845   /// Update all phi nodes in this basic block to refer to basic block \p New
846   /// instead of basic block \p Old.
847   void replacePhiUsesWith(MachineBasicBlock *Old, MachineBasicBlock *New);
848 
849   /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
850   /// and DBG_LABEL instructions.  Return UnknownLoc if there is none.
851   DebugLoc findDebugLoc(instr_iterator MBBI);
852   DebugLoc findDebugLoc(iterator MBBI) {
853     return findDebugLoc(MBBI.getInstrIterator());
854   }
855 
856   /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
857   /// instructions.  Return UnknownLoc if there is none.
858   DebugLoc findPrevDebugLoc(instr_iterator MBBI);
859   DebugLoc findPrevDebugLoc(iterator MBBI) {
860     return findPrevDebugLoc(MBBI.getInstrIterator());
861   }
862 
863   /// Find and return the merged DebugLoc of the branch instructions of the
864   /// block. Return UnknownLoc if there is none.
865   DebugLoc findBranchDebugLoc();
866 
867   /// Possible outcome of a register liveness query to computeRegisterLiveness()
868   enum LivenessQueryResult {
869     LQR_Live,   ///< Register is known to be (at least partially) live.
870     LQR_Dead,   ///< Register is known to be fully dead.
871     LQR_Unknown ///< Register liveness not decidable from local neighborhood.
872   };
873 
874   /// Return whether (physical) register \p Reg has been defined and not
875   /// killed as of just before \p Before.
876   ///
877   /// Search is localised to a neighborhood of \p Neighborhood instructions
878   /// before (searching for defs or kills) and \p Neighborhood instructions
879   /// after (searching just for defs) \p Before.
880   ///
881   /// \p Reg must be a physical register.
882   LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI,
883                                               MCRegister Reg,
884                                               const_iterator Before,
885                                               unsigned Neighborhood = 10) const;
886 
887   // Debugging methods.
888   void dump() const;
889   void print(raw_ostream &OS, const SlotIndexes * = nullptr,
890              bool IsStandalone = true) const;
891   void print(raw_ostream &OS, ModuleSlotTracker &MST,
892              const SlotIndexes * = nullptr, bool IsStandalone = true) const;
893 
894   enum PrintNameFlag {
895     PrintNameIr = (1 << 0), ///< Add IR name where available
896     PrintNameAttributes = (1 << 1), ///< Print attributes
897   };
898 
899   void printName(raw_ostream &os, unsigned printNameFlags = PrintNameIr,
900                  ModuleSlotTracker *moduleSlotTracker = nullptr) const;
901 
902   // Printing method used by LoopInfo.
903   void printAsOperand(raw_ostream &OS, bool PrintType = true) const;
904 
905   /// MachineBasicBlocks are uniquely numbered at the function level, unless
906   /// they're not in a MachineFunction yet, in which case this will return -1.
907   int getNumber() const { return Number; }
908   void setNumber(int N) { Number = N; }
909 
910   /// Return the MCSymbol for this basic block.
911   MCSymbol *getSymbol() const;
912 
913   Optional<uint64_t> getIrrLoopHeaderWeight() const {
914     return IrrLoopHeaderWeight;
915   }
916 
917   void setIrrLoopHeaderWeight(uint64_t Weight) {
918     IrrLoopHeaderWeight = Weight;
919   }
920 
921 private:
922   /// Return probability iterator corresponding to the I successor iterator.
923   probability_iterator getProbabilityIterator(succ_iterator I);
924   const_probability_iterator
925   getProbabilityIterator(const_succ_iterator I) const;
926 
927   friend class MachineBranchProbabilityInfo;
928   friend class MIPrinter;
929 
930   /// Return probability of the edge from this block to MBB. This method should
931   /// NOT be called directly, but by using getEdgeProbability method from
932   /// MachineBranchProbabilityInfo class.
933   BranchProbability getSuccProbability(const_succ_iterator Succ) const;
934 
935   // Methods used to maintain doubly linked list of blocks...
936   friend struct ilist_callback_traits<MachineBasicBlock>;
937 
938   // Machine-CFG mutators
939 
940   /// Add Pred as a predecessor of this MachineBasicBlock. Don't do this
941   /// unless you know what you're doing, because it doesn't update Pred's
942   /// successors list. Use Pred->addSuccessor instead.
943   void addPredecessor(MachineBasicBlock *Pred);
944 
945   /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
946   /// unless you know what you're doing, because it doesn't update Pred's
947   /// successors list. Use Pred->removeSuccessor instead.
948   void removePredecessor(MachineBasicBlock *Pred);
949 };
950 
951 raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
952 
953 /// Prints a machine basic block reference.
954 ///
955 /// The format is:
956 ///   %bb.5           - a machine basic block with MBB.getNumber() == 5.
957 ///
958 /// Usage: OS << printMBBReference(MBB) << '\n';
959 Printable printMBBReference(const MachineBasicBlock &MBB);
960 
961 // This is useful when building IndexedMaps keyed on basic block pointers.
962 struct MBB2NumberFunctor {
963   using argument_type = const MachineBasicBlock *;
964   unsigned operator()(const MachineBasicBlock *MBB) const {
965     return MBB->getNumber();
966   }
967 };
968 
969 //===--------------------------------------------------------------------===//
970 // GraphTraits specializations for machine basic block graphs (machine-CFGs)
971 //===--------------------------------------------------------------------===//
972 
973 // Provide specializations of GraphTraits to be able to treat a
974 // MachineFunction as a graph of MachineBasicBlocks.
975 //
976 
977 template <> struct GraphTraits<MachineBasicBlock *> {
978   using NodeRef = MachineBasicBlock *;
979   using ChildIteratorType = MachineBasicBlock::succ_iterator;
980 
981   static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; }
982   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
983   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
984 };
985 
986 template <> struct GraphTraits<const MachineBasicBlock *> {
987   using NodeRef = const MachineBasicBlock *;
988   using ChildIteratorType = MachineBasicBlock::const_succ_iterator;
989 
990   static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; }
991   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
992   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
993 };
994 
995 // Provide specializations of GraphTraits to be able to treat a
996 // MachineFunction as a graph of MachineBasicBlocks and to walk it
997 // in inverse order.  Inverse order for a function is considered
998 // to be when traversing the predecessor edges of a MBB
999 // instead of the successor edges.
1000 //
1001 template <> struct GraphTraits<Inverse<MachineBasicBlock*>> {
1002   using NodeRef = MachineBasicBlock *;
1003   using ChildIteratorType = MachineBasicBlock::pred_iterator;
1004 
1005   static NodeRef getEntryNode(Inverse<MachineBasicBlock *> G) {
1006     return G.Graph;
1007   }
1008 
1009   static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
1010   static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
1011 };
1012 
1013 template <> struct GraphTraits<Inverse<const MachineBasicBlock*>> {
1014   using NodeRef = const MachineBasicBlock *;
1015   using ChildIteratorType = MachineBasicBlock::const_pred_iterator;
1016 
1017   static NodeRef getEntryNode(Inverse<const MachineBasicBlock *> G) {
1018     return G.Graph;
1019   }
1020 
1021   static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
1022   static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
1023 };
1024 
1025 /// MachineInstrSpan provides an interface to get an iteration range
1026 /// containing the instruction it was initialized with, along with all
1027 /// those instructions inserted prior to or following that instruction
1028 /// at some point after the MachineInstrSpan is constructed.
1029 class MachineInstrSpan {
1030   MachineBasicBlock &MBB;
1031   MachineBasicBlock::iterator I, B, E;
1032 
1033 public:
1034   MachineInstrSpan(MachineBasicBlock::iterator I, MachineBasicBlock *BB)
1035       : MBB(*BB), I(I), B(I == MBB.begin() ? MBB.end() : std::prev(I)),
1036         E(std::next(I)) {
1037     assert(I == BB->end() || I->getParent() == BB);
1038   }
1039 
1040   MachineBasicBlock::iterator begin() {
1041     return B == MBB.end() ? MBB.begin() : std::next(B);
1042   }
1043   MachineBasicBlock::iterator end() { return E; }
1044   bool empty() { return begin() == end(); }
1045 
1046   MachineBasicBlock::iterator getInitial() { return I; }
1047 };
1048 
1049 /// Increment \p It until it points to a non-debug instruction or to \p End
1050 /// and return the resulting iterator. This function should only be used
1051 /// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
1052 /// const_instr_iterator} and the respective reverse iterators.
1053 template<typename IterT>
1054 inline IterT skipDebugInstructionsForward(IterT It, IterT End) {
1055   while (It != End && It->isDebugInstr())
1056     ++It;
1057   return It;
1058 }
1059 
1060 /// Decrement \p It until it points to a non-debug instruction or to \p Begin
1061 /// and return the resulting iterator. This function should only be used
1062 /// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
1063 /// const_instr_iterator} and the respective reverse iterators.
1064 template<class IterT>
1065 inline IterT skipDebugInstructionsBackward(IterT It, IterT Begin) {
1066   while (It != Begin && It->isDebugInstr())
1067     --It;
1068   return It;
1069 }
1070 
1071 /// Increment \p It, then continue incrementing it while it points to a debug
1072 /// instruction. A replacement for std::next.
1073 template <typename IterT> inline IterT next_nodbg(IterT It, IterT End) {
1074   return skipDebugInstructionsForward(std::next(It), End);
1075 }
1076 
1077 /// Decrement \p It, then continue decrementing it while it points to a debug
1078 /// instruction. A replacement for std::prev.
1079 template <typename IterT> inline IterT prev_nodbg(IterT It, IterT Begin) {
1080   return skipDebugInstructionsBackward(std::prev(It), Begin);
1081 }
1082 
1083 /// Construct a range iterator which begins at \p It and moves forwards until
1084 /// \p End is reached, skipping any debug instructions.
1085 template <typename IterT>
1086 inline auto instructionsWithoutDebug(IterT It, IterT End) {
1087   return make_filter_range(make_range(It, End), [](const MachineInstr &MI) {
1088     return !MI.isDebugInstr();
1089   });
1090 }
1091 
1092 } // end namespace llvm
1093 
1094 #endif // LLVM_CODEGEN_MACHINEBASICBLOCK_H
1095